
Exacta Operating System
Version 4.0

Created By Robert Svec
Conceived On June 22, 2005

Copyright 2005-2007 VectraSoft
February 18, 2007

Contents

Section 1 Introduction Page 3
Part I Description Page 4
Part II Basic Disk File System Page 5
Part III Core Kernel Page 7
Part IV Command Line Interface Page 14

Introduction

 An operating system designed for an IBM compatible PC must include the
following four things: I/O Control, File System, Memory Management and an
Application Programming Interface (API). These four characteristics are the absolute
minimum requirements for a program to be defined as an operating system.
 As most PC users know, Microsoft Windows the most common operating
system. This operating system has advanced I/O Control in the form of being able to
use any type of I/O device available on the market (keyboard, mouse, printer, USB
devices, CD-ROM drives, etc). The simplest I/O devices are the keyboard input and
monitor output. The Exacta operating system utilizes these two I/O functions.
 The older DOS and Windows 9x operating systems had a file system called
the File Allocation Table (FAT). The new Windows 2000/XP uses a file system called
New Technology File System (NTFS). These file systems provide data organization
on a disk, which can be anything including a floppy disk, hard drive or CD-ROM. The
Exacta operating system uses the Basic Disk File System version 16.
 Memory Management is the organization and utilization of RAM. The most
common CPU is the Intel x86 Architecture CPU (ex: Pentium 4). This CPU can access
up to 4GBs of RAM using 32-bit operation codes. An operating system needs to
make sure this possible 4GB of RAM is organized, protected and properly utilized by
applications. The old days of Microsoft DOS had quite a bit of user level memory
managers such as drivers like HIMEM.SYS and EMM386.EXE, but the current
Microsoft technology takes care of memory management in the background.
 An Application Programming Interface is simply a way for programmers to
write applications that use functions provided by the operating system. There are
many ways in which a modern operating system provides an API, one of which is
called the Interrupt. Microsoft DOS provided an API through Interrupt 21h and 20h.
Functions that programmers can access via interrupt API include Create File, Open
File, Run Program, etc. If the operating system does not provide a good API then
programmers cannot create applications that utilize the operating system functions.
Exacta uses the same interrupt scheme as Microsoft DOS, which allows programs
written for Microsoft DOS to be compatible with Exacta.
 As stated earlier, an operating system needs to have these four parts. The
only thing that distinguishes a good operating system from a bad one is the amount
of efficiency each of the four parts. The goal of Exacta is to become more efficient in
the two most important functions of an operating system: the File System and
Memory Management.

Description

 The Exacta operating system runs on an IBM compatible PC with an Intel x86
CPU. All versions of Exacta run in 16-bit Real Mode, typically on a 1.44MB floppy
disk. Applications are flat binary linear execution files commonly known in the
Microsoft world as .com executables. Exacta will run any Microsoft .com executable
as long as all of the interrupts are available in Exacta.
 Version 4.0 optimizes all functions of the 3.x series as well as provides
improved error handling and reduced external applications bundled with the
installation. Complete with a Kernel and a Command Line Interface, Exacta allows
complete freedom of usage and expansion. This publication will list all available API
functions and known processes for complete user customization of the operating
system. The ability of any programmer to assist in the evolution of the operating
system is the main reason Exacta was written.

Basic Disk File System

A file system organizes data on a hard drive into files for users to access and
modify. Utilizing the most of the hard drive is the ultimate goal of a file system.
How well a file system organizes data as well as utilizing the most of the disk
possible determines how efficient the file system is. There are a few major file
systems that exist today that are used by the common operating systems for IBM
compatible PCs such as FAT (Windows 9x), NTFS (Windows XP), HFS+ (Mac OS
X/UNIX), and EXT/2 (Linux/UNIX).
 The file system takes up space on the disk, so the most compact way to store
all the information in the database is a large factor of efficiency. Since the operating
system kernel will control file routines such as create file, open file, read file and
write file the database structure needs to be set up in a way the kernel can easily
access the data structures, modify them and create new entries.
 Disks store data in physical sectors that can hold 512 bytes. The actual
geometry of the disk is quite complicated and in turn creates a problem for a file
system to accurately manage each and every sector. Here is a diagram of a physical
floppy disk:

 Breakdown Identifiers

 18 Sectors Per Track 1-18
 80 Tracks Per Head 0-79
 2 Heads 0-1

 A file system typically uses a logical numeric method to keep track of the
physical sectors. This is known as a Logical Sector Number (LSN). An example of a
LSN and a physical sector is below:

