Xen step-by-step Tomas Karpati

Xen

step-by-step
by Tomas Karpati
Preface

Why Xen ?

Through the last years I have been playing around with many virtual engines. There
are many of them, each with its own advantages and disadvantages. There are very
good virtualization software developed as commercial products and as open-source. I
have tested VMWare (in its very initial versions), dosemu, Bochs, User-Mode-Linux
(UML) and Xen. To be faire, I think that all of them are good. However, I don't think
that all them are suitable for same projects.

Before a month and half, I had been involved in a new project that demmanded a
very specific configuration, with specialized servers. The most logical solution was to
setup three or four machines each running safely isolated in an intranet and
protected with a firewall. The problem was that the budget was scare, but the
bandwich and demmanding usage of the system did not justify the high costs it may
carry.

In this context I begun to think on the use of one machine running many virtual
machines, each independent from the others, with their own resources managed
independently. At the beginning I planned to use UML, as it was the one I thought
may comply with most of the requirements. However, its use falled down because I
needed that some of the virtual servers had direct access to some hardware
components, while those components where not necessary for the other servers. I
searched in the UML discussion groups for someone who had tried such setup, and
found a comment that said it was possible, but needed some hack on the kernel. As
I had not as much time nor the expertice to do that, I begin my search for an
alternative. I rapidly found the link to the Xen homepage. I heard of Xen before, but
never tried it. When reading the user manual and the latests threads on the
discussion group, I found that Xen was the perfect match for my project. So I give it
a try.

The beginning was a little troublesome, but relatively fastly (in about a month and
half) I had all my project completted. I have to thank the developers of Xen for the
well done piece of gold, and the people at the discussion group which are very active
and helpful responding to the questions posted even by newbees. The only problem I

1/21

Xen step-by-step Tomas Karpati

saw was the lack of documentation and examples for those who want to try Xen, but
without having to get into the intrincated source code. So, I dedicate this guide for
the newbees wanting to play with Xen.

This guide is dedicated to the Xen newbee and to those who want to get into a
production ready system without the pains of learning the intrincated code and
obscure theories behind Xen. However, the reader has to have some degree of
experience in working and maintainig linux to successfully get Xen running.

An Introduction to Xen

The model of virtualization used in most of projects are based on creating a
virtualization engine running in the base system, which permits running unmodified
operating systems on it. This model is based on full virtualization. In contrast, Xen
is based on a slight modification of the base operating system to achieve better
performance, and need that the virtualized systems run also a modified operating
systems. However, the user's applications run unmodified on those systems. This
approach has been called “paravirtualization”.

I think of a machine running Xen as the hardware equivalent of partitioning a
hardisk. When we make a disk partition, we virtualy divide one physical disk into
many disks. If we look at a partitioned disk he have the impression of having many
disks, each independent of the other, and even formated with different filesystems
that will contain different operating system files. In the same way, Xen divide the
computer into many virtual machines, giving the impression of many computers
running on it. If we run a network scanning program we can find that each virtual
server is recognized as a different and independent machine.

One of the most powerfull characteristics of Xen is compatmentalization. Xen
isolates each of the virtual machines running on it and give them the posibility to
control their own real resources besides of the virtualized ones. For example, if you
have two network interfaces, you can asign one to Xen, that will be used to connect
all the virtual machines with themselves, and those with other real machines in your
intranet. The other interface could be asigned to another virtual machine that may
act as a router that securely connect to the internet your whole intranet network.
Another example of isolation is the use of two graphic cards, two usb mouses and
two usb keyboard asigned to two independent virtual machines, each running X
with its own set of harware.

