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Sofia.Micro: An Android-Based Pedagogical Microworld Framework

Brian L. Bowden

(ABSTRACT)

Microworlds are visual, 2D, grid-based worlds with programmable actors that help ease stu-

dents into programming. Microworlds have been used as a pedagogical tool for teaching

students to program in an object-oriented paradigm for several years now. With the pop-

ularity of Android smart phones, creating a pedagogical microworld for Android can help

students learn not just Java, OO and event-driven concepts, but also learn to use the Android

framework to create concrete, real-world applications. This thesis presents Sofia.Micro, an

Android-based pedagogical microworld framework that not only allows Greenfoot-style mi-

croworld programs to run on Android, but also adds additional functionalities to microworlds

that have not been previously explored, such as built-in shape and physics support, event-

driven programming in a microworld context, and allowing for both Greenfoot-style actors

and Karel-style actors in the same world.
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Chapter 1

Introduction

1.1 Microworlds

Many universities have been using the objects-first strategy in teaching students program-

ming for introductory courses for several years now [19]. This approach teaches students

to focus on object-oriented concepts from the beginning when first learning to program,

such as inheritance, objects, and polymorphism [19]. However, students have to overcome

several hurdles when initially learning programming. To help students overcome some of

these difficulties, microworlds have been developed as a pedagogical tool to ease students

into programming.

Microworlds are visual, 2D, grid-based environments with objects that have programmable

behavior and their goal is to help students think in an algorithmic manner. Microworlds

typically start students off with small programs that have simple objects with well-defined

behaviors so students can focus on writing the logic of the object’s behaviors in the worlds.

This helps emphasize teaching students to think in a step-by-step methodology and focus

on correctly writing out their logic.

Another issue is that students learning programming struggle with the fact that many

1
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concepts in programming are too abstract. The idea of the state of variables, as well as basic

data structures prove to be a challenge for students who have a hard time conceptualizing

what is occurring in a program [30]. Microworlds aim to make programming more concrete

and interesting by visually representing the state so students can see what is happening

in their program [30]. Since students can see what is happening in their program, they

can easily detect when a given object does not act correctly and can check their logic to

see where the problem occurs [30]. Visualization also helps prevent the common habit of

trial-and-error programming that introductory students tend to exhibit where they just try

changing random segments of code to fix a bug without thinking through the logic clearly

[30].

1.2 Sofia

Android, a framework for mobile devices that uses Java and is built on the Linux kernel,

has recently emerged as a popular framework for both teaching and software development

[14]. Android has shown to be an effective motivator for students due to its ability to

allow programmers create more concrete and ultimately, interesting, applications. However,

learning Android has proved to be difficult for introductory programmers because the tools

were designed for professionals [14]. Android not only retains many of the disadvantages a

student would encounter when learning Java, but also adds extra complexity in learning the

Android framework as well.

In order to make Android more beginner-friendly, Sofia, the Simplified Open Framework
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for Innovative Android Applications, was developed as a framework built on top of the

Android API to make programming easier and cleaner for both beginners and experts [14].

Sofia’s primary goal is not to just be a framework used by students for introductory courses,

but to make Android programming easier and cleaner for both beginners and experts [13].

This design goal avoids the drawback of many programming pedagogical frameworks where

students eventually hit a ceiling where the framework becomes unusable and students have

to stop using the framework altogether [13].

Sofia uses a unique event dispatch model to eliminate much of the glue code that

is normally required when writing GUIs [15]. Sofia also supports 2D shapes with built-

in physics provided by JBox2D and animation support. Sofia makes it easier to switch

between different activities and also makes it less cumbersome to reference widgets in a

screen [14]. However, even with Sofia eliminating some of the clunkier portions of writing

Android applications, the Sofia framework still is not suitable for introductory CS courses

and is more suited for students who have some experience with programming.

1.3 Problem Statement

This thesis will address two main issues. First, we want to bring microworlds to Android.

We would like to be able to use Android as a learning tool for introductory students because

it can be a great motivator due to students being able to create real-world applications that

others can see. Android emphasizes event-driven programming, which has shown to be an

effective programming paradigm for teaching students by Kim Bruce et. al in several of their
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works [20, 21, 22, 23]. However, Android is too complex for most beginner students since it

retains many of the drawbacks of learning Java plus the framework.

Second, microworlds do not retain their usefulness as a teaching tool throughout an

entire CS 1 course. This is largely because students not only quickly master the tools

given to them, but the problems given to students are only useful for solving early beginner

problems [30]. More recent microworld frameworks, such as Greenfoot, have allowed students

and instructors to create their own scenarios within the framework [7, 24]. We would like for

students to be able to create varied and interesting applications within the microworld that

would not only be engaging for students, but would also be complex enough to where the

students would not quickly outgrow the framework and would last a full CS 1 course. This

framework would also ideally allow for a natural progression from a microworld environment

to a mobile environment.

1.4 Solution

We propose Sofia.Micro, a pedagogical tool for creating microworlds that extends the Sofia

framework to help students learn Android programming in an easy-to-use, Greenfoot-style

environment. This microworld framework aims to simplify the Android framework so that in-

troductory level students can reap the benefits of Android and to also modernize microworlds

in general by adding additional features that have not been used before in a microworld en-

vironment so that they can span a full CS1 course. Sofia.Micro focuses on event-driven

programming, which helps emphasize the strengths of the Android framework. Sofia.Micro
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supports both the cellular-automata-style actors of Greenfoot and the programmable-actor-

style of Karel actors, even in the same world. Finally, it supports having non-actor shapes in

the world as well, and both actors and shapes support physics interactions with each other.

This thesis is broken down in the following manner: Chapter 2 covers related work and

discusses previous microworlds in more detail. Chapter 3 covers the features of Sofia.Micro

with Chapter 4 discussing the design and implementation of these features. Chapter 5

presents some case studies to demonstrate the capabilities and ease of use of Sofia.Micro

features, with Chapter 6 covering concluding remarks and future work.