 Logical Physical

 LSN 1 Sector 2, Track 0, Head 0
 LSN 17 Sector 18, Track 0, Head 0
 LSN 18 Sector 1, Track 0, Head 1
 LSN 2879 Sector 18, Track 79, Head 1

 To make this structure easier to use, a typical file system will group several
physical disk sectors into one organizational unit called an allocate block and keep
track of each allocation block rather than each individual physical disk sector. Basic
Disk File System (BDFS) does not allocate multiple sectors into one allocation unit; it
uses each individual sector as one allocation unit. This method wastes less disk
space.
 Comparing BDFS to the other major file systems shows the increased level of
efficiency that BDFS brings to the PC platform. NTFS, FAT, HFS+ and EXT/2 group
several physical disk sectors into a single unit called a Cluster.

 Disk Size Cluster Size Physical Disk Sectors

 1,025 MB – 2 GB 2 KB 4
 2 GB – 2 terabytes 4 KB 8

 If a single text file is 50 bytes long it will take up one cluster since the system
sees one cluster as the smallest addressable unit of storage. If you have a modern
20 GB hard drive with NTFS and this 50-byte text file is stored on the disk, you have
3,950 bytes (8 physical sectors) that contain no usable data and cannot be allocated
to anything besides the 50-byte text file. The more small files you have on the disk,
the larger the wasted space becomes.
 BDFS fixes this problem by using Logical Sector Numbers to keep track of
each physical disk sector. Taking the 50-byte text file and 20GB hard drive from the
previous example we can compute the amount of wasted space that BDFS will allow.
Since each Logical Sector Number is 512 bytes and is the smallest addressable unit
of storage there is a total of 462 bytes wasted.

NTFS, FAT, HFS+ and EXT/2 waste 3,950 bytes per every 50 bytes, and BDFS
wastes 462 bytes per every 50 bytes, which means Exacta wastes 88% less disk
space than Microsoft.

The BDFS file system is broken down into three databases: the File Table,

Location Block and an optional Directory Table. The File Table holds 16 byte entries
for each file and directory, hence it is BDFS version 16. The breakdown of the File
Table entry is below.

 AAAAAAAAAAABBCCD

 A = Filename (11 characters)
 B = Location Block if file, Directory Number if directory
 C = Size in bytes if file, FFFFh if directory
 D = Directory file or directory resides in

Since each entry is 16 bytes and the maximum number of Location Blocks
usable for files is 65,532 and the maximum number of directories is 254, there is a
maximum of 65,786 entries. The maximum number of disk sectors the File Table
takes up is 129, which makes the maximum File Table size 66Kb.
 The Location Block is a database that tracks each disk sector for file
allocation. The values for a Location Block are listed below.

 Value Definition
 0000h Free
 FFFEh Reserved
 FFFFh End of entry
 0001h-FFFDh Pointer to next block

 Since each block equals one disk sector (512 bytes) and a maximum of
65,532 blocks limits BDFS to a maximum amount of storage 32MB, which is
extremely less than other file systems. The only limiting factor is the 2-byte length
of the allocation block. Future Exacta file systems will be 32-bit which will bring the
maximum storage value over 2 Terabytes. The Location Block takes up 128 disk
sectors, which makes the maximum size 65.5Kb.
 The Directory Table keeps track of the directory numbers. It is 254 bytes
long, which is less than one disk sector. The value of each byte is either 0, which
means the directory number is free or 1, which means that directory number is
taken. There is a maximum number of 254 directories in each file system until
future versions increase the table to 2-byte and 4-byte values.

Kernel

 The Exacta Kernel Version 4.0 has four main goals. Provide efficient I/O
functions, efficient memory management, efficient file system functions and an
efficient application-programming interface.

The Exacta Kernel currently supports Interrupt I/O from applications as well
as some minute keyboard input and monitor output. The Kernel creates interrupt
20h and 21h. Interrupt 21h is identical to Microsoft DOS in syntax for compatibility,
but Interrupt 20h is defined for Exacta operation. The complete Interrupt reference
is contained below.

