RTI Shapes Demo

A Demonstration of RTI Connext DDS

User's Manual

Version 5.1.0

r t ' Your systems. Working as one.

© 2014 RTL. All rights reserved.
Printed in U.S.A. First printing.

r t ' December 2014.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS,
the RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks,
trademarks or service marks of Real-Time Innovations, Inc. All other trademarks belong to their
respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTI software license agreement. The software may be used or copied only
under the terms of the license agreement.

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com

Website: https:/ /support.rti.com/

https://support.rti.com/

Contents

T INtrodUCHON......... e e 1-1
1.1 Guide to this DOCUIMENLcocvieuiictieiicieciecteete ettt ettt e e ste s e e be s e e teesaessesssesseessassesssessesseessesaensans 1-1

1.2 Goals Of the DemMONSIIALIONccuievirierieieieieieieteie sttt e et etesteseeseesessessessessessessessessesessessesassessessassans 1-2

2 Background INformation..........cccceeeeeimiriicccsere e 2-1
2.1 Communication Models in Networking Middleware.............cccooouovoiiiiiiiiiiccce 2-1

2.2 CONNEXE DS OVEIVIEWeouvieeieiieeeieeteieeteteete st ete st estesseetesseessessessessesssessesssessesssensesssessesssenseseenses 2-2
221 Quality Of SEIVICE ..ououiiiiiei e 2-2

2.3 Publish-Subscribe Simple ANaAlOZYccccccciuiiiiiiiiiiiiiiiiiie e 2-3

2.4 Publish-Subscribe Complex ANAlOZYccoovrueiiiimiiieiiicie et 2-4

2.5 Publish-Subscribe Example APPLCAtionccccciiuiiiiiiiiiiiiiiiiiiiiccceecceeeee s 2-5

3 Installing and Using Shapes Demo...........ccccocmmrrincccciemneennecsceeeeeens 3-1
3.1 INSTALLATION . .c.ctiiticticiectieeeeet ettt ettt e et e et e e reesbeera e be et e s beerb e beesa et e eraanteereenaeeraenteerneneas 3-1

3.2 RUNNING Shapes DEMOc.cucuiuiiiiiiiiiiiiiccceie ettt 3-1
3.2.1 If YOu Cannot USE MUIHICAST......ccccuririirtiierieieieteeieitee ettt ettt sae s se e esessassessessessesseneas 3-2

3.3 Publish and Subscribe Task Panes..........c..cciouieiiiieiiiiiieieeieeeeete ettt ve s ra e b eaeennas 3-3
GG 20 R @ e SRR 3-4

3.3.2 INIHAL SIZE evevveeieeieiieiiciesieetetet ettt ettt ettt st et eteetees e b e b e s essessessessesaeseeseesesessessessensenseneas 3-4

16 G J0C TN - u [x (o) 4 1< SN OO OO OO OO SRRSO 3-4

3.3.4 EXtended AIIIDULEScccoecvieeieiececeeees ettt e et re b be e e sreesaessesrneneas 3-4

3.3.5 Applying QoS from a Profilecccooiiiiiii 3-5

3.3.6 Setting QOS VAlUESccccouiiiiiiiiiiiiiiiiii s 3-6

3.3.7 Using a Content Filtered TOPIC.......ccccceviiiiiiiiiiiiiiiiiiiicicce s 3-9

3.3.8 Controlling the Read Method ..o 3-9

34 Other CONLIOLSooveuiiiiieiiieiiiei ettt ettt ettt ettt ettt sttt et st be st 3-10
BUAT DELete All...cueiiiiieie ettt bbbttt st 3-10

3.4.2 Pause PUDLISHINGcccooviiiiiiiiiiiiiii e 3-10

3.4.3 Show /Hide HISTOTYcoiuimiiiiiiiiiiiciiiccccccccceiecieee e 3-10

3.4.4 ConfigUration......ccouoiiiiiiiiiiiec s 3-10

3.4.5 Outputand Legend Tabs..........ccooiiiiii s 3-12

3.5 Shapes Demo’s WOIKSPACEc.ccccuiuiiiiiiiiiiiiiciiciciic s 3-13

3.6 USING MONITOTING ...c.cvoviviiiiiiiiieiit st 3-13

3.7 Using RTI Distributed LOZZETcovoiririiiiiciici s 3-13

EXAMPIES ...t e e e e 4-1
4.1 Publish-Subscribe EXample ... 4-1
4.2 Multiple Instances EXAMPLeccoiiuiiiiiiiiiiiicice s 4-3
4.3 OWNership EXAMPLeoooiiiiiiiiiicceccectce ettt 4-5
4.4 Failure Detection Example...........ooiiiiiiii s 4-7
4.5 Failover EXAMPIE......ccooiiiiiiiiiiici et 4-8
4.6 Extensible Types EXamPIes.........ccooiuiiiiiiieiiic e 4-11
4.6.1 Introduction to the Shape Extended Typecccccooermiioiiiiiiii 4-11
4.6.2 Publishing Extended Type, Subscribing to Basic Typec.cccccevuvviiiivrvniiniiiiine, 4-12
4.6.3 Publishing Original and Extended Types, Subscribing to Extended Type.........c.c.c.c....... 4-12
4.7 MoOre EXPerimentS.......cooioiiiiiiiiiiit ettt 4-13
471 Content-Filtered Topics EXample.........ccccoooioiiiiiiiiiicicci e 4-13
4.7.2 Lifespan EXamMPLeccccciiiiiiiiiiiiiiccccc e 4-14
4.7.3 Reliability and Durability EXample ... 4-15
474 Time-based Filtering EXample.........ccocooiiiiiiiiiiiiiiccccecceeeecne e enenennes 4-16
Running from the Command Line.............ooooiiiiiiiiiiirreeeeeeeeeeeee A-1
TroubleshOOotiNg ..o B-1
B.1 WINdows Security AlETt ... B-1
B.2 Running without an Active Network Interface ... B-2

Chapter 1 Introduction

1.1

Welcome to RTI® Shapes Demo! This demonstration application is a self-contained introduction
to the elegance and power of publish-subscribe networking. It goes beyond simple publishing
and subscribing, however. This demo will also give you a glimpse of the goals and capabilities
of RTI Connext™ DDS. As you will see, RTI Connext DDS offers flexibility, performance, and reli-
ability well beyond other networking technologies while addressing the challenge of extremely
high-performance distributed networking.

Connext DDS offers flexible and fine-grained

control over Quality of Service (QoS) parame- :IRHT:‘:M Dib‘: — S
ters. No one application can showcase all the [r— =
supported QoS parameters. Shapes Demo is Sare
intended to provide you with an abbreviated Triangle
introduction to Connext DDS concepts; it covers S
a small subset of the many QoS parameters Swors
available in Connext DDS. Tiiangle
Shapes Demo publishes and subscribes to (writes Controls
and reads) colored moving shapes, which are Bauss Puslisting
displayed in the demo’s window. Each copy of Confiquration
Shapes Demo can simultaneously publish and -

. . Hame Data Type Type Color Partitions Read/Take QoS Settings
subscribe to many topics (shapes). Saure Shpefxienced P | BLE - DefatDefaut

Cirde | Shape Extended Pub |YELLOW it

Shapes Demo also demonstrates the concepts of Taarge| shape Extended | Pub_|ORANGE = pefauetust
Extensible types. Shapes Demo can publish and ; ;
subscribe to two different data types: the [umut Legend |
"Shape” type or the "Shape Extended" type. Ina | "@¥enemnt

production scenario, your deployed applica-

tions are communicating using some existing data type. However, after deployment, you may
find it necessary to modify the deployed data model. For instance, you may need to add new
attributes. Connext DDS’s Extensible Types feature is designed to make your data type flexible
and allow it to evolve over time.

Guide to this Document

This document will guide you through the demonstration, the middleware, and the underlying
principles.

(J Goals of the Demonstration (Section 1.2) below outlines the concepts and goals of this
demonstration.

1-1

Goals of the Demonstration

(d Chapter 2: Background Information provides an overview of publish-subscribe and
other communication paradigms. It also provides an overview of Connext DDS and its
key concepts.

[Chapter 3: Installing and Using Shapes Demo details the features of the demonstration
application.

[Chapter 4: Examples jumps right into using the application and playing with examples.
Feel free to start here if you are familiar with publish-subscribe networking.

(A Chapter 5: About RTI describes RTI products and where to seek further information.
(d Appendix A explains how to run from the command line.

(d Appendix B contains a few troubleshooting hints.

1.2 Goals of the Demonstration

There is no teacher like experience. Playing with this demonstration will give you a first-hand
introduction to key Connext DDS concepts. These include:

(d Anonymous publish-subscribe

Applications communicating over publish subscribe networks do not need to know the
source or destination of the data. This loosely coupled design simplifies (or eliminates)
configuration, eases fault tolerance, and boosts performance.

(d Dynamic discovery

With publish subscribe, applications simply ask for the information they need and pro-
vide the information they have. The middleware does the hard task of finding the infor-
mation and delivering it where it needs to go. There is no (or minimal) configuration;
each node can simply join or leave the network at any time.

[Failover

Connext DDS supports the concept of "ownership"; a publisher can own the responsibil-
ity for providing data to the network. Ownership makes failover simple; if the owner
fails, a backup owner can instantly take over responsibility

[Failure notification

Connext DDS is designed for the real world. In the case of failure, e.g., the violation of a
deadline or the termination of service, interested applications are immediately notified.

[Extensible Types

Connext DDS supports the "Extensible and Dynamic Topic Types for DDS" specification
from the Object Management Group (OMG)!. (See Connext DDS documentation for
details and limitations.) Using Extensible Types, existing applications that are designed
to publish and subscribe data with a particular data model will be able to communicate
with newer applications that use an extended/compatible data model—without any
changes or recompilation.

([Advanced concepts

If you are interested in exploring the demo more extensively, this document also briefly
illustrates additional use cases such as content-filtered topics, reliability, durability and
time-based filtering.

1. http:/ /www.omg.org/spec/DDS-XTypes/

1-2

http://www.omg.org/spec/DDS-XTypes/

Chapter 2 Background Information

2.1

This section provides an overview of existing middleware communication paradigms, including
publish-subscribe, along with basic concepts of Connext DDS.

If you are already familiar with this information, you can go directly to Chapter 3: Installing and
Using Shapes Demo.

Communication Models in Networking Middleware

Software applications are becoming increasingly distributed. A node in a distributed application
must find the right data, know where to send it, and deliver it to the right place at the right time.
Simplifying access to this data would enable a whole new class of distributed applications. The
challenge, especially in embedded and real-time networks, is to quickly find and disseminate
information to many nodes.

Three major middleware communication paradigms have emerged to meet this need: client-
server, message passing, and publish-subscribe.