Chapter 2

Related Work

One issue microworlds try to address is that students have difficulty learning and applying

the syntax of a given language. For example, students who are picking up Java as their

initial language may have to write their own main method and class for the typical hello

world example, such as:

// HelloWorld.java

public class HelloWorld

{

public static void main(String[] args)

{

System.out.println("Hello World!");

}

}

Immediately, this introduces students to several key ideas in Java, such as classes,

visibility modifiers, static keyword, return types, arguments to a function, and arrays. One

major difference in microworlds is how they address students learning syntax of a language.

Some microworlds, such as Karel, avoid this issue by using their own language or set of

commands (ex Move(), TurnLeft(), PickBeeper(), etc.) so that the students are introduced

to exactly what the microworld wants without students having to worry about all the extra

syntax that they will not need until later. The downside to this approach is that the students

will eventually have to ‘discard’ this language and relearn a new language. Some microworlds,

6
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such as Greenfoot, instead introduce students to Java, albeit with more emphasis on logic

rather than syntax. This makes the initial learning curve steeper for students, but it makes

the transition from a CS1 course much easier. Sofia.Micro follows the Greenfoot style more

as it uses Java classes and syntax since we want Sofia.Micro to be a natural transition to

writing mobile applications.

There have been a number of different microworlds created since Karel’s inception in

1981. Different microworlds have different maturity requirements, with Alice and Scratch

being suitable for middle-school aged students, and Greenfoot and Karel being suited for

high-school and even collegiate level students [25, 33]. Since Sofia.Micro is based on Green-

foot and Karel and also uses the Android framework, we feel it would be best suited for

high-school and collegiate level students.

2.1 Karel

Karel was the first microworld, released in 1981, and started the idea of using 2D grid-based

worlds with programmable actors to help teach students object oriented concepts. The 2D

grid used to represent the world has the origin in the bottom-left corner and starting at (1, 1)

to allow for using coordinates similar to the top-right quadrant in the Cartesian plane [8, 31].

In this world, the vertical coordinates are called ‘streets’ and the horizontal coordinates are

called ‘avenues’ [8, 31]. Actors in this world are represented as: robots, which the students

write behaviors for; walls that the robot can not move through which are placed by the user

and also on the bottom and left edge of the world; and black dots called ‘beepers’ that the
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Figure 2.1: Screenshot for JKarel [31]

robots can sense and pick up [8, 31]. The students program the robots to move and interact

with the environment by picking up beepers and avoiding walls [8, 31]. The student writes

the entire program for the robot with each step in the program is performed during each

tick of the global clock [31].

One of the drawbacks of Karel is that there is not much flexibility to the students

since students will only ever be writing behaviors for the robots in the 2D grid world. This

limits its usefulness as a long term learning tool since Karel can only be used to teach basic

logic and object-oriented concepts to students and students would generally quickly outgrow

Karel.
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Figure 2.2: Screenshot for Alice IDE

2.2 Alice

Alice is a 3D interactive animation program released in 1999 [2]. Alice differs from Karel

in that it allows students to drag and drop actions and observe an avatar perform those

actions rather than writing the code themselves [2]. Students can drag and drop actions in

this manner to create a story or an interactive game [2]. This approach to programming

allows for easy experimentation by the students and for them to use their own creativity.

One of the important ideas with Alice (along with Scratch) is that students can not write
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Figure 2.3: BlueJ Class Layout [26]

syntactically incorrect code, which removes one of the hardest hurdles for students who are

first learning to program, and instead allows the student to focus on the logic of the program

[2]. Like Karel however, Alice suffers from many of the same drawbacks since students are

not actually writing any code themselves and they are limited to the tools Alice provides for

them.

2.3 BlueJ

BlueJ is a pedagogical Java IDE designed to help teach object oriented programming that

uses the standard Java JDK, compiler, and virtual machine [26]. BlueJ is based on three

design goals: interactivity, visualization, and simplicity [27]. BlueJ uses a simpler interface

to reduce the complexity that many students must overcome when learning to use an IDE



Brian L. Bowden Chapter 2. Related Work 11

[26]. BlueJ also uses an UML style layout to display the class structure of the project and

allows students to directly interact with classes or objects [26, 27]. Once a student creates

the object, it is shown visually to help students grasp abstract object oriented concepts and

the student can interact with the object to invoke any of its public methods [26, 27]. BlueJ

also allows students to inspect objects to see the current values for their fields which allows

for experimentation as the student can call the public methods, then see the results of the

method call [26]. The downside to BlueJ is that in order to achieve its goal of simplicity, it

has to sacrifice many of the tools found in a professional environment, which makes it only

suitable as a learning tool [27].

2.4 Jeroo and Kara

Jeroo and Kara are two microworlds based heavily on Karel. Jeroo focuses on object-orented

concepts using a kangaroo-like animal called a Jeroo that trys to avoid traps on an island

and pick up flowers [5]. Jeroo uses an IDE where students can edit the code and see which

line of code is being executed at a time [29]. Students can also change the speed at which

the simulation is running or even run it one step at a time [29].

Kara is a ladybug that avoids tree stumps, moves mushrooms, and picks up or places

clover leaves [28]. Kara focuses on the idea of Finite State Machines since the authors

believes that FSM are easy for students to grasp [4, 28]. Both tools have been well received

by students, however, they have the same drawbacks as Karel since students are still only

limited to a single scenario and programming a single type of actor.
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Figure 2.4: Kara Sample Program [4]

2.5 Greenfoot

Greenfoot is an integrated development environment (IDE) that aims to teach Java program-

ming [25]. A 2D grid is used with the origin (0, 0) being in the top-left corner so students can

address a given cell in the same way a 2D array would be indexed [25]. This grid represents

a ‘world’ which can contain objects referred to as ‘actors.’ [7, 25] Every Greenfoot scenario

will contain at least one class that extends World and one or more classes that extend Actor
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Figure 2.5: Greenfoot Wombats example [24]

[25]. Actors contain an ‘act’ method, which defines what each actor will do during each

tick of the world timer and is where students write the majority of their programs. This

paradigm of how students program actors closely follows the cellular automata idea where

each object responds to their immediate surroundings and reacts accordingly.

