I THE UNIVERSITY W

Department of Electronics

Computer Programming Using C

Laboratory Scripts 2007-2008

Peter Mendham
with
Dr Andy Hunt, Dr Julian Miller,
Andy Pomfret and Dr Steve Smith

September, 2007

Computer Programming Using C Revision 1.3

Contents

Introduction
OVeIVIEW o o i e e e e e e e e
The Structure of the LabCourse
How These Scripts are Written: Structure and Conventions

Before You Begin
Overview
Mapping Your NDrive
Creating a Folder For Your Work
Copying a Project
Opening the Integrated Development Environment (IDE)
Opening a ProjectintheIDE
Summary

I Autumn Term Laboratories

1 A Simple C Program in Microsoft Visual Studio

3.3

11 Overview.
12 SettingUp
1.3 IntroducingtheIDE.
14 Looking at Your First C Program
1.5 Compiling, Executing and Debugging a C Program
1.6 Displaying Text on the Screen
1.7 GraphicsOption
171 A Simple Graphics Program
172 Some Simple Drawing
1.8 MusicOption
1.8.1 A Simple Music Program
1.8.2 Playing More than One Note at Once
1.8.3 Changing the Instrument
19 Summary.
2 Conditional Statements: The i f and swi t ch Statements
21 Overview
2.2 Getting Input fromtheUser
2.3 Making a Decision: Conditional Statements
2.4 Grouping Statements into Compound Statements .
2.5 Making More Complex Decisions: Logical Operators
2.6 Dealing with Many Options
2.7 Getting a Single Character from the User
2.8 GraphicsOption.
29 MusicOption
210 Summary
3 Repetition and Iteration — do, whi | e and f or
31 Overview
3.2 Repeating Statements Many Times

Repeating Statements and Counting

_ e e

O 00 N Ul W WWw

ii

Computer Programming Using C Revision 1.3

3.4 Deciding What Kind of LooptoUse,
35 GraphicsOption.
3.6 MusicOption
3.6.1 SimpleScales
3.62 WholeToneScales
3.6.3 Adding to Your Whole Tone Scale Piece
3.64 Playing UntilToldtoStop
37 Summary

The C Preprocessor and Useful Debugging Techniques

41 OVerview
42 Stagesof Compilation L
4.3 Introducing the C Preprocessor
4.4 Using the Preprocessor for Text Substitution
4.5 Using #def i ne Directives for Conditional Compilation
4.6 Using Breakpoints for Debugging o L.
47 Locating the Programs You Have Written,
48 SumMMAry
Functions
51 Overview e
52 Creating New Functions
53 AnatomyofaFunction
54 Functions: Why Bother?
5.5 Positioning FunctionsinaFile. oo o o oo
5.6 The Maths Function Library,
57 GraphicsOption
571 Creating More ManageableCode
5.72 Allowing Control of the Launch Angle
5.7.3 Making Your Program More Visually Appealing
58 MusicOption e
59 Summary

Arrays and Strings

6.1 Overview e
6.2 Introducing Arrays
6.3 Workingwith Arrays
6.4 Initialising Arrays and Multi-Dimensional Arrays
6.5 Strings: A Special Kind of Array L
6.6 Forming Strings Usingsprintf
6.7 GraphicsOption
6.8 MusicOption e
6.9 Summary

Structuring a Software Project

71 Overviewo e
7.2 Splitting Your Program into Multiple Files
7.3 Creating Your Own Header Files
74 Protecting Your Header Files
7.5 Good Programming Practice: Some More Tips
7.6 SUMMAIY o v vttt e e

Practical Software Design

81 Overview e
8.2 The Structure of Software Projects
83 GraphicsOption
8.3.1 Specification
832 Design
8.3.3 Implementation

834 ExtendingtheDesign

Revision 1.3

Computer Programming Using C iii

II

10

11

12

13

14

15

8.4 Music Option

8.4.1 Specification
842 Design
8.4.3 Implementation.

8.44 Extending the Design

8.5 Writing Your OwnReport

85.1 Requirements
852 Analysis
853 Specification L
854 Design
8.5.5 Source Code — Implementing the Design
8.5.6 Implementation Report
8.5.7 Verification and Testing
858 UserManual.

86 Summary 0.

Assignment Work

91 Overview

Spring Term Laboratories

Assignment Demonstration

10.1 Overview o o e

Structures and Defining New Types

11.1 Overview o o o i e
11.2 Introducing Structures

11.3 Defining New Types with t ypedef

11.4 Using Arrays of Structures
11.5 GraphicsOption

11.6 Music Option

11.7 Summary o

Pointers and Passing Parameters by Reference

12.1 Overview o v e

12.2 More About Function Parameter Passing

12.3 Introducing Pointers

12.4 Using Pointers to Pass Parameters by Reference
12.5 Using Pointers with Structures

126 Summary L L

Arrays and Strings Revisited and Allocating Memory

131 Overview
13.2 More About Arrays L.
13.3 More AboutStrings
13.4 Allocating Memory
13.5 Dynamic Memory Allocation for Structures
13.6 Summary L L

Creating Buffers

141 Overview o v i e e e
14.2 Buffers: Flexible Storage
14.3 Stacks —LIFOBuffers
14.4 Buffer Problems: Overflow and Underflow

14.5 Queues — FIFO Buffers
14.6 Managing FIFOs as Circular Buffers

147 Summary L

Lists and Queues (1)

149

..................... 149

151

..................... 151
..................... 151
..................... 154
..................... 156
..................... 156
..................... 158
..................... 159

161

..................... 161
..................... 161
..................... 164
..................... 168
..................... 169
..................... 171

173

..................... 173
..................... 173
..................... 175
..................... 176
..................... 180
..................... 180

183

..................... 183
..................... 183
..................... 184
..................... 187
..................... 188
..................... 190
..................... 192

193

iv Computer Programming Using C Revision 1.3
151 Overview L 193
15.2 Storing Arraysof Pointers L L L o 193
15.3 The Limitationsof Arrays 195
154 Introducing Linked Lists 195
15.5 Working with Linked Lists 198
15.6 ALinked ListExample L 199
15.7 Summary 202

16 Lists and Queues (2) 203
16.1 Overview oL 203
16.2 The Limitations of a Single-Linked List 203
16.3 Introducing Double-Linked Lists 205
16.4 Manipulating Double-Linked Lists 206

16.4.1 Addinginto a Double-Linked List 207
16.4.2 Removing from a Double-Linked List 210
16.5 So When Are Linked Lists Useful? 211
16.6 Summary 212

17 File Handling 213
171 Overview L 213
17.2 Getting AccesstoFiles 213
17.3 Simple File Read and Write Operations 214
17.4 Reading and Writing Many Lines to/froma¥File 217
17.5 File Operations with Structures 219
17.6 Summary 220

18 Sorting, Searching and Recursion 221
181 Overview L 221
18.2 Sorting Data Using a BubbleSort 221
18.3 Introducing Recursion 222
18.4 Searching Using Recursion 224
185 Summary 224

A Summer Term Laboratory Outline 225
Al Overview e 225

B Suggested Further Reading 227
B.1 Tutorial Material 227
B.2 Reference Material 227

Function Reference

A Function—whichdoessomething 2
printf —Displaystextonthescreen 24
i ni twi ndow— Creates a graphics window of a specifiedsize 28
set col or — Sets the current drawing colour. L L L oL 29
ci rcl e —Draws acircle in the graphicswindow o 0L 29
get ch — Waits for a key press from the keyboard 30
cl osegraph — Closes the graphicswindow 30
| i ne— Draws a line in the graphicswindow 31
m di _-not e — Starts or stops a MIDInote playing 34
pause — Waits for a specified amountof time o 0 o 0L 35
pr ogr amchange — Changes the current instrument on a MIDI channel 37
scanf — Obtains a line of input fromtheuser 41
get ch — Obtains a single key press fromtheuser 51
setfill styl e — Sets the graphical style used for fill operations 53
fl oodfill —Fills an area with a coloured pattern 54
nmovet 0 — Sets the current graphics location oL L L oL 66
| i net 0 — Draws a line from the current location to the specified location 66
kbhit —Checkstoseeifakey hasbeenpressed 70
fflush—Flushesastream 89
sgrt — Calculates the square rootofanumber L oL 95
pow— Raises one number to the power of anothernumber 96
si n, cos, t an — Trigonometric functions L L oL 96
asi n, acos, at an — Inverse Trigonometric functions 96
cl ear devi ce — Clears the contents of the graphics window 98
set bkcol or — Sets the background colour 99
out t ext Xy — Draws text in the graphicswindow 99
randomnumber — Generates arandomnumber. L Lo 100
% — Using the % placeholder with scanf andprintf 112
sprintf — Forming strings using pri nt f -like placeholders 114
mal | oc —Memory Allocation 178
free —Memory Deallocation 179
cl rscr —Clears the Console Text Window 187
got oxy — Sets the Console Text Window Cursor Position 187
fopen—OpensaPFile 214
fclose —ClosesanOpenFile L 214
f printf — Outputting to a file using pri nt f -like placeholders 216
f scanf — Performs a scanf -like read fromafile o L. 217
randomnumber — Generatesarandomnumber. 0oL 218

strcnp, strcnmpi —String Comparison L Lo 222

Syntax Reference

SomeSyntax e 2
Comments 16
Variable Declarations e 17
Mathematical Operators e 18
FunctionCalls e 23
Relational Operators and Expressions 43
ifstatements e 44
Compound Statements 46
Logical Operators 47
Switchstatements 50
ThewhileLoop. e 58
Thedo...whileStructure 59
Shorthand Operators 63
The #i ncl ude Directive e 75
The#defineDirective 76
The #i f and#endif Directives. 80
Function Definitions 92
Array Declarations 104
Structures. e 153
Type Definitions 155
Pointer Reference and Dereference Operators 168
Pointer to Structure Member Access Operator 170

The si zeof Operator e 179

Introduction

Overview

This section gives a brief introduction to the structure of the C Programming Laboratory course, and the
way in which these scripts are written.

The Structure of the Lab Course

There is a C programming laboratory once a week, every week from 2 to 10, in both the Autumn and
Spring terms. There are four laboratories, weeks 2 to 5, in the Summer term. There is a laboratory script
for each lab in the Autumn and Spring terms. The content of the summer term labs will be clear when
you come to do them. You can work through each lab at your own pace, however, you will be expected
to complete one laboratory’s script before the beginning of the next lab. If you have not finished a script
by the end of a lab you may have to complete it in your own time.

Each lab contains two optional sections:

* music option, intended for Music Technology students;

* graphics option, intended for all other students.

You must choose one of these options. If you have time, you may find it fun to attempt parts of the
other option. The C programming course is assessed through two assignments: one in the middle of the
course, and one at the end. For each assignment there will also be two options: music and graphics. If
you have managed to learn techniques from the other option it will make your assignments all the more
impressive!

How These Scripts are Written: Structure and Conventions

These scripts are intended to be worked through in order, however, some sections are highlighted to
make it easier for you to refer back to important information later in the course. The normal text of the
script will contain both information and instructions for the tasks you should carry out. You must make
sure you read the scripts carefully, especially before asking for help — you may have missed something
important.

Sections where you need to think carefully about what you are doing are shown as exercises and appear
like this.

Exercise 0.1: An Example Exercise

Exercises appear in boxes like this one.

Sometimes you need to do something but the instructions are not given in an exercise box. Usually this

2 Computer Programming Using C Revision 1.3

is because the action you need to carry out is fairly simple. To make sure these parts of the lab script are
easy to find, they have a picture of two gears next to them in the margin.

Like this.
There are two other kinds of special box:

* syntax boxes which tell you information about how to form valid statements in the C language;
syntax boxes look like this

Syntax: Some Syntax
the syntax goes here...

...and the description of the syntax goes here.

* function boxes which tell you how to use C language functions; function boxes look very similar to
syntax boxes:

Function Reference: A Funct i on — which does something
the function goes here...

...and the description of the function goes here.

Don’t worry that you don’t know what a function is yet — this will become clear when you start the
first lab!

The descriptions of both syntax and functions use some special symbols. You should try and remember
what these mean, ready for when you meet your first syntax (or function) box:

* if something appears in square brackets, [I i ke thi s], then it means that it is optional;

* if something appears in square brackets with a small ‘n” above and to the right of it, [| i ke t hi s]?,
then it means that it is optional and can be repeated as many times as you want;

Don’t worry if this does not seem clear now, just remember that when you meet the first syntax (or
function) box you can look back at this section to help you understand the information.

Before You Begin

Overview

This section contains details of things you will need to do in order to prepare for writing and compiling
C programs. This has been put in a separate section to make it easier to refer to as you work your way
through the lab scripts.

The first two tasks must be completed before you can start with anything else, but they should only
ever need doing once:

¢ mapping your N Drive;

* creating a folder called “clab” for your work.

The next three tasks are things you will need to do quite a lot. The instructions are in this section, rather
in the main lab scripts, so that you can refer to them:

* copying an existing project from the N drive;
* opening the integrated development environment (IDE);

* opening an existing project in the IDE.

The lab scripts will tell you when you need to copy a project and which project you should copy.

Mapping Your N Drive

Configuring or mapping a drive provides a network connection to one of the Department of Electronics
servers and gives you access to all of the material needed for this course. You should only need to
complete this once.

¢ Using the right-hand mouse button, click on the “My Computer” icon on the desktop.
=
My Computer

* You should get a menu which looks like the one shown below.

4 Computer Programming Using C

Revision 1.3

Open
Browwse with Paint Shop Pro 8

Explore

Search...
Scan with Sophos Anki-Yirnus

Map Metwark Drive, ..
Disconnect Mebwork Drive, .

Create Sharkouk
Rename

Properties

¢ Select the item which says “Map Network Drive...”. A dialog box will appear. Fill in the details
exactly as shown in below and then click “Finish”.

Map Network Drive

Windows can help you connect ko a shared netwark: Folder
and assign a drive letker to the connection so that wou can
access the Folder using My Computer,

Specify the drive letter for the connection and the Falder

that wou want to conneck to:

Dirive: Ir'-.l:

Folder: I ilore\mDrive

Example: Yiserverishare
¥ Reconnect at logon

Connect using a different user name.