Client-server is fundamentally a many-to-one design that works well for systems with central-
ized information, such as databases, transaction processing systems, and central file servers.
However, if multiple nodes generate information, client-server architectures require that all the
information be sent to the server for later redistribution to the clients, resulting in inefficient cli-
ent-to-client communication. The central server is a potential bottleneck and single-point of fail-
ure. It also adds an unknown delay (and therefore indeterminism) to the system, because the
receiving client does not know when it has a message waiting.

Message-passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. This extends the many-to-one client-
server design to a more distributed topology. Message passing allows direct peer-to-peer con-
nection; it is much easier to exchange information between many nodes in the system with a
simple messaging design. However, the message-passing architecture does not support a data-
centric model. Applications have to find data indirectly by targeting specific sources (e.g., by
process ID or "channel" or queue name) on specific nodes. So, this architecture doesn't address
how applications know where a process/channel is, what happens if that process/channel
doesn't exist, etc. The application must determine where to get data, where to send it, and when
to perform the transaction. In the message-passing architecture, there is a model of the means to
transfer data but no real model of the data itself.

Publish-subscribe adds a data model to messaging. Publish-subscribe nodes simply "publish”
information they have and "subscribe" to data they need. Messages logically pass directly
between the communicating nodes. The fundamental communications model implies both dis-

2-1

Connext DDS Overview

2.2

2.2.1

covery (i.e. what data should be sent) and delivery (i.e. when and where to send the data). This
design mirrors time-critical information delivery systems in everyday life (e.g. television, radio,
magazines and newspapers). Publish-subscribe systems are good at distributing large quantities
of time-critical information quickly, even in the presence of unreliable delivery mechanisms.

Publish-subscribe architectures map well to the real-time communications challenge. Finding
the right data is straight forward; nodes just declare their interest once and the system delivers
it. Sending the data at the right time is also natural; publishers send data when the data is avail-
able. Publish-subscribe can be efficient because the data flows directly from source to destina-
tion without requiring intermediate servers. Multiple sources and destinations are easily
defined within the model, making redundancy and fault tolerance natural. Finally, the intent
declaration process provides an opportunity to specify per-data-stream Quality of Service (QoS),
requirements. Properly implemented, publish-subscribe middleware delivers the right data to
the right place at the right time.

In summary, client-server middleware is best for centralized data designs and for systems that
are naturally service oriented, such as file servers and transaction systems. Client-server middle-
ware is not the best choice in systems that entail many, often-poorly-defined data paths. Mes-
sage passing, with "send that there" semantics, map well to systems with clear, simple dataflow
needs. Message passing middleware is better than client-server middleware at free-form data
sharing, but still require the application to discover where data resides. Publish-subscribe, by
providing both discovery and messaging, implements a data centric information distribution
system. Nodes communicate simply by sending the data they have and asking for the data they
need.

Connext DDS Overview

Connext DDS presents a publish-subscribe integration model that connects anonymous informa-
tion producers (publishers) with information consumers (subscribers). The overall distributed
application is composed of processes called "participants,” each running in a separate address
space, possibly on different computers. A participant may simultaneously publish and subscribe
to typed data-streams identified by names called "Topics." The Application Programming Inter-
face (API) offered by Connext DDS complies with the Object Management Group (OMG) Data
Distribution Service (DDS) standard. It is the first comprehensive specification available for
"publish-subscribe" data-centric designs.

Connext DDS defines a communications relationship between publishers and subscribers. The
communications are decoupled in space (nodes can be anywhere), time (delivery may be imme-
diately after publication or later), and flow (delivery may be reliably made at controlled band-
width). To increase scalability, topics may contain multiple independent data channels identified
by "keys." This allows nodes to subscribe to many, possibly thousands, of similar data streams
with a single subscription. When the data arrives, the middleware can sort it by the key and
deliver it for efficient processing.

Connext DDS is fundamentally designed to work over unreliable transports, such as UDP or
wireless networks. No facilities require central servers or special nodes. Efficient, direct, peer-to-
peer communications, or even multicasting, can implement every part of the model.

Quality of Service

Fine control over Quality of Service (QoS) is perhaps the most important feature of Connext
DDS. Each publisher-subscriber pair can establish independent QoS agreements. Thus, Connext
DDS designs can support extremely complex, flexible data-flow requirements.

2-2

Publish-Subscribe Simple Analogy

2.3

QoS parameters control virtually every aspect of the Connext DDS model and the underlying
communications mechanisms. Many QoS parameters are implemented as "contracts" between
publishers and subscribers; publishers offer and subscribers request levels of service. The mid-
dleware is responsible for determining if the offer can satisfy the request, thereby establishing
the communication or indicating an incompatibility error. Ensuring that participants meet the
level-of-service contracts guarantees predictable operation. More information about some
important QoS parameters is presented below.

Deadline Periodic publishers can indicate the speed at which they can publish by offering
guaranteed update deadlines. By setting a deadline, a compliant publisher promises to
send a new update at a minimum rate. Subscribers may then request data at that or any
slower rate.

Reliability Publishers may offer levels of reliability, parameterized by the number of past issues
they can store for the purpose of retrying transmissions. Subscribers may then request dif-
fering levels of reliable delivery, ranging from fast-but-unreliable "best effort” to highly
reliable in-order delivery. This provides per-data-stream reliability control.

Strength The middleware can automatically arbitrate between multiple publishers of the same
topic with a parameter called "strength.” Subscribers receive from the strongest active
publisher. This provides automatic failover; if a strong publisher fails, all subscribers
immediately receive updates from the backup (weaker) publisher.

Durability Publishers can declare "durability," a parameter that determines how long previ-
ously published data is saved. Late-joining subscribers to durable publications can then
be updated with past values.

Other QoS parameters control when the middleware detects nodes that have failed, suggest
latency budgets, set delivery order, attach user data, prioritize messages, set resource utilization
limits, partition the system into namespaces, and more. Connext DDS QoS facilities offer unprec-
edented flexibility and communications control.

Publish-Subscribe Simple Analogy

The publish-subscribe communications model is analogous to that of magazine or newspaper
publications and subscriptions. Think of a publication as a newspaper such as New York
Times®. The Topic is the name of the periodical ("New York Times"). The type specifies the for-
mat of the information (weekly printed magazine or daily newspaper). The user data is the con-
tents (text and graphics) of each sample (weekly or daily issues). The middleware is the
distribution service (US Postal service or a paper delivery service) that delivers the reading
material from where it is created (a printing house) to the individual subscribers (people's
homes). This analogy is illustrated in Figure 2.1.

2-3

Publish-Subscribe Complex Analogy

Figure 2.1

2.4

Note that by subscribing to a publication, subscribers are requesting current and future samples
of that publication, so that as new samples are published, they are delivered without having to
submit another request for data.

Publish-Subscribe Example

(Topic = "New York Times" > C Topic = "New York Times >
Sample

Publisher | Issue for Feb. 15 ‘ Subscriber

Send Receive

T DeliverJ Service —

The publish-subscribe model is analogous to publishing maﬁgazines or newspapers. The Publisher sends samples
of a particular Topic to all Subscribers of that Topic. With the New York Times®, the Topic would be "New York
Times.” The sample consists of the data (articles and pictures) sent to all Subscribers daily or weekly. Connext
DDS is the distribution channel: all of the planes, trucks, and people who distribute issues to the Subscribers.

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements;
deliver only the Sunday edition, the paper must be delivered by 7:00am; the paper must be in
the mailbox or on the porch, etc. QoS parameters specify where, how, and when the data is to be
delivered, controlling not only transport-level delivery properties, but also application-level
concepts of fault tolerance, ordering, and reliability.

Publish-Subscribe Complex Analogy

Above, we drew an analogy between publish-subscribe and a newspaper delivery system. That
is, of course, an oversimplification. Complex systems have complex data-delivery requirements.
Connext DDS is perhaps more like a picture-in-picture-in-picture super-television system, with
each super-TV set capable of displaying dozens or even thousands of simultaneous channels.
Super-TV sets can optionally be broadcast stations; each can publish hundreds of channels from
locally mounted cameras to all other interested sets. Any set can add new pictures by subscrib-
ing to any channel at any time.

Each of these sets can also be outfitted with cameras and act as a transmitting station. TV sets
publish many channels, and may add new outgoing channels at any time. Each communications
channel, indeed each publisher-subscriber pair, can agree on reliability, bandwidth, and history-
storage parameters, so the pictures may update at different rates and record outgoing streams to
accommodate new subscribers.

These super-TV sets can also join or leave the network, intentionally or not, at any time. If and
when they leave or fail, backup TV set-transmitters will take over their picture streams so no
channels ever go blank.

That would be quite a system! It is only an analogy, but we hope this gives you some idea of the
enormity of the real-time communications challenge. It also outlines the power of publish-sub-
scribe: as you will see, Connext DDS provides simple parameters to permit all these scenarios
with a remarkably simple and intuitive model.

2-4

Publish-Subscribe Example Application

2.5

Publish-Subscribe Example Application

An air traffic control system provides a more realistic example application. An air traffic control
system monitors and directs all flights over an entire continent. The data distributed in such a
system is in the form of aircraft tracks, which provides positional information (e.g., course,
speed, etc.) about an airplane. Components of an air traffic control system would include radar
systems, airplanes and air traffic control centers that provide current flight status information
through real-time displays.

Managing correct distribution of data in such a system is complex. Each radar system can track
many different airplanes, and each airplane may be tracked by more than one radar system.
Real-time access to this information is needed for displays at air-traffic control centers so that air
traffic controllers can make informed decisions. Air traffic controllers in the north-east may only
want aircraft track information in their area, so only a subset of data needs to be provide to
them. Based on current local conditions (e.g. air traffic, weather, etc.) air traffic controllers may
issue flight plan updates back to airplanes in order to rout around inclement weather and other
airplanes. Though airplanes do not need flight plans from all other air planes, it would be useful
to have information about planes in the immediate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters
reveals that Connext DDS is a natural fit to address this data distribution problem. Each radar
system can be thought of as a publisher that publishes the "tracks" topic which describes an air-
plane's positional information. Each airplane that the radar system is tracking can be thought of
as an "instance" of the "track topic. The real-time controller displays are both subscribers that
subscriber to the "tracks" topic and publishers that publish "flight plant" topic updates back to
the specific airplane. QoS parameters can be used to manage and control deterministic behav-
iors and fault tolerance capabilities of the system.

2-5

Chapter 3 Installing and Using Shapes Demo

3.1 Installation

J On Linux® systems

The distribution is packaged in a .tar.gz file. Unpack it as described below. You do not
need to be logged in as root during installation.

