

403 Poyntz Avenue, Suite B Manhattan, KS 66502-6081 1.785.770.8511 www.thunderheadeng.com

PetraSim Example Manual

September 2008

TOUGHREACT Example Guide

Table of Contents

1. Overview	1
Using TOUGHREACT	1
Input Files	1
Thermodynamic Database	1
2. Aqueous Transport with Adsorption and Decay (EOS9)	3
Description	3
Specify the Equation of State (EOS)	3
Create the Model Boundary	3
Create the Grid	4
Global Properties	5
Simulation Name	5
EOS Data	5
Material Properties	6
Material Data	6
Relative Permeability	6
Capillary Pressure	6
Initial Conditions	7
Define Boundary Condtions	7
Water Source	7
Production	8
Print Center Cell Data	8
Solution Controls	9
Times	9
Weighting	9
Convergence	9
Output Controls	10
TOUGHREACT Solution Parameters	11
TOUGHREACT Output Options	11
TOUGHREACT Chemical Components	11
TOUGHREACT Zone Data	13
Associate Zones with Grid	15
Save and Run	16
View 3D Results	16
View Cell History Plots	17
3. CO2 Disposal in Deep Saline Aquifers (ECO2)	19
Description	19
Specify the Equation of State (EOS)	19
Global Properties	19
Material Properties	20
Material Data	20
Relative Permeability	20
Capillary Pressure	20
Miscellaneous	21
Initial Conditions	21

TOUGHREACT Example Guide

TOUCHDEACT Solution Demonster	22
TOUGHREACT Solution Parameters	
TOUGHREACT Output Parameters	
TOUGHREACT Chemical Components	
Primary Species	
Aqueous Complexes	24
Minerals	
Gaseous Species	
TOUGHREACT Zone Data	
Saving the Geochemical Data File as a Starting Point for a New Analysis	
Create the Model Boundary	
Create the Grid	
Define Boundary Condtions	
Solution Controls	
Times	
Solver	
Output Controls	
Associate Zones with Grid	
Save and Run	
View Results	
The Continuation Run (Restart)	
Add Restart Data	
Set a New End Time	
Start the Continuation Run	
View Results	
References	41

List of Figures

2.1. Aqueous Transport with Adsorption and Decay Model (after [Xu, Sonnenthal, Spyc	cher,
and Pruess, 2004])	3
2.2. The Create Grid dialog. The values shown will create a regular 60x1x1 grid	5
2.3. Solution Controls - Convergence	. 10
2.4. Primary Species	. 12
2.5. 3D Results	. 17
2.6. Cell History	. 18
3.1. SAND Material Data	21
3.2. Primary Species	23
3.3. Mineral Zone Data	30
3.4. CO2 Injection	33
3.5. CO2 Injection	34
3.6. Zones Associated with Grid	36
3.7. Preparing a Line Plot	37
3.8. Line Plot of CO2 Saturation (Sg)	38
3.9. Preparing a Line Plot	39
3.10. Line Plot of Total CO2 Sequestered in Minerals (SMco2)	40

List of Tables

2.1. Model Boundary Dimensions	3
2.2. Water Zone Data	14
2.3. Water Zone Data	14
3.1. Dissolution and Precipitation Data for Minerals	26
3.2. Additional Mechanism Data for Minerals	27
3.3. Dissolution and Precipitation Data for pyrite-2	27
3.4. Additional Mechanism Data for pyrite-2	27
3.5. Water (Initial) Zone	28
3.6. Mineral Zone	29
3.7. Model Boundary Dimensions	31

Chapter 1. Overview

Using TOUGHREACT

TOUGHREACT is an extension of the original TOUGH2 simulation that is available as a simulator mode in PetraSim. The TOUGHREACT simulator supports a subset of the TOUGH2 EOS modules. The supported EOS moduels are EOS1, EOS2, EOS3, EOS9, and ECO2. You can perform a TOUGHREACT simulation by selecting the TOUGHREACT simulator mode and one of the available EOS modules in the PetraSim Preferences dialog.

In PetraSim, options relating to TOUGHREACT are presented under the Tough React menu item in the main window. These options allow you to configure the reactive transport solver, simulation output, chemical zones, and other TOUGHREACT-specific parameters.

It is also possible to disable reactive transport during a TOUGHREACT simulation. This will effectively revert the simulator to TOUGH2 mode. This option is available in the Global Properties dialog, on the Analysis tab.

Input Files

A TOUGHREACT simulation requires four input files. These files are listed below:

- flow.inp -- This is the standard TOUGH2 input file
- solute.inp -- The chemical "geography" of the analysis
- chemical.inp -- The chemical parameters
- thermodb.txt -- The thermodynamic database

PetraSim creates each of these files into your simulation directory. However, the filenames cannot be changed. The naming scheme for the simulation output files follows a similar pattern. To avoid overwriting previous simulation input and output data, you must run each analysis in a separate directory.

Thermodynamic Database

A thermodynamic database listing the composition of many different species and minerals has been included with PetraSim. PetraSim will automatically load this database. A valid database must be loaded prior to the inclusion of species or the definition of reactive zones. This is because the species used to build up the zones are loaded from the thermodynamic database. If choose to use a custom databse, you must ensure that it is loaded before configuring any species or zones. To load a custom thermodynamic database:

1. On the Tough React menu, click Thermodynamic Database...

- 2. Select your custom thermodynamic database
- 3. Click **OK**

Chapter 2. Aqueous Transport with Adsorption and Decay (EOS9)

Description

This problem is the first example in the TOUGHREACT manual. It is a 1-D problem, 12 m in length, with a unit area, divided into 60 blocks of 0.2 m thickness, as shown in Figure 2.1.

Figure 2.1. Aqueous Transport with Adsorption and Decay Model (after [Xu, Sonnenthal, Spycher, and Pruess, 2004])

Specify the Equation of State (EOS)

To ensure that PetraSim uses TOUGHREACT and EOS9, you may need to edit your PetraSim preferences. To edit preferences, you can use the **Preferences** dialog.

- 1. On the **File** menu, click **Preferences...**
- 2. In the Simulator Mode list, select TOUGHREACT
- 3. In the **Default Equation of State (EOS)** list, select **EOS9**
- 4. Click **OK**

Your preferences have now been updated, but you will need to create a new model or restart PetraSim before they become active. If you already have a model open, it will not be affected by the preference change.

On the **File** menu, click **New**.

Create the Model Boundary

To create the boundary for this model, use the **Define Model Boundary** dialog. The boundary parameters for this model are shown in Table 2.1.

Table 2.1. Model Boundary Dimensions

Aqueous Transport with Adsorption and Decay (EOS9)

Axis	Min (m)	Max (m)
Х	0.0	12.0
у	0.0	1.0
Z	0.0	1.0

To create the model boundary:

- 1. On the Model menu, click Define Boundary...
- 2. Enter the values from Table 2.1
- 3. Click **OK** to create the model boundary

Create the Grid

To create the gridas shown in Figure 2.2:

- 1. On the Model menu, click Create Grid...
- 2. In the **Division Method** box, select **Regular**
- 3. In the **X Cells** box, type 60
- 4. In the **Y** Cells box, type 1
- 5. In the **Z Cells** box, type 1
- 6. Click **OK** to create the grid

Aqueous Transport with Adsorption and Decay (EOS9)

Create G	Grid Data			
Division M	Method: Regular	~		
Use of To	op and Bottom Duri s Above Top and B s Chifted by Conference	ng Grid Creati elow Bottom A	on: are Inactive	
Grid Type	e: : Grid Grid			
X cells:	60	X Factor:	1.00000	
Y cells:	1	Y Factor:	1.00000	
Z cells:	1	Z Factor:	1.00000	
				OK Cancel

Figure 2.2. The Create Grid dialog. The values shown will create a regular 60x1x1 grid

Global Properties

Global properties are properties that apply to the entire model. In this example, the only thing we will change is the analysis name. To edit global properties, you can use the **Global Properties** dialog.

