& SIDSA

Chapter 9
FIPSOC Boot Program

FIPSOC
User’s Manual

& SIDSA

Semiconductor Design Solutions

FIPSOC Boot Program

Overview

The Field Programmable System On Chip (FIPSOC)
congtitutes a new concept in system integration. It
provides the user with the possibility of integrating a
microprocessor core along with programmable digital
and analog cells within the same integrated circuit.
This chip can be considered as a large granularity
FPGA with a FPAA (Field Programmable Analog
Array) and a built-in microprocessor core that does
not only act as a general purpose processing element,
but also configures the programmable cells and their
interconnections. Therefore, there is a strong
interaction between hardware and software as long as
signal values and configuration data within the
programmable cells are accessible from
Mi Croprocessor programs.

This chapter describes the program stored in internal
ROM used to boot the device from a serial stream.
The program interprets in real time an extension of
Intel's HEX records. Commands are provided for
programming internal (both directly and indirectly)
and external RAM, reading internal (both directly and
indirectly) and externa RAM and code ROM, and
program branching and returning. SFRs can then be
accessed this way as long as direct writes to the
internal memory can be done.

The extended HEX records are taken either from the
RS-232 seria port (typically coming from a PC) or
from a serial memory (typically flash or E?PROM)
supporting SPI or 2-wire protocols. RS-232 and SPI
modes also support reading, so the whole chip can be
controlled (programmed and read) using a single
serial link (typically from a PC).

1. Boot modes

FIPSOC provides four boot modes which are selected
from external pins boot1 and boot2. The address port
AD[15:8] is sampled during reset to provide extra
configuration information. Table 1 shows the four
boot modes.

boot1 boot0 Boot mode
0 0 2-wire
0 1 SPI
1 0 SCI
1 1 External parallel ROM

Table 1: FIPSOC boot modes

The last FIPSOC boot mode can be read with the
special function register (SFR) SBCR located at
address $9D:

7 6 5 4 3 2 1 0

SCEN | scsL [Master | sciE | GoE [op | IREN | BAUD |

SCEN (bit 7) - Serial Communication Enable: The
serial communication system, which can be
configured either as 2-wire or SPI, is enabled if this
bit is high. Its value upon reset is the inverted value
of the external BOOT1 pin.

SCSL (bit 6) - Serial Communication Select: The
serial communication system is configured as 2-wire
if this bit is set, SPI otherwise. Its value upon reset is
the inverted value of the external BOOTO pin.

Master (bit 5) - Boot Master: This bit stores the
seriadl communication mode (master or slave) upon
reset . Its value is the inverted value of bit #15 of the
address port, AD[15], and is latched during the reset
sequence.

SCIE (bit 4) - Serial Communication Interrupt
Enable: It enables the interrupt of the serial
communication system. Itsreset valueis zero.

GOE (bit 3) - Global Output Enable: When reset, it
disables every output of every DMC and places al
the 10 padsin input state. Itsreset value is zero.

OD (bit 2) - Open Drain: The genera purpose port
GPORT pins behave as open drain when configured
as outputs when this bit is set, as norma CMOS
outputs otherwise. Its reset state depends on the boot
mode: if booting from SPI (BOOT1=0 and
BOOTO0=1), then OD isinitialized from bit #10 of the
address port, AD[10]; if booting from 2-wire
(BOOT1=BOOT0=0), OD is initidized to 1;
otherwise, OD is initialized to zero (normal CMOS
outputs), although al bits in the data direction
register DDRP are initialized to 1 thus configuring all
port pins asinputs.

Chapter 9. FIPSOC Boot Program

& SIDSA

Semiconductor Design Solutions

IREN (bit 1) - Internal ROM Enable: When set,
the internal ROM where the boot program is located
is mapped at locations $0000 to $O01FF. The reset
state of this bit is the OR function of the external
BOOT mode pins, that is, the internal boot ROM is
enabled when booting from a seria link and disabled
if booting from external parallel ROM.

Baud (bit 0) - SCI boot baud rate: This bit selects
the initial baud rate of the SCI port when booting
from it: if set, f,./4992 is selected (3205,1 baud if a
typical 16 MHz xtal is used), f./1536 otherwise
(10416,6 baud if a typica 16 MHz xtal is used). Its
reset state is latched during reset from bit #8 of the
address port, AD[8].

Bits 7, 6, 4, 3, 2 and 1 keep their meaning after reset
and are use to control their corresponding specific
FIPSOC features at any time. In particular the SPI or
2-wire interfface could be independently used
regardless of the boot mode.

1.1. Booting from external paralle
ROM

This mode is entered when external pins bootl and
bootO are both tied to 1 during the reset sequence. In
this mode the 8051 is booted from a external parallel
ROM as the 8051 standard device, starting execution
at position $0000.

1.2. Booting from a serial link

FIPSOC boots from a serial link when external pins
boot1 and boot0 are not both tied to 1 during the reset
seguence. In these three modes a boot program stored
in a512-byte internal ROM located at address 0000H
is executed upon reset. The program is essentialy the
same for the three modes except for the source the
data is fetched from, which is configured after
sampling external pins bootl and bootO upon reset: In
mode 10 (bootl=1 and boot0=0), data is received
from the seria port (typicaly from a PC); in modes
00 (boot1=0 and boot0=0) and 01 (bootl=0 and
bootO=1), data is fetched from an 2-wire or SPI
interface respectively (typically from a serial flash or
EEPROM).

12.1. Extended HEX records

After initidlization, the boot program keeps
interpreting in real time configuration commands
similar to Intel's HEX records. The syntax of these
recordsis as follows:

<nunber _of _byt es>
<addr ess_| ow>
{<dat a_byte>} <checksunp

<addr ess_hi gh>
<record_t ype>

Each field in a record is a single byte, including a
leading 3AH (the ASCII code of the colon ":").