1. Create a directory for Shapes Demo.
2. Move the downloaded file into your newly created directory.
3. Extract the distribution from the uncompressed files. For example:

> tar xvzf RTI_ShapesDemo-<version>.tar.gz

(d On Windows® systems
Simply double-click the downloaded file to run the installer.

(d On Mac® systems

The distribution is packaged in a .zip file. Unpack it as described below. You do not need
to be logged in as root during installation.

1. Create a directory for Shapes Demo.
2. Move the downloaded file into your newly created directory.
3. Extract the distribution from the uncompressed files. For example:

unzip RTI_ShapesDemo-<versions.zip

3.2 Running Shapes Demo

You can run Shapes Demo on a single computer or on multiple workstations connected via Ether-
net. Mac, Linux, and Windows operating systems are supported.

You can start multiple copies of the demo on as many computers as you would like. By default,
the demo discovers other demo applications using multicast, loopback, or shared memory. The
discovery mechanism is fully configurable.

Note: Shapes Demo is not compatible with applications built with RTI Data Distribution Service
4.5e and earlier releases when communicating over shared memory. For more information,

3-1

Running Shapes Demo

please see the Transport Compatibility section in the RTI Connext DDS Core Libraries Release
Notes.
[On Linux and Mac systems
Enter the following command:

> <install directory>/scripts/rtishapesdemo

For details on running from the command-line, see Appendix A: Running from the Com-
mand Line.

(d On Windows systems

If you have RTI Launcher, you can use it to start Shapes Demo. Or from the Windows Start
menu, navigate to RTI Connext DDS <version>, RTI Connext DDS Professional <ver-
sion> Components, RTI Shapes Demo <version> and select RTI Shapes Demo.

When Shapes Demo starts, you will see a window like that in Figure 3.1.

Figure 3.1 Shapes Demo—Initial View

! RTI Shapes Demao - Domain 0 EM |
File View Publish Subscribe Controls Help
Publish
Square
Publish and e
Subscribe Task g
Panes (Section Subscribe
33) Square
Circle
Triangle
Controls
Other Controls Deleta Al _
N ause Publishing
(Section 3.4) T | Hide History
Configuration
e i
Name Data Type Type Color | Partitions Read/Take QoS Settings
Output and
Legend Tabs
(Section 3.4.5) . ,
—J Output Legend
Please select "Configuration™ under controls, and click "Start™. WorkspaceFile: C:\Us

3.2.1 If You Cannot use Multicast

If you want to run Shapes Demo on multiple computers that do not support multicast, or on a
network that doesn't support multicast, you need to explicitly give Shapes Demo a list of all of the
hosts that need to discover each other; we call this the discovery peers list. The list can contain
hostnames and/or IP addresses. In its simplest format, each entry should be: builtin.udpv4://
<hostname | IP>. The list can contain multiple, comma-separated entries.

To set your discovery peers list, either:
(1 Set the NDDS_DISCOVERY_PEERS environment variable:
® On Windows systems: For example:
set NDDS_ DISCOVERY PEERS=builtin.udpv4://mypeerhostl, \
builtin.udpv4://mypeerhost?2

® On UNIX-based systems: For example, if you are using csh or tcsh:

3-2

Publish and Subscribe Task Panes

setenv NDDS DISCOVERY PEERS builtin.udpv4://mypeerhostl, \
builtin.udpv4://mypeerhost?2

(d Edit the profile in RTI_SHAPES_DEMO_QOS_PROFILES.xml or <workspace>/RTI/
RTI Shapes Demo 5.x.y/USER_RTI_SHAPES_DEMO_QOS_PROFILES.xml. For
example, if the other machine has an IP address of 10.30.42.8:

<discovery>
<initial peers>
<element>builtin.udpv4://10.30.42.8</element>
</initial peers>
<multicast receive_ addresses/>
</discovery>

3.3 Publish and Subscribe Task Panes

Connext DDS applications publish (write) and subscribe to (read) Topics. Publish
A Topic has a name and a type; the type defines the structure of the data.

Square
Shapes Demo can publish and subscribe to three Topics: Square, Circle, and ~ Circle
Triangle. Triangle
Clicking any of these options will open a dialog that allows you to set the [gypscribe
QoS for the publisher/subscriber: 5

Create new Publish jare ——

Color (Key) Iritial Stze Apply QoS from Profile
) PURPLE - Choose the profile:
@ BLUE Default::Default -
RED
i Partitions
GREEN QoS Values
- YELLOW A Ownership Liveliness
CYAN B [C] Exdusive I AUTOMATIC - l
C
MR D Lease Duration (ms)
_) ORANGE 0 INF
Durability History
VOLATLLE - 1
Deadline (ms)
INF
Extended Attributes Lifespan (ms)
iabili INF
Shape fill style | Reliability
@ Solid
= Content Filter Topic Read method to use
Transparent
*) Horizontal hatch Use filter @) Read() Take()
*) Vertical hatch
Rotation Speed
‘) [OK] [Cancel
Slower Faster

3-3

Publish and Subscribe Task Panes

3.3.1

3.3.2

3.3.3

3.34

Color

Color is selectable only when creating a publisher. You can use color to represent different
instances of the same topic (shape).

A shape's color is used as a key—simply a way to distinguish between data for multiple
instances of the same shape (topic). Data that belongs to the same instance in the topic (shape)
will have the same key (color).

The Color (key) area is grayed out for subscribers. The subscriber of a topic will receive all data
sent on all instances of the topic.

Initial Size

The “initial size” field allows you to control how big the shape is.

Partitions

You can use partitions to dynamically isolate and group publishers and subscribers. If a pub-
lisher has a partition, then only subscribers with that same partition will receive data from that
publisher.

The demo supports four partitions: A, B, C, and D. Partitions support regular expressions, so a
publisher with a wildcard (*) partition will match subscribers with partitions A, B, C, and D.

A publisher with no partition (the default case) will not be matched with a subscriber that does
have a partition. That is, "no partition" is not the same thing as a wild card (*) partition.

Extended Attributes

This section is enabled when you are using the
“Shape Extended” Data Type in the Configuration
dialog (see Section 3.4.4), this is the default case. The Shape fill style
extended attributes only apply to Publishers. (You @ Solid

will see it in the dialog for Subscribers, but it cannot
be enabled.) You can choose a fill pattern and rota-
tion speed for the shape.

Extended Attributes

Transparent
Horizontal hatch

Vertical hatch
These attributes illustrate a feature known as Exten-

sible Types, which are described in the RTI Connext Rotation Speed
DDS Core Libraries Getting Started Guide Addendum for =
Extensible Types. U
Slower Faster

3-4

Publish and Subscribe Task Panes

3.3.5

A profile contains the QoS values that will be
used for the objects created by the demo. All
QoS values not specified in the selected pro-
file will use default values noted in the Con-
next DDS API reference HTML
documentation. Any QOS Settings that you MonitorDemoLibrary::MonitorDefault
make in the Create New Publisher/Sub-
scriber dialog take precedence over the values User_RTI_Shapes_Lib::User_Shapes_De'
in the selected profile. (See Setting QoS Values

(Section 3.3.6).)

Shapes Demo includes an XML file, RTI_SHAPES_DEMO_QOS_PROFILES.xml, which
includes these profiles:

Applying QoS from a Profile

The drop-down listbox allows you to choose a
QoS profile that has been pre-loaded from an
XML file.

If the listbox contains only Default::Default,
it means you haven’t specified any XML files
via
Section 3.4.4). In this case, Default::Default
will result in all default QoS settings, as
described in the Connext DDS API reference
HTML documentation.

Configuration NG =

Data Type

Shape (@) Shape Extended

the Configuration dialog (see
Choose the domain: g

Choose the profile: [pefoyitDefault -

Default::Default
RTI_Shapes_Lib::Shapes_Default_Profile
RTI_Shapes_Lib::Batching
RTI_Shapes_Lib::History_KeeplLast_20
|| Enable distributed RTI_Shapes_Lib::Ownership_Shared
RTI_Shapes_Lib::Ownership_Exdusive
RTI_Shapes_Lib::Durability_Volatile
Manage QoS RTI_Shapes_Lib::Durability_Transient

RTI_Shapes_Lib::Durability_Persistent

Show this dialog a:

MonitorDemolibrary::SamplesRejectedSc
MonitorDemoLibrary::FixedSamplesRejec

[Default::Default—This profile means you want to use whichever profile in the XML file
is marked as the default (with <qos_profile name="x" is_default_qos="true">). In
RTI_SHAPES_DEMO_QOS_PROFILE.xml, the default profile is
RTI_Shapes_Lib::Shapes_Default_Profile.

(J RTI_Shapes_Lib::Shapes_Default_Profile—This profile sets the data writer’s
autodispose_unregistered_instances' to false and the data reader’s History depth to
keep the last 6 samples.

(J RTI_Shapes_Lib::Batching—This profile enables best-effort communication in the data
writer and keeps the last 10 samples. It also enables batching with a maximum flush
delay of 1 second and allows an unlimited number of bytes to be batched for up to 10
samples.

(J RTI_Shapes_Lib::History_KeepLast20—This profile sets the data reader’s History QoS
to keep the last 20 samples.

d RTI_Shapes_Lib::Ownership_Shared—This profile sets Ownership to SHARED and
Durability to TRANSIENT with direct communication to true for both the data reader
and data writer. Both the reader’s and writer’s Liveliness is set to AUTOMATIC with a
lease duration of 1 second. The reader has a History depth is 100 samples and uses RELI-
ABLE reliability.

(1 RTI_Shapes_Lib::Ownership_Exclusive—This profile sets Ownership to EXCLUSIVE
for both the data reader and data writer. The writer’s Ownership Strength is set to 4.

[RTI_Shapes_Lib:Durability_Volatile—This profile sets Ownership to VOLATILE and
History of 100 samples for both the data reader and data writer. The reader uses RELI-
ABLE Reliability.

1. See “Dispose vs. Unregister:” on page 3-12.

3-5

Publish and Subscribe Task Panes

3.3.6

3.3.6.1

d RTI_Shapes_Lib::Durability_Transient—This profile sets Ownership to TRANSIENT
for both the data reader and data writer.

(| RTI_Shapes_Lib::Durability_Persistent—This profile sets Ownership to PERSISTENT
for both the data reader and data writer.

[MonitorDemoLibrary::Default—This profile enables monitoring. See Using Monitoring
(Section 3.6).

(1 MonitorDemoLibrary::SamplesRejectedScenario,
MonitorDemoLibrary::FixedSamplesRejectedScenario
—These profiles are used in the tutorial for RTI Monitor (see Using Monitoring (Section
3.6)).

RTI_SHAPES_DEMO_QOS_PROFILES.xml is in <Shapes Demo installation directory>/resource/
xml. If you open this file, you will see that these profiles have the property base_name, which
points to another profile. The profile uses all the QoS settings of the profile pointed to by
base_name plus the QoS settings that are explicitly specified. If a property is specified in both
the base profile and the current profile, the property in the current one is used.

