

UPnP Device SDK Manual

EBS UPnP Device Software Development Kit (SDK)

User Manual

Revised July 2006

 Copyright © 2006 EBS Inc.

EBS Inc. 39 Court Street Groton MA 01450 USA
http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

UPnP Device SDK Manual

UPnP Device SDK Manual

Table Of Contents

PART I - EBS UPnP Device User Guide 1

Section 1: Introduction 1

Section 2: UPnP Phases 3

Section 3: Server and Client Interaction Model 5

Section 4: Software Development Kit (SDK) Architecture: 7

4.1 RTPLATFORM 7

4.2 Application 8

4.3 IXML Library 8

4.4 UPnP.DOM 8

4.5 HTTP Library (HTTP SERVER AND HTTP PARSER) 8

4.6 UPnP.c and UPnPSrv.c 8

4.7 DeviceAction.c and SoapSrv.c 8

4.8 DeviceEvent.c and GenaSrv.c 8

4.9 DeviceDescribe.c 8

4.10 DeviceDiscover.c and SsdpSrv.c 8

Section 5: Getting Started 9

5.1 Creating Description Documents 9

5.1.1 Creating a Device Description Document 9

5.1.2 Creating a Service Description Document 13

5.2 Writing Your Application 16

5.2.1 Initializing and Setting up UPnP Runtime 16

5.2.2 Initializing UPnP Device 17

5.2.3 Loading the Description Documents 17

5.2.4 Registering Root Device 17

5.2.5 Device Advertisement Settings 18

5.2.6 Starting up the Device 18

5.2.7 Application Body Implementation 18

5.2.8 Shutting Down the Device 18

Section 6: Writing a device Callback 19

6.1 Serving an Action Request 20

6.1.1 Operation 21

6. 2 Serving a Subscription Request 23

6.2.1 Operation 23

Section 7: Sending Event Notifications from within Device Application 25

PART II – Porting and Configuration Guide 27

UPnP SDK Source Code Structure 29

Configuring UPnP SDK 33

Porting UPnP SDK 33

UPnP Device SDK Manual

PART III - EBS UPnP Device API Reference Manual 35

Section 1: Introduction 37

Section 2: EBS UPnP Device API 39

2.1 UPnP_RuntimeInit 41

2.2 UPnP_RuntimeDestroy 42

2.3 UPnP_AddVirtualFile 43

2.4 UPnP_RemoveVirtualFile 44

2.5 UPnP_ProcessState 45

2.6 UPnP_StartDaemon 46

2.7 UPnP_StopDaemon 47

2.8 UPnP_DeviceInit 48

2.9 UPnP_DeviceFinish 49

2.10 UPnP_RegisterRootDevice 50

2.11 UPnP_UnRegisterRootDevice 51

2.12 UPnP_DeviceAdvertise 52

2.13 UPnP_DeviceNotify 53

2.14 UPnP_DeviceNotifyAsync 54

2.15 UPnP_AcceptSubscription 55

2.16 UPnP_AcceptSubscriptionAsync 56

2.17 UPnP_GetRequestedDeviceName 57

2.18 UPnP_GetRequestedServiceId 58

2.19 UPnP_GetRequestedActionName 59

2.20 UPnP_SetActionErrorResponse 60

2.21 UPnP_GetArgValue 61

2.22 UPnP_CreateActionResponse 62

2.23 UPnP_SetActionResponseArg 63

2.24 UPnP_CreateAction 64

2.25 UPnP_SetActionArg 65

2.26 UPnP_AddToPropertySet 66

2.27 UPnP_GetPropertyValueByName 67

2.28 UPnP_GetPropertyNameByIndex 68

2.29 UPnP_GetPropertyValueByIndex 69

Appendix I 71

UPnP Device Initialization Example 71

Appendix II 73

Sample Device Callback 73

 1

UPnP Device SDK Manual

PART I - EBS UPnP Device User Guide

Section 1: Introduction

Universal Plug and Play (UPnP) is an open networking architecture for peer to peer network connectivity of
UPnP enabled devices. UPnP provides a device the capability to discover and control other devices on a
network. Devices act as servers providing the clients, known as control points, access and control to its
published capabilities. Control points have the ability to invoke actions on any UPnP device on a network,
control points can also subscribe to a device to continuously monitor the state of a device and its services.

UPnP architecture builds on existing networking protocols, such as IP, TCP, UDP, HTTP, HTML, SOAP,
SSDP, GENA etc. and web standards like XML to make the communication and control possible. Any device
having a TCP/IP network stack is capable of running UPnP regardless of its underlying operating system and
hardware.

2

UPnP Device SDK Manual

 3

UPnP Device SDK Manual

Section 2: UPnP Phases

UPnP device operates in phases, the following section briefly explains these phases and elaborates on the
role of a device in each of these phase. Every UPnP phase has related network protocols which the device
must support. These phases or steps collectively define how a UPnP device behaves on the network.
 x Addressing. When the device is turned on it joins an IP network and acquires a unique address

which other devices and control points can use to communicate with it. Address acquisition is done
either using server based DHCP (if available) or using a server less Auto-IP protocol. Auto-IP is a
method where the device on a network may automatically choose an IP address and subnet mask in
the absence of a server. The underlying TCP/IP stack should make DHCP and Auto-IP functionality
available to a UPnP device.

 x Discovery. This is the next phase in which a UPnP device advertises itself and its services on the
network to indicate their availability (or to announce their departure). The control point, in this phase,
searches for devices and services. If the searched device or service is found the control point
retrieves their description document which contains their detailed information.

Simple Service Discovery Protocol (SSDP) is a discovery protocol used by the device and control
point in this phase. This protocol allows a device to send presence announcement, indicating its
availability, to a multicast address, which is listened to by all the UPnP devices and control points
available on the network. The protocol also allows a control point to search for a specific device or a
service on the network by issuing search requests on the multicast address.

The device sends responses and advertisements that contain a URL to access device description
document. This URL provides control points with the information they need to retrieve the device and
service descriptions, using which the control point obtains complete information about the device
and the services it offers.

 x Description. In the description phase a control point develops detailed understanding about a device
or a service by parsing and reading their description document which it obtained in the discovery
phase. A description documents contains all the information that control point needs to start
monitoring and controlling a target service on a device.
Every UPnP device needs to list information about itself and its capabilities/services in form of XML-
based description documents. These documents are strictly based on standard schema defined by
UPnP forum. The schema clearly defines all the required and optional fields (in form of xml tags) that
a description document must have.
A device must maintain two types of description documents

A. Device description document that contains all the information about the device such as

manufacturer, make, model, serial number, base URL etc.; a list of services provided by the
device; list of embedded devices and

B. Services description documents for each of its service. A service description document

describes detailed information about the service, including all its associated variables. This
information is essential in-order to be able to monitor and control that service.

 x Control. In this phase a control-point can control a device by invoking action on a service hosted by
the device. Simple Object Access Protocol (SOAP) is used to communicate action requests and
responses between the control point and the device during this phase. SOAP is a control protocol
used to perform web based messaging and remote procedure calls (RPC). Control point constructs
action requests using SOAP and delivers them over HTTP to the control URL of the service. The
server parses the request, performs the action and sends an action response indicating a success or
a failure.

 x Eventing. In the eventing phase a control point can register (or subscribe) to receive event
notifications from a device whenever the state of a service associated with the device changes. The
UPnP architecture employs a Subscriber / Publisher model in which the control point can subscribe
to a service offered by the device. The device acts as a publisher sending event notification to all the

4

UPnP Device SDK Manual

subscribers whenever there is a change in the value of any state variable of the service. This allows
the control points to constantly monitor the state of a service by subscribing to it, thus providing it
with a capability to respond automatically to a state change. This phase employs General Event
Notification Architecture (GENA), a publisher/subscriber system, to allow control points to request,
renew or cancel a subscription on an event. The service maintains a list of all the subscribers that is
updated upon receiving subscription, renewal, or cancellation messages from the subscriber and
also upon change of an event. GENA messages, like SOAP messages, are delivered using HTTP
over TCP/IP. All messages contians information in XML format, using standard xml tags defined by
upnp forum.

 5

UPnP Device SDK Manual

Section 3: Server and Client Interaction Model

UPnP requires client and servers use both unicast and multicast messages for communication. Figure 1.
depicts all the multicast messsages passed between client and server in a UpnP architecture. Multicast
channel (IP address 239.255.255.250 :1900 for UPnP) is used by the server (or client) for messages that are
intended to be received by all client (or servers) available on the network.

Figure 1: UPnP client server multicast communication

There are three such multicast message transitions:
 x SSDP Alive: Device Available - The device sends presence notification to all the control points available

on the network by sending alive messages to the multicast address. (Discovery Phase)
 x SSDP Bye-Bye: Device Unavailable - Before shutting down the device indicates its unavailability by

sending bye-bye notification to all the control points available on the network. (Discovery Phase)
 x M-Search Request: Discovery Request - A control point (client) may send M-Search request to query to

all devices (servers) available on the network to search for a specific service or device. (Discovery
Phase)

All the other server client communications use unicast messages. Figure 2 depicts the client server
interaction over unicast channel.
 x M-Search Response: Discovery Response - If a device matches the search target of an multicast M-

Search request issued by a control point, the device responds with a unicast message to the control
point supplying it the url of the target (Discovery Phase)

 x Get Description Document: Upon discovering a service or a device which matched the search criterion,
the control point sends a unicast message requesting for their description documents from the device
(Description Phase)

 x OK 200: Acknowledgment - The device responds to the client’s request for a description document for
itself or one of it's service by sending the respective description document to the control point.
Depending on the nature of the request a device may also send an error message as an
acknowledgement (Description Phase)

 x SOAP M-POST: Action Request - The control point can control and invoke action on a service offered by
a device by sending it a unicast action request. (Control Phase) x OK 200: Action Response - The device responds to action requests by sending status messages back to
the control point indicating the success or failure of the action request.(Control Phase)

Multicast Address
“239.255.255.250:1900”

SERVER
(Device)

SSDP Alive (UDP)

SSDP Bye-Bye (UDP)

CLIENT
(Control-
 Point)

M-Search Request (UDP)
(UDP)

6

UPnP Device SDK Manual x Event Subscription: Subscription Request - A control point can send a unicast subscription request,
renew request or cancel request message to a device. A control point can subscribe or unsubscribe to a
service which enables it to monitor the state the service throughout the term of the subscription.
(Eventing Phase)

Figure 2: UPnP client server unicast communication

 x OK 200: Subscription Response - The device sends a unicast status message to the control point in

response to subscription request, renew request or cancel request messages. This response indicates
the success or failure of the device to perform the request.(Eventing Phase)

 x Event Notify: Each service maintains state variables which control the state of a service. If any of these
state variables changes the device sends a unicast event message to all the subscriber of a service
reflecting the change.(Eventing Phase)

Device
Control
Point

M-Search Response (UDP)

Get Description Document (HTTP)

OK 200 (HTTP)

SOAP M-POST (HTTP)

OK 200 (HTTP)

Event Subscription (HTTP)

OK 200 (HTTP)

Event Notify (HTTP)

 7

UPnP Device SDK Manual

Section 4: Software Development Kit (SDK) Architecture:

Figure 3: EBS UPnP 1.0 Architecture

Figure 3, shows where the different modules of the SDK sit in the UPnP library. Described below is a brief
description of UPnP library modules

4.1 RTPLATFORM
RTPlatform is EBS’s porting layer that allows the entire application to sit on any platform under it. The UPnP
stack sits on RTPlatform; this makes it independent of the underlying operating system, or kernel that your
system might be running on.
In order for your UPnP application to work on your platform you might need to modify a few RTPlatform files
as explained in the RTPlatform manual

 UPnP Device Application

UPnP General API

RTPlatform Porting Layer

H
T

T
P

 S
erver

IX
M

L
 P

arser

Device
Control

Device
Event

Device
Discover

 SOAP Srv GENA Srv

Control
Phase

Eventing
Phase

Discovery
Phase

Operating System and underlying networking Layer

Device
Describe

UPnP Server API

U
P

nP
 D

om

 SSDP Srv
Cli

8

UPnP Device SDK Manual

4.2 Application
The developer will need to develop an application that will drive the SDK to perform device or server side
operations. The application sits on top of UPnP stack interacting directly with upnp.c, upnpsrv.c and IXML
parser.