The number of bytes field only refer to the data bytes
represented in brackets in the syntax above. This

way, a zero number of bytes field is possible, and the
checksum field will closely follow the record type
field.

The checksum field is a byte such as the following
formulais satisfied:

(number_of bytes + address high + address low +
record type + { data_byte }) mod 256 + checksum =
0

Note that the leading colon (ASCII 3AH) is not
included in the checksum calculation.

Up to nine record types are currently supported. They
are explained below:

Record type O0H: Write to external memory. The
genera syntax for thisrecord is the following:

<nunber _of _bytes> <add_H> <add_L> OOH
{<byt e>} <checksun®

Interpretation of this command writes
number_of bytes bytes specified in the byte fields in
sequential memory locations of the external data
RAM memory starting from address add_H * 256 +
add L. The number of bytes that can be written is
limited to 63, and an attempt to write more than that
will in general cause a checksum error.

Record type 08H: Read from external memory. The
genera syntax for thisrecord is the following:

:01H <add_H><add L> 08H
<nunber _of _byt es> <checksunm»

Interpretation of this command reads
number_of bytes bytes from sequentia memory
locations of the external data RAM memory starting
from address add H * 256 + add_L. Data is sent
trough the serial link sequentialy as it is read. This
record is not supported if 2-wire communication
mode is selected.

Record type OCH: Read from code memory. The
genera syntax for thisrecord is the following:

:01H <add_H><add L> OCH
<nunber _of _byt es> <checksune

Interpretation of this command reads
number_of bytes bytes from sequential memory
locations of the external code (ROM) memory
starting from address add_ H * 256 + add L. Data is
sent trough the seria link sequentialy as it is read.
This record is not supported if 2-wire communication
mode is selected.

Record type 10H: Indirectly write to internal
memory. The general syntax for this record is the
following:

<nunber _of bytes> <add_H> <add_L> 10H
{<byte>} <checksunw

Interpretation of this ~ command writes
number_of _bytes bytes specified in the byte fields in

Chapter 9. FIPSOC Boot Program

& SIDSA

Semiconductor Design Solutions

sequential memory locations of the internal data
RAM memory starting from address add_L using
indirect addressing (the add_H field is ignored but
used in the checksum). This implies that writes to
addresses ranging from 80H to FFH will be done on
data memory rather than SFRs. The number of bytes
that can be written is limited to 63, and an attempt to
write more than that will in general cause a checksum
error.

Record type 18H: Indirectly Read from internal
memory. The general syntax for this record is the
following:

:01H <add_H><add L> 18H
<nunber _of _byt es> <checksun»

Interpretation of this command reads
number_of _bytes bytes from seguential memory
locations of the internal data RAM memory starting
from address add_L using indirect addressing (the
add H field is ignored but used in the checksum).
This implies that reads from addresses ranging from
80H to FFH will be done on data memory rather than
SFRs. Data is sent trough the serial link sequentially
as it is read. This record is not supported if 2-wire
communication mode is selected.

Record type 20H: Directly write to internal memory.
The general syntax for this record is the following:

<nunber _of bytes> <add_H> <add_L> 20H
{<byte>} <checksunw

Interpretation of this command writes
number_of bytes bytes specified in the byte fields in
sequential memory locations of the internal data
RAM memory starting from address add_L using
direct addressing (the add_H field isignored but used
in the checksum). This implies that writes to
addresses ranging from 80H to FFH will be done on
SFRs rather than data memory. The number of bytes
that can be written is limited to 63, and an attempt to
write more than that will in general cause a checksum
error.

Record type 28H: Directly Read from internal
memory. The general syntax for this record is the
following:

:01H <add_H><add_L> 28H
<nunber _of _byt es> <checksunme

Interpretation of this command reads
number_of _bytes bytes from seguential memory
locations of the internal data RAM memory starting
from address add L using direct addressing (the
add H field is ignored but used in the checksum).
This implies that reads from addresses ranging from
80H to FFH will be done on SFRs rather than data
memory. Data is sent trough the seria link
sequentially asit is read. This record is not supported
if 2-wire communication mode is selected.

Record type 40H: Jump to address. The genera
syntax for this record is the following:

: 00H <add_H><add_L> 40H <checksun»

Interpretation of this command produces a direct
jump to addressadd H * 256 + add_L. Depending on
the booting mode, parts of the serial link circuitry
may be powered down prior to jumping.

Record type 48H: Return from subroutine. The
genera syntax for thisrecord is the following:

: 00H <add_H><add_L> 48H <checksun»

Interpretation of this command executes a "RET"
instruction, which pops the address to jump to from
the stack. It is used when the record parsing program
is used as a subroutine from an user application
program. fields add_H and add_L are ignored but
used in the checksum.

1.2.2. Extended record typesand errors

Record types 80H to FFH are available for command
set extension. If such a record type is parsed the
program jumps to address $FF2B where an
appropriate parsing routine should be found. Upon
initialization a default error routine is written there.

This error routine is entered whenever a colon is not
found at the begining of an HEX record, a checksum
is incorrect, a record type is not recognized or any
other parsing problem is detected. This routine resets
the GOE bit to place the whole programmable logic
are in an idle mode and then keeps branching to the
same address.

123. Booting from SPI

When bootl is 0 and bootO is 1 during the reset
seguence, the extended HEX records are fetched from
the SPl serial link. The address port AD is also
sampled upon reset and automatically configures
several features of the SPI interface according to
external user-defined hardware settings:

7 6 5 4 3 2 1 0

[Master | cPoL [cPHA | ck1 | cko | op | |

Master (bit 7): FIPSOC will act as an SPI master if
this bit is set, slave otherwise.