On the **Properties** menu, click **Global Properties...**

Simulation Name

- 1. In the Global Properties dialog, click the Analysis tab
- 2. In the Name box, type TOUGHREACT Example 1

EOS Data

The EOS (Equation of State) tab displays options for EOS9.

- 1. In the Global Properties dialog, click the EOS tab
- 2. In the **Reference Pressure** (Pa) box, type 1.0E5

3. In the **Reference Temperature** (**C**) box, type 4.0

Click **OK** to close the **Global Properties** dialog.

Material Properties

To specify the material properties, you use the **Material Data** dialog. This example requires one material.

To open the Material Data dialog: on the Properties menu, click Materials...

Material Data

- 1. In the materials list, select **ROCK1**
- 2. In all three **Permeability** boxes (X, Y, and Z), type 6.51E-12
- 3. In the **Wet Heat Conductivity** box, type 0.0
- 4. In the **Specific Heat** box, type 952.9
- 5. Click **Apply** to save the changes

In addition to the physical rock parameters, we also need to specify the relative permeability and capillary pressure functions for this material. These options can be found in the **Additional Material Data** dialog. To open this dialog, click the **Additional Material Data...** button.

Relative Permeability

To specify the relative permeability function:

- 1. Click the **Relative Perm** tab
- 2. In the **Relative Permeability** list, select **Linear Functions**
- 3. In the **Slmin** box, type 0.333
- 4. In the **Slmax** box, type 1.0
- 5. In the **Sgmin** box, type -0.1
- 6. In the **Sgmax** box, type 0.0

Capillary Pressure

To specify the capillary pressure function:

1. Click the **Capillary Press** tab

- 2. In the **Capillary Pressure** list, select **Linear Function**
- 3. In the **CPmax** box, type 9.7902E3
- 4. In the **A** box, type 0.333
- 5. In the **B** box, type 1.0

Click **OK** to exit the **Additional Material Data** dialog.

Click **OK** again to save your settings and exit the **Material Data** dialog.

Initial Conditions

The initial state of each cell in the model must be defined. The **Default Initial Conditions** dialog is used to define initial conditions that will be applied to the entire model. You can also specify initial conditions by cell, by region, or by importing the results of a previous analysis. For any analysis, the specific initial conditions will depend on several factors including EOS selection, simulator mode, and the initial state of the simulation.

Correct specification of initial conditions is essential for proper convergence and obtaining a correct result. In general, the initial conditions need to physically meaningful. Often this requires an initial state analysis in which a model is run to obtain initial equilibrium conditions before the analysis of interest (geothermal production, VOC spill, etc.) is run.

To edit global initial conditions: on the Properties menu, click Initial Conditions...

To set the initial conditions:

- 1. In the list, select **Pressure**
- 2. In the **Pressure** box, type 1.001E5

Click **OK** to exit the **Default Initial Conditions** dialog.

Define Boundary Condtions

To edit cells, you can use the **Grid Editor**. In this case, we will use the Grid Editor to define boundary conditions in the model.

To open the Grid Editor: on the Model menu, click Edit Grid.

Water Source

We will inject into the cell on the left and produce from the cell on the right. Click on the leftmost cell in the grid (cell #1). To edit the properties of this cell, on the **Edit** menu, click **Properties**.

Click the **Properties** tab. Then, in the **Cell Name** box, type Input.

Click the **Sources/Sinks** tab. To define the source:

- 1. Under **Injection**, select **Water**
- 2. In the **Rate** box, type 1.16E-4
- 3. Because EOS9 is an isothermal analysis, the enthalpy value need not be set

Next, click the **Print Options** tab. Select **Print Cell Time Dependent Flow and Generation (BC) Data**. This will output data for this cell at every time step, which can then be used to make detailed time history plots.

Click **OK** to close the **Edit Cell Data** dialog.

Similar steps are followed to define production in the model.

Production

We will produce from the cell on the right. Click on the rightmost cell in the grid (cell #60). To edit the properties of this cell, on the **Edit** menu, click **Properties**.

Click the **Properties** tab. Then, in the **Cell Name** box, type Output.

Select the **Sources/Sinks** tab. To define the production:

- 1. Under **Production**, select **Mass Out**
- 2. In the **Rate** box, type 1.16E-4

Next, click the **Print Options** tab. Select **Print Cell Time Dependent Flow and Generation (BC) Data**.

Click **OK** to close the **Edit Cell Data** dialog.

Print Center Cell Data

In the grid editor, we will also choose a cell in the center of the model for which time history data will be printed. Right-click on a cell near the center (for example, cell #30) to edit the cell properties.

Click the **Properties** tab. Then, in the **Cell Name** box, type Center

Unlike the Input and Output cells, do not set any boundary condition data for the Center cell

Click the **Print Options** tab. Select **Print Cell Time Dependent Flow and Generation (BC) Data**.

Click **OK** to close the **Edit Cell Data** dialog.

On the File menu, click Close to exit the grid editor.

Solution Controls

We will now define the solution options. Options relating the time step and other solution controls can be found in the **Solution Controls** dialog.

To open the Solution Controls dialog: on the Analysis menu, click Solution Controls...

Times

- 1. In the **Solution Controls** dialog, click the **Times** tab
- 2. In the **End Time** box, type 8.64E6
- 3. In the **Time Step** box, type 10.0
- 4. In the **Max Num Time Steps** list, type 1000
- 5. In the Max Time Step list, select User Defined
- 6. In the **Max Time Step** box, type 8.64E3

For consistency with the example problem, we will now change some of the default values. In most cases, these values would not be changed.

Weighting

- 1. In the **Solution Controls** dialog, click the **Weighting** tab
- 2. As the **Density at Interface** option, select **Average of Adjacent Elements**

Convergence

- 1. In the **Solution Controls** dialog, click the **Convergence** tab
- 2. In the **Relative Error Criterion** box, type 1.0E-6

Solution Controls	
Times Solver Weighting Conve	rgence Options
Relative Error Criterion - RE1: Absolute Error Criterion - RE2:	1E-06 1.00000
	OK Cancel

Figure 2.3. Solution Controls - Convergence

Click **OK** to exit the **Solution Controls** dialog.

Output Controls

By default, the simulation will print output every 100 time steps. We can change the resolution of the output in the **Output Controls** dialog.

- 1. On the Analysis menu, click Output Controls...
- 2. In the **Print and Plot Every # Steps** box, type 500
- 3. In the Additional Output Datagroup, select Fluxes and Velocities, Primary Variables, and Additional T2React Variables

In addition to printing output every 500 steps, we can also specify times for which we want to view data in the **Additional Print Times** dialog.

To specify additional times for output:

- 1. On the **Output Controls** dialog, click the **Edit** button to open the **Additional Print Times** dialog
- 2. In the **Times** table, type 4.32E6 and 8.64E6

3. Click **OK** to exit the **Additional Print Times** dialog.

Click **OK** to exit the **Output Controls** dialog.

TOUGHREACT Solution Parameters

We will now set the TOUGHREACT parameters. In this example, we are doing this last, since the entire model will lie in the same zone. However, if we wanted to define different zones in the model, we would specify the TOUGHREACT parameters first.

