
   

 
 

Using RightDose 
 
In this chapter we explain the structure and use of RightDose, with examples.  
 

General description 
 
The image below shows the view you get when you start RightDose. The actual view is 
called the Patient+data view and will be explained in detail later. 
 

 
 
 
The arrows in the Toolbar can be used when stepping through a series of plots over time. 
Pressing the leftmost triangle button when a time-series is displayed will take you to the 
start of the series. The rightmost button takes you to the end. The two middle buttons take 
you one step forward or backward in the time series. 
 
You will have several Menu options available at any time. Use the menus to load new 
patients, select drug population models, change plots, and so on. The different menu 
options are in general connected to the various views you will get, and they will be 
explained in detail later. 
 



   

 
 

The views may have Fixed fields, giving you information about the patient or the 
population model. You will not be able to edit these fields directly. 
 
The different views available are shown in the Tab panel. The name of the view 
Patient+data, Pop model data, Pop model plots, …, is shown on the tab. Pressing one 
of the tabs takes you to the corresponding view.  
 
Some views may also have a Data grid. The grid is used to display time-dependent data, 
detailed information about the population model, and the suggested doses. Some data 
entry forms also use a Data grid. The grid can best be thought of as a spreadsheet. The 
fields in the Data grid can also easily be copied to the clipboard and into programs like 
Microsoft Excel. Simply select the desired fields and use Copy in the Edit menu. 
 

The Patient+data view 
 

The display 
 
This view has two distinct parts, the fixed fields and a data grid. Go ahead and load a 
patient by selecting Patient and Load patient from the menu. The information displayed 
is either read directly from the file, or it is computed based on data read from the file. If 
you load the patient  SANCH.MB, for example,  the fixed fields of your patient view will 
look like this 
 

 
 
The field label, to the left of each field, tells you what information is shown in each field. 
All dates will be shown in the format you have selected when installing your operating 
system. This means that if you selected the US locale dates will be given month/day/year, 
a European locale will show the dates as day/month/year. 
 
Note that the Ethnicity field is not used at the moment. This field will be used when our 
model will take into account the ethnic group of the patient. 
 
The data grid is filled with data if and only if the patient has a past history of drug doses 
and measured serum concentrations. The grid will be empty if the patient file contains no 
information. The patient we have loaded, SANCH.MB, has a past history. 
 



   

 
 

 
 
The data shown in the grid consists of three sections: the doses given, the measured drug 
concentrations, and the serum creatinine. Use the scroll bar to the right to scroll up and 
down between the three sections. 
 
The doses part consists of 11 columns 
 
1 The dose number, starting at 1. 
2 The route by which the dose was given, this can be one of PO, IM, or IV. 
3 The date the dose was given, shown according to the selected locale. 
4 The time the dose was given, shown hour:minutes:seconds 
5 Time into the dosage regimen, starting at 0 hour for the start of the first dose 
6 The weight of the patient at the time the dose was given 
7 The creatinine clearance at the time the dose was given 
8 The IV infusion time, the duration of the infusion if the dose was given IV. Doses 

given by other routes will have a 0 in this column. 
9 The dose interval between the start of this dose to the start of the next. 
10 The IV infusion rate. Doses given by other routes will have a 0 in this column. 
11 The drug amount given. 
 
Scrolling down to the serum levels, you should see something like this if your patient file 
has a record of serum levels;  
 

 
 



   

 
 

There are 7 columns displaying information about the serum levels. Most of them 
correspond to the fields used for displaying the dosage information. 
 
1 The serum level number, starting at 1. 
2 The date the sample was obtained, shown according to the selected locale. 
3 The time the sample was obtained, shown hour:minutes:seconds. 
4 The time into the regimen, starting when the first dose was given. 
5 The dose number just before this serum sample. 
6 The time after the previous dose number. 
7 The measured concentration. 
 

The controls 
 
This section describes the menus and controls that can be used in combination with the 
patient view. 
 
All options available for the patient view are accessible from the Patient menu option. 
By selecting this menu option the view will automatically switch to the Patient+data 
view. There are several options available for this menu selection, New patient, Load 
patient…. The options may be disabled based on your previous selections. You cannot 
save a patient’s data if you have no patient loaded and so on. 
 
Selection of the New patient option. You will be presented here with a dialog box 
allowing you to enter the information about your new patient. 
 

 
 
Some of the fields in this dialog box are optional. The ones you are required to fill in are 
the date of birth, the gender, the height, and weight. All of these values will be needed 
when analyzing data and/or computing a new dosage regimen. Click OK to use the 
patient data. The fixed field will now look like this. It even keeps the typo “FRank”, 
which should be “Frank”. 
 



   

 
 

 
 
Any information previously present in the data grid will be removed. At this time a new 
patient file based on the information you entered in the dialog box has been created. Note 
that this patient only exists in the program. It has not yet been saved to a permanent file 
on disk. 
 
The Load patient option allows you to load a patient from a file. The program 
recognizes three different patient types, the default file extensions are 
 
1 .MB. This is an old format, and is a plain text file. It has been used in the previous 

DOS version of RightDose (USC*PACK). 
2 .MB2. This is an updated version of the old .MB format. The file is also a plain text 

file, but with additional fields. 
3 .USC. This is a completely new format. .USC files are binary files that can contain 

information about multiple drugs given to the same patient. Note that even though 
this format is fully supported the current version of RightDose does not use the 
extended options provided by this format. 

 

The Pop model data view 
 

The display 
 
The Pop model data view is very similar to the Patient+data view. They both have 
fixed fields and a data grid. This view will contain information about the selected drug 
population PK model. The top portion consists of a series of fixed fields. 
 

 
 



   

 
 

The fixed fields consist of three groups. The left gives General information about the 
population model: The name of the drug, the name of the group that made the population 
model, the bioavailability, and the active (salt) fraction. The center block, Model 
information, provides information about the compartments used in the model and the 
allowable routes. The target Ranges block displays the common ranges for the peak and 
trough goals usually used with this drug. 
 
The data grid portion of this view will contain statistical information about the population 
model and the matrix containing the parameter description support points and their 
corresponding probabilities. 
 

The controls 
 
Selecting Pop model on the menu bar will automatically switch the view to the Pop 
model data. The sub options for this menu are limited to one: Load population model. 
Select this option and you will get a dialog box asking you to select a drug population 
model. 
 

 
 
Select the correct drug population model and press OK. If you selected Vancomycin, the 
Pop model data view should look like the one below. Take a look at the window frame 
at the top 
 



   

 
 

 
 
It now contains both the Patient name, we entered “FRank Hansen”, and the name of the 
Population name “vanco 80kpts”. The names shown in this frame are always up to date, 
so you can always take a look at it if you are uncertain about which patient or population 
model you are working on. 
 

 
 



   

 
 

As mentioned the data grid for the Pop model data can be separated into two parts, one 
for the Statistical information, and one for the Full matrix. 
 
 

The Pop model plots view 
 
This view is used to examine the data making up the population model in more detail. It 
will display the plots when you have selected a drug population model.  

The display 
 
This is the first in a series of plots. When a population model is loaded and you switch to 
this tab, the default display is a 3D plot showing the parameters KS and VS if they are 
present in your population model. If they are not, the two first parameters will be selected 
and displayed. 
 

 
 
The Plot view is the main window in this view, all the plots will be displayed in this 
window. The plotting routines used in RightDose are quite extensive giving you a 



   

 
 

multiple options. You can export the plot or the data making up the plot to your clipboard 
or printer. You can add a grid, change axis, and lots more.  A detailed explanation of your 
options is given in Appendix A. 
 
Use the Parameter selector to select the parameters to be plotted. You must select two 
parameters if you want the 3D plot or the 2D scatter plot. If present, KS and VS will be 
selected by default. 
 
The Plot selector allows you to switch between the different plots mode. A 2D plot 
showing all parameters and the 2D scatter plot showing KS and VS is shown below. 
 

 
 
  
If you move the arrow over one of the points in the plot, the numerical values for that plot 
will be displayed in the Value display. In the 3D plot, the values for the two parameters 
and their probability will be displayed. In the 2D plot, the probability and the parameter 
value will be displayed. Moving the arrow over one of the points in the 2D scatter plot, 
parameter value will be displayed. 
 

The controls 
 
There are no menu options associated with this view. 
 

The Posterior plots view 
 
This view is will be shown when you have fitted a patient that has a past history, drug 
doses and serum concentrations measurements and a specific drug population model. To 
demonstrate this view we will load a patient and select the correct population model of 
the drug given to that patient. Pull down the Patient menu, select Load patient, and load 



   

 
 

the “GENT2” file, for example. Pull down the Pop model menu, select Load population 
model, and select “Gentamicin”.  
 
You will now fit the patient (provided by Alan Forrest) and a Gentamicin population 
model. This is simple. Pull down the Task menu and select Fit model. When the fitting 
has completed, you will be automatically transferred to the Posterior plots view.  

The display 
 
Fitting the Alan Forrest’s patient to the amikacin population model produces this plot. 
 

 
 
This plot shows all the trajectories produced by the fitting process. There will be one 
trajectory for each of the parameter/probabilities sets. The Top 4 probability 
trajectories will be shown in color. All others will be shown by dotted black lines. The 
probabilities of the 4 most probable trajectories and their corresponding color are shown 
at the top of the plot. The Weighted average, computed by adding up all trajectories and 
multiplying them by their corresponding probability, is shown in solid black. 



   

 
 

 
The red diamonds show the measured Serum concentrations. In this case the trajectories 
are close to the measured values, a good thing. There are also some short blue bars just 
above the time axis. These Dose tick lines show when a dose was given by any route. 
 

The controls 
 
This view can be altered using the Plot menu.  
 

 
 
If you selected the amikacin population model your Plot menu will look like this. The 
“Peripheral compartment” will be dimmed because there is no peripheral compartment 
for this particular population model. The default plot for posterior fits is the central 
compartment, select the absorptive compartment and see what happens. 
 
The plot now changed, showing the events in the absorptive compartment. If you selected 
Alan Forrest’s patient, you will see one spike at 18 hours (18.25 to be exact). This is the 
time when the IM dose was given. It might be a good time to spend some time looking at 
the patient, the population model, and the posterior fit views. Are the Dose ticks shown at 
the right times? Why are there no spikes in the absorptive compartment when doses are 
given IV? How many trajectories should there be in the plot? 
 
In the above example the default posterior plot looks decent. This may not always be the 
case. If you have many diverse trajectories the plot may look cluttered, and the 
information shown may need to be reduced. If you want to only see the estimated 
Weighted average of all the trajectories, select the Extractions submenu, and select 
Weighted average only. You can also set a threshold level, showing you the trajectories 
making up a percent of the probabilities. Examine this by selecting Set subsets instead of 
Weighted average only. Enter 40 into the dialog that pops up, and you will get the two 
first trajectories (the first one has a probability of 24.97%, the second 12.63, making it a 
total of 37.6%), and the weighted average. 
 
The subset selection will be active until you make a new selection or perform another fit. 
Selecting the absorptive compartment, the plot will show the two most probable 
trajectories. Return to the default display by selecting Show all subsets. 
 



   

 
 

 

The Fitted probabilities view 
 
This view will give you useful information about a fitted model. It will only have data 
after you have fitted a model. 
 

The display 
 
This display is very similar to the Pop model data view, and it does essentially provide 
the same information, but this time the probabilities are time dependent. 
 

 
 
 The main difference in this view is the weighted Average plot, and the Time slider. The 
average plot is the plot shown in the Posterior plot view when only the weighted average 
is plotted. The solid diamonds represent the serum level measurements. The blue ticks 
represent the doses given. 
 



   

 
 

Select a time into the regimen, passing one or more of the serum level measurements. By 
dragging the Time slider to the right. See how the probabilities in the Plot view changes 
with each new sequential Bayesian posterior. New probabilities are computed each time 
there is a serum level measurements.  
 
Select the Raw data button in the Plot selector, to see the most recent probabilities. 
 

The controls 
 
There are no menu options associated with this view. 

The Report view 
 
Moving from left to right, the next option should be the future plot, but we will do the 
Report view first. The reason for this will become apparent in a few lines. 
 
If you have followed this from top to bottom you will now have a patient that has been 
fitted in your program. If not, please perform the steps lined out at the start of the 
Posterior plot section. 
 
You will now compute a future regimen for your patient. Start off by selecting Future 
regimen via the Task menu option. A dialog box will pop up, asking you to select the 
route and sub-option. The process of computing a new or future regimen will be 
explained in detail later. Accept the default route (IV option 1: Control peak and trough) 
by clicking on the OK button.  
 
Select Continue when asked to use your fitted data with this regimen, and select OK to 
accept the body weight and creatinine clearance. The values suggested for body weight 
and creatinine clearance are the last known values recorded for your patient. 
 
You must now select the target level goals for your patient. Enter values so that your 
dialog box looks like the one below 
 



   

 
 

 
 
 
Select OK. The program now starts to compute this dosage regimen for several dose 
intervals. When it completed you will see a dialog box with a plot. Accept the selected 
dose interval of 24 hours by clicking on OK. 

The display 
 
Voila, the doses for your patient have been computed, and the Report view is displayed. 
 



   

 
 

 
 
  
This view consists of three sections. Patient information at the top, then Population 
model information, the route and the goals, and the New suggested dosage regimen.  
 
You may switch to the Report view at any time. The information displayed will be based 
on your selected patient and population model. If you have no patient loaded, no patient 
information will be displayed, and so on. 
 

The controls 
 
You can print this report by selecting Print, from the File menu. 
 

The Future plot view 
 
Please complete the steps outlined for the Report view above, or develop your own 
future regimen. 
 

The display 
 



   

 
 

Computing a new regimen takes you to the Report view. Then select the Future plot tab 
to see more detailed information about your new regimen. 
 

 
 
Because we have based this new regimen on the fitted data, this view will also show the 
results on the Old regimen. The Old regimen has the diamonds indicating serum level 
measurement, and both plots have the blue lines showing where a dose was or will be 
given. 
 

The controls 
 
The controls for this view are the same as with the Posterior plot, accessible from the 
Plot menu option. Note that you now have more options available for this menu 
selection. 
 
You can remove the past plot by selecting Toggle past and future. Try it and watch the 
past disappear. Turn it back on using the same selection. 
 
To get a completely different view, select the Concentration vs. probability. This will 
bring up the following display. 
 



   

 
 

 
 
 
This is a scatter plot showing how well your new regimen is predicted to achieve your 
target goal values. Remember we selected to have a trough goal af 2.0. It seems like the 
values are a bit low at this time for this regimen. This plot is the situation after 24 hours. 
Use the Arrow buttons or the arrow keys on your keyboard to play forward in time to 
see if the new regimen improves. Note also how the Goal indicator changes back and 
forth between 2.0 and 20.0. 
 
 
 

Extended plotting options 
 
The plotting routine used in RightDose offers an extensive set of options. In this 
appendix we examine some of these options. All options are available by right-clicking 
inside a plot view. You will then get a menu providing the options. 
 



   

 
 

 
 
As you can see there is also a Help option, offering detailed help for the various 
selections. 
 

Zooming 
 
All plots in the program have been configured to allow for zooming. The process of 
zooming is simple. Press and hold the left mouse button when inside a plot. Move the 
mouse and you will see the zooming rectangle. When you then release the left mouse 
button, the plot will expand the selected region inside the zoom rectangle. 
 
To return the plot to the original status simply right-click inside the plot and select Undo 
zoom. 
 