4.3 IXML Library
This library is used to parse and generate the XML documents as required by UPnP. XML is widely used in
UPnP as the format in which all the information in UPnP is transferred, this provides UPnP with platform
independence. Most modules of the SDK use IXML library.

4.4 UPnP.DOM
This module uses IXML library to perform some UPnP specific xml operations on an xml document or its
Dom (data object model) representation.

4.5 HTTP Library (HTTP SERVER AND HTTP PARSER)
This library contains the web server and http parser used by UPnP. This library as other libraries sits on top
of RTPlatform interacting directly with the internal modules of the UPnP stack.

4.6 UPnP.c and UPnPSrv.c
The UPnP device application interacts with these two modules. They provide the API’s for the UPnP SDK.
UPnPSrv.C module contains few API’s that are specific to the device or the server side, while UPnP.C, is the
file the containing general UPnP API’s which provides the developers full control of UPnP stack.

4.7 DeviceAction.c and SoapSrv.c
These modules contain functions implementing the control phase of UPnP. See section 2 for a brief
description of purpose of this phase.

4.8 DeviceEvent.c and GenaSrv.c
These modules contain functions implementing the eventing phase of UPnP. See section 2 for a brief
description of purpose of this phase.

4.9 DeviceDescribe.c
This module contains functions that extract all the relevant information from the device and service
description documents. This information is then stored in tables that are used at run time by various modules
of the SDK.

4.10 DeviceDiscover.c and SsdpSrv.c
These modules contain functions implementing the discovery phase of discovery. See section 2 for a brief
description of purpose of this phase.

 9

UPnP Device SDK Manual

Section 5: Getting Started

5.1 Creating Description Documents
UPnP device maintains a description document for itself, each of its services. These documents contain
complete information about the device, and the services it offers. The first step is to create these XML-based
description documents which are strictly based on standard schema defined by UPnP forum. These
documents must conform to the UPnP Template Language, the XML syntax defined by the UPnP Forum for
creating device and service descriptions. The standard scheme defines all the required and optional fields
which a description document must contain.

All the newly created description documents must be placed in a directory which will be set as the root
directory of UPnP’s internal web server. In the supplied sample device this directory is named 'www-root', all
the description documents for the sample device are placed in this directory. The section writing your
application will explain in details how to set this new directory as the root diectory of the web server.

5.1.1 Creating a Device Description Document
This is the first step in developing an UPnP enabled device. Creating a description document is as simple as
a ‘fill in the blank’ exercise. It does not require the developer to have any background knowledge of XML
standard or XML technology.

Shown below is a sample of standard format of a device descriptor. Every UPnP device description
document has the same format as shown in this sample. The fields (in form of xml tags) present in such
documents are standard and are defined by UPnP forum.

To create a device description document, start by copying the sample shown below in a text editor.
The next step is to replace the italicized text in the sample below with device specific information. Table 5.1
contains detailed information about each field which is filled with an italicized description in the sample. Refer
to table 5.1 to determine the correct / allowed value to fill for each of these fields. Once all the values for the
necessary fields are inserted, the device description document is ready. The developer should save this file
with an .xml extension and place it in a directory which will later be set as the root directory for the internal
web server.

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>base URL for all relative URLs</URLBase>
 <device>
 <deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer’s serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>

10

UPnP Device SDK Manual

 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 XML to declare other icons, if any, go here
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
 <serviceId>urn:upnp-org:serviceId:serviceID</serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 Declarations for other services defined by a UPnP Forum working
 committee (if any) go here
 Declarations for other services added by UPnP vendor (if any) go here
 </serviceList>
 <deviceList>
 Description of embedded devices defined by a UPnP Forum working
 committee (if any) go here
 Description of embedded devices added by UPnP vendor (if any) go here
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
</root>

Source: http://www.upnp.org/download/Device-Template-Non-Annotated1.01.doc

http://www.upnp.org/download/Device-Template-Non-Annotated1.01.doc

 11

UPnP Device SDK Manual

Element Required Value

URLBase Yes

(For EBS SDK)
URL which is the base URL for the device. All relative URLs
are appended to this base URL.
The developer must supply the IPaddress of the device and
the port number that the web server will use to serve the
description documents. Eg.
http://192.168.0.6:80/

If a unique address for the device is not available or known to
the developer then zero’s (or corporate IP or localhost IP) can
be filled in the IP field (e.g. http://0.0.0.0/) and when writing
the application AUTO_ADDR should be set to 1 in
UpnP_RegisterRootDevice API. This automatically assigns
the device a unique address and a port number to serve its
description pages.

deviceType Yes Describes the kind of device this is. The format for this field is:
urn:schemas-upnp-org:device:deviceType:v
Standard device type defined by UPnP committee must
begins with urn:schemas-upnp-org:device: and are followed
by the device type suffix, “:”, and an integer device version.
For example, say the device type for the device is
Temperature Controller and the version for the device is 1.
Then this is how its deviceType will look like : urn:schemas-
upnp-org:device:Temperature Controller:1

friendly Name Yes A short user-friendly description of the device. For example,
EBS Temperature Controller is the friendly title for EBS's
temperature controller device.

manufacturer Yes The name of the manufacturer

manufacturerURL No The URL of manufacturer’s website. This URL may be relative
to the base URL.

modelDescription No Text describing the device for an end user.

modelName Yes The model name for the device.

modelNumber No If the model of the device has a model number, then this
number will go here.

modelURL No URL of the website for this model of the device.

serialNumber No The serial number for the device or model.

UDN Yes The Unique Device Name for the device. This is the unique
identifier for the device that must remain unchanged even
when the device reboots. This field must begin with “uuid:”
which should be followed by a unique device identifier. Here is
an example of the value of UDN in a device descriptor:
uuid:3de8ae7e-a535-4a50-a689-a6d8923fb73f

UPC No Universal Product Code. If the device has a UPC code which
is a 12 digit device code, used to identify consumer package.

http://192.168.0.6:80/
http://192.168.0.6:80/

12

UPnP Device SDK Manual

IconList If Available IconList contains list of icons that are associated with the
device that can be used by control point user interfaces to
represent the device. IconList and elements under it should be
included in the device description document only if the
application programmer plans on associating icons with the
device. The next 5 elements are needed only if inconList is
used in the device description document.

mimetype Yes Single MIME image type or format

Width Yes Width of the icon in pixels

Height Yes Height of the icon in pixels

Depth Yes Number of color bits per pixel

url Yes URL to access the icon image. May be relative to the base
URL.

serviceList If Available Service List contains the list of all services that the device
offers for eventing and control.

service If Available Contains the complete information for a service. The subtypes
for service are described below.

serviceType Yes UPnP service type. For a standard service types that is
defined by UPnP Forum working committee, use the following
format: urn:schemas-upnp-org:service:serviceType:v, where
the serviceType the type as defined by the committee and v is
the integer indicating service version. For example:
urn:schemas-upnp-org:service:TemperatureService:1

serviceId Yes Unique identifier for this service. No two services can have the
same serviceId within the device description. This element has
the following format: urn:upnp-org:serviceId:serviceId, where
the bold serviceId indicated the identifier for the device. For
example :
urn:upnp-org:serviceId:TemperatureService.0001
the serviceID for this service is ’TemperatureService.0001’

SCPDURL Yes The URL for service description. This URL may be relative to
base URL. For example,
_TemperatureService.0001_scpd.xml

controlURL Yes The URL at which the device receives control messages for a
service. May be relative to base URL. For example,
_TemperatureService.0001_control

eventSubURL Yes The URL for event-related messages for a service. May be
relative to base URL. No other service of a device can use the
same event URL. This is a required field and should be listed
even in case that the service contains no evented state
variable. An example of this field is:
_TemperatureService.0001_event

 13

UPnP Device SDK Manual

deviceList If Available List of all embedded devices that the device contains. The
<device> sub element of this list contains details of an
embedded device. The format of <device> is same as that of
root device. There is one device sub element for each
embedded device. The <deviceList> element is required if and
only if the root device has embedded devices.

Table 5.1 – Device Sub-Elements

5.1.2 Creating a Service Description Document
A UPnP device can host one or more services each dedicated to perform a set of tasks or actions which may
be remotely invoked by a control point. A service can also allow the control point to subscribe to it in order to
receive notifications of any change occurring on the state of this service.

The device must maintain a service description document for each of such service that it hosts. A service
description document contains all the information a control point needs to perform eventing and control on a
service.

Shown below is a sample of standard format of a service descriptor. Process of creating a service
description document is similar to creating a device description document. The developer should replace the
italicized text in the sample below with service specific information. Table 2 contains detailed information
about each field which is filled with an italicized description in the sample. Refer to table 2 to determine the
correct / allowed value to fill for each of these fields.

Tag ‘scpd’ in a service description document identifies this as a service description document. Table 5.2
explains the values for the standard tags or elements which are needed to create this document.
Shown below is a sample of standard format of a service descriptor.

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>actionName</name>
 <argumentList>
 <argument>
 <name>formalParameterName</name>
 <direction>in xor out</direction>
 <retval />
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 Declarations for other arguments defined by UPnP Forum working
 committee (if any)go here
 </argumentList>
 </action>
 Declarations for other actions defined by UPnP Forum working
 committee (if any)go here
 Declarations for other actions added by UPnP vendor (if any) go here
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueList>

14

UPnP Device SDK Manual

 <allowedValue>enumerated value</allowedValue>
 Other allowed values defined by UPnP Forum working committee (if
 any) go here
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>
 </stateVariable>
 Declarations for other state variables defined by UPnP Forum working
 committee(if any) go here
 Declarations for other state variables added by UPnP vendor (if any)
 go here
 </serviceStateTable>
</scpd>
Source: www.upnp.org/

Element Required Value

ActionList If Available List of all the actions that the service can perform. Each action

is described inside <action> element. The action element
contains a name for the action and an argument list which is
list of arguments that this action may have

Name Yes This is the name of the action. Does not support “-” and “#”
character.

argumentList Yes/No Argument list must be included if action has arguments
associated with it. Each action may have zero or more
arguments in it. An argumentList lists all the arguments that
are available for the action. This element contains 4 sub
elements which are described below.

Name Yes Name of a formal parameter. Should be less than 32
characters and not contains a hyphen character. This element
should be a name of a state variable which is a function of
action.

Direction Yes An argument may be used as an input parameter or as an
output parameter. Determines whether argument is an input or
output. Direction can be 'in' or 'out' (not both) indicating
whether the argument is used as input or output variable of an
action. Requirement is that any 'in' arguments must be listed
before any 'out' arguments.

Retval No Identifies at most one out argument as the return value.
If included must be the first out argument.

relatedStateVariable Yes Name of a state variable that is associated with this action.

http://www.upnp.org/

 15

UPnP Device SDK Manual

serviceStateTable If Available A service uses state variables to model its state at runtime.
This element lists all the state variables available for the
service. Each state variable is described within a stateVariable
element which is described below.

stateVariable If Available Describes a state variable. This element has a required
’sendEvents’ attribute which is used to specify whether this
state variable can be evented or not. A ’yes’ value of
sendEvents indicates that on an event, state variable will send
event notifications to all its subscribers, while a value of ’No’
indicated that no event notification will be send out for this
state variable.

Name Yes Name of state variable (cannot contain a hyphen character)

dataType

Yes Data type of the state variable. One of the datatypes as
defined by XML Schema, Part 2: Datatypes. For standard
state variables data types are defined by the UPnP working
committee.

defaultValue

No

Expected, initial value contained in the state variable. Must be
consistent with the data type falling within the allowed value
list and between the allowed value range which are explained
below.

allowedValueList If Available Sub element of a stateVariable. Used to specify the values a
variable can take. This element contains the entire list of
possible values a variable can take which are specified inside
allowedValue tag

allowedValue YES This sub - element is required if allowedValueList is used.
Specifies a legal value for the variable

allowedValueRange If Available Range of acceptable values that can be specified for a
numeric variable.