When running Xen, we actualy run at least two kernels. The first one is xen.gz,
which is the kernel implementation of the virtualization engine. The other one is the
priviledged kernel called vmlinuz-x.x.x-xenO. This is the kernel that will control most
of the hardware, generating virtual frontends of them for the other virtual machines.
This kernel will run the linux distribution called domainO. Under this domain Xen

2/21

Xen step-by-step Tomas Karpati

has to run xend, the Xen control daemon. xend is the responsible of creating and
destroying domains. It also is the responsible of managing the resources of those
domains. xend is writen in the python scripting language and its communication
signals are managed through the Twisted network framework, also based on python.
Those signals are transmitted using the HTTP protocol. The HTTP interface is
present in all the most commonly used programming languages (Python, Perl, Java,
C, C++, Rubi, etc), letting programmers to use their preferred language for
interfacing with Xen.

Preparing Xen to run

For running Xen, we have to prepare our system. The first step is to create a fresh
pristine linux distribution. We will base our pristine distribution on Debian Sarge.
You can use the technique you preferre, but we recommend the use of debootstrap.

You can install debootstrap by downloading it from

‘http:/ /people.debian.org/~blade/install/debootstrap/’. To install debian for our
system, you need a partition of at least 1.5GB. Format this partition (be carefull to
check if there is some important data on this partition before proceding) using
mke2fs. Now mount the formatted partition as following:

mount /dev/hdaX /mnt -t ext2

where hdaX is the name of the formatted partition (substitute it to the correct
values).

If you have not installed linux on your test computer, you can run linux from your
cdrom drive using any live distribution (like Knoppix), install debootstrap locally in
your home directory (that is saved into your C:\ drive as an image file, or on other
media).

When installing debootstrap, you are asked for a pass-prase. Write the following
phrase as the password:

Yes, I know that this data may be harmful!

Be carefull to write all the words, spaces and signs as written here, any change you
made will return an incorrect pass-phrase error. After that, extract and install
debootstrap.

Creating a pristine debian distribution

Now we will procede to install a base Debian system on /mnt.
debootstrap --arch i386 sarge /mnt \
http://ftp.<countrycode>.debian.org/debian

3/21

Xen step-by-step Tomas Karpati

where <countrycode> is the two letters code of your country, or in defect, of the

nearest country having a Debian mirror. The installation of Debian will take a while,
thus enjoy your time reading this book or playing... debootstrap will make the work
for you. After debootstrap finished without errors, logout from the chrooted archive:

logout

At this point we have created a distribution that we will use as our template. Before
configuring it for using as our domainO, we can generate a filesystem on a file, and

copy the distribution to it, so we can use it for the creation of our virtual machines.
To do that we procede as follows:

dd if=/dev/zero of=/opt/vserver.img bs=1024k count=1.5MB
mke2fs /opt/vserver.img

dd if=/dev/zero of=/opt/swap.img bs=1024k count=256MB
mkswap /opt/swap.img

Now change to root and procede with the following:

su root

mount /opt/vserver.img /cdrom -o loop

cd /mnt

cp -rp boot bin dev etc lib root sbin usr var /cdrom
cd /cdrom

mkdir cdrom floppy home mnt opt proc tmp

umount /cdrom

Now we have two copies of the filesystem, one on a hardisk partition, and the second
on a virtual filesystem. I recommend you to use gzip or bzip2 to compress the
vserver.img and record it into a cdrom, so you can always have a copy of it in case
you want to create a new virtual server on another machine.

Configuring domainO

We are now ready to procede with the system configuration. We begin with
domainO. On the command line write:

4/21

Xen step-by-step Tomas Karpati

chroot /mnt /bin/bash

We have to change the following files:

echo “vserver” > /etc/hostname

In /etc/hosts we write the following:

.0.0.1 localhost
.168.168.1 domain0

.168.168.2 mailserver
.168.168.3 smoothwall

In /etc/resolv.conf we add the address of our DNS server (ask your internet service
provider for the address of their DNS servers). In my case it looks like:

nameserver 194.90.1.5
nameserver 192.115.106.10

In /etc/network/interfaces you must specify the network interface existent in your
system and the method for obtaining their addresses. In our example we present two
ethernet interfaces, one configured to obtaine its address from a dhcp server, the
second with a static address.

auto lo eth0O ethl
iface lo inet loopback

iface eth0 inet dhcp
hostname vserver

iface ethl inet static
address 10.1.0.2
netmask 255.255.255.0

The next file to modify is /etc/apt/sources.list. We add here the address of the
Debian mirror we used with debootstrap.