Greenfoot also contains a simple user interface for students to use, which removes much

of the advanced commands typically found in an IDE to reduce complexity for students [25].

The GUI also allows students to interact directly with classes and objects by right-clicking

on them [25]. Users can create new Actors by right-clicking on the Actor in the Actor menu

(see Figure 2.5) and users can also inspect the state of the actor by right-clicking and hitting

inspect from the actor’s menu [25]. In this way, Greenfoot helps make object-oriented more

concrete by allowing users to create and see the actors they write.

Greenfoot’s strength stems from the fact that it easily allows students and instructors

to write custom scenarios. This avoids the drawback of Karel and the Karel-like microworlds
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Figure 2.6: Scratch Sample Program [18]

since there is much flexibility in what students can write. However, like BlueJ, the IDE does

not contain many of the tools typically found in an IDE.

2.6 Scratch

Scratch, created by the Lifelong Kindergarten Group at MIT, is an online tool for novice pro-

grammers to learn computer science concepts. Scratch also emphasizes the ‘no syntax error’

philosophy of Alice since students create programs (referred to as ‘scripts’) by dragging and

dropping blocks that represent components in a program, such as expressions, conditions,

and loops [16]. This allows students to easily create 2-D, event driven, concurrent programs
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Figure 2.7: Screenshot from Daisy the Dinosaur App

without requiring students to know and understand all the underlying concepts [17]. Scratch

differs from other pedagogical tools by focusing on concurrency and event-driven program-

ming early on before moving on to object oriented concepts [17]. Scratch also has a large

emphasis on social networking by allowing students and teachers to share their projects [16].

Scratch’s emphasis on students not writing their own code means that it is more appropri-

ate for a younger audience since younger students tend to struggle more with syntax [33].

However, like Alice, students can quickly master everything Scratch has to offer and the skill

ceiling is lower for Scratch since students do not write their own code.

2.7 Smart Phone Apps

There have been a few apps that have been released on either the Android or iPhone app

store that use Karel or Scratch-like environments to help teach programming. Cato’s Hike
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teaches programming in a Karel-like fashion where students program a child to navigate

mazes to collect hearts or stars [9]. Daisy the Dinosaur is similar to Scratch in that users

drag and drop actions in order to control the dinosaur on screen (see 2.7) [10]. Hopscotch also

uses a Scratch-like approach to teach students to code by dragging and dropping blocks to

create games or animations [11]. All of these apps are targeted to students around the ages of

8-10, which makes them ideal for introducing students at a young age to programming logic.

They also demonstrate how smart phones and tablets can act as a motivator for students to

learn programming.



Chapter 3

Sofia.Micro Features

Sofia.Micro has several novel features that have not been used before in microworlds or

microworld frameworks. In addition to supporting Android apps, Sofia.Micro has the ability

to support both types of actors commonly seen in microworlds. Sofia.Micro also supports

2D shapes and physics simulation for actors and shapes. Sofia.Micro is the first microworld

framework that supports event-driven style programming.

3.1 Actors and Programmable Actors

Microworlds typically use one of two different strategies for defining the behavior of actors.

Karel, and later Jeroo and Kara, used what we will call programmable actors. In this type

of actor, the entire program is written for the actor and then executed one step at a time.

Students have to write out the entire logic for their actor from the beginning and think

about solving their problem in a more ‘global’ sense and think about their logic in a more

abstraction-oriented perspective.

The other type of actor is the cellular-automata-style actor, such as the ones used in

Greenfoot. For these types of actors, students write what each actor will do at each step of

the world clock with the actor reacting to their immediate surroundings and then moving,

17



Brian L. Bowden Chapter 3. Sofia.Micro Features 18

Figure 3.1: Actor UML Diagram Figure 3.2: World UML Diagram

removing itself or another actor, changing direction, etc. This follows an approach similar to

how a greedy algorithm works where the actor makes the best local decision in order to try to

solve a global problem. This style of writing actors is less restrictive than the programmable-

actor-style since students just need to focus on writing how an actor should respond at each

individual step, rather than how they should respond over the entire program. These types

of actors can usually be identified by an overridden method that appears in every actor (and

world), in the case of Greenfoot and Sofia.Micro, this is the act() method.

Sofia.Micro employs both types of actors and worlds that are commonly used for these

microworlds, namely actors and programmable actors, and worlds and programmable worlds.

Like in the Greenfoot model, each actor has an act() method that is called during each tick

of the global clock. Students can extend the appropriate actor and override the act method

to create behaviors for the actors.The programmable actor extends the Actor class and uses
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a program thread to handle the actor’s behavior. The entire program logic is written in a

Program class, which is given to the ProgrammableActor and then executed one step at a

time. Both actors support similar operations, such as changing their position and rotation,

performing queries on other actors in the world, or adding and removing other actors.

There is a ‘World’ class that students can extend to create their own World for an

application. This world class uses a custom thread for the world engine which handles the

execution of the world and its actors. During each tick of the engine clock, the act method

is called for the world and all of the actors along with dispatching any buffered events to the

world and actors. The world uses a grid system similar to Greenfoot where a world is given

dimensions in number of cells (width x height) and how large each cell will be in pixels. This

allows for programmers to create simple grid worlds with a few number of cells (see Section

5.1), or to create a world where each cell is only a pixel to create worlds with more realistic

movement (see Sections 5.2 or 5.3).

Like the programmable actor, there is also a ProgrammableWorld that extends the

World class, which contains a field called ‘Program.’ The program is simply an object which

students can either override the myProgram() method, or write their own program and pass

it into the setProgram() method. Like the ProgrammableActor, the ProgrammableWorld

uses the beginAtomicAction() and endAtomicAction() to divide the program into steps.
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Figure 3.3: Screenshot of Physics Games on Google Play Store

3.2 Shape and Physics Support

Students will be familiar with several physics-based Android games, such as Angry Birds or

some of the apps in Figure 3.3. To help students with writing physics-based Android apps,

we have incorporated 2D shape and physics into Sofia.Micro. We not only want students

to write unique and varied applications, but we want them to be able to do it easily. By

directly incorporating these elements, we can allow students to use physics in their game if

they wish.