CPOL (bit 6): Selectsthe SPI clock polarity (refer to
the SPI section of this user's manual).

CPHA (bit 5): Selects the SPI clock phase (refer to
the SPI section of this user's manual).

CK1 and CKO (bits 4 and 3): Select the SPI clock
frequency as shown in table 2 (refer to the SPI
section of this user's manual).

Chapter 9. FIPSOC Boot Program

& SIDSA

Semiconductor Design Solutions

CK1 | CK2 SPI clock frequency for
frequency foe=16MHz
0 0 fosc!8 2 MHz
0 1 fos/ 16 1 MHz
1 0 fos! 32 500 KHz
1 1 fos/ 64 250 KHz

Table 2: SPI clock frequencies upon reset

OD (bit 2): Bit lines will be open-drain if OD is set
to 1, norma CMOS outputs otherwise.

Bitsl and O: not sampled upon reset.

If configured as master, the initialization seguence
goes as follows:

step 1: bit O of the genera purpose register is driven
low (and the corresponding bit of the data direction
register is set to "output") to select a slave through
the slave select line, typically the serial memory.

step 2: Command 03H is sent through the line, which
is interpreted by a serial SPl memory as a "read"
command.

step 3: Two zero bytes are sent through the line,
which is interpreted by a serial SPI memory as a the
initial memory location to start reading from.

step 4: A dummy FFH byte is sent through the line,
which provokes the first real data byte to be obtained
from the serial memory.

After initialization, the boot program keeps reading
the incoming bytes and interpreting extended HEX
records as the are completed. Once a byte has been
received, the same byte is echoed back through the
line to trigger the next read in the memory.

When a JUMP instruction is found (record type 40H),
bit 0 of the general purpose port is released and
configured again as input, and the SPI
communications system is switched off before
actually executing the jump.

If configured as a slave the program does the same
except for that no initialization is performed other
than placing an initial FFH in the outgoing shift
register. Bytes are echoed back as they arrive, which
can be checked out by the master to validate
transfers.

124. Booting from 2-wire

When bootl and bootO are both O during the reset
sequence, the extended HEX records are fetched from
the 2-wire seria link. The general purpose port
GPORT is also sampled upon reset and automatically
configures several features of the 2-wire interface
according to external user-defined hardware settings.

7 6 5 4 3 2 1 0

Bits 6-0: These bits set the 7-bit logical device
address. The four most significant ones are said to be
the major device address which is only dependent on
the nature of the device itself. The three least
significant ones are the minor device address and are
the ones that change among instances of the same
device.

Bit O also configures the clock rate upon reset (refer
to the 2-wire section of this user's manual).

GPORTI[O] 2-wireclock frequency for
frequency foe=16MHz
0 fose/16 1 MHz
1 fos/ 160 100 KHz

| Master | Major device address | Minor device address

Master (bit 7): FIPSOC will act as an 2-wire master
if thishit is set, slave otherwise.

Table 3: 2-wire clock frequencies upon reset

If configured as master, the initialization sequence
goes as follows:

step 1: The device waits until the 2-wire line is free,
and then it sends a START command to grab the line.

step 2: Once the line has been taken, a WRITE
command is sent to a device with address 1010000. If
no acknowldege is received, then FIPSOC sends a
RESTART command without releasing the line and
sends a WRITE command to the next device address,
1010001. It keeps restarting and trying until a device
answers.

step 3: Once a device answers by acknowledging the
ninth bit, two consecutive zeroes are sent to the line
to specify the addressto start reading from.

step 4: If no eror is detected (otherwise a STOP
command is issued and the program goes back to step
1), a RESTART command is issued and a READ
command is sent to the device address that answered
before.

step 5: A dummy FFH byte is sent through the line,
which provokes the first real data byte to be obtained
from the serial memory.

After initialization, the boot program keeps reading
the incoming bytes and interpreting extended HEX
records as the are completed. Once a byte has been
received, the same byte is echoed back through the
line to trigger the next read in the memory.

When a JUMP instruction is found (record type 40H),
a STOP command is issued, and the 2-wire
communications system is switched off before
actually executing the jump. When a RETURN
instruction is found (record type 48H), only the
STOP command is issued before returning.

If configured as a slave, the program waits to be
addressed (a WRITE command is received with the
appropriate device address) and then sends a dummy
FFH to acknowledge the reception. After that, the
program keeps receiving bytes through the 2-wire
line and interpreting extended HEX records as they

Chapter 9. FIPSOC Boot Program

& SIDSA

Semiconductor Design Solutions

are completed. When a JUMP instruction is found
(record type 40H), the 2-wire communications
system is switched off before actually executing the
jump.

It is important to note that record types 08H, OCH,
18H and 28H (used for memory reading) are not
supported in 2-wire boot modes. A program
extension has to be loaded somewhere else (for
example in the auxiliary upper RAM located in
$FFOO to $FFFF) to extend the supported record type
Set.

1.25. Booting from SCI

When bootl is 1 and bootO is O during the reset
seguence, the extended HEX records are fetched from
the RS232 serial port. Bit #8 of the address port
(AD[8]) is latched upon reset into the BAUD bit of
the BTREG register and is used to determine the
initial baud rate of the incoming bytes. if set,
fosc/4992 is selected (3205,1 baud if atypical 16 MHz
xtal is used), fo/1536 otherwise (10416,6 baud if a
typical 16 MHz xtal is used).

After initiaization, the boot program keeps reading
the incoming bytes from the seria line and
interpreting extended HEX records as the are
completed. Once a byte has been received, the same
byte is echoed back through the line.