In <Shapes Demo installation directory>/resource/xml, you will find
USER_RTI_SHAPES_DEMO_QOS_PROFILES.template.xml; you can use this files as a tem-
plate to create your own QoS profiles. A file named
USER_RTI_SHAPES_DEMO_QOS_PROFILES.xml, based on this template, is copied to the
Shapes Demo workspace directory (see Shapes Demo’s Workspace (Section 3.5)) if it does not
already exist there. Shapes Demo automatically loads the profiles from this file and the profiles in
RTI_SHAPES_DEMO_QOS_PROFILES.xml.

Setting QoS Values

There are two ways to control the QoS values for the publisher and subscriber:

1. You can modify the QoS values in a profile and apply that profile as described in
Section 3.3.5.

2. You can explicitly set some QoS values GoS values
directly in the Create New Publisher/Sub-

))] . Ownership Liveliness
scriber d@log, as seen in this sg‘eenshot Erim | — v|
and described below. Values set in the dia- Lease Duration (ms)
log override values in the profile. 0 NF
Durability Histaory
|VOLATILE - 1
Deadline {ms)
INF
Lifespan (ms)
/| Reliability INF

Exclusive Ownership and Strength

Ownership determines whether or not the instance (specified by color) of the Topic is exclu-
sively owned by one publisher—that is, if multiple publishers of Red Squares can send data to
this instance at the same time or not.

If the “Exclusive” check box is selected for a publisher, the Strength box will become available
for input. The publisher with the highest Ownership Strength number is the only publisher that
can write data to this instance.

3-6

Publish and Subscribe Task Panes

3.3.6.2

Table 3.1

3.3.6.3

If the “Exclusive” check box is selected for a subscriber, it means that the subscriber only wants
data from one publisher—the one with the highest ownership strength.

The publisher and subscriber must use the same setting, so either check this box for both, or
leave it unchecked for both. Otherwise, their QoS are incompatible and the publisher and sub-
scriber will not communicate.

Durability

Durability controls whether the publisher will store the data that it sends, so that it can be sent to
new subscribers that join the system later. The possible settings for this QoS are:

[VOLATILE (Default) Data samples are not stored.

[TRANSIENT Connext DDS will attempt to store samples in memory. The data will survive
the data writer.

[TRANSIENT_LOCAL Connext DDS will attempt to store samples in memory. The data will
not survive the data writer.

(1 PERSISTENT Connext DDS will store previously published samples in permanent storage,
like a disk. The data will survive the data writer.

Which particular samples are stored depends on other QoS such as History (Section 3.3.6.6) and
ResourceLimits.

If Durability is selected for a subscriber, the subscriber will ask the publisher to send all previ-
ously written data. All data in the publisher's history queue will be sent to the subscriber. To
buffer this temporary high throughput, the subscriber should use a History value comparable to
the publisher's.

The publisher and subscriber must use compatible settings, as described in Table 3.1.

Valid Combinations of Durability

Subscriber
TRANSIENT_
VOLATILE LOCAL TRANSIENT | PERSISTENT
VOLATILE |4 incompatible incompatible incompatible
TRANSIENT_ |4 4 incompatible incompatible
LOCAL
TRANSIENT |4 4 4 incompatible
Publisher | PERSISTENT |4 4 4 4

Note: If you select Durability, you must also select Reliability (this applies to the publisher and
subscriber).

Time-Based Filter

The Time-Based Filter field is only available when creating a subscriber. It is the minimum sepa-
ration time (in milliseconds) that the subscriber wants between data updates. Any data arriving
within this time interval will be discarded. Where possible, the publisher will not "publish" the
data. Valid settings range from 0 to 31,536,000,000 ms (1 year).

The Time-Based Filter value must be less than the Deadline value (Section 3.3.6.7).

3-7

Publish and Subscribe Task Panes

3.3.6.4

Reliability
The Reliability QoS can be RELIABLE or BEST_EFFORT. Selecting the Reliability check box sets
Reliability to RELIABLE. If the check box is not selected, Reliability is set to BEST_EFFORT.

For publishers:
[The default is RELIABLE.

[If Reliability is RELIABLE (check box is selected), the publisher will attempt to deliver all
the data that has been sent. If data is not received by the subscriber due to a communica-
tion error, the middleware will retransmit the data.

O 1If Reliability is BEST_EFFORT (check box is not selected), the publisher will use best-
effort communication and will not retransmit any missing data.

For subscribers:
[The default is BEST_EFFORT.

(J If Reliability is RELIABLE (check box is selected), the subscriber expects to receive all
data updates reliably. The subscriber listens for "heartbeats" from the publisher and
responds with either a positive acknowledgement to indicate data receipt or a negative
acknowledgement to initiate retransmission of missing data.

[If Reliability is BEST_EFFORT (check box is not selected), the subscriber will not expect
lost data to be resent.

The publisher and subscriber must use compatible settings, as described in Table 3.2.

Table 3.2 Valid Combinations of Reliability

3.3.6.5

3.3.6.6

Subscriber
Reliability not selected Reliability selected
(default) (BEST_EFFORT) (RELIABLE)

Reliability not selected))
(default) 4 incompatible

(BEST_EFFORT)

Reliability selected |4 4
Publisher (RELIABLE)

Liveliness and Lease Duration

Liveliness is used to detect the state of the publisher even when it is not actively sending data.
For a publisher, the Liveliness value is the maximum time interval within which a publisher will
signal that it is active. For a subscriber, the Liveliness value is the maximum time interval within
which a subscriber expects to be notified that the publisher is alive.

A subscriber’s Liveliness must be greater than or equal to the publisher’s Liveliness.Valid set-
tings range from 0 to 31,536,000,000 ms (1 year), or “INF” for infinity (the default).

History

History controls the amount of data that is kept in the send queue. This is normally used in con-
nection with Durability and/or Reliability. If Durability is selected, then History determines
how much previously sent data is sent to late-joining subscribers. Valid settings range from 0 to
100,000,000. The defaultis 1.

3-8

Publish and Subscribe Task Panes

3.3.6.7

3.3.6.8

3.3.7

3.3.8

Deadline

For a publisher, the Deadline value is the time interval within which the publisher commits to
updating data at least once, if not more frequently.

For a subscriber, the Deadline value is the maximum time interval between data updates that
the subscriber expects from the publisher.

If a publisher fails to send a data update within the subscriber’s requested Deadline interval, the
subscriber will get a "deadline missed" notification.

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default).

A subscriber's Deadline value must be greater than or equal to the publisher's. A subscriber’s
deadline must also be >= its minimum separation (see Time-Based Filter (Section 3.3.6.3)).

Lifespan

Lifespan is only available when creating a publisher. The purpose of the Lifespan QoS is to
avoid delivering stale data.

Each data sample written has an associated expiration time, beyond which the data should not
be delivered. The middleware attaches timestamps to all data sent and received. The expiration
time of each sample is computed by adding the specified Lifespan duration to the destination
timestamp. When you specify a finite Lifespan, Connext DDS will compare the current time with
those timestamps and drop data when the specified Lifespan expires. The default setting is an
infinite duration, meaning the data will never ‘expire.’

If you have multiple publishers for the same instance, they should all use the same Lifespan
value.

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default).

Using a Content Filtered Topic

The “Use filter” check box is only available when creating a subscriber. If selected, a filter is cre-
ated for data updates to a topic based on the content of the data. Only data that satisfies the filter
will be made available to the subscriber.

Controlling the Read Method
When creating a subscriber, you can choose whether it will use read() or take().

[With read() (the default), Connext DDS will continue to store the data in the data reader’s
receive queue. The same data may be read again until it is taken in subsequent take()
calls. Graphically, a “new” sample is shown with a thicker border.

(J With take(), Connext DDS will remove the data from the data reader’s receive queue. The
data returned by Connext DDS is no longer stored by Connext DDS.

3-9

Other Controls

3.4

3.4.1

3.4.2

3.4.3

3.4.4

Other Controls

The Controls sub-panel includes various commands that you can use to —— Help

control the demo. T slowDown
Delete All
Pause Publishing
Hide History
Configuration...
Delete All

This command deletes all the publishers and subscribers that have been created in the demo
application. All objects moving in the application window will disappear and no data will be
sent or received. (NOTE: Delete All removes all the entities but it does not destroy the partici-
pant. The quick reset is to select Configuration, Stop, Start). If you have started multiple copies
of Shapes Demo, you will need to click Delete All in each copy to delete their respective publish-
ers and subscribers.

Pause Publishing

The Pause Publishing command is only effective on publishers. It pauses the sending of coordi-
nate data for the shape until you click Resume Publishing. When Pause Publishing is clicked,
the label changes to Resume Publishing.

The Pause/Resume Publishing commands are also available when you right-click an entity (if it
is a publisher) in the Legend tab.In this way you can individually pause each single publisher.

When publishing is paused, you will still see published topics (colored shapes) moving in the
publisher demo window, but corresponding topics in a subscriber window will stop moving.
That’s because what you see in the publisher window is the data being generated (not necessar-
ily sent); what you see in the subscriber window is data being received. When you pause pub-
lishing, the subscriber stops receiving updates to the topic (that is, the shape’s coordinates).

Show/Hide History

The Show History and Hide History commands tells the demo to start/stop drawing the
shapes from all the packets that are in the subscriber’s history queue.

This command has no effect on subscribers that use the take() method of accessing data. It is
only for subscribers that use read(). It also has no effect on publishers.

If you set History greater than 1, by default all the packets in the history queue are displayed,
showing the historical path of the shapes on the subscriber’s canvas. If History is 1 (the default),
no historical samples appear because there is only room for one sample in the queue.

By default, historical samples are shown; that is, Show History is the default setting and you
will see the Hide History command in the Controls panel.

When you select Show History, the samples stay in the data reader’s queue, so you can see the
shadow trail of the historical samples (up to the number set in the History field).

Configuration

Note: To make changes with this dialog, first click Stop. Then make the desired changes and
click Start.

3-10

Other Controls

The Configuration dialog is where you can change the domain ID, manage QoS profiles, and
start/stop. Using the Stop and Start buttons is the equivalent of a Reset button, short of quitting

and restarting the application.

The dialog also lets you choose between two data
types: Shape and Shape Extended (the default).
Use Shape Extended if you want to select the
shape’s fill pattern or rotation speed when you
create a publisher (see Extended Attributes (Sec-
tion 3.3.4)).

If the “Choose the profile” listbox contains only
“Default::Default”, this means no XML files have
been loaded.

The “Enable distributed Logger” checkbox is
described in Using RTI Distributed Logger (Sec-
tion 3.7).