Sofia supports 2D graphics as well as physics support through JBox2D. This allows for

interactions and behaviors such as gravity, collisions, detection, objects bouncing, and objects

sliding. By utilizing the physics engine, a programmer can greatly simplify the amount of

code they need to write in order to have some basic physics in a game or application. Since

Sofia.Micro is an extension to Sofia, then Sofia.Micro can employ both the shape and physics

support to add functionality that is not previously seen before in a microworld. This allows
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for shapes to coexist with actors in a world and since actors are also shapes themselves, then

the two can interact with each other and be affected by physics, such as collision detection

or forces.

The shape support allows students greater flexibility in what is placed in each world.

Students no longer need to use an actor for every object in the world if they do not need to

and can instead use simple 2D shapes when appropriate. This helps clean up some of the

code since the student does not need to explicitly write an actor for some simple behaviors.

Sofia.Micro support lines, rectangles, ovals, and polygon shapes so the student can use these

to create objects such as projectiles in a game or walls and platforms for a side-scroller. This

also allows students to write simple GUI applications, such as a Paint application, that lets

the user draw basic shapes on the screen.

With Sofia.Micro’s physics engine, students can easily create physics-based games, such

as Asteroids (see Section 5.2), Angry Birds (see Section 5.3), or Plants vs. Zombies (see

Section 5.4). By utilizing the physics engine, students can write code for moving and de-

tecting actors or shapes in a cleaner fashion. For example, rather than using the move()

method in actor to move, an actor can instead say that it is a dynamic object, and give itself

a linear velocity. This may not look much different, but since the actor is moving by the

physics engine rather than being manually moved by the user, then it collides and reacts to

the environment in a more realistic fashion. This also avoids the issue of a fast-moving actor

moving past another actor completely since a physics actor will be moved more frequently.

The physics engine supports three different types of physics objects: static, kinematic,
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and dynamic objects. Static objects can not be moved except by explicitly changing their

position, x, or y coordinate and they do not participate in collisions with other static or

kinematic objects [3]. Kinematic objects are similar to static objects, except they can have a

non-zero velocity [3]. Like static objects, however, they have infinite mass and do not collide

with other static or kinematic objects [3]. Lastly, dynamic objects are simulated objects that

move by forces, collisions, velocity, etc and will respond to collisions with other objects [3].

Dynamic actors can bounce off each other, apply forces, or use acceleration much easier since

the student does not have to explicitly change the movement of the actor themselves and let

the physics engine handle it. This eases a significant portion of the burden of moving actors

in a world since students no longer need to calculate the velocity or position themselves,

they can instead just let the physics engine worry about that.

3.3 Event-Driven Programming & Event Dispatch

Kim Bruce et. al in Java: An Eventful Approach discuss how event-driven programming is

an appropriate programming paradigm for students because most real-world applications will

be GUI-based as opposed to command line based [20]. They also emphasize in their other

works that students can quickly pick up event-handling since they can focus on parameters

and methods along with the amount of code they have to write to do something interesting

is very small [21, 22, 23]. Given Android’s focus on event driven programming in general,

Sofia’s microworld was designed to support touch and key events so that students can write

event-driven programs themselves. This emphasis on event-driven programming differenti-



Brian L. Bowden Chapter 3. Sofia.Micro Features 23

ates Sofia.Micro from other microworlds, which may not feature any event-driven support at

all. Students can still use an imperative programming paradigm for their programs if they

wish, but they have the option for event-driven style programs.

To our knowledge, Sofia.Micro is the first microworld framework to use event driven

programming at all. Microworlds, such as Karel or Jeroo do not support any kind of event-

driven style programming, however Greenfoot does support a polling style of event handling

where actors can “ask” if a button is pushed down or if the mouse is located in a specific

area. However, Sofia.Micro is the first to support a true event driven programming style.

Students can write event handlers in any of their actors, shapes, or even the world itself and

events will be automatically dispatched to them. A list of the supported event handlers are

given below:

Table 3.1: Touch Handler Methods

Method Name Description
onTouchDown() User initially touches the object
onScreenTouchDown() User intially touches anywhere on the screen
onTouchMove() User drags their finger in the object
onScreenTouchMove() User drags their finger anywhere in the screen
onTouchUp() User lifts their finger in the object
onScreenTouchUp() User lifts their finger anywhere in the screen
onTap() User touches then quickly releases their finger in the object
onScreenTap() User touches then quickly releases their finger anywhere in the

screen
onDoubleTap() User touches then quickly releases their finger two times in a row

in the object
onScreenDoubleTap() User touches then quickly releases their finger two times in a row

anywhere in the screen
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For these handlers, students can also specify additional arguments for the methods.

These handlers can take two floats or two ints, one for the x coordinate and one for the y

coordinate or a Point object, which contains the respective x and y coordinate. Students can

also make use of Sofia’s unique event dispatch model to help simplify some of the code they

need to write. For example, in the Asteroids case study, rather than having the following in

the act() method:

Set<Ship> ships = getIntersectingObjects(Ship.class);

if (!ships.isEmpty())

{

for (Ship ship : ships)

{

ship.remove();

}

}

Students can instead write:

public void onCollisionWith(Ship ship)

{

ship.remove();

remove();

}

The latter helps emphasize an event driven model since it is only called when there is actually

a collision as opposed to constantly checking if a collision has occurred. In terms of writing

handlers for typical events, such as touch or key events, students just need to write the

appropriate handlers in their actor or world. Any captured events are stored in a buffer and

Sofia.Micro will automatically dispatch any buffered events to classes with handlers by using

Reflection before the act() method is called for the world and actors respectively.