Minimum No Lower limit of the range.

Maximum No Upper limit of the range.

Step No Number of steps or difference between any two values.

Table 5.2 – Service Sub-Elements

16

UPnP Device SDK Manual

5.2 Writing Your Application

UPnP stack needs to access state of the device at all times during the lifetime of the device.
UpnPDeviceRuntime structure shown below is designed to hold the runtime information of device. Another
structure UpnPRuntime holds general runtime information for the SDK. Although these structures are used
internally, the application developer will need to initialize and populate these structures using supplied API’s.

These structures are described briefly below,
struct s_UPnPDeviceRuntime
{
 DLListNode rootDeviceList;
 UPnPRuntime* upnpRuntime;
 UPNP_INT32 announceFrequencySec;
 UPNP_INT32 nextAnnounceTimeSec;
 UPNP_INT32 remoteCacheTimeoutSec;
 int (*announceAll) (UPnPDeviceRuntime *runtime);
 SSDPCallback deviceSSDPCallback;

 #ifdef UPNP_MULTITHREAD
 RTP_MUTEX mutex;
 #endif
};

struct s_UPnPRuntime
{
 SSDPServerContext ssdpContext;
 HTTPServerContext httpServer;
 UPnPDeviceRuntime* deviceRuntime;
 UPnPControlPoint* controlPoint;
 UPNP_INT16 ipType;
 #ifdef UPNP_MULTITHREAD
 UPnPDaemonState daemonState;
 RTP_MUTEX mutex;
 #endif
};

5.2.1 Initializing and Setting up UPnP Runtime
UPnP application must start by initializing and setting up UpnPRuntime structure which holds runtime
information for UPnP stack using UpnP_RuntimeInit () API, for example,

result = UpnP_RuntimeInit (&upnpRuntime, serverAddr, serverPort, ipType, "c:\\www-root\\",
maxConnections, maxHelperThreads);

where, address of uninitialized UpnPRuntime structure is supplied as the first parameter, this structure will
hold sdk’s runtime information. Argument serverAddr is the server (device) IPaddress. The format for
serverAddr is: In case of an Ipv4 address is ServerAddr [] = {0,0,0,0}; In case of ipv6 a char string holding
ipv6 address can be supplied for example ServerAddr [] = {“fe80::20b:dbff:fe2f:c162”}
It is important to note that this value should be same as the device IP address as filled in the URLBase field
of device description document. If device IP address is not known pass 0 or NULL as serverAddr parameter.
In this case it is a must to turn on AUTOIP (to automatically detect device's address) when registering the
device (this is done at a later stage and is explained in this documentation in registering root device section -
5.2.4). Argument serverPort is the port number on which web server serves http requests. This number
should be same as mentioned in the URLBase field of the device description document. If a zero is supplied
as serverPort and AutoIP is enabled while registering the root device as explained later then a port number
is automatically assigned to the web server. ipType is the version of underlying ipstack (ipv4 or ipv6) on
which this upnp stack will run. The valid values for ipType are RTP_NET_TYPE_IPV4 for ipv4 network or

 17

UPnP Device SDK Manual

RTP_NET_TYPE_IPV6 for an ipv6 network. Next argument is supplied to setup the root directory of the
internal web server. In this example, string "c:\\www-root\\" is complete path to the directory which will be set
as root directory of stack’s internal web server. This must be same directory where description documents
for the device and its services are stored. The next argument, maxConnections indicates the maximum
number of connections that the internal web server will handle at any given time.
In the multithreaded mode, UPnP sdk will spawn at least 2 threads, one for web server and one for the ssdp
server. The last argument maxHelperThreads specifies the maximum number of helper threads that the http
(web) server can spawn when needed. If maxHelperThreads is equal to n then, maximum threads that sdk
can spawn is 2 + n.

5.2.2 Initializing UPnP Device
Next, the application developer must initialize the runtime structure for upnp device. The device maintains its
own runtime states and values which needs to be initialized before starting it up. Use UpnP_DeviceInit () in-
order to initialize the device runtime structure, for example:

result = UpnP_DeviceInit (&deviceRuntime, &upnpRuntime);

As first parameter, supply address of an uninitialized buffer of type UPnPDeviceRuntime, this will hold the
device runtime information. The address of variable of type UpnpRuntime which was initialized in the
previous step is supplied as the second argument.

5.2.3 Loading the Description Documents
As the next step, load the DOM (Data Object Model) representation of device description document using
ixmlLoadDocument(), an IXML parser module API function. Prepare a variable of type IXML_Document to
hold the address of this dom tree. In the example below, xmlDevice holds the dom tree representation of
device description document 'device.xml', stored at ' c:\\www-root'.

xmlDevice = ixmlLoadDocument ("c:\\www-root\\device.xml");

This function takes the full path to the device description document as an argument. The DOM tree
representation is used by the SDK to extract and set device and service information.

5.2.4 Registering Root Device
Next step is to register the root device using UPnP_RegisterRootDevice() API provided. Shown below is an
example that uses this API

result = UPnP_RegisterRootDevice (&deviceRuntime, "device.xml", xmlDevice, AUTO_ADDR,
deviceCallback, 0, &rootDevice, ADVERTISE);

Address of variable of UpnPDeviceRuntime type which holds device's runtime information is supplied as the
first parameter. Argument 2, “device.xml”, is the file name of the root device description document for this
example. Using this file name and the base url available in the description document, address of whose
DOM tree representation is supplied in argument 3, this API internally creates a full url to access the device
description document.
If AUTO_ADDR is set to 1 this function automatically discovers the address of the device, using AutoIP, and
uses this address to create the path to the description document. If AUTO_ADDR is 0 then the device
address is extracted from the device description document.
Next pass the address of the application callback function, this is the function which will be invoked when
control points make any action or subscription requests to the device. The application callback is handles
any asynchronous requests from the control point. Section 6 describes the role of an application callback in
detail. The next argument is the callback data or cookie that can be passed from the application to the
callback function. This API sets up and initializes an un-initialized handle to this device. This handle is used
internally by the sdk and also to send advertisements (in the next sections), in this example, rootDevice is of
type UpnPRootDeviceHandle and its address is passed to this API. The last parameter gives the developer
ability (or flexibility) to control advertising on the device. If ADVERTISE is turned on (set to 1) the device will
be set up to send periodic presence announcements. This ability can be turned off by setting ADVERTISE to
0.

18

UPnP Device SDK Manual

5.2.5 Device Advertisement Settings
If last parameter of UPnP_RegisterRootDevice() is set to 1, the device will send periodic alive
announcements for itself, it’s services and any embedded devices. The next API is used to set up
advertisement parameters like frequency of sending periodic advertisements, and the time period for which
the client (control point) will cache the advertisement. Here is an sample usage of this API,

UpnP_DeviceAdvertise (rootDevice, announceFreq, cacheTimeOut);

This API sets up the device with device handle 'rootDevice' (argument 1 above, initialized in step 5.2.4), to
send advertisements every 'announceFreq' seconds and setting the remote recipient to cache the
information for cacheTimeOut seconds. When this device shuts down it will send a bye – bye notification to
all the devices and control points present on the network.

5.2.6 Starting up the Device
Calling UpnP_DeviceStartDaemon () starts up the device in multithreaded environment.

UpnP_DeviceStartDaemon (&upnpRuntime);

Where, address of UPnP's runtime is supplied as parameter.

The developer can choose to run the device in polled mode by calling UpnP_ProcessState () API.

UpnP_ProcessState(&upnpRuntime, pollTimeMsec);
This API gets polled every pollTimeMsec milliseconds.

5.2.7 Application Body Implementation
Now that the UPnP engine has started, insert the body of application here. If a value associated with any
service hosted by the device is changed inside the application an event reflecting this change needs to be
sent to all the subscribers. To see how to do this, see section ‘Sending event notifications from within an
application’.

5.2.8 Shutting Down the Device
API UpnP_DeviceFinish () is designed to stop device, by killing the threads and freeing up their resources in
a multithreaded environment. This function frees up the resources used by the device by un-registering the
device, sends bye-bye notification for the device and its services and shuts down the ssdp server and the
internal web server.

UpnP_DeviceFinish (&deviceRuntime);

Where, address of device's runtime structure/ buffer is supplied as parameter.
Finally calling IXML parser API ixmlDocument_free () frees up the DOM tree representation of the
description document.

ixmlDocument_free (xmlDevice);
In this example, xmlDevice is the variable holding address of device description document which was
assigned previously in section 5.2.3

 19

UPnP Device SDK Manual

Section 6: Writing a device Callback

Why a device callback?
A Device callback function needs to be implemented to handle a SOAP/Action request and to handle
subscription requests directed to the device or its services. Shown below is example from the sample device.

To make things even clear, Figure 4 describes the device application, device callback and the control point
interaction

Figure 4 Interaction between device application, device callback and control point.

DeviceCallback (&userData, &deviceRuntime, rootDevice, operationType,
&operationStruct);

Here, userData is a cookie (callback data) which is passed into the callback from the application. This is the
same cookie which was passed in the UpnP_RegisterRootDevice API when registering the device. Second
parameter deviceRuntime is address of structructure holding device information at runtime. Argument
rootDevice is the handle to the current device.

UPnP Stack

Control
Point

Device
Callback
(User
Supplied)

Device
Application
(User
Supplied)

Multicast Address
239.255.255.250:1900

SSDP Alive / SSDP Bye-
 Bye

Discovery Request

Discovery Response

Description Doc Request / Response

SOAP(Action) Request, GENA(subscription)
Request
Acknowledgement to SOAP / GENA Request

Event Notification (Can be send from the
callback or from the application)

Event Notification (Can be send from the
callback or from the application)

Device variables
passed through a
cookie

20

UPnP Device SDK Manual

OperationType indicates what type an operation this callback will perform, operationType is of type
“UpnPDeviceEventType” and can indicate one of the three event types as indicated below.

typedef enum e_UPnPDeviceEventType
{
 UPNP_UNKNOWN_DEVICE_EVENT = -1,
 UPNP_DEVICE_EVENT_ACTION_REQUEST,
 UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST,
 UPNP_NUM_DEVICE_EVENT_TYPES
}
UpnPDeviceEventType;

An 'UPNP_DEVICE_EVENT_ACTION_REQUEST' operationType indicates control action request, while
'UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST’ indicates a subscription request.

The purpose of a callback is to either handle an action request or to handle a subscription request. The first
step of callback operation should be to determine whether the request that invoked the callback is an action
request or a request for subscription. OperationType holds the information needed to resolve the type of
request.

Shown below is a sample usage:
switch (operationType)
{
 case UPNP_DEVICE_EVENT_ACTION_REQUEST:
 {
 UPnPActionRequest *request = (UPnPActionRequest *) eventStruct;
 ...
 ...
 break;
 }
 case UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST:
 {
 UPnPSubscriptionRequest *request = (UPnPSubscriptionRequest *) eventStruct;
 ..
 ..
 ..
 break;
 }
}

The callback handles action requests and subscription requests differently which makes it necessary for the
developer to classify the two cases separately as shown above. The last parameter, operationStruct, holds
the actual request information. This parameter should be type-casted to be of form UPnPActionRequest * in
case of action request whereas in-case of subscription request, eventStruct should be typecasted to be of
type UPnPSubscriptionRequest *.

6.1 Serving an Action Request
Implementation of a callback to handle action requests roughly involves four steps
1. Checking the request to determine the target service and target action on the device
2. Performing the requested action.
3. Sending acknowledgement / response indicating success or failure to the requester.
4. Sending event notification to all the subscribers of the service indicating any change which may have
occurred to service arguments or its state variables as a result of this action.