5/21

Xen step-by-step Tomas Karpati

deb http://ftp.<countrycode>.debian.org/debian sarge main contrib non-free

The last file we will modify is /etc/fstab. This file must reflect the mounting points of
our system:

/dev/hdal / ext2 errors=remount-ro
/dev/hda2 none swap sw

proc /proc proc defaults

Substitute /dev/hdal and /dev/hda2 for the correct values for your system.

As we explained before, DomainO is the responsible of running the Xend server. So
we have to install the Xen binaries on it. Before procedding, we have to install some
software libraries and applications which are pre-requisite for Xen. The packages we
need are:

iproute2
bridge-utils
python
Twisted
libcurl

zlib

If you want to build Xen from source you will also need:
gcc v3.3.x
binutils
GNU make
libcurl-devel
zlib-dev
python-dev

LPTEX, transfig and tgif

You can install them using apt-get or dselect. I recommend the use of dselect, as it
can show you the version of the packages, their dependencies and the recommended
package associated with them.

6/21

Xen step-by-step Tomas Karpati

After completing the installation of the required packages, we procede to download
and install Xen. Download the last binary distribution of Xen from the Xen web site
(http://www.cl.cam.ac.uk/Research /SRG /netos/xen/downloads.html). Unpack the
package and install:

cd /usr/src

untar -xzf xen-install.tgz
cd xen-2.0.1-install
./install.sh

This will check for the needed dependencies and will install Xen. The installed files
are: the Xen kernels (in /boot), the Xen module (in /lib/modules), the Xen tools (in
/usn), some python libraries (in /lib/python and in /var/xen), and the Xen scripts

that run the Xen virtualization engine (in /etc).

In order to run Xen, it is needed to boot using grub. However, grub is not installed
by default in Debian, so we install it into Debian:

apt-get install grub

this will install grub on the system. Now we have to create or modify the file
/boot/grub/menu.lst.

title Xen 2.0 / XenoLinux 2.4.27
kernel /boot/xen.gz dom0_mem=65536
module /boot/vmlinuz-2.4.27-xen0 root=/dev/hdal console=tty0

title Xen 2.0 / XenoLinux 2.6.9
kernel /boot/xen.gz dom0 mem=65536
module /boot/vmlinuz-2.6.9-xen0 root=/dev/hdal console=tty0

This file says grub the sequence of actions and the parameters it has to pass to the
kernel on booting. For those used to boot with lilo, it is the equivalent of lilo.conf.
For the moment, Lilo is not supported by Xen. In this file we have two booting
options: botting Xen with a 2.4.27 kernel, or booting with a 2.6.9 kernel. The first
line defines the title of the boot option. The second line is identical in both options.
It says the bootloader to use the file /boot/xen.gz as the booting kernel, and to
assign to it a total of 64MB of RAM. No matter if you have 1000MB RAM, you
assigned to domainO only 64MB. The restant memory may be used later when
assigning memory to other virtual servers. xen.gz is the control layer of Xen and is

7/21

Xen step-by-step Tomas Karpati

first runned. The third line is the name of the kernel that will run the virtual
machine domainO. This is passed by grub to the xen.gz kernel with the descriptor
module, and the parameters for the location of the root directory and the console to
be used for logging in. In this case the root directory is /dev/hdal (change it to
reflect your system configuration), and the console will be /dev/ttyO0.

If you have installed lilo and don't want to change bootloader, you can create a
floppy booting disk (or even a booting cdrom, see the grub manual):

cd /usr/share/grub/i386-pc
dd if=stagel of=/dev/fd0 bs=512 count=1
dd if=stage2 of=/dev/£fd0 bs=512 seek=1

To install grub into the master boot record run the following:
grub-install /dev/hda

where /dev/hda is the master disk.