Create a shorkout o a Weeb Folder or FTP sike,

j Browse, .. |

< Bach

Zancel |

Creating a Folder For Your Work

Itis a good idea to have a folder that will be used for all of your work during the C Programming course.
You will only need to create this folder once.

¢ Double click on the “My Documents” icon on your desktop.

&

My Documents

¢ A window like the following should appear.

Revision 1.3 Computer Programming Using C 5

i My Documents : -0l x|

File Edit ‘iew Favorites Tools Help |

dmBack ~ = - [| Ghsearch [YFolders 4 | FEQr gl) | Ed-

Loy] A (@ (@ (8 ﬁ .l

[% Applications corel user files CyberLink exceed My eBooks

My Documents

This Folder is Online., [__] [_";';l [__] @

Iy Tusic My Pickures paradox hpothb07.dat hpothbO7 6P Outlook, pst

Select an item bo view its description,

Stores and manages documents b
See also:

My Metwork Places Cutlookl . pst
My Cormputer

|13 object(s) 565 ME Lacal intranet y

¢ From the menu select “File” — “New” — “Folder”. This will create a new folder on your home
drive. The folder will be called “New Folder”

& My Documents
Rl Sttt SN

File Edit \iew Favorites Todls Help

- o b

Create Shortout @ Shortodt B

Delete @ Eriefcase

L Mo '
[— Micrasaoft Waord Document

Closs Limdep Command File

& o i Limdep Praject File:
Select an item ko wiew @ Microsaft Access Application
Microsoft PowerPoint Presentation
@ Microsoft Publisher Publication

Skores and manages 1

See also: ;D Quattra Pro 9 Matebaok
[y Metwiork Places @ SA5.PROGRAM. FOL \
My Computer ﬂ Corel Presentations 9 Show

Text Document

E‘j Wave Sound

Q WordPerfect 9 Document

k§ Corel Presentations 9 Drawing
@ Microsoft Excel Worksheet
@ PowerArchiver ZIP File

* Type to rename the folder, call it “clab”.

clab

This is where you will keep all your projects for the C laboratory course.

Copying a Project

Each of the labs in the course will use one or more projects that have already been created for you. They
are stored on the N drive but they must be copied into your “clab” folder before you can use them. This
will need doing each time you want to begin work on a new project.

6 Computer Programming Using C Revision 1.3

® Double click on the “My Computer” icon on your desktop

My Cormputer

¢ A window like the following should appear.

= rMy Computer -0l x|

File Edit ‘ew Fawvorites Tools Help

dmEBack -~ = - [| Dhsearch Y Folders 4 | B 2 X @ | Ed-

= H = @ =2 =

Bl 314 Floppy Local Disk () Compact Disc wzk, an pdmi04 on
My Computer () (o 'userfsiSta.., 'userfs' (M:)

Select an item to view its description, :: ::

Displays the Files and Folders on wour |~ MOriveon Teachingon Control Panel

compukter lore.amp.y... 'csevad,wvar,,,
See also; T

My Documents Your N Drive

Py Mebwork Places

Metwork and Dial-up Conneckions

|8 objeck(s) | |E.'3_Jl My Compuker v

* Double click on the icon for the N drive to view its contents. Then double click on the following

folders to navigate your way to the projects folder: “course” — “elec” — “examples” — “c” —
“projects”. You should have a window like the following.

(As an aside, this navigation is often written as a path in the following way:
N: \cour se\el ec\exanpl es\c\pr oj ect s)

& projects -0l x|
File Edit \View Favorites Tools Help |
Back ~ = - (1] | D search [YFolders c% | e x = | [Ed-

“J (3 (3 (3 L3

1

LS lab1 labi1 labiz lab13

projects
This folder is Online. C] C] B @
Select an item to view its description, lab14 lab1s lab16 lab17
See also!
o = 3 @ @
My Metwork Places

lab1a labZ lab3 lab4
[y Cormputer

labs lab& lab7 lab&

|16 object(s) |D bevkes (2R Local intranek ~

¢ Using the right-hand mouse button, click the folder that corresponds to the project you want to
copy. In this example we are copying the project “labl”. Select the “Copy” item from the menu.

Revision 1.3 Computer Programming Using C 7

H o TUIUET s {5; I HE Yy @, oKl | |

3 (3 [

Open .
Browse with Paint Shop Pro &
‘ Explore
ﬁ Search... [
lab14 Make Available Cffline |z

Scan with Sophos Anki-Yirus

Send To r [

L

labis G | !
Create Shortout
D Delete [
labS Renarme I
Properties

1. To put them in the new location, use the Paste o

* You can close the projects folder windows now if you want to. Double click the “My Documents”
icon on the desktop. When a window appears, double click the “clab” folder that you created to
view its contents. Click on the “Edit” menu, and select “Paste”.

& clab

File | Edit Miew Favaorites Tools

o e Undao Delete Chrl+Z

=T -

—1 Zuk kel
I'E Copy [i

clzg Faste Shorbout

Copy To Foldet, ..
T Move To Folder. ..
Ther Select Al Chrl+4
Fiolide

Irvert Selection

See also:

¢ The folder containing the project will have been copied into your “clab” folder.

Opening the Integrated Development Environment (IDE)

You will do all your programming using Microsoft Visual Studio which is an integrated development
environment, or IDE. You will need to open the IDE every time you want to work on a C program.

* Click on the “Start” button on the task bar and follow the menus “Programs” — “Programming”
— ”Microsoft Visual Studio” — “Microsoft Visual C++” and then select the icon for “Microsoft
Visual C++".

IE Microsoft Wisual C++

8 Computer Programming Using C Revision 1.3

¢ The IDE window should look like this.

*. Microsoft Yisual C++ I] |
File Edit Yiew Insert Project Build Tools Window Help

B e meo- - SRl =

| =l | AR - |[[E e B

A » [Build { Debug % Find in Files 1 3 Find in Files2 3 Results 7 el

Ready

N

Opening a Project in the IDE

To begin or continue work on a project you have copied you must open the project in the IDE, each
project is contained in a workspace.

¢ With the IDE open, click on “File” — “Open Workspace...”

*.. Microsoft Yisual C++

File Edit “iew Insert Proje

|
|3
|

BEw, .. kel
QpEn.. ., ChrH
Close

Dpen Workspace. ..

Save Workspace

¢ You should now be viewing the contents of “My Documents”.

Revision 1.3 Computer Programming Using C 9

Open Workspace 2] x]
Laoak in: I@ My Documents j - r:jg E5-

__| Applications
clab
corel user files
CyberLink
exceed

ini

Iy eBiooks
[y Music
My Pictures
paradox

File mamme; | Open I
Files of type: IWorkspaces [.dswz.rndp] j Carcel |

A
¢ Double click on the “clab” folder to view its contents.
Open Workspace e |
Lok ir: |@ clab j &= I‘fF ER-
|_llab1

File name: I Open I
Files af type: IWorkspaces [-dzw;.mdp) j Cancel |

4

¢ Double click the folder of the project you want to open, in this example we will be loading the
project “lab1”.

Open Workspace 2
Look jn: | 3l a1 - & & e B

File narme: |Iab‘| .daw Open I
Files of twpe: IWorkspaces [dswzrmdp) ﬂ Cancel |

4

* Select the workspace for the project. This will be a file with the same name as the project, in this
example “lab1”. Then click the “Open” button to open the workspace.

Summary

If you have read this section in full then you should have learned:

10 Computer Programming Using C Revision 1.3

* how to map you N drive;

* how to create a folder for your work.

which are things you should only have to do once.

You should also have learned how to carry out tasks you will need to do in every laboratory:

* how to copy a project;
* how to open the IDE;

* how to open a project in the IDE.

All these tasks will be an essential part of the first lab.

Part1

Autumn Term Laboratories

Laboratory 1

A Simple C Program in Microsoft
Visual Studio

1.1 Overview

In this first laboratory you will be introduced to the Microsoft Visual Studio integrated development
environment (IDE). You will be using this software to write and test C programs.

This lab will also introduce the following concepts:

¢ the structure of a simple C program;

variables, their names and types;

how to do simple mathematics in C;

how to call functions;

® how to use the pri nt f function.

You should understand all of these concepts by the end of the lab. You will also have been introduced
to either the graphics or the music facilities.

1.2 Setting Up

Before you begin this lab you should have read the “Introduction” and “Before You Begin” sections.

=
Before we can begin the lab, it is essential that you have carried out the first two tasks in the section {?
“Before You Begin”. These are:

¢ mapping your N drive;

¢ creating a folder called “clab” for your work.

=
For this lab we will be using the project “labl”. Following the instructions in the section “Before You @
Begin”:

* copy the project to your “clab” folder;
¢ open the IDE;

* open the project in the IDE.

If you have any questions about any of this steps just ask the demonstrators.

14 Computer Programming Using C Revision 1.3

1.3 Introducing the IDE

This laboratory course uses Microsoft Visual C++ Version 6.0. Although the software supports program-
ming in the C++ language as well as the C language, we will just be using C. We will be using Microsoft
Visual Studio to create programs using Microsoft Visual C++. This software is called an Integrated Devel-
opment Environment or IDE because it combines things that, many years ago, used to be separate. They
are:

¢ an editor which allows you to edit the text files that contain the C language which will become
your program (these are often known as source files);

¢ a compiler which takes the source files and translates them from text in the C language to machine
code which the computer can understand and execute. All programs on your computer are in
machine code.

This is all you need to create a program in C, but an IDE also usually contains:

* a debugger which allows you to test out your programs in a very controlled way and diagnose
problems with them.

We will be making a great deal of use of all of these features, right from the start.

The Visual Studio IDE you have in front of you should look something like this.

*. labl - Microsoft Yisual C++ o [=[

File Edit Yiew Insert Project Build Tools wWindow Help
b wEd a2 B BN
(Globak) [0 giobal members) [4 main L H@ gL 0 [
=
‘Workspace 'lab1" 1 project(s)
Er-EH lab1 files

Ea Source Files

i e [H bt
(L Header Files

Source Files

FileView Tab

Output Window

< 0|
= ClassView | FiIeViewI

[=|

|

-
Build 4 Debug Find in Files1 & Findin Files2 7] 4] | 3
Feady v

The C language source files that make up the program are shown in the left pane. In this example there
is only one source file, however, projects may contain many source files. If you can’t see a source file list
similar to the one shown above, click the FileView tab. When we perform tasks such as compiling or
debugging programs, the IDE will sometimes give you messages, such as errors. These will be shown
in the output window. If the IDE behaves in a way that you didn’t expect, this pane is a good place to
look at first.

1.4 Looking at Your First C Program

@ Double click on the icon for the source file “lab1.c”.

Revision 1.3 Computer Programming Using C 15

i labl hies
423 Source Files
lab1.c
L. 771 Header Files

The C language source code will appear in the editor window. This should look like this.

*.. labl - Microsoft ¥isual C++ - [lab1.c] o [m]

H File Edit Wiews Insert Project Build Tools window Help _|E||5|
|[2lem@|: aa=- - mEE @ =
JJ [Gilobals) _=|] (a0 global members) |=]] main B JJ@] ! =M
w=] b= =
- * A program to demonstrate simple mathematical operations =
Workspace lab1" 1 project(s) * C Programming laboratory 1
- E7 lab1 files x/

=43 Source Files P

#* The main function — the program starts executing here
*
int main{wvoid)

#% Declare some wvariables for the calculations #7

int distance_to tokyo, distance to _airport:

int =peed of plane. =peed_of_ car:

int time_to flv, time _to_drive, time to tokyo: —
int awverage_=speed;

<% St the wvaluses of =zome of the variables =~

#% Set distances in kilomnsetres #7
distance to tokyo = 9720
distance_to airport = 120;

4] | _'I <% Set speeds in kilometres per hour *-
'jEIass\-"iewl £ FiIeViewl (<] speed of plans = 1200;

[
A

-
3
=
-
| 4] * s Build { Debug b Findin Files 1 3 Findin Filesz /] 4| | 3

Ready [n1,Col1 [REC[COL [OYR [READ 4

The source code for this program is printed below. This is the same as the code in the “lab1” project.

| *
* A programto denonstrate sinple mathematical operations
* C Programm ng | aboratory 1

*/

[*

* The main function - the programstarts executing here
*/

i nt mai n(void)

{

/= Declare sonme variables for the cal cul ations */
i nt distance_to_tokyo, distance_to_airport;

i nt speed_of plane, speed_of car;

int time_to fly, tine_ to drive, tinme_to_tokyo;

i nt average_speed,;

/* Set the values of sone of the variables =/

/* Set distances in kilometres x/
di stance_to_tokyo = 9720;

16 Computer Programming Using C Revision 1.3

di stance_to_airport = 120;

[+ Set speeds in kilometres per hour =/

speed_of plane = 1200;

speed_of car = 100;

[+ Calculate time taken to get to Tokyo =*/

time_to fly = (distance_to_tokyo - distance to_airport) / speed_of pl ane;
time_to drive = distance _to airport / speed of car

time_to_tokyo = time_to fly + time_to_drive

/* Cal cul ate the average speed */

average_speed = distance_to_ tokyo / tine_to_tokyo;

return O;

}

We will now go through this code, a line or two at a time. Make sure that you understand it before
continuing.

The first important thing to notice is that everything between / * and */ is a comment. This means that
it is ignored.

Syntax: Comments
[= ... =/

Comments are used for adding text to a source file which will be ignored by the compiler. This is
very useful for adding notes which will remind you about what a particular part of your program
is supposed to do. In Microsoft Visual Studio when you type a comment the editor will understand
and colour it green. The different colour helps you see easily which parts of your program are
comments are which are not.

It is good programming practice to comment your programs well. A good rule of thumb when
writing comments is to write them for someone who understands C but doesn’t understand how
your program works.

The program begins with the line:
i nt mai n(voi d)

This states that all of the C code between the two braces (or curly brackets), { ... },is part of a function
called mai n. Every C program has a mai n function, which is the place where the program starts execut-
ing. At the moment, the mai n function is the only function in this program. Later on in the lab you will
use, or call, some other functions that are often used in C. In laboratory 5 you will learn to create your
own functions.