Interrupt 21h

 AH = 1 – Character Input from Keyboard
 INPUT: N/A
 OUTPUT: AL = Character received

 AH = 2 – Character Output to Screen
 INPUT: AL = ASCII Character
 OUTPUT: Character on screen

 AH = 9 – Print String
 INPUT: DS:DX = segment:offset of $ terminated string
 OUTPUT: string printed on screen

 AH = A – Buffered Input
 INPUT: DS:DX = segment:offset of buffer
 OUTPUT: Character from keyboard stored in DS:DX
 DX = Incremented

 NOTES: Maximum size = 65,536 bytes

 AH = 30h – Get Kernel Version
 INPUT: ES:DX = segment:offset of input string buffer
 OUTPUT: DH = Major
 DL = Minor

 AH = 3Ah – Remove Directory
 INPUT: DS:DX = segment:offset of $ terminated directory name
 OUTPUT: AX = 0 Success

 NOTES: Removes directory only if it is under current directory

 AH = 3Ch – Create File
 INPUT: DS:DX = segment:offset of $ terminated filename

 OUTPUT: AX = 0 Success

 NOTES: Creates file in current directory, size = 0 bytes

 AH = 3Dh – Open File
 INPUT: AL=mode (0)
 DS:DX = segment:offset of $ terminated filename
 OUTPUT: AX = File handle
 BP = Segment where file contents are located

 NOTES: Opens file under current directory only.

 AH = 39h – Create Directory
 INPUT: DS:DX = segment:offset of $ terminated directory name
 OUTPUT: AX = 0 Success

 NOTES: Creates directory under current directory

 AH = 40h – Write File
 INPUT: BX = handle
 CX = # of bytes to read
 DS:DX = segment:offset of buffer
 OUTPUT: AX = 0 Success

 NOTES:

 AH = 48h – Allocate Memory
 INPUT: BX = Number of paragraphs to allocate (bytes / 16)
 OUTPUT: AX = Segment of allocated memory

 NOTES: Offset is always 0

 AH = 49h – Release Memory
 INPUT: CX = Number of bytes to release
 OUTPUT: N/A

 NOTES:

 AH = 4Bh – Execute Program
 INPUT: DS:DX = segment:offset of filename
 OUTPUT: Jump to program code

 NOTES: Filename does not need to be in current directory

 AH = 4Eh – Find File
 INPUT: DS:DX = segment:offset of $ terminated filename
 OUTPUT: AX = 0 Success
 BX = Starting Block or Directory Number
 CX = Size (FFFF if directory)
 DH = Directory file located in
 BP = File Table offset of entry beginning

 AH = 3Eh – Close File
 INPUT: BX = Handle
 OUTPUT: AX = 0 Success

 NOTES: Kernel: File handle variable is cleared
 Kernel: Memory is released

 AH = 41h – Delete File
 INPUT: DS:DX = segment:offset of $ terminated filename.
 OUTPUT: AX = 0 Success

 NOTES: File must be under current directory

 AH = 25h – Set Interrupt Vector
 INPUT: DS:DX = segment:offset of new handler code
 AL = Interrupt number
 OUTPUT: AX = 0 Success

 NOTES:

 AH = 35h – Get Interrupt Vector
 INPUT: AL = Interrupt number
 OUTPUT: AX:BX = segment:offset of handler code

 NOTES:

 AH = 0Eh – Set Current Drive
 INPUT: DL = Drive
 OUTPUT: AX = 0 Success

 NOTES:

 AH = 19h – Get Current Drive
 INPUT: N/A
 OUTPUT: AL = Drive

 NOTES:

Interrupt 20h

 AH = 0 – Terminate Program
 INPUT: N/A
 OUTPUT: Resets registers and restarts kernel code.

 NOTES: Use RET command in a COM executable to return to CLI.

 AH = 1 – Read File system
 INPUT: N/A
 OUTPUT: AX = 0 Success

 NOTES:

 AH = 2 – Write File system
 INPUT: N/A
 OUTPUT: AX = 0 Success

 NOTES:

 AH = 3 – Get Free Segment
 INPUT: N/A
 OUTPUT: DX = Free segment

 NOTES: Offset is always 0

 AH = 4 – Get File handle information
 INPUT: AL = File Handle

 OUTPUT: BX = Starting LSN Block
 CX = Size
 DH = Directory
 BP = File Table Offset

 NOTES:

 AH = 5 – Next free LSN
 INPUT: N/A
 OUTPUT: DX = Free LSN

 NOTES:

 AH = 6 – Convert Hexadecimal to ASCII character
 INPUT: ES:DI = segment:offset of buffer
 DX = hex character
 OUTPUT: ES:DI = $ terminated ASCII string

 NOTES:

AH = 7 – Load Byte From File Table
 INPUT: SI = Offset in File Table
 OUTPUT: AL = Byte

NOTES: This function will read the next File Table sector into
memory if needed

 AH = 8 – Read Logical Sector
 INPUT: DX = Logical Sector Number
 BP:BX = segment:offset of buffer
 OUTPUT:
 AX = 0 Successful
 AX = 1 Disk Read Error