WARNING: if you use the command bellow without adding
the corresponding configuration definitions for the rest of

yor system, the system will not boot your original operating
systems on this machine. Please referre to the grub manual !

We are ready with our installation, logout from the chrooted directory and umount
the /mnt directory.

Booting Xen for the first time

Now we are ready to reboot our system for the first time. You can try it by rebooting
your computer (insert the floppy if you decided to make one).

If it boots successfully, CONGRATULATIONS, you are running your first Xen Virtual
machine, and you are running domainO. You have now to login as root. Being a
fresh install, no password will be required. This is the moment to create the root
password for domainO. Type:

passw

8/21

Xen step-by-step Tomas Karpati

and follow the instructions. You may also want to create a new non priviledged user
(for security reasons, it is recommended to logging as this unpriviledged user and
not as root). Use the command adduser, and follow the instructions.

If you are a curious, you can now check the system, which processes are running,
which devices are recognized, check the log files, etc. You will note that it runs like
any regular distribution. Take a look at the memory statistics (cat /proc/memstat),
you will note that the reported memory is not the real memory of the system. It is
the memory we assigned to domainO when grub was configured.

Everithing looks wonderfull, but we are interested to run more virtrual machines. At
this point we cannot run any other virtual machine. We have before to run the Xen
daemon,

/etc/init.rd/xend start

If you check now the network interfaces (ifconfig), you will find that there is a new
network interfaces added.

domain0> /sbin/ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:1002 errors:0 dropped:0 overruns:0 frame:0
TX packets:1002 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:72584 (70.8 Kb) TX bytes:72584 (70.8 Kb)

Link encap:Ethernet HWaddr 00:50:8D:A6:10:19

inet addr:192.168.168.254 Bcast:192.168.168.255 Mask:255.255.255.0
inet6 addr: fe80::250:8dff:fea6:1019/64 Scope:Link

UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1

RX packets:13283 errors:0 dropped:0 overruns:0 frame:0
TX packets:13504 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:8909969 (8.4 Mb) TX bytes:1954311 (1.8 Mb)
Interrupt:11 Base address:0xa800

Link encap:Ethernet HWaddr 00:50:8D:A6:10:19

inet addr:192.168.168.254 Bcast:192.168.168.255 Mask:255.255.255.255
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:94 errors:0 dropped:0 overruns:0 frame:0

TX packets:20 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:16360 (15.9 KiB) TX bytes:1313 (1.2 KiB)

After xend is running we are now able to run the virtual machines. We can
communicate with xend through the command xm. This command passes the
instructions we have give to it as parameters.

9/21

Xen step-by-step Tomas Karpati

xm create -f /etc/xen/xmexamplel

will create the virtual machine as described in the configuration file
/etc/xen/xmexamplel.

However, to run a new virtrual machine we have to configure a new pristine
distribution. We will copy our previously generated template into the file /
opt/domainl:

cp /opt/vserver.img /opt/domainl.img
cp /opt/swap.img /opt/ms_swap.img
mount /opt/domainl.img /mnt -o loop

chroot /mnt /bin/bash

We will configure now domainl in a similar way we configured domain0. We also
created a swap file for this domain.

echo “mailserver” > /etc/hostname

In /etc/hosts we write the following:

.0.0.1 localhost
.168.168.1 domain0

.168.168.2 mailserver
.168.168.3 smoothwall

In /etc/resolv.conf copy the same configuration values than in domainO.

In /etc/network/interfaces you specify the network interface passed on by domainO.
Our system recognize this interface as eth0, and the driver loaded is the same driver
that we loaded in domainO.

auto lo ethO

iface lo inet loopback

iface eth0 inet static
address 192.168.168.2
netmask 255.255.255.0

10/21

Xen step-by-step Tomas Karpati

The next file to modify is /etc/apt/sources.list. Again, we copy the same values as
used in domainO.