If the request is an action/control request, then, operationStruct (last parameter in the callback function) is a
structure of 'UpnPActionRequest' type. The first step therefore is to typecast operationStruct to be able to
hold address of type 'UpnPActionRequest', here is an example
UPnPActionRequest *request = (UPnPActionRequest *) operationStruct;

 21

UPnP Device SDK Manual

6.1.1 Operation
Start by extracting the device name supplied in the request, checking this supplied unique device name
against the unique device name (UDN) of your device will determine if the request is targeted to your device.
Example,

targetDeviceName= UPnP_GetRequestedDeviceName(operationStruct, operationType);

here, operationStruct is passed to the callback and operationType is the fourth parameter of the callback
which indicated the nature of the request (action or subscription).

Request from a control point holds the service Identifier (serviceId) of the target service containing the target
action. Since a device can host one or more services, the developer needs to extract the supplied serviceID
from the request message to determine which service this request is targeted to.
Example,

targetServiceId = UPnP_GetRequestedServiceId(operationStruct, operationType);

Where, operationStruct and operationType are same as described in the previous call.

Once the target service is located the next step is to determine or extract the target action requested by
control point. A service can offer one or more actions, it is therefore important to ascertain which action this
request wants to invoke. The action name is extracted from the request using
UpnP_GetRequestedActionName API, example,

targetActionName = UPnP_GetRequestedActionName(operationStruct, operationType);

It is important to note that each action holds an argumentList which is a listing of all the arguments that the
action contains. Each argument has an associated direction (’in or ’out’) which classifies the argument as an
input or an output parameter. For example, In-arguments are passed to a service when an action is invoked,
while out arguments return values as a result of the action.

Now, with requested action name known, if the action has arguments having ’in’ direction, next step is to
extract the value of such arguments supplied in the action request. For each ’in’ argument use
UpnP_GetArgValue () API to extract its input(supplied) value. Shown below is an example on how to extract
the supplied value of an argument.

UPNP_CHAR * newValue = UpnP_GetArgValue (request, "newTargetValue");

where, request which is of type UpnPActionRequest, is the address of buffer holding the action request data.
String ’newTargetValue’ is an argument of direction ’in’ of the requested action which is obtained from
visually inspecting the service decription document of the requested service.

An important point to note here is that the request contains an argument and its value if and only if the target
action contains an ’in’ argument. Also, UPnP specifications require the request to contain every ’in’ argument
in the defination of the action in the service description.

Keeping the above point in mind the developer should extract the supplied value of all the ’in’ arguments of
the target action and should not try to extract the value of ’out’ argument of an action as ’out’ argument are
not part of the action request.

Next step is to perform requested action with the new input values for the arguments. If the service is not
designed to accept and operate upon this value, or if the service is not able to complete this action, it needs
to send an error response message to the control point. This can be done using
UpnP_SetActionErrorResponse API. For example,
UPnP_SetActionErrorResponse(request, "Invalid Action", 402);

where, request pointer to action request, “Invalid Action” is the string describing the error and 402 is the error
code. The string describing the error and the numerical error code are specified by UPnP forum. The
possible values for argument 2 and 3

for the above call are listed in table 6.1 shown below

22

UPnP Device SDK Manual

Error Code Error Description Description
401 Invalid Action The service has no action of the name provided.
402 Invalid Args Problem with supplied input arguments; not

enough arguments, too many arguments, wrong
name or wrong type.

403 Out of Sync Out of synchronization
501 Action Failed Current state of service prevents invoking the

action.
600 – 699 UPnP Forum defined Common action errors as defined by UPnP

Forum.
700 – 799 Depends on device type Action-specific errors for standard actions.

Defined by UPnP forum working committee.
800 – 899 Vendor-defined Action-specific error for non standard actions.

Available to be defined by the UPnP device
vendor.

If action is performed successfully, two steps will need to be taken

1. If the operation resulted in changing the value of any of the services state variables, the developer
needs to send an event notification to all the subscribers of the service which contains this action
indicating the new changes.

2. Send a response to the requesting client indicating successful operation, the message must contain

name and value of all the 'out' arguments of this action.

Lets look at implementation details of these two steps. If the completion of action results in changes to the
state of evented state variables included in the service, all these changes should be notified to all the
subscribers.

To create an event notification, start by creating a variable of IXML_Document type which will be used to
point to the event message (internally send as an envelop called property set) , initially this variable point to
NULL. For example,

IXML_Document *propertySet = 0

Next step is to initialize and populate the event notification message. In order to do so, the evented state
variables which were affected following the action operation have to be added to the event message along
with their current value. Each call to UpnP_AddToPropertySet API adds a variable and its new value to the
event notification message. Here is an example,
UpnP_AddToPropertySet (&propertySet, "Status", value);
Where, 'status' is the name of the variable and 'value' is its new value.

Event notification message is now ready to be send out, two API are available UpnP_DeviceNotify (), a
blocking call, or UpnP_DeviceNotifyAsync () for non blocking call, to all the subscribers

UpnP_DeviceNotify (deviceRuntime, rootDevice, deviceName, serviceId, propertySet);

UpnP_DeviceNotifyAsync (deviceRuntime, rootDevice, deviceName, serviceId, propertySet);

The XML document created for sending event notifications can now be freed, this can be done using IXML
API ixmlDocument_free ().
ixmlDocument_free (propertySet);

Finally, the operation ends with creating and sending a response to the requesting client indicating
successful completion of action. The call shown below creates the response message which will be send to
the client.

UpnP_CreateActionResponse (request);
Where, request is a pointer to the action request.

 23

UPnP Device SDK Manual

Again important to note that UPnP specifications require the response to contain name and value of every
’out’ arguments of the target action. If action has an argument marked as retval, this argument must be the
first element. The order inclusion must be same as specified in service description.

Keeping the above point in mind the developer needs to insert name and value of ’out’ arguments of the
action to the response message. As described above if the action has an argument marked as retval insert
this argument and its value first. In order to insert an argument and its value to the response message use
UpnP_SetActionResponseArg API every time a name value pair for an argument needs to be inserted.
For example,

UPnP_SetActionResponseArg(request, "RetLoadLevelStatus", argValue);

Where, request is a pointer to the action request. String ’RetLoadLevelStatus’ is an argument of direction
’out’ in the target action which is obtained from the XML service decription document of the requested
service, argValue is the current value of ’RetLoadLevelStatus’ argument.

Once the response message is created to indicate success or error, it is send internally by the SDK.

6. 2 Serving a Subscription Request
If the request is a subscription request, then callback’s last parameter, operationStruct, holds subscription
request information in form of ’UPnPSubscriptionRequest’ type.
The first step to handle a subscription request is to typecast operationStruct to hold address of
’UPnPSubscriptionRequest’, here is an example
UPnPSubscriptionRequest *request = (UPnPSubscriptionRequest *) operationStruct;

6.2.1 Operation
Check device name and serviceId to see if the subscription request targets your device and one of its
services. To do this extract the device name supplied in the request, check this supplied unique device name
against the unique device name (UDN) of your device. Use UpnP_GetRequestedDeviceName API to obtain
the target device name from the request, for example
targetDeviceName= UPnP_GetRequestedDeviceName(operationStruct, operationType);
here, operationStruct holds the request information and operationType is the fourth parameter of the callback
which indicated the nature of the request (action or subscription).

The service Identifier (serviceId) is extracted using UpnP_GetRequestedServiceId API, here is an example,
targetServiceId = UPnP_GetRequestedServiceId(operationStruct, operationType);
Where, operationStruct and operationType are same as described in the previous call.

In-order to send a response to the subscription request, an xml document called property set, which hold the
body of the response, will be next created. Create a variable of type IXML_Document which is used to point
to the property set, initially this variable point to NULL. For example,

IXML_Document *propertySet = 0

Next step is to populate property set by adding state variables, whose sendEvents is set to "yes" in the target
service’s description document. For each name value pair for a state variable use UpnP_AddToPropertySet (
) API to add a state variable and its current value to the property set. Here is an example,

UpnP_AddToPropertySet (&propertySet, "Status", value);
Where, “status” is the name of the variable and value is its current value.

Next step is to accept the new subscription request using UpnP_AcceptSubscription () or
UpnP_AcceptSubscriptionAsync () - for non blocking call. These APIs internally add a new subscriber to the
service's subscriber list, generates a unique subscription Id for this subscriber, set a duration in seconds for
the subscription to be valid and sends a subscription response indicating success or failure of subscription
request. Here is an usage example,

UpnP_AcceptSubscription (request, 0, 0, propertySet);

24

UPnP Device SDK Manual

UpnP_AcceptSubscriptionAsync (request, 0, 0, propertySet);

Where, request point to a structure of type ’UpnPSubscriptionRequest’ holding request information. 0 is
passed for subscriptionId and subscription duration timeout in seconds indicating that a subscriptionId and a
timeout needs to be generated and set for the response, propertySet pointer to xml document containing the
main body (<property set>) of the notify Message.
Final step is to free the IXML document you created earlier using IXML library API ixmlDocument_free ().
ixmlDocument_free (propertySet);

 25

UPnP Device SDK Manual

Section 7: Sending Event Notifications from within Device
Application

This section explains the techniques and scenarios in which you will need to send event notifications from
outside the above callback OR from inside an application body.

What is a subscribed state variable?
You may want the control point (client) to be able to subscribe to some of the services offered by your
device. Any change to the state of such a service needs to be notified to all the available subscribers. The
services that you want to be available to be subscribed should be listed as a service tag in the device
description document.
A service description xml document needs to be prepared for this service. The ’serviceStateTable’ tag inside
this description document should list all the state variables available for this service. Among these state
variables those which have sendEvents set to yes in the description document can be subscribed. The
control point can subscribe to these state variables in order to monitor the state of a service.

When do you send event notification from an application?
If you application changes the value of any state variable that could be subscribed than it needs to send an
event notification to all the subscribers of the variable indicating the new value.

How to send these notifications?
To create an event notification, start by creating an empty IXML document to store the property set,
<propertyset> element is the container for the current state of the service

IXML_Document *propertySet = 0

Use UpnP_AddToPropertySet() API to add a state variable and its new value to the property set. Here is an
example,

UpnP_AddToPropertySet (&propertySet, "Status", value);
Where, ’status’ is the name of the state variable and ’value’ is its new value.

Once the property set is filled, we have our event notification message ready to be send out, using
UpnP_DeviceNotify (), to all the subscribers

UpnP_DeviceNotify (deviceRuntime, rootDevice, deviceUDN, serviceId, propertySet);
Where, device UDN is the uuid of the device available in UDN tag of the device description document and
serviceId is the unique service Id as in serviceId tag of the device description document.

Now that you are done with the IXML document you created earlier, you can free it using IXML API
ixmlDocument_free ().
ixmlDocument_free (propertySet)

26

UPnP Device SDK Manual

 27

UPnP Device SDK Manual

PART II – Porting and Configuration Guide

EBS UPnP Device SDK

Porting and Configuration

Revised July 2006

 Copyright © 2006 EBS Inc.

28

UPnP Device SDK Manual

 29

UPnP Device SDK Manual

UPnP SDK Source Code Structure

The UPnP SDK source code package is comprised of 4 independent modules

1. Ixml
2. Http
3. Upnp
4. Rtplatform

UPnP SDK’s core files located in upnp modules utilizes ixml module for xml operations, http module for http
server and http client operations and rtplatform for providing abstraction from underlying software / hardware
platform.

The following table describes the directory structure and includes comments specific to individual
subdirectories in the release tree. Subsequent sections of this document provide greater where it is
necessary.