The next part of the program lists the variables we are going to use in this function:

int distance_to_tokyo, distance to_airport;

i nt speed_of plane, speed_of _car;

int tinme_to fly, time_to drive, tinme_to_tokyo;
i nt average_speed,;

Revision 1.3 Computer Programming Using C 17

Variables are used in programs in much the same way that x, y and z (for example) are used in algebra,
to represent values. The computer needs us to tell it what variables we will be using before we use them.
To do that we need to tell it what the variable is called and what kind of information it will hold. This is
called the variable type. In C terminology we declare the variable and its type.

Syntax: Variable Declarations
type name[, nane]®;

e.g.

int an_integer_vari abl e;
doubl e a_real vari abl e;
int one_int_variable, another _int_variable;

Variables are placeholders for values, just like in algebra. In C you must declare a variable before
you can use it. To declare it you must give it a name and a type. The types you will use the most in
C are:

* i nt for integer numbers, both positive and negative such as 500, 2 and -20;
e char for single characters, such as ‘d” and *!’;

* doubl e for decimal or real numbers, both positive and negative, such as 0.05, 3.141 and -2.718.

Variable names can be as short as a single letter or very long indeed. It helps to give variables
descriptive names to help you remember what they are for. A variable name, or identifier, can contain
any of the following characters:

* upper and lower case letters, a-z, A-Z;
e the digits 0-9;

¢ the underscore character “_ .

Variable names may not start with a digit. Variable names are case sensitive, that is, upper and lower
case letters are treated as being different.

Some examples of valid variable names are:

e di stance_t o_t okyo
°
e anot her Count er

Some examples of invalid variable names are

® 2me2you (it starts with a number)

e dot . dot (it contains an invalid character)

Notice that there is a semi-colon (;) at the end of the line. Every C program is split into statements in a
very similar way that English is split into sentences. Every sentence in English ends with a full stop (or
period). Every statement in C ends with a semi-colon.

The next two lines of code are:

18 Computer Programming Using C Revision 1.3

di stance_to_t okyo

= 9720;
di stance_to_airport =

120;

This statement is called an assignment. It copies whatever is on the right-hand side of the equals sign
('=") to whatever is on the left-hand side. In other words, the variable on the left is assigned the value
on the right. The item on the left-hand side must be a variable. An assignment is very different to the
way an equals sign is used in mathematics. An equals sign in maths declares a relationship between the
left- and the right-hand sides e.g. « + y = z in maths tells you that + y must be equivalent to z. The
equals sign in C copies information. The first line of code above copies the value 9720 into the variable
di st ance_t o_t okyo.

This means you can write statements which make a lot of sense in C, but no sense in maths, such as:

sonmeCount er = sonmeCounter + 1;

Which means that the variable someCount er will be one greater in value after this line than it was
before. (Because you take the value of someCount er, add one to it and copy the result back into
soneCount er).

The next few lines carry out some mathematical operations. All the lines that do maths are also assign-
ments. They carry out a calculation and assign the result to a variable. For example the line:

time_to_drive = distance_to_airport / speed_of car;
takes whatever the value of the variable di st ance_t o_ai r port is, it then divides is by whatever the

value of the variable speed_of _car is and copies the result into the variable
tinetodrive.

Syntax: Mathematical Operators
+- o+ ()

The example source code “labl.c” contains a few of the mathematical operators that C supports. The
standard ones are:

e + (addition);

e - (subtraction);

* * (multiplication);

e / (division).
When there are multiple operators on a line some basic rules are followed: operators are looked
at by the C compiler from right-to-left and a special order is followed. This order is known as

operator precedence and means that multiply and divide are considered ‘more important” than add
and subtract. For example

6 +4/ 2

gives a result of 8. This is the same as the way that they are used in mathematics. Quite often you
want to clarify what you mean, you can use parentheses (brackets), ‘(" and ‘) ’, for this purpose. For
example

(6 +4) | 2

gives a result of 5.

Revision 1.3 Computer Programming Using C 19

The last line of the mai n function, before the closing brace (}) is:

return O;

This stops the computer from executing any more of the mai n function, and, because the mai n function
was the first function to run, there is nothing to run afterwards. So the program ends. The value 0 is
called a return value. We will see a little more about this later in this lab, and a lot more about it when
you come to write your own functions other than mai n.

Exercise 1.1: Understanding “lab1.c”

Before we continue you should make sure that you understand what is happening in the C program
source code.

¢ What do you think the program is trying to do?

* Repeat the calculations with a calculator. What results do you get? Write them down, as we
will need them very shortly.

¢ When you compile and run the program, what do you think it will appear to do?

If you can’t answer these questions, ask one of the demonstrators for help.

1.5 Compiling, Executing and Debugging a C Program

We are now going to use the IDE to compile, execute (run) and debug the C program we have just been
looking at. First we will look at how to compile a program using the IDE.

Compiling a program happens in two stages:

* compiling where each source file is translated into an intermediate format called an object file;

¢ linking where all the object files are linked together to form a single machine code file — an
executable.
On Microsoft Windows all executables end with the letters “.exe”
IDE to compile your project are on the “Build” menu.

. The commands for instructing the

aject |Build Tools ‘Window Help

B2 | @ Compile lab1.c Chrl+F7
Build labl.exe
(Al e st peuild Al
NE| Batch Build. ..

E Clean

Start Debug 3

Debugger Remate Connection. ..
tl

Execute labl.exe Chrl+F5

Set Active Configuration. ..)
i

Configurations. .. -

Erafile. .. Lz
T Tt L I
int awverage_speed:

Let us look at the top three menu items:

20 Computer Programming Using C Revision 1.3

¢ “Compile labl.c” will compile the current file (“lab1.c”) to produce an object file;

¢ “Build labl.exe” will do any compiling that needs to be done of any files in the whole project, then
it will link the files together to produce the executable “labl.exe”;

¢ “Rebuild All” forces the compiler to re-compile everything from scratch even if it thinks it is not
necessary.

We will be using the “Build” item the most often. Select this item now. The output window will show
the messages generated by the compiler. It should look like this.

—
| Configuration: labl — Win3i? Debug :I
[|Compiling. ..
labl.c
Linking. ..
labl exe — 0 error(=), 0 warningi{=) -
A ¥ Build { Debug & Findin Files 1 & Findin Files2 7] 4| | 3

You can see that the IDE ran the compiler, which produced an object file, and the linker, which produced
an executable. It also tells you that there were no problems during this process i.e. there were no errors
and no warnings.

Errors and warnings occur when there are problems with the C source code:

e errors are when the source code is not written in proper C language syntax and the compiler
doesn’t understand, the compiler will give an error message to try to help you to understand the
problem;

* warnings are when the source code is written in valid C but the compiler thinks you might have
made a mistake. It may be that you have mistyped something or the flow of your program is
logically wrong.

Only errors will stop the compiler and linker from producing an executable. Warnings will not stop it,
but you should still pay a great deal of attention to them! Errors and warnings appear in the output
window like this. (This is just an example. You shouldn’t be seeing anything like this at the moment).

—
| Configuration: labl — Win3Z Debug -
[Compiling. .. _J
labl.c
h:~zlab~labl~labl {12} : error CZ065: 'in' : undeclared identifier
h:wzlab~labl~labl . =(12) : error C2146: =yntax error @ mi=sing ':' before identifier 'dist
h:~zlab~labl~labl . c(12) . error CZ20685. 'distance_to tokwvo' | undeclared identifier -
l_[zl\ Build { Debug & Findin Files1 % Find in File=2 F]| 4 [3

Each line in this outputis an error. Looking at the first line, the text h: \cl ab\l ab1\| abl. ¢ is the name
of the file the compiler was working on. (12) means that the error was on line 12. error C2065 is
the the error number, which you can usually ignore. All the remaining text is the error message. If you
cannot understand an error message ask the demonstrators for help.

We have now compiled our program. There are two ways in which we can run it:

e find the executable file, and double click on it to run it;

¢ ask the IDE to run it for us.
The executable file is in a subfolder of the project, which has the following path:

h:\ cl ab\ | ab1\ debug\ | abl. exe

Revision 1.3 Computer Programming Using C 21

o
You can look for it if you like. The easier way is to use the “Execute labl.exe” option on the “Build” @
menu. Click on that option now.

You should find that a new window appears which is black and contains says “Pr ess any key to
conti nue”. That means that your program has run and has already finished. Very unimpressive so far!

You should have noticed from the program code that there are no statements telling the computer to
display any information to the screen. So it doesn’t. When you are writing a C program the computer
will not do anything that you haven’t told it to do. Sometimes that is useful, other times, less so.

In order to find out whether your program is working or not, and whether you understand what it is
trying to do, we are going to look inside the program whilst it is running. This process is called debugging
as it is usually used to try and find errors, or bugs, in your program and remove them.

The debugger is built in to the IDE. We will be using two of its most important features:

* stepping, which allows you to execute your program a line at a time, while the editor shows you
which line will be executed next;

e inspecting, which allows you to look inside variables to find out what their values are, whilst the
program is running.

-
To begin stepping through your program, select the menu item “Build” — “Start Debug” — “Step Into”. @

Build Tools Window Help

@ Compile labl.c Chrl4+F7 j
Build 1ab1 . exe F?
¢ k23 mebuild Al E
" BakchBuid... _
Clean ;;t‘gis ?unple mnathemnat

Stark Debug Go Fs
Debugger Remote Connection. . Tl} Step Into

Execute labl.exe CHHFS M} Run to Cursar Cerl+F10
fttach to Process. ..

Set Active Configuration. .

.) riables for the calcul.
configurations... vo., distance to_airpo:
Brafile, .. speed_of_car;

T e - rrr—eimne_to_drive, timne to

Your program will begin executing and will pause, just before it reaches the first line. The editor will
show where it is up to with a small yellow arrow.

~ ™

* The main functic

*®

int mainivoid)

o 4

<% Declare some
int distance_t:
int speed of p.

.
You can now step through your code a line at a time by using the “Step Over” item on the “Debug” {?
menu, which will have appeared once you started the program running.

22 Computer Programming Using C Revision 1.3

& |Debug Tools ‘Window Help

‘ Go B
— [} Restart Chrl+Shift+F5 =
gk E{ Stop Debugging Shift+FS
o Eh Break B
E: Apply. Code Changes AL oL

B4 step Int Fi1
VEl
P Step out shift+F1 |
*} Run to Cursor CtrHF10

Step Into Spedific Function

rt;: % Exceptions. .,
1 @ Threads,..

d Modules...

S Show Mext Statement Alk+Mum *
. - 6" Quickiwatch. .. Shift+F9

=R .
et~ tAn.

You can also use the F10 key on your keyboard. This will move the yellow arrow down the left-hand
side of your source code, a line at a time. The debugger will skip lines that it cannot execute, such as
comments and variable declarations.

When you instructed the IDE to begin debugging it changed the layout of the main window to contain
the watch window.

IS |
ill Contest: I mainl] j
Hame Yalue | -

distance to airpc 120
distance to tolkyc 9720
=zpeed_of_car 100 -

A0 Ao £ Locals &, this £

This shows you what the contents of variables are at the current point in the program. As you step
through the program you should be able to see the values change in this window. The “Auto” tab inside
the watch window (the one that is displayed by default) shows you the variables that have changed
most recently. Sometimes a variable that you want to see the value of is not on this list. By clicking on
the “Locals” tab, the watch window will show a list of all variables that are local to the current function
(the mai n function in this case). In the case of the current program, the “Locals” tab will show a list of
all variables and their values.

o

@ When you reach the last line of the program, do not continue to step. The debugger will start to try and
execute code that is not part of your program, which can get very confusing. Choose the “Go” option
from the “Debug” menu to allow the program to terminate.

Exercise 1.2: Using the Debugger

Use the debugger to step through the program. Check the watch window after each time you step
and check that you understand what has changed and why.

* Do you understand what the program is doing?
* How do the calculations compare with the results you obtained with a calculator?

e If the results are different, why are they different?

If you can’t answer these questions, ask one of the demonstrators for help

Revision 1.3 Computer Programming Using C 23

1.6 Displaying Text on the Screen

We are now going to add a statement to the program which calls a function to put some text on the
screen. The function we are going to use is called pri nt f. To be able to use the function the compiler
needs to have some information about the function which is contained in a separate file, called a header
file. You can tell the compiler to look in the header file that is needed for pr i nt f by putting the following
line at the top of your program (before the mai n function).

#i ncl ude <stdi o. h>

This means “include information from the header file called st di 0. h”. It will allow the compiler to
understand the pri nt f function we are about to use.

After the line:
time_to tokyo =tine_to fly + time_to_drive
Type in a new line:

printf("It takes %l hours to get to Tokyo\n", time_to_tokyo);

Make sure you get the direction of the backslash (\) correct and that you don’t miss the semicolon off
the end of the line. Be careful that you don’t change the case of the letters that you type from the ones
printed here. C always treats lowercase letters (like ‘a’, ‘b’ and ‘c’) differently from uppercase letters
(like ‘A", “B" and ‘'C’).

Build the executable again. You shouldn’t have any errors or warnings. If you do, ask the demonstrators
for help.

Use the menu item “Build” — “Execute labl.exe” to execute the new program. You should see a window
containing the following text.

It takes 9 hours to get to Tokyo
Press any key to continue

Syntax: Function Calls

[vari abl e =]nane([argunent [, argurent |]);

To call a function you must first know its name, and whether or not it needs any information when
you call it. Pieces of information that you give to a function when you call it are called arguments. Ar-
guments are enclosed in a set of parentheses (brackets) and are separated by commas. For example,

the function call

printf("lt takes %l hours to get to Tokyo\n", tinme_to_tokyo);
calls the pri nt f function and passes two arguments. The first argument is

"It takes % hours to get to Tokyo\n"
and the second argument is

time_to_tokyo

Some functions give, or return, a result after they have been called. We will meet some examples of
these types of functions in later labs.

24 Computer Programming Using C Revision 1.3

Function Reference: pri nt f — Displays text on the screen

printf(format string [, data.item]*);

e.g.

printf("Hello, World\n");
printf("Display the value of an int variable: %\n", an_int);
printf("Display the value of a double variable: %f\n", a double);

The pri nt f function displays text and data on the screen.