To load an XML QoS Profiles file:

Data Type

Choose the domain : |p

Choose the profile:

. Configuration. - ‘

] Stop i

1. Click Stop. (Any publishers/subscribers will be deleted when you do this.)

2. Click Manage QoS.

Load/Unlcad Q)

1

3. In the resulting dialog box, click
Add; then browse to select an XML

cS

Add

| [et

] [Remave]

QoS profiles file.

You can use your own file, as well as
the following files, which are pro-

v | C\RTTWSER _QOS_PROFILES. xml

vided with Shapes Demo:

e RTI_SHAPES DEMO_
QOS_PROFILES.xml, in
<Shapes Demo installation

[Cancel]’ Ok]

directory>/resource/xml. For information on the contents of this file, see Applying
QoS from a Profile (Section 3.3.5).

e USER_SHAPES_DEMO_QOS_PROFILES.xml in Shapes Demo’s workspace. You
can edit this file to include your own profiles.

If you specify multiple XML files, the Up and Down buttons change the order in which
they are loaded. If you load files that contain profiles with is_default_qos="true”, the last
profile loaded is used. This information is saved in the workspace (see Shapes Demo’s
Workspace (Section 3.5)).

To unload an XML QoS Profiles file:

. Select Configuration, then Stop.
. Click Manage QoS.

3. In the resulting dialog box, clear the check box next to the file, or select the file and click

Remove.

If the XML QoS Profile file has Errors:

If you add an XML QoS Profile file that has errors and you click Ok, Shapes Demo will try
detect the error and will show a popup that indicates with file has been detected to be
wrong. Once you click OK, the Load/Unload QoS profile files window will automati-
cally uncheck all the incorrectly formatted files.

3-11

Other Controls

At this point you can either press Ok and proceed without loading those files or edit
them by pressing the Edit button: the default XML editor will open, allowing you to cor-
rect the file and correct the error.

3.4.5 Output and Legend Tabs

There are two tabs at the bottom of the demo application window.

(J The Legend tab shows you the publishers and subscribers created for the demo and their
QoS settings.

Name Data Type Type | Color | Partitions | Read/Take QoS Settings Reliability

Square | Shape Extended = Pub BLUE Default::Default True

Cirde | Shape Extended | Pub | GREEN A Default::Default True
Square Shape Extended | Sub e Take() Default::Default False
Triangle | Shape Extended | Sub s Read() 3Shapes_Lib::Bat(False

4 L

Output | egend

Right-click on a publisher entity in the Legend tab to access these commands:

® Pause/resume publishing (see Section 3.4.2)
® Dispose data and delete the data writer.
® Unregister data and delete the data writer.

Right-click on a subscriber in the Legend tab to access a command to delete the data
reader.

Another way to delete a publisher or subscriber is to click on it in the Legend tab and
press the Delete button on your keyboard.!

Dispose vs. Unregister:

When data is disposed, all data readers are informed that, as far as the data writer knows,
the data instance no longer exists and can be considered “not alive.” When data is unreg-
istered, this only indicates that a particular data writer no longer wants to modify an
instance—an important distinction if there are multiple writers for the same instance.

(1 The Output tab shows statuses, events and other information.

12:24:44: Creating domain partidpant on domain ... -
12:24:43: <-DELETE ALL-= All the publishers and subscribers have been
successfully removed

12:40:45: Creating domain partidpant on domain Q...

12:40:47: & new generic shape has been created

12:40:47: DataWriterQo5 set to use Default Profile

Qutput | Legend]

1. When you press Delete, the current setting for the WriterDataLifecycle QoS policy’s
autodispose_unregistered_instances field determines if the writer’s data is disposed before it is unregistered. If
autodispose_unregistered_instances has not been changed via a QoS profile, the default setting will cause the
data to be disposed and unregistered.

3-12

Shapes Demo’s Workspace

3.5

3.6

3.7

Shapes Demo’s Workspace

The workspace directory for Shapes Demo is here:
[On Mac systems: /Users/<user>/Library/Preferences/rti/RTI_Shapes_Demo_<version>
(J On Linux systems: /home/<user>/rti/RTI_Shapes_Demo_<version>
(d On Windows systems: My Documents/RTI/RTI Shapes Demo <version>

Shapes Demo uses the concept of a workspace, which is an XML file that contains the last settings
used by Shapes Demo. For example, it contains the list of QoS XML profile files loaded through
the Load/Unload QoS profile files window and whether or not the files should be loaded.
Another useful piece of information saved in the workspace is the last domain ID specified by
the Configuration window. This allows you to start Shapes Demo with well-known settings each
time. (If you start Shapes Demo with the -domainld option, that domain ID setting is not saved in
the workspace.)

If the workspace directory contains a file named RTI_SHAPES_DEMO.xml, this file is used as
the workspace file. You can specify a different workspace file by starting Shapes Demo with the -
workspaceFile <filename> command-line option. If the file specified with this option cannot be
found, it will be created.

If you do not use the -workspaceFile <filename> option and RTI_SHAPES_DEMO.xml is not
in the workspace directory, Shapes Demo will automatically create RTI_SHAPES_DEMO.xml in
the workspace directory.

Using Monitoring

This section is only useful if you have RTI Monitor, a graphical tool that displays monitoring
data from RTI Connext DDS applications in which monitoring is enabled.

To enable monitoring in Shapes Demo, select the MonitorDemoLibrary::Default QoS profile
described in Applying QoS from a Profile (Section 3.3.5). For more information on monitoring,
please see the RTI Monitor Getting Started Guide and RTI Monitor User’s Manual.

Using RTI Distributed Logger

Shapes Demo provides integrated support for RTI Distributed Logger and is enabled by default.

3-13

Using RTI Distributed Logger

When you enable Distributed Logger, Shapes Demo
will publish its log messages to Connext DDS in
the same domain that Shapes Demo is using. Then
you can use RTI Monitor or RTI Admin Console' to
see the log message data. Since the data is pro-
vided in a DDS Topic, you can also use rtiddsspy>
or even write your own visualization tool.

To disable/enable Distributed Logger, use the
checkbox provided in the Configuration Dialog
under the Controls menu.

X

Data Type
() Shape (@ Shape Extended

Choose the domain:

Choose the profile: [Defamt:;oefaun

[] show this dialog at startup

[¥] Enable distributed \ogger)

Manage QoS][

1. RTI Monitor and RTI Admin Console are separate tools that can run on the same host as your application or on a dif-

ferent host.
2. rtiddsspy is provided with RTI Connext DDS.

3-14

Chapter 4

4.1

Examples

Important: Unless otherwise noted, these examples assume you are using the default Shapes
Demo settings—meaning the RTI_SHAPES_DEMO_QOS_PROFILES.xml file is loaded. This
file tells Connext to load the profile called Shapes_Default_Profile from the RTI_Shapes_Lib
library and use it as the default settings. For more information about profiles, see Section 3.3.5.

Publish-Subscribe Example

This example showcases the publish-subscribe concept. It uses best-effort communication and
shows the decoupling between the publisher and the subscriber; i.e., the publisher can send data
without knowing where/what the subscriber(s) are, and the subscriber can receive data without
knowing where/what the publisher(s) are. In this example, you will be asked to start two copies
of Shapes Demo. There is no need to configure a discovery service or provide any a priori informa-
tion about where the demo applications are being run.

1. Create a red circle publisher:

a. Start Shapes Demo. We will refer to this
instance of the application as Publisherl.

b. Under Publish, click on Circle.

c. In the Create New Publisher window: : Cese Dt -
e Select RED for Color. houme
¢ (Click OK.

You will see a red circle moving on the Pub-
lisher canvas. If there were any subscribers,
the publisher would start sending data (the S—
coordinates of the red circle).]

4-1

Publish-Subscribe Example

Figure 4.1

|l| Ready on domain 0

2. Create a subscriber for circles:

a. Start a second Shapes Demo. We will refer
to this instance of the application as
Subscriber1.

b. Under Subscribe, click on Circle.
¢. In the Create New Subscriber window:
® (lick OK. (Use all the defaults.)

You will see 6 red circles with blue borders
on the Subscriber canvas, mirroring the
movements of the circle in the Publisher can-
vas. The leading circle indicates the current
position of the published circle. The other
circles are the historical samples kept by Con-
next. You can see the difference between his-

Excusire AUTOMATIC

e

Dorablty Hstory
VOLATILE — &
Trme based Fiter {ms] Deatice (v4)
o F
Rekabity
Content Fiter Topsc Read method to use
Use fiser & Read)) Take()

Lease Duraton (=s)

torical data and new data looking at the thickness of the border. (You can also hide
historical data by selecting Hide History from the Controls menu.)

Your windows should look similar to Figure 4.1.

Publisher and Subscriber Displays

Triangle
Controls
Delete All
Pause Publishing Pause Publishing
Hide History Hide History
Configuration - Configuration
Mame| DataType Type| Color Partitions| Read/Take QoS Settings Name DataType Type Color Partitions | Read/Take QoS Settings
Crde ShapeExtended Fub | RED - Defavit::Default Crde | Shape Extended | Sub = Read] Default::Default
I m b F] b
utput Legend | Outout Legend |

i File View Publish Subscnibe Controls Help

Publish
Square
Circle
Tnangle

||Ready on domain 0

Publisher1

Test real-time data delivery:

Subscriberl

To show that the subscriber is receiving real-time data, move the cursor over the Pub-
lisher's red circle and click the mouse button. This will stop the red circle in the publisher
canvas. Drag the cursor and move it around while holding down the mouse button. The
red circles on the subscriber canvas should exactly mirror your mouse movements.

Congratulations, you have just finished the first exercise, which illustrates basic publish-sub-
scribe functionality!

If you plan to continue with the next exercise, leave the two demo windows running. The next
exercise will use the red circles.

4-2

Multiple Instances Example

4.2

Multiple Instances Example

Instances are useful when you are dealing with data that is unpredictable in terms of its creation
and deletion—e.g., aircraft/airplane flight tracks and shipment tracking. Flights and shipments
can come and go. The application has no way of knowing when or how many flights/shipments
show up. Connext provides rich semantics that can be used to track, monitor, and check the state
(new, deleted, no writers, etc.) of individual instances. Some of the possible notifications are dis-
played in the Output tab.

Publishers and subscribers are associated with a topic. If you create a new topic every time a
new flight is detected, you would need to create a matching subscriber and publisher pair. This
is obviously not scalable, since you can have many different aircraft flight plans.

Instances give you the ability to scale a topic. Unique instances of a topic are defined by unique
key values. A subscriber of a topic will get all the data sent on all the instances of this topic. Take
the example of flight track data: the key could be the flight ID, pilot name or mission code.
Regardless of how many new flights there are, you would only need one subscriber to get the
data, because the topic is the same.