The last file we will modify is /etc/fstab. This file will reflect the mounting points of
the system as passed by domainO (we will define it in the next section):

/dev/hdal / ext2 errors=remount-ro
/dev/hda2 none swap sw

proc /proc proc defaults

Logout from the chrooted directory. In order to boot this distribution without
problems, we have to copy to the system the kernel modules for the xenized kernels.

cp -rp /lib/modules/* /mnt/lib/modules/

umount /mnt

Now, we are ready with our first independent virtual machine. To run it we have to
create a configuration file. We will call this configuration file mailserver.xsp and save
it on /etc/xen. The content of this file looks as follows:

(vm
(name mailserver)
(memory 128)
(image
(linux
(kernel /boot/vmlinuz-2.4.27-xenU)
(ip ::::mailserver:eth0:192.168.168.2)
(root /dev/hdal)
(

args 'ro fastboot 2')

)
)
(device (vif (@ (id vifl)) (mac aa:00:00:00:22:22)))
(device (vbd (uname file:/opt/mailserver.img) (dev hdal) (mode w)))
(device (vbd (uname file:/opt/ms swap.img) (dev hda2) (mode w)))

Files ending with .xsp are considered as the native configuration files in Zen. The
first line of the configuration tell xm that we are defining a virtual machine. The
second line define the name that will be used to call our server. The third line define
the amount of memory that Xen will assign to this machine. We assigned to
mailserver 128MB of RAM. Lines 4-11 represent the equivalent of the grub definition
of the booting parameters. We tell xm to use the kernel found in /boot/vmlinuz-
2.4.27-xenU. If you had checked the content of /boot you may have seen two

11/21

Xen step-by-step Tomas Karpati

versions of the Xen kernels: vmlinuz-2.4.27-xenO and vmlinuz-2.4.27-xenU. The first
one correspond to the kernel used for running priviledged domains, while the second
is for unpriviledged domains. We will talk about both types later. By now, I only will
tell you that we will run an unpriviledged domain. We also define here the network
interface with its address and the root directory. We can define anything as our root
directory (for example: /dev/hdb4, /dev/sda2, /dev/sr0, etc) as long as in the next
lines we tell xm where to find that device, as we do in lines 13-14. We designed /
dev/hdal to a virtual file that contains the domainl linux distribution
(/opt/mailserver.img). In the same way we assigned /dev/hda2 to the swap file (take
now a look at the /etc/fstab we created for this distribution). We may also define
here a real harddisk partition, like in this example:

(vm
(name mailserver)
(memory 128)
(image
(linux
(kernel /boot/vmlinuz-2.4.27-xenU)
(ip ::::mailserver:eth0:192.168.168.2)

(root /dev/hdal)
(args 'ro fastboot 2')
)
)
(device (vif (@ (id vifl)) (mac aa:00:00:00:22:22)))
(device (vbd (uname phy:hda4) (dev hdal) (mode w)))

where we assign a real physical device /dev/hda4 (phy:hda4) that will be recognized
by the target virtual operating system as /dev/hdal.

WARNING: Be carefull to not assign block devices in use by

other domains to any new domain, because this may corrupt
the filesystem and will cause troubles to the operating systems.

In line 12 we define the virtual network device to be passed to the virtual kernel. The
mac argument defines the mac address of the virtual network interface. This value
has to be different to that of the other interfaces defined in other virtual machines or
from real machines in your network.

There is also another way to write configuration files. It is interpreted by a python
script that will then pass the parameters to xm. An example showing the same
parameters as defined bellow is:

12/21

Xen step-by-step Tomas Karpati

This script sets the parameters used when a domain is created using 'xm create'.
You use a separate script for each domain you want to create, or
you can set the parameters for the domain on the xm command line.

Kernel image file.
kernel = "/boot/vmlinuz-2.4.27-xenU"

Initial memory allocation (in megabytes) for the new domain.
memory = 128

A name for your domain. All domains must have different names.
name = "mailserver"

Define network interfaces.
ip='192.168.168.2"

Optionally define mac and/or bridge for the network interfaces.
Random MACs are assigned if not given.
vif = ['mac=aa:00:00:00:22:22 , bridge=xen-br0']

Define the disk devices you want the domain to have access to,

what you want them accessible as.

