
Retrocomputing

Baseboard
Rev 0.9 as of 2004-11-10 First Steps: Ping Pong Demo

Overview
The Retrocomputing Baseboard carries
the Spartan-3 Micromodule, and extends
it with various interfaces, display options
and memory expansions to form a fully-
featured System-On-Chip development
platform.

The following demo was developed to
give the engineer a quick hands-on expe-
rience, and to demonstrate the board’s
features and their application.

This application note describes an FPGA
implementation of a simple tennis game,
demonstrating the following tasks:

 Using the VGA output
 Using the LCD Display
 Encoding of PS/2 data
 Using the game port
 Using the Audio output
 Testing of Memory
 Using the Digital Clock Manager

Trenz Electronic GmbH 1

Trenz Electronic GmbH
Brendel 20
32257 Bünde, Germany
www.trenz-electronic.de

Figure 1: Baseboard with Micromodule

Retrocomputing

Startup
To use this demo you have to do the fol-
lowing steps:

 1 Plug the Micromodule onto the Base-
board and connect all necessary pe-
ripherals like monitor, keyboard and
speaker

 2 Establish a JTAG connection to the
host system by using either the low
cost JTAG Programmer from Trenz
Electronic, or any other 2.5V JTAG
chain capable JTAG interface

 3 Supply the baseboard with power by
either using the USB port, or by con-
necting a 5V supply to the DC-jack

 4 Run the programming tool iMPACT,
which is included in WebPACK ISE, on
your host system

 5 Select boundary scan mode and use
the autoconfiguration, finally it should
show two objects: the FPGA and the
Flash

 6 Assign a configuration file to the de-
vice you want to program
 6.1 for the FPGA: toplevel.bit
 6.2 for the flash: toplevel.mcs

 7 Finally power cycle the board, or press
the program button if you have a mod-
ule revision >=01

Note: If you configured the flash, you
have to disconnect the JTAG cable before
you can configure the FPGA from Flash.

Architectural Description
Ping Pong is a simple tennis game which
everybody knows from the early comput-
er gaming age.

It is played twosome, so you have to con-
nect two keyboards, or one keyboard on
J12 and a joystick on the game port.

The arrow keys move the player around
and the keypad zero key releases the
ball.

For additional acoustic effects a speaker
can be attached on Audio out (J3).

Figure 2 visualizes the design hierarchy.

Entity lcd
The entity lcd initialize the LCD-display
and makes simple write commands avail-
able.

The display is connected for 4-bit mode,
so all commands and data bytes have to
be split into two nibbles. The processing
time takes 40µs for normal commands
(see the display manual for more details),
so a clock signal with a higher period has
to be generated outside the entity to trig-
ger the state-machine. Another clock for
creating the enable-signal is needed, half
as long as the other clock period.

For initializing the display, several set-
tings and waiting times have to be exe-
cuted:

 1 Wait for min. 40ms after power on
 2 Set 8-bit mode
 3 Wait for min. 4.1ms
 4 Set 8-bit mode
 5 Wait for min. 100µs
 6 Set 8-bit mode
 7 Set 4-bit mode
 8 Set 4-Bit mode, display lines and dots
 9 Display, cursor, blinking character on
 10 Clear display
 11 Wait for clear time (min. 1.64ms)
 12 Set direction of cursor movement

Trenz Electronic GmbH 2

Figure 2: Design hierarchy

toplevel

lcd

ps2

sprite

timing1024x384

sound

sram

clock_synthesis

Retrocomputing

The outgoing ready line signaled that the
entity is up to write symbols on the dis-
play. If the write signal goes high, the in-
coming data byte will be downloaded to
the lcd.

Entity ps2
This entity processes the ps/2 keyboard
protocol.

If a key is pressed the keyboard sends
the make code. When releasing, it sends
the break code. While pressing the key a
longer timer, the make code is send peri-
odically. With this method you can detect,
if several keys are used at the same time.

Key Make code Break code

kp 8 (UP) 75 F0, 75

kp 2 (DOWN) 72 F0, 72

kp 4 (LEFT) 6B F0, 6B

kp 6 (RIGHT) 74 F0, 74

kp 0 70 F0, 70

space 29 F0, 29

Table 1: Scan-Code Values in hex

The entity does not provide any parity
control or evaluation of the whole sending
code, it only separates between make and
break code and assigns the transmitted
byte to the associated signal in the fol-
lowing way:

If there occur a falling edge at the incom-
ing ps2 clock signal, a shift register takes
up the bit from the ps2 data input. When
the startbit reaches the end of the regis-
ter the recorded code byte is compared
with the make code of the keys that we
need in our design and an output is gen-
erated. If a break code identifier (F0) has
been received earlier, no signal will be
outputted.