1.3. Theinternal boot ROM and the
auxiliary upper RAM

When booting from a serial link is selected, the
internal boot ROM which stores the boot program
that configures the serial link and parses the extended
HEX records is enabled. It is mapped at locations
$0000 to $01FF and, if enabled, overwrites any other

program memory that could mapped at these
locations.

In these modes the auxiliary 256-bytes RAM block
mapped at addresses $FF00 to $FFFF is also enabled
(bit #1 in RG2 set to one). Locations $FFFD through
$FFFF of this RAM block are modified by the direct
read and write commands over the internal memory.
These commands are especiadly provided to
dynamically read and write SFRs, and use self-
modifying code to do direct accesses rather than
indirect ones.

The normal interrupt vectors, located at addresses
$0003, $000B and so on, are also stored in ROM and
permanently point to the upper auxiliary RAM to
locations $FF03, $FFOB and so on. No initialization
is performed to these RAM locations.

Address $FF2B is used for HEX command extension.
The program branches to this address when a record
type between 80H and FFH is parsed. This address is
initialized with a jump to an error routine in case an
extended record arrives before the extension code is
downloaded. This error routine is entered whenever a
colon is not found at the begining of an HEX record,
a checksum is incorrect, a record type is not
recognized or any other parsing problem is detected.
This routine resets the GOE hit to place the whole
programmable logic are in an idle mode and then
keeps branching to the same address.

2. Boot program listing

We provide here a complete assemble listing of the
boot program.

Chapter 9. FIPSOC Boot Program

4/S| D SA Semiconductor Design Solutions

LR R R R R R R

LR R R R R R R

khkkkkkkkkk Fl PSOC boot pr ogr am khkkkhkhkkkkkkk

Kk kkkkkkkk khkkkkhkkkkkkk
*kkkkhkkhkkhkkkk*k By JU|I0 Faura and *kkkkkkhkkhkkhkkk*k
kkkkhkkhkkhkkkk*k |gnaC|O Lacadena *kkkkkkkkhkkk*k
khkkkkkkkkk khkkkkhkkhkkkkk
Kk kkkkkkkk (cg S| DSA 1998 khkkkkkkhkkkkk

LR R R R R

LR R R R R R R

LR R R R R R R R S R

khkkkhkkhhkhkkkkkkk Fl PSOC SFRs Synbol definition khkkkkhkkhkhkhkhhkhkhkk

LR R R R R R R

kxxkkkxx GFRs in the standard 8051 ******x*xkxxx*

sP EQU 081H
DPL EQU 082H
DPH EQU 083H
PCON EQU 087H
TOON EQU 088H
TMOD EQU 089H
TLO EQU 08AH
TL1 EQU 08BH
THO EQU 08CH
THL EQU 08DH
SCON EQU 098H
SBUF EQU 099H
IE EQU 0ASH
P EQU 0B8H
PSW EQU ODOH

* Definitions for bit addressing:

Rl EQU 098H ; Receiver interrupt flag

Tl EQU 099H ; Transmitter interrupt flag
RB8 EQU 09AH ;9th bit (received)

TB8 EQU 09BH ;9th bit (sent)

REN EQU 09CH ; Reception Enable

Swve EQU 09DH ; SMk2: 0> == Mbde specifier
SML EQU 09EH

SMD EQU 09FH

. EREE R R R RS EEEEEEEEE] Internal ports deflnltions EEE R EEEEEEEEEEEEEEEES
PORTO EQU 80H
PORT1 EQU 90H
PORT2 EQU 0AOH
PORT3 EQU OBOH

* Definitions for bit addressing:

RXD EQU OBOH ; USART Recei ver

TXD EQU O0B1H ; USART Transmitter

NI NTO EQU OB2H ; External interrupt input 0, active |ow

NI NT1 EQU OB3H ; External interrupt input 1, active |ow

TO EQU OB4H ; Timer O external input

T1 EQU OB5H ; Timer 1 external input

NWR EQU OB6H ; External data menory wite strobe, active |ow
NRD EQU OB7TH ; External data nmenory read strobe, active |ow

sk kkkkkxkkkkkxkk F| PSOC Specific SFRs definitions *****xxxkkkkxkkkkkx

; The following registers are *not* present in the standard 8051.

; Therefore, some (nobst) nmacro assenblers and conpilers may not

; admit themas they are not legal direct nmenory | ocations (special
; function registers) in the standard device. To avoid this problem
; they should be assenbled as an external nodul e and exported with

Chapter 9. FIPSOC Boot Program 7

'
é SI D SA Semiconductor Design Solutions

; GLOBAL cl auses, while they should be inported with EXTERNAL cl auses
; fromthe main nmodule. This nornally suffice to trick the assenbler

; into believing that these synbols will be placed in (legal) direct

; nmenory locations (lower than 7FH), although the linker could object

; if it notices the final nenory locations (which is not usual as the
; linker does not use to perform any consistency check).