TOUGHREACT solution parameters can be entered on the **Solution Parameters** dialog. To open the **Solution Parameters** dialog: on the **Tough React** menu, click **Solution Parameters...**

Select **Advanced** from the list on the left, to display the **Advanced Options** pane. Under the Advanced Options, select **Print Porosity**, **Permeability**, **Capillary Pressure Changes**.

Next, select **Times and Convergence** from the list on the left, to open the **Time Stepping and Convergence Options** pane.

In the Max Iterations to Solve Geochemical System box, type 300.

In the **Relative Sorption Concentration Tolerance** box, type 1.0E-6.

Click **OK** to exit the **Solver Parameters** dialog.

TOUGHREACT Output Options

TOUGHREACT output options can be changed on the **Output Options** dialog.

- 1. On the **Tough React** menu, click **Output Options...**.
- 2. In the **Grid Block Output Frequency(s)** box, type 40.
- 3. For Aqueous Concentration Output, select Write Total Aqueous Component Concentrations.
- 4. For Aqueous Concentration Units, select mol/L Liquid.
- 5. For Mineral Abundance Units, select Change in Volume Fraction.

Click **OK** to exit the **Output Options** dialog.

TOUGHREACT Chemical Components

TOUGHREACT chemical components can be specified in the **Chemical Components** dialog. To open the **Chemical Components** dialog: on the **Tough React** menu, select **Chemical Components...**.

To define the primary species:

- 1. In the list on the left of the **Chemical Components** dialog, select **Primary Species**
- 2. In the **Thermodynamic Database** list in the middle of the dialog, select **h**+, **h2o**, **na**+, **skdd1**, **skdd2**, and **skdd3**
- 3. Click the --> button to move the selected species into the **Current Simulation** list on the right, as shown in Figure 2.4.

E-Primary Species	Primary Species: Add/R	emove
B⊶Aq. Complexes B⊶Minerals	Thermodynamic Databas	se Current Simula
B-Gaseous Species B-Surface Complexes	rb+ reo4- rn(aq) ruo4-2 sb(oh)3(aq) sc+3 seo3-2 sio2(aq) sm+3 sn+2 so4-2 sr+2 tb+3 tco4- th+4 b(cb)4(aa)	h+ h2o na+ skdd1 skdd2 skdd3 > <

Figure 2.4. Primary Species

4. Click **Apply** to add the selected species to the analysis

The parameters specific to each type can be viewed and changed by clicking on that type in the subtree under **Primary Species** in the list on the left.

To edit parameters for na+ :

- 1. Select **na**+ in the list under **Primary Species**.
- 2. In the pane on the right, select **Output Concentration History at Selected Cells**. This will output additional data for cells that have previously been identified for printing time history data.

To edit parameters for skdd1 :

1. Select **skdd1** in the list

- 2. In the pane on the right, select **Output Concentration History at Selected Cells**
- 3. Select Enable Kd and Decay.
- 4. In the **Decay Constant** box, type 0.0

To edit parameters for skdd2 :

- 1. Select **skdd2** in the list
- 2. In the pane on the right, select **Output Concentration History at Selected Cells**
- 3. Select Enable Kd and Decay.
- 4. In the **Decay Constant** box, type 4.0113E-7

To edit parameters for skdd3 :

- 1. Select **skdd3** in the list
- 2. In the pane on the right, select **Output Concentration History at Selected Cells**
- 3. Select Enable Kd and Decay.
- 4. In the **Decay Constant** box, type 4.0113E-7

Click **OK** to exit the **Chemical Components** dialog.

TOUGHREACT Zone Data

The next task is to create the zone data, which can be done in the **Geochemical Zones** dialog. To open the **Geochemical Zones** dialog: on the **Tough React** menu, click **Zone Data...** Initially, there will not be any zones in the mdoel.

To create the initial water zone:

- 1. Select **Water** (**Initial**) in the list on the left
- 2. Click Add
- 3. In the **Create a New Zone** dialog, type Water Zone and click **OK**
- 4. Click **Apply**
- 5. In the list on the left, click + beside **Water** (**Initial**) to expand the subtree.
- 6. In the subtree under **Water (Initial)**, click **Water Zone** to display the zone parameters to the right of the list.

7. Enter the data that is shown in Table 2.2

Species	Constraint	CGUESS	СТОТ
h+	Amount (mol)	1.0e-7	1.0e-7
h20	Amount (mol)	1.0	1.0
na+	Amount (mol)	1.0e-10	1.0e-10
skdd1	Amount (mol)	1.0e-10	1.0e-10
skdd2	Amount (mol)	1.0e-10	1.0e-10
skdd3	Amount (mol)	1.0e-10	1.0e-10

Table 2.2. Water Zone Data

To create the boundary water zone:

- 1. Select Water (Boundary) in the list on the left
- 2. Click Add
- 3. In the **Create a New Zone** dialog, type Water Boundary Zone and click **OK**
- 4. Click **Apply**
- 5. In the list on the left, click + beside **Water** (**Boundary**) to expand the subtree.
- 6. In the subtree under **Water (Boundary)**, click **Water Boundary Zone** to display the zone parameters to the right of the list
- 7. Enter the data that is shown in Table 2.3

Table 2.5. Water Lone Data	Table 2.3.	Water	Zone	Data
----------------------------	------------	-------	------	------

Species	Constraint	CGUESS	СТОТ
h+	Amount (mol)	1.0e-7	1.0e-7
h20	Amount (mol)	1.0	1.0
na+	Amount (mol)	1.0e-4	1.0e-4
skdd1	Amount (mol)	1.0e-4	1.0e-4
skdd2	Amount (mol)	1.0e-4	1.0e-4
skdd3	Amount (mol)	1.0e-4	1.0e-4

To create the permeability porosity zone:

- 1. Select **Permeability Porosity** in the list on the left
- 2. Click Add
- 3. In the Create a New Zone dialog, type Perm/Por Zone and click OK
- 4. Click Apply
- 5. In the list on the left, click + beside **Permeability Porosity** to expand the subtree.
- 6. In the subtree under **Permeability Porosity**, click **Perm/Por Zone** to display the zone parameters to the right of the list
- 7. Select Modified Cubic Law

To create the linear Kd zone:

- 1. Select **Linear Kd** in the list on the left
- 2. Click Add
- 3. In the Create a New Zone dialog, type Linear Kd Zone and click OK
- 4. Click **Apply**
- 5. In the list on the left, click + beside **Linear Kd** to expand the subtree.
- 6. In the subtree under **Linear Kd**, click **Linear Kd Zone** to display the zone parameters to the right of the list
- 7. For skdd1 and skdd3, in the Density box, type 2.6 and in the Kd box, type 4.2735E-2

Click **OK** to exit the **Geochemical Zones** dialog.

Associate Zones with Grid

The last task is to associate zones with the grid. This can be done in two ways, either by region or for individual cells in the Grid Editor. Initially the model is one region, but it can be subdivided into more regions by using internal boundaries. This can be useful, since it is also possible to assign material data and initial conditions by region. In this case, the model will remain a single region.

Click on the model to select it in entirety. You can better see the model selection by unselecting **Grid** in the **View** menu.

After the model has been selected:

1. Under the Model menu, click Edit Selection to open the Edit Region Data dia-

log

- 2. Click the **Chemical Zones** tab
- 3. Select Specify Zones by Region
- 4. From the **Initial Water Zone**, **Boundary Water Zone**, **Permeability/Porosity Zone**, and **Linear Kd Zone** lists, select the respective zones that have previously been created.

Click **OK** to exit the **Edit Region Data** dialog.