Entity timing1024x384
This entity generates the timing informa-
tion for the whole gaming operation.

There are two counters (x,y) implement-

ed that contains the coordinates for the
current pixel. The frame begins in the up-
per left corner of the screen and is build
up line by line to all up 1024 x 384 Pixel,
but the origin of the coordinates is in the
lower right corner.

The synchronization pulses are negative
polarized, so the monitor works in 480
line mode. Around the screen there is are
blank area that has to be considered by
generating the synchronization pulses.
Figure 3 illustrate the timing parameters
for the horizontal synchronization and
Figure 4 them of the vertical synchroniza-
tion.

Table 2 shows the counter values needed
for generating the synchronization. The
counter for the horizontal direction is trig-
gered by the system clock. After 1295 cy-
cles the counter for the vertical deflection
is triggered.

Description Counts Time

A horizontal refresh 1295 32,4µs

B horizontal image 1024 25,6µs

C left blanking 83 2,07µs

D right blanking 32 0,8

E hsync width 156 3,9µs

F vertical refresh 428 13,9ms

Trenz Electronic GmbH 3

Figure 3: Horizontal refresh cycle

1024 PixelRGB

hsync
E

DC

B

A

Figure 4: Vertical refresh cycle

384 linesline

hsync
J

IH

G

F

Retrocomputing

Description Counts Time

G vertical image 384 12,4ms

H top blanking 32 1,0ms

I bottom blanking 10 324µs

J vsync width 2 64,8µs

Table 2: Timing Parameters

Thus the refresh rate amounts 72Hz and
the pixel frequency 40MHz.

Furthermore after each frame a strobe is
signaled out.

Entity sprite
The sprite entity outputs a signal if the
current pixel lies on the object for that
the sprite stands for.

It contains constants for the size of the
object and input vectors for the position.
With the aid of the current pixel coordi-
nates, it calculates if the pixel lies on the
object. Then a hit is signaled out.

Entity sound
For the sound output a bit from the pixel
y-coordinate is used, which toggles with
about 6kHz. This is passed to the
Audio_out pin for 7 frames when a
bounce is detected. So you can hear a
'beep' every time you hit the ball.

Entity sram
The SRAM is not used for the game, but
there is a memory test implemented
which writes data into the RAM and reads
it back. If a mismatch is detected, one of
the LED's is turned off.

Entity clock_synthesis
To provide another clock frequency than
the 30MHz from the USB interface chip
the entity clock_synthesis exists. It uses
one of four DCM (Digital Clock Manager)
components which are included in the
Spartan-III. The files clock_synthesis.vhd
and clock_synthesis.xaw are automatical-

ly created by the Architecture Wizard of
ISE WebPack. (For more Details see Xilinx
documentation xapp462.pdf.)

One of the features is the Frequency Syn-
thesizer that generates a clock depending
on two user-defined integers and the in-
put clock. In this application the following
ratios applies:

ClkOut=CLKFX_Multiply
CLKFX_Divide

⋅ClkIn

= 4
3
⋅30MHz=40MHz

The 40MHz clock is used by all compo-
nents, especially the VGA timing entity
timing1024x384 needs this frequency to
provide the timing parameters.

Entity toplevel
The toplevel entity contains the instances
of all other entities. The sprite entity is
instantiated three times: for the left and
the right bat, and the ball.

The control signals of the game port are
combined with these of the keyboard for
the left player.

A state-machine controls the game oper-
ation with the following states:

 splash
 left_start
 right_start
 running
While starting, the sprite objects will get
their starting position and the ball addi-
tionally his course direction. When press-
ing the zero key the state changes into
running state. Each frame, the bats will
be moved if the control signals advise
that, and the ball position will be recalcu-
lated with the aid of the direction vari-
ables. The hit signals from the sprite enti-
ties provide for bounce detection: does
that of the bat and that of the ball occur
at the same time, the x-direction variable
will be inverted. If the ball reaches the
upper or lower border of the screen, the

Trenz Electronic GmbH 4

Retrocomputing

y-direction variable will be inverted. If the
ball leaves the left or right border of the
screen, the game is restarted.
Also the hit signals are used to adjust the
rgb color output to display the objects on
the monitor.

Project files
The project files for this application note
are provided in WebPACK ISE format with
all synthesis options set up to achieve a
push button flow. Furthermore, the re-
sulting .mcs file to program the Flash
PROM and a .bit file to program the FPGA
via JTAG are provided.

 References
 Spartan-3 FPGA Micromodule

User's Manual
Trenz Electronic
 July 9, 2004

 Retrocomputing Baseboard
User's Manual
Trenz Electronic
October 20, 2004

History
Rev. Date Who Description

0.9 2004-11-10 TS created

Table 3: History

Trenz Electronic GmbH 5