Module Subdirectory Description Comments

UPnP include Core UPnP header files

Header files common to upnp device
and control point are located in
include/
Device specific header files are
located in include/device/
Control point specific header files are
located in include/controlPoint/

 source Core UPnP “.c” files

“.c” file common to device and
control point are located in source/
Device specific “.c” source file are
located in source/device
Control point specific “.c” source file
are located in source/controlPoint

 project Sample win32 projects Two sample visual studio projects
are available, one for device and one
for control point. These projects are
ready to be built and demo programs
can be executed.
Note: Sample Linux projects are
available upon request.

 doc UPnP reference
documentation in html
format

Device API reference in html format
can be accessed through
doc/devicehtml/index.html
Control Point API reference in html
format can be accessed through
doc/controlpointhtml/index.html

ixml inc XML parser module
header files

Header files for xml parser

 src XML parser module “.c”
source files and header
files

Contains “.c” files used by xml
parser. This directory also contains
some header files used by xml
parser which are located in src/inc
directory

 doc XML parser
documentation in html

XML parser’s internal API reference
in html format which can be

30

UPnP Device SDK Manual

format accessed through
doc/html/index.html

http include HTTP server and client
module header files

Contains header files used by HTTP
server and HTTP client.
httpp.h - contains module wide
definitions and declarations used by
both server and client.
httpsrv.h – header file for http server
httpcli.h – header file for http client
httpmcli.h – header file for http
managed client

 source HTTP server and client
module “.c” source files

Contains “.c” source files used by
http server and http client.
Http files used by upnp device
Fileext.c
Filetype.c
Httpp.c
Httpsrv.c

Http files used by upnp control point:
Fileext.c
Filetype.c
Httpp.c
Httpsrv.c
Httpmcli.c
Httpcli.c
Urlparse.c

 doc Http module specific
reference
documentation in html
format

Http module’s internal API reference
in html format which can be
accessed through
doc/html/index.html

Rtplatform include RTPlatform header files All header files in /include directory
are common to all platforms,
operating systems, network stacks
etc.
Note: In particular case when a
common header file is not suitable
for a platform, such header files may
be located in platform specific
directory within include directory. For
example, linux specific rtpprint.h is
located in include/linux and win32
specific rtpprint.h is located in
include/ms32/rtpprint.h

 source Platform specific
RTPlatform source
files.

Contains platform specific source
files for rtplatform library.
All source files ported to a platform
are located in a subdirectory named
after that platform. For example,
RTPlatform source files ported to
win32 platform are located in
source/win32/
While source files ported to linux
platform are located in source/linux/
and so on.

 31

UPnP Device SDK Manual

Two special subdirectories are
available
1. Generic – source/generic
All source files located in generic are
platform independent implementation
of underlying routine. In some cases
it is desirable to use platform specific
file rather than a generic file, in such
case a file from source/generic may
be ported and placed in platform
specific subdirectory. For example,
file rtpdate.c has a generic version
located in source/generic/rtpdate.c
but a win32 specific version of this
file is located in
source/win32/rtpdate.c and a linux
specific in source/linux/rtpdate.c
2. Template – source/template
Files under template contain stubbed
function with detailed comments and
explanation on how to port the
function. Files under template
provide a good starting point for
creating a fresh port for a platform.

Following RTPlatform source files
are used by UPnP SDK

Rtpchar.c
Rtpdate.c
Rtpdebug.c
Rtpdobj.c
Rtpdutil.c
Rtpfile.c
Rtphelper.c
Rtpmem.c
Rtpnet.c
Rtpnetsm.c
Rtpprint.c
Rtprand.c
Rtpscnv.c
Rtpsignl.c
Rtpstdup.c
Rtpstr.c
Rtpthrd.c
Rtptime.c

 doc RTPlatform reference
documentation in html
format

RTPlatform reference
documentation in html format can be
accessed through
doc/html/index.html

32

UPnP Device SDK Manual

 33

UPnP Device SDK Manual

Configuring UPnP SDK

UPnP requires zero configurations. All configuration values are passed as options in UPnP runtime and
device / control point initializations APIs.

By default UPnP is configured to run in multitasking mode. To turn off multitasking comment the following
definition in /include/upnp.h

#define UPNP_MULTITHREAD

Porting UPnP SDK

Porting EBS UPnP software development kit to alternate platforms simply requires creating a port in
rtplatform to implement the operating system, network stack, file system, and timing functions.

RTPlatform is EBS’s cross-platform runtime environment. It defines an interface between the high-level
platform-independent code, UPnP SDK in this case, and the lower-level operating system/hardware
environment.

RTPlatform is divided into a number of modules, each providing an interface to a specific service. For
example, there is the rtpnet module, which defines a sockets-style interface to TCP/IP networking services,
and rtpfile, which defines a roughly POSIX-style interface to file system services.

Some of the RTPlatform modules have platform-independent, or generic, implementations; others must rely
on platform-specific code for their implementation (these are the environment-specific or non-portable
modules). The release distribution of RTPlatform may include many different versions of the non-portable
modules, each in a different directory that indicates the target environment. For example, the rtpnet module
has an implementation for Linux’s TCP/IP stack, in "source/linux/rtpnet.c", and an implementation for the
Winsock library on 32-bit Microsoft Windows environments in "source/win32/rtpnet.c". All the “.c” files in
“source/generic/” directory are platform-independent and may not require any porting. Template directory
“source/template” located in the source tree provides an excellent starting point for creating any platform
specific “rtpxxx.c” file.

Although there may be many ".c" files (one for each target) corresponding to a particular module, there is
usually only one ".h" file, located in the "include" directory. Therefore, because all of the header files are
platform-independent, there are often no environment-specific header files included by UPnP source files.
This greatly simplifies the porting process because it eliminates any potential symbol/namespace collisions.

Following rtplatform files are used by EBS UPnP SDK –

Rtplatform Source File Generic Version Available

Rtpchar.c Yes

Rtpdate.c Yes

Rtpdebug.c Yes

Rtpdobj.c No

Rtpdutil.c Yes

Rtpfile.c No

Rtphelper.c Yes

Rtpmem.c No

Rtpnet.c No

34

UPnP Device SDK Manual

Rtpnetsm.c Yes

Rtpprint.c Yes

Rtprand.c Yes

Rtpscnv.c Yes

Rtpsignl.c No

Rtpstdup.c Yes

Rtpstr.c Yes

Rtpthrd.c No

Rtptime.c No

Note: Even though generic version of some file may be available it may still be required to port them to suit a
particular platform needs (e.g. rtpdate.c). Please see windows and linux ports of rtplatform as an example of
proper porting.

For more details on implementing an rtplatform port for your software / hardware platform please see
rtplatform user guide.

 35

UPnP Device SDK Manual

PART III - EBS UPnP Device API Reference Manual

EBS UPnP Device SDK

API Reference Manual

Revised July 2006

 Copyright © 2006 EBS Inc.

36

API Reference Manual

 37

UPnP Device SDK Manual

Section 1: Introduction

Universal Plug and Play (UPnP) is an open networking architecture for peer to peer network connectivity of
UPnP enabled devices. UPnP provides a device the capability to discover and control other devices on a
network. Devices act as servers providing the clients, known as control points, access and control to its
published capabilities. Control points have the ability to invoke actions on any UPnP device on a network,
control points can also subscribe to a device to continuously monitor the state of a device and its services.

UPnP architecture builds on existing networking protocols, such as IP, TCP, UDP, HTTP, HTML, SOAP,
SSDP, GENA etc. and web standards like XML to make the communication and control possible. Any device
having a TCP/IP network stack is capable of running UPnP regardless of its underlying operating system and
hardware.

38

API Reference Manual

 39

UPnP Device SDK Manual

Section 2: EBS UPnP Device API

API

Description

UPnP_RuntimeInit Initialize a UpnPRuntime

UPnP_RuntimeDestroy Destroy a UpnPRuntime

UPnP_AddVirtualFile Create a virtual file on the HTTP server.

UPnP_RemoveVirtualFile Remove a virtual file from the server

UPnP_ProcessState Process asynchronous operations in non-threaded
mode.

UPnP_StartDaemon Start the UPnP Daemon thread

UPnP_StopDaemon Kill the UPnP Daemon thread

UPnP_DeviceInit Initialize a UpnPDeviceRuntime

UPnP_DeviceFinish Destroy a UpnPDeviceRuntime

UPnP_RegisterRootDevice Configures the root device and its serives for UpnP

UPnP_UnRegisterRootDevice Free root device from its server bindings

UPnP_DeviceAdvertise Set up the device to send periodic SSDP
announcements

UPnP_DeviceNotify Sends an event notification message to all the
subscribers of the service

UPnP_DeviceNotifyAsync Sends a non blocking event notification message to all
the subscribers of the service

UPnP_AcceptSubscription Accept a new subscription request

UPnP_AcceptSubscriptionAsync Send Subscription Accept asynchronously

UPnP_GetRequestedDeviceName Extracts Unique device name for the target device
from control/subscription reques

UPnP_GetRequestedServiceId Extracts service identifier from a control/subscription
request

UPnP_GetRequestedActionName Extracts name of the target action from
action/subscription request

UPnP_SetActionErrorResponse Sets error code and error description for a response to
an action request

UPnP_GetPropertyValueByName Get the value of a named property in a GENA notify
message

UPnP_GetPropertyNameByIndex Get the name of the nth property

UPnP_GetPropertyValueByIndex Get the value of the nth property

40

API Reference Manual

UPnP_AddToPropertySet Add name and value pair to GENA notify message
property set

UPnP_CreateActionResponse Creates a SOAP action response message

UPnP_CreateAction Create a SOAP action request

UPnP_SetActionArg Set an argument for a SOAP action response/request

UPnP_GetArgValue Extracts the value of a given argument from an action

UPnP_SetActionResponseArg Inserts name and value of an argument to an action
response message

 41

UPnP Device SDK Manual

2.1 UPnP_RuntimeInit �

FUNCTION

Initialize a UPnP runtime context – ‘UPnPRuntime’.

SUMMARY

int UPnP_RuntimeInit (UPnPRuntime* rt, UPNP_UINT8* serverAddr, UPNP_UINT16 serverPort,
 UPNP_INT16 ipType , UPNP_CHAR* wwwRootDir, UPNP_INT16 maxConnections,

 UPNP_INT16 maxHelperThreads)

UPnPRuntime* rt Pointer to uninitialized UPnPRuntime struct

UPNP_UINT8* serverAddr IP address to bind HTTP server to (NULL for IP_ADDR_ANY)

UPNP_UINT16 serverPort

Port to bind HTTP server to (0 for ANY_PORT)

UPNP_INT16 ipType

Type of IP version used (ipv4 or ipv6), (RTP_NET_TYPE_IPV4 for
v4 and RTP_NET_TYPE_IPV6 for v6)

UPNP_CHAR* wwwRootDir

HTTP root dir on local file system

UPNP_INT16 maxConnections The maximum limit on simultaneous HTTP server connections

UPNP_INT16 maxHelperThreads If UPNP_MULTITHREAD is defined, the max number of helper
threads to spawn

DESCRIPTION

Initializes the given UPnPRuntime struct, and sets up an HTTP server instance to receive control/event
messages. This function must be called before any other function in the UPnP SDK.

RETURNS

0 Operation was a success

-1 Operation failed

42

API Reference Manual

2.2 UPnP_RuntimeDestroy

FUNCTION

Destroy and clean up a UPnPRuntime.

SUMMARY

void UPnP_RuntimeDestroy (UPnPRuntime* rt)

UPnPRuntime* rt Pointer to UPnPRuntime struct

DESCRIPTION

This function frees all the resources allocated by UPnPRuntime. This function must be called after all other
UPnP SDK calls to clean up runtime data for UPnP.

RETURNS

No value

 43

UPnP Device SDK Manual

2.3 UPnP_AddVirtualFile

FUNCTION

Create a virtual file on the HTTP server.

SUMMARY

int UPnP_AddVirtualFile (UPnPRuntime* rt, const UPNP_CHAR* serverPath, const UPNP_UINT8* data,

 UPNP_INT32 size, const UPNP_CHAR* contentType)

UPnPRuntime* rt

UPNP_CHAR* serverPath

UPNP_UINT8* data

UPNP_INT32 size

UPNP_CHAR* contentType

DESCRIPTION

Makes the data buffer passed in available at the given path on the HTTP server.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_RemoveVirtualFile ()

44

API Reference Manual

2.4 UPnP_RemoveVirtualFile

FUNCTION

Remove a virtual file from the server.