The customization dialog 
 
The customization dialog gives you many options for customizing your plot. It does 
essentially give you an entry point to all other options. Select the tabs to perform one or 
more of the following options 
 

• You can add a title and subtitle for your plot.  
• The plotting mode can be altered to show just the data points, to interpolate values 

between the plots, or to show the plot as a bar graph.  
• Select the subsets to show. 
• Adjust the axis range, and switch to logarithmic axes, if desired. 
• Change the fonts used to display the axis labels and plot title. 
• Change the colors used for the background and foreground for the desk and graph. 



   

 
 

• Display the different trajectories using different symbols. 
 

Exporting plots 
 
Several export options are provided for both data and plot images. Move the mouse 
pointer into a plot, right-click, and select the Export Dialog. You will then see the 
following dialog box. 
 

 
 
 
The Export mode section allows you to export the plot image, or the data making up the 
plot. Selecting MetaFile, or BMP will export the plot, Text / Data Only will export the 
plot as floating point data. 
 
If you export as an image or as data you have several options about where you would like 
to export the data to (BMP cannot be exported to a printer). This can be determined using 
the Export destination section.  
 
To copy a plot into a Microsoft Word document, simply select MetaFile in the Export 
mode panel, ClipBoard as Export destination, and press or click Export. Go to the 
location in Word where your would like to have the plot and press Ctrl+v (Paste).  
 
Exporting the actual data requires one more step. Select Text / Data Only in the Export 
mode, ClipBoard in the Export destination, and click on Export. At this point, a new 
dialog box pops up, giving you an option to select which subset to export. 
 



   

 
 

 
 
 
You can make multiple selections in the Subsets to Export and Points to Export by the 
keeping the Ctrl key pressed while selecting subsets or individual points.  
 
To export the whole dataset into Microsoft Excel, select Table in the Export Style 
frame, and press Export. Select the cell in Excel where you want the upper left element 
of the table and press Ctrl+v (Paste). 
 
 

Removing the annotations 
 
Annotations are used in three places, for the diamonds showing the serum concentration 
measurements, for the blue lines showing when the doses were or will be given, and for 
the red line separating the past and the future. You can toggle annotations on and off by 
selecting and deselecting the Show Annotations option.  
 
 

The data points 
 
You have two options to get more information about the data points. Selecting the Mark 
Data Points option and the trajectories will have small black dots showing the locations 
of the actual data computed points. To get even more information about these points, 
select the Include Data Labels option. The plot will now display the X and Y values of 
the data plots. This option is usually only useful when used in combination with the zoom 
feature, as it tends to make the plot cluttered. 
 
 



   

 
 

Enabling gridlines 
 
Gridlines can be enabled by selecting one of the options in the Grid Lines submenu. You 
can have gridlines in the X direction, Y direction, or both. 
 
  

Maximize 
  
Select this option, and the plot will expand to occupy the whole area of your desktop. 
You can close this window by hitting the Esc key or by left-clicking on the top frame of 
the window. 
 
  



   

 
 

 

A Gentamicin case 
 
In this chapter we give a detailed example on the use of RightDose using a gentamicin 
population model.  
 

Initial preparations 
 
Start RightDose and load the GENT2.MB patient data file, and the gentamicin population 
model. A description on how to load patient data files and population models can be 
found in the General usage chapter. 

 The initial view 
 
After loading the patient and population model, the Patient+data display of RightDose 
will look like this 
 

 
  



   

 
 

Note that the frame header displays the name of the patient and the name of the 
population model. The header display will be the same for all tabs making is easy to keep 
track of the current simulation. 
 

Fitting without IMM 
 
You will now fit the patient data to the population model, first without IMM. The settings 
controlling the use of IMM as well as other options can be found in the Advanced -> 
Compute options menu option. 
 
Turn IMM off by setting the Alpha parameter to 1. In this mode, the parameters that best 
fit the patient’s data are assumed to be fixed and unchanging throughout the period of 
data analysis. This is a very conventional assumption. It underlies all our conventional 
practices of fitting data to find the best fit to it. In this case, the probabilities of the 
population parameter support points in the nonparametric joint density are recomputed, 
using Bayes’ theorem. Those support points that predict the patient’s measured serum 
concentrations well become more probable, and those that do not become less probable. 
In this way, the patient’s individual Bayesian posterior joint parameter density is found. 
 

 
 
Note - in the present version, it is  the numbers given that are used. The radio buttons 
have no effect. 
 
Select OK to continue using the selected settings. These settings will be valid until they 
are changed or until RightDose is restarted. 
 
Start the fitting process by selecting Fit model from the Task menu bar. After a few 
seconds, the new Posterior plot will be displayed, as shown below. 



   

 
 

 

 
 
The Blue vertical bars along the horizontal time axis show when doses were given. The 
red diamonds show the measured serum levels and their times.  
 
The information in these plots can be overwhelming due to the number of trajectories. If 
you wish to see only the central tendency of the Bayesian posterior fits,  Select subsets -
> Weighted average only from the Plot menu, as shown below. 
 



   

 
 

 
 
As you can see there is a decent correlation between the weighted averagetrajectory and 
the serum level measurements. 
 
You can get more information about the correlation between the trajectories and the 
serum levels by left-clicking on one of the red diamonds. 
 

 
 



   

 
 

The dotted vertical line shows the value of the weighted average trajectory. The solid red 
line shows the value of the serum level at that time. The table to the right shows the 
concentrations and their corresponding probability. The concentrations that have a 
probability of more than 10% are show having a different background. 
 
You can left-click on any plot point to see a similar display, but only the times that have a 
serum level measurement will have the red solid vertical line. 
 
More information about the fit you just made can be found in the Fitted probabilities 
tab. The information accessible in this tab is similar to the Pop model data tab, and the 
default plot for this tab is a 3D scatter plot. 
 

 
 
As with the Posterior plot tab you can left-click on the diamonds in the upper window to 
control the time slice shown in the lower window.  
 
Select the Fit quality button to get a look at how good your fit was. 
 



   

 
 

 
 
This plot show the correlation between the serum levels and the weighted average 
trajectory. The red dots are marked with numbers indicating the serum level number as 
shown in the Patient+data tab. The closer the red dots are to the diagonal line, the better 
the fit. 
 
Again this show that the fit you just made was not too bad. 
 

Fitting with IMM 
 
Lets us see what happens when we enable IMM. Select Compute options under the 
Advanced menu, set the Alpha parameter to 0.999, and press OK. 
 
Make a fit using the new value for the Alpha parameter by selecting Fit model under the 
Task menu. The Fit quality should now look like this 
 



   

 
 

 
 
As you can see there is a slight improvement in the fit for serum level number 3, the rest 
is roughly the same as with no IMM. 
 
Let us accept this fit and move on to developing a future regimen for this patient using 
the information we have obtained by making the fit. 
 
 

Designing a future regimen 
 

Using Minimized variance 
 
First we design a future regimen using minimized variance. Select the Future regimen 
under the Task menu option. 
 



   

 
 

 
 
You control the main route using one of the three radio buttons at the top, and the sub-
route using one of the 7 vertical buttons. As you can see there the PO route is not allowed 
for this model, also there is no peripheral compartment for this population model. 
 
Accept the default selection, IV option 1 – Control peak and trough, select dose interval, 
and press OK. 
 
As we have performed a fit for the current patient and population model the program 
already has knowledge about the weight and creatinine clearance for this patient.  
 

 
 
The latest recorded weight for this patient was 68 kg, and the most recent computed 
creatinine clearance was 27.09 mn/min/1.73msq. Accept these values by pressing OK. 
 
Fill in the data for IV option 1 so that your dialog box looks like the one below. 
 



   

 
 

 
 
Note that you can select a dose outside the usual ranges, and moving too far outside these 
ranges will result in a warning. For now, press OK to continue. 
 
The program now computes the cost of using the different dose intervals. You control the 
ranges examined by altering the low and high bond options in the previous dialog box. 
After a few seconds this dialog box appears 
 



   

 
 

 
 
The dots in the graph indicate that a cost has been computed for that dosage interval. The 
graph shows that the optimal dose interval is 24 hours. Select OK to continue. 
 
The new regimen is now computed, an operation that will take a few seconds. When 
completed RightDose will switch to the Report tab. 
 



   

 
 

 
  
The lower portion of the report show the cost, the area under the curve (AUC), and the 4 
computed doses. You can print this report by selecting Print under the File menu or by 
pressing Ctrl+p. 
 
Switch to the Future plot tab to see more visual information about the new regimen. 
Change the plot to only show the weighted average. 
 



   

 
 

 
 
This plot show the weighted average serum concentration in the central compartment. 
The past history is show to the left of the dotted vertical line, the future regimen to the 
right.  
 
Enable all subset again, and select the Concentration vs probability under the Plot 
menu. 
 



   

 
 

 
 
This plot show the concentration along the x-axis and the probability along the y-axis for 
the first goal time, a goal of 12 0.5 hours into the regimen.  The most probably set of 
support points, or trajectory, is again indicated by a solid red dot. It has a probability of 
42.27% and this time it has a value of out 7. This is below your selected goal indicated by 
the solid vertical line. The black triangle show the weighted average. 
 
Use the black arrows to move forward/backward in time to look at next/previous goals. 
 

Using minimize bias 
 
Select the Compute options under the Advanced menu option, change the lambda factor 
to 1 and the weighting factor to 0 (absolute error). Repeat the steps above to compute a 
new future regimen. 
 
Select the Concentration vs probability under the Plot menu. 
 



   

 
 

 
 
Note how the serum levels are much closer to the goal. 
 



   

 
 

 
 

Appendix A 
 
Publications related to the MM-USCPACK program. 
 
 
The following publications can be found in this appendix: 
 
 

• POPULATION PK/PD MODELING:  PARAMETRIC AND 
NONPARAMETRIC METHODS. 

• ESTIMATION OF CREATININE CLEARANCE IN PATIENTS WITH 
UNSTABLE RENAL FUNCTION, WITHOUT A URINE SPECIMEN. 

• ACHIEVING TARGET GOALS MOST PRECISELY USING 
NONPARAMETRIC COMPARTMENTAL MODELS AND "MULTIPLE 
MODEL" DESIGN OF DOSAGE REGIMENS. 

• MULTIPLE MODEL (MM) DOSAGE DESIGN: ACHIEVING TARGET 
GOALS WITH MAXIMUM PRECISION. 

• A NEW METHOD TO UPDATE BAYESIAN POSTERIORS FOR  
PHARMACOKINETIC  MODELS WITH CHANGING PARAMETER 
VALUES. (Abstract)



   

 
 

 
 
 
POPULATION PK/PD MODELING:  PARAMETRIC AND NONPARAMETRIC 

METHODS. 
 
Roger Jelliffe, Alan Schumitzky, and Michael Van Guilder. Laboratory of Applied 
Pharmacokinetics, USC School of Medicine. 
 
 As we acquire experience with the clinical and pharmacokinetic behavior of a 
drug, it is usually optimal to store this experience in the form of a population 
pharmacokinetic model, and then to relate the behavior of the model to the clinical effects 
of the drug or to a linked pharmacodynamic model. The role of population modeling is 
thus to describe and store our experience with the behavior of a drug in a certain group or 
population of patients or subjects.  
 
 The traditional method of Naive Pooling has been used for population modeling 
when experiments are performed on animals, for example, which must be sacrificed to 
obtain a single data point per subject. Data from all subjects is then pooled as if it came 
from one single subject. One can estimate pharmacokinetic parameter values, but cannot 
estimate any of the variability that exists between the various subjects making up the 
population.  
 

Parametric Methods for Population Modeling 
 
 A good review of parametric population modeling methods is given in [1]. These 
methods obtain means and standard deviations (SD's) for the pharmacokinetic 
parameters, and correlations (and covariances) between them. Only a few of these will be 
described, and quite briefly, here. 
 
1. In the Standard Two-Stage (S2S) approach, one begins by using a method such 
as weighted nonlinear least squares to obtain pharmacokinetic parameter estimates for 
each patient, and their correlations and covariances between parameters. The second and 
final stage consists of obtaining the population mean and SD of the various individual 
parameter values.  To do this, one needs at least one serum concentration data point for 
each parameter to be estimated. One can also examine the frequency distributions of the 
individual parameter values. 
 

The Iterative Two-stage Bayesian (IT2B) method begins by using an initial estimate of 
the mean parameter values. They may be obtained, for example, by the two stage 
procedure, as above. On the other hand, one can use any reasonable initial estimate of the 
population mean parameter values and their SD's. These are then used as the Bayesian 
priors. The IT2B method uses these priors and examines each individual patient’s data to 
obtain the individual maximum aposteriori probability (MAP) Bayesian posterior 
parameter values for each subject, using the MAP Bayesian procedure in current wide use 



   

 
 

[2]. One then finds the population means and SD's of those individual posterior parameter 
values.  
 
One can then turn around and use these new population values as the MAP Bayesian 
priors, and can once again obtain each patient's MAP Bayesian posterior values. This 
process can continue iteratively indefinitely. The procedure ends when a convergence 
criterion is reached. The IT2B method is much less prone to the problems often found 
with fitting data by least squares. In addition, it does not require nearly as many serum 
concentration data points per patient, and can function with as few data points as only one 
per patient. 
 
 The Global Two Stage (G2S) method is a further refinement of the S2S and the 
IT2B in which the covariance and correlations between the parameters are also estimated. 
Each of these methods, and all those below, require software to implement them.  
 
3. In the parametric EM method, the letters EM stand for the two steps in each 
iteration, of 1) computing a conditional expectation and 2) of maximizing  a conditional 
likelihood, to obtain a set of parameter values which are more likely than in the previous 
iteration. The process continues until a convergence criterion is met. The results are given 
in terms of the parameter means, SD's, and correlations, or means, variances, and 
covariances [3]. 
 
4. The nonlinear mixed-effect modeling (NONMEM) method, developed by Beal 
and Sheiner [4-6], was the first true population modeling program. The method can 
function with as few samples as one per patient. However, this very popular algorithm 
lacks the desirable property of mathematical consistency [7-9]. Early versions of it have 
at times given results which differed considerably from other approaches [10,11]. Later 
improvements have shown more consistent behavior. Other variations on this approach 
are those of Lindsdtrom and Bates [12], and Vonesh and Carter [13]. 
 
 In analyzing any data set, it is usually optimal to assign a measure of credibility to 
each data point. In the IT2B program of the USC*PACK collection, for example, one is 
encouraged to determine the error pattern of the assay quite specifically before beginning 
the analysis, by determining several representative data points in at least quadruplicate, 
and to find the standard deviation (SD) of each of these points. One can measure, in at 
least quadruplicate, a blank sample, a low one, an intermediate one, a high one, and a 
very high one. One can then find the relationship between the serum concentration (or 
other response) and the SD with which it has been measured, so that one can compute the 
Fisher information, for example, as a good measure of credibility, so that each serum 
level can be evaluated in the fitting process by a good measure of its credibility. This has 
been discussed more fully in another paper in this collection, and in other 
communications [14,15]. 
 
 In addition, gamma, a further measure of overall intra-individual variability, can 
also be computed by the IT2B program, but not by the nonparametric methods. It is used 
in the USC*PACK IT2B program as a multiplier of all the coefficients of the assay error 



   

 
 

polynomial as determined above. Because of this, its nominal value is 1.0, indicating that 
there is no other source of variability that the assay error pattern itself. Gamma is thus 
usually greater than 1.0. It not only includes the various environmental errors such as 
those present in preparing and administering the doses, errors in recording the timing of 
the serum samples, and also errors in which the structural model used fails to describe the 
events fully (model misspecification), but also any changes in various parameter values 
over time. It is an overall measure of all the other sources of intraindividual variability 
besides that of the assay. However, most of these other sources are not really sources of 
measurement noise, but are rather of noise in the differential equations describing the 
behavior of the drug, and are best described as process noise [16]. The problem is that it 
is difficult to estimate process noise, as it requires stochastic differential equations, and 
no software for this exists at present in the pharmacokinetic field, to our knowledge. 
 