Save and Run

The input is complete and you can run the simulation. If you haven't already, you may want to save your model in a directory specifically intended for the simulation results. For example:

- 1. On the **File** menu, click **Save As...**
- 2. In the File Name box, type C:\t2react_example1\t2react_example1.sim
- 3. Click Save

To run the simulation: on the **Analysis** menu, click **Run T2REACT**

View 3D Results

To view the 3D results for a simulation: on the **Results** menu, click **3D Results**. The data for the current simulation will be automatically loaded and displayed.

Because this is a 1-D model, the isosurfaces do not display the data well. To turn off the isosurfaces: on the **View** menu, click **Show Isosurfaces**

We will instead define a slice plane through the model to better display the output data. To create a slice plane:

- 1. On the **Results** menu, click **Slice Planes**
- 2. In the topmost **Axis** list, select **Z**
- 3. In the topmost **Coord** box, type 0.5
- 4. Click **Close** to close the **Slice Planes** dialog

To view 3D results, as shown in Figure 2.5:

1. In the **Time(s)** list, select **0.13689**

- 2. In the **Scalar** list, select **na**+
- 3. Use the mouse to rotate the model to a good viewing perspective

Figure 2.5. 3D Results

On the File menu, click Close to close the **3D Results** dialog.

View Cell History Plots

You can view time history plots with the Cell History dialog. On the **Results** menu, click **Cell History Plots....**

The **Cell History** dialog will be displayed. In this window, you can display time history data using a plotting parameter and a list of cells. For example, to view the isosurfaces for the Center cell, as shown in Figure 2.6:

- 1. In the Variable list, select na+
- 2. In the **Cell Name (Id#)** list, select **Center**

Figure 2.6. Cell History

In the File menu, click Close to close the Cell History window.

Chapter 3. CO2 Disposal in Deep Saline Aquifers (ECO2)

Description

This problem is example five in the TOUGHREACT manual. It is a 1-D radial problem in which CO2 is injected into a well field 100 m in depth and extending with a 100,000 m radius. CO2 is injected at a rate of 90 kg/s, which is approximately equivalent to that generated by a 300 MW coal-fired power plant. The CO2 injection continues for 100 years. This problem demonstrates the restart feature to run for an additional 900 years with no additional CO2 injection.

Entering some parameters for the geochemical system in this example problem can be time-intensive. To bypass entering the parameters for chemical components, please open the file geochem_basic.sim after updating your EOS preferences (but before editing global properties). This file is available online via the PetraSim document-ation page or on your PetraSim install CD.

Specify the Equation of State (EOS)

To ensure that PetraSim uses TOUGHREACT and ECO2, you may need to edit your PetraSim preferences. To edit preferences, you can use the **Preferences** dialog.

- 1. On the **File** menu, click **Preferences...**
- 2. In the **Simulator Mode** list, select **TOUGHREACT**
- 3. In the **Default Equation of State (EOS)** list, select **ECO2N**
- 4. Click **OK**

Your preferences have now been updated, but you will need to create a new model or restart PetraSim before they become active. If you already have a model open, it will not be affected by the preference change.

On the **File** menu, click **New**.

Global Properties

We will first define all material and chemical properties, beginning by defining analysis options related to the equation of state (ECO2).

To edit global properties: on the **Properties** menu, click **Global Properties...**

- 1. Click the **Analysis** tab
- 2. In the Name box, type CO2 Injection
- 3. Click the **EOS** tab

- 4. Select **Isothermal**
- 5. In the **Brine Density in CO2** box, click **Independent**.

Click **OK** to exit the **Global Properties** dialog.

Material Properties

We next define the material properties. Since this problem uses only one material, we will simply modify the default material.

To edit material properties: on the **Properties** menu, click **Materials...**

Material Data

- 1. In the **Name** box, type SAND
- 2. In the **Porosity** box, type 0.3
- 3. In the three (x, y, and z) permeability boxes, type 1.0E-13
- 4. In the **Wet Heat Conductivity** box, type 2.51
- 5. In the **Specific Heat** box, type 920

Relative Permeability

- 1. Click **Relative Perm...** to open the **Additional Material Data** dialog
- 2. Click the **Relative Perm** tab
- 3. In the **Relative Permeability** list, select **van Genuchten-Mualem Model**
- 4. In the **RP(1)** box, type 0.457
- 5. In the **SIr** box, type 0.3
- 6. In the **Sls** box, type 1.0
- 7. In the **Sgr** box, type 0.05

Capillary Pressure

- 1. Click the **Capillary Press** tab
- 2. In the **Capillary Pressure** list, select **van Genuchten Function**
- 3. In the **CP(1)** box, type 0.457

- 4. In the **Slr** box, type 0.0
- 5. In the 1/P0 box, type 5.1E-5
- 6. In the **Pmax** box, type 1.0E7
- 7. In the **SIs** box, type 0.999

Miscellaneous

- 1. Click the **Misc** tab
- 2. In the **Pore Compressibility** box, type 4.5E-10

Click **OK** to exit the **Additional Material Data** dialog.

Material Data		X
Materials	Matrix Fracture	
SAND	Name - MAT:	SAND
	Description:	
	Density - DROK (kg/m^3):	2600.0000
	Porosity - POR:	.30000
	X Permeability - PER(1) (m^2):	1E-13
	Y Permeability - PER(2) (m^2):	1E-13
	Z Permeability - PER(3) (m^2):	1E-13
New	Wet Heat Conductivity - CWET (W/m-C):	2.51000
Delete	Specific Heat - SPHT (J/kg-C):	920.0000
		Relative Perm
	Apply	OK Cancel

Figure 3.1. SAND Material Data

Click **OK** again to exit the **Material Data** dialog.

Initial Conditions

To open the **Default Initial Conditions** dialog: on the **Properties** menu, click **Initial Conditions...**

- 1. In the ECO2 list, select Two Fluid Phases (P, Xsm, Sg, T)
- 2. In the **Pressure** box, type 2.0E7
- 3. In the **Temperature** box, type 75.0

- 4. In the **Gas Saturation** box, type 0.0
- 5. In the **Salt Mass Fraction** box, type 0.06

Click **OK** to exit the **Default Initial Conditions** dialog.

TOUGHREACT Solution Parameters

TOUGHREACT solution parameters can be set in the **Solver Parameters** dialog. To open the **Solver Parameters** dialog: on the **Tough React** menu, click **Solution Parameters...**

Click Standard

1. Click to select Enable Gaseous Species Transport

Click Advanced

- 1. Click to de-select Ignore Mineral Dissolution/Precipitation Effects on Flow
- 2. Under Effect of CO2 and H2O Reactions on Flow, click to select CO2 and H2O

Click Validation

1. In the **Max Stochiometric Ionic Strength** box, type 6.0

Click **Times and Convergence**

- 1. In the **Relative Transport Concentration Tolerance**, type 1.0E-6
- 2. In the **Relative Sorbtion Concentration Tolerance**, type 1.0E-6

Click Diffusion Coefficients

- 1. In the Aqueous Species Diffusion Coefficient box, type 1.0E-9
- 2. In the **Gaseous Species Diffusion Coefficient** box, type 1.1E-5

Click **OK** to exit the **Solver Parameters** dialog.

TOUGHREACT Output Parameters

TOUGHREACT output parameters can be set in the **Output Options** dialog. To open the **Output Options** dialog: on the **Tough React** menu, click **Output Options...**

1. Under Aqueous Concentration Output, select Write Total Aqueous Component Concentrations 2. Under Mineral Abundance Units, select Change in Volume Fraction

Click **OK** to exit the **Output Options** dialog.