SUMMARY

int UPnP_RemoveVirtualFile (UPnPRuntime* rt, const UPNP_CHAR* serverPath)

UPnPRuntime* rt Pointer to UPnPRuntime struct

UPNP_CHAR* serverPath

DESCRIPTION

This function removes a virtual file from the server. This function must be called before
UPnP_RuntimeDestroy to remove any virtual files added using UPnP_AddVirtualFile.

RETURNS

0 Operation was a success

-1 Operation failed

 45

UPnP Device SDK Manual

2.5 UPnP_ProcessState

FUNCTION

Process asynchronous operations in non-threaded mode.

SUMMARY

int UPnP_ProcessState (UPnPRuntime* rt, UPNP_INT32 msecTimeout)

UPnPRuntime* rt Pointer to UPnPRuntime struct

UPNP_INT32 msecTimeout Time in milliseconds for which this task will block and perform upnp
operations.

DESCRIPTION

This function blocks for at most msecTimeout milliseconds, processing any asynchronous operations that
may be in progress on either the control point or device runtime attached to the given UPnPRuntime.

This function must be called in order to receive events if an application is running with the UPnP SDK in
single-threaded mode.

RETURNS

0 Operation was a success

-1 Operation failed

46

API Reference Manual

2.6 UPnP_StartDaemon

FUNCTION

Start the UPnP Daemon thread.

SUMMARY

int UPnP_StartDaemon (UPnPRuntime* rt)

UPnPRuntime* rt Pointer to UPnPRuntime struct

DESCRIPTION

This function must be called in multithreaded mode to start the UPnP daemon, which listens for requests /
announcements on the network, and sends any events to the attached control point / device runtime.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_StopDaemon ()

 47

UPnP Device SDK Manual

2.7 UPnP_StopDaemon

FUNCTION

Kill the UPnP Daemon thread.

SUMMARY

int UPnP_StopDaemon (UPnPRuntime* rt, UPNP_INT32 secTimeout)

UPnPRuntime* rt Device runtime to stop

UPNP_INT32 secTimeout Time in seconds time to wait for daemon to stop.

DESCRIPTION

This function stops the UPnP daemon from executing. It will wait for at most secTimeout seconds for all
helper threads to terminate. If this function returns negative error code, it means the timeout expired without
the successful termination of one or more helper threads. In this case, calling UPnP_RuntimeDestroy may
cause a fault since there are still helper threads running that may try to access the data structures pointed to
by the UPnPRuntime.

RETURNS

0 Operation was a success

-1 Operation failed

48

API Reference Manual

2.8 UPnP_DeviceInit

FUNCTION

Initialize a UPnP device runtime context ‘UpnPDeviceRuntime’.

SUMMARY

int UPnP_DeviceInit (UPnPDeviceRuntime* deviceRuntime, UPnPRuntime* rt)

UPnPDeviceRuntime*
deviceRuntime

Pointer to the device runtime buffer

UPnPRuntime* rt Pointer to an initialized upnp runtime buffer

DESCRIPTION

Initializes all device state data in a UPnPDeviceRuntime struct (allocated by the calling application), and
binds the device to the specified UPnPRuntime. The UPnPRuntime must be initialized via UPnP_RuntimeInit
before this function is called. Only one device may be bound to a single UPnPRuntime at once. This function
must be called before all other device related functions.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_DeviceFinish ()

 49

UPnP Device SDK Manual

2.9 UPnP_DeviceFinish

FUNCTION

Destroy a device runtime context.

SUMMARY

int UPnP_DeviceFinish (UPnPDeviceRuntime* deviceRuntime)

UPnPDeviceRuntime*
deviceRuntime

Address of runtime of device to destroy

DESCRIPTION

Cleans up all data associated with a UPnPDeviceRuntime structure. Once this function has been called, it is
safe to free the memory used by the UPnPDeviceRuntime structure.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_DeviceInit ()

50

API Reference Manual

2.10 UPnP_RegisterRootDevice

FUNCTION

Configures the root device and its serives for UPnP.

SUMMARY

int UPnP_RegisterRootDevice (UPnPDeviceRuntime* deviceRuntime, const UPNP_CHAR* descDocURL,

IXML_Document* description, UPNP_BOOL autoAddr,
UPnPDeviceCallback callback, void* userData,
UPnPRootDeviceHandle* retHandle, UPNP_BOOL deviceAdvertise)

UPnPDeviceRuntime*
deviceRuntime

Pointer to device runtime context

UPNP_CHAR* descDocURL Relative url of device description document

IXML_Document* description Address of DOM representation of the device description document

UPNP_BOOL autoAddr Select swtich for Auto IP if 1 - uses AutoIP if 0 - extracts address
from the device description document

UPnPDeviceCallback callback Pointer to the callback function for the device.

void* userData User data for callback

UPnPRootDeviceHandle*
retHandle

Handle to the current root device

UPNP_BOOL deviceAdvertise Switch to turn ON and OFF device advertising If 1 - device will be
set up to send periodic SSDP announcements. If 0 - no ssdp
announcements will be send

DESCRIPTION

Sets up the device to serve UPnP requests from the clients; set up devcive for ssdp announcements if
deviceAdvertise is turned on.

RETURNS

0 Operation was a success

-1 Operation failed

 51

UPnP Device SDK Manual

2.11 UPnP_UnRegisterRootDevice

FUNCTION

Free root device from its server bindings.

SUMMARY

int UPnP_UnRegisterRootDevice (UPnPRootDeviceHandle rootDevice)

UpnPRootDeviceHandle
rootDevice

Handle to root device

DESCRIPTION

Unregisters the root device from the internal server, so that the future UPnP requests will not be served for
this root device.

RETURNS

0 Operation was a success

-1 Operation failed

52

API Reference Manual

2.12 UPnP_DeviceAdvertise

FUNCTION

Set up the device to send periodic SSDP announcements.

SUMMARY

int UPnP_DeviceAdvertise (UPnPRootDeviceHandle rootDevice, UPNP_INT32 frequencySec,

 UPNP_INT32 remoteTimeoutSec)

UPnPRootDeviceHandle
rootDevice

Handle to the device

UPNP_INT32 frequencySec Interval in seconds between two announcements

UPNP_INT32 remoteTimeoutSec Time in seconds for which the remote client will cache the
information in the announcement

DESCRIPTION

This function prepares the device to send periodic announcements every frequecySec seconds.

RETURNS

0 Operation was a success

-1 Operation failed

 53

UPnP Device SDK Manual

2.13 UPnP_DeviceNotify

FUNCTION

Sends an event notification message to all the subscribers of the service.

SUMMARY

int UPnP_DeviceNotify (UPnPDeviceRuntime* deviceRuntime, UPnPRootDeviceHandle rootDevice,

 const UPNP_CHAR* deviceUDN, const UPNP_CHAR* serviceId,
 IXML_Document* propertySet)

UPnPDeviceRuntime*
deviceRuntime

Device runtime information

UPnPRootDeviceHandle
rootDevice

Handle to the device

UPNP_CHAR* deviceUDN Unique device identifier (UUID in the device description document)
for the device

UPNP_CHAR* serviceId Unique service identifier (serviceID in the device description
document) for the service

IXML_Document* propertySet Contains the evented variable and its value in XML format.

DESCRIPTION

Sends an event notification message to all control points which are subscribed to service with supplied
service ID on this device.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_DeviceNotifyAsync ()

54

API Reference Manual

2.14 UPnP_DeviceNotifyAsync

FUNCTION

Sends a non blocking event notification message to all the subscribers of the service.

SUMMARY

int UPnP_DeviceNotifyAsync (UPnPDeviceRuntime* deviceRuntime, UPnPRootDeviceHandle rootDevice,
 const UPNP_CHAR* deviceUDN, const UPNP_CHAR* serviceId,

 IXML_Document* propertySet)

UPnPDeviceRuntime*
deviceRuntime

Device runtime information

UPnPRootDeviceHandle
rootDevice

Handle to the device

UPNP_CHAR* deviceUDN Unique device identifier (UUID in the device description document)
for the device

UPNP_CHAR* serviceId Unique service identifier (serviceID in the device description
document) for the service

IXML_Document* propertySet Contains the evented variable and its value in XML format.

DESCRIPTION

Sends an asynchronous (non blocking) event notification message to all control points which are subscribed
to service with supplied service ID on this device.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_DeviceNotify ()

 55

UPnP Device SDK Manual

2.15 UPnP_AcceptSubscription

FUNCTION

Accept a new subscription request.

SUMMARY

int UPnP_AcceptSubscription (UPnPSubscriptionRequest* subReq, const GENA_CHAR* subscriptionId,

 UPNP_INT32 timeoutSec, IXML_Document* propertySet,
 UPNP_INT32 firstNotifyDelayMsec)

UPnPSubscriptionRequest*
subReq

Address of structure containing subscription request information

GENA_CHAR* subscriptionId Subscription identifier for the subscriber

UPNP_INT32 timeoutSec Duration in seconds for which the subscription is valid

IXML_Document* propertySet Address of response message in XML format

UPNP_INT32
firstNotifyDelayMsec

Delay in milliseconds before sending the first event notification to
the new subscriber

DESCRIPTION

This function adds a new subscriber device’s internal subscriber’s list, generates a unique subscription Id for
this subscriber, sets a duration in seconds for this subscription to be valid and sends a subscription response
indicating success or failure to subscription request.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_AcceptSubscriptionAsync ()

56

API Reference Manual

2.16 UPnP_AcceptSubscriptionAsync

FUNCTION

Accept a new subscription request in Asynchronous (non blocking) mode.

SUMMARY

int UPnP_AcceptSubscriptionAsync (UPnPSubscriptionRequest* subReq,

 const GENA_CHAR* subscriptionId, UPNP_INT32 timeoutSec,
 IXML_Document* propertySet, UPNP_INT32 firstNotifyDelayMsec)

UPnPSubscriptionRequest*
subReq

Address of structure containing subscription request information

GENA_CHAR* subscriptionId Alternate subscription identifier for the subscriber (Optional)

UPNP_INT32 timeoutSec Duration in seconds for which the subscription is valid (Optional)

IXML_Document* propertySet Address of response message in XML format

UPNP_INT32
firstNotifyDelayMsec

Delay in milliseconds before sending the first event notification to
the new subscriber

DESCRIPTION

This function asynchronously adds a new subscriber device’s internal subscriber’s list. Optional parameters
may be given a value of zero to indicate use default.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_AcceptSubscription ()

 57

UPnP Device SDK Manual

2.17 UPnP_GetRequestedDeviceName

FUNCTION

Extracts Unique Device Name (UDN) from an action/subscription request.

SUMMARY

const UPNP_CHAR* UPnP_GetRequestedDeviceName (void* eventStruct,
 enum e_UPnPDeviceEventType eventType)

void* eventStruct Pointer to a UPnPActionRequest or a UPnPSubscriptionRequest
structure depending on the type of request.

enum e_UPnPDeviceEventType
eventType

Indicated the type of control point’s request to handle.
If eventType == UPNP_DEVICE_EVENT_ACTION_REQUEST, it
indicates an action request
If eventType ==
UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST, it indicated
a subscription request type.

DESCRIPTION

This function is used by application’s event handler (device callback) to handle an action or a subscription
request invoked by a control point on this device. This function extracts unique device name (UDN) for the
device targetted by control point’s action or subscription request.

RETURNS

const UPNP_CHAR* Pointer to string containing unique device name

NULL Operation failed

SEE ALSO

UPnP_GetRequestedServiceId (), UPnP_GetRequestedActionName (), UPnP_GetArgValue ()

58

API Reference Manual

2.18 UPnP_GetRequestedServiceId

FUNCTION

Extracts service identifier from an action/subscription request.

SUMMARY

const UPNP_CHAR* UPnP_GetRequestedServiceId (void* eventStruct,
 enum e_UPnPDeviceEventType eventType)

void* eventStruct Pointer to a UPnPActionRequest or a UPnPSubscriptionRequest
structure depending on the type of request.

enum e_UPnPDeviceEventType
eventType

Indicated the type of control point’s request to handle.
If eventType == UPNP_DEVICE_EVENT_ACTION_REQUEST, it
indicates an action request
If eventType ==
UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST, it indicated
a subscription request type.