 Furthermore, the IT2B program can also be used to search for estimates of the 
various assay error pattern coefficients, if one has absolutely no idea what the assay error 
pattern is, or if the measurement is one which it is impossible to replicate. In this case, 
gamma is not determined, but is implied in all the various other coefficients. 
 
 The following results are taken from a representative run of the IT2B program. 
The original patient data files were made using the USC*PACK clinical software. The 
program, like the NPEM program, reads those files and writes out working copies of 
them in another format. The following illustrative results are taken from a subset of data 
obtained by Dr. Dmiter Terziivanov in Sofia, Bulgaria [17], on 10 patients who received 
intramuscular Amikacin, 1000 mg, every 24 hours for 5 or 6 days. In each patient, two 
clusters of serum levels were measured, one on the first day and one on the 5th or 6th 
day, approximately 5 levels in each cluster. Creatinine clearance was estimated from data 
of age, gender, serum creatinine, height and weight, as described in another paper in this 
issue. Serum concentrations were measured by a bioassay method. The assay error 
pattern was described by a polynomial in which the assay SD = 0.12834 +  0.045645C, 
where C is the serum concentration. The assay SD of a blank was therefore 0.12834 
ug/ml, and the subsequent coefficient of variation was 4.5645%. In this particular 
analysis, gamma was not computed, but was held fixed at 1.0. The following results were 
obtained with the USC*PACK  IT2B program. 
 
 The initial very first parameter estimates, and their SD's, were: Ka (the absorption 
rate constant) = 1.5 ± 1.5 hr-1, Ks (the increment of elimination rate constant per unit of 
creatinine clearance in ml/min / 1.73M2) = 0.005 ± 0.005 hr-1, and Vs (the apparent 
central volume of distribution) = 0.6 ± 0.6 l/kg. The nonrenal intercept of the elimination 
rate constant (Ki) was held fixed at 0.0069315 hr-1, so that the elimination rate constant 
= Ki + Ks x creatinine clearance. 
 
 The IT2B program converged, in this analysis, on the 8th iteration. The 
population mean values for the parameters Ka, Ks, and Vs found were 1.45 hr-1, 0.0033 
hr-1, and 0.257 L/kg respectively. The medians were 1.42 hr-1, 0.0035hr-1, and 0.252 
L/kg respectively. The population standard deviations were 0.341 hr-1, 0.000693 hr-1, 



   

 
 

and 0.0479 L/kg respectively, yielding coefficients of variation of 24, 21, and 19 percent 
respectively. 
 
 The empirical distributions of Ka, Ks, and Vs are shown in Figures 1 through 3. 
The joint distribution of Ks and Vs in shown in Figure 4, which shows a visible positive 
correlation between the two parameters, consistent with their population correlation 
coefficient of 0.671. 
 
 The entropy (a measure of randomness) was 3.57. This value is 81.6% of the 
distance from the high initial entropy associated with the uninformed initial grid in which 
all possible parameter values had equal probability, to the theoretical least possible 
entropy which would result if each subject's parameter values could be known exactly. 
The value of the scaled information of 81.6% indicates that a good deal of information 
was obtained from this analysis. 
 
 Figures 5 and 6 are scattergrams of predicted versus measured serum 
concentrations. Figure 5 shows the predictions based on the population parameter 
medians and the doses each subject received. In contrast, Figure 6 shows the predictions 
made using each subject's individual MAP Bayesian posterior parameter values to predict 
only his/her own measured serum concentrations. The improved predictions in Figure 6 
are due to the removal of the population interindividual variability, as perceived by the 
IT2B program. The remaining smaller scatter is due to the intraindividual variability 
resulting not only from the assay error, but also to the other sources of noise in the 
system, such as the errors in preparation and administration of the various doses, errors in 
recording the times the doses were given and the serum samples drawn, and the mis-
specification of the pharmacokinetic model used. The results shown in Figure 6 show that 
the study was done with reasonable precision. 
 
 The IT2B method of population modeling is a useful one, and is based on the 
widely used and robust strategy of MAP Bayesian individualization of pharmacokinetic 
models. Its weaknesses, like those of any parametric method, are that it only perceives 
population parameter values in terms of their means, medians, variances, and 
correlations. The actual parameter distributions are usually not of this type. Lognormal 
assumptions have often been made, but the actual parameter distributions are frequently 
not of that form either.  
 

Larger and Nonlinear IT2B Population Models 
 
 Similar software for IT2B population modeling of large and nonlinear PK/PD 
models has now been implemented, on the Cray T3E parallel computer at the San Diego 
Supercomputer Center (SDSC), as a research resource for such work. The user uses a PC 
program in the USC*PACK collection to specify the data files to be analyzed and the 
instructions for the analysis. One also either writes the differential equations for the 
structural PK/PD model to be used, or employs the BOXES program in the USC*PACK 
collection, placing boxes on the screen for the compartments and connecting them with 



   

 
 

arrows to represent the various types of pathways involved. The model equations are then 
generated automatically and stored in a model file. 
 
 These two files are then sent to the SDSC Cray by a secure protocol. The model 
source code file is compiled and linked. The analysis is performed using the desired 
number of processors. A differential equation solver is employed. The results are then 
sent back to the user’s PC where they are examined just as in the various figures shown 
above. Thus one can now make large and nonlinear models of a drug, with multiple 
responses such as serum concentrations and various drug effects [18]. This resource is 
now in use by researchers. 
 

Strengths and Weaknesses of Parametric Population Modeling 
 
 The major strength of the parametric population modeling approaches is their 
ability to separate interindividual variability in the population from intraindividual 
variability in the individual subjects (gamma, for example), and from variability due to 
the assay error. Because of this, it seems best, for the present, to begin making a 
population model by using a parametric method such as the IT2B. First, one should 
estimate the assay error pattern explicitly, obtaining the assay error polynomial as 
described in an earlier paper in this collection, and elsewhere [14,15]. Then, having that 
assay error polynomial, one can use a parametric method such as IT2B to find gamma, 
and to determine the overall intraindividual variability, and to know what fraction of that 
is due to the assay itself. Then, one is in a position to overcome the weaknesses of these 
approaches by using this information in making a nonparametric population model (see 
below). 
 
 One weakness of the parametric methods is that they generally lack the desirable 
property of mathematical consistency, which is present in the nonparametric methods [7-
9]. However, the major weakness of the parametric methods is that they make parametric 
assumptions about the shape of the parameter distributions, and cannot perceive the entire 
shape of the parameter distributions, as the nonparametric methods do [19,20].  
 
 The major weakness of the parametric approaches is that they only obtain such 
single point estimates of parameter distributions. Much discussion has taken place about 
which is the optimal estimate of a parameter distribution– the mean, median, or mode, for 
example. When one acts on such single point information to develop a dosage regimen to 
achieve a desired target goal at a desired target time, the regimen that is computed is 
simply the one which will hit the target exactly. There is no way to estimate the degree to 
which the regimen may fail to hit the target, as there is only a single model, with each 
parameter having only a best single point parameter estimate. 
 
The Separation Principle 
 
 The separation or heuristic certainty equivalence principle states that whenever 
the behavior of a system is controlled by separating the control process into: 
Getting the best single point parameter estimates, and then: 



   

 
 

Using those single point estimates to control the system, 
 
that the task of control is inevitably done suboptimally [21], as there is no performance 
criterion which is optimized. This is the major weakness of parametric population 
models, that when their single point parameter estimates are used to design dosage 
regimens, that the target goals are inevitably achieved with a precision that is not 
specifically evaluated, and which is suboptimal. One may ask why we make models – to 
simply report such single point estimates, or to take some useful action based on the 
information obtained from the modeling process? That is why it is useful to supplement 
the knowledge of the assay error, empirically determined before starting the modeling, 
with information about the intraindividual variability obtained from a parametric 
population model. Having this information, one can then proceed to make a 
nonparametric population model which can overcome the difficulties presented by the 
separation principle stated above. 
 
Nonparametric Methods for Population Modeling     
 
 Until recently, we have become accustomed to obtaining certain types of 
statistical summaries of past experience. We know there is great variability among 
patients with regard to their pharmacokinetic parameter values. Nevertheless, we have 
become accustomed to using selected single numbers to describe such diverse behavior. 
For example, we have usually used the population mean or median parameter values as 
the best single number to describe the central tendencies of their distributions, and the 
standard deviation (SD) to describe the dispersion of values about such a central 
tendency. It has been customary to focus on such single numbers as summaries of 
experience, rather than to consider the complexities of the entire collection of the many 
and varied individual experiences themselves. In this section we discuss newer and more 
powerful nonparametric methods which can give us richer and more likely information 
from the raw data, which can then be applied to patient care more optimally than by using 
models having only single values for the various parameters. 
 
 What is meant here by the word nonparametric? Most of the time, when we gather 
data and summarize it statistically, we are accustomed to obtaining a single parameter 
value for the central tendency of a distribution such as the mean, median, or mode, and 
another single parameter value to describe the dispersion about this central tendency, 
such as the standard deviation (SD). The usual reason for this is that so many events in 
statistics have a normal or Gaussian distribution, and that the mean and the SD are the 
two parameters in the equation of a Gaussian distribution which define the shape of that 
distribution explicitly. Because of this, describing a distribution parametrically, in terms 
of its own parameters, the mean and SD, is very common. Indeed, the entire concept of 
analysis of variance is based on the assumption that the shape of the parameter 
distributions in the system are best described by their own other parameters of mean and 
SD or covariance. A great body of experience has been brought to bear to describe 
pharmacokinetic models parametrically, in this way. Much of this is described in an 
excellent review [1]. 
 



   

 
 

 On the other hand, if each individual subject's pharmacokinetic parameter values 
in a given population could somehow be truly and exactly known, and if we were 
examining two typical parameters such as volume of distribution (V, in L, or Vslope, in 
L/kg) and elimination rate constant (K, in hr-1, or Kslope, in hr-1/unit of its descriptor, 
such as creatinine clearance), then the truly optimal joint population distribution of these 
parameter values would actually be the entire collection of each patient's individual 
parameter values. All subpopulations, and those in between, would be truly known as 
well - not merely classified, but truly quantified.  
 
 However, these values can never be known exactly, but must be estimated from 
data of doses given and serum concentrations measured, and in a setting of environmental 
uncertainty, with errors in preparation and administration of the doses, and errors in 
recording the times when doses are given and serum samples obtained. In the 
nonparametric approach, one obtains discrete spikes, approximately one per subject. The 
location of each spike reflects its set of estimated values, usually for a given subject data 
set. The height represents the estimated probability of that individual parameter set. No 
other summary parameters such as mean or SD will be any more likely, given the data of 
dosage and serum concentrations, than the actual estimated collection of all the individual 
discrete points, each one having certain parameter values such as Vd and Kel, for 
example, and the estimated probability associated with each combined point of Vd and 
Kel. This is what is meant by the word nonparametric in this sense. No specific 
parameters such as means and SD's are used or needed to describe the distribution of 
parameter values within a population. The shape of the discrete distribution is totally 
determined only by the raw data of the individual subjects studied in the population. 
 
 Many patient populations actually are made up of clusters of unsuspected 
subpopulations. For example, there may be fast and slow metabolizers of a drug, and 
those in between. The relative proportions of fast, in between, and slow subjects may 
vary from one population (Caucasian people, for example) to another (Asian people, for 
example) [22]. Describing such a distribution of clusters optimally is not possible with 
any parametric method.  
 
 Since one obviously cannot know each patient's values exactly in real life, we 
must study a sample of patients requiring therapy with a drug by giving it to them and 
measuring the serum levels and/or other responses. Lindsay [23], and Mallet [19], were 
the first to show that the optimal solution to the population modeling problem is actually 
a discrete (not continuous), spiky (not smooth) probability distribution in which no 
preconceived parametric assumptions (such as Gaussian, lognormal, multimodal, or 
other) are made about its shape [19,20,24].  
 
 The nonparametric maximum likelihood (NPML) estimate of the population joint 
density or distribution is analogous to the entire collection of each patient's exactly 
known parameter values described above. Whatever its shape or distribution turns out to 
be, it does not matter. The distribution is determined and supported by up to N discrete 
points for the N patients in the population studied. Each point consists of the estimated 



   

 
 

single numbered parameter values, one for each parameter such as Vd, Kel, etc., along 
with an estimate of the associated probability of each of these discrete points.  
 
 The NPML method of Mallet [19], like the parametric NONMEM method, can 
also function with only one sample per patient. In contrast to parametric methods, 
however, no parametric assumptions about the shape of the parameter distributions 
(Gaussian, etc.) need to be made. The distribution is totally flexible, and depends only on 
the actual subject data. The mean, SD, and other common statistical summary parameters 
can easily be obtained later, from the entire discrete distribution, if desired. The only 
assumption made about the shape of the discrete parameter distribution is that the shape, 
whatever it is, is the same for all subjects studied in the population. The method therefore 
can discover, in the population itself, unsuspected subpopulations of subjects such as fast, 
intermediate, and slow metabolizers, without recourse to other descriptors or covariates, 
and without recourse to individual Bayesian posterior parameter estimates [19]. That 
cannot be dons with parametric methods.  
 
 A nonparametric EM (NPEM) method has been developed by Schumitzky 
[20,24]. Like the NPML method, it also can work with only one sample per patient and 
does not have to make any approximating parametric assumptions about the shape of the 
joint probability distribution. It also obtains the entire discrete joint density or distribution 
of points. In contrast to the NPML method, though, the NPEM method obtains a 
continuous (although very spiky) distribution, which then becomes discrete in the limit, 
after an infinite number of iterations. With each iteration, the NPEM method examines 
the patient data and develops a more and more spiky joint distribution. The spikes 
eventually become the approximately N discrete support points for the population 
distribution of parameter values, just as with the NPML method. Both the NPML and the 
NPEM methods converge to essentially the same results [11]. Both the NPML and the 
NPEM methods are proven under suitable hypotheses to have the desirable property of 
mathematical consistency [7-9]. 
 
 Figures 7 through 9 illustrate the ability of the nonparametric approach, as shown 
by the NPEM algorithm, to discover unsuspected subpopulations [20]. The NPML 
method of Mallet has similar capability. Figure 7 shows a carefully constructed simulated 
population of patients. This population is actually a bimodal distribution consisting of 
two subpopulations. Half are "fast" and half are "slow" metabolizers of a drug. They all 
have the same volume of distribution, but two different elimination rate constants. There 
was no correlation between the two parameters. 
 
 From this defined population, twenty simulated patients were sampled at random. 
Figure 8 shows these sampled patients' exactly known parameter values, smoothed and 
graphed as in Figure 7. Figure 8 thus shows the true empirical population parameter 
distribution that NPEM, or any other population modeling method, must now discover. 
 
 These twenty simulated patients each received a simulated single short infusion of 
a drug having one compartment behavior.  Five simulated serum samples were drawn at 
uniformly spaced times. The assay SD was defined as ± 0.4 concentration units. The 



   

 
 

resulting data of serum concentrations over time was presented to the NPEM algorithm 
and computer program [20,24], and also to a parametric population modeling method 
such as NONMEM or IT2B.  
 
 Figure 9 shows the NPEM results, again graphed as in Figure 7. The NPEM 
method clearly discovered the two subpopulations of patients, and closely described the 
shape of the known empirical original population joint distribution shown in Figure 8. 
 