Each disk entry is of the form phy:UNAME,DEV,MODE

where UNAME is the device, DEV is the device name the domain will see,
and MODE is r for read-only, w for read-write.

#disk = ['phy:hdal,hdal,r']
disk = ['file:/opt/mailserver.img,hdal,w']
disk = ['file:/opt/ms_swap.img,hda2,w']

Set the kernel command line for the new domain.

You only need to define the IP parameters and hostname if the domain's
IP config doesn't, e.g. in ifcfg-eth0 or via DHCP.

You can use 'extra' to set the runlevel and custom environment
variables used by custom rc scripts (e.g. VMID=, usr=).

root = "/dev/hdal ro"
Sets runlevel 2.

extra = "2"

Set according to whether you want the domain restarted when it exits.

The default is 'onreboot', which restarts the domain when it shuts down
with exit code reboot.

Other values are 'always', and 'never'.

restart = 'never'

Xen step-by-step Tomas Karpati

This file is self explained, and may be more clearly understood if compared in
parallel with its XSP counterpart.

After we have our disk image and its configuration ready, we will run our new virtual
machine. Try this:

xm create -F /etc/xen/mailserver.xsp -c

or this

xm create -f /etc/xen/mailserver.conf -c

the -F option tells xm we are using the native configuration format, while the -f
option tells xm we are using an alternative format. The -c option tells xm to assign
the actual console to the new virtual machine.

You will see now an almost normal linux kernel booting that will get you to the login
command prompt. Type root and you are in. The first thing to do is to add a root
password and to create a new unpriviledged user, as done bellow in domainO.

Now you can play a little with the new system, and install the server applications
you want it to run. I recommend you to start with a mail gateway, with antivirus and
antispam protection, an open-LDAP server, and an NFS server.

The same steps should be used to generate domain2, installing on it a web server,
like apache with perl and/or php4, a database server like MySQL or Postgress, and
SO on.

CONGRATULATIONS! You are now running your own super-ultra-fantastic virtual
server system. And you have all the servers you ever dreamed without consuming all
that power a network of servers consume, without the need of special refrigeration
meassures, without a hole in your pocket, and without your wife reclaiming your
computers are invading your home ;-)

Customizing Xen

Until now we have been running Xen in a very basic way. Xen could be used with
more specialized and cumtomized configurations. Lets say you want to create a Xen-
based system that will include a router/firewall virtual machine (based on
Smoothwall), a LAMP system (Linux, Apache, MySQL and PHP4), a mail gateway
(Postfix + Amavis) with antivirus (ClamAV) and antispam (SpamAssassin) protection,
and an internet radio server (Icecast). Such a system can not be ran successfully on
the Xen configuration described before. This configuration requires some of the
systems to have direct access to some hardware. However, all the hardware is only
available to domainO. In the following diagram we show the conguration we are
trying to achieve.

14/21

Xen step-by-step Tomas Karpati

e

Hub
(intranet)

Virtual Ethernet Virtual Ethernet
card (vif0:1) card (eth0)

Real Ethernet
card (eth0)

domain0 ® LAMP

I

Al?\/S[L(/iCable Virtual Ethernet Virtual Ethernet
v ocen card (eth0) — card (eth0)
(internet) .
green interface
Real Ethernet
card (ethl) —

red interface
Smoothwall iRadio

Computer Box

The computer used for running this Xen example has the following configuration:
AMD Athlon 1900+ (1600MHz) processor
1GB SDRAM

Asus AT7 motherboard w/Realtek 8139 network card and Via VI8233A AC97
Audio Controller (both on board)

An additional 3Com 905b (typhoon) ethernet card.

We have to assign One of the ethernet cards to domainO, the other to Smoothwall,

15/21

Xen step-by-step Tomas Karpati

and the soundcard to iRadio server. However, the module drivers corresponding to
those hardware are not included in the binary distribution of Xen. So we have to
customize Xen for our needs.