To help facilitate students writing event-driven programs, Sofia.Micro also supports the
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use of a directional pad (dpad) that uses its own handler methods listed below:

• dpadNorthIsDown()

• dpadNorthEastIsDown()

• dpadEastIsDown()

• dpadSouthEastIsDown()

• dpadSouthIsDown()

• dpadSouthWestIsDown()

• dpadWestIsDown()

• dpadNorthWestIsDown()

• dpadCenterIsDown()

When an actor is added to the world that has at least one of these handler methods,

then the dpad is added to the world in the bottom-left corner of the screen. The dpad

is mostly transparent so it does not obstruct anything behind the dpad when it is moving

during an application. If a user touches the dpad, it will calculate which part of the dpad

was touched and automatically call the appropriate handler methods. The student can then

write the code in these handlers to change the behavior of the actor or the world when one

of these handlers is called. This gives the student greater control in how they want to move

any actor or shape within their scenario since they can opt to use the dpad to manually

control the actor or shape rather than letting act or physics engine completely dictate its

action.



Chapter 4

Design & Implementation

Sofia.Micro is designed with its predecessors in mind, in particular, Greenfoot and Karel.

Sofia.Micro uses a relatively few number of classes, with the majority of the work being done

in the Actor, World, and WorldView classes. By extending the ShapeScreen, the WorldScreen

can use the shape and physics support with some modifications to ensure that physics objects

behave properly in the microworld. Program is an interface that ProgrammableActor and

ProgrammableWorld both implement that allows a user to create a Program that is executed

Figure 4.1: Sofia.Micro UML Diagram

26
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Figure 4.2: Sofia.Micro Menu

step-by-step.

Sofia.Micro apps have four defined menu items (see Figure 4.2), Act, Run/Pause, Reset,

and Speed. Hitting the Act button iterates over each actor and the world once and calls

their respective act methods. The Run button will cause the World to continuously call the

act() method on all the actors and the world, in addition to allowing physics based objects

to run normally. After Run is touched, Pause will take its place which will stop all actors

and the physics simulation. Reset will call the initialize method for the screen to reset all

the actors and shapes in the world. Finally, the Speed button will allow users to change the

frequency at which the act methods are called when running.

4.1 Actors and Programmable Actors

Sofia’s actors themselves are a shape, which as mentioned earlier, allows actors to coexist with

shapes and also use all of the functionality found in shapes, including the physics support.

Actors extend a shape called DelegatingShape, which is a shape itself and also contains
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a Shape object as one of its fields, referred to as the ‘delegate.’ Rather than have the

DelegatingShape object itself handle bounds checking, appearance, and collision detection,

it instead lets the delegate handle these. By doing this, a delegating shape object can alter

the way it behaves by simple changing the delegate shape inside the object.

Actors use an ImageShape as their delegate, which is an extension to the RectangleShape

class with an image used for the appearance of the shape rather than a fill color. This also

means that actor’s use the RectangleShape’s bounds and fixtures when it comes to collision

detection. When an actor is created, Sofia will automatically try to find an image with the

same name as the actor in the /res/drawable/ folder and assign that as the ImageShape’s

image. This eliminates the need for users to explicitly search for an image in the code and can

allow Sofia to perform this step for them, however, the user still has the option of explicitly

setting the image. A cache is used to help speed up looking up images when multiple actors

of the same class are created by using either the actor’s class name or a String as the key.

Actors are also given a bounds, which is the bounding box used for collision detection

and also determines how large the actor is. Actors have a flag to determine if the bounds

should be scaled to the grids in the world. If the flag is set to true, which is generally the

case for worlds with a few cells (see Section 5.1), then the bounds is set to be from -0.48

to 0.48 for both the width and height. Sofia automatically centers the shape in the middle

of the cell and because the bounds are the center of the cell ±0.48, then when a student

accesses cell (x, y), they are referring to the center of the cell rather than the top-left corner

of the cell. To avoid edge cases where the bounds are touching at the edges, the bounds
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use ±0.48 rather than ±0.5. In the case of the scale to cell flag being set to false, then the

bounds are merely the bounds of the image scaled to the world, which is typically used when

the world has very small grid cells, such as in the Asteroids example where the world is a

500x500 world with grids 1 pixel wide.

When an actor is added to the world, the programmer can specify which (x, y) co-

ordinate to add the actor to, otherwise the actor will be added at coordinate (0, 0) by

default. Once added to the world, programmers can use several of the actor’s meth-

ods to move or rotate it, such as move(int distance), setX(float x), setY(float y),

setRotation(float angle), and other methods to help the actor find other shapes or ac-

tors for querying or collision detection, such as getNeighbors(), getObjectsAtOffset(),

or getIntersectingObjects().

As mentioned earlier, students will extend the Actor class with their subclasses that

will then override the act method with their own implementation. The World class’s Engine

inner class will call the act method on every actor every tick of the clock. Actors and

shapes that are added or removed during the act of another actor are placed in a list (named

deferredAdds or deferredRemoves), which is dealt with after all the act methods have been

called. This avoids the issue of synchronization, concurrent modification exceptions on the

list of actors, and also helps ensure that the order of actors does not cause exceptions or

abnormal behavior.
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4.2 Shape and Physics in Sofia

Sofia’s shape model first begins with the abstract class, called ‘Shape’ that every other shape

will extend. The shape contains several fields, including the color, alpha, rotation, as well

as some fields for JBox2D, such as a Body, density, and friction. Subclasses of Shape, such

as oval, rectangle, or polygon shapes will provide functionality for the bounds and fixtures

for the shape.

The physics is provided primarily by JBox2D, which handles much of the collision

detection, applying forces to shapes, and moving the shapes. Users can apply forces to a

shape, such as gravity using the setGravity(PointF) method, or give the shape a linear

velocity using setLinearVelocity(PointF). Users can also specify how a shape interacts

with other shapes by using the setShapeMotion() method to specify if the shape is dynamic,

static, or kinematic. Shapes are by default static, which means it has zero velocity and infinite

mass and can only be manually moved by the user. Kinematic shapes also have infinite mass,

but they can be given a velocity. Static and kinematic bodies will not interact with each

other or themselves. On the other hand, dynamic shapes are subject to all types of physics

interactions, including velocity, mass, forces, torques, and impulses [3]. Dynamic shapes also

can interact with all three types of shapes and use the shape’s built-in fixtures to simulate

any physics.