 Figure 10 shows the very different perception of the population when a parametric 
method such as IT2B, the parametric EM, or NONMEM is used to study the population 
shown in Figure 8. The second order density in the figure is the one obtained by a 
parametric method. Note that the mean is actually where there are no subjects at all! 
Parametric methods cannot discover subpopulations without additional aid. They give an 
entirely different impression of the population behavior of the drug. Figure 10 also gives 
an impression of much greater variability within the population than actually existed 
among the two fairly tightly grouped subpopulations, as shown in Figures 8 and 9. 
 
 Figure 11 describes an NPEM population model of Vancomycin made by Hurst et 
al. [25]. It shows the relationship between the volume of distribution (VS, in L/kg) and 
the slope (K7) of the elimination rate constant (hr-1) per unit of creatinine clearance. The 
many discrete spikes are seen in this now unsmoothed plot of this pair of parameters. The 
multiple spikes and their various probabilities provide a much more optimal Bayesian 
prior, permitting “multiple model” design of a dosage regimen to achieve a selected 
target goal with optimal precision [26-31]. 
 
 Some representative results  from the NPEM program are shown below, from the 
same data set as in the IT2B analysis of the 10 patients receiving intramuscular 
Amikacin, 1000 mg every 24 hours for 5 or 6 days [17]. It obtains somewhat similar, but 
more likely, results than IT2B. A total of 10,007 possible points for the overall parameter 
space constituted the grid of available discrete points. 
 
 There are two methods by which the NPEM iterative analysis is accelerated. One 
is that whenever the estimated probability of a grid point in the parameter space is less 
than 10-10, it never returns as an active or significant point again. For this reason, such 
points can be omitted from further analysis. This is why the number of active grid points 
gets less with almost every cycle. 
 
 Another acceleration technique consists of jumping forward 10, 50, or 70 cycles 
into the future, based on the change in probability for each grid point in the present cycle 
from the cycle before. Based on such a change in probability per cycle, the new density is 
found, the subject data is then analyzed, and the new density and its likelihood is found. 
It is more likely than the one before, then further extrapolations are performed to 50 or 70 
cycles in the future. These two acceleration techniques have increased the speed of 
NPEM analysis by 30 to 50 times over previous versions of NPEM.  
 



   

 
 

 The results of this analysis, which converged on Cycle 39, are shown in Table 1, 
and in the figures below. The population mean parameter values for Ka, Ks, and Vs were 
1.53 hr-1, 0.0033 hr-1, and 0.255 L/kg respectively, very similar to the values obtained 
by the IT2B program in the previous paper. The correlation coefficient between Ks and 
Vs was 0.513, similar to 0.671 obtained with the IT2B program. However,  the entropy 
was less, 2.2998 (versus 3.57), and the scaled information was 100.04 % (versus 81.6 %). 
The fact that this information value was greater than 100 % suggests that more grid 
points than the 10,007 used might be considered if the run was to be repeated. Usually the 
more grid points, the better, up to the current maximum of 80,000 on the PC. 
 
Larger and Nonlinear Nonparametric Population Models 
 
 Large and nonlinear nonparametric population modeling software has now been 
implemented on the Cray T3E parallel machine at the San Diego Supercomputer Center 
(SDSC), as a research resource for such work. The user specifies the structural model and 
pathways using PC software now in the USC*PACK collection. The model file, the 
patient data files, and the instructions are sent to the SDSC machine, the analysis is done 
using the desired number of processors, and the results are sent back to the user’s PC, 
where they are examined just as with the NPEM program described herein [18]. For these 
larger models, up to several million grid points may be used to define the parameter 
space. This resource is now available and in use by researchers to make such models. 
 
Weaknesses and Strengths of Nonparametric Methods 
 
 The main weakness of the nonparametric population modeling approach is that 
there is no feature to separate the various sources of variability into their respective 
components – the interindividual variability due to the diversity among the subjects in the 
ways they handle the drug, and the intraindividual variability due to the errors in 
preparing and giving the doses, recording the times at which responses such as serum 
concentrations were obtained, structural model misspecification, changing parameter 
values during the study period, and the assay error itself. Nonparametric methods do not 
resolve these things. That, however, is what the parametric methods do very well, as 
described earlier. 
 
 The strengths of nonparametric approaches are many. First, they have the 
desirable property of mathematical consistency, as described [7-9]. Second, no 
assumptions about the shape of the parameter distributions need to be made. Because of 
this, nonparametric methods can detect, without additional aid from covariates or 
descriptors, previously unsuspected subpopulations of patients, as shown in Figures 7 
through 9. Third, instead of obtaining only single-point parameter estimates, one gets 
multiple estimates, basically one for each subject studied. This is why the nonparametric 
approach is mathematically optimal, as it comes the closest to the ideal of the best that 
can ever be done, namely to obtain the collection of each subject’s exactly known 
parameter values, without bothering with other parametric statistical summaries, though 
these are easily obtained as well. Fourth, the multiple sets of parameter values provide a 
tool to circumvent the separation principle [21], and to predict the precision (weighted 



   

 
 

squared error, for example) with which a candidate dosage regimen will hit a desired 
target serum concentration, or other response, at a desired time. The nonparametric 
population models thus permit “multiple model” design of dosage regimens to optimize a 
specific performance criterion [26-31]. The development of such optimally precise 
dosage regimens, using such nonparametric population models, will be discussed in a 
separate paper. 
 
Other Methods of Population Modeling 
 
 Besides the nonparametric approaches, there are the hierarchical Bayesian, or 
Gibbs sampling approaches of Wakefield et al [32], and the Semi-Nonparametric 
approach of Davidian and Gallant [33]. The first method describes another Bayesian 
strategy of sampling and Bayesian inference. The second method is nonparametric, but 
with certain restraints to smooth the distributions. These approaches are active and 
interesting areas of further investigation at the present time. 
 
Optimal Strategies in Population Modeling 
 
 The optimal strategy for making clinically useful population PK/PD models 
currently appears to be: 
 
Determine the assay error pattern explicitly and obtain the assay error polynomial. 
Use a parametric population modeling program such as IT2B. Obtain gamma. 
Having both of the above, then use a nonparametric population modeling program to 
obtain the entire discrete joint parameter distribution. 
 
This sequence of steps currently appears to make optimal use of the information about the 
assay error, often 1/3 to 1/2 of the overall intraindividual variability, and the raw data 
present in the population studied, to obtain the most probable parameter distribution. It 
appears to provide optimal tools to develop dosage regimens which achieve desired target 
goals with maximum precision. 
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Table 1. Text output of the NPEM program.  Results of the population analysis of 10 
subjects receiving intramuscular Amikacin [17]. 
 
CYCLE NO.   39 
TODAY IS 01/26/98; THE TIME IS 18:58:54 
 
THE TRUE (NUMERICAL) LOG-LIKELIHOOD (USING THE NUMBER 
THEORETIC INTEGRATION SCHEME) OF THE  10 SUBJECT VECTORS, 
GIVEN THE PRIOR DENSITY, IS:  
  -484.380880981189      
 
(Note: compare this value with that of -494.234411 found with the IT2B program). 
 
THE DIFFERENCE BETWEEN THE LIKELIHOOD OF THE   
THE MAXIMUM LIKELIHOOD ESTIMATE OF THE DENSITY AND THE 
LIKELIHOOD OF THIS CYCLE IS LESS THAN THE FOLLOWING NUMBER:  
  0.895388311240986D-002 
 
THE CORRESPONDING FIGURE FOR CYCLE 1 WAS 10374.    . 
SINCE IT IS NOW .89539E-02, THIS ANALYSIS HAS GONE 10374.     
DIVIDED BY 10374.     OR  99.99992 %  OF THE WAY FROM THE  
APRIORI DENSITY TO THE MAXIMUM LIKELIHOOD ESTIMATE OF THE  
JOINT DENSITY. 
 
THE NO. OF ACTIVE GRID POINTS IS NOW           11 
THE INITIAL NO. OF GRID POINTS WAS        10007 
 
THE FOLLOWING VALUES ARE FOR THE UPDATED DENSITY:  
THE SCALED INFO FOR THIS CYCLE IS 100.04 % 
THE ENTROPY FOR THIS CYCLE IS      2.2998 
 
THE MEANS ARE:  
    KA          KS1         VS1     
   1.537113    0.003339    0.255431 
 
THE COV MATRIX IS, IN LOWER TRI FORM:  
    KA          KS1         VS1     
   0.191390 
  -0.000096    0.000000 
   0.000483    0.000017    0.002320 
 
THE STANDARD DEVIATIONS ARE, RESPECTIVELY:  
    KA          KS1         VS1     
   0.437481    0.000681    0.048166 
 
THE PERCENT COEFFICIENTS OF VARIATION ARE, RESP.:  
    KA          KS1         VS1     
  28.461229   20.395316   18.856982 
 
THE CORR. MATRIX IS, IN LOWER TRIANGULAR FORM:  
    KA          KS1         VS1     
   1.000000 
  -0.321800    1.000000 
   0.022907    0.513156    1.000000 
 



   

 
 

THE  3 SETS OF LINES BELOW WILL GIVE ADDITIONAL 
STATISTICS FOR THE VARIABLES. FOR EACH SET: 
 
THE 1ST LINE WILL GIVE THE MODE, THE SKEWNESS, THE KURTOSIS, 
AND THE 2.5 %-TILE VALUE OF THE DISTRIBUTION.  
 
THE 2ND LINE WILL GIVE THE 25, 50, 75, AND 97.5 %-TILE VALUES 
OF THE DISTRIBUTION.  
 
THE 3RD LINE WILL GIVE THREE ADDITIONAL AD-HOC ESTIMATES OF 
THE STANDARD DEVIATION FOR THAT MARGINAL DENSITY.  
 
THE 1ST S.D. ESTIMATE IS THE STANDARD DEVIATION OF A NORMAL 
DISTRIBUTION  HAVING THE SAME [25, 75] %-TILE RANGE AS THAT VARIABLE.  
 
THE 2ND ESTIMATE IS THE STANDARD DEVIATION OF A NORMAL DIST. 
HAVING THE SAME [2.5, 97.5] %-TILE RANGE AS THAT VARIABLE.  
 
THE 3RD ESTIMATE IS THE AVERAGE OF THE FIRST TWO.  
 
THE 4TH VALUE IN THE LINE IS THE % SCALED INFO FOR THAT MARGINAL DENS. 
 
KA     : 
     1.36500000       0.96735293       2.99978849       1.05748507 
     1.18500000       1.37326197       1.90500000       2.54250000 
     0.53372870       0.37883033       0.45627951     100.12102914 
 
KS1    : 
     0.00405000      -0.40887166       1.62823861       0.00212500 
     0.00275000       0.00380000       0.00397895       0.00408909 
     0.00091101       0.00050104       0.00070603     112.25082665 
 
VS1    : 
     0.23400001       0.12716226       1.85668144       0.17100001 
     0.20998806       0.25200001       0.30600001       0.34377668 
     0.07117268       0.04407568       0.05762418     106.38472260 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 

Figures and Legends 
 
 
 
 
 
 

 
 
Figure 1. Showing the values of the Ka, the absorptive rate constant, in the 
population. 
 
 



   

 
 

 
Figure 2. Showing the values of the Ks, the increment of Kel (the elimination rate 
constant, per unit of creatinine clearance), in the population. 
 



   

 
 

 

 
 
 
Figure 3. Showing the values of the Vs, the increment of the apparent volume of 
distribution per unit of body weight, in the population. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 

 
 
Figure 4. Showing the joint values of the Ks and Vs, in the population. 
 



   

 
 

 

 
Figure 5. Showing the predicted values of the serum concentrations, using the 
population median values of Ka, Ks, and Vs, in the population. 
 
 
 



   

 
 

 
Figure 6. Showing the predicted values of the serum concentrations, using the 
individual MAP Bayesian posterior parameter values of Ka, Ks, and Vs, based on using 
the population median parameter values and their SD's as the MAP Bayesian prior, in the 
population. 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 

True Density

 
Figure 7. The true pharmacokinetic population joint density from which the 20 samples 
were taken. If the bottom (or 0.0,0.0) corner is "Home plate", then the axis toward third 
base is that of the volume of distribution V, while that toward first base is the elimination 
rate constant K. Note that there are actually two subpopulations, with two clusters of 
distributions for K.  V and K are uncorrelated. 
 
 
 



   

 
 

 
Smoothed  Sample  Density 

                                    

   
   

   
   

   
   

   
   

   
   

   
 

 
Figure 8. Graph, smoothed as in Figure 7,  of the actual parameter values in the twenty 
sampled patients. The axes are as in Figure 7.  This is the distribution that NPEM should 
discover.  
 
 



   

 
 

 
Smoothed  Estimared  Density -- 5 Levels/Subject

 
 
Figure 9. Smoothed estimated population joint density obtained with NPEM, using all 
five serum levels. Axes as in Figure 7. Compare this figure with Figure 8. 
 
 



   

 
 

 
Second  Order  Density

 
Figure 10. Plot of the population density (the second order density) as perceived by a 
theoretically optimal parametric method. Axes as in Figure 7. Compare this figure with 
Figures 8 and 9. The two subpopulations are not discovered here. The true parameter 
distributions are perceived with great error by this method. 
 
 
 



   

 
 

 
 
 
 

 
Figure 11. Population joint density of Vancomycin as studied by Hurst, et al. VS = 
volume of distribution of the central (serum) compartment, in L/kg. K7 = increment of 
elimination constant per unit of creatinine clearance. 
 
 



   

 
 

 

 
Figure 12. NPEM marginal distribution for the rate constant Ka. Note that there are 
10 major points here, each with its own estimated probability. Another quite minor point 
is also shown. In this plot, there are 100 divisions in which such points can exist. 
 



   

 
 

 
 
Figure 13. NPEM marginal distribution for the rate constant Ks1, the increment of 
elimination rate constant per unit of creatinine clearance. Note that there are 9 major 
points here, each with its own estimated probability. One point corresponds to 
approximately two subjects. Two points correspond to approximately two subjects each. 
In this plot, there are 100 divisions in which points can exist. 
 



   

 
 

 
 
 
 
 

 
Figure 14. NPEM marginal distribution for the apparent volume of distribution per 
unit of body weight, Vs1. Note that there are 10 major points here, each with its own 
estimated probability. In this plot, there are 100 divisions in which points can exist. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 

 
 
 
 
 
Figure 15. NPEM joint marginal distribution for the parameters Ks1, the increment of 
elimination rate constant per unit of creatinine clearance, and Vs1, the apparent volume 
of distribution per unit of body weight. There are actually 10 major points here, each with 
its own estimated probability, but some are difficult to see. One can check this by looking 
at Figures 13 and 14, which show each single marginal density in better detail.  In this 
frequency plot, there are 50 x 50 divisions in which points can exist. 
 
 
 
 
 
 
 



   

 
 

 
 
 
 
Figure 16. Scatterplot of serum concentrations predicted using the population median 
parameter values. Predicted concentrations are on the horizontal axis, measured ones on 
the vertical. 
 