TOUGHREACT Chemical Components

TOUGHREACT chemical components can be specified in the **Chemical Components** dialog. To open the **Chemical Components** dialog: on the **Tough React** menu, select **Chemical Components...**.

The thermodynamic database contains the master list of chemical components. To use a species (of any type), we first add the species to the simulation, then configure the simulation-specific properties for that species.

Primary Species

To define the primary species:

- 1. In the list on the left of the **Chemical Components** dialog, select **Primary Species**
- 2. In the **Thermodynamic Database** list in the middle of the dialog, select **alo2-**, **ca+2**, **cl-**, **fe+2**, **h+**, **h2o**, **hco3-**, **k+**, **mg+2**, **na+**, **o2(aq)**, **sio2(aq)**, and **so4-2**.
- 3. Click the --> button to move the selected species into the **Current Simulation** list on the right
- 4. Click **Apply** to add the selected species to the analysis

Chemical Components					X
Primary Species	Primary Species:	Add/Remov	e		
	Thermodynamic D	atabase		Current Simulation	
d-	ag+	~		alo2-	
fe+2	am+3			ca+2	
h+	ar(aq)	=		cl-	
h2o	au+			fe+2	
hco3-	b(oh)3(aq)			h+	
k+	ba+2			h2o	
mg+2	be+2	1	>	hco3-	
na+	br-			k+	
	cd+2		<	mg+2	
sio2(aq)	ce+3			na+	
so4-2	co+2			o2(aq)	
i ⊕Aq. Complexes	cro4-2			sio2(aq)	
. ⊕Minerals	cs+			so4-2	
🗄 Gaseous Species	cu+2				
	dy+3				
	P-	¥.			
		-	Apply	OK Cancel	

Figure 3.2. Primary Species

The parameters specific to each type can be viewed and changed by clicking on that type in the subtree under **Primary Species** in the list on the left. For this simulation, there is no need to edit any additional parameters.

Aqueous Complexes

A similar process is used to define the aqueous complexes:

- 1. In the list on the left of the **Chemical Components** dialog, select **Aq. Complexes**
- 2. For Specify Secondary Species, select Select Species Individually
- 3. In the **Thermodynamic Database** list in the middle of the dialog, select acetic~acid(aq), al(oh)2+, al(oh)3(aq), al+3, aloh+2, cacl+, cacl2(aq), caco3(aq), cahco3+, caoh+, caso4(aq), ch4(aq), co2(aq), co3-2, fe+3, fecl+, fecl4-2, feco3(aq), fehco3+, h2(aq), h2s(aq), h3sio4-, halo2(aq), hs-, hso3-, kcl(aq), kso4-, mgcl+, mghco3+, mgso4(aq), naalo2(aq), nacl(aq), naco3-, nahco3(aq),nahsio3(aq), naoh(aq), naso4-, oh-, and so2(aq)
- 4. Click the --> button to move the selected species into the **Current Simulation** list on the right
- 5. Click **Apply** to add the selected species to the analysis

Minerals

A similar process is used to define the minerals:

- 1. In the list on the left of the Chemical Components dialog, select Minerals
- 2. In the **Thermodynamic Database** in the middle of the dialog, select **albite~low**, **ankerite-2**, **calcite**, **chlorite**, **dawsonite**, **dolomite-2**, **hematite**, **illite**, **k-feldspar**, **kaolinite**, **magnesite**, **oligoclase**, **pyrite-2**, **quartz**, **siderite-2**, **smectite-ca**, and **smectite-na**
- 3. Click the --> button to move the selected species into the **Current Simulation** list on the right
- 4. Click **Apply** to add the selected minerals to the analysis

The parameters specific to each mineral can be viewed and changed by clicking on that type in the subtree under **Minerals** in the list on the left.

Each mineral has unique dissolution, precipitation, and additional mechanisms properties. The values for each of these properties for each mineral are shown in Table 3.1, and Table 3.2. Pyrite is a bit different than the other minerals and its properties are shown in Table 3.3 and Table 3.4. This section will demonstrate how to specify the properties for albite~low, then you should be able to enter the remaining mineral properties by following the same pattern and referring to the tables. Please note, if table entries are blank, then those parameters should not be set. The mineral calcite is considered to be at equilibrium and no parameters for dissolution, precipitation, or additional mechanisms should be specified. The mineral quartz has no additional mechanisms. Several minerals have only 1 additional mechanism.

Select **albite~low** in the list under **Minerals**.

To edit dissolution rate parameters for albite~low:

- 1. Under Specify Kinetic Constraints, click to select Dissolution.
- 2. Click Edit... This will open the Edit dissolution Rate Parameters dialog.
- 3. In the Activation Energy EA box, type 69.8 (from Table 3.1).
- 4. In the **Rate Constant k25** box, type 2.7542e-13 (from Table 3.1).
- 5. Click **OK** to save changes and exit the **Edit Dissolution Rate Parameters** dialog.

To edit precipitation rate parameters for albite~low:

- 1. Under Specify Kinetic Constraints, click to select Precipitation.
- 2. Click Edit... This will open the Edit Precipitation Rate Parameters dialog.
- 3. On the **Options** tab, in the **Initial Volume Fraction** box, type 1.0e-6.
- 4. Click the **Energy** tab.
- 5. In the Activation Energy EA box, type 69.8 (from Table 3.1).
- 6. In the **Rate Constant k25** box, type 2.7542e-13 (from Table 3.1).
- 7. Click **OK** to save changes and exit the **Edit Dissolution Rate Parameters** dialog.

To add additional mechanisms for albite~low:

- 1. Under Rate Constant Dependence on pH, click to select Specify Additional Mechanisms.
- 2. Click Edit... This will open the Edit Additional Mechanisms dialog.
- 3. Click New. This will create Mechanism (1).
- 4. In the **Weighting Factor** box, type 6.9183e-11 (from Table 3.2)
- 5. In the Activation Energy box, type 65.0 (from Table 3.2)
- 6. In the table, in the **Species** list, select **h**+ (from Table 3.2).

- 7. In the table, in the **Exponent** box, type 0.457 (from Table 3.2).
- 8. Click **New**. This will create **Mechanism** (2).
- 9. In the **Weighting Factor** box, type 2.5119e-16 (from Table 3.2)
- 10. In the Activation Energy box, type 71.0 (from Table 3.2)
- 11. In the table, in the **Species** list, select **h**+ (from Table 3.2).
- 12. In the table, in the **Exponent** box, type -0.572 (from Table 3.2).
- 13. Click **OK** to save changes and exit the **Edit Dissolution Rate Parameters** dialog.

All other selected minerals should be edited in this fashion, using the values shown in Table 3.1 and Table 3.2. Data for pyrite-2 can be found in Table 3.3 and Table 3.4. Empty table cells indicate that the existing data is already correct and that new data need not be entered (i.e. if there is no entry for a particular option, do not enable that option).