Sofia also supports a shape filter, where a user can chain together multiple filters onto

the same call. There is support for finding actors in the ShapeView and WorldView that
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Figure 4.3: Shape UML Diagram (Note: not a complete UML diagram)

applies the necessary filters to simplify some commonly used collision detection or search

queries that are typically done. For example, if a user wanted to find all the actors within a

circle at coordinate (x, y), they could use:

getShapesInRange(x, y, r, Actor.class);

Which is merely a shortcut for:

return getShapes().withClass(Actor.class).locatedWithin(new PointF(x,y),r).all();
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Sofia also provides animation support for shapes as well. Users can chain together different

animations, such as fading in the shape over 1 second while changing the color.

4.3 Event Dispatch

The event dispatch is accomplished in the WorldView class by using a double-buffer system.

Events are buffered in an ArrayList whenever they are caught in the WorldView. During

the run() loop for the World, before the act() is called for the World, all the events in

the buffer are dispatched to the World. The same is done for each actor before that actor’s

act() method is invoked. This allows for motion and key events to be handled before the

world or actor’s behavior is performed. While events are being dispatched to the World

and each actor, the second buffer will catch any events that may be fired during that time

since dispatching events is not handled instantaneously. Once the World’s and actor’s act

methods have been performed, then the buffers are swapped and the second buffer will be

used on the next iteration of the run() loop, and so on.

During implementation of the double buffer, a LinkedList was also considered for the

double buffer since the ArrayList has to worry about potentially expanding the internal

array if the number of buffered events got too large whereas the LinkedList does not have to

worry about such a consideration. On the other hand, the LinkedList has to go out to the

heap every time a LinkedList node is created which can be relatively expensive, whereas the

ArrayList just has an array of references that do not need to be recreated. In practice, the

ArrayList never needed to be resized, or in the worst case, had to be resized once. Since the
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ArrayList does not need to go out to the heap every time to add an item to the buffer, it

was the data structure that was used.

Another design consideration was the way the events were stored in the buffer. One

problem is that the ’action’ for motion events and ‘key code’ for key events are static, as in,

there is only a single copy stored across all events. When buffering and then dispatching the

events, the ‘action’ would always be the ‘action’ of the last motion event stored and likewise

for the key event. To fix this issue, rather than just buffering the event itself, a wrapper

class was created that would store both the event and the action or key code at the time it

was buffered. This wrapper class is created every time an event is fired and then stored in

the corresponding buffer.

One issue that arose with motion events is that the x and y value stored in the motion

event are in pixel coordinates, however, this is not suitable for a grid-based microworld since

actors are generally addressed by their grid x and y coordinate. To address this issue, the

x and y values in the motion event are adjusted so that the pixel locations are converted

to grid cell coordinates and offset so pixel coordinates to the left of the origin (0, 0), are

considered negative. These adjusted x and y values are also stored in the wrapper for motion

events so they can also be dispatched to the world or actors.

To help with dispatching events, a TouchDispatcher class was created. This class has

a static dispatchTo() method that takes in the object to dispatch the event to, the event

itself along with its action code, and a PointF object that contains the x and y coordinate

where the event occurred. For Sofia.Micro, this x, y coordinate pair will be the grid location,
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otherwise, it will just be the motion event’s getX() and getY(). In order to speed up

the dispatch portion when the world is dispatching the events to all the actors, a static

hasDispatchableEvents() method is used which will return true if the actor has any motion

event handlers so that dispatching events is skipped for actors that have no event handlers.

After the motion and key events have been dispatched to all the actors and worlds, then the

buffers being used are cleared and then swapped so the next iteration of the run loop in the

Engine will use the other buffer.

4.4 Directional Pad

Sofia.Micro’s directional pad (dpad) is implemented as a shape that extends the Rectan-

gleShape class with a dpad image (see Figure 4.4). Touch events are dispatched to the

dpad before being dispatched to the actors and the world. The dpad contains motion event

handlers for onTouchDown(), onTouchUp(), and onTouchMove() that catches any motion

events and sends them to a helper method. This method checks to ensure that the mo-

tion event is within the bounds of the dpad, and calculates if the touch was in the center

of the dpad or which one of the 8 quadrants of the dpad the touch occurred. Touching

the center or one of the four cardinal directions converts the touch event into a single key

event, for example, touching the top portion of the dpad will convert the touch event into a

KEYCODE DPAD UP key event. Touching one of the corner will convert the touch event

into two key events, for example, touching the top-right corner will convert it into a KEY-

CODE DPAD UP and KEYCODE DPAD RIGHT key event. These key events are then
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redispatched, where they are handled and buffered by the WorldView.

Figure 4.4: Directional Pad

If an actor or world has one of the directional

pad methods, then the DpadDispatcher class will dis-

patch the dpad events to the class. If an actor con-

tains one of the dpad diagonal directions, then the

event is dispatched to that method, if not, then it is

dispatched to the two corresponding cardinal direc-

tions (ie northwest would be dispatched to north and

west). However, the KeyEvent class does not have a constant for the diagonal directions, so

to ensure they are properly dispatched, a bitmask is used where the two directions are com-

bined into a single int using bit shifts and ANDs. They are later unmasked in the dispatch

method for the DpadDispatcher.

The dpad is not added to the world by default, instead, when a student adds an actor

to the world, the world will check to see if the actor has any dispatch-able dpad methods.

If the actor does have some dispatch-able methods, then the dpad will be added to the

bottom-left corner of the screen. This simplifies the code for the student since they do not

have to explicitly add the dpad themselves and do not have to calculate the bounds of the

dpad.