 
 



   

 
 

 
 
 
 

 
 
 
 
Figure 17. Scatterplot of serum concentrations predicted using the median values of 
the Bayesian posterior parameter density for each subject. Predicted concentrations are on 
the horizontal axis, measured ones on the vertical. 
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Abstract 
 
 Background: There is a significant need to estimate creatinine clearance easily in 
acutely ill patients with unstable renal function, who have changing serum creatinine 
values and who need careful individualization of drug dosage, without the difficulty of 
having to collect a traditional timed urine specimen. Method: The daily change in the 
total amount of creatinine is the difference between its production and excretion. 
Production is estimated based on studies by others employing many carefully timed urine 
specimens. It is related both to age and to the degree of chronic uremia. Urinary excretion 
of creatinine is equal to creatinine clearance times the average of a pair of timed serum 
creatinine concentrations, times the duration of the collection (usually 24 hours). Results: 
Good correlation was found between measured creatinine clearance and the estimated 
values, with precision essentially equal to that of the traditional method. Conclusions: In 
this way, one can estimate the creatinine clearance which makes serum creatinine change 
from an initial concentration at one stated time to another one at another stated time, for a 
patient of a stated age, gender, height, and weight. This method has been incorporated 
into software to perform the calculations easily and rapidly, and has been integrated into 
the USC*PACK PC programs for planning, monitoring, and adjusting individualized 
dosage regimens of drugs. 
 
Introduction 
 
 Especially  for purposes of providing guidance for dosage with renally excreted 
drugs that are potentially toxic, estimation of creatinine clearance (CCr) has long been a 
problem in sick and unstable patients, largely because of difficulty in collecting a 



   

 
 

carefully timed urine specimen in unstable and critically ill patients. A number of years 
ago, several methods were developed to estimate CCr without a urine specimen [1-4]. 
However, those approaches only considered the situation where serum creatinine was 
stable. To overcome this problem, a dynamic approach to the problem was developed. 
 
A Model of Creatinine Kinetics 
 
 The dynamic model [5] first used the relationship that the daily change in the total 
amount of creatinine in a patient's body is the difference between creatinine production 
(P) and excretion (E) during that day. This was described by 
 
 V(C2-C1) = P - E      (1) 
 
where V is the apparent volume of distribution of serum creatinine (in hundreds of ml), 
C1 and C2 are the first and second serum creatinine values taken typically one day apart 
(in mg/dL), and P and E are production and excretion in mg. Since V is somewhat less 
than total body water, it was empirically approximated as 40 % of the patient's total body 
weight (in hundreds of grams).  
 
Calculation of Daily Creatinine Production 
 
The Effect of Age.  
 
 The data of Siersbaek-Nielsen et al. [2] of the effect of age upon the carefully 
measured 24 hour urinary creatinine excretion, in hospitalized patients who were clini-
cally free of any renal disease, was shown to be described by 
 
 E = 29.305 - 0.203A      (2) 
 
where E is the measured urinary creatinine excretion (in mg/kg/day) and A is the age (in 
years). Since the patients were all quite stable, and in a steady state, 
 
 E = P.        (3) 
 
 In this way, one can use this carefully measured data of excretion to estimate 
daily creatinine production. This estimate can be further refined as described below. It 
should also be noted that in these patients, the average serum creatinine their patients was 
1.1 mg/dL [2]. This will be useful below. 
 
 
The Effect of Degree of Uremia.   
 
 It was shown by Goldman [6] that uremic patients also have a decreased excretion 
(and therefore production) of creatinine. Using data from that report, creatinine 
production (P, in mg /day for an average size patient) is related to serum creatinine (C, in 
mg/dL) by 



   

 
 

 
 P = 1344.4 - 43.76C      (4) 
 
 Based on this, one can now adjust the first estimate of creatinine production for 
age as given in Eqn (2) to the average value (Cavg) of the patient's C1 and C2 by the ratio 
R, where  
 
 P1 = 1344.4 - 43.76 x Cavg,     (5) 
and 
 P2 = 1344.4 - 43.76 x 1.1,     (6) 
 
where 1.1 = the average serum creatinine in Siersbaek-Nielsen’s patients, in each age 
group, as described above. Then, 
 
 R = P1 / P2, and      (7) 
 
 the adjusted P, or Padj = P x R     (8) 
 
 In our work, the best empirical correlation between measured and estimated CCr 
was finally found by taking 95% of Padj. In this way, daily creatinine production can be 
estimated for men, based on many careful measurements of 24 hour urinary creatinine 
excretion, and adjusted to the patient’s age, weight, and degree of uremia [6]. In further 
adjustments, 90% of the value for men was then taken if the patient was female, and, 
finally, 85% of that was taken for both men and women. This gave the best correlations 
between estimated and measured CCr when renal function was severely impaired.  
 
However, the 15% rediction led to underestimations of about 15 % when renal function 
was close to normal [5]. Because of this, we have now modified the original algorithm to 
apply the above 15 % reduction only for patients who have severely impaired renal 
function and who are on hemodialysis or peritoneal dialysis. Removal of the 15 % 
restriction results in the improved estimates shown in Figure 1, which are less biased than 
those found with the previous procedure [5]. 
 
 Further, if a patient’s muscle mass is clearly above or below normal, as may be 
the case with very muscular patients, or conversely in cirrhotic patients or those with 
AIDS, for example, one can simply make a rough clinical estimate of the patient’s body 
(muscle) mass as a percent of normal, if desired, to make a further final adjustment of P. 
There are no specific rules for this – only that one might make a rough clinical estimate 
based on findings on physical examination. The adjustment for body mass was not done 
either in the original study  [5] or in the present one. However, it provides an additional 
degree of freedom to protect against overestimation of CCr in cachectic patients, or 
underestimation in very muscular patients. The range currently permitted in these 
estimates is from 70 to 130 percent of normal. 
 
Calculation of Daily Creatinine Excretion  



   

 
 

 
 In the traditional calculation of creatinine clearance, 
 
 C = UV/P,        (9) 
 
 where U is the urinary creatinine concentration, V is the 24 hour urine volume, P 
is the plasma or serum creatinine concentration, and C is creatinine clearance. This can be 
rearranged to show that what comes out of the body is equal to what was cleared from the 
body. Thus 
 
  PC = UV.        (10) 
 
 Because they are numerically equal, PC can therefore be substituted for UV, the 
measured 24 hour excretion. Thus  
 
 E = UV = PC, and  
 
 E = PC = Cavg x (CCr/100) x 1440,     (11) 
 
where E is expressed in mg/day, Cavg is in mg/dL, CCr is in ml/min, and 1440 represents 
the number of minutes in one day. 
 
 
The Final Overall Algorithm 
 
 The final overall algorithm to calculate creatinine clearance from unstable serum 
creatinine values, and without requiring a urine specimen,  may now be written as 
 
 0.4W(C2 - C1) = Padj - Cavg x CCr/100 x 1440   (12) 
 
 Where W is body weight in hundreds of grams, and C1 and C2 are serum 
creatinine in grams/100 ml. One can simply rearrange the equation and solve it for CCr. 
After this, the raw creatinine clearance above can be corrected for body surface area to 
that of an average patient having a body surface area of 1.73 square meters.  
 
The above equation thus represents a dynamic model of creatinine kinetics, and permits 
estimation of CCr from routine clinical data of age, gender, height, weight, and either a 
pair of unstable and changing serum creatinine levels or a single stable serum creatinine, 
all without having to collect a urine specimen, which is an extremely difficult and 
unreliable procedure in all but research situations, especially for acutely ill patients in 
intensive care units. 
 
Comparison of Estimated with Measured Creatinine Clearance 
 



   

 
 

 In a first set of 128 observations on 15 patients in the renal transplant unit of the 
Los Angeles County – USC Medical Center [5], the algorithm was shown to have an 
accuracy essentially equal to that of Jadrny [1]. In an additional set of 250 observations 
on a group of 14 patients who had just undergone renal transplantation, the standard error 
of the estimate (±14.9 ml/min) was slightly more precise that the equations of Jadrny 
(±16.6 ml/min), with an overall scatter of about ± 25% between the estimated and the 
measured values, as shown in Figure 1. 
 
 As a control, one must consider the traditional determination of CCr, and the 
errors present in its estimation. If one can measure a serum creatinine level with a coeffi-
cient of variation of 5%, as is the case with many common autoanalyzer methods, and if 
one measures urinary creatinine concentrations with a coefficient of variation of 8%, as is 
also common, then if one can collect a 24 hour urine specimen with a coefficient of 
variation of 5%, these errors will propagate so that the resulting value of the traditionally 
measured creatinine clearance will have a coefficient of variation of 11%. The resulting 
95% confidence limit is therefore ± 22%. This error closely corresponds to the scatter 
found between the estimated and measured CCr values shown in Figure 1. Because of 
this, it is likely that this method of estimating CCr has a precision about equal to the 
classical measurement of it. It addition, it is practical in clinical situations. It is also 
probably better at sensing changes in renal function in response to sudden changes in 
serum creatinine than are the more simple formulas of Jadrny [1], Jelliffe [3], or 
Cockcroft and Gault [4], which were designed only for use when serum creatinine is 
stable, as serum creatinine usually requires about one week to stabilize following a 
change in renal function. 
 
The Question of Ideal Body Weight 
 
 It would seem logical to correct the estimate of creatinine production and muscle 
mass by using some estimate of ideal body weight. However, in anecdotal examinations 
of this question in several morbidly obese patients, somewhat more precise estimates of 
CCr were actually obtained using total body weight than with various estimates of ideal 
body weight. Because of this, we have continued to use total body weight in preference to 
an estimate of ideal body weight. It would be interesting to study this question further in 
another study. 
 
Conclusion 
 
 The method described here for estimating CCr in acutely ill and unstable patients 
provides a useful tool for evaluation of a patient's renal function in a practical manner 
when serum creatinine concentrations are unstable, changing from day to day. It also 
permits linkage of this information about rapidly changing renal function in patients to 
track the pharmacokinetic and dynamic behavior of drugs in such patients, thus 
permitting improved understanding of drug behavior and improved individualization of 
drug dosage regimens in such patients. 
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Figure legend 
 
Figure 1. Comparison of Estimated CCr as described herein, with measured CCr. 



   

 
 

 
 
 

 
 
 
Figure 1. Comparison of Estimated CCr as described herein, with measured CCr. 
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ABSTRACT 
 
 Multiple model (MM) design and stochastic control of dosage regimens permits 
essentially full use of all the information contained in either a Bayesian prior 
nonparametric EM (NPEM) population pharmacokinetic model or in an MM Bayesian 
posterior updated parameter set, to achieve and maintain selected therapeutic goals with 
optimal precision (least predicted weighted squared error). The regimens are visibly more 
precise in the achievement of desired target goals than are current methods using mean or 
median population parameter values. Bayesian feedback has now also been incorporated 
into the MM software. An evaluation of MM dosage design using an NPEM population 
model versus dosage design based on conventional mean population parameter values is 
presented, using a population model of Vancomycin. Further feedback control was also 
evaluated, incorporating realistic simulated uncertainties in the clinical environment such 
as those in the preparation and administration of doses. 
 
INTRODUCTION 
 
 Previous work from this laboratory has shown the utility of nonparametric 
population pharmacokinetic modeling, resulting in a discrete number of support points 
for the entire population joint probability density function, compared to that using 
conventional single point parameter estimates such as means and variances, as are 
obtained from parametric population models [1]. These multiple discrete support points 
become multiple contending population parameter estimates, instead of the conventional 
single point summary parameter estimates, to use in planing the initial dosage regimen 
for a new patient who appears to belong to that population. 
 
 Figure 1 shows an example of the multiple support points for the joint probability 
density for a population pharmacokinetic model of Vancomycin. There are a total of 28 
such support points, derived from the population of 30 patients studied. Each support 
point has a discrete value for each of the 4 pharmacokinetic parameter values - the central 
compartment apparent volume of distribution (Vd),  the increment of elimination rate 
constant per unit of creatinine clearance (Kslope), and the rate constants from the central 
to the peripheral compartment (Kcp) and back from it (Kpc). Each discrete support point 
is a collection of the estimated values for each parameter, along with an estimate of the 
probability for that parameter set. The collection of all such points (28 in the present 
case) constitutes the nonparametric estimate of the discrete joint probability density for 
the population. It is made without using any parametric assumptions (normal, lognormal, 
etc.) about the overall shape of that distribution. The nonparametric population model is 



   

 
 

thus represented not simply by a single best parameter estimate such as mean or standard 
deviation (SD), but rather by a matrix of rows and columns. The 5 columns here 
represent the discrete values of the 4 parameters Vd, Kslope, Kcp and Kpc, and of the 
probability associated with that set of parameter values which constitute each support 
point. 
 
 In the present model, there were 28 rows of 5 columns each. The 28 rows 
provided 28 possible versions of the next patient for whom the population model might 
serve as the Bayesian prior for the optimal design of the initial dosage regimen to achieve 
a clinically selected individualized target goal. The selection of such individualized target 
goals has been discussed in another paper in this collection. These multiple discrete 
support points are shown graphically in Figure 1, for the parameters of Vd and Kslope. A 
similar 3D plot can be made for Kcp and Kpc, and for any desired pair of parameters. 
  
 This report further describes a comparison of the results achieved using the 
nonparametric population model versus results obtained using the traditional method 
based on the mean Vancomycin population parameter values, with respect to the ability 
of each regimen to achieve and maintain the chosen serum level goal(s) precisely. Note 
that the MM regimen is specifically computed to minimize the expected value of the total 
weighted squared error in the achievement of the goal(s), while the traditional regimen, 
using single point parameter estimates, cannot do this. 
 
 The MM software has now been extended to incorporate feedback as well. This 
report describes a realistic simulation of vancomycin therapy in which common errors are 
present in the preparation of the doses and in their timing, as well as in the measurement 
of the serum levels. These mean clinical error values are also known to the MM 
controller for designing the dosage regimen with appropriate skepticism. 
 
 The natural link between nonparametric population modeling and optimal 
(maximally precise) drug therapy is MM dosage design. In contrast, the limiting factor in 
parametric population modeling is that there is only one single possible value for each 
parameter. Using parametric population models, after the therapeutic goal is clinically 
selected, there is only one regimen to compute, that which achieves the target goal for the 
single chosen version or model of the patient, using the mean, median, or modal 
parameter values, exactly. There is no opportunity to consider the fact that the patient 
actually might not have that exact model of the behavior of the drug. 
 
 In contrast, when one uses nonparametric population models as the Bayesian prior 
for designing the initial dosage regimen, there are many (multiple) possible models or 
versions of the patient which one can use, one for each support point in the discrete 
probability joint density or distribution. Each support point has its own probability of 
representing the patient. A candidate regimen can be given to each support point, with its 
own individual parameter values and the probability associated with that point. Multiple 
future serum concentrations can be predicted, using the parameter values for each support 
point, and its probability. In this way, an entire family of serum concentrations can be 
predicted into the future. At the time for which the chosen goal is desired, it can be 



   

 
 

compared with the many serum concentrations predicted to occur at that time (one from 
each support point), and the weighted squared error with which the goal fails to be 
achieved can be computed. Other candidate regimens can also be examined.  
 
 The optimal regimen is the one which specifically minimizes the weighted 
squared error in the achievement of the goal. In this way, the MM regimen has the new 
feature of being specifically designed to achieve target goal(s) with the greatest possible 
precision for any set of population raw data (doses and serum levels) available up to that 
time, because it considers all the many possible versions or models of the patient, using 
the NPEM population model, and the many different predicted serum concentrations, one 
from each support point, as shown below in Figures 2 and 3, instead of making only one 
prediction using a population model having only the single most likely value for each 
parameter [2]. 
 
 Later on, as data of serum concentrations become available for feedback, Bayes' 
theorem is used to appropriately increase the probability of those support points or 
models that predicted the patient’s measured levels well, and to decrease the probability 
of those that did not. The revised Bayesian posterior joint distribution, usually consisting 
of fewer significant support points, is then used to reconstruct the family of serum level 
trajectories taking place during the past [3,4].  
 