WOG EQU 9AH
RG3 EQU 9BH
SCREG EQU 9CH
| 2CREG EQU 9CH
SPI REG EQU 9CH
BTREG EQU 9DH
DDRP EQU 9EH
CMBUF EQU 9FH

VPLLL EQU OA4H
VPLLH EQU 0ASH
VHWL EQU 0AGH
VHWMH EQU 0A7H

VCLKL EQU OACH
VCLKH EQU OADH
VHVRL EQU OAEH
VHV@H EQU OAFH

VDBGL EQU OB4H
VDBGH EQU OB5H
VHVBL EQU OB6H
VHVBH EQU OB7H

VHWML EQU OBCH
VHWMH EQU OBDH
VANAL EQU OBEH
VANAH EQU OBFH

EIMRO EQU OCOH
EIMRL EQU OCLH
SGNI0O EQU 0C2H
SGN'1 EQU OC3H
I RS EQU 0C4H
| RSCKDB EQU OC5H

DANAL EQU ODSH
DANA2 EQU OD9H
DANA3 EQU ODAH
DANA4 EQU ODBH
DANA5 EQU ODCH
DANA6G EQU ODDH
DANA7 EQU ODEH
DANAS EQU ODFH

ANAST EQU OE1H
DBGCNF EQU OE2H
DBGVBK EQU OE3H
DBAL EQU OE4H
DBAH EQU OESH
DBGIL EQU OE6H
DBGIH EQU OE7H

DBGRL EQU OESH
DB&RH EQU OE9H
DBG3L EQU OEAH
DBG3H EQU OEBH
DBGAL EQU OECH
DB&4H EQU OEDH
DBGSL EQU OEEH
DBGEH EQU OEFH

CKCONF EQU OF1H
CKCNTL EQU OF2H
CKCNTH EQU OF3H
CKDMZ2 EQU OF4H
CKDMC1 EQU OF5H
CKANA EQU OF6H
CK8051 EQU OF7H

Chapter 9. FIPSOC Boot Program 8

4/S| D SA Semiconductor Design Solutions

ROAL EQU OF8H
ROM EQU OF9H
CcoLL EQU OFAH
COLH EQU OFBH
RGL EQU OFCH
R&2 EQU OFDH
RGTX EQU OFEH
out COWP EQU OFFH

PACE

TI TLE " boot . asnt

; Constants for bit-addressing the accunul ator:

BOOT1 EQU 7 ; These three flags store the boot node
BOOTO EQU 6 ;

MASTER EQU 5 ;

BAUD EQU 0 ; Baud rate when booting from SCl
; Constants for bit-addressing the accunul ator:
CCF EQU 7 ; Conmuni caci 6n conplete flag
I 2CMAST EQU 6 ; Sets to one when we are naster
SDRC EQU 5 ; 1=Send, O=receive
CKo EQU 4 ; 1=100KHz, 0=1Mz
1D EQU 3 ; To see if we have been addressed (sl ave)
ERR EQU 2 ; Sets to one when we don't get an acknow edge
CcVD EQU 1 ;Wite this bit to send commands
BBUSY EQU 0 ; Bus Busy (al so used to send commands)
DATA
ORG 7BH ; This is located here so the data buffer starts on 80H
COLON DS 1 ; Dummy buffer to store the frame start (a col on)
LENGTH DS 1 ; Nunber of bytes in DATABUF
ADD_H DS 1 ; Address hi gh byte
ADD L DS 1 ; Address | ow byte
REC T DS 1 ;00 == Wite to external mem
;08H == Read from external (data) nem
;OCH == Read from external program mem
;10H == Indirectly wite to internal mem
;18H == Indirectly read frominternal nmem
;20H == Directly wite to internal nem
;28H == Directly read frominternal mem
; 40H == Junp to address (LJMP)
;48H == Return (ends with RET instead of LIMP)
; Codes 80H to FFH are used for command set extension
DATABUF DS 40H ; Data buffer + checksum
STACK DS 1 ; Where the stack pointer should initially point to

SFMDCOD EQU FFFDH ; This is the self nodifying code |ocation
; for SFR indirect access.
EXT_CVMD EQU FF2BH ; Code for extending the HEX conmand set

COLONVAL EQU ' : ; Constant val ue for the colon character
FI RSTDEV EQU AlH ; The first 12C device to be probed

Chapter 9. FIPSOC Boot Program 9

'4/8' D SA Semiconductor Design Solutions

KhkhkhhhkhkhkhkAkAXX A XA dAdhhdddhhhhkhkhkhkhArArA A A xdddhdddddddhhkhkhkhhhkxx%x

; Interrupt pseudovectors pointing to upper RAM

; Linked to INIT program (this is quite tricky!!)

ORG 00H
RESET MOV R3, A ; This clears R3 for the first TXBYTE
SIMP INIT
VEC IE0O LIJMP FFO3H ; This should be $03
INIT MOV SP, #STACK
SIMP INIT1
VEC TFO LJMP FFOBH ; This should be $0B
INIT1 MOV DPTR, #EXT_CNMD
SIMP NI T2
VEC | E1 LIJMP FF13H ; This should be $13
I'NI T2 MOV A, #02H ; Op-code for LIMP
SIMP INIT3
nop ; Enpty byte
VEC TF1 LJIMP FF1BH ; This should be $1B
INIT3 MOV R&2, A ; Maps the aux RAM nenory for program and data
MOVX @PTR, A
SIMP I NI T4
VEC RITI LIMP FF23H ; This should be $23
LR R R R R
; OFf we go
LR R R R
I NI T4 I NC DPTR
MOV A, #ERROR/ 100H
MOVX @PTR, A
I NC DPTR
MOV A, #ERROR- (ERROR/ 100H) * 100H
MOVX @PTR, A
MOV A, SCREG ; Strongly recommended ;)
MOV A, BTREG ; Sel ect the subsystemto initialize
JNB A.BOOT1, INIT_SCI ;If boot1==0 then we are booting from SCl
JNB A BOOTO, INIT_SPI ;I f boot0==0 then we are booting from SPI