Chapter 5

Case Studies

To demonstrate the capabilities of the new features for Sofia.Micro, we have implemented a

few classic Greenfoot examples in addition to writing a few of our own examples.

5.1 Jeroo

As mentioned in Chapter 2, a jeroo is a kangaroo-like animal on an island that hops around

collecting flowers while avoiding traps. Jeroo is similar to Karel in that it also uses the

programmable actor found in Karel and other similar microworlds. Sofia.Micro has a built-

in jeroo package (along with Lightbot and Greenfoot) so students who wish to use it can

simple extend or use the appropriate jeroo classes.

5.1.1 Actors and Programmable Actors

Jeroo emphasizes the actor aspects of Sofia.Micro, namely the actor and programmable actor.

The jeroo itself is a programmable actor where students write their logic in the ‘myProgram’

method. An example of some of the logic for a jeroo program is given below:

36
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public void myProgram()

{

clearRows();

}

public void clearRows()

{

while (!seesWater(AHEAD) || isClearBelow())

{

if (clearRow())

{

if (isClearBelow())

{

turnAround();

}

}

else if (!this.seesWater(down()))

{

moveToNextRow();

}

}

}

The other actors in the jeroo package (ie the flowers and nets) are just regular actors.

While they do not have any defined behavior by default, it does demonstrate that a jeroo

Figure 5.1: Jeroo in Sofia.Micro
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world can support both actors and programmable actors in the same world. Jeroo also

demonstrates that Sofia.Micro can recreate previous microworlds in an Android environment,

which allows for instructors and students to use them in a strictly Greenfoot-style or Karel-

style if they so choose.

5.1.2 Simple Microworlds on Android

Jeroo shows that it addresses both issues of the problem statement. Students can create

unique and diverse Greenfoot-style or Karel-style microworlds to help keep the tool inter-

esting and give it some longevity. Also, given the ease with which they can create these

environments, it shows that Sofia.Micro can help bring Android to students in an simpler

context.

5.2 Asteroids

In this program, the user controls a ship that must avoid the asteroids on the screen and

shoot them to destroy them. If a bullet collides with an asteroid, then both are removed

from the world. Likewise, if the ship collides with an asteroid, then both are removed and

the player has to restart the app to keep playing. The user controls the ship using the dpad

and tapping the screen. Touching the up section of the dpad will move the ship forward in

the direction it is facing, while touching the down section will slow the ship down. Touching

the left or right areas will turn the ship in the corresponding direction and tapping the screen

will cause the ship to fire bullets. The ship does not have any of the diagonal dpad methods,
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Figure 5.2: Asteroids UML Diagram

Figure 5.3: Asteroids Layout

so the dpad dispatcher will dispatch any diagonal directions into the corresponding cardinal

directions.
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5.2.1 Event-Driven Programming using the Dpad Controller and

Simple Physics

This case study emphasizes a few different aspects of Sofia.Micro. It first emphasizes the

event-driven nature of both Sofia.Micro and Android applications. Students would need to

write the dpad handlers for the ship to control the ship’s movement. The amount of code

students need to write for the ship’s handlers is a single line per handler.

public void dpadNorthIsDown() { setSpeed(getSpeed() + 1); }

public void dpadSouthIsDown() { setSpeed(getSpeed() - 1); }

public void dpadEastIsDown() { turn(5); }

public void dpadWestIsDown() { turn(-5); }

public void onScreenTouchDown() {

getWorld().add(new Bullet(50, (int) getRotation()), getGridX(), getGridY()); }

Asteroids also demonstrates the event-dispatch strengths of the Sofia framework since

detecting collisions happens automatically now with the onCollisionWith() methods, so

students can instead focus more on what happens when a collision occurs.

public void onCollisionWith(Ship ship)

{

ship.remove();

remove();

}

Secondly, it emphasizes the use of the physics engine in realistically moving actors so

that students do not need to worry as much about moving objects or bouncing Asteroids

off each other when they collide. This was accomplished by changing the MovingActor

class, which is the class all the actors in this scenario extend from, to be a dynamic shape.

Movement for the actors is handled in the constructor method by setting its linear velocity
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to be (speed * cos(θ), speed * sin(θ)). While this may not change a lot in terms of how

the game is played, it does make the game feel more like a physics based game, rather than

merely emulating one. Finally, this case study demonstrates how the dpad works for Sofia

and that users can use it as a controller for one or more actors in their microworld.

5.2.2 Easily Creating Simple Physics-Based Games

Like the jeroo, Asteroids shows that it addresses both of the main issues in the problem

statement. Asteroids demonstrates how easy it is for someone to write a very simple game

that works. The amount of code that needs to be written is also fairly minimal, numbering

roughly around 70-80 lines of code excluding comments and whitespace. The physics engine

handles most of the trickier logic for this application, so students can instead focus on writing

the dpad handlers and setting up the actors for the world. Asteroids also shows that students

can create diverse applications to increase the life span of Sofia.Micro as a learning tool.

5.3 Irritated Avians

This case study is a simplified implementation of the Angry Birds game, renamed “Irritated

Avians.” The goal of the game is to the launch the red bird at the green pigs in order to

remove them from the world. To play, the user will drag the red bird and release at the

desired angle and distance, which will propel the bird forward and if it collides with one

of the green pigs, then the pig will be removed from the world. This game was originally

written using the base Sofia framework by [14] and was modified to fit Sofia.Micro. In the
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Figure 5.4: Irritated Avians Screenshot

Sofia.Micro version, the birds and pigs are now actors, however, they still use the physics

engine to determine movement and collisions. The ground and the ovals the bird leaves

behind when fired were left as shapes since they have no behavior in this scenario.

5.3.1 Event-Driven Programming with Physics

Like the Asteroids case study, Irritated Avians also emphasizes the physics engine of Sofia.Micro

along with the unique event dispatch that Sofia provides. What is different is that Irritated

Avians also demonstrates that a world can contain non-actor shapes at the same time as

regular actors. The birds and pigs are actors in this case, while the ground, slingshot, and

the white balls the bird leaves behind as it moves are all shapes. Of these three, the ground

is the only one that interacts with the actors by preventing them from leaving the scene.