In this example, the topic is the shape of the object (Square, Circle or Triangle) and the key is its
color. So different colors of an object give you different instances of the topic. For example, a red
circle is a different instance from a green circle, yet they are all instances of the Circle topic.

At this point, you should have two copies of Shapes Demo running, which will be referred to as
Publisher1l and Subscriberl. In this example, you will be asked to start additional copies of
Shapes Demo.

Tip: If you make a mistake during the following steps and need to delete a single publisher or
subscriber, select the item in the Legend tab and press the Delete key on your keyboard.

1. This exercise picks up where the previous one left off. So you should have two demo win-
dows running: one is publishing red circles (Publisherl) and the other is subscribing to cir-
cles (Subscriber1).

2. In Subscriberl, choose Delete All from the Controls Menu.
Create a circle subscriber with History = 1:
a. In Subscriberl1, under Subscribe, click on Circle.
b. In the Create New Subscriber window:
® Change the History field from 6 to 1.
® (Click OK.

You should now see one red circle moving in each instance of Shapes Demo.

4. Create a green circle publisher:
a. In Publisherl under Publish, click on Circle.
b. In the Create New Publisher window:
® Select GREEN for Color.
e (Click OK.

4-3

Multiple Instances Example

You should see two circles moving on each canvas—one red and one green.

Figure 4.2 Publisher and Subscriber Displays for Multiple Instances

File View Publish Subscnibe Controls Help |

6.

s s L o s

| Publish
Square
Circle
Triangle
Subscribe
Square |
Circle -
Triangle
Controls
Delete All Delete All
Pause Publishing F'g_ ugg.Pm;lughlng
Hide History Hide History
Configuration — Configuration -
Name DataType Type| Color Partitions | Read/Take QoS Settings Name DataType Type Color Partitions Read/Take QoS Settings
Crode Shape Extended Pub RED Default: :Default Cirde | Shape Extended = Sub - Read() Default::Default
Crde | Shape Extended | Pub | GREEN - Default::Default

n 3 4 m

Output Legendl Output LeoendI

Ready on demain 0

Ready on domain 0

Publisherl Subscriberl

Notice that we did not have to do anything in Subscriber] to start receiving the green cir-
cle’s data. That’s because the subscriber of a topic (Circle, in this case) gets all data sent for
all instances of the topic. The green circle was just another instance of the topic Circle, so
the subscriber received this new data automatically.

Create another red circle publisher in a new window:
a. Start a third Shapes Demo. We will refer to this copy of the application as Publisher2.
b. Under Publish, click on Circle.
c. In the Create New Publisher window:
® Select RED for Color
e (Click OK.

We now have multiple publishers updating the same instance (Red) of the topic Circle, as
in Figure 4.3. You'll see that the red circle in Subscriberl's canvas flickers between different
locations. This happens because the subscriber is receiving position data from both of the
publishers and is trying to display them at the same time. Details on how to handle such a
situation will be discussed in the next section.

Click Delete All in the Controls sub-panel of each of the three demo windows.

Note: A Subscriber shape may appear with an X or a ? symbol on it:

(A X means the instance has been disposed by the DataWriter

(DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE).

(d ? means none of the DataWriters are that currently alive are writing the instance

(DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE).

(J For more information on these states, please see the RTI Connext Core Libraries User’s

Manual or API reference HTML documentation.

4-4

Ownership Example

Figure 4.3 Two Publishers and One Subscriber

4.3

Publisherl Publisher2

File View Publish Subscribe Controls Help File View Publish Subscribe Controls Help

Outout Legend
Ready en domain 0 =
Type Color Partitions Read/Take QoS Settings Re
rde | Shape Extended Sub - Read(Default:Defauit
. . " »
Subscriber1 ==1n
FReady on domain 0

Ownership Example

As you saw in the previous example, it's possible for multiple publishers to simultaneously send
data to the same instance of a topic. You may or may not want this behavior. For certain types of
data such as commands, you may want to receive updates from just one publisher at a time in
order to be ensure consistency. Exclusive ownership is a way to ensure that only one publisher's
data for a specific instance can get through to a subscriber. With multiple publishers, the one
with the highest ownership strength wins.

At this point, you should have three copies of Shapes Demo running, which will be referred to as
Publisher1, Publisher2 and Subscriberl. If you have not already done so, click Delete All on
each one, so they are not publishing or subscribing to any shapes.

Tip: If you make a mistake during the following steps and need to delete a single publisher or
subscriber, select the item in the Legend tab and press the Delete key on your keyboard.

4-5

Ownership Example

10.

11.

In Publisherl, create an orange triangle
publisher, with Exclusive ownership,
Strength = 1:

a. Under Publish, click on Triangle.
b. In the Create New Publisher window:
® Select ORANGE for Color.
® Check Exclusive.
® Set Strength to 1.
® (Click OK.

You should see a floating orange triangle
on the canvas. We created a publisher
with exclusive ownership and a strength
of 1.

In one of the other Shapes Demo win-
dows, create a triangle subscriber with
Exclusive ownership. We will call this
window Subscriber1.

a. Under Subscribe, click on Triangle.

b. In the
window:

Create New Subscriber

® Check Exclusive.
o (Click OK.

You should see 6 orange triangles with
blue borders moving around in the
Subscriber1 canvas. So far, this is similar
to the publisher-subscriber exercise.

In the third window, create an orange
triangle publisher with Exclusive own-
ership and Strength = 3. We will call
this window Publisher?2.

a. Under Publish, click on Triangle.

b. In the New Publisher
window:

® Select ORANGE for Color.

® Check Exclusive
Strength to 3.

e (lick OK.

You should see an orange triangle in
Publisher2's canvas, as in Figure 4.4.

Create

and set

Use your mouse in Publisher2 to drag
the triangle around the canvas. The tri-

angle in Subscriberl should exactly mirror your mouse movements, because Publisher2

has a higher strength than Publisherl.

Extended Attributes
Shape fil style
@ Soid
Transparent
Horizontal hatch
Wertical hatch

Rotation Speed

Slower Faster

Apply Qus from Profie

Choose the profie:

:Deful::.‘)efu: b
Qo5 Values
Livelness
AUTOMATIC -
Lease Duration (ms)
e
Durabaity . History
|VOLATLE = 1
Deading (ms)
rFE
Lifespan {ms)
| Relabiity L

Contenit Filter Topc Read method to use

Extended Attributes

Agply QoS from Profie
Choose the profie:

:Deful::.‘)efu: b

Extended Attributes
Shape fil style
@ Soid
Transparent
Horizontal hatch
Wertical hatch
Rotation Speed

J

Slower Faster

Shage il style Rehabiity
Content Filter Topic Read methed to e
Use fiter @ Read) Take()
Rotation Speed
[=
Create new
Color (Key) Iritial Size Apply QoS from Profie
PURPLE 2 Choose the profie:
L :aefuz::aefu: -
L=y Partitons
GREEN
YELLOW M P —
CYAN B [=
C AUTOMATIC

Lease Duration (ms)
v

History

Deading (ms)

| Rekabiity i

Contenit Filter Topc Read method to use

Click Delete All in the Controls sub-panel of each of the three demo windows.

4-6

Failure Detection Example

Figure 4.4 Different Ownership Strengths

PublisherT, strength = 1

Triangle Shape Extended | Pub | ORANGE

File View Publish Subscribe Controls

Name Data Type Type Color Partitio

SR ()

Ot Legend |

Resdy on domain 0

Subscriberl

wngle Shape Extended | Sub

me Data Type Type Color | Partitions Read/Take QoS Settings Re
- Read) Defait:Default

Publisher2, strength = 3

[t i |

Ready on dernain 0

4.4 Failure Detection Example

You may want to detect when the publisher or the network is behaving abnormally and the sub-
scriber hasn't seen updates for an instance within a specified period of time. The Deadline QoS

offers a way to do this.

Deadline is a contract between the publisher and the subscriber based on the data rate. The pub-
lisher offers to send data at least once in its specified deadline period and the subscriber requests
to receive data within its deadline period. If either the subscriber or the publisher misses their

deadline, an event callback for "deadline missed" occurs.

At this point, you should have three copies of Shapes Demo running, though you will only use
two of them for this example. The two copies will be referred to as Publisherl and Subscriber1.

Tip: If you make a mistake during the following steps and need to delete a single publisher or
subscriber, select the item in the Legend tab and press the Delete key on your keyboard.

4-7

Failover Example

4.5

12. In Publisherl, create a cyan square pub-
lisher, Deadline = 200 ms.:

a. Under Publish, click on Square.

b. In the Create New Publisher window:
® Select CYAN for Color.
® Set Deadline to 200 ms.
® (Click OK.

13. Create a square subscriber in
Subscriber1 with Deadline = 4000 ms:

a. Under Subscribe, click on Square.

b. In the Create New Subscriber
window:
® Set Deadline to 4000 ms.
o (lick OK.

You'll see six cyan squares moving
around Subscriberl's canvas. This set of
squares mirrors the movement of the
cyan square in Publisherl's canvas,
along with 5 historical samples.

Note: The subscriber's deadline must be

greater than or equal to the publisher's
deadline. If not, an "Incompatible QoS

Create new Publisher -

Color e} . Apply QoS from Profie
2 g Initial Size
PURPLE Choose the profie:

U Default::Default -
RED
Partitons
e Qo5 Values
A Ownership Liveiness
& CYaN B Exclusive AUTOMATIC -
c
Lease Duration (ms)
ORANGE e
Durabiity History

Extended Attrbutes

- -

Shape fll style V| Reksbiity

@ Sold

Tramsarant Read methed to e

Content Filter Tope:

Horizontal hatch
Vertical hatch

Rotation Speed

Slower Faster

Apply QoS from Profile

0ose the profie:

Defaut: Defaut -
Partitons
B QoS Values
A Ownership Livelness
- Exclusive AUTOMATIC -
o " Lease Duration (ms)
Durablity History

Extended Attrbutes
Shage il style Relebiity
Content Filter Tope: Read method to use

Use fiter @ Read() Take()

Rotation Speed

o || cancel

(Deadline) on Square" error message will be displayed in the Output tab of the Subscriber

demo application.

14. In Publisher1’s Controls sub-panel, click Pause Publishing.

The cyan square in Subscriberl's canvas should freeze. Note that now all the samples’ bor-
ders have the same thickness: this indicates that all of them are historical data. In
Subscriber1, select the Output tab to see messages notifying the application that the prom-
ised deadline of 4000 ms has been missed, as seen in Figure 4.5.

15. Click Resume Publishing.

The cyan squares in Subscriberl's canvas will start moving again, mirroring the move-

ment in Publisherl's canvas.