JB A MASTER INIT_I2C ;If we are |2C naster

LR R R R

; 12C configuration as slave

LR SRR E RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

INl2C_SL MOV A, SCREG cWait for BBUSY == ID == 1
ANL A, #9
CINE A #9, I NI 2C_SL
ACALL TXBYTE

MOV A R5
CINE A #89, I NI 2C_SL
MOV CMVBUF, #FFH ; This is the acknow edge

SIMP GET_FRAM

Chapter 9. FIPSOC Boot Program 10

'
é SI D SA Semiconductor Design Solutions

khkhhkhhhkhhkhhhhhkhhhhkhhhhhhkhhkhhhhkhkhhhhhkhkkk*

; Send an STOP command and start again

LR R R R R

STOPNGO ACALL | 2CSTOP

; Uncorment the following if the next label is not INT_I2C
; SIMP INIT_I 2C

khkkhhkhhhhkhhhhhhhhhhhkhhkhhhhhhkhhhhkhhhkhhhhkhkhkx

; 12C configuration as master
IR R E R SRS EEEEEEEEEEREEEEEEEEEEEESESEEEEEESESEESESE]
INIT_I2C MOV A, SCREG
JB A BBUSY, WABUSFRE
ACALL START
MOV R3, #FI RSTDEV ; W probe the first device
1 2CLOOP ACALL TXBYTE
JNB A .CCF, INIT_I 2C
JNB A. ERR, | 2CFOUND

INC R3 ; Next device
INC R3
ACALL RESTART
SIMP | 2CLOCP
| 2CFOUND MOV A, R3 ; R3 has now the device that answered
ANL A, #FEH ; W prepare for a READ conmand
MV R3, A
MOV CMVBUF, #0 ; W send two zeroes as a 16-bit address

ACALL WAI T4l T

CINE R5, #C9H, STOPNGO
MOV CMVBUF, #0

ACALL WAI T4l T

CINE R5, #C9H, STOPNGO
ACALL RESTART

ACALL TXBYTE ;W left the device address in R3
CINE R5, #C9H, STOPNGO
SIMP GO ON

LR R R R R

; RS232 Serial interface configuration

khkkhhkhhhkhhkhhhhhkhhhhkhhhhhhkhhkhhhhkhhkhkhhkhkhkkkx

INIT_SCI MOV SCON, #50H ; Mode 010, REN enable, clear flags
MOV PCON, #80H ; Doubl e baud rate, clear flags
MOV TCON, #40H ; Start the Tiner #1
MOV TMOD, #20H ; Sets timer #1 in 8-bits rel oad node
MOV TH1, #F3H ;243 for 3205 baud (with a 16 MHz xtal)
JB A BAUD, GET_FRAM ; 3205 baud if GPORT.O0 is 1, 10416 baud ot herwi se
MOV THL, #FCH ;252 for 10416 baud (with a 16 MHz xtal)

SIMP GET_FRAM

LR R R R S

; SPl configuration

khkkhhkhhhkhhkhhhhhhhhhkhhkhhhhhhkhhhhhhkhhhhhkhkkk*

INIT_SPI ANL SCREG, #F3H ; dears dummy flags
JNB A . MASTER, GO ON ;No nore initialization required if slave
MOV PORT1, #FEH ; Select First SPlI device
MOV DDRP, #FEH ;Bit O of general port as output
MOV R3, #3
ACALL TXBYTE
MOV R3, #0

ACALL TXBYTE

ACALL TXBYTE
;Uncoment the following if the next label is not GO ON
; SIMP GO ON

GO ON MV CMBUF, #FFH

khkkhhkhhhkhkhhhhhhhhhkhhhhhhhkhhhhhhhkhhhkhkhkx

; Main loop for frame fetching and parsing

LR R R R

GET_FRAM MOV RO, #COLON ;This is the nmain | oop (fetching records)
ACALL GET_BYTE
JNZ ERROR
MOV A R3

Chapter 9. FIPSOC Boot Program 11

& SIDSA

Semiconductor Design Solutions

GF_LOCoP

CHKSUM

CHKLCOP

GOONL

GooN4

; Uncomment the following if the next

ERROR

MOV @RO, A

CINE @RO, #COLONVAL, ERROR ; Check if the colon was OK

INC RO
ACALL CGET_BYTE
JNZ ERROR

ANL A #3FH
A

g8
878
> 5

8

ACAL

=
>mr
238

:

RE
q%ID
3

>Z>rg>>3

9 2-3%:
g |
I

m

DP
DP
RO, #DAT
RL, ADD L
R2, LENGTH
R4, REC T

H, ADD_H
L, ADD_L
BUF

MOV A R4

CINE A, #40H, GOONL
ACALL ENDCOVS
CLR A

JMP @+DPTR

i

i

i

i

i

;W limt the nunber of bytes to 3F

; Gt a byte and bring it in A

Total nunber of bytes = length + 4
R2 is used as a (down) counter

Sum of al bytes + checksum= 0

This is going to be used in the three commands

Jump if REC T == 40H

CINE A #48H, GOON2 ; Return if REC_T == 48H

ACALL ENDCOMB
RET

JNB A. 7, GOONS
LIMP EXT_CVD

JNB A. 3, GOON4
ACALL READMVEM
JNZ ERRCR

SIMP GET_FRAM

ACALL PROGVEM
JZ GET_FRAM

SIMP ERRCR

ANL BTREG #F7H
SIMP ERROR

i

i

Do not stop if this is a subroutine!