It takes the following arguments:

e format _string is the text to be printed on the screen enclosed in double quotes " . . .

e dat a_i t emthese are variables whose values will be printed on the screen

In order to specify where in the text the values of variables are to be printed, special characters
are used in f or mat _st ri ng. These are known as place holders because they reserve space for these
values to be printed. All pri nt f place holders begin with a percent character (%). The most common
place holders are:

* %l for integer (i nt) variables. You can remember this as d for decimal.
® % f real valued (doubl e) variables.

* % for single characters (char).

The place holders are matched with the comma separated dat a_i t emarguments in order. For ex-
ample:

printf("Result 1 = 9%, result 2 = %l\n", 6, 7);
will display
Result 1 =6, result 2 =7

The pri ntf function is defined in the header file st di 0. h, therefore, to use pri ntf you must
make sure that the line

#i ncl ude <stdi o. h>

appears near the top of your source file. This allows the compiler to understand and find the pri nt f
function.

The printf fornmat _string can also contain special sequences of characters such as \n which begins
a new line and \t which displays a tab character. The backslash (\) functions as a special character
causing the next character to be treated specially. This is called an escape sequence. If you want to specify
a backslash in C you have to type the escape sequence for a backslash, which is two backslashes (\\).

Revision 1.3 Computer Programming Using C 25

Exercise 1.3: Using the doubl e Variable Type

You should have noticed that because the program uses integer variable types it produces an answer
of 9 hours, when the correct answer is 9.2 hours. To get the correct answer you should use the
doubl e variable type.

* Change the variable declarations so that the type of all variables is now doubl e rather than
int.

¢ Change the format specifier in the pri nt f function call to be % f rather than %a.

You should now be able to rebuild your program and execute it.

Exercise 1.4: Calculating the Proportion of Time Spent in the Air

Your program should now display the fact that it takes 9.2 hours to get to Tokyo. You are going
to add some code of your own to display the percentage of the total time which is spent on the
aeroplane. It should also display the percentage of time spent in the car (obviously the sum of the
two should be 100).

Your program should display something like:

X percent of time is spent in the aeropl ane

X percent of time is spent in the car

with the x s replaced by the results of the calculations you have added.

Some hints:

¢ you will need some more variables. Choose their names carefully;

¢ you will need to add some calculations of your own. Remember that every statement in C ends
with a semicolon;

* you will need to add two pri nt f lines to display the percentage results.

Ask the demonstrators for help if you do not understand how to do this.

Exercise 1.5: The Return Code

If you step through your program in the debugger, or run it in the debugger (but not if you choose
the “Execute” command), after your program has finished the output window contains the text

The program ' H \cl ab\l abl\ Debug\Il abl. exe’ has exited
with code 0 (0x0).

If you change the last line of your program so thatr et urn 0O; becomesreturn 20; (for example),
what happens to the message in the output window after your program has finished running?

(You can change this number to be whatever you like but it must be an integer).

26 Computer Programming Using C Revision 1.3

1.7 Graphics Option

You should only begin this section if you have chosen to do the graphics option (i.e. if you are a non-
Music Technology student), or if you have chosen to do the music option but have already completed
that section. The section for the music option begins after this one (Section 1.8 on page 32).

As an example of how to use C we are going to investigate graphical output. Although this is not strictly
part of the C language, the principles are important for all C programming. Producing graphical output
in Windows is quite complicated so this laboratory course uses a set of functions which are explicitly
intended for creating graphics easily on Windows. This set of functions is an example of a software
library. The graphics library functions create a separate window to draw in.

Graphics are displayed in the graphics window by colouring the tiny dots that make up the display.
These tiny dots are called pixels. Using the graphics functions you can control the colour of any pixel
inside the graphics window. Each pixel in the window has a location which can be described using an
2- and y-coordinate, much like on a graph. The difference from most graphs is that the origin of the z-
and y-axes is in the top left of the window.

0

0 ,
T-ax1is

y-axis

You will be able to choose the size of the graphics window, up to the size of the screen.

1.7.1 A Simple Graphics Program

If you have a project open at the moment, the first thing you must do is close it. Select “File” — “Close
Workspace” to do this. You should then take a copy of the project “graphicsl”, and open it in the IDE.
Check back to the “Before You Begin” section if you cannot remember how to do this.

The “graphicsl” program behaves quite simply at the moment. It displays the graphics window, which
has a black background, and draws a red circle on it. When a key on the keyboard is pressed, the
window closes. Try building and executing “graphics1”.

The source code for “graphicsl.c” is shown below.

[*

* A programto denonstrate sinple graphical operations
* C Programm ng | aboratory 1

*/

/* This line allows the conpiler to understand the
* graphics functions

*/

#i ncl ude "graphics_lib.h"

| *

* The main function - the programstarts executing here
*/

i nt mai n(void)

{

/+ Declare two variables for the x and y positions =/
int x_position, y _position

Revision 1.3 Computer Programming Using C 27

/* Open a graphics wi ndow =/
[+ Make it 640 pixels wide by 480 pixels high */
i ni twi ndow(640, 480);

/* Set up sone coordinates */
X_position = 100;
y_position 340;

/* Set the current drawi ng colour to be red */
set col or (RED) ;

/+ Draw a circle at the coordi nates */
/* Gve it a radius of 10 pixels */
circle(x_position, y_position, 10);

/+ Wait for a key press =*/
getch();

[+ C ose the graphics w ndow */
cl osegraph();

return O;

}

We will go through this program a few lines at a time. Make sure you understand it before continuing.

At the top of the source file, after the initial comment, is the line
#i ncl ude "graphics_lib.h"

This allows the compiler to understand the graphics functions. This works in the same way as the
#i ncl ude <stdi 0. h> line you needed to put into your code to allow the compiler to understand the
printf function.

The first line of the main function declares two integer variables:
int x_position, y position;

These variables are declared in exactly the same way as in the first example.

The next line calls a graphics function to display the graphics window:
i nitwi ndow 640, 480);

Calling the i ni t wi ndow function in this way produces a window 640 pixels wide (the 2-direction) and
480 pixels high (the y-direction).

28 Computer Programming Using C Revision 1.3

Function Reference: i ni t Wi ndow — Creates a graphics window of a specified
size

i ni twi ndow(wi dt h, height);

e.g.

i ni twi ndow 640, 480);

The i ni t wi ndow function creates the graphics window to allow you to begin drawing in it. The
graphics window will be created with a drawing area of the specified dimensions, i.e. it will be
Wi dt h pixels wide and hei ght pixels high.

When you have finished with the graphics window you should close it with the cl osegr aph func-
tion.

i ni twi ndowis defined in gr aphi cs_l i b. h.

The next two lines set the coordinate variables to the point at which we are going to draw the circle:

X_position
y_position

100;
340;

This position will be the centre of the circle.

Before we do any drawing, we set the colour that we will be using to draw with:

set col or (RED) ;

Calling the set col or function does not produce any output on the screen. It changes the colour that
will be used for future graphics functions. It is the equivalent of picking up a pen of a specific colour.

Revision 1.3 Computer Programming Using C 29

Function Reference: set col or — Sets the current drawing colour
set col or (col our _nunber) ;
The set col or function determines the colour that is used for future graphics drawing operations.

The colour is set using the col our _nunmber argument which is an integer from 0 to 15. You can just
pass it a number but the graphics system defines some colour names to make it easier to use:

0 BLACK 8 DARKGRAY

1 BLUE 9 LI GHTBLUE

2 GREEN 10 LI GATGREEN

3 CYAN 11 LI GHTCYAN

4 RED 12 LI GATRED

5 MAGENTA 13 LI GATMAGENTA
6 BROWN 14 YELLOW

7 LI GHTGRAY 15 WH TE

For example, to set the drawing colour to yellow you could either write

set col or (14);

or

set col or (YELLOW ;

set col or is defined in gr aphi cs_l i b. h.

The next line actually draws the circle on the screen:
circle(x_position, y position, 10);

The circle has its centre at (x_posi ti on, y_posi ti on) and has a radius of 10 pixels.

Function Reference: ci r c| e — Draws a circle in the graphics window
circl e(xpos, ypos, radius);

The ci r cl e function draws a circle in the graphics window in the current colour. The circle will
have its centre point at the position specified by xpos and ypos which are coordinates from the
top-left corner of the graphics window, in pixels. It will have a radius as specified by r adi us, in
pixels.

For example
circle(200, 300, 20);

will draw a circle with its centre at (200, 300) with a radius of 20 pixels.

ci rcl e is defined in gr aphi cs_l i b. h.

The next line calls a function which waits for a key press:

getch();

30 Computer Programming Using C Revision 1.3

This simply has the effect of leaving the graphics window on the screen while the computer waits for
a key press. When the user presses a key, the program moves on, and closes the graphics window.
Without this line the graphics window would disappear before you had a chance to see it. We will be
seeing more of the get ch function in later labs.

Function Reference: get ch — Waits for a key press from the keyboard
[character =]getch();

The get ch function waits for a key press on the keyboard and then returns the value of the key that
was pressed as an integer character code.

It is easy to use as a function that waits for a key press, when you don’t care about which key the
user has pressed. For example

getch();

If you want to find out what key was pressed then you can assign the result of the function call to a
variable

i nt variable = getch();

We will see more of this in later labs.

get ch is defined in coni 0. h and also gr aphi cs_|i b. h.

After the user has pressed a key, the program will continue to the next line:
cl osegraph();

which closes the graphics window.

Function Reference: cl osegr aph — Closes the graphics window
cl osegraph();

The cl osegr aph function closes the graphics window. It should be called before your program
ends if you opened a graphics window.

cl osegr aph is defined in gr aphi cs_| i b. h.

Revision 1.3 Computer Programming Using C 31

Exercise 1.6: A First Look at Graphics

Before we continue you should make sure that you understand what is happening in this graphics
example.

Some things to investigate for yourself:

e try changing the colour that is used to plot the circle;
* try moving the position in which the circle is drawn by changing the coordinates;

e try changing the size of the circle.

After you have made a change remember to rebuild the program and execute it to see the results.

1.7.2 Some Simple Drawing

The next thing you will do is to draw a very simple stick person using a circle and four lines. Hopefully
it will look a bit like this:

You have already seen the ci r cl e function. The only other function you need to know about to draw
the stick person is the | i ne function.

Function Reference: | i ne — Draws a line in the graphics window

line(start x, start.y, endx, endy);

e.g.

li ne(100, 150, 200, 250);

The | i ne function draws a line in the graphics window using the current colour. The line is defined
by its starting point and its ending point. The arguments st art x and st art _y define the z- and
y-coordinates of the starting point respectively. The arguments end_x and end_y define the z- and
y-coordinates of the ending point respectively.

| i ne is defined in gr aphi cs_l i b. h.

32 Computer Programming Using C Revision 1.3

Exercise 1.7: Drawing the Stick Person

Change the program to place the circle in the right place for you to draw your stick person. Add
four | i ne function calls to draw the lines to make up the stick person’s body, arms and legs. This
may take a lot of experimentation!

It helps if you draw it out on paper first and try and work out what coordinates you will need.
Remember that the origin of the z- and y-axes is in the top left of the window.

Plot the lines using the x_posi ti on and y_posi ti on variables. For example:
line(x_position, y position + 10, x_position, y _position + 50);

This means that changing the x_posi ti on and y_posi ti on variables moves the location of the
whole stick person, not just the circle.

Ask the demonstrators for help if don’t know how to complete this exercise.

1.8 Music Option

You should only begin this section if you have chosen to do the music option (i.e. if you are a Music
Technology student), or if you have chosen to do the graphics option but have already completed that
section.

As an example of how to use C we are going to investigate how to get the computer to make sounds.
Although this is not strictly part of the C language, the principles are important for all C programming.

We will be using the computer’s MIDI facilities to produce sound. MIDI stands for Musical Instrument
Digital Interface and is a way of connecting electronic musical devices together such as keyboards,
synthesisers and computers. Elsewhere in your Music Technology course you will learn about it in
much greater musical and technical detail. For now, we will just be using it to get the computer to play
sounds.

Producing MIDI sound output in Windows is quite complicated so this laboratory course uses a set of
functions which are explicitly intended for creating sounds easily on Windows. This set of functions is
an example of a software library.

1.8.1 A Simple Music Program

If you have a project open at the moment, the first thing you must do is close it. Select “File” — “Close
Workspace” to do this. You should then take a copy of the project “musicl”, and open it in the IDE.
Check back to the “Before You Begin” section if you cannot remember how to do this.

The “musicl” program behaves quite simply at the moment. It plays a single note, a middle C, for a
second and then stops. Try building and executing “music1”.

The source code for “musicl.c” is shown below.

| *
* A programto denonstrate sinple musical operations
* C Programm ng | aboratory 1

*/

/+ This line allows the conpiler to understand the
* mdi functions

*/

#include "midi _|lib.h"

Revision 1.3 Computer Programming Using C 33

| *
* The main function - the programstarts executing here
*/
i nt mai n(void)
{
/+ Declare integer variables for specifying a note */
int pitch, channel, velocity;
/* Set the pitch variable to 60, which is mddle C */
pitch = 60;
[+ W will play the note on M DI channel 1 =*/
channel = 1;
/+* The note will have a nediumvelocity (volune) =*/
vel ocity = 64;
/= Start playing a mddle C at noderate vol une x/
m di _note(pitch, channel, velocity);
/* Wait, for 1 second, so that we can hear the note playing */
pause(1000) ;
[+ Turn the note off by setting its volume to 0 =/
m di _note(pitch, channel, 0);
return O;
}

We will go through this program a few lines at a time. Make sure you understand it before continuing.

At the top of the source file, after the initial comment, is the line

#include "midi _lib.h"

This allows the compiler to understand the MIDI (music) functions. This works in the same way as the
#i ncl ude <stdi 0. h> line you needed to put into your code to allow the compiler to understand the
printf function.

The next few lines set the values of integer variables which will control the note that the computer plays:

pitch = 60;
channel = 1;
velocity = 64;

We will see what these numbers mean in a moment when we look at the m di _not e function.