16. Click Delete All in the Controls sub-panel of each demo window.

Failover Example

In most mission-critical systems, there are failover mechanisms to handle unexpected behaviors.
In this exercise, we combine the previous two exercises to illustrate hot-failover behavior where

4-8

Failover Example

Figure 4.5 Missed Deadline

.

File View Publish Subscribe Controls Help

Publish

Triangle
Subscribe

Square
Cirgle b
Triangle

Controls

Delete All

Resume Publishing
Hide History
Configuration

Hame Data Type Type Color | Partitions Read/Take QoS Settings
Square | Shape Extended | Pub | CYAN Defaudt::Default

0o Legerd |

Ready on domain 0

1"

File

View Publish Subscribe Controls

16:45:29: Requested deadine missed for Square
16245:33: Requested deadine mssed for Square

Help

Select the Output tab in Subscriberl to
see the ‘deadline missed” messages

the "primary" publisher goes down and the subscriber immediately detects the loss and starts
taking data from the "secondary" publisher.

At this point, you should have three copies of Shapes Demo running, referred to as Publisherl,
Publisher2 and Subscriber1.

Tip: If you make a mistake during the following steps and need to delete a single publisher or
subscriber, select the item in the Legend tab and press the Delete key on your keyboard.

1. In Publisherl, create a red circle pub-

lisher

with Exclusive Ownership,

Strength = 1, Deadline = 400 ms:

a. In Publisherl, under Publish, click on
Circle.

b. In the Create New Publisher window:

Select RED for Color.
Check Exclusive.

Set Strength to 1.

Set Deadline to 400 ms.
Click OK.

Extended Attributes
Shape fil style
@ Soid
Transparent
Horizontal hatch
Wertical hatch

Rotation Speed

[¥] Rekabiity

Conterit Filter Topic

Use fiter

Faster

[AuTomaTIc -
Lease Duration (ms)
e

Hstory

°)
Deadine (ns)),

F

Read methed to e

@) Read() (7 Take()

o) (et]

49

Failover Example

2. In Publisher2, create a red circle pub-
lisher ~with Exclusive Ownership,
Strength = 3, Deadline = 400 ms:

a. Under Publish, click on Circle.
b. In the Create New Publisher window:
® Select RED for Color.
® Check Exclusive.
® Set Strength to 3.
® Set Deadline to 400 ms.
e (Click OK.

3. In Subscriberl, create a circle subscriber,
Exclusive selected, Deadline = 2000 ms.

a. Under Subscribe, click on Circle.

b.In the Create New Subscriber
window:

® Check Exclusive.
® Set Deadline to 2000 ms.
o (lick OK.

In the subscriber canvas, you should see
red circles that mirror the movement of
the one in Publisher2. This happens
because Publisher2's circle has a higher
strength that Publisherl's. The deadline
setting for the subscriber is the time at
which the subscriber application will

Create new Publisher - Ci

Color (Key) Iritial Size
PURPLE Choose the profie:

- Default::Default
@ Partitons

YELLOW
CYAN
MAGENTA
ORANGE

EGLEED

Extended Attributes

] Relabiity

Shape fil style

Conterit Filter Topic

Rotation Speed

Apply QoS from Profie

Liveiness

AUTOMATIC -
Lease Duration (ms)
e

Read methed to e

Extended Attributes
Shape fil style

Rotation Speed

Liveiness

AUTOMATIC -
Lease Duration (ms)
e

Read methed to e

@ Read() Take()

"fail-over" to the lower strength publisher application.

4. In Publisher2, click on Pause Publishing.

After 2000 ms, Subscriber1 will show a "requested deadline missed" message in its Output
tab and at the same time, fail over to display the movements of the red circle in Publisherl.

Publisher2 initially had exclusive ownership of the red circle instance because it had a
higher strength. However, this ownership was lost to the lower-strength Publisherl when
the subscriber missed a deadline. This is especially useful if a publisher is unable to grace-
fully shutdown and relinquish its ownership.

5. In Publisher?, click on Resume Publishing.

Subscriberl's red circle should immediately switch to tracking the movements of

Publisher2.

6. Click Delete All in the Controls sub-panel of each demo window.

4-10

Extensible Types Examples

4.6

4.6.1

Extensible Types Examples

Data models often need to evolve. In a deployed system, you might want to deploy new appli-
cations that can handle additional attributes in the data model, yet maintain compatibility with
already deployed applications—without making any changes. The Extensible Types feature is
designed to handle these situations: applications using different but compatible data-types can
still communicate. The Shapes Demo application uses two different data types to demonstrate
this scenario. Shapes Demo can publish and subscribe to either a “Shapes Extended” data type
(the default) or a more basic “Shape” data type. The difference between these types is that the
Shapes Extended type includes two more pieces of information: a fill-pattern and a rotation
speed.

In addition to the QoS settings that you will experiment with in these exercises, there is another
QoS specific to Extensible Types (TypeConsistencyEnforcementQosPolicy) that can further cus-
tomize the behavior of applications when using Extensible Types. For details, see the RTI Con-
next Core Libraries Getting Started Guide Addendum for Extensible Types.

At this point, you should have three copies of Shapes Demo running, referred to as Publisher1,
Publisher2 and Subscriberl. All are using the Shape Extended data type by default.

Introduction to the Shape Extended Type

1. Publish a Square in Publisherl. In the pub- Extended Attributes
lish screen, choose the horizontal hatch pat- Shape fil style
tern and set the rotation speed to middle
setting.) Solid

() Transparent

2. Subscribe to Squares in Subscriberl. In the
subscriber, you will see the shape with the
selected pattern, rotating at the selected

@ Horizontal hatch
") Vertical hatch

speed.
Rotation Speed
Slower Faster
48, RTl Shapes Demo - Domain 0 = 2] (g " Shapes Dema - Domain0 S5 %
| File View Publsh Subscribe Controls Help | File View: Publish ~Subscribe Controls Help
Publish Publish
Sguare Square
Circle Cirgle
Tnangl Trangis
Subscribe E Subscribe
Squara Square
Circlg Circle
Tnangls Trangle
Controls Controls
Delste All alete Al
Pause Publishing Pause Publishing
Hide History Hide History
Configuration Configuration
Hame DataType Type Color Partitions Read/Take QoS Settings Name DataType Type Color Partitions Read/Take QoS Scttings
Square | Shape Ewtended | Pub | BLUE Defait: Defauit Square | Shape Extended Sub - Bead) Defacit:Defadt
Publisherl Subscriber]

3. Feel free to repeat with other shapes, fill patterns, and speeds.

4-11

Extensible Types Examples

4.6.2

4.6.3

4. Select Delete All in each instance of Shapes Demo.

Publishing Extended Type, Subscribing to Basic Type

This scenario simulates the situation where new applications are publishing data with extra
information using an extended data model, but there are existing applications that only need to
subscribe to the original, basic data model (and in fact, don’t even have the logic to deal with
extra attributes in the newer, extended model).

1. In Publisher 1 (which is using the Shape Extended type by default), publish a blue square.
Select the horizontal hatch fill-pattern and a medium rotation speed.

2. In Subscriberl’s Configuration dialog, press Stop, select the “Shape” data type, press
Start.

In Subscriberl, subscribe to squares.

4. In Publisher 1, you should see a square with the selected pattern, rotating at the selected
speed. In Subscriber 1, you should see a blue square that does not have the pattern and is
not rotating.

| 481 71 Shopes Demo - Domain 0 =T ACT 48 RT1 Shapes Dema - Domain 0

Publish
Square

7

Mame DataType | Type Color Partitions Read/Take QoS Se Wame| DataType | Type | Color | Partitions | Read/Take | QoS Se .
Square | Shape Extended | Pub | BLLE Defadt:: Square Shape Sub - Read) Defaur
| Output egend | Output Legend
.R:n_. on domain Ready on domain 0
Publishing “Shape Extended” Subscribing to Squares,

Configured to use “Shape” data type

5. Select Delete All in both instances of Shapes Demo.

Publishing Original and Extended Types, Subscribing to Extended Type

This scenario simulates the situation where deployed applications are publishing data using the
old model and new applications are receiving data of both the original and extended data types.

1. In Publisherl’s Configuration dialog, press Stop, select the “Shape” data type, press Start.
2. In Publisher 1, publish a blue square.

3. In Publisher2 (using the Shape Extended type by default), publish a red square with the
horizontal hatch fill-pattern and a medium rotation speed.

4. In Subscriberl (using the Shape Extended type by default), subscribe to squares. You
should see that Subscriberl is receiving both types of squares, as seen below.

4-12

More Experiments

4.7

4.7.1

Publishing “Shape” Publishing “Shape Extended”
48 K11 Shapes Demo - Domain 0 {= & 2| Rt shapes Demo - Domain 0 = = %
File View Publsh Subscnbe Controls Help | File view Publish Subscibe Controls Help
Publish Publish
Square . Square
Circle Circle
Triangle | Trangle
Subscribe | [Sum
Square = Square 5
Circle Circle
Triangle E,‘- RTI Sha g]
Controls File View Publish Subscribe Controls Help
Delete All &
Pause Publishing Publish .
Hide History éﬂiﬂ@
Configuration - Lircle
Triangle
Name Data Type Type Color Pa rtitions | Read/Take QoS Se
Square Shape Pub | BLUE Subscribe é s Default::
Square ’
Circle |
Tnangle
‘. n L3
Output pegend Controls
|Ready on domain0 Delele A1 Subscribing fo
. = 'ause Publishing
Hide History Squares
Configuration -

More Experiments

Please feel free to experiment and run tests using the other QoS options in the Create New Sub-
scriber and Create New Publisher windows. Described below are a few other interesting behav-
iors to test.

Content-Filtered Topics Example

A content-filtered topic is a very useful feature if you want to filter data received by the Sub-
scriber. It also helps to control network and CPU usage on the subscriber side because only data
that is of interest to the subscriber is sent.

For example, assume your application is a radar monitor that draws flights detected within a 20-
mile radius. The application can subscribe to the track data with a content filtered topic for a 20-
mile radius on the coordinates of all flights. With the filter, only coordinates that are within the
20-mile radius will be sent to the application.

1. Start two copies of Shapes Demo, which we will call Publisherl and Subscriberl. If you are
reusing demo windows from a previous section, delete any existing publishers and sub-
scribers (under Controls, click Delete All.)

2. In Publisherl, create a circle publisher (any color):

4-13

More Experiments

4.7.2

a. Under Publish, click on Circle.

b. In the Create New Publisher window,
click OK.

In Subscriberl, create a circle subscriber
with a content filtered topic:

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:
® Check Use filter.
e (Click OK.

You will see a shaded rectangle appear in
the subscriber canvas. This is the filter for
the coordinates of the Circle topic. The sub-
scriber will receive position data for the Cir-
cle only when it is with the area defined by
the content filter.