REC T >= 80H -> Extended command (i n $FF2B)

| abel is not ERROR

;W reset GOE!'!

khkkhhkhhkhkhhhhhhhkhhhhkhhkhhhhhhhhhhkhhkhkhhhkhkkkx

; End conmuni cati ons
Kkkhkkhhhkhkhkhkhhhhkhkhkhkhkkhkkkhkkhkhkkk k k%

ENDCOVB

ENDSL

ENDSCI

MOV A BTREG

JNB A. BOOT1, ENDSCI
JNB A. BOOTO, ENDSL

JNB A MASTER, ENDSL
ACALL | 2CSTCOP

MOV PORT1, #FFH
MOV DDRP, #FFH
ANL BTREG, #7FH
RET

JNB TI, ENDSCI

i

; Ot herwi se,

If SCl, wait for TI, clear it and bail out
IF SPI, just switch the systemoff and bail out
O herwise, it's I2C

If we're master, then stop the comunication

switch off the coms system

Chapter 9. FIPSOC Boot Program

12

'4/8' D SA Semiconductor Design Solutions

CLR TI
RET

LR R R R R

Routi ne: PROGVEM

; Inputs: DPTR is ADD H ADD L

; RO points to the first data byte in the buffer
; Rl is ADD L

; R2 has the nunber of bytes to wite

; R4 is the record type

; Qutputs: A== 0if no error, FF otherw se

Modifies: A RO, Rl, R2, DPTR

Prograns any kind of nenory

Khkkhhkhhkhhkhhkhhkhhhkhhhhhhhhhhhhkhhkhhkhhhkhkhhkhkhkhhkhhkhkhkhkkk kK *x

PROGVMEM CINE R2, #0, PROGLOOP
RET
PROGLOCP MOV A, @RO
CINE R4, #00H, PROGL ; Progr am ext ernal menory
MOVX @PTR, A
SIMP GOPROG
PROGL CINE R4, #10H, PRO® ; Indirectly programinternal menory
MOV @R1, A
SIMP GOPROG
PROG2 CINE R4, #20H, RETERR; Directly programinternal nenory
MOV DPTR, #SFMDCCD ; This is the sel f-nodifying code |ocation
MOV A, #86H ; Hex code for "MV direct, @GRO"
MOVX @PTR, A
I NC DPTR
MOV A R1
MOVX @PTR, A ; Modify the code with the direct address
I NC DPTR
MOV A, #22H ; Hex code for "RET"
MOVX @PTR, A
LCALL SFMDCCD

GOPROG | NC DPTR
INC RO
INC R1
DINZ R2, PROGLOOP
CLR A ;No error occurred
RET

LR R R R R R

Routi ne: READVEM

; Inputs: DPTR is ADD H, ADD L

; RO points to the nunber of bytes to read
; Rl is ADD L

; R2 has the nunber of bytes to wite

; R4 is the record type

; Qutputs: A== 0if no error, FF otherw se

Modifies: A RO, Rl, R3, DPTR

Reads any kind of nenory

Khkkhkhkhhkhhhhkhhhhhhhhhhhkhhhhhhkhhkhhkhhkhkhkhhkhkhhkhhkhhkhkhkhkhkhk*x

READMEM MOV R2, @RO ; RO equal s #DATABUF
CLR A
CINE R2, #0, READLOCP
RET

READLOCP XCH A, R3
CINE R4, #08H, READL ; Read external menory
MOVX A, @PTR
SJMP GOREAD

Chapter 9. FIPSOC Boot Program 13

'
é SI D SA Semiconductor Design Solutions

READL CINE R4, #0CH, READ2 ; Read code
CLR A
MOVC A, @A+DPTR
SIMP GOREAD
READ2 CINE R4, #18H, READ3 ; Indirectly read internal menory
MOV A @1
SJMP GOREAD
READ3 CINE R4, #28H, RETERR ; Directly read internal menory
MOV DPTR, #SFMDCOD
MOV A, #E5H ; Hex code for "MOV A direct”
MOVX @PTR, A
I NC DPTR
MOV A, R1
MOVX @PTR, A
I NC DPTR
MOV A, #22H ; Hex code for "RET"
MOVX @PTR, A
LCALL SFMDCCD ; Now the data is in A

GOREAD XCH A R3
ADD A R3
PUSH A ; W save the sum
ACALL SENDBYTE ;W send R3
JNZ RETERR
POP A ;W restore the sum
| NC DPTR
I NC R1
DINZ R2, READLOCOP
; Now A has the sum and we nust cal cul ate and send the checksum

CPL A ; Cal cul ate checksum

INC A ;'twas 2's conpl enent

MOV R3, A
; Uncomment the following if the next routine is not SENDBYTE
; ACALL SENDBYTE ; Send checksum
; RET

khkkhhkhhhhhhkhhhhhhhhhhhhhhhkhhkhkhhkhhkhkhkhhkhhhkhhkhhkhkhkhkhk kK

Rout i ne: SENDBYTE

Inputs: R3 is the byte to send
Qutputs: A==0if no error, FF otherw se

Modifies: A R5

; Sends a byte no natter where thru. It waits for a previous
; transmission to be conpl et ed:

; - If SCl is used, then it waits for a serial byte to cone
; prior to send R3.

; - If SPl is used, then it waits for SPIF to be up. If we
; are slave, they should provoke a (dummy) transm ssion

; before we send R3; if we are master, we should provoke
; a dummy transmi ssion before calling SENDBYTE. This is

; normal |y used for sending a group of bytes, so each

; transmssion is used to trigger the follow ng. Cbviously
; the first transmi ssion has to be provoked nanually.

*

Khkkhkhkhhkhkhhkhhhhhhhkhhhhkhhhhkhhkhhk ok khhkhhkhkhkhhkhhkhkhhkkkkk k%

SENDBYTE MOV A, BTREG
JNB A BOOT1, SB_SCl
JNB A. BOOTO, SB_SPI

MOV A, #FFH ;12C reads not supported
RET
SB_SPI ACALL WAI T4l T ;W wait for the previous transm ssion to end
CINE A, #80H, RETERR ; Maybe we shouldn't check this out
MOV CMVBUF, R3 ; W send R3
CLR A ;No error occurred
RET
SB_SCl JNB RI, SB_SCl ;W wait for the previous transnmission to end
CLR RI ; W assune nothing is left
CLR TI
MOV SBUF, R3 ; W send R3