The next line starts the computer playing a sound — it turns a note on:

m di _note(pitch, channel, velocity);

The mi di _not e function is perhaps the most useful function you will use for creating sounds. It is used
to play a note of a certain pitch on a certain channel. MIDI allows 16 different channels, each of which
can be set up to sound like a different instrument. Each channel can have notes playing on it at the same
time. You can therefore have up to 16 different instruments (e.g. violin, piano, synth etc.) each on its
own MIDI channel. The channels are numbered 1 to 16.

The musical pitch is specified by a number. Each semi-tone (each note on a piano-like keyboard) has its
own number. Middle C, for example, has the number 60. The C# immediately above middle C has the
number 61, the D above that has the number 62, and so on. There are 12 semitones in an octave, so the
octave below middle C has the number 48 (60 - 12 = 48), and the octave above has the number 72. MIDI

34 Computer Programming Using C Revision 1.3

can produce notes in a range a few octaves wider than a standard piano: the lowest note number is 0,
the highest is 127.

The other thing you must specify when turning on a note is the velocity. This is equivalent to how hard
(or fast — hence the term velocity) the key on a piano (or synthesiser) would have been pressed to
produce a note of this volume. Velocity is therefore a specification of the ‘loudness’ or ‘power” in a note.
It ranges from 127 (the loudest) down to 0 (slient). In fact, MIDI uses a velocity of 0 to turn a note off.
You will see this in a moment where we instruct the computer to turn the note off.

Function Reference: m di _not e — Starts or stops a MIDI note playing
m di _not e(pitch, channel, velocity);

The mi di _not e function sends a signal to the computer’s MIDI device allowing you to turn notes
on and off. It has three arguments:

¢ pitch The pitch of the note as an integer value in the range 0 to 127. Middle C has the value 60.

o channel The MIDI channel you wish to use to play the note as an integer number. There are
16 MIDI channels numbered 1 to 16, each one can be set up to use a different instrument and
notes can be playing on all channels at once.

e velocity The velocity (related to volume) of the note to be played as an integer value. This
argument can range from 127 (loudest) to 0 (silent). Setting the velocity of a note to zero is
used to turn the note off.

So for example, to play middle C on channel 1 at moderate volume you could write:
m di _note(60, 1, 64);
which would turn the note on. To turn the note off you would write:

m di _note(60, 1, 0);

A note that is not turned off will continue to play forever, possibly even after your program has
ended!

m di _not e is definedinm di i b. h.

If we turned the note off again straight away it would play for such a short time that you would not
hear it. To make sure you can hear it we make the computer wait, using the pause function:

pause(1000) ;

You tell the pause function how long to wait for (in milliseconds) and it does not allow your program
to continue until that time has elapsed. The pause therefore controls how long the note is played for:
its duration. In this case the note will play for one second (1000ms = 1 second).

Revision 1.3 Computer Programming Using C 35

Function Reference: pause — Waits for a specified amount of time
pause(duration);
The pause function causes the computer to wait before continuing. The amount of time the com-

puter waits for is determined by the dur at i on argument, which is a integer number, and specifies
the amount of time the computer should wait for in one thousandths of a second (milliseconds).

For example:
pause(500) ;

will cause the computer to wait for half a second (500 milliseconds) before continuing.

pause is defined inm di _| i b. h.

After the program has waited for 1 second, the note is turned off:
m di _note(pitch, channel, 0);

Notice that the correct pitch and channel must be specified so that the computer knows which note to
turn off.

Exercise 1.8: Experimenting with MIDI

Experiment with changing the values relating to the note that is played in the “musicl” example.
Try altering;:

¢ the pitch;

¢ the velocity;

¢ the duration (the pause function argument).

After you have made a change remember to rebuild the program and execute it to see the results.

When you are happy with creating different notes and durations try to get the computer to play a
set of notes, one after the other. Build up a set of notes to form a tune. You can use the “Copy”
and “Paste” commands on the “Edit” menu in the IDE to copy sections of code multiple times. This
should save you having to type the same sections again and again!

If you don’t know how to do this, ask the demonstrators for help.

1.8.2 Playing More than One Note at Once

If you turn two notes on, one after the other, they will both play at once. For example:

m di _note(pitch, channel, velocity);
m di _note(pitch + 3, channel, velocity);

and after a pause, turn the same notes off:

m di _note(pitch, channel, 0);
m di _note(pitch + 3, channel, 0);

36 Computer Programming Using C Revision 1.3

By choosing the correct notes you can create a chord. For example, you could turn on a major triad with
the following code.

/[* Turn on the tonic =*/
m di _note(pitch, channel, velocity);

[+ Turn on the major third =/
m di _note(pitch + 4, channel, velocity);

[* Turn on the perfect fifth =/
m di _note(pitch + 7, channel, velocity);

You would need to turn all the notes off again afterwards.

Exercise 1.9: Creating Chords

Change your tune so that it ends on an appropriate major triad. Experiment with ending on other
chords, can you produce:

e a minor chord?
® a dominant 7th?

¢ a diminished chord?

a minor 7th added 9th chord?

Some of these may not be the most appropriate for your tune, but try them anyway!

1.8.3 Changing the Instrument

You can change the MIDI instrument that is being used on a given channel using the pr ogr amchange
function. For example:

program change(1, 57);
sets MIDI channel 1 to use instrument number 57, which is usually a trumpet. The exact correspondence

between instrument numbers and instrument sounds (or voices) is dependent on the sound card being
used.

Revision 1.3 Computer Programming Using C 37

Function Reference: pr ogr amchange — Changes the current instrument on a
MIDI channel

pr ogramchange(channel , voice);

e.g.

program change(1, 51);

The pr ogr amchange function changes the active instrument on the channel specified by channel .
channel should be an integer number from 1 to 16 (the same as used in the mi di _not e function).
The instrument is selected using the voi ce argument. This should be an integer number between 1
and 128. Each number corresponds to a different instrument. The instrument that a given number
corresponds to is defined by the General MIDI specification, which most MIDI devices adhere to.
Some common instruments and their voice numbers are:

1 Acoustic Grand Piano 43 Cello
7 Harpsichord 49 String Ensemble
10 Glockenspiel 51 Synth Strings
13 Marimba 57 Trumpet
17 Drawbar Organ 58 Trombone
27 Electric Jazz Guitar 66 Alto Sax
28 Electric Clean Guitar 67 Tenor Sax
33 Acoustic Bass 74 Flute
41 Violin 119 Synth Drum

Check MIDI documentation (for example on the internet) for more information.

pr ogr amchange is defined in m di | i b. h.

Exercise 1.10: Changing the Program

Experiment with using pr ogr amchange to change the voice that is being used to play your tune.

Exercise 1.11: Creating both Melody and Chords

Use the pr ogr amchange function to set up two different voices on two different MIDI channels.
Add some simple chords to your tune (just a few will do) which should play at the same time as the
melody, but on a different channel.

If you don’t know how to do this, ask the demonstrators for help.

1.9 Summary

Now you have completed this lab you should have some understanding of the basic structure of a C
program. You should also:

¢ understand how to declare variables and choose their type;

38 Computer Programming Using C Revision 1.3

* be able to carry out some simple mathematics in C;

* understand what a function call is and be able to call some simple functions such as pri nt f.

If you chose the graphics option then you should understand the basic structure of a graphics program
including how to display and close the graphics window. You should also be able to draw circles and
lines in many colours.

If you chose the music option you should be able to instruct the computer to play notes of any valid
pitch and on any instrument. You should have learned that, with MIDI, notes need turning on and off,
and that the time between the two is the note’s duration. You should also have learned how to play
chords.

Laboratory 2

Conditional Statements: The 1 f and
swW t ch Statements

2.1 Overview

This laboratory will introduce you to thei f and swi t ch statements. Both allow your program to make
decisions. You will learn how to form relational expressions which evaluate to be either true or false and
allow i f statements to work. You will find that swi t ch statements are useful when there are lots of
exact options.

This lab will also introduce you to two ways in which you can get input from the user of your program
(even if that’s you!). The scanf function allows you to get a whole line of input from the user, and is
useful for obtaining input made up of lots of key presses, like numbers. The get ch function allows you
to get a single key press from the user and is useful for more interactive input. You will use both of these
functions a great deal more in later labs as well.

2.2 Getting Input from the User

We will begin by using the scanf function to obtain input from the user of your program. Copy the
project “lab2” and open it in the IDE. The “lab2” program will ask the user for an integer number. After
the user has typed in a number and pressed the “Enter” key, the program tells the user what number
they entered. Try building and executing the “lab2” project.

The source code for “lab2.c” is shown below.

| *

* A programto denonstrate the use of the scanf function
* C Programm ng | aboratory 2

*/

[+ This line allows the conpiler to understand both the
* printf and scanf functions

*/
#i ncl ude <stdio. h>

int main(void) {
[+ Declare a variable to store an integer nunber =/
i nt nunber _entered,

/* Qutput sone text to the user =*/
printf("Enter an integer nunber: ");

40 Computer Programming Using C Revision 1.3

[+ Wait for the user to enter a nunber and hit enter x/
[+ Store the nunber in the nunber_entered variable */
scanf ("%", &nunber entered);

/+ Display the nunber that the user entered */
printf("The nunber you entered was %\ n", nunber_entered);

return O;

The program uses the pri nt f function that you met in the last laboratory to display a message to the
user:

printf("Enter an integer nunber: ");

It then uses the scanf function to get a single integer value from the user, and to put the information
into the nunber _ent er ed variable:

scanf ("%", &nunber entered);

The first argument of the scanf function is at least one place holder enclosed in double quotes, exactly
the same as they are used in the pri nt f function. In a similar way to pri nt f, for every place holder
in the quotes there should be a variable listed as part of the function call. Usually you will only use one
place holder and one variable with scanf .

You should notice that the variable has an ampersand, a “&” character, before it. This is not a mistake!
When you use scanf you should put an ampersand before each variable name. The exact reason for
this is quite complicated and you will learn about it in laboratory 12, next term. Until then you will have
to remember that whenever you use the scanf function to get numbers or single characters from the
user you must put an ampersand (&) before the variable name.

Revision 1.3 Computer Programming Using C 41

Function Reference: scanf — Obtains a line of input from the user

[variable =]scanf(format string [, &Jata.item]”);

e.g.

scanf ("%l", &an_int_variable);
scanf ("%", &a char_vari able);
nunber _of matches = scanf("%f", & doubl e variable);

The scanf function obtains typed input from the user. It lets the user type in text and then waits
for them to press ‘Enter’. It then takes the text that they have entered and attempts to match it to the
place holders specified as part of the f or mat _stri ng.

It takes the following arguments:

e format _stri ng contains the place holders that scanf will try to match input to enclosed in
double quotes " . . . "

e dat a_i t em— these are variables which will be set to the values recovered from the user’s

input

scanf uses the same place holder system as pri nt f. As a reminder, the most useful place holders
are:

¢ %l for integer (i nt) variables;
e % for single characters (char);

e % f real valued (doubl e) variables.

The place holders are matched with the comma separated dat a_i t emvariables in order.

The return value of scanf (the value that is assigned to vari abl e) is the number of place holders
that were successfully matched.

scanf is defined in st di 0. h.

Exercise 2.1: Changing the Variable Type

Alter the “lab2” program so that it accepts real valued numbers from the user, not just integers. You
will need to change the type of the nunber _ent er ed variable and the place holders in both the
scanf and pri ntf functions. Rebuild and execute the program to check that it works.

2.3 Making a Decision: Conditional Statements

We are now going to use a conditional statement to make a decision about which part of your program
will execute depending on the number that the user enters. We will do this using an i f statement.

s
Change your “lab2” program to remove the second pri nt f line (the one that displays the value back ioig‘
to the user), and replace it with the following lines:

if (nunber_entered > 10)
printf("That number is bigger than ten\n");

42 Computer Programming Using C Revision 1.3

Try building and executing the program. After you have entered the number, it should tell you whether
the number is bigger than 10.

When you are satisfied that it works (you may have to run it a few times), add another two lines after
thei f part to add an el se condition, like this:

i f (nunber_entered > 10)
printf("That number is bigger than ten\n");
el se
printf("That number is smaller than ten or equal to ten\n");

Build your program and execute it a few times, to test it with different numbers.

Exercise 2.2: Understanding Conditionals

Use the debugger to try stepping through the program you have just written with the i f statement
in it. Where does the flow of execution (the yellow arrow) go:

e for numbers greater than ten;

e for numbers less than ten.

When the yellow arrow reaches a scanf statement it will wait until you enter a number before it
will continue. To enter the number you must make sure that the window in which your program is
actually executing (it will have a black background) is at the front.

Anif statement makes a decision based on the part that is in brackets. The part in brackets is called a
relational expression. It compares things using relational operators (such as greater than, >, and less than,
<) to obtain an answer that is true or false. The words i f and el se are treated specially by C; it uses
them to recognise that you want to do something conditionally. Words that are treated specially in this
way are called keywords, because they are treated specially they cannot be used for variable names. You
will meet many more keywords as part of this course.

Revision 1.3 Computer Programming Using C 43

Syntax: Relational Operators and Expressions
< > == |l= <= >=

Relational operators allow you to compare things such as the value of variables and numbers or
characters. A simple relational expression compares two things and uses one relational operator:

iteml rel ati onal operator iten®

The relational operator can be any one of the following:

® < (less than)

® > (greater than)

® == (equal to)

e | = (not equal to)

® <= (less than or equal to)
= (

® >= (greater than or equal to)

The result of a relational expression is therefore frue or false. (We say the expression evaluates to true
or false).

So, for example, let’s construct a relational expression which tests the value of a variable called t est
against the number 5. If test has the value 6 then:

e test < 5 will evaluate to false
e test > 5 will evaluate to true
e test == 5 will evaluate to false

e test != 5 will evaluate to true
If test has the value 5 then:

e test < 5 will evaluate to false

e test > 5 will evaluate to false

t est == 5 will evaluate to true
e test != 5 will evaluate to false

e test <= 5 will evaluate to true

.
V
1l

t est 5 will evaluate to frue

It is very important to notice that the operator for testing whether two things are the same is not “=".
This is the assignment operator, which we saw in the previous lab. The operator for testing if two
things are the same is the double equals “==", this is different to the assignment operator. Don’t get
them confused. Sometimes the compiler won't pick the error up and your program will malfunction
in peculiar ways!