 The bandwidth or diversity of these predicted trajectories reflects the confidence 
with which the joint distribution is known, and the degree of learning about the patient 
provided by feedback from any serum levels obtained. As always, the plot based on the 
past trajectories of serum levels is compared with the clinical behavior of the patient, the 
patient's sensitivity to the serum drug concentrations is reassessed, the target goal is re-
evaluated, and a new regimen is again computed to achieve the goal, always with the 
greatest possible precision for all the information in the population model and the 
individual patient data which is available up to that  time. 
 
THE POPULATION PHARMACOKINETIC MODEL OF VANCOMYCIN  
 
 This 2 compartment model [5] was developed using the NPEM2 program in the 
USC*PACK PC clinical collection. Its parameters were Vc, the apparent volume of the 
central (serum level) compartment, in L/kg; Kcp, the rate constant from the central to the 
peripheral compartment; Kpc, the rate constant in the reverse direction, and Kslope, the 
increment of the elimination rate constant (Kel) for each unit of creatinine clearance 
(CCr), all in hr-1. A nonrenal component, Kint, was fixed at 0.002043 hr-1. Thus the 
overall Kel = Kint + (Kslope x CCr).  
 
 Data of 30 patients receiving Vancomycin were analyzed. The file containing the 
population joint probability density values (the 28 rows of parameter values and their 
probabilities) was read into the program for MM design of dosage regimens [3,4]. Table 
1 shows the summary values of the various population parameters. 
 



   

 
 

 There were 28 support points for the population joint parameters. Each support 
point had a value for each parameter, representing a candidate model for the patient, and 
a computed probability. The graphical plot of the values for Vc and Kslope is shown in 
Figure 1. 
 
THE SIMULATED CLINICAL SCENARIO FOR INITIAL THERAPY (DAY 1) 
 
 A therapeutic goal of a stable serum vancomycin concentration of 15 ug/ml, to be 
achieved by continuous series of continuous stepwise intravenous infusions at various 
rates, was chosen for this simulated study. While it is common to give vancomycin by 
intermittent IV infusion and to select a trough goal of 10 ug/ml, with peaks about 35 to 45 
ug/ml, the stable goal of 15 ug/ml was selected here as a reasonable alternative goal, to be 
achieved at the end of an initial 2 hr loading infusion, again at the end of 2 subsequent 2 
hr infusions during the distribution phase of this 2-compartment drug, and at the end of 3 
further infusions of 6 hrs each, to complete Day 1 of therapy. Thus the vancomycin was 
given by continuous IV in 3 infusion steps of 2 hrs each, followed by 3 steps of 6 hrs 
each, to achieve the goal of 15 ug/ml at the end of each infusion step during Day 1 of 
therapy. 
 
THE TWO INITIAL REGIMENS COMPARED 
 
 Two types of dosage regimen to achieve a target goal of 15 ug/ml were developed 
and compared. One, the traditional regimen, was developed using the single point mean 
population NPEM parameter values shown in Table 1. It was designed to achieve the 
goal exactly, as there was only one exact value for each parameter to consider. No 
consideration of any therapeutic error is possible with this current widely used method of 
dosage design. 
 
 The other regimen, the MM regimen, used all the 28 support points of the NPEM 
Vancomycin population model in designing the regimen. It therefore took into account all 
these different models of the patient, each with its probability of "being" the new patient, 
to receive the initial regimen. The MM dosage designer thus faces the fact that what may 
be a correct regimen for a particular support point set of parameter values (such as the 
means), will inevitably be incorrect for all other parameter values in the population, and 
develops the regimen which minimizes the overall error in the failure to achieve the 
desired target goal. It thus does a simulated clinical trial in which the most precise dosage 
regimen is found. 
 
 If the regimen based on the mean parameter values is given to each of the 28 
support points or "multiple models" of the patient, each model will have its own 
predicted trajectory of serum levels over time, and each of these will contribute its 
increment of  weighted squared error in the overall failure of the regimen to achieve the 
target goal. 
 
 Figure 2 shows the multiple predicted serum concentration trajectories when the 
regimen based on the population mean parameter values was given to all the individual  



   

 
 

28 support points or models of the patient that generated those mean values. Many 
predicted serum concentrations were very high, as the distribution of the Vd was not at all 
Gaussian, but was skewed to the right. As shown in Table 1, the mean Vd was actually 
close to the 75th percentile. Due to all the variability in the various combinations of 
population parameter values, the variability in the serum level response was great. 
  
 In contrast, the MM regimen was specifically designed to minimize the expected 
value of the total weighted squared error in achievement of the goal, taking into account 
all the individual predicted 28 MM trajectories, each of which was weighted by its 
probability. Figure 3 shows the results achieved using the MM regimen. The trajectories 
are much less variable, and are much better centered about the chosen goal of 15 ug/ml.  
 
INCORPORATION OF CLINICAL ENVIRONMENTAL NOISE TERMS AND 
MM SERUM LEVEL FEEDBACK 
 
 The MM therapeutic scenario has now been carried further, incorporating serum 
level feedback, with Bayesian posterior updating of the probabilities (but not the 
parameter values) of the 28 population model support points.  
 
 The capabilities of this control strategy were evaluated by a Monte Carlo 
simulation of a realistic clinical scenario which also contained stated sources of simulated 
clinical environmental errors in the preparation of the doses and the timing of their 
administration, as well as in the laboratory assay error. Each ideal computed dose was 
assumed to be prepared with a random Gaussian error having a standard deviation (SD) 
of 10% of the dose. That erroneous dose was then what was "given". Further, the times of 
switching from one IV infusion rate to another were assumed to have a random Gaussian 
error having a SD of 6 min for the start of the first 2 hr infusion step, and of 12 min for 
the switch to each of the other infusion steps. 
 
 Three days of such simulated therapy were analyzed. Serum levels were assumed 
to be drawn exactly at 2, 4, and 8 hours into the regimen for each day. Their assay error 
was introduced as a random Gaussian error having the SD of the Abbott TDx assay used 
in our laboratory to make the original population model. This heteroschedastic random 
Gaussian assay error (see [6]) had an SD represented by the polynomial 
 
SD = 0.30752 + 0.024864C + 0.00027637C2,  
 
where C is the true serum level of a simulated "true patient" (randomly chosen as support 
point number 15 of the 28 in the model set) "drawn" at the various sampled times. 
 
 Thus two things were going on in this scenario. On the one hand, the MM 
stochastic controller was designing the MM stepwise infusion regimen to most precisely 
achieve the goal of 15 ug/ml at 2, 4, 6, 12, 18, and 24 hours during the first day of 
therapy. On the other hand, this ideal dosage regimen was being corrupted by the Monte 
Carlo simulator, incorporating the clinical errors stated above. The MM controller also 
takes these stated errors into account in designing the dosage regimen. 



   

 
 

 
 Figure 4 shows the computed 99% most probable trajectories of the serum levels 
for Day 1 of MM therapy, before any feedback. The variability is close to that shown in 
Figure 3. The solid lines represent the 95% most probable trajectories, and the dotted 
lines represent the next most probable 4%. This represents the clinical situation as much 
as it is knowable to the clinician until the serum level results come back. 
 
 Further, in a way that is never knowable clinically, the time course of the 
computed serum concentrations for a simulated "true patient" (here represented by 
support point #15, chosen randomly), is shown in Figure 5. Clearly there was visible 
error in the initial achievement of the therapeutic goals, as the true patient had parameter 
values different from those of the population means.  
 
 The true patient's serum level results at 2, 4, and 8 hrs into the regimen, corrupted 
by their assay errors, were made available at the end of Day 1. Based on these results, 
Bayesian updating of the multiple models was done, revising their probabilities, given the 
"observed" serum concentration data, using Bayes theorem. Instead of the 28 original 
support points, only four support points now had significant probabilities. The rest had 
negligible ones. 
 
 The simulated events of therapy days 2 and 3 repeated the same format as in Day 
1. The goals again were 15 ug/ml, to be achieved at 2, 4, 6, 12, 18, and 24 hrs into each 
day's regimen. The same continuous infusion format of 3 steps of 2 hrs, followed by 3 
steps of 6 hrs was used. Serum levels were again "obtained" at 2, 4, and 8 hrs into each 
day, with results available at the end of each day for revising the model probabilities and 
planning the next day's regimen. 
 
 Based on this, the regimen for day 2 was then computed and (with the corrupting 
clinical environmental errors) was given. Figure 6 shows the 99% most probable serum 
level trajectories predicted for day 2 (horizon #2). As shown by the much narrower 
bandwidth of predicted serum concentrations for Day 2, one has learned a lot about the 
patient from the first set of serum levels. In addition, the response of the "true patient" 
was predicted to be quite precisely controlled for Day 2, as shown in Figure 7. 
 
 At the end of Day 2, when the 3 new serum levels came back during Day 2, the 
model probabilities were further updated. Only three significant support points now were 
present. These revised probabilities were used to plan the regimen for Day 3, which was 
computed and given. Figure 8 shows the 99% most probable predicted serum level 
trajectories. The controller (and thus the clinician) thinks it is doing just great. However, 
life is never quite so kind. Because of the stated errors in the clinical environment, the 
response of the "true patient" departed slightly from the predicted response on this day, as 
shown in Figure 9.. 
 
 Finally, after the three new simulated measured serum levels came back from Day 
3, the "true patient" was found. Furthermore, in other preliminary (as yet unpublished) 



   

 
 

studies in which the true patient was not a member of the original model set, the MM 
controller was also able to perform its MM adaptive control function quite acceptably. 
 
DISCUSSION AND CONCLUSION 
 
 The MM dosage designer developed regimens which were the result of many 
simulated clinical trials with each virtual subject who was studied to make the population 
model used as the Bayesian prior. Its dosage regimen achieved the therapeutic goals with 
visibly greater precision than did the regimen based on traditional single point mean 
population pharmacokinetic parameter values. Further, the MM controller appeared to 
learn well from the feedback provided by the serum levels, and to achieve the target goals 
for the simulated patient with increasing precision as therapy progressed from one 
feedback cycle (therapy day, or event horizon) to another. The MM regimen thus permits 
visibly greater precision in achievement of desired therapeutic target goals compared to 
conventional control based on single mean pharmacokinetic parameter values, which is 
employed today by all maximum aposteriori probability (MAP) Bayesian software in 
current wide use. A user - friendly clinical version of the MM program is now in 
development. 
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TABLE 1. SUMMARY of VANCOMYCIN POPULATION PARAMETER VALUES* 
 
Attribute           Vc (L/kg)    Kcp#    Kpc#  Kslope# 
MEAN   0.2278  2.2532  0.8147  0.0063 
 
MODE   0.1275  2.425  0.8775  0.0051 
 
25th %ile  0.0946  1.0832  0.5487  0.0023 
 
(MEDIAN)  0.1427  2.1594  0.8743  0.0051 
 
75th %ile  0.2348  3.3032  1.0467  0.0105 
*  Kint was held fixed at 0.002043 hr-1 throughout. 
#  all in units of hr-1 



   

 
 

 

FIGURES AND FIGURE LEGENDS 
 
 
 
 

 
 
 
 
Figure 1. 3D plot of a Vancomycin population  marginal joint density. Vs = slope of 
volume with respect to body weight. K7 = slope of Kel with respect to creatinine 
clearance. The other parameters Kcp and Kpc, which describe exchange out to and back 
from the peripheral (nonserum) compartment, are not shown here, but can be similarly 
displayed, as can any selected pair of parameters. 
 
 
 



   

 
 

 
 
 
Figure 2.  Serum concentration trajectories predicted when the regimen to control the 
mean value of each parameter in the Vancomycin nonparametric population model is 
given to all many support points which constitute the model. The horizontal dashed line 
is the 15 ug/ml therapeutic goal. Great diversity in predicted serum concentrations is 
seen, due to the diversity of patients in the population model. 
 
 
 
 



   

 
 

 
 
 
 
Figure 3. Serum level trajectories predicted when the MM regimen is given to all support 
points in the nonparametric population model. The horizontal dashed line is the 15 ug/ml 
therapeutic goal. Much less diversity in predicted serum concentrations is seen, due to the 
fact that the MM regimen is specifically designed to achieve the desired goal with the 
least possible weighted squared error over the course of that day. 
 
 
 



   

 
 

 
 
 
 
Figure 4. Trajectories of the 99% most probable predicted serum level responses during 
Day 1 of therapy, before feedback. Solid lines: the 95% most probable trajectories. 
Dotted lines: the next most likely 4%, for the total of 99%. The horizontal dashed line is 
the 15 ug/ml therapeutic goal.  
 



   

 
 

 
 
 
 
Figure 5. Serum level response of the "true patient" during therapy day 1 (horizon 1). 
Horizontal dashed line: the desired goal of 15 ug/ml at 2, 4, 6, 12,18, and 24 hrs. Solid 
line: true serum concentrations in the simulated true patient. 
 
 
 



   

 
 

 
 
 
 
 
Figure 6. The 99% most probable serum level trajectories predicted for Day 2 of therapy 
(event horizon #2). The horizontal dashed line is the 15 ug/ml therapeutic goal.  
 
 
 



   

 
 

 
 
 
 
 
Figure 7. Serum level responses of the "true patient" during therapy day (event horizon) 
#2. The horizontal dashed line is the 15 ug/ml therapeutic goal.  
 
 
 
 
 



   

 
 

 
 
 
 
 
Figure 8. The 99% most probable serum level trajectories predicted for Day 3 of therapy 
(event horizon #3). The horizontal dashed line is the 15 ug/ml therapeutic goal.  
 
 



   

 
 

 
 
 
 
 
Figure 9. Response of the "true patient" during day (event horizon) #3. The horizontal 
dashed line is the 15 ug/ml therapeutic goal.  
 
 
 
 



   

 
 

  



   

 
 

MULTIPLE MODEL (MM) DOSAGE DESIGN: ACHIEVING TARGET GOALS 
WITH MAXIMUM PRECISION. 
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ABSTRACT 
 
 Most dosage regimens based on parametric population models as the Bayesian 
prior, including most Bayesian approaches of adaptive feedback control, use a single 
parameter value to describe the central tendency of each parameter distribution. Because 
of this, when a target goal is selected, the regimen to achieve it assumes that it does so 
exactly. However, the separation or heuristic certainty equivalence principle states that 
whenever a system is controlled, first, by obtaining single point parameter values, and 
then by using those values to control the system, the control achieved is usually 
suboptimal. In contrast, Multiple Model dosage design is based on nonparametric 
population models which have essentially one set of parameter values for each subject in 
the population. With this more likely Bayesian prior, multiple predictions are possible. 
Using these nonparametric models, one can compute the dosage regimen which 
specifically minimizes the predicted weighted squared error with which a desired target 
goal can be achieved. Other cost functions can also be employed. 
 As Bayesian feedback from serum concentrations is obtained, each set of 
parameter values in the nonparametric prior has its probability recomputed. Using this 
individualized nonparametric Bayesian posterior joint density, the new regimen to 
achieve the target with maximum precision is computed. In addition, a new Interacting 
Multiple Model (IMM) sequential Bayesian method has been developed to estimate such 
posterior densities when parameter values have been changing, as in unstable patients, 
during the time of analysis. A clinical software package implementing these approaches 
is in development. 
 