Chapter 9. FIPSOC Boot Program 14

49 SIDSA

Semiconductor Design Solutions

CLR A
RET

;No error occurred

LR R R R R

; Return with A FF (error)
khkkhkkkhkkhkhkkhkhkhkhhkkhhkhhhkdhkhkhhhhhkdhkhhhdhhdhrdhhdhdxdx*k
RETERR MOV A, #FFH

RET

Khkkhhkhhhkhhhhkhhhhhhhkhhkhhhhhhhkhhkhhkhhkhhkkhhkhhkhhkhkhkhkhkhk*x

; Routine: CET_BYTE

I nputs: None

; Qutputs: A stores bits CCF and ERR

; R3 stores the recevied byte

; R5 stores SCREG but bits SDRC and CKO

; Mdifies: A R3, R5 (WAIT4IT is called afterwards)

; Gets a byte no matter where fromand echoes it afterwards

Khkkhhkhhhkhkhhhhhkhhhkhhhhhhhhhkhkhhkhhkhkhhhkhhhkhhkhhkhkhkhkhk kK *x

GET_BYTE MV A, BTREG
JNB A. BOOT1, GB_SCI

; Get a byte no matter where

GB_SCOM ACALL WAIT4I T ; Get a byte froml12C or SPI,
CINE A, #80H, RETERR
MOV R3, CVBUF
MOV CMBUF, R3
CLR A ;No error
RET
GB_Ssd JNB R, GB_SCl ; Get a byte fromthe serial
CLR RI
MOV R3, SBUF
CLR TI
MOV SBUF, R3 ; Echo the received byte
CLR A ;No error
RET

Khkkhhkhhhhhhhhkhhhhhhhkhhkhhhhhhkhkhhkhhkhkhkhhkhkhkhkhhkhhkhkhkhkhk kK *x

. Routine: TXBYTE

; Inputs: R3 is the byte to send

; Qutputs: A stores bits CCF and ERR

; R5 stores SCREG but bits SDRC and CKO
Modifies: AL RS (WAIT4IT is called afterwards)

Transmts a byte trough the 12C or SPI line and waits

; transmssion is finished

Khkkhkhkhhhhhhhhkhhhhhhhkhhkhhhhhhkhhkhhkhhkhhhhkhkhhkhhkhhkhkhkhkhkhk*x

from result in R3

master or slave

port

unti |

T4IT

TXBYTE MOV CMBUF, R3 ;Send a serial byte (stored in R3)
; Uncomment the following if the next routine is not WA

; ACALL VWAl T4l T

; RET

Khkkhhkhhhhhhhhkhhhhhhhkhhhhhhhhkhhkhhkhhkhhhkhkhkhhkhhkhhkhkhkhkhk kK

Chapter 9. FIPSOC Boot Program

15

'4/8' D SA Semiconductor Design Solutions

; Routine: WAIT4IT

; Inputs: None

; Qutputs: A stores bits CCF and ERR

; R5 stores SCREG but bits SDRC and CKO

; Mdifies: A R5

; Wiits for a transmission to be conpleted (CCF or ERR)

’
Kk hkhhhkhkhkhkA XXX XA dAddddhdhhhkhk kA kA A A XA A A ddhddhdhdhhhkhkhkhkhkhk Ak kkx k%

WAI T4l T MWV A SCREG ;Wiit for a serial byte to be transmitted
ANL A, #CFH ;Bits 5 and 4 are not interesting
MOV R5, A ; Save SCREGin RS
ANL A, #84H ;Wait for CCF or ERR
JZ WAL T4l T
RET

LR R R R R

; Routine: |2CSTOP

; Inputs: None
; Qutputs: None

; Modifies: A and R2 (calls SENDCMVD)
; Sends a STOP command to the 12C interface (using SENDCVD)

’
Khkkhhkhhhkhhkhhhhhkhhhhkhhhhhhkhhkhhkhhkhhkhkhhkhkhkhkkhhkhhkhkhkhkkkkk*x

1 2CSTOP MOV R2, #2
ACALL SENDCMD
RET

LR R R R R R R

; Routine: START, RESTART

; Inputs: None
; Qutputs: None

; Modifies: A R2 (calls SENDCVD)

; Sends a START command to the 12C interface (using SENDCVD)

Khkkhhkhhhhkhhhhhhhkhhhhhhhhhhhhkhkhhkhhkhhkhhkhkhhkhhkhhkhkhkhkhk kK *x

START

RESTART MV R2, #3

; Uncomment the following if the next routine is not SENDCMVMD
; ACALL SENDCMD

; RET

LR R R R R R

Rout i ne: SENDCMD

; Inputs: R2 is used to specify the comand

; use XXXX_XX11b for START and RESTART
; use XXXX_XX10b for STOP

; Qutputs: None

; Mdifies: A R2

; Used for sending a STOP, START or RESTART conmand to the
; 12C interface

’
LR R R R R R

SENDCVMD MOV A, SCREG

Chapter 9. FIPSOC Boot Program 16

Semiconductor Design Solutions

CVMDLOOP MOV A, SCREG

Chapter 9. FIPSOC Boot Program 17

	Chapter 9. FIPSOC Boot Program
	0. Overview
	1. Boot modes
	1.1. Booting from external parallel ROM
	1.2. Booting form a serial link
	1.2.1. Extended HEX records
	1.2.2. Extended record types and errors
	1.2.3. Booting from SPI
	1.2.4. Booting from 2-wire
	1.2.5. Booting from SCI

	1.3. The internal boot ROM and the auxiliary upper RAM

	2. Boot program listing
	Table Index
	1. FIPSOC boot modes
	2. SPI Clock frequencies upon reset
	3. 2-wire clock frequencies upon reset

	Boot Program
	Symbol Definition
	SFRs Definition
	Program