DESCRIPTION

This function is used by application’s event handler (device callback) to handle an action or a subscription
request invoked by a control point on this device. This function extracts service identifier for a service
targetted by control point’s action or subscription request.

RETURNS

const UPNP_CHAR* Pointer to string containing service identifier

NULL Operation failed

SEE ALSO

UPnP_GetRequestedDeviceName (), UPnP_GetRequestedActionName (), UPnP_GetArgValue ()

 59

UPnP Device SDK Manual

2.19 UPnP_GetRequestedActionName

FUNCTION

Extracts name of targetted action from an action request.

SUMMARY

const UPNP_CHAR* UPnP_GetRequestedActionName (void* eventStruct,
 enum e_UPnPDeviceEventType eventType)

void* eventStruct Pointer to a UPnPActionRequest or a UPnPSubscriptionRequest
structure depending on the type of request.

enum e_UPnPDeviceEventType
eventType

Indicated the type of control point’s request to handle.
If eventType == UPNP_DEVICE_EVENT_ACTION_REQUEST, it
indicates an action request
If eventType ==
UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST, it indicated
a subscription request type.

DESCRIPTION

This function is used by application’s event handler (device callback) to handle an action or a subscription
request invoked by a control point on this device. This function extracts the supplied action name from
control point’s action request.

RETURNS

const UPNP_CHAR* Pointer to string containing action name

NULL Operation failed

SEE ALSO

UPnP_GetRequestedDeviceName (), UPnP_GetRequestedServiceId, UPnP_GetArgValue ()

60

API Reference Manual

2.20 UPnP_SetActionErrorResponse

FUNCTION

Sets error code and error description as response to an action request.

SUMMARY

void UPnP_SetActionErrorResponse (UPnPActionRequest* request, UPNP_CHAR* description,

 UPNP_INT32 value)

UPnPActionRequest* request Pointer to structure containing action request.

UPNP_CHAR* description Pointer to string providing error description.

UPNP_INT32 value Error code value.

DESCRIPTION

This function is used by application’s event handler (device callback). This function sets error code and error
description as response to an action request.

RETURNS

None

 61

UPnP Device SDK Manual

2.21 UPnP_GetArgValue

FUNCTION

Extracts the value of an argument from an action request.

SUMMARY

const UPNP_CHAR* UPnP_GetArgValue (UPnPActionRequest* request, const UPNP_CHAR* argName)

UPnPActionRequest* request Pointer to structure containing action request.

UPNP_CHAR* argName Name of action’s argument whose value is to be extracted.

DESCRIPTION

Extracts the value of an argument from an action request. Action information is stored in form of IXML
element.

RETURNS

const UPNP_CHAR* Pointer to string containing argument’s value

NULL Operation failed

SEE ALSO

UPnP_GetRequestedActionName (), UPnP_SetActionResponseArg (), UPnP_CreateActionResponse ()

62

API Reference Manual

2.22 UPnP_CreateActionResponse

FUNCTION

Creates a message wrapper for SOAP action response.

SUMMARY

int UPnP_CreateActionResponse (UPnPActionRequest* request)

UPnPActionRequest* request Pointer to structure containing action request.

DESCRIPTION

Creates a response message skeleton for the supplied SOAP action request.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_GetRequestedActionName (), UPnP_GetArgValue (), UPnP_SetActionResponseArg ()

 63

UPnP Device SDK Manual

2.23 UPnP_SetActionResponseArg

FUNCTION

Inserts name and value of an argument to an action response message.

SUMMARY

int UPnP_SetActionResponseArg (UPnPActionRequest* request, const UPNP_CHAR* name,
 const UPNP_CHAR* value)

UPnPActionRequest* request Pointer to structure containing action request.

UPNP_CHAR* name Name of action’s argument whose value is to be added.

UPNP_CHAR* value Pointer to string containing argument value.

DESCRIPTION

Adds an argument name and its value to response message created for an action request.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_GetRequestedActionName (), UPnP_GetArgValue (), UPnP_CreateActionResponse ()

64

API Reference Manual

2.24 UPnP_CreateAction

FUNCTION

Create a SOAP action request.

SUMMARY

IXML_Document* UPnP_CreateAction (const UPNP_CHAR* serviceTypeURI,
 const UPNP_CHAR* actionName)

UPNP_CHAR* serviceTypeURI String containing service type of the target service.

const UPNP_CHAR* actionName Name on action on the target service.

DESCRIPTION

Creates an XML document which will hold the SOAP action request message. This function returns the
address of newly formed XML document. After finishing the process of sending action request the application
must release this xml document.

RETURNS

IXML_Document* pointer to newly created IXML_Document, which can be passed into
UPnP_SetActionArg to set the action arguments

NULL Operation failed

SEE ALSO

UPnP_ SetActionResponseArg ()

 65

UPnP Device SDK Manual

2.25 UPnP_SetActionArg

FUNCTION

Set an argument for a SOAP action response/request..

SUMMARY

int UPnP_SetActionArg (IXML_Document* actionDoc, const UPNP_CHAR* name,
 const UPNP_CHAR* value)

IXML_Document* actionDoc Pointer to action respose message.

UPNP_CHAR* name Pointer to string containing argument name.

UPNP_CHAR* value Pointer to string containing argument value.

DESCRIPTION

This function can be used on an IXML_Document created by either UPnP_CreateActionResponse or
UPnP_CreateAction to set either the input or output arguments for a SOAP action.

RETURNS

0 Operation was a success

-1 Operation failed

SEE ALSO

UPnP_CreateAction ()

66

API Reference Manual

2.26 UPnP_AddToPropertySet

FUNCTION

Add name and value pair to a message property set.

SUMMARY

int UPnP_AddToPropertySet (IXML_Document** doc, const UPNP_CHAR* name,
 const UPNP_CHAR* value)

IXML_Document** doc Address of property set.

UPNP_CHAR* name Pointer to name for new entry.

UPNP_CHAR* value Address of value of for the new entry

DESCRIPTION

Add a new name value pair entry to the property set. A in SOAP property set is an xml document which hold
the body of a response / request message.

RETURNS

UPNP_CHAR* Pointer to string containing value

NULL Property was not found

EXAMPLE

IXML_Document *propertySet = 0;

UPnP_AddToPropertySet (&propertySet, “Status”, value);

ixmlDocument_free(propertySet);

SEE ALSO

UPnP_ SetActionResponseArg ()

 67

UPnP Device SDK Manual

2.27 UPnP_GetPropertyValueByName

FUNCTION

Get the value of a named property in a message property set.

SUMMARY

const UPNP_CHAR* UPnP_GetPropertyValueByName (IXML_Document* propertySet,

 const UPNP_CHAR* name)

IXML_Document* propertySet Address of xml property set.

UPNP_CHAR* name Name of the property element.

DESCRIPTION

The string returned must not be modified in any way. The string containing value is only valid until the
IXML_Document is deleted.

RETURNS

UPNP_CHAR* Pointer to string containing value

NULL Property was not found

SEE ALSO

UPnP_ GetPropertyValueByIndex (), UPnP_ GetPropertyNameByIndex ()

68

API Reference Manual

2.28 UPnP_GetPropertyNameByIndex

FUNCTION

Get the name of the nth property.

SUMMARY

const UPNP_CHAR* UPnP_GetPropertyNameByIndex (IXML_Document* propertySet, int index)

IXML_Document* propertySet Address of xml property set.

int index Name of the property element.

DESCRIPTION

The string returned must not be modified in any way. The string containing value is only valid until the
IXML_Document is deleted.

RETURNS

UPNP_CHAR* Pointer to string containing name

NULL Property was not found

SEE ALSO

UPnP_ GetPropertyValueByIndex (), UPnP_ GetPropertyValueByName ()

 69

UPnP Device SDK Manual

2.29 UPnP_GetPropertyValueByIndex

FUNCTION

Get the value of the nth property.

SUMMARY

const UPNP_CHAR* UPnP_GetPropertyValueByIndex (IXML_Document* propertySet, int index)

IXML_Document* propertySet Address of xml property set.

int index Index in property for value.

DESCRIPTION

The string returned must not be modified in any way. The string containing value is only valid until the
IXML_Document is deleted.

RETURNS

UPNP_CHAR* Pointer to string containing value

NULL Property was not found

SEE ALSO

UPnP_ GetPropertyNameByIndex (), UPnP_ GetPropertyValueByName ()

70

API Reference Manual

 71

UPnP Device SDK Manual

Appendix I

UPnP Device Initialization Example

Setting up a UPnP Device

This example code demonstrates in brief the necessary steps to set up a UPnP device for discovery,
description, control, and eventing.

int main (void)
{
 int result;
 IXML_Document *xmlDevice;
 UPnPRuntime rt;
 UPnPRootDeviceHandle rootDevice;

 // UPnP maintains a runtime structure; The first step is to
 // initialize UPnPRuntime struct. UPnP_RuntimeInit takes a
 // pointer to an uninitialized UPnPRuntime struct and other
 // necessary necessary data to initialize and populate upnp
 // the engine.

 result = UPnP_RuntimeInit (
 &rt,
 0, // serverAddr: IP_ANY_ADDR
 0, // serverPort: any port
 RTP_NET_TYPE_IPV4, // ipv4
 "c:\\www-root\\", // web server root dir
 10, // maxConnections
 5 // maxHelperThreads
);

 if (result < 0)
 {
 return (-1);
 }

 // Next, we need a UPnPDeviceRuntime; UPnP_DeviceInit takes
 // a pointer to an uninitialized UPnPDeviceRuntime struct
 // and does all necessary initialization.

 result = UPnP_DeviceInit (
 &deviceRuntime,
 &rt
);

 if (result < 0)
 {
 return (-1);
 }

 // Load the root device description page into memory.
 xmlDevice = ixmlLoadDocument("c:\\www-root\\device.xml");
 if (!xmlDevice)
 {
 return (-1);
 }

72

API Reference Manual

 result = UPnP_RegisterRootDevice (
 &deviceRuntime,
 "device.xml",
 xmlDevice,
 1, // auto address resolution
 testDeviceCallback,
 0, // userData for callback
 &rootDevice,
 1 // advertise
);

 if (result < 0)
 {
 return (-1);
 }

 UPnP_DeviceAdvertise(rootDevice, ANNOUNCE_FREQUENCY_SEC,
 REMOTE_CACHE_TIMEOUT_SEC);

 // start the UPnP daemon thread
 UPnP_StartDaemon(&rt);

 // for polled mode, use this

 //while (1)
 //{
 //UPnP_ProcessState (&rt,1000);
 //printf(".");
 //}

}

 73

UPnP Device SDK Manual

Appendix II

Sample Device Callback

Here is an example of an application callback implementing network light. The following section will
demostrate code to handle events generated as a result of a control (action) or event (subscription) request
received by upnp device.