Mineral	Activation Energy	Rate Con- stant k25
albite~low	69.8	2.754E-13
ankerite-2	62.76	1.260E-09
calcite		
chlorite	88	3.020E-13
dawsonite	62.76	1.260E-09
dolomite-2	52.2	2.951E-08
hematite	66.2	2.514E-15
illite	35	1.660E-13
k-feldspar	38	3.890E-13
kaolinite	22.2	6.918E-14
magnesite	23.5	4.571E-10
oligoclase	69.8	1.445E-12
quartz	87.7	1.023E-14
siderite-2	62.76	1.260E-09
smectite-ca	35	1.660E-13
smectite-na	35	1.660E-13

Table 3.1. Dissolution and Precipitation Data for Minerals

		Mechanism(1))		Mechanism(2)	
Mineral	Weighting Factor k25	Activation Energy	n(H+) Expo- nent	Weighting Factor k25	Activation Energy	n(H+) Expo- nent
albite~low	6.918E-11	65.0	0.457	2.512E-16	71	-0.572
ankerite-2	6.457E-04	36.1	0.500			
calcite				-		
chlorite	7.762E-12	88.0	0.500			
dawsonite	6.457E-04	36.1	0.500			
dolomite-2	6.457E-04	36.1	0.5			
hematite	4.074E-10	66.2	1.0			
illite	1.047E-11	23.6	0.340	3.020E-17	58.9	-0.400
k-feldspar	8.710E-11	51.7	0.500	6.310E-22	94.1	-0.823
kaolinite	4.898E-12	65.9	0.777	8.913E-18	17.9	-0.472
magnesite	4.169E-7	14.4	1.0			
oligoclase	2.138E-10	65.0	0.457			
quartz				-		
siderite-2	6.457E-04	36.1	0.500			
smectite-ca	1.047E-11	23.6	0.34	3.020E-17	58.9	-0.400
smectite-na	1.047E-11	23.6	0.340	3.020E-17	58.9	-0.400

Table 3.2. Additional Mechanism Data for Minerals

 Table 3.3. Dissolution and Precipitation Data for pyrite-2

	Disso	lution	Precip	itation
Mineral	Activation Energy	Rate Con- stant k25	Activation Energy	Rate Con- stant k25
pyrite-2	0.0	0.0	56.9	4.0e-11

 Table 3.4. Additional Mechanism Data for pyrite-2

	Mechanism(1)			Mechanism(1) Mechanism(2)			
Mineral	Weighting Factor	Activation Energy (Ea)	Exponents	Weighting Factor k25	Activation Energy	Exponent	
pyrite-2	3.02e-8	56.9	[h+, - 0.5] [fe+3, 0.5]	2.8184e-5	56.9	[o2(aq), 0.5]	

To save these changes: click **Apply**

Gaseous Species

- 1. In the list on the left of the **Chemical Components** dialog, select **Gaseous Species**
- 2. In the **Thermodynamic Database** list in the middle of the dialog, select **co2(g)**,
- 3. Click the --> button to move co2(g) into the **Current Simulation** list on the right
- 4. Click **Apply** to add the selected species to the analysis

Click **OK** to exit the **Chemical Components** dialog.

TOUGHREACT Zone Data

Geochemical zones describe the initial chemical composition of the model. You can define geochemical zones using the **Geochemical Zones** dialog. To open the **Geochemical Zones** dialog: on the **Tough React** menu, click **Zone Data...**. Initially, there will not be any zones in the mdoel.

To create the water zone:

- 1. Select **Water** (**Initial**) in the list on the left
- 2. Click Add
- 3. In the **Create a New Zone** dialog, type Water Zone and click **OK**
- 4. Click Apply
- 5. In the list on the left, click + beside **Water** (**Initial**) to expand the subtree
- 6. In the subtree under **Water (Initial**), click **Water Zone** to display the zone parameters to the right of the list
- 7. Edit each cell in the table, setting the **Constraint**, **CGUESS**, and **CTOT** values for each species as shown in Table 3.5.

Table 3.5. Water (Initial) Zone

Species	Constraint	CGUESS	СТОТ
alo2-	Amount (mol)	1.078e-8	1.361e-8
ca+2	Amount (mol)	4.479e-3	4.737e-3
cl-	Amount (mol)	0.9109	1.001

Species	Constraint	CGUESS	СТОТ
fe+2	Amount (mol)	2.615e-7	3.022e-7
h+	Amount (mol)	8.48e-8	0.0432
h2o	Amount (mol)	1.0	1.0
hco3-	Amount (mol)	1.841e-8	4.562e-2
k+	Amount (mol)	5.805e-3	5.980e-3
mg+2	Amount (mol)	2.348e-5	2.669e-5
na+	Amount (mol)	0.9006	0.9905
o2(aq)	Amount (mol)	2.763e-66	-8.646e-2
sio2(aq)	Amount (mol)	9.203e-4	1.034e-3
so4-2	Amount (mol)	1.443e-16	1.324e-9

8. Click Apply

To create the mineral zone:

- 1. Select **Mineral** in the list on the left
- 2. Click Add
- 3. In the Create a New Zone dialog, type Mineral Zone and click OK
- 4. Click Apply
- 5. In the list on the left, click + beside **Mineral** to expand the subtree
- 6. In the subtree under **Mineral**, click **Mineral Zone** to display the zone parameters to the right of the list
- 7. Edit each cell in the table, setting the **Vol. Fraction**, **Grain Radius**, **Surface Area**, and **Units** values for each mineral as shown in Table 3.6.

Table 3.6. Mineral Zone

Mineral	Vol. Frac- tion	Grain Radi- us	Surface Area	Units
albite~low	0	0.001	9.8	cm^2/g mineral
ankerite-2	0	0.001	9.8	cm^2/g mineral
calcite	0.01929			

Mineral	Vol. Frac-	Grain Radi-	Surface Area	Units
	tion	us		
chlorite	0.04556	0.001	9.8	cm^2/g mineral
dawsonite	0	0.001	9.8	cm^2/g mineral
dolomite-2	0	0.001	9.8	cm^2/g mineral
hematite	0.00497	0.001	12.87	cm^2/g mineral
illite	0.00954	0.001	151.63	cm^2/g mineral
k-feldspar	0.08179	0.001	9.8	cm^2/g mineral
kaolinite	0.02015	0.001	151.6	cm^2/g mineral
magnesite	0	0.001	9.8	cm^2/g mineral
oligoclase	0.19795	0.001	9.8	cm^2/g mineral
pyrite-2	0	0.001	12.87	cm^2/g mineral
quartz	0.57888	0.001	9.8	cm^2/g mineral
siderite-2	0	0.001	9.8	cm^2/g mineral
smectite-ca	0	0.001	151.63	cm^2/g mineral
smectite-na	0.03897	0.001	151.63	cm^2/g mineral