This example also demonstrates that actors in Sofia.Micro do not necessarily need an act
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method to move if the student does not want to use it — movement and collision detection

can all be handled by the physics engine. This example also emphasizes the event-driven

nature of both Sofia.Micro and Android since all of the interactions in this program are done

via the onTouchUp() and onTouchMove() handlers.

// code for moving the bird before it is shot off

public void onTouchMove(float x, float y)

{

float distance = Geometry.distanceBetween(

startingPosition.x, startingPosition.y, x, y);

float angle = Geometry.angleBetween(

startingPosition.x, startingPosition.y, x, y);

distance = Math.min(distance, 150.0f);

PointF newPosition = Geometry.polarShift(

startingPosition, angle, distance);

setPosition(newPosition);

}

// code for flinging the birds once the user stops touching the screen.

public void onTouchUp(float x, float y)

{

float dx = x - startingPosition.x;

float dy = y - startingPosition.y;

setGravityScale(1);

applyLinearImpulse(-dx * 80, -dy * 80);

trailTimer = Timer.callRepeatedly(this, "leaveTrail", 100);

}

5.3.2 Creating Simple Versions of Familiar Android Apps

Irritated Avians demonstrates that Sofia.Micro addresses both issues in much the same

manner as Asteroids. Students will be familiar with the Angry Birds game, so being able
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Figure 5.5: Ants vs. Some Bees UML Diagram

to easily write a simplified, working version of it would entice many students. Students can

then make use of Sofia.Micro in order to remove much of the complexity to simplify writing

the application. Students can continue to use Sofia.Micro to write unique and varied versions

of applications that they would be familiar with, which once again, extends Sofia.Micro’s

5.4 Ants vs. Some Bees

For the last case study, a version of Plants vs. Zombies was made with the plants replaced

with ants and the zombies replaced with bees. This game was originally created by UC

Berkeley as a nifty assignment to help teach object oriented concepts [12]. In this game, the

ants are trying to repel the bees by shooting leaves at the bees. If the bees make contact

with the ants, then the ants start taking damage until they are removed from the game.
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Figure 5.6: Ants vs. Some Bees Screenshot

Students can extend the Ant class to create new Ants that can perform different roles, such

as generating extra resources or dealing damage in an area around itself.

5.4.1 Actors and Greenfoot on Android

This case study emphasizes the actor of Sofia.Micro. All the game entities (see Figure 5.5)

are actors in this game with all of their behaviors written using the act() method. This

program demonstrates that Sofia.Micro can support a complete Greenfoot-style program on

Android. The projectiles could be rewritten to move using the physics engine, however, a

drawback of using both the act method and the physics engine is that they do not move in

sync. The game is still largely event-driven since students select and place the ants within

the world:
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// handler within the Colony.java class for adding new ants to the World

public void onTouchDown(int x, int y)

{

Ant ant = newActorOfSelectedType();

if (ant.getFoodCost() < getFood())

{

consumeFood(ant.getFoodCost());

add(ant, x, y);

}

}

5.4.2 Greenfoot-Style Programs on Android of Familar Android

Apps

Much like the Irritated Avians case study, Ants vs. Some Bees demonstrates that Sofia.Micro

solves the two issues in much the same way. Students can easily create a version of a

popular game they would be familiar with, making Android more accessible to introductory

students. There is more variation in what students can make so Sofia.Micro continues to

remain interesting to students.



Chapter 6

Conclusion

Android has significant potential as a learning tool due to its ability to allow users to write

concrete and creative applications. However, due to its learning curve and the fact that it

was designed for professionals, it is currently not suitable as a learning environment for intro-

ductory programming courses. Sofia.Micro aims to fix this issue by creating a microworld-

friendly environment that emphasizes object-oriented and event-driven programming on An-

droid. Sofia.Micro can leverage Android’s strengths while removing much of the complexity

that both beginner and expert programmers must learn.

6.1 Contributions

In this thesis, we have shown Sofia.Micro’s capabilities not just as an Android microworld

framework, but also as a pedagogical tool that can do more than other microworlds. Sofia.Micro

emphasizes an event-driven programming model, which has been shown to be an effective

programming paradigm for introductory students [20, 21, 22]. Sofia.Micro also bridges the

gap between different styles of microworlds by supporting both Greenfoot-style cellular au-

tomata actors and Karel-style programmable actors. We have also added shapes as non-

actors that can interact with other actors and shapes in the microworld in addition to actors

47
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and shapes being supported by the physics engine. This gives microworlds the added fea-

tures of simulated gravity, collision detection, use of non-rectangular shapes, and objects

bouncing.

6.2 Future Work

Sofia.Micro still has some improvements that could be implemented to increase its effective-

ness. The first is allowing students to interact with actors or the world in a Greenfoot-style.

This would allow students to right-click actors and invoke their public methods or right-click

actors in a sidebar palette to instantiate them. This would help encourage students to tinker

with the worlds on the fly on mobile devices, but this would require a significant amount of

work to implement. A full Greenfoot-style IDE would be ideal, however, it is much more

ambitious. Second would be to improve the animation support for some of the microworld

scenarios, such as the Jeroo example. As of right now, the jeroo will move instantly to each

cell rather than move to the cell over a period of time. This would help students visualize

what is happening during each act loop. Finally, Sofia.Micro currently only supports ba-

sic touch events and some key events, however, there are still other Android-specific events

that are not supported, such as using the accelerometer. Improving support for more An-

droid events would allow students to develop more varied applications within the Sofia.Micro

framework. On the same note, the dpad could also be improved to allow support for either

multiple dpads at once or to allow for on-screen buttons to also accompany the dpad.
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[24] Michael Kölling, (2010, November) “The greenfoot programming environment.”
ACM Trans. Comput. Educ. Volume 10(4), 21 pages Available http://dl.acm.org/

citation.cfm?id=1868361 [Accessed December 26, 2013]
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