- s
Color Riay) s Acoly QoS from Profie
Choose the profiie

Defait: Defait z
Parttons
Qo Values
A Ownersho Lveiness
- Exclare AUTOMATIC -
o Lease Duraton (=)
1 re
Durabilty Hstor
OLATLE - &
ime based Fiter {ms) Deadioe [ra)
DF
Exterded Atroutes
Shage M stvle Ressby
Rend method to use
@ Resd() L
Rotaton Soeed

To see the effect of dynamic filters, use your mouse to move and resize the shaded area in

Subscriberl.
EE =

Controls Help |

!] RTI Shapes Demo - Domain 0

File View Publish Subscnbe

Publish

Square
Circle

Trangle

Subscribe
Square ‘
Circle
Triangle

Controls
late All
Pause Publishing
Hide History
Configuration -

Lifespan Example

48| RTI Shapes Demo - Domain 0 =@ =

File View Publish Subscribe Controls Help |

Publish
Square
Circle
Triangle

Subscribe 1

‘:‘-guare
Circle

Trangle

Controls o
Delete All

Pause Publishing
Hide History
Configuration 2

d

The Lifespan QoS controls how long data samples are considered valid. You can use it to pre-
vent sending data that is considered too old to be valid. The default setting is an infinite dura-
tion, meaning the data will never ‘expire.’

1.

Start two copies of Shapes Demo, which we will call Publisherl and Subscriberl. If you are
reusing demo windows from a previous section, delete any existing publishers and sub-

scribers (under Controls, click Delete All.)

In Publisher1, create a circle publisher (any color) with History = 100, Lifespan = 1000 ms.:

a. Under Publish, click on Circle.
b. Set History to 100 and Lifespan to 4000.
¢. Click OK.

In Subscriberl, create a circle subscriber with History = 100:

4-14

More Experiments

4.7.3

a. Under Subscribe, click on Circle.

b. Set History to 100.

c. Click OK.

Drag the shape around on Publisherl’s canvas.

On Subscriberl’s canvas, you will see a "shadow" of objects printed out in a continuous
pattern. The shadow is caused by the subscriber showing the last 100 data samples from
the publisher’s history queue.

In Publisherl, click Pause Publishing.
In Subscriber1, notice that the samples disappear as they time out. Experiment by increas-

ing the Lifespan setting for the publisher. The longer the Lifespan, the longer it takes for
the samples to disappear when you pause publishing.

|* 48 Rl Shapes Demo - Domain 0 — gl X | 48] R1 Shapes Dema - Domain 0 - g

Publish : [} | Pubiish

Reliability and Durability Example

In a dynamic system, you may want late-joining nodes to get the data that was sent before the
nodes connected to the network. For example, suppose you need to initialize the state of these
late-joining nodes and don't want to be continually sending the state just in case some node joins
late. The Durability QoS provides late-joining nodes with the ability to get previously sent data.

1.

Start two copies of Shapes Demo, which we will call Publisherl and Subscriberl. If you are
reusing demo windows from a previous section, delete any existing publishers and sub-
scribers (under Controls, click Delete All.)

In Publisher 1, create a circle publisher (any color) with Transient Local Durability, Reli-
ability, and History = 200.

a. Under Publish, click on Circle.

b. In the Create New Publisher window:
® Use the drop-down list box to change Durability to Transient Local.
® Set History to 200.
e (Click OK.

Wait for a bit.

In Subscriberl, create a circle subscriber with Transient-Local Durability, Reliability and
History = 200.

a. Under Subscribe, click on Circle.
b. In the Create New Subscriber window:

® Use the drop-down list box to change Durability to Transient Local.

4-15

More Experiments

4.7.4

® Check Reliability.
® Set History to 200.
e (lick OK.

Watch the Subscriber canvas. You will see a "shadow" of objects printed out in a continu-
ous pattern. The shadow results from the subscriber showing the last 200 samples from
the publisher’s history queue.

To stop showing the shadow trail of samples in Subscriberl, click on Hide History.

A8 RTI Shapes Demo - Domain 0 1| 8| FT1 Shapes Demo - Domain 0 b |

Pubilish

Time-based Filtering Example

Sometimes subscribers are located on slower or more remote systems that cannot handle the
amount of data that the publisher is capable of sending. For example, consider a system where a
central command center is publishing high-resolution aerial photos of a geographic area once
every 30 seconds and a soldier with a handheld computer is trying to subscribe to the data. In
this case, the handheld computer does not have the bandwidth to handle the command center's
send rate. With time-based filtering, the handheld computer can "throttle" the data so that it only
receives data once every 5 minutes.

1.

Start two copies of Shapes Demo, which we will call Publisherl and Subscriberl. If you are
reusing demo windows from the previous section, delete any existing publishers and sub-
scribers (under Controls, click Delete All.)

In Publisherl, create a circle publisher (any color).
a. Under Publish, click on Circle.
b. In the Create New Publisher window, click OK.
In Subscriberl, create a circle subscriber, History = 1, Time Based Filter = 1000 ms.
a. Under Subscribe, click on Circle.
b. In the Create New Subscriber window:
® Set History to 1
® Set Time Based Filter to 1000.
e (Click OK.

You will see the circle jump once every second, instead of a fluid movement. In this case, the
publisher is only sending data to the subscriber once a second, according to the subscriber's
time-based filtering.

4-16

Appendix A Running from the Command Line

In some cases you may want to run Shapes Demo from the command line.

1. Open a command prompt and navigate to the folder where Shapes Demo is installed.

2. Enter the following command:

> scripts/rtishapesdemo <command-line optionss

Table A.1 describes the command-line options. These options take precedence over conflicting
settings in the configuration file (if any). (For example, if the configuration file specifies domain
ID 1 and you enter -domainld 2, then domain ID 2 will be used.)

Table A.1 Command-line Options

<Shape | ShapeExtended>

Option Description
-compact Starts Shapes Demo using a compact view
-configure Opens the configuration dialog at start up, even if -dataType is set.
-dataType

Sets the default value for the type.

-domainld <ID>

For different copies of Shapes Demo to communicate with each other, they
must use the same domain ID.

The default domain ID is 0; if you need to use a different domain ID, you
must use the same value for all copies of Shapes Demo that need to commu-
nicate with each other.

The ID is an integer value, 0 or higher.

-help

Lists the command-line options.

-posX <integer>
-posY <integer>

Sets the X and Y positions where the Shapes Demo window will be dis-
played on your screen.

The valid range for <integer> depends on your screen's resolution.

Using (-1, -1) for the X and Y positions results in a default position chosen
by either the windowing system or wxWidgets, depending on platform.

-publnterval <integer>

Specifies how often the publisher should send data (in ms).
Default: 50 ms

-sublnterval <integer>

Specifies how often the subscriber should look for data (in ms).
Default: 50 ms

A-1

Table A1

Command-line Options

Option

Description

-verbosity <0..5>

Controls the verbosity of messages from Shapes Demo.
0 =SILENT No further output will be logged. (Default)

1 =ERROR Only error messages will be logged.
2 =WARNING Both errors and warnings will be logged.
3=LOCAL Errors, warnings, and verbose information about the

lifecycles of local Connext DDS objects will be logged.

4 = REMOTE Errors, warnings, and verbose information about the
lifecycles of remote Connext DDS objects will be logged.

5=ALL Errors, warnings, verbose information about the lifecy-
cles of local and remote Connext DDS objects, and peri-
odic information about Connext DDS threads will be
logged.

-workspaceFile <file>

Specifies an XML configuration file.

Default: See “Shapes Demo’s Workspace” on page 3-13.

A-2

Appendix BTroubleshooting

B.1 Windows Security Alert

When you run the demo, you may encounter a "Windows Security Alert" dialog. Simply click
Allow Access.

@ Windows Firewall has blocked some features of this program

Windows Firewall has blocked some features of RTI Shapes Demo on all public, private and
domain networks.

m Name: RTI Shapes Demo
== publisher: Real-Time Innovations, Inc.

Path: C:'\program files (x86)\rtiti_shapes_demo_4.5x\bin|
\i86win32vs 2005y tishapesdemo.exe

Allow RTI Shapes Demo to communicate on these networks:
[¥] Domain networks, such as a workplace network

[¥]Private networks, such as my home or work network

[[]Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing a program through a firewall?

[) Allow access] { Cancel

Running without an Active Network Interface

B.2 Running without an Active Network Interface

If you run Shapes Demo on a system that does not have an active network interface, you may see
this warning;:

-

| WARNING

I Create participant failed. Trying with no network mode,

O

Participant creation failed because, by default, Shapes Demo uses UDPv4, which is not available
if there is no active network interface.

After you select OK, Shapes Demo will create a participant using shared memory instead of
UDPv4.

B-2

	Contents
	Chapter 1 Introduction
	1.1 Guide to this Document
	1.2 Goals of the Demonstration

	Chapter 2 Background Information
	2.1 Communication Models in Networking Middleware
	2.2 Connext DDS Overview
	2.2.1 Quality of Service

	2.3 Publish-Subscribe Simple Analogy
	2.4 Publish-Subscribe Complex Analogy
	2.5 Publish-Subscribe Example Application

	Chapter 3 Installing and Using Shapes Demo
	3.1 Installation
	3.2 Running Shapes Demo
	3.2.1 If You Cannot use Multicast

	3.3 Publish and Subscribe Task Panes
	3.3.1 Color
	3.3.2 Initial Size
	3.3.3 Partitions
	3.3.4 Extended Attributes
	3.3.5 Applying QoS from a Profile
	3.3.6 Setting QoS Values
	3.3.7 Using a Content Filtered Topic
	3.3.8 Controlling the Read Method

	3.4 Other Controls
	3.4.1 Delete All
	3.4.2 Pause Publishing
	3.4.3 Show/Hide History
	3.4.4 Configuration
	3.4.5 Output and Legend Tabs

	3.5 Shapes Demo’s Workspace
	3.6 Using Monitoring
	3.7 Using RTI Distributed Logger

	Chapter 4 Examples
	4.1 Publish-Subscribe Example
	4.2 Multiple Instances Example
	4.3 Ownership Example
	4.4 Failure Detection Example
	4.5 Failover Example
	4.6 Extensible Types Examples
	4.6.1 Introduction to the Shape Extended Type
	4.6.2 Publishing Extended Type, Subscribing to Basic Type
	4.6.3 Publishing Original and Extended Types, Subscribing to Extended Type

	4.7 More Experiments
	4.7.1 Content-Filtered Topics Example
	4.7.2 Lifespan Example
	4.7.3 Reliability and Durability Example
	4.7.4 Time-based Filtering Example

	Appendix A Running from the Command Line
	Appendix B Troubleshooting
	B.1 Windows Security Alert
	B.2 Running without an Active Network Interface