44 Computer Programming Using C Revision 1.3

Syntax: i f statements
if (relational _expression) statenentl; [else statenent?2;]

The if statement allows you to execute a piece of your program conditionally. The i f
statement guards a single statement (st at ement 1) of a program and only executes it if the
rel ati onal _expr essi on evaluates to true. Optionally, an i f statement can be followed by an
el se section, which guards a second statement (st at enent 2). This second statement only exe-
cutes if the r el ati onal _expr essi on evaluates to false.

You have already seen how to add an el se section to an i f statement. You can produce a more com-
plicated (and more useful) structure by making the statement that the el se part guards (st at enent 2
in the above syntax box) another i f statement. This allows you to connect i f statements together, for
example:

i f (nunber_entered < 5)

el se if (nunber_entered > 5)

el se if (number_entered == 5)

el se

You will need to understand how this works in order to be able to complete the next exercise. Ask the
one of the demonstrators if you need any help.

Exercise 2.3: Using Relational Operators
Alter the “lab2” program so that after it accepts the number from the user it prints either

That nunber is less than or equal to zero

or

That nunber is greater than or equal to ten
or

That nunber is between one and nine
appropriately.

If you don’t know how to answer this question ask one of the demonstrators for help.

2.4 Grouping Statements into Compound Statements

o1
@ Try adding a second pri nt f statement to the final else condition of the program you have just written.
The code should look something a bit like this:

if o(...)

Revision 1.3 Computer Programming Using C 45

else.i.l.c (...)

el se
printf(...);
printf("A printf statenent | have just added\n");

What happens when you execute it?

You should find that the second pr i nt f statement is always executed. Compare the code with the syntax
boxoni f statements. You should notice thati f and el se clauses (a clause is a part of a statement) only
guard one statement. If you want the i f statement to guard more than one statement you must group
statements together into a compound statement. A compound statement replaces any statement like this:

st at ement ;

including the semicolon with a set of statements, grouped together by braces (curly brackets). Like this:

st at enent 1;
st at emrent 2;

You can replace any statement in C with a compound statement. This is useful for making ani f state-
ment guard a set of statements. Returning to our example, it should be rewritten like this:

if (...)
else.illlc (...)

el se
{
printf(...);
printf("A printf statenment | have just added\n");

Exercise 2.4: Adding Compound Statements

Add an extra pri nt f statement to every branch of youri f ...el se. You will need to use a com-
pound statement for each branch. Check that it works as you would expect when you execute it.

Compound statements are very useful for i f statements. You will find them essential in the next lab
when we look at repeating and iterating sets of statements grouped together into block statements.

46 Computer Programming Using C Revision 1.3

Syntax: Compound Statements

(...}

A compound statement is a way of grouping statements together to replace a single statement with
many statements. Any statement like this:

st at enent ;

can be replaced by lots of statements like this

{

st at enent 1;
st at enent 2;

}

This is useful for making the i f or el se clauses of ani f statement guard multiple statements.

2.5 Making More Complex Decisions: Logical Operators

Student x wants to go to the bar (which is only open after 7:00pm) but she will only go if she has some
money left. We could try and code this decision in C, it might look a bit like this:

if ((time >= 19:00) and (bank_bal ance > cost_of one_drink))
{
go_to_bar();
finish_c_assignment();
}
el se
finish_c_assignment();

Please note: this is not real C! This kind of more complicated decision is common in everyday life. To
handle this kind of thing in programming code requires us to combine several decisions to form one
complex decision.

The relational expressions we have looked at so far make a single decision on the basis of a comparison
between two values (which could be variables). Quite often we need to be able to combine comparisons
together with an and or an or. These operations combine expressions which can already be evaluated
to the logical values true or false, in C they are known as logical operators. In C, an and is represented by
the symbol && (an ampersand twice) and an or is represented by | | (a vertical bar twice). There is an
extra logical operator for not, which turns a true into a false or a false into a true. The not operator is an
exclamation mark (!). You may need to use parentheses (brackets) with the not operator to ensure that
the operator is applied to the correct part of the expression.

Revision 1.3 Computer Programming Using C 47

Syntax: Logical Operators

rel ati onal _expressi on && rel ati onal _expressi on
rel ati onal expression || relational _expression
I'(rel ati onal _expression)

Logical operators allow relational expressions to be connected together to form larger relational
expressions. There are three logical operators which form expressions which may be evaluated to
true or false depending on the truth value of the expressions they are connecting.

* and (&&) evaluates to true only if both the relational expressions it connects evaluate to true.

* or (| |) evaluates to true if both either (or both) of the relational expressions it connects evaluate
to true.

* not (!) evaluates to true only if the expression it is modifying evaluates to false.

So, for example, if we have two variables: t est 1 which is 5 and t est 2 which is 21 then:

((testl < 10) && (test2 > 30)) is false

((testl

N

10) || (test2 > 30)) istrue

((testl

N

10) && (test2 > 20)) istrue

.
N

((testl 10) || (test2 > 20)) istrue

((testl

N

1) && (test2 > 30)) is false

((testl

N

1) || (test2 > 30)) isfalse

(!'(testl < 1)) istrue

('(testl < 1) & !(test2 > 30)) istrue

Make sure you understand these before you go on to the next exercise. If you need help, ask one of the
demonstrators.

Exercise 2.5: Logical Operators

From previous exercises you should have a program that takes a numeric input from the user and
distinguishes between numbers that are less than or equal to zero, numbers that are greater than or
equal to ten and numbers in between. In each case it should print a different response to the user
from a number of pri nt f statements.

Add to this program to allow the user to input two different numbers (you should prompt them
twice). Use pri nt f statements to show that the program can distinguish between the conditions:

e when either number is less than 0;
e when both numbers are less than 0;

* when the first number is greater than 10 and the other is not greater than ten.

The program should only need to display one of these messages (you may need to structure your
i f ...el se statements carefully to get it to do this).

48 Computer Programming Using C

2.6 Dealing with Many Options

Sometimes you may need to make a decision on a single variable where there are lots of possible options.
You could deal with this by stringing together lots and lots of i f statements, but C provides a special
statement to deal with this situation, called swi t ch. The swi t ch statement allows you to specify a
number of cases, which are the options that you are interested in. There is also an special case for ‘all

other options’, labelled def aul t .

The “lab2a” project demonstrates the swi t ch statement in a very simple way. Copy the project, build

and execute it.

The source code for “lab2a.c” is shown below.

| *

*

*/

A programto denonstrate the use of the switch statenent
C Programming | aboratory 2

#i ncl ude <stdi o. h>

i nt

{

mai n(voi d)
i nt nunber _entered;

[+ Qutput sone text to the user =/
printf("Enter an integer nunber between 1 and 9: ");

/= Wit for the user to enter a nunber and hit enter x/
[+ Store the nunber in the nunber_entered variable */
scanf ("%", &nunber_entered);

[+ Display the nunber that the user entered */
[+ But display it as English text =*/
printf("The nunber you entered was ");

[+ This switch statenent decides between |ots of options =/

swi tch (nunber_entered)
{
case 1:
printf("one\n");
br eak;

case 2:
printf("tw\n");
br eak;

case 3:
printf("three\n");
br eak;

case 4:
printf("four\n");
br eak;

case 5:
printf("five\n");
br eak;

case 6:
printf("six\n");

Revision 1.3

Revision 1.3 Computer Programming Using C 49

br eak;

case 7:
printf("seven\n");
br eak;

case 8:
printf("eight\n");
br eak;

case 9:
printf("nine\n");
br eak;

defaul t:
printf("not between one and nine\n");

}

return O;

Let us look at the swi t ch statement in detail. It begins with the keyword swi t ch followed by the name
of the variable that we wish to ‘switch’ on, in parentheses. Like this:

swi tch (nunber_entered)

We then describe a number of cases, which are different options for the value of the variable given in the
Swi t ch part. All these cases are enclosed in a set of braces, like a compound statement. The swi t ch
statement looks for the first case clause that matches the value of the variable. When it finds it, it starts
executing from that point onwards. Let’s take the example where the variable nunber _ent er ed has
the value 4. The swi t ch looks down its list of case clauses until it finds the one that say case 4:, it
then starts executing at that line, so the next thing it executes is the line:

printf("four\n");

The next line says

br eak;

which tells it to stop executing the code inside the swi t ch statement, and to continue after the closing
brace (}). You should also notice that there is a special case clause called def aul t . This gets executed
if none of the other case statements before it match. Because the swi t ch statement attempts to match
case clauses in order, the def aul t clause should always go last.

50 Computer Programming Using C Revision 1.3

Syntax: swi t ch statements
switch(variable) { [caseclause|* |[default_clause] }
The swi t ch statement allows you to make a choice between a number of options. Each option is

a different value of the vari abl e specified at the start of the statement. Each possible value of
interest is described using a case clause. A case clause has the following syntax:

case val ue:

A swi t ch statement finds the first case that matches and continues to execute from that point
onwards. It will even continue into the next case. To stop it executing at the end of the code for
each case it is common to include a br eak statement. The br eak statement stops any more of the
SWi t ch statement from executing. A case clause with a br eak statement looks like this:

case val ue:

br eak;

A def aul t clause is like a case clause except that it matches anything. This is commonly used at
the end (after all the case clauses) to match anything that hasn’t already been matched. Because the
def aul t clause goes last, it does not need a br eak statement.

Exercise 2.6: Flow of Execution in swi t ch Statements

Try using the debugger to step through the swi t ch statement in the “lab2a” example. Watch where
the flow of execution goes. What do you think will happen if you remove some of the br eak state-
ments? When you have finished stepping through, remove some of the br eak statements, rebuild
the project and try stepping through it again. Does it do what you expected?

If you do not understand the program’s behaviour ask one of the demonstrators.

2.7 Getting a Single Character from the User

The programs in this laboratory have used the scanf function to get input from the user. As you have
seen, the scanf function collects input and allows the program to continue only after the user has
pressed enter. Sometimes you want to make a program that is more interactive than this. In this section
we will use the get ch function to collect a single key press from the user.

The get ch function waits for the user to press a single key and then returns the value of the key that the
user pressed back to the program as a character. The get ch function is described in coni 0. h, so to use
it you must add the line

#i ncl ude <coni o. h>

to the top of your source file.

You would use get ch in the following way:

i nt key_entered;

Revision 1.3 Computer Programming Using C 51

key_entered = getch();

get ch will wait for a key press and then the assignment (=) will copy the value of the key (as a character)
into the key _ent er ed variable. So, if you use the bit of code above, you have the value of the key press
in a variable. Now you need to know how use the value.

You can describe the value of a character in C by enclosing the single character in single quotation marks.
Like this:

if (key_entered == "r")
printf("You pressed the R key\n");

Function Reference: get ch — Obtains a single key press from the user
[character =]getch();

The get ch function waits for a key press on the keyboard and then returns the value of the key that
was pressed as an integer character code.

To find out what key was pressed then you should assign the result of the function call to an integer
variable (one of typei nt)

i nt variable = getch();

There are some special cases which relate to keys on your keyboard which are not straightforward
letters. The best example is the arrow keys. In these cases when you call get ch and the user presses
an arrow key it will return zero. You will then need to call get ch a second time. This time get ch
will not wait for a key press. It will return immediately with the value of an arrow key. In case a
user presses a non-character key, get ch should always be properly used as follows:

i nt_variable = getch();
if (int_variable == 0)
i nt _vari able = getch();
You should see from this code that get ch is called twice if the value from the first get ch was zero.

In this case the value of the key can be tested to see if it matches one of many useful values, including
the arrow key values which are shown below

Key Value
— 75
T 72
— 77
1 80
‘Enter’ 13

In some cases, the get ch function may return the number 224, instead of zero, to indicate that an
extended key has been pressed. It is usually good practice to check to see if a call to get ch returns
either zero or 224.

get ch is defined in coni 0. h and also gr aphi cs_| i b. h.

52 Computer Programming Using C Revision 1.3

Exercise 2.7: Using get ch and swi t ch

Adapt the “lab2a” program to use get ch instead of scanf . The program should prompt the user
for a single letter which is the first letter of a month. The program should then display the months
that begin with that letter. You should use a swi t ch statement for this. The program should not
care whether you use upper or lower case, for example, pressing either ‘F" or ‘f” should result in the
program displaying “February”.

Hint: You could use multiple case clauses to handle the upper and lower case letters. For example:

case 'f':
case 'F':
br eak;

If you do not understand how to do this, ask one of the demonstrators for help.

2.8 Graphics Option

We are going to alter the graphics program you were working on in the last laboratory to incorporate
some of the new techniques you have just learned. Close any project you have open at the moment and
open the “graphics1” project you were working on.

Your code from last lab should draw a stick person on the screen. You are going to add to this code so
that the user can decide the position of the stick person and the colour that it is drawn in.

Exercise 2.8: Adding User Control of Position to the Stick Person

When your program starts the user should be able to type in a number which specifies the horizontal
location of the stick person on the screen. The user should be able to choose any location in the left
half of the screen. You should use an i f statement to check that the number is sensible, i.e. the user
should not be able to specify a location that results in any part of the stick person being cut off by
the left-hand edge of the window. The user should also not be able to specify a location that is in
the right-hand half of the window. If the user does specify an invalid location, you should display
an error message and not show the graphics window with the stick person in it. The process of
ensuring that input is suitable for your program is known as input validation.

For this exercise to work you will have to make sure that your stick person is not too big. You might
like to draw in a line representing ground level below the stick person’s feet.

You should now have a working program that allows the user to control the horizontal position of the
stick person, within bounds which you have specified.

Revision 1.3 Computer Programming Using C 53

Exercise 2.9: Adding User Control of Colour of the Stick Person

The next step is to allow the user to choose the colour of the stick person. You should do this by
showing the user a menu (a list) of possible colours and allow them to choose the colour by pressing
a single letter (usually the one that corresponds to the first letter of the colour, e.g. ‘R’ for red).
This should choice should be case-insensitive, i.e. ‘r’ and ‘R’ should be treated the same. You will
probably want to use a swi t ch statement for this. You should use the def aul t clause to watch for
invalid input from the user. If the user presses an invalid key you should display an error message
and not show the graphics window with the stick person in it.