Compiling Xen

Our first step in the customization of Xen is to download the source code for Xen
and a vanilla linux kernel (ftp://ftp.kernel.org). We will make all this work on
domainO.

Decompress the Xen source into /usr/src, and the linux kernel source into the /
usr/src/xen-2.0.1 directory. Change the name of the kernel source as following:

cd /usr/src/xen-2.0.1

mv linux-x.y.z pristine-linux-x.y.z

Now, if you have a configuration file that works for your computer, copy that to the
boot directory (the Xen Makefile will check if the configuration files exist in the /
boot directory, and if true, will use those configuration files for compiling the
kernels).

cp /usr/linux/myconfig /boot/config-x.y.z-xen0

Another way to customize your kernel is to get into the vanilla kernel source and
run

make mrproper

make menuconfig
after done save the config file and copy it to the /boot directory as explained before.
Now run make and wait for a while. First make will check if you has all the required

dependencies needed for compilation. Next it will compile the Xen utilities. Then
make will patch your vanilla kernel as needed and will run the following:

make ARCH=xen oldconfig

At this point you may be required to answer some questions related to the kernel

16/21

Xen step-by-step Tomas Karpati

configuration. For those parameters related to Xen, we recommend to accept the
defaults. For the other parameters, it is up to you if you want to make any addition
or deletion. Now make will procede with the compilation of the linux-x.y.z-xenO
kernel and modules, and later it will repeat the same steps to compile the linux-
x.y.z-xenU kernel tree. At the end of this process we will have new kernels and
modules that will be automatically installed into domainO. To have our distributions
booting without problems we have to copy the modules into them. To do that mount
the virtrual images we created and copy the modules from /usr/src/xen-
install/install/lib/modules into /mnt/lib/modules,

Now we have to reconfigure some of the system configurations, but before lets talk a
little about priviledged and unpriviledged domains.

Priviledged vs Unpriviledged domains

Virtual machines running under Xen are runned in two ways: as priviledged
domains or as unpriviledged domains. The most common example of a priviledged
domain is domainO. The term priviledged specify that we are running a domain that
has direct access priviledges over part or all the hardware. In the examples we have
discused previously we have configured domainO as the only priviledged domain.
However, we can also configure other virtual machines as priviledged domains.

The other way to run a virtual machine is configuring it as an unpriviledged domain.
Unpriviledged domains are characterized by having no direct access to the physical
devices of the system. Their access are made through virtual interfaces managed by
domainO. Examples of those interfaces are network and block devices. As we stated
before, most of the physical devices are controller by domainO. This domain creates
a backend port for each device, which can communicates with other domains having
configuration with a frontend driver. This communication is controlled by xend. The
reason for this model is that any physical device can be controlled only by one
kernel driver. I we permit many kernels to access and controll the same device,
misbehaving software may crash or lock all the system and other machines may
stop working or responding. The recognition of those virtual drivers by the virtual
machine kernel is achieved by modifications introduced into the kernel. For
example, when initialising xend in domainO, a virtual network interface is generated,
using bridge-utils, and attached to the real network device on the system. On
starting xend we will see in the console the following message:

device vifl.0 entered promiscuous mode
xen-br0: port 2(vifl.0) entering learning state

xen-br0: port 2(vifl.0) entering forwarding state
xen-br0: topology change detected, propagating

17/21

Xen step-by-step Tomas Karpati

This bridge network device will be recognized in other virtual machine and will be
assigned the network interface ethO. The kernel dmesg log for this interface looks
like this:

Universal TUN/TAP device driver 1.5 (C)1999-2002 Maxim Krasnyansky
[XEN] Initialising virtual ethernet driver.