INTRODUCTION: SET INDIVIDUALIZED TARGET GOALS FOR EACH 
PATIENT 
 
The concept of a therapeutic range of serum drug concentrations is a generalization.  It is 
an overall range in which most patients, but certainly not all, do well.  One must always 
check each individual patient to see if he or she is doing not only well, but optimally, 
whatever the serum concentration is found to be. Figure 1 shows the usual means by 
which such therapeutic ranges are obtained. First, there is an increased incidence of 
therapeutic effects with increasing serum drug concentrations.  Later on the incidence of 
toxic effects becomes significant.  The eye is drawn to the upward bends in each line, and 
the classification of the therapeutic range is developed.  However, this procedure does not 
deal with the need to develop a gentle dosage regimen for a patient who needs only a 
gentle touch, and a more aggressive one for a patient who really needs his dosage 
“pushed”. 
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Figure 1.  General relationships usually found between serum drug concentrations and the incidence of therapeutic and toxic effects. 
The eye is drawn to the bends in the curves, and the therapeutic range is classified in relation to these bends. This qualitative 
procedure of classification discards the important quantitative relationship of the incidence of toxic effects versus serum 
concentration. 
 
Another approach is one in which the clinician evaluates each patient's individual clinical 
need for the drug in question, and selects an estimated risk of toxicity which is felt on 
clinical grounds to be justified by the patient’s need. One then selects a target serum 
concentration goal to be achieved.  One does not want the patient to run any greater risk 
of toxicity than is justified by the patient’s clinical need.  Within that constraint, however, 
one wants to give the patient as much drug as possible, to get the maximum benefit. This 
approach provides the rationale for selecting a specific target serum concentration goal, 
rather than a wider window, and then to attempt to achieve that target goal with the 
greatest possible precision, just as if one were shooting at any other target.  
Individualized drug therapy therefore begins by setting such specific individualized target 
goals. Without specific target goals, there can be no individualized precise drug therapy.  
The task of the clinician is to select, and then to hit, the desired target goal as precisely as 
possible. As the initial regimen is given, the clinical task is to observe the patient’s 
response, and to reevaluate whether the target goal was hit precisely or not, was correctly 
chosen or not, or if it should be changed and a new dosage regimen developed. 
 
THE NEED FOR MODELS 
 
 Pharmacokinetic and dynamic models provide the means to store past experience 
with the behavior of drugs, and the tool to apply that past experience to the care of future 
patients. This experience is usually stored in the form of a population pharmacokinetic 
model which is used as the Bayesian prior to design the initial regimen for the next 
patient who appears to belong to that population. The dosage regimen to achieve the 
target goal is computed and given. The patient is then monitored both clinically and by 
measuring serum concentrations. The serum concentrations are used not only to note if 
they are within a therapeutic range, but also to make a specific model of the behavior of 
the drug in that individual patient. One can see what the probable serum concentrations 
were at all other times when they where not measured. One can also see the computed 
concentrations of drugs in a peripheral nonserum compartment or in various effect 
compartments. These cannot be seen or inferred at all without such models. By 



   

 
 

comparing the clinical behavior of the patient with the behavior of the patient’s model, 
one can evaluate the patient’s clinical sensitivity to the drug, and can adjust the target 
goal appropriately. For digoxin, for example, the inotropic effect of the drug correlates 
best with the behavior of the drug in the peripheral compartment rather than with the 
serum concentrations.  The excellent model made by Reuning and colleagues for digoxin 
[1] has been highly useful clinically [2].  
 
CURRENT BAYESIAN INDIVIDUALIZATION OF DRUG DOSAGE REGIMENS 
 
The Maximum Aposteriori Probability (MAP) Bayesian approach to individualization of 
drug dosage regimens was introduced to the pharmacokinetic community by Sheiner et 
al. [3]. In this approach, parametric population models are used as the Bayesian priors.  
The credibility of these population models (their parameter variances) is then evaluated in 
relationship to those of the measured serum concentrations as they are obtained. The 
contribution of these two types of data and their variances to the MAP Bayesian posterior 
individualized patient model is shown in the objective function used, as shown below (1).   
 
∑ (Cobs - C mod)2   + ∑(Ppop - Pmod)2 (1) 
                           Var (Cobs)                  Var (Ppop) 
 
where Cobs is the collection of observed serum concentrations, Var (Cobs) is the 
collection of their respective variances, and Cmod is the model estimate of each serum 
concentration at the time it was obtained. Similarly, Ppop is the collection of the various 
population model parameter values, Var (Ppop) is the collection of their respective 
variances, and Pmod is the collection of the Bayesian posterior model parameter values. 
Each data point is given a weight according to its Fisher information, the reciprocal of its 
variance. Population models in which there is greater diversity, and therefore greater 
variance, contribute less to the individualized model than do more uniform models 
having smaller variances.  Similarly, a precise assay will draw the fitting procedure more 
closely to the observed concentrations, and a less precise assay will do the opposite. The 
more serum data are obtained, the more that information dominates the determination of 
the MAP Bayesian posterior parameter values (Pmod) in the patient's individualized 
pharmacokinetic model.  
Having made the patient's individualized model, one then uses it to reconstruct the past 
behavior of the drug in the patient during his therapy to date. One can examine a plot of 
the behavior of this model over the duration of the past therapy. One can thus evaluate 
the clinical sensitivity of the patient to the drug, by looking at the patient clinically and 
comparing the patient's clinical behavior with that of the patient’s individualized 
pharmacokinetic model. In that way, one can evaluate whether the initial target goal was 
well chosen or not. One can choose a different goal if needed, and once again one can 
compute the dosage regimen to achieve it. In this way, the model can be individualized 
and dosage can continue to be adjusted to the patient’s body weight, renal function, and 
available serum concentrations, for example, to achieve the desired target goal, usually 
with increasing precision.   
 
CRITIQUE OF THE MAP BAYESIAN APPROACH 
 



   

 
 

 The weakness of the MAP Bayesian procedure is that the models it uses have only 
single point estimates of the various pharmacokinetic parameters.  Because of that, there 
is only one version of either the individualized model, or of the population model itself. 
The regimen developed to achieve the target goal is simply assumed to do so exactly.  
 
THE SEPARATION PRINCIPLE 
 
The separation or heuristic certainty equivalence principle [4] states that whenever 
control of a system is separated first, into obtaining single point parameter estimates for 
the model, and second, of using those single point estimates to control the system, the 
task is often achieved in a suboptimal manner. This is a significant problem with MAP 
Bayesian fitting and dosage design. The way around this problem is by incorporating 
improved nonparametric approaches to population pharmacokinetic modeling, and in 
using them specifically to design maximally precise dosage regimens. 
 
USE OF POPULATION MODELS IN CLINICAL THERAPEUTICS 
 
 When a parametric population model is used as the Bayesian prior to design an 
initial dosage regimen for the next patient one encounters, one usually has only a single 
estimated value for each parameter. Because of this, only one prediction of future 

concentrations can be made. The dosage regimen is simply assumed to achieve the target 
goal  exactly, as shown in Figure 2.  
 
Figure 2. Using lidocaine population mean parameter values, an infusion regimen designed to achieve and maintain a target goal of 3 
ug/ml does so exactly when the patient, as here, has exactly the mean population parameter values. 
 
 Figure 2 shows the results of an infusion regimen of lidocaine, based on the mean 
population parameter values for that drug, which was designed to achieve and maintain a 
target serum concentration of 3 ug/ml. As shown, this regimen, based on the single mean 
population parameter values, hits the target exactly, but only when the patient has 
parameter values which are exactly the population mean values.  
However, as shown in Figure 3, when the regimen used in Figure 2 was given to the 
combination of the actual 81 diverse nonparametric population support points from which 
the mean values were obtained, an extremely wide distribution of predicted serum 
concentrations was seen, due to the diversity in the nonparametric population support 



   

 
 

points from which the mean parameter values were obtained. The predicted serum 
concentrations actually covered much more than the usual therapeutic range of 2 to 6 
ug/ml.  
In contrast, if one has a nonparametric population model [5-8], with its multiple sets of 
model parameter values (81 in this case), one can make multiple predictions, instead of 
only one, forward into the future from any candidate dosage regimen which is “given” to 
all the models in the population discrete joint density. The richer and more likely 
population parameter joint density reflects better the actual diversity among the subjects 
studied in the past population.  Based on these multiple models in the  population (the 
discrete joint density),  one can compute 

 
Figure 3. Result when the above lidocaine infusion based on population mean parameter values is given to the 81 diverse support 
points from which the population mean values were obtained. Great diversity in the predicted responses is seen. 
 
the weighted squared error with which any candidate regimen is predicted to fail to 
achieve the desired target goal at a target time. Other regimens can then be considered, 
and the optimal regimen can be found which is specifically designed to achieve the 
desired target goal with the least weighted squared error [9-11].    
This approach, using the multiple models of the patient provided by the nonparametric population model, 
avoids much of  the limitations of the separation principle. This is the real strength of the combination of 
nonparametric population models coupled with "multiple model" dosage design [9-11]. 
 

 
Figure 4. Predicted response of the 81 support points (models) when the regimen obtained by multiple model dosage design is given. 
The target is achieved with visibly greater, and optimal, precision. 
 



   

 
 

As shown in Figure 4, the multiple model (MM) dosage regimen, based on the same 
nonparametric population model with its 81 support points, obtained a much more precise 
achievement of the target goal, because it was specially designed to do so.  The error in 
the achievement of the therapeutic target goal is much less, and the dispersion of 
predicted serum concentrations about the target goal is much less.  Other cost functions 
can also be used [13,14]. 
 
OBTAINING MULTIPLE MODEL BAYESIAN POSTERIOR JOINT DENSITIES 
 
 With the MAP Bayesian approach to posterior parameter values, the single most 
likely value for each parameter is obtained when they altogether minimize the objective 
function shown in equation (1). In contrast, the MM Bayesian approach, using the 
nonparametric joint densities, preserves the multiple sets of population parameter values, 
but specifically recomputes their Bayesian posterior probability, based upon the serum 
concentrations obtained. Those combinations of parameter values that predicted the 
measured concentrations well become more probable.  Those that predicted them less 
well become less so. In this way, the probabilities of all the nonparametric population 
support points become revised, using Bayes’ theorem [10-11]. A smaller number of 
significant points, or perhaps even only one, is usually obtained. When the regimen for 
the next cycle is developed, these revised models, containing their revised MM Bayesian 
posterior probabilities, are used to develop it. The regimen is again specifically designed 
to achieve the desired target goal with maximum precision (minimum weighted squared 
error). 
 
OTHER BAYESIAN APPROACHES 
 
 Three other Bayesian approaches have been used by us to incorporate feedback 
from measured serum concentration data. The first is the sequential MAP Bayesian 
approach, in which the MAP posterior parameter values are sequentially updated after 
each serum concentration data point is obtained. This procedure improves the tracking of 
the behavior of the drug through each data set. However, at the end of each full feedback 
cycle, (after each new full cluster of data points), at the time the next regimen is to be 
developed, this method has learned no more with respect to developing the next new 
dosage regimen, than if it had fitted all the data together at once, even though it tracks the 
changing MAP Bayesian parameter values better sequentially. 
 The second approach is the sequential MM Bayesian one [9-11]. Here the MM 
Bayesian posterior joint density is also sequentially updated after each data point. Still, at 
the end of each feedback cycle, this procedure similarly has learned no more with respect 
to developing the next dosage regimen than if all the data in that cluster were fitted 
simultaneously. The procedure is still looking for a hypothetical single model (support 
point, set of parameter values) which best describes all the data. When this fails to be the 
case, combinations of support points are found which fit best. Still, the procedure is 
looking for a fixed and unchanging single model, or combination of models, which best 
fit the data, even though the posteriors are fitted sequentially. 
 A third approach is the interacting multiple model (IMM) approach [12]. This 
method permits the true patient being sought for actually to jump from one model or 



   

 
 

support point to another during the sequential Bayesian analysis. Because of this the 
IMM method, originally designed to track missiles and aircraft taking evasive action, 
permits detection of changing pharmacokinetic parameter densities during the sequential 
analysis procedure. It thus provides an improved method to track the changing parameter 
densities and behavior of a patient during the evolution of his clinical therapy. For 
example, it permits an improved ability to detect and to quantify changes in the volume 
of distribution of aminoglycoside drugs during changes in a patient's clinical status which 
are not captured by the use of conventional clinical descriptors. Using carefully simulated 
models in which the true parameter values changed during the data collection, the 
integrated total error in tracking a simulated patient was very similar with the sequential 
MAP and sequential MM Bayesian procedures. However, the integrated total error of the 
sequential IMM procedure was only about one half that of the other two [12]. 
 
CLINICAL APPLICATIONS 
 
 Nonparametric population parameter joint densities, MM dosage design and IMM 
Bayesian posterior joint densities appear to offer significant improvements in the ability 
to track the behavior of drugs in patients during their care, especially when the patients 
are unstable and have changing parameter values. These approaches also develop dosage 
regimens which are specifically designed to achieve target goals with maximum 
precision. These methods make optimal use of all information contained in the past 
population data, coupled with whatever current data of feedback may be available about a 
particular patient up to that point, to develop that patient's most precise dosage regimen. 
A clinical version of this software, which runs on PC’s in Windows, is now in 
development. 
 
Acknowledgements: Supported by NIH grants LM 05401 and RR 11526. 
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A NEW METHOD TO UPDATE BAYESIAN POSTERIORS FOR  
PHARMACOKINETIC  MODELS WITH CHANGING PARAMETER VALUES. 

 

David S. Bayard*1 and Roger W. Jelliffe2,  1Senior Scientist, Jet Propulsion Laboratory, 
Pasadena CA, 2Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los 
Angeles CA,  
 

Purpose: to improve the quality of Bayesian posterior densities for 
pharmacokinetic models of drugs when the patient’s parameter values change 
significantly during the period of the data analysis.  
 

Methods: the prior probability was assumed to be a nonparametric population 
model discrete joint density. Parameter changes were modeled as ``jumps" from one 
discrete support point in the density to another. Given such discrete priors, previous work 
in our laboratory showed that the multiple model (MM) estimator works well when the 
patient's parameters are unknown but constant. However. both it and the MAP Bayesian 
method work less well where the patient's parameter values change.  
The  interactive multiple model (IMM) algorithm is an effective method in the aerospace 
community for tracking maneuvering targets. We implemented the IMM sequential 
Bayesian algorithm in pharmacokinetic software, and compared its performance  with the 
MM and MAP sequential Bayesian estimation methods, using both simulated and real 
clinical data for Tobramycin therapy.  
 

Results: in a simulation of changing parameter values taking place at a stated 
time, the IMM approach tracked the drug with about half the integrated total error found 
with the MM and MAP methods. Further, in examining data from a real patient whose 
parameter values changed significantly during therapy, the IMM approach tracked the 
patient’s data much better than the sequential MM or MAP Bayesian approaches. 
 
 Conclusions: the IMM approach can detect and quantify changing parameter 
values in unstable patients, and should permit more informed dosage regimens, especially 
for drugs having narrow margins of safety.  Supported in part by NIH grants LM 05401 
and RR 11526 
 



   

 
 

 

Appendix C 
 
A description of the .mb patient file format. The description comments are given below 
the patient file sample. 
 

The file description 
 
-110   (or -11)  

 
This is a General File Flag: If the first digit is not equal to the minus sign "-", then the file 
is of much older format.  If the 4th character is 1, there is a steady state input. 
 
John                Doe                 2989 

    
Last name (20 characters), first name (20 characters), and chart number (10 characters). 
 
20         76.000000F 64.17163.002 

 
If the second character of File flag is not equal to '1', then read ward (10 characters), 
patient age (Floating point F5.1), patient sex (1 character, M or F), patient height in 
inches (F5.1), height in cm (F5.1), flag for displaying height in other units (usually in cm) 
(Integer 1 digit) where:  height flag    = 1: height input in inches; height flag = 2: height 
in cm. 
 