The circle which makes up the head of the stick person is currently empty. We can use the graphics
function f | oodfi | | to fill this circle with colour. The fl oodfil| function “pours’ colour onto the
screen at a specified location. The colour ‘spreads out” until it reaches a line of a colour that you specify.
If it doesn’t meet a line with the colour you specify it will fill the whole screen. You can control the
pattern and the colour that is used for the fill with the setfi || styl e function. This is very like the
set col or function, it sets the style and colour to be used by all f | oodfi | | function calls.

Function Reference: setfi | | styl e — Sets the graphical style used for fill oper-
ations

setfillstyle(pattern_nunber, col our_nunber);

e.g.
setfillstyl e(SOLID FILL, RED);

The setfillstyle function determines the pattern and colour that is used for all future

floodfill operations. The pattern is set using the pat t er n_.nunber argument. The colour is

set using the col our _nunber . The pat t er n_nunmber argument should be an integer number from
0 to 12, while col our _nunber should be an integer from 0 to 15. You can just pass it a number for
either but the graphics systems defines some pattern names to make it easier to use:

0 EMPTY_FILL 7 HATCHFI LL

1 SCLID-FILL 8 XHATCH.FI LL

2 LI NEFILL 9 | NTERLEAVE_FI LL
3 LTSLASHFI LL 10 W DE._DOT_FI LL

4 SLASHFI LL 11 CLOSE_DOT_FI LL
5 BKSLASHFI LL 12 USERFI LL

6 LTBKSLASHFI LL

For col our _nunber you can use any of the names defined for the set col or function (see function
box on page 29).

The most common pattern (and perhaps the most useful) is SOLI D_FI LL.
setfill styl e isdefined in graphi cs_l i b. h.

54 Computer Programming Using C Revision 1.3

Function Reference: f | oodf i | | — Fills an area with a coloured pattern
floodfill(x, y, boundary_col our);

The f | oodfi || function begins filling the screen with colour, working outwards in all directions
from the location specified by the coordinates (X, y). The fill spreads in all directions until it reaches
a line of colour boundar y_col our , when it stops. This colour serves as a perimeter for the fill.

The fill takes place in whatever the current colour is, and whatever the current style is. These are set
by a call to theset fi | | styl e function.

setfillstyle(SOLID FILL, RED);
floodfill (100, 100, WH TE);

will fill the screen with red, start from location (100, 100) and stopping wherever a white line is
encountered.

fl oodfill isdefinedin graphi cs_lib. h.

Exercise 2.10: Using f | oodfi | |

Add to your program to ensure the stick person’s head is filled with the same colour as the colour
used to draw the body. You might like to try out different fill styles.

2.9 Music Option

We are going to alter the MIDI program you were working on in the last laboratory to incorporate some
of the new techniques you have just learned. Close any project you have open at the moment and open
the “musicl” project you were working on.

Your code from last lab should play a melody with some chords on a separate channel (and a different
instrument). You are going to add to this program to allow the user to choose the instruments for the
melody and backing chords. You will also allow them to choose the key that the piece will be played in.

Exercise 2.11: Adding User Control of Instruments

When your program starts the user should be able to type in a number which specifies the instrument
that will be used to play the melody. This should be a number from the General MIDI specification
(i.e. a number from 1 to 128). You should use an i f statement to check that the number is in this
range. If the user does specify an invalid instrument number, you should display an error message
and not play the tune. The process of ensuring that input is suitable for your program is known as
input validation.

The program should do the same for the instrument which plays the chords, i.e. the user should be
able to choose an instrument for both before the piece is played.

You should now have a working program that allows the user to control the instruments that are used
for both the melody and the chords, within bounds which you have specified.

For the next step you will need to make sure that all of the notes in the tune are specified as an offset

Revision 1.3 Computer Programming Using C 55

from a variable whose value specifies the key. For example:
int key;
| *
* The key of this piece is C. Al notes are specified
* With reference to mddle C
*/
key = 60;

/* Turn a note on */
midi _note(key + 3, 1, 64);

pause(1000);

/* Turn the note off =*/
m di _note(key + 3, 1, 0);

Ask a demonstrator for help if you do not understand how to do this.

Exercise 2.12: Adding User Control of Key

The next step is to allow the user to choose the key in which the piece is played. You should do this
by showing the user a menu (a list) of possible keys. Next to each choice you should indicate which
keyboard key the user will need to press in order to select the musical key for the piece.

You may like to choose keys on the keyboard whose layout most closely resembles a standard piano-
style keyboard.

This choice should be case-insensitive, i.e. ‘r” and ‘R’ should be treated the same. You will probably
want to use a SWi t ch statement for this. You should use the def aul t clause to watch for invalid
input from the user. If the user presses an invalid key you should display an error message and not
play the tune.

2.10 Summary

Now that you have completed this lab you should have the ability to write conditional statements in C.
You should have learnt about, and be able to use:

e | f statements;

* swi t ch statements.
You should be able to form relational expressions, including quite complex containing with logical op-
erators.

You should understand swi t ch statements and the way in which the flow of execution passes through
them, including the reason for br eak statements.

You should also be able to obtain input from the user of your program. You should know how to use:

* scanf to get a complete line of input from the user at one time (until the user presses ‘Enter’);

* get ch to obtain a single key press.

In the music and graphics options you should have used these functions to provide various options to
the user of your program. You should have used conditional statements to process the options and to
make sure that none of the input is invalid.

56 Computer Programming Using C Revision 1.3

Laboratory 3

Repetition and Iteration — do, whi | e
and f or

3.1 Overview

This laboratory will introduce you to three ways of repeating parts of your program:

* the whi | e loop repeats a part of your program whilst (and providing) a condition is true;

e the do. . . whi | e loop also repeats a part of your program whilst a condition is true, but it will
always execute that part of your program at least once;

¢ thef or loop is a convenient way to repeat a part of your program with a built in counter.

You should learn how to use these repetition structures, and which is the most appropriate for a given
situation.

The graphics and music options allow you to use these new structures for carrying out repetitive tasks
that would be difficult without loop structures.

3.2 Repeating Statements Many Times

It is often necessary to repeat parts of your program many times. Sometimes you will know exactly how
many times this will happen, and other times you will not. In C, structures that repeat many statements
are often referred to as repetition structures, loop structures or just loops.

The most basic way to repeat a single statement lots of times is to use a whi | e loop. A whi | e loop
executes a single statement over and over again as long as a relational expression (just like the ones you
used ini f statements) is true. whi | e loops look like this:

whil e (rel ati onal _expression)

st at ement ;

Just like with i f statements you will often want to put lots of statements inside a whi | e. To do this you
should use a compound statement in place of the single statement underneath the whi | e clause. This is
what has been done in the “lab3” example. Copy the “lab3” project, then try building and executing it.

The source code for “lab3.c” is shown below.

| *

* A programto denonstrate the use of the while statenent
* C Programm ng | aboratory 3

*/

58 Computer Programming Using C Revision 1.3

#i ncl ude <stdi o. h>

int mai n(voi d)

{
[+ Declare a variable to store an integer number x/
i nt nunber _entered,

[+ Qutput sone text to the user =*/
printf("Enter an integer nunber: ");

[+ Wait for the user to enter a nunber and hit enter =/
/* Store the nunber in the nunber_entered variable =/
scanf ("%", &nunber_entered);

[+ Display all the nunbers fromthe one entered */
/+* up to (and including) the nunber 10 */
whil e (nunber_entered <= 10)
{
printf("%\n", nunber_entered);
nunber _entered = nunber_entered + 1

}

return O;

You should find that this program asks you for a number and then displays all the numbers from the
one you entered up to, and including, the number ten. If you enter a number greater than ten it doesn’t
display anything.

You will notice that in the example the whi | e clause has a compound statement underneath, rather than
a single statement. This allows us to repeat more than one statement.

Try stepping through the example program. Do you see how the execution point jumps backwards
inside the compound statement underneath the whi | e clause?

Make sure you understand how the example works before continuing. If you have any problems ask
one of the demonstrators.

Syntax: The whi | e Loop
whil e (rel ati onal _expressi on) statenent;

The whi | e structure allows you to repeat a single st at ement many times. The whi | e statement
will execute for as long as the r el ati onal _expr essi on is true. If you want to repeat (or loop)
many statements, rather than just one, st at enent (including the semicolon) should be replaced
by a compound statement (just as with i f) to give:

whil e (rel ati onal _expressi on)

{

Revision 1.3 Computer Programming Using C 59

Exercise 3.1: Using a whi | e Loop

Alter the “lab3” program to display a sequence of numbers which starts with the number that the
user entered, but which doubles with every number it displays. It should stop when it reaches or
exceeds the square of the number the user entered.

Hint: you may need to introduce another integer variable.

Sometimes you know that you want to execute the statements inside a loop at least once. We can do this
with awhi | e loop by using a do clause. The do clause goes at the beginning of the loop and tells C that
we are starting a loop, but that we don’t want it to check the condition until the end. It works like this:

do
{

}

while (relational _expression);

A couple of really important things to note:

¢ the loop will execute while the r el at i onal _expr essi on is true, not until it is true, this is a very
easy mistake to make;

e there is a semicolon at the end of the whi | e clause in a do. . . whi | e loop.

You will probably find that do. . . whi | e loops are more useful than plain ordinary whi | e loops, be-
cause you usually want a part of your program to execute at least once.

Syntax: The do. . . whi | e Structure
do statement; while (relational expression);

The do. . . whi | e loop is very similar to a whi | e loop (see above), except that the condition that is
checked to determine whether the loop should continue (r el at i onal _expr essi on) is checked at
the bottom of the loop rather than the top. This means that the statement inside the loop will always
execute at least once. As in the case of the whi | e loop, it is common to replace st at enent (and its
semicolon) with a compound statement.

Exercise 3.2: Using do. . . whi | e for Validation

In the last laboratory you used i f statements for user input validation (i.e. checking that user input
was valid). If the user entered an invalid number your program simply ended. It would be better if
it told the user that the number was invalid.

Edit the code you have produced in the first exercise of this lab to prevent the user typing in a
number greater than 100 or less than 1. If the user enters an invalid number the program should tell
them why the number they entered was not accepted. It should then ask them for a number again.
It should repeat the process of asking for a number until the user gives a valid input.

You should find that a do. . . whi | e loop is very useful for this purpose.

60 Computer Programming Using C Revision 1.3

3.3 Repeating Statements and Counting

There are many occasions when it is useful to have a loop which is controlled by a variable which counts
the number of loops or iterations. The f or loop exists in C for this purpose. The code below is from the
project “lab3a”. If you open the project you should see that it is nearly identical to “lab3” except that it
uses a f or loop instead of a whi | e loop. It also declares an extra variable, count , to use as a counter in
the f or loop.

Try compiling and stepping through “lab3a”.

| *
* A programto denonstrate the use of the for statenent
* C Programm ng | aboratory 3
*/

#i ncl ude <stdi o. h>

i nt mai n(void)

{

[+ Declare a variable to store an integer nunber =/
i nt nunber _entered,

/[Declare a counter variable */
int count;

[+ Qutput sone text to the user =/
printf("Enter an integer nunber: ");

[+ Wait for the user to enter a nunber and hit enter x/
[+ Store the nunber in the nunber_entered variable */
scanf ("9%d", &nunber_entered);

[+ Display all the nunmbers fromthe one entered */

/+* up to (and including) the nunber 10 */

for (count = nunmber_entered; count <= 10; count ++)
printf("%\n", count);

return O;

At the beginning of a f or loop, after the keyword f or, is a set of parentheses with three statements
inside. You can understand how these statements work by noticing that any f or loop can be written as
awhi | e loop. In general, the f or loop:

for (statenentl; statenent?2; statenent3)
st at enent _t o_| oop;

can be written as an equivalent whi | e loop like this

st at enment 1,

whi | e (statenent?2)

{
st at ement _t ol oop;
st at enment 3;

Revision 1.3 Computer Programming Using C 61

To help this make sense, lets look at the example in “lab3a”. The f or loop is:

for (count = nunber entered; count <= 10; count ++)
printf("%\n", count);

We can translate this directly to a whi | e loop. It then becomes:

count = nunber _ent er ed;
whil e (count <= 10)
{

printf("%\n", count);

count ++;

which is very similar to the kinds of whi | e loops that you have already seen and created for yourself,
except for the line

count ++;

This line uses an operator you have not seen before called the post-increment operator. This is one of a
number of shorthand operators in C. The shorthand operators just make it easier to type and describe
commonly used operations. The post-increment operator:

vari abl e++;
is equivalent to:
variable = variable + 1

i.e. the post-increment operator simply adds one to a variable. There is another way of writing the ‘add
one to a variable” operation: the pre-increment operator. The pre-increment operator is used like this:

++vari abl e;

When used on its own like this there is no difference between the pre- and post-increment operators.
The difference between the two increment operators only becomes clear when you try and use an incre-
ment operator at the same time as doing something else.

62 Computer Programming Using C Revision 1.3

Exercise 3.3: Understanding Pre- and Post-Increment Operators

Temporarily add the following two lines of code to the end of the “lab3a” source code

count = 5;

printf("count = %l\n", count++);

Rebuild the project and try stepping through the code. What value is displayed on the screen? What
is the value of count after the pri ntf line has executed?

Replace the post-increment operator with a pre-increment operator so that the lines read

count = 5;
printf("count = %l\n", ++count);

How is that different? You can remove these lines of code from the “lab3a” project when you have
finished investigating them.

The increment operators are often useful for writing more compact C code. They are most often
used in f or loops, but can be used in many other places. You should take great care when using
shorthand operators as sometimes they make the purpose of code a lot less clear when it is read.

Exercise 3.4: A Simple f or Loop

Edit “lab3a” to create a program which always counts up from zero, up to the number that the
user entered. You should only need to make very small changes to the “lab3a” code. If you do not
understand how to do this, ask one of the demonstrators for help.

Revision 1.3 Computer Programming Using C 63

Syntax: Shorthand Operators
++ -- += -= x= [=

C specifies a set of shorthand operators that allow you to write more compact C code. They are often
especially useful in loops.