8. Click **Apply**

hematite illite	4.97E-03	1E-03	12,8700	cm^2(g mineral	1
illite				an byg minora	1.0
and the	9.54E-03	1E-03	151.6300	cm^2/q mineral	
k-feldspar	8.179E-02	1E-03	9.80000	cm^2/g mineral	
kaolinite	2.015E-02	1E-03	151.6300	cm^2/q mineral	
magnesite	0.0	1E-03	9.80000	cm^2/q mineral	
oligoclase	.19795	1E-03	9.80000	cm^2/q mineral	
pyrite-2	0.0	1E-03	12.8700	cm^2/q mineral	
quartz	.57888	1E-03	9.80000	cm^2/q mineral	
siderite-2	0.0	1E-03	9.80000	cm^2/q mineral	
smectite-ca	0.0	1E-03	151.6300	cm^2/q mineral	
smectite-na	3.897E-02	1E-03	151.6300	cm^2/q mineral	
	k-teldspar kaolinite magnesite oligoclase pyrite-2 quartz siderite-2 smectite-ca smectite-na	K-reidspar 8.1.99-L/2 kaolinite 2.015-02 magnesite 0.0 oligodase .19795 pyrite-2 0.00 quartz .57888 siderike-2 0.0 smectite-ca 0.0 smectite-na 3.897E-02	k-reidspar 8.1/9E-02 1E-03 kaolinite 2.015E-02 1E-03 magnesite 0.0 1E-03 oligoclase .19795 1E-03 ymather 0.0 1E-03 quartz .57886 1E-03 sider/ke-2 0.0 1E-03 smectike-a 0.0 1E-03 smectike-a 0.0 1E-03 smectike-a 0.0 1E-03	K-reidspar 8.1/9±-02 1E-03 9.80000 Madimite 2.015E-02 1E-03 9.80000 magnesite 0.0 1E-03 9.80000 oligoclase .19795 1E-03 9.80000 pyrite-2 0.0 1E-03 9.80000 quartz .57888 1E-03 9.80000 siderke-2 0.0 1E-03 9.80000 siderke-2 0.0 1E-03 9.80000 smectite-ca 0.0 1E-03 151.6300 smectite-raa 3.897E-02 1E-03 151.6300	K-reidspar 8.1/9E-tl2 1E-U3 9.80000 cm ⁻² /q mineral kaolinite 2.015E-02 1E-03 15.600 cm ⁻² /q mineral magnesite 0.0 1E-03 9.80000 cm ⁻² /q mineral oligoclase 1.9795 1E-03 9.80000 cm ⁻² /q mineral guartz 0.0 1E-03 12.8000 cm ⁻² /q mineral guartz .57888 1E-03 9.80000 cm ⁻² /q mineral sidertise-2 0.0 1E-03 9.80000 cm ⁻² /q mineral sidertise-2 0.0 1E-03 9.80000 cm ⁻² /q mineral smectite-a 0.0 1E-03 15.16.300 cm ⁻² /q mineral smectite-na 3.897E-02 1E-03 151.6300 cm ⁻² /q mineral

Figure 3.3. Mineral Zone Data

To create the permeability porosity zone:

- 1. Select **Permeability Porosity** in the list on the left
- 2. Click Add

- 3. In the **Create a New Zone** dialog, type Perm-Pore Zone and click **OK**
- 4. Click Apply
- 5. In the list on the left, click + beside **Permeability Porosity** to expand the subtree
- 6. In the subtree under **Permeability Porosity**, click **Perm-Pore Zone** to display the zone parameters to the right of the list
- 7. For **Permeability Law**, select **Cubic Law**
- 8. Click Apply

Click **OK** to exit the **Geochemical Zones** dialog.

Saving the Geochemical Data File as a Starting Point for a New Analysis

All of the problem data that is not specific to a particular geometry and loading condition has now been defined. At this point, save the data by clicking **Save...** on the **File** menu, and typing "geochemical data" as the file name. We can now open "geochemical data" and click **Save As...** on the **File** menu, giving the new name as "eco2_example". Anytime you want to create a model that uses the same (or similar) geochemical data, you can open the "geochemical data" file and save it as a different file as a starting point for a different analysis. In this manner you can avoid repeating all the data input.

In continuing this example, model specific data will now be entered and simulated.

Create the Model Boundary

To create the boundary for this model, use the **Define Model Boundary** dialog. The boundary parameters for this model are shown in Table 3.7.

Table 3.7. I	Model B	oundary	Dimensions

Axis	Min (m)	Max (m)
X	0.0	100000.0
У	0.0	1.0
Z	-100.0	0.0

To create the model boundary:

- 1. On the **Model** menu, click **Define Boundary...**
- 2. Enter the values from Table 3.7
- 3. Click **OK** to create the model boundary

Create the Grid

To create the grid:

- 1. On the Model menu, click Create Grid...
- 2. In the **Division Method** box, select **Regular**
- 3. For Grid Type, select RZ Grid
- 4. In the **X Cells** box, type 100
- 5. In the **X Factor** box, type 1.1096251
- 6. In the **Z Cells** box, type 1
- 7. In the **Z Factor** box, type 1.0
- 8. Click **OK** to create the grid

This 100 cell grid used here is different than the 130 cell meshmaker grid used in the example problem writeup from the TOUGHREACT user's manual. The style of the grid used in TOUGHREACT user's manual would require a logarithmic capability in PetraSim's meshmaker grid creater that is currently not supported. The 100 cell logarithmic grid used in this example problem appears to be sufficient based on a sensitivity analysis (Figure 3.4) of the Sg parameter after 100 years of simulation with different grid sizes.

Figure 3.4. CO2 Injection

To use a 200 cell grid, change the value of the **X Cells** paramter to 200 and the value of the **X Factor** parameter to 1.04950055. The running time of this simulation is linear in the number of cells. It takes approximately 10 minutes to run the first 100 years of the simulation with 100 cells, this time would be doubled for 200 cells.

Define Boundary Condtions

To edit cells, you can use the **Grid Editor**. In this case, we will use the Grid Editor to define boundary conditions in the model.

To open the **Grid Editor**: on the **Model** menu, click **Edit Grid**. In this model, 90 kg/s of CO2 is injected into the center. Since this is an RZ grid, the center cell is the min x cell (far left). Since this is an isothermal simulation, it will not be necessary to specify an enthalpy for the injected CO2 - we will leave this value at 0.0.

To select and edit the injection cell:

- 1. In the **Find** box, type 1, then press Enter. Cell 1 will be selected and centered in the Grid Editor.
- 2. On the **Edit** menu, click **Properties**. This will open the Edit Cell Data dialog.

To specify the properties for the injection cell:

- 1. Click the **Sources/Sinks** tab.
- 2. Under **Injection**, click to select **CO2**

3. In the **Rate** box, type 90.0

Properties Sources/Sinks	Initial Conditio	ns Zones Print C	Options
Heat			
Heat In:	Constant 👻	Rate (J/s):	0.0
Production			
Mass Out:	Constant 👻	Rate (kg/s):	0.0
Well on Deliv.:	Productivity Inc	dex - PI (m^3):	0.0
	Pressure (Pa):		0.0
Well from File:			
	Productivity Inc	dex - PI (m^3):	0.0
Injection			
Water:	Constant 👻	Rate (kg/s):	0.0
		Enthalpy (J/kg):	0.0
NaCl:	Constant 👻	Rate (kg/s):	0.0
		Enthalpy (J/kg):	0.0
V CO2	Constant 👻	Rate (kg/s):	90.0
		Enthalpy (J/kg):	0.0

Figure 3.5. CO2 Injection

Click **OK** to close the **Edit Cell Data** dialog. On the **File** menu, click **Close** to close the **Grid Editor**.

Solution Controls

We will now define the solution options. Options relating the time step and other solution controls can be found in the **Solution Controls** dialog.

To open the Solution Controls dialog: on the Analysis menu, click Solution Controls...

Times

1. In the **Solution Controls** dialog, click the **Times** tab

- 2. In the **End Time** box, type 3.1557E9 (100 years).
- 3. In the **Time Step** box, type 1.0
- 4. In the **Max Num Time Steps** list, click **Infinite**
- 5. In the Max Time Step list, select User Defined
- 6. In the **Max Time Step** box, type 2.592E6 (30 days).

Solver

- 1. Click the **Solver** tab
- 2. For the Conjugate Gradient Solvers, select Stabilized Bi-Conjugate Gradient
- 3. In the Max CG Iterations (Frac. of Eqns.) box, type 0.8
- 4. In the **CG Convergence Criterion** box, type 1E-7

Click **OK** to exit the **Solution Parameters** dialog.

Output Controls

By default, the simulation will print output every 100 time steps. We can change the resolution of the output in the **Output Controls** dialog.

- 1. On the Analysis menu, click Output Controls...
- 2. In the **Print and Plot Every # Steps** box, type 99999 (we will specify specific output times).