If the second digit of File flag  equal '1'  Then read (10 characters), patient age (Floating 
point F10.6),  patient sex (1 character, M or F), patient height in inches (F6.2), height in 
cm (F6.2), flag for displaying   height in other units (usually cm) (Integer 1 digit) where:  
height flag  = 1: height input in inches; height flag = 2: height  in cm. The difference here 
is in the formats of age and height. 
 
6   6  94 

 
Read Month (4 Digits), Day (4 Digits), and Year (4 Digits) of Therapy Day . 
 
CCR ML/MIN/    0.00 150.00 

 
Read the Elimination Descriptor Name (4 Characters), its Units(8 Characters), 
Minimum(Floating point F7.2), Maximum (Floating point F7.2) 
 
HOURS    MG     MG/HR    MCG/ML KG       MG/DL    60.00 

 
Read the units: Time units (8 Characters), amount units (8 Characters), rate units (8  
Characters), level units (8 Characters), weight units (8 Characters), Serum Creatinine 
units (8 Characters), and mpertu (F7.2), where:   'MPerTU' is Minutes PER Time Unit 



   

 
 

being used. Compute minutes since midnight on day of each PO or IV dose, or start of IV 
infusion. 
 
5 

 
Read the number of doses (4 digits) 
 
IM     1 540     0.00000000     0.00000000  1000.00000000    38.33874000 
IM     2 540     0.00000000     0.00000000  1000.00000000    38.33874000 
IM     3 540     0.00000000     0.00000000  1000.00000000    38.33874000 
IM     4 540     0.00000000     0.00000000  1000.00000000    39.66926000 
IM     5 540     0.00000000     0.00000000  1000.00000000    39.66926000 

 
If second digit of File flag is not equal  to '1'  Then read (do loop until last dose (in  
this case repeat 5 times), route name (4 chars), day of therapy (4 digits), minutes into the 
day when dose was given (4 digits), infusion rate (F13.8), infusion time (F13.8), dose 
amount (F13.8), genval, the value of the elimination descriptor, usually CCr (F13.8). 
 
If second digit of File flag is equal to '1' then read (do loop until last dose (in this case 
repeat 5 times) route name (4 chars), day of therapy (4 digits), minutes into the day when 
the dose was given (4 digits), infusion rate (F15.8), infusion time (it, F15.8), dose amount  
 
263.00000000     

 
The last dose interval (in hours). If the second digit of File Flag is not 1, then format 
F7.2, else Format F15.8 
 
8 

 
Read how many serum levels (4 digits) 
 
   1 600  40.97 
   1 720  38.64 
   1 960  26.96 
   2 510   1.25 
   5 600  40.97 
   5 720  29.29 
   5 960  26.96 
   6 510   1.25 

         
Do loop until last dose, in this case repeat 8 times. Read therapy day # (4 digits), min into 
the day that level was obtained (4 digits), the level (F7.2) 
 
2 

 
Read how many weights (4 digit integer) 
 
   1 480  54.00 
   5 480  54.00 

 



   

 
 

Do loop until last weight, in this case repeat 2 times. Read therapy day # (4 digits), mins 
into day that weight was obtained (4 digits),  the Weight (F7.2) 
 
3 

 
Read how many serum creatinines (4 digit integer) 
 
   1 480   1.1900 
   4 480   1.2600 
  15 480   1.2000 

 
Do loop until last serum creatinine, in this case repeat 3 times If the third digit of general 
file flag is not equal to '1',  Then read therapy day (4 digits), minutes into day serum 
creatinine obtained (4 digits), serum creatinine (F7.2) 
 
If the third digit of general file flag is equal to '1',  Then read therapy day (4 digits), 
minutes into day serum creatinine obtained (4 digits), serum creatinine (F9.4). The 
difference here is in the Floating point format, which was made more precise in the newer 
version 
 
100.00 

 
Read muscle mass as percent of normal (F7.2) 
 
0 

 
Read Flag for Dialysis Patient status (1 digit integer) if Flag equal to 1 then this is a 
DIALYSIS PATIENT. If Flag equal to 0 then this is NOT A DIALYSIS PATIENT 
 
1 

 
Read MIC Flag (1 digit integer) MIC Flag=0: no MIC; MIC Flag=1: with MIC Flag is 
initialized as 0 here, it is set to be 1 in the drug initialization routine where it is needed 
(e.g. Ginit for Gentamicin) 
 
1 

 
Read SC/CCr Flag SC/CCR Flag = 1 for SC entries followed by calculation of CCr, 
SC/CCR Flag = 2 for direct entry of CCr, in the PASTRX.EXE program 
 
8.00000          

 
if (MIC Flag is equal to 1) MIC Flag = conc of MIC entered (0-150) Read  MIC (F10.5), 
else do not read anything here, but simply go directly to the next line 
 
1 

 
Read CCr Flag (ikpccr 1 digit integer).If ikpccr = 0: recompute CCr; if ikpccr= 1 : keep 
current CCr. This is used in the edit portion of PASTRX.EXE 



   

 
 

 
1 1 

 
If the second digit of General File Flag (see first line) is equal to '1'  Then read these two 
age and weight unit flags (2 digit integer, 2 spaces, 2 digit integer) 
 
 

An example of a population model file 
 
The file shown below is the patient data file GENT2.MB 
 
-1                   
alan forrests       patient             123        
8E         65.000000M 70.00 70.001 
   4   1  80 
CCR ML/MIN/    0.00 150.00 
HOURS    MG     MG/HR    MCG/ML KG       MG/DL    60.00 
   6 
IV     1 480    80.00000000     1.00000000    80.00000000    56.46828000 
IV     1 990    80.00000000     1.00000000    80.00000000    41.34090000 
IM     2 135     0.00000000     0.00000000   100.00000000    41.34090000 
IV     2 495   100.00000000     1.00000000   100.00000000    41.34090000 
IV     21005   100.00000000     1.00000000   100.00000000    27.09849000 
IV     3 480    80.00000000     1.00000000    80.00000000    27.09849000 
     8.00000000 
   5 
   1 560   3.60 
   1 935   1.80 
   2 370   5.20 
   21100   9.10 
   3 460   4.10 
   1 
   1 480  68.00 
   3 
   1 560   1.20 
   2 540   1.50 
   3 720   2.10 
 100.00 
0 
1 
1 
   2.00000 
1 
 1   1 



   

 
 

 

Appendix C 
 
A description of the .mm population model file format. The description comments are 
given below the population model sample. 
 

The file description 
 
#-BEGIN-FILE------------------------------------------------ 

 
This indicates the beginning of the file 
 
# 
# USCPACK for Windows population model file 
# File revision 1.0 
# 

 
The header section, the current file revision is 1.0. 
 
#-BEGIN-LOCKED-SECTION-------------------------------------- 
# 
# The drug modeled            : Trimethoprim 
# Date file was generated           : 11/14/2001 
# File genererated by program       : bignpem v4.3 
# Location where file was generated : LAPK, SDSC 
# File authorized by                : Roger Jelliffe, LAPK 
# File lock code            : 1 
# 
#-END-LOCKED-SECTION-(15937389753495)-----------------------  

 
This section is to be considered locked. When the population model file is read by 
RightDose the program computes a checksum from the section between the –BEGIN-
LOCKED-SECTION and –END-LOCKED-SECTION. This checksum must match the 
number given (in this case 15937389753495). If the file lock code is 3 or higher RightDose 
will consider this population model to be invalid and it will not be used. 
 
# 
# File update list 
# 
# 11/14/2001 - Andreas Botnen 
#        Manually converted from old file 
# 

 
The file update list where updates to the file is entered. Note that altering a file with file 
lock code of 3 or higher without updating the checksums will invalidate the file. 
 
# START DESCRIPTION 
No description for this population model 
# END DESCRIPTION 



   

 
 

 
A general description of the population model can be entered between the lines START 
DESCRIPTION and END DESCRIPTION. 
 
# The drug used in this analysis was 
Trimethoprim 

 
The drug modeled 
 
# The units to be used with this drug is 
mg 

 
The most common units for the drug 
 
# The molecular weight is 
-1.0 

 
The molecular weight of the drug 
 
# The active salt fraction is 
0.90 

 
The active salt fraction 
 
# The bioavailability is 
1.0 

 
The bioavailability 
 
# The valid routes are 
IV PO 

 
The routes that can be used with this population model.  
 
# The ranges for the central compartment (peak and trough) 
# use the value -1 if this selection is not valid for this model 
# Usual ranges (peak min, peak max, trough min, trough max) 
8.0 12.0 4.0 7.0  
# Not to exceede ranges (peak min, peak max, trough min, trough max) 
4.0 18.0 1.0 9.0   

 
RightDose operates with two sets of ranges. When computing future or initial regimens 
the usual ranges are displayed. The users can select to give a dose outside these ranges, if 
the selected dose is also outside the not to exceed range the user will get a warning.  
 
# The ranges for the peripheral compartment (peak and trough) 
# use the value -1 if this selection is not valid for this model 
# Usual ranges (peak min, peak max, trough min, trough max) 
-1.0 -1.0 -1.0 -1.0 
# Not to exceede ranges (peak min, peak max, trough min, trough max) 
-1.0 -1.0 -1.0 -1.0   

 
The same as above but for the peripheral compartment. 



   

 
 

 
# The assay polynomial (as1, as2, as3, as4) 
0.322720 0.0183650 0.00120510 0.0 

 
The coefficients in the assay polynomial, where as1 is the zero-order coefficient, as2 the 
first order and so on. The assay polynomial will in general depend on both the population 
model and the apparatus used to measure the serum level.  
 
# The process noise (wsqrt, de1, de2, de3, de4, terr) 
0.000010 0.0 0.000010 0.0 0.0 0.000010 

 
TBD.   
 
# The number of random parameters 
4 

 
The number of random parameters in the model. 
 
# The random parameters used was 
KA     KS1     VS1      FA 
3 7 16 20 

 
The names of the random parameters and their corresponding coefficients. 
 
# The number of fixed parameters 
1 

 
The number of fixed parameters in the model. 
 
# The fixed parameters used was 
KI 
6 

 
The names of the fixed parameters and their corresponding coefficients. 
 
# The values of the fixed parameters 
0.115500E-01 

 
The values of the fixed parameters 
 
# The number of probability points 
13 

 
The number of support points for this model 
 
# The probability matrix 
  PROBABILITY   KA         KS1        VS1         FA      
  0.3078591  0.3361750  0.0010866  1.0126800  0.9998090 
  0.2048287  0.8304400  0.0014187  1.0063800  0.9998580 
  0.0865280  0.0762225  0.0006258  1.2360500  0.8043380 
  0.0729067  0.8320020  0.0014187  1.0073500  0.9998580 
  0.0667204  0.5291610  0.0021567  0.6420140  0.9998340 
  0.0550678  0.0966272  0.0009847  0.8849330  0.8272260 
  0.0374097  0.0962025  0.0005925  1.4900300  0.9265490 



   

 
 

  0.0336980  0.3529200  0.0014854  0.6441420  0.8660140 
  0.0324623  1.9477200  0.0002237  3.1675500  0.9999600 
  0.0303316  0.0002172  0.0000721  3.5082600  0.0000668 
  0.0289079  3.5189700  0.0011616  1.7157800  0.9102320 
  0.0285714  0.0003410  0.0081684  0.7570980  0.2779230 
  0.0147084  0.0962025  0.0005925  1.4910000  0.9273300 

  
The support point matrix 
 
#-END-FILE----(43597657865846357819)------------------------ 

 
An end of file indicator and the checksum for the whole file. 
 

An example of a population model file 
 
The file shown below is the population model for Amikacin 
 
#-BEGIN-FILE------------------------------------------------ 
# 
# USCPACK for Windows population model file 
# File revision 1.0 
# 
#-BEGIN-LOCKED-SECTION-------------------------------------- 
# 
# The drug modeled      : Amikacin 
# Date file was generated           : 11/14/2001 
# File genererated by program       : bignpem v4.3 
# Location where file was generated : LAPK, SDSC 
# File authorized by                : Roger Jelliffe, LAPK 
# File lock code      : 1 
# 
#-END-LOCKED-SECTION-(15937389753495)-----------------------  
# 
# File update list 
# 
# 11/14/2001 - Andreas Botnen 
#        Manually converted from old file 
# 
 
# START DESCRIPTION 
No description for this population model 
# END DESCRIPTION 
 
# The drug used in this analysis was 
Amikacin 
 
# The units to be used with this drug is 
mg 
 
# The molecular weight is 
-1.0 
 
# The active salt fraction is 
1.0 
 
# The bioavailability is 
1.0 
 



   

 
 

# The valid routes are 
IV     IM 
 
# The ranges for the central compartment (peak and trough) 
# use the value -1 if this selection is not valid for this model 
# Usual ranges (peak min, peak max, trough min, trough max) 
25.0 80.0 2.0 10.0  
# Not to exceede ranges (peak min, peak max, trough min, trough max) 
15.0 90.0 1.0 20.0   
 
# The ranges for the peripheral compartment (peak and trough) 
# use the value -1 if this selection is not valid for this model 
# Usual ranges (peak min, peak max, trough min, trough max) 
4.0 10.0 1.5 8.0  
# Not to exceede ranges (peak min, peak max, trough min, trough max) 
1.0 20.0 1.0 15.0   
 
# The assay polynomial (as1, as2, as3, as4) 
0.322720 0.0183650 0.00120510 0.0 
# The process noise (wsqrt, de1, de2, de3, de4, terr) 
0.000010 0.0 0.000010 0.0 0.0 0.000010 
 
# The number of random parameters 
3 
 
# The random parameters used was 
KA   KS1    VS1 
3     7      16 
 
# The number of fixed parameters 
1 
 
# The fixed parameters used was 
KI 
6 
 
# The values of the fixed parameters 
0.693150E-02 
 
# The number of probability points 
23 
 
# The probability matrix 
 PROBABILITY   KA        KS1        VS1     
 0.2496989  1.1795200  0.0036028  0.2388060 
 0.1263305  1.3131900  0.0039525  0.3238900 
 0.0962309  1.6597200  0.0030496  0.2638510 
 0.0811791  1.6189300  0.0031278  0.3296280 
 0.0729027  1.7663000  0.0026310  0.2194260 
 0.0697936  1.2892600  0.0030204  0.2536460 
 0.0588230  1.0618300  0.0020986  0.1696920 
 0.0581757  1.7362900  0.0039970  0.2631730 
 0.0469558  0.9462290  0.0033766  0.2230620 
 0.0434977  1.2468700  0.0030408  0.2502980 
 0.0392361  1.5365300  0.0024865  0.2260670 
 0.0350195  1.4554400  0.0031884  0.3242060 
 0.0151405  0.9678660  0.0032120  0.2325450 
 0.0035417  1.6529700  0.0025439  0.2233810 
 0.0011343  1.5475700  0.0024586  0.2277910 
 0.0010446  1.0119700  0.0031067  0.2394870 
 0.0005267  1.7681800  0.0040594  0.2567400 
 0.0004898  1.0578300  0.0030989  0.2420180 
 0.0001036  1.0153500  0.0031186  0.2365600 



   

 
 

 0.0000838  1.3316000  0.0030331  0.2549090 
 0.0000819  1.0049000  0.0031339  0.2353480 
 0.0000073  1.1392600  0.0030355  0.2451820 
 0.0000022  1.3068600  0.0030058  0.2528610 
 
#-END-FILE----(43597657865846357819)------------------------ 

 