The most useful of these operators in loops are the pre- and post-increment and decrement operators:

vari abl e++;
++vari abl e;
vari abl e--;

--vari abl e;

The increment operator, ++, is equivalent to adding one to a variable. The decrement operator, - -,
is equivalent to subtracting one from a variable. The value of a post-incremented expression is the
value of the variable before it is incremented. The value of a pre-incremented expression is the value
of the variable after it is incremented. The same applies to the decrement operator.

Other shorthand operators are more straight forward

e variabl el += vari abl e2 isequivalent to
vari abl el = vari abl el + vari abl e2

e variablel -= vari abl e2 isequivalent to
vari abl el = vari ablel - vari abl e2

e variablel = vari abl e2 isequivalent to
vari abl el = vari abl el * vari abl e2

e variablel /= variabl e2 isequivalent to
vari abl el = variablel / variabl e2

So, for example
count += 5;
is directly equivalent to

count = count + 5;

Exercise 3.5: Using a f or Loop: A More Advanced Problem

Alter the “lab3a” source code so that, after the user has entered a number, the program responds by
displaying the factorial («!) of the number that the user entered. You should find that a f or loop is
the best way to do this. Make sure your code still works if the user enters a number less than 1.

Hint: A factorial is the product of an integer and all positive, integers below it. e.g. 5! = 5 x 4 x 3 x
2x1=120

If you don’t understand how to do this ask one of the demonstrators for help.

64 Computer Programming Using C Revision 1.3

3.4 Deciding What Kind of Loop to Use

There are no hard and fast rules as to what kind of loop you should use in a given situation. Here are
some guidelines to help you to make a decision when designing and coding your own programs. You
should refer back to this list in later labs, whenever you are not sure what type of loop to use.

* In general, the f or loop tends to be the neatest and easiest to read loop when you have some kind
of counter variable. Even if the counter is not simply counting up (it could be counting down, or
in steps of 2 etc.) The f or loop is also an obvious choice when you know, in advance, how many
times the loop should be executed.

¢ If your code does not neatly fit into a f or loop, you probably want a whi | e loop. If the condition
at the top of the whi | e loop is not met the first time, the loop will not execute at all. Quite often
this behaviour is exactly what you want.

* Youshould use do. . . whi | e loop when you think a whi | e loop is appropriate and you are certain
that you always want the loop to execute at least once.

3.5 Graphics Option

We are going to add to your “graphicsl” project to allow your stick person to throw an object. The
graphical display will show the path of the object. It should look something like this

Ol

First we will have a brief look at the mathematics we need to describe the path of an object. Once we
have the maths we will write some C to carry out the required calculations and plot the results.

We will begin by assuming that there is no air resistance. The initial velocity of the object (as it comes
out of the stick person’s hand) can be resolved into horizontal and vertical velocities. These act along

Revision 1.3 Computer Programming Using C 65

the z- and y-axes respectively. The only force acting in our simple world is that of gravity. Therefore,
there are no forces acting in the z-direction and the horizontal velocity will remain constant. There is
one force in the y-direction: gravity. The position (in graphics coordinates) of our object is:

P, =P, + Vit (3.1)
Py :PyO_Vyt+(9t2)/2 (3.2)

where

(Py, Py) is the current position of the object;

(Pro, Pyo) was the initial position of the object;

Vz was the velocity with which the object was thrown, in the z-direction in ms~};

V,, was the velocity with which the object was thrown, in the y-direction in ms™?;

g is the gravitational pull (9.81ms™2);

t is the time in seconds.

For simplicity we will treat each pixel in the graphics window to be a metre wide, just for the purpose of
these equations. The exact scale relationship between the graphics window and reality is not important.

We must now think about how these equations should be translated into a C program. The best way to
get a good graphical output is to find the height of the projectile (in graphics y-coordinates) for every
x-position. For example, the following code would work

time = (pos_x - initial_pos_x) / vel _x;
pos .y =initial _pos_y - (vel _y = time) + (gravity = tinme » tine)/2;

You should be able to see that the first line works out what the current time must be (since the throw),
using the current z-position. This line is a simple rearrangement of equation 3.1. Make sure that you
understand this rearrangement before continuing. The second line is simply equation 3.2. To keep
accuracy in all of these calculations we must declare some of the variables as being of doubl e type (i.e.
they may contain real-valued numbers).

We will be drawing the path of the object in the graphics window. Rather than try and draw a curved
line, we will construct a curve out of lots of very small straight lines. There are two useful graphics
functions which we are going to use for drawing the path of the object. The first allows us to give the
graphics system a ‘current location’. The function call

nmovet o(100, 300);

does not draw anything in the graphics window. It simply tells the graphics system that we wish to set
the location (100, 300) to be our ‘current location’. We can then use the | i net o function. The function
call

| i net o(200, 350);

draws a line in the graphics window from wherever the ‘current location” is to the coordinates specified,
in this case the coordinates (200, 350). It then sets the ‘current location’ to be (200, 350) ready for us to
use | i net o all over again.

66 Computer Programming Using C Revision 1.3

Function Reference: novet o — Sets the current graphics location
novet o(x_posi tion, y_position)

e.g.

movet o(100, 200);

The graphics system keeps track of a ‘current position’, which will be used by functions like | i net o.
The novet o function allows you to set this ‘current position’. When you call the novet o the ‘current
position’ is set to the value (X_posi ti on, y_posi ti on)in graphics window coordinates. Both of
these values should be integers.

novet o is defined in gr aphi cs_l i b. h.

Function Reference: | i net o — Draws a line from the current location to the
specified location

| i neto(x_position, y_position)

e.g.

I'i neto(150, 250);

The graphics system keeps track of a ‘current position’, which can be set by the novet o function.
The | i net o function draws a line in the graphics window from the coordinates specified by the
‘current position’ to the coordinates (x_posi ti on, y_positi on). These values must be integers.
Once the | i net o function has drawn the line it sets the ‘current position” to be the end of the line it
has drawn (i.e. to coordinates (X_posi ti on, Yy_posi ti on)). The next time you calll i net o it will
draw from this point.

| i net o is defined in gr aphi cs_l i b. h.

If you use the C code we have just looked at to calculate the y-position of the object for a given x-position,
we can use the | i net o function for joining these points together with graphical lines. In a moment you
are going to do this, but first a couple of hints.

You should use a loop to work through all the z-coordinates that you need to. Before the loop you
should use movet o to set the current location, you can then use | i net o inside the loop to draw all the
lines that will make up the path of the object. A suitable do. . . whi | e loop would look something like
this

nmoveto(initial _pos_x, initial_pos_y);

do
{
time = (pos_x - initial_pos_x) / vel _x;
pos .y = (int)(initial _pos_y - (vel_y *= time) + (gravity = time tine)/2);
i neto(pos_x, pos_y);
poS_X++;
}

while (pos_x ??);

Revision 1.3 Computer Programming Using C 67

You will notice that part of the whi | e condition from this loop is missing (where the ??? is). You will
have to think about this for yourself. You should also be aware that movet o and | i net o functions
are expecting integer numbers (of type i nt) as arguments. If your variables are of type doubl e they
have to be converted by putting (i nt) before the variables that are arguments to these functions. The
conversion between doubl e and i nt types is built in to C and is called a type cast. You can see a type
cast being carried out in the assignment statement for pos_y .

Exercise 3.6: Drawing the Projectile Path

Using the information and hints you have been given, add to your “graphics1” project to draw the
path of an object thrown from the stick person’s hand. The object path must not go underground. If
you use the standard value for gravity (9.81ms™2) you might find that an initial velocity of 60ms™*
is suitable for both z- and y-directions. The code you produce should work whatever horizontal
location the user chooses for the stick person. You should ask the user for the initial velocity of the
object. The same initial velocity should be used for both vertical and horizontal components.

Hint: If you really get stuck, have a look at the source code in the “graphics2” project. It should help
you.

If you still do not understand how to do this, ask one of the demonstrators for help.

Exercise 3.7: Allowing the Stick Person to Move

Use a get ch function call to wait for the user to press the ‘Enter’ key before drawing the path of the
object. This should happen after the stick person has appeared in the graphics window (you may
need to look back at the script for laboratory 2 to find the key value for ‘Enter’).

Remove the option at the beginning of the program for the user to choose the horizontal location of
the stick person. Let the user move the stick person (before they hit ‘Enter’) using the left and right
arrow keys. To make the stick person appear to move you should draw over the top of the stick
person with another stick person made up of black lines. This will erase the stick person from the
screen. You can then redraw the stick person in a new position using coloured lines.

Exercise 3.8: Giving the User Three Goes

The program you have now should allow the user to choose the initial velocity of the object. It
should then display the stick person and allow them to use the arrow keys to move the stick person.
The program then waits for the user to press ‘Enter” before it plots the path of the projectile. After
the object has been thrown the program waits for a key press and then exits. You should alter this
process so that after this last key press the program allows the user to have another go, providing
they have not already had three goes. You should close the graphics window and re-open it for each

go.
Hint: You will have to put almost all of the code you already have inside another f or loop to get
this to work.

P

68 Computer Programming Using C Revision 1.3

3.6 Music Option

3.6.1 Simple Scales

Repetition is very important in music. We are going to use loops to generate simple scales and use them
to attempt to construct music in a minimalist style, similar to that used by composers such as Steve
Reich, Terry Riley and Philip Glass. The project “music2” plays one octave of a chromatic scale starting
on middle-C. Copy the project and open it.

The source code for “music2.c” is shown below.

| *

* A programto denonstrate a sinple chronmatic scale
* C Programm ng | aboratory 3

*/

#include "mdi_lib.h"

i nt mai n(void)

{
[+ Declare integer variables for specifying a note =/
int pitch, channel, velocity, offset;
/+* Set the pitch variable to 60, which is mddle C */
pitch = 60;
[+ W will play the note on M DI channel 1 =/
channel = 1;
/+* The note will have a nediumvelocity (volune) =*/
vel ocity = 64;
/+ Play an octave’'s worth of chromatic scale */
for (offset = 0; offset <= 12; offset++)
{
[+ Start playing a note */
nm di _note(pitch + offset, channel, velocity);
[+ Wait, so that we can hear the note playing */
pause(400);
[+ Turn the note off =/
m di _note(pitch + offset, channel, 0);
}
return O;
}

Try compiling and running the program. Does it sound how you expected it to sound? Make sure you
understand the f or loop before continuing.

Exercise 3.9: Adding to the Chromatic Example

Add to the “music2” code to make it complete two octaves of ascending chromatic scale before
descending back down (chromatically) to the starting note.

Revision 1.3 Computer Programming Using C 69

3.6.2 Whole Tone Scales

A whole tone scale ascends in steps of whole tones, in MIDI note numbers this is increments of two.
Composers like Debussy used whole tone scales to create a smooth, dreamy effect, which is often used
in films to denote misty or underwater scenes.

Exercise 3.10: Playing a Whole Tone Scale

Alter the code you have just created to play two octaves of ascending then descending whole tone
scale.

Exercise 3.11: Using Whole Tone Scales
By altering the code you have just created, produce a program which plays:

¢ four notes of a whole tone scale (ascending), four times; followed by

¢ five notes of the same whole tone scale, (ascending from the same starting note) four times;
followed by

* six notes of the same whole tone scale (in a similar manner as previously), four times; followed

by

¢ seven notes of the same whole tone scale, four times.

Finally the last whole tone scale should be played in descending order to complete the piece.

You will need to put one f or loop inside another to get this to work. Putting one programming
structure inside another is called nesting.

If you do not understand how to do this, ask one of the demonstrators for help.

3.6.3 Adding to Your Whole Tone Scale Piece

You can hear the patterns in this piece but it probably doesn’t sound very musical. One reason for this
is that there is no properly defined rhythmic structure; there is no sense of where the bar-lines might be.

Exercise 3.12: Making the Piece Sound More Musical

Without destroying your nested f or loop structure, alter your code so that each ascending scale
takes the same amount of time, no matter how many notes are going to be played. You will need to
calculate the note durations inside the loop.

What other changes can you make to try and make the piece more musical? Can you make the
second and fourth scale in each set quieter than the first and the third (without changing the f or
loop structure)?

70 Computer Programming Using C Revision 1.3

Exercise 3.13: Adding Drone-Tones for Depth

The next step is to add some depth to your piece by allowing one or more drone-tones to play in the
background. You might like to change the tone that is used during the piece. You could do this once
or even at the beginning of each set of scales.

You might choose to play the tones on a different channel and instrument to the scales.

3.6.4 Playing Until Told to Stop

The kbhi t function allows you to find out whether the user has pressed a key on the keyboard. You
use it like this

i nt variable = kbhit();

If the i nt _vari abl e has the value 0 after this function call then no key has been pressed. You can use
the kbhi t function to repeat a part of your program until a key is pressed. For example the following
do. . . whi | e loop will execute the statements inside it until a key is pressed.

do
{

}
while (kbhit() == 0);

It is very important to note that because the kbhi t function is called at the end of every loop to check if
a key has been pressed, this loop will always execute a whole number of times.

Function Reference: kbhi t — Checks to see if a key has been pressed
[int variable =] kbhit();

The kbhi t function tells you whether a key has been pressed. It will return the value 1 if a key
has been pressed, or the value 0 if no key has been pressed. This value will be assigned to the
int_variable if it is present. The kbhi t function does not wait for a key press. You can retrieve a
number identifying what key was pressed using the getch() if kbhi t returned 1.

kbhi t is defined in coni 0. h

To use kbhi t you should make sure that the line

#i ncl ude <coni o. h>

is at the top of your source file.

Revision 1.3 Computer Programming Using C 71

Exercise 3.14: Repeating Until a Key Is Pressed

Alter your program to play the four sets of ascending whole tone scales repeatedly until the user
presses a key. When the key is pressed the program should finish its current group of four sets of
scales and then finish with the descending scale. You might like to add to the code which executes
after the key is pressed to give the piece more of a finale.

3.7 Summary

Now that you have completed this lab you should have the ability to use three kinds of repetition
structure:

e whi | e loops;
e do. .. whil e loops;

e for loops.

You should also be able to decide which of t