#define ANNOUNCE_FREQUENCY_SEC 10
#define REMOTE_CACHE_TIMEOUT_SEC 1800

UPnPDeviceRuntime deviceRuntime;

int testDeviceCallback (
 void *userData,
 struct s_UPnPDeviceRuntime *deviceRuntime,
 UPnPRootDeviceHandle rootDevice,
 enum e_UPnPDeviceEventType eventType,
 void *eventStruct);

RTP_MUTEX lightMutex;
int lightStatus = 0;
int levelStatus = 50; // default light level
#define MINLEVEL 0
#define MAXLEVEL 100

int main (void)
{
 // UPnP device Application
 return (0);
}

int testDeviceCallback (
 void *userData,
 struct s_UPnPDeviceRuntime *deviceRuntime,
 UPnPRootDeviceHandle rootDevice,
 enum e_UPnPDeviceEventType eventType,
 void *eventStruct)
{
 const UPNP_CHAR* targetDeviceName;
 const UPNP_CHAR* targetServiceId;

 //extracty the UDN for the request
 targetDeviceName = UPnP_GetRequestedDeviceName (eventStruct, eventType);

 //extract the serviceId for a particular service on the device
 targetServiceId = UPnP_GetRequestedServiceId (eventStruct, eventType);

 //if the callback is invoked to handle action request or a subscription request
 switch (eventType)
 {
 case UPNP_DEVICE_EVENT_ACTION_REQUEST:
 {
 const UPNP_CHAR* targetActionName;
 // To handle action requests, the cookie (eventStruct) is to be cast to be
 // of UPnPActionRequest type
 UPnPActionRequest *request = (UPnPActionRequest *) eventStruct;

 // request structure holds the all the action request information
 // start by determining if the action request is meant for this device
 // by compairing the unique device name supplied in the request with the
 // UDN of this device

74

API Reference Manual

 if (!rtp_strcmp(targetDeviceName, "uuid:9de82eea-b4a2-41ae-b182-058befd73af8"))
 {
 // if the action request is intended for this device, check to see which service on
 // this device the action will be performed upon

 // extract the actionName for a particular service on the device
 targetActionName = UPnP_GetRequestedActionName (eventStruct, eventType);

 // SERVICE : Switch Power
 if (!rtp_strcmp(targetServiceId, "urn:upnp-org:serviceId:SwitchPower.0001"))
 {
 // a service may offer multiple actions, next step is to determine the
 // target action
 if (!rtp_strcmp(targetActionName, "GetStatus"))
 {
 // create a response to acknowledge the request
 if(UPnP_CreateActionResponse(request) >=0)
 {
 UPNP_CHAR temp[5];

 rtp_sig_mutex_claim(lightMutex);
 // get the value of lightStatus into temp variable
 rtp_itoa(lightStatus, temp, 10);
 rtp_sig_mutex_release(lightMutex);

 // Since this action is a out action, this action is
 // invoked by the control point to query the value of
 // state variable. For such actions with direction of
 // variables as out, the response needs
 // to contain the name and current value of action’s
 // out variable.
 if(UPnP_SetActionResponseArg(request,
"ResultStatus", temp) < 0)
 {
 return(-1);
 }
 }
 else
 {
 return (-1); // create action response failed
 }

 }
 else if (!rtp_strcmp(targetActionName, "SetTarget"))
 {
 // If the action contains argument having direction ’in’, this
 // means that control point
 // will send an action request with a new value of argument
 // that will replace the current
 // value of the argument
 // The following step extracts the value of the argument if
 // supplied
 const UPNP_CHAR *newTargetValue =
UPnP_GetArgValue(request, "newTargetValue");
 if (newTargetValue)
 {
 int i = rtp_atoi(newTargetValue);
 int changed = 0;

 if (i)
 {
 printf("Light turned on.\n");
 }
 else
 {
 printf("Light turned off.\n");
 }

 rtp_sig_mutex_claim(lightMutex);

 75

UPnP Device SDK Manual

 if (i != lightStatus)
 {
 changed = 1;
 }

 lightStatus = i;

 rtp_sig_mutex_release(lightMutex);
 // if this actions causes the value of a state variable to
 // change a notification to all the subscribed devices
 // will be send
 if (changed)
 {
 // must be initialized to zero
 IXML_Document *propertySet = 0;
 UPNP_CHAR temp[15];

 rtp_itoa(i, temp, 10);

 // add name and vaule of the changed
 // variable to the property set
 // this property set is sent to the subscribers
 // as the event notification

 UPnP_AddToPropertySet(&propertySet,
"Status", temp);

 // send all the subscribers a notification of
 // change of value event
 UPnP_DeviceNotifyAsync(
 deviceRuntime,
rootDevice,
 targetDeviceName,
 targetServiceId,
 propertySet);

 ixmlDocument_free(propertySet);
 }
 }

 // create a response to acknowledge the request
 if(UPnP_CreateActionResponse(request) < 0)
 {
 return(-1);
 }
 }
 // unknown action name
 else
 {
 UPnP_SetActionErrorResponse(request, "Invalid Action", 401);
 }
 }
 else
 // SERVICE : Dimming Service
 if (!rtp_strcmp(targetServiceId, "urn:upnp-org:serviceId:DimmingService.0001"))
 {
 if (!rtp_strcmp(targetActionName, "GetLoadLevelStatus"))
 {
 // create a response to acknowledge the request
 if(UPnP_CreateActionResponse(request) >=0)
 {
 UPNP_CHAR temp[15];

 rtp_sig_mutex_claim(lightMutex);
 // get the value of lightStatus into temp variable
 rtp_itoa(levelStatus, temp, 10);
 rtp_sig_mutex_release(lightMutex);

76

API Reference Manual

 // Since this action is a out action, this action is
 // invoked by the control point to query the value of
 // state variable
 // For such actions with direction of variables as out,
 // the response needs to contain the name and
 // current value of action’s out variable.
 UPnP_SetActionResponseArg(request,
"RetLoadLevelStatus", temp);
 }
 }

 else if (!rtp_strcmp(targetActionName, "GetMinLevel"))
 {
 // create a response to acknowledge the request
 if(UPnP_CreateActionResponse(request) >=0)
 {
 // Since this action is a out action, this action is
 // invoked by the control point to query the value of
 // state variable.
 // For such actions with direction of variables as out,
 // the response needs to contain the name and
 // current value of action’s out variable.
 UPnP_SetActionResponseArg(request, "MinLevel",
"0");
 }

 }

 else if (!rtp_strcmp(targetActionName, "SetLoadLevelTarget"))
 {

 // If the action contains argument having direction ’in’, this
 // means that control point will send an action request with a
 // new value of argument that will replace the current
 // value of the argument
 // The following step extracts the value of the argument if
 // supplied
 const UPNP_CHAR *newTargetValue =
UPnP_GetArgValue(request, "NewLoadLevelTarget");
 if (newTargetValue)
 {
 int i = rtp_atoi(newTargetValue);
 int changed = 0;

 if(i < MINLEVEL || i > MAXLEVEL)
 {
 printf("Error: New lightLevel value out of range\n");
 UPnP_SetActionErrorResponse(request, "Invalid
Action", 402);
 break;
 }

 printf("New Light Level set to :%d\n", i);

 rtp_sig_mutex_claim(lightMutex);

 if (i != levelStatus)
 {
 changed = 1;
 }

 levelStatus = i;

 rtp_sig_mutex_release(lightMutex);

 // if this actions causes the value of a state variable to
 // change a notification to all the subscribed devices
 // will be send
 if (changed)

 77

UPnP Device SDK Manual

 {
 // must be initialized to zero
 IXML_Document *propertySet = 0;
 UPNP_CHAR temp[5];

 rtp_itoa(i, temp, 10);

 // add name and vaule of the changed
 // variable to the property set
 // this property set is sent to the subscribers
 // as the event notification
 UPnP_AddToPropertySet(&propertySet,
"LoadLevelStatus", temp);

 // send all the subscribers a notification of
 // change of value event
 UPnP_DeviceNotifyAsync(
 deviceRuntime,
rootDevice,
 targetDeviceName,
 targetServiceId,
 propertySet);

 ixmlDocument_free(propertySet);
 }
 }

 // create a response to acknowledge the request
 if(UPnP_CreateActionResponse(request) < 0)
 {
 return(-1);
 }
 }
 // unknown action name
 else
 {
 UPnP_SetActionErrorResponse(request, "Invalid Action", 401);
 }
 }
 }

 break;
 }

 case UPNP_DEVICE_EVENT_SUBSCRIPTION_REQUEST:
 {
 UPnPSubscriptionRequest *request = (UPnPSubscriptionRequest *) eventStruct;

 if (!rtp_strcmp(targetDeviceName, "uuid:9de82eea-b4a2-41ae-b182-058befd73af8"))
 {
 // SERVICE : Switch Power
 if (!rtp_strcmp(targetServiceId, "urn:upnp-org:serviceId:SwitchPower.0001"))
 {
 IXML_Document *propertySet = 0; // must be initialized to zero
 UPNP_CHAR temp[5];

 rtp_sig_mutex_claim(lightMutex);
 rtp_itoa(lightStatus, temp, 10);
 rtp_sig_mutex_release(lightMutex);

 UPnP_AddToPropertySet(&propertySet, "Status", temp);
 UPnP_AcceptSubscription(request, 0, 0, propertySet, 100);
 ixmlDocument_free(propertySet);
 }
 else
 // SERVICE : Dimming Service
 if (!rtp_strcmp(targetServiceId, "urn:upnp-org:serviceId:DimmingService.0001"))
 {
 IXML_Document *propertySet = 0; // must be initialized to zero

78

API Reference Manual

 UPNP_CHAR temp[5];

 rtp_sig_mutex_claim(lightMutex);
 rtp_itoa(levelStatus, temp, 10);
 rtp_sig_mutex_release(lightMutex);

 UPnP_AddToPropertySet(&propertySet, "LoadLevelStatus", temp);
 UPnP_AcceptSubscription(request, 0, 0, propertySet, 100);
 ixmlDocument_free(propertySet);
 }
 }

 break;
 }
 }

 return (0);
}

	Section 1: Introduction
	S
	Section 2: UPnP Phases
	S
	Section 3: Server and Client Interaction Model
	Section 4: Software Development Kit (SDK) Architecture:
	4.1 RTPLATFORM
	4.2 Application
	4.3 IXML Library
	4.4 UPnP.DOM
	4.5 HTTP Library (HTTP SERVER AND HTTP PARSER)
	4.6 UPnP.c and UPnPSrv.c
	4.7 DeviceAction.c and SoapSrv.c
	4.8 DeviceEvent.c and GenaSrv.c
	4.9 DeviceDescribe.c
	4.10 DeviceDiscover.c and SsdpSrv.c

	S
	Section 5: Getting Started
	5.1 Creating Description Documents
	5.1.1 Creating a Device Description Document
	5.1.2 Creating a Service Description Document

	5.2 Writing Your Application
	5.2.1 Initializing and Setting up UPnP Runtime
	5.2.2 Initializing UPnP Device
	5.2.3 Loading the Description Documents
	5.2.4 Registering Root Device
	5.2.5 Device Advertisement Settings
	5.2.6 Starting up the Device
	5.2.7 Application Body Implementation
	5.2.8 Shutting Down the Device

	S
	Section 6: Writing a device Callback
	6.1 Serving an Action Request
	6.1.1 Operation

	6. 2 Serving a Subscription Request
	6.2.1 Operation

	S
	Section 7: Sending Event Notifications from within Device Application
	UPnP SDK Source Code Structure
	Configuring UPnP SDK
	Porting UPnP SDK

	S
	Section 1: Introduction
	S
	Section 2: EBS UPnP Device API
	2.1 UPnP_RuntimeInit
	2.2 UPnP_RuntimeDestroy
	2.3 UPnP_AddVirtualFile
	2.4 UPnP_RemoveVirtualFile
	2.5 UPnP_ProcessState
	2.6 UPnP_StartDaemon
	2.7 UPnP_StopDaemon
	2.8 UPnP_DeviceInit
	2.9 UPnP_DeviceFinish
	2.10 UPnP_RegisterRootDevice
	2.11 UPnP_UnRegisterRootDevice
	2.12 UPnP_DeviceAdvertise
	2.13 UPnP_DeviceNotify
	2.14 UPnP_DeviceNotifyAsync
	2.15 UPnP_AcceptSubscription
	2.16 UPnP_AcceptSubscriptionAsync
	2.17 UPnP_GetRequestedDeviceName
	2.18 UPnP_GetRequestedServiceId
	2.19 UPnP_GetRequestedActionName
	2.20 UPnP_SetActionErrorResponse
	2.21 UPnP_GetArgValue
	2.22 UPnP_CreateActionResponse
	2.23 UPnP_SetActionResponseArg
	2.24 UPnP_CreateAction
	2.25 UPnP_SetActionArg
	2.26 UPnP_AddToPropertySet
	2.27 UPnP_GetPropertyValueByName
	2.28 UPnP_GetPropertyNameByIndex
	2.29 UPnP_GetPropertyValueByIndex

	Appendix I
	UPnP Device Initialization Example

	A
	Appendix II
	Sample Device Callback