 NOTES: Make sure your buffer is 512 bytes

 AH = 9 – Write Logical Sector
 INPUT: DX = Logical Sector Number
 BP:BX = segment:offset of buffer
 OUTPUT:
 AX = 0 Successful
 AX = 1 Disk Write Error

 NOTES: Make sure your buffer is 512 bytes

 AH = 0Ah – Set Text Color
 INPUT: AL = Color
 OUTPUT: N/A

 NOTES: Color Table:
 Low 4 bits set foreground color

High 4 bits set background color

BIN COLOR
0000 black
0001 blue
0010 green
0011 cyan
0100 red
0101 magenta
0110 brown
0111 light gray
1000 dark gray
1001 light blue
1010 light green
1011 light cyan
1100 light red
1101 light magenta
1110 yellow
1111 white

Example: 1110000b = White background, black text

 AH = 0Bh – Reset File Table Sectors
 INPUT: N/A
 OUTPUT: First File Table Sector loaded into memory

 NOTES:

 AH = 0FFh – Shutdown System
 INPUT: N/A
 OUTPUT: Restart kernel code.

 NOTES: Pressing Enter will restart kernel.

This interrupt I/O is also the application-programming interface. Any

programmer can use the above interrupt definitions when writing a program to
accomplish a task the core kernel provides.

The kernel accomplishes memory management in a very simple way since
this version runs in 16-bit Real Mode. The first segment of memory available is held
in a variable that the kernel will modify when a program attempts to load. When a
program exits, the kernel will decrease the variable by the same size that was
requested when the program first ran. Memory management will be a larger factor
when the Exacta operating system is run in 32-bit Protected Mode.

Exacta 4.0 changed the way file handling is controlled. There are four file
handles to which an Open File call will assign to the operation. The only contents of
this file handle are the File Table entry offset value. There is another kernel function
that controls outputting the contents of the entry.

Command Line Interface

The Exacta Command Line Interface (CLI) takes user input, transfers it to the
core kernel in terms of Interrupts, receives the core kernel output and translates it
into user friendly terminology. The user prompt most commonly identifies a
command line interface. Microsoft DOS has a default prompt of C:\> which in turn
can be customized by the user. UNIX/LINUX operating systems have different
command line interfaces that are called shells. A Bash shell has a user prompt of
@> and various other shells. The Exacta CLI is called the Aurora Prompt. This is
what the Aurora Prompt looks like:

Prompt Location
#> Root
#:BIN> Bin folder under root
#:BIN:SYSTEM> System folder under Bin

The current directory and its path are displayed and always in capital letters.
The pound sign (#) shows that this is the Exacta Aurora Prompt. There are several
commands that the CLI provides, which are outlined below:

Command Parameters Function

Ver N/A Displays version info

Dir N/A Displays all files and folders
 In current directory

Mkdir <directory name> Create Directory in current
 Directory

Rmdir <directory name> Remove directory in current
 Directory

Show <file name> Display contents of a text file
 On screen

Drive 0 or 1 or 2 0=1s t Floppy
 1=2nd Floppy
 2=1s t Hard Drive
 3=2nd Hard Drive
 If no parameters, current drive
 Will be displayed

Help N/A Displays commands and syntax

Del <file name> Remove file under current directory

Rename <file name> Change file name of a file under
 Current directory

Mem N/A Display Free Memory Segment

Handles N/A Display File Handle data

Label N/A Changes Current Drive Label

(NOTE: all commands are in lower case!)

The CLI also allows the user to run programs. You can type in the full
program name or omit the .com extension to run a specific program. Once the
program exits, you will be back into the CLI.

Future command line interfaces will display the operating system differently
and have different functions as well. The kernel looks for a file named cli.com upon
boot and loads that into memory, so you could write your own CLI and replace the
Aurora Prompt CLI with your own.

There are a few rules that need to be followed by the user since there are no
rule-checking procedures in this version. You cannot have two files with the same
filename. This will cause a huge problem when it comes time to access them by
reading, writing or deleting. Do not create a file with the same name as a CLI
command. The internal commands described above have precedence over the
external files and applications, so if you created your own program that plays
Blackjack and you save it as ‘handles’, you will never be able to run this application
because the internal handles command will execute before a search for an external
file is performed.

The CLI offers the execute.bat function, which is an automatic script that will
run a program before the command prompt is displayed. This is the same concept
as the MS-MS-DOS autoexec.bat file. You can create the execute.bat file by running
edit.com and typing the filename you want to run on boot followed by a carriage
return (new line). Save the file as execute.bat, press Escape to exit the operating
system and reboot. After the welcome message, the program you listed will execute
and when it finishes, the command prompt will appear. To remove this function, just
delete the execute.bat file.