[XEN] Netfront recovered tx=0 rxfree=0

NET4: Linux TCP/IP 1.0 for NET4.0

IP Protocols: ICMP, UDP, TCP
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 4096 bind 8192)

Sending DHCP requests ., OK
IP-Config: Got DHCP answer from 0.0.0.0, my address is 192.168.168.252
IP-Config: Complete:
device=eth0, addr=192.168.168.252, mask=255.255.255.0, gw=192.168.168.230,
host=domain2, domain=, nis-domain=(none),
bootserver=0.0.0.0, rootserver=0.0.0.0, rootpath=
ip_conntrack version 2.1 (512 buckets, 4096 max) - 288 bytes per conntrack

In this case, vif1.0 is the backend of the network interface, which is attached to ethO
in domainO, while ethO running in domain2 represent the forntend interface.

The kernel configuration that define a priviledged domain are:

#

Xen

#

CONFIG_XEN PRIVILEGED GUEST=y
CONFIG_XEN PHYSDEV ACCESS=y
CONFIG_XEN SCRUB_PAGES=y
CONFIG_XEN_NETDEV_FRONTEND=Y
CONFIG_XEN_BLKDEV_FRONTEND=y
CONFIG _NO IDLE HZ=y
CONFIG_FOREIGN_ PAGES=y

CONFIG NETDEVICES is not set

while for an unpriviledged domain are:

#

Xen

#

CONFIG_XEN PRIVILEGED GUEST is not set
CONFIG_XEN PHYSDEV_ACCESS is not set
CONFIG_XEN SCRUB PAGES=y

CONFIG_XEN NETDEV_FRONTEND=y
CONFIG_XEN_ BLKDEV_FRONTEND=y
CONFIG NO IDLE HZ=y

CONFIG_FOREIGN_PAGES is not set
CONFIG_NETDEVICES=y

18/21

Xen step-by-step Tomas Karpati

By default, the only priviledged domain that has access to all the physical devices of
the machine is domain0O. Running a second priviledged domain will behave almost
identical to an unpriviledged domain unless we make some changes to the domains
configuration. First, if we want to asign a physical device to a domain that requires a
soundcard, we have to hide this device to be recognized by domainO. To achieve this
we modify the grub configuration as follows:

title Xen 2.0 / XenoLinux 2.4.27
kernel /boot/xen.gz dom0 mem=65536 physdev _dom0 hide=(00:17.5)
module /boot/vmlinuz-2.4.27-xen0 root=/dev/hdal console=tty0

title Xen 2.0 / XenoLinux 2.6.9
kernel /boot/xen.gz dom0_mem=65536 physdev_dom0_hide=(00:17.5)
module /boot/vmlinuz-2.6.9-xen0 root=/dev/hdal console=tty0

To know the address of the device you want to hide you can take a look at the pci
process using:

cat /proc/pci

In my machine I get the following information:

Bus 0, device 17, function 5:
Multimedia audio controller: VIA Technologies, Inc. VT8233/A/8235
AC97 Audio Controller (rev 64).

IRQ 10.
I/0 at 0xc000 [OxcOff].

The values of the device to be written in the grub configuration should be in the
form (bus:dev.func). The values shown in the pci info are in decimal numbers. You
can define it using decimal or octal values. If we define in decimal values it will be
(0:17.5), while if we define it as octal it will be (0x0:0x11.0x5).

After changing the grub configuration, we have also change the configuration for the
virtual machine.

19/21

Xen step-by-step Tomas Karpati

(vm
(name asterisk)
(memory 80)
(image
(linux
(kernel /boot/vmlinuz-2.4.27-xen0)
(ip ::::iradio:eth0:192.168.168.4)
(root /dev/hda2)
(args 'ro fastboot 2')
)
)
(device (vif (@ (id vifl)) (mac aa:00:00:00:00:11)))
(device (vbd (uname file:/opt/iradio.img) (dev hda2) (mode w)))
(device (pci (bus 0) (dev 17) (func 5)))

In the configuration bellow we defined the pci device that should be passed to that
virtual machine. Another differece to the configurations we made at now is the use
of the vmlinuz-2.4.27-xen0 kernel. This kernel defines the virtual machine as a
priviledged domain.

This example shows how Xen use isolation to run customized virtual machines,
which is one of the most important differeces between Xen and other virtualization
engines.

20/21