To specify specific times for output:

- 1. On the **Output Controls** dialog, click the **Edit** button to open the **Additional Print Times** dialog
- 2. In the **Times** table, type 3.15576E7, 3.15576E8, 1.57788E9, 3.15576E9, 1.57788E10, 3.15576E10, 6.31152E10, and 1.57788E11.
- 3. Click **OK** to exit the **Additional Print Times** dialog.

Click **OK** to exit the **Output Controls** dialog.

Associate Zones with Grid

The last task is to associate zones with the grid. This can be done in two ways, either by region or for individual cells in the Grid Editor. Initially the model is one region, but it can be subdivided into more regions by using internal boundaries. This can be useful, since it is also possible to assign material data and initial conditions by region. In this case, the model will remain a single region and we will specify zones for the entire domain.

To specify zone data:

- 1. In the tree view at the left, under **Regions**, click to select **Region 1**.
- 2. Under the Model menu, click Edit Selection to open the Edit Region Data dialog
- 3. Click the **Chemical Zones** tab
- 4. Select Specify Zones by Region
- 5. From the **Initial Water Zone**, **Mineral Zone**, and **Permeability/Porosity Zone** lists, select the respective zones that have previously been created.

Edit Region Data	100		X
Properties Initial Conditions	Chemical Zones		
Specify Zones by Region			
Initial Water Zone:	Water Zone 🛛 👻		
Boundary Water Zone:	None 👻		
Mineral Zone:	Mineral Zone 🛛 👻		
Gas Zone:	None 👻		
Permeability/Porosity Zone:	Perm-Por Zone 🔻		
Linear Kd Zone:	None 👻		
Cation Exchange Zone:	None 👻		
		ОК	Cancel

Figure 3.6. Zones Associated with Grid

Click OK to exit the Edit Region Data dialog.

Save and Run

The input is complete and you can run the simulation. To retain the geochemical data as a reusable starting point, save this model as a different file in a separate directory. For example:

- 1. On the **File** menu, click **Save As...**
- 2. In the **File Name** box, type C:\t2react_co2dsa\eco2_co2sda.sim

3. Click Save

To run the simulation: on the Analysis menu, click Run T2REACT

View Results

The best way to view results for this problem is to use the **Line Plot** feature in PetraSim. Line plots allow us to view the data in 2D as a function of distance from a point. In this case, we will view the data as it radiates from the center of the model (as a function of R). Line plots are available in the **3D Results** view.

To create a line plot:

- 1. On the **Results** menu, click **3D Results**.
- 2. In the **3D Results** view, on the **File** menu, click Line Plot...
- 3. In the **Line Plot** dialog, enter the following two points: Point1=(0.0, 0.5, -50), Point2=(8000, 0.5, -50), then click **OK**.

Line Plot			×	
	X Coordinate	Y Coordinate	Z Coordinate	
Point 1:	0.0	0.5	-50	
Point 2:	8000	0.5	-50	
	OK Cancel			

Figure 3.7. Preparing a Line Plot

In the **Line Plot** dialog, to show CO2 saturation (Sg):

- 1. In the Variable list, select SG
- 2. In the **Time** list, select **3.156E9**

This result is shown in Figure 3.8

Figure 3.8. Line Plot of CO2 Saturation (Sg)

The Continuation Run (Restart)

During the first part of this simulation, we injected 90 kg/s of CO2 into the aquifer for 100 years. During the second part, we will stop injecting CO2 and monitor the aquifer out to 1,000 years. Before proceeding, create a second folder on your computer for the restart run - otherwise the continuation run will overwrite the results from the first run.

- 1. On the **File** menu, click **Save As...**
- 2. In the File Name box, type C:\t2react_co2dsa\restart\restart.sim
- 3. Click **Save**

Next, turn off the CO2 injection.

- 1. In the **Find** box, type 1, then press Enter. Cell 1 will be selected and centered in the Grid Editor.
- 2. On the **Edit** menu, click **Properties**. This will open the Edit Cell Data dialog.
- 3. Click the **Sources/Sinks** tab.
- 4. Under **Injection**, click to de-select **CO2**
- 5. Under **OK**, click to exit the **Edit Cell Data** dialog.

Click **OK** to close the **Edit Cell Data** dialog. On the **File** menu, click **Close** to close the **Grid Editor**.

Add Restart Data

We will use the initial conditions and geochemical data from the end of the previous simulation, to start the continuation run. To enable the simulation restart feature:

- 1. On the TOUGHREACT menu, click Restart Options...
- 2. In the **Restart Options** dialog, click to enable **Activate Simulation Restart**.
- 3. For **Initial Conditions (SAVE**), click **Browse...** and select the SAVE file from the previous run.
- 4. For **Geochem Data (savechem**), click **Browse...** and select the savechem file from the previous run.
- 5. Click **OK**, to save changes and close the **Restart Options** dialog.

Set a New End Time

To specify the new 1,000 year end time for the simulation:

- 1. On the Anaysis menu, click Solution Controls...
- 2. In the **Solution Controls** dialog, in the **End Time** box, type 3.1557E10
- 3. Click **OK**, to save changes and close the **Solution Controls** dialog.

Start the Continuation Run

On the Analysis menu, click Run T2React...

View Results

To look at the total amount of sequestered CO2 after 1,000 years, we can create another line plot.

To create a line plot:

- 1. On the **Results** menu, click **3D Results**.
- 2. In the **3D Results** view, on the **File** menu, click Line Plot...
- 3. In the **Line Plot** dialog, enter the following two points: Point1=(0.0, 0.5, -50), Point2=(8000, 0.5, -50), then click **OK**.

Line Plot			×	
	X Coordinate	Y Coordinate	Z Coordinate	
Point 1:	0.0	0.5	-50	
Point 2:	8000	0.5	-50	
OK Cancel				

Figure 3.9. Preparing a Line Plot

In the **Line Plot** dialog, to show total CO2 sequestered in minerals (SMco2):

- 1. In the Variable list, select SMco2
- 2. In the **Time** list, select **3.156E10**

This result is shown in Figure 3.10

Figure 3.10. Line Plot of Total CO2 Sequestered in Minerals (SMco2)

You can also look at the mineral abundance as a function of x (R), using the Line Plot dialog.

References

- [Pruess, Oldenburg, and Moridis, 1999] Karsten Pruess, Curt Oldenburg, and George Moridis. *TOUGH2 User's Guide, Version 2.0.* November, 1999. Earth Sciences Division, Lawrence Berkeley National Laboratory. Berkeley CA USA . LBNL-43134.
- [Xu, Sonnenthal, Spycher, and Pruess, 2004] Tianfu Xu, Eric Sonnenthal, Nicolas Spycher, and Karsten Pruess. *TOUGHREACT User's Guide*. September, 2004. Earth Sciences Division, Lawrence Berkeley National Laboratory. Berkeley CA USA . LBNL-55460.
- [Pruess and Garcia, 2002] Karsten Pruess and J. Garcia. Solutions of Test Problems for Disposal of CO2 in Saline Aquifers. December, 2002. Earth Sciences Division, Lawrence Berkeley National Laboratory. Berkeley CA USA . LBNL-51812.
- [Pruess et al., 2002] Karsten Pruess, J. Garcia, T. Kovscek, Curt Oldenburg, J. Rutqvist, C. Steefel, and T. Xu. *Intercomparison of Numerical Simulation Codes for Geologic Disposal of CO2*. December, 2002. Earth Sciences Division, Lawrence Berkeley National Laboratory. Berkeley CA USA . LBNL-51813.
- [Pruess, 2005] Karsten Pruess. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2. August, 2005. Earth Sciences Division, Lawrence Berkeley National Laboratory. Berkeley CA USA . LBNL-57952.