
SIDSA

Chapter 9
FIPSOC Boot Program

FIPSOC
User’s Manual



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 2

FIPSOC Boot Program

Overview
The Field Programmable System On Chip (FIPSOC)
constitutes a new concept in system integration. It
provides the user with the possibility of integrating a
microprocessor core along with programmable digital
and analog cells within the same integrated circuit.
This chip can be considered as a large granularity
FPGA with a FPAA (Field Programmable Analog
Array) and a built-in microprocessor core that does
not only act as a general purpose processing element,
but also configures the programmable cells and their
interconnections. Therefore, there is a strong
interaction between hardware and software as long as
signal values and configuration data within the
programmable cells are accessible from
microprocessor programs.

This chapter describes the program stored in internal
ROM used to boot the device from a serial stream.
The program interprets in real time an extension of
Intel's HEX records. Commands are provided for
programming internal (both directly and indirectly)
and external RAM, reading internal (both directly and
indirectly) and external RAM and code ROM, and
program branching and returning. SFRs can then be
accessed this way as long as direct writes to the
internal memory can be done.

The extended HEX records are taken either from the
RS-232 serial port (typically coming from a PC) or
from a serial memory (typically flash or E2PROM)
supporting SPI or 2-wire protocols. RS-232 and SPI
modes also support reading, so the whole chip can be
controlled (programmed and read) using a single
serial link (typically from a PC).

1. Boot modes
FIPSOC provides four boot modes which are selected
from external pins boot1 and boot2. The address port
AD[15:8] is sampled during reset to provide extra
configuration information. Table 1 shows the four
boot modes.

boot1 boot0 Boot mode
0 0 2-wire
0 1 SPI
1 0 SCI
1 1 External parallel ROM

Table 1: FIPSOC boot modes

The last FIPSOC boot mode can be read with the
special function register (SFR) SBCR located at
address $9D:

7 6 5 4 3 2 1 0
SCEN SCSL Master SCIE GOE OD IREN BAUD

SCEN (bit 7) - Serial Communication Enable: The
serial communication system, which can be
configured either as 2-wire or SPI, is enabled if this
bit is high. Its value upon reset is the inverted value
of the external BOOT1 pin.

SCSL (bit 6) - Serial Communication Select: The
serial communication system is configured as 2-wire
if this bit is set, SPI otherwise. Its value upon reset is
the inverted value of the external BOOT0 pin.

Master (bit 5) - Boot Master: This bit stores the
serial communication mode (master or slave) upon
reset . Its value is the inverted value of bit #15 of the
address port, AD[15], and is latched during the reset
sequence.

SCIE (bit 4) - Serial Communication Interrupt
Enable: It enables the interrupt of the serial
communication system. Its reset value is zero.

GOE (bit 3) - Global Output Enable: When reset, it
disables every output of every DMC and places all
the IO pads in input state. Its reset value is zero.

OD (bit 2) - Open Drain: The general purpose port
GPORT pins behave as open drain when configured
as outputs when this bit is set, as normal CMOS
outputs otherwise. Its reset state depends on the boot
mode: if booting from SPI (BOOT1=0 and
BOOT0=1), then OD is initialized from bit #10 of the
address port, AD[10]; if booting from 2-wire
(BOOT1=BOOT0=0), OD is initialized to 1;
otherwise, OD is initialized to zero (normal CMOS
outputs), although all bits in the data direction
register DDRP are initialized to 1 thus configuring all
port pins as inputs.



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 3

IREN (bit 1) - Internal ROM Enable: When set,
the internal ROM where the boot program is located
is mapped at locations $0000 to $001FF. The reset
state of this bit is the OR function of the external
BOOT mode pins, that is, the internal boot ROM is
enabled when booting from a serial link and disabled
if booting from external parallel ROM.

Baud (bit 0) - SCI boot baud rate: This bit selects
the initial baud rate of the SCI port when booting
from it: if set, fosc/4992 is selected (3205,1 baud if a
typical 16 MHz xtal is used), fosc/1536 otherwise
(10416,6 baud if a typical 16 MHz xtal is used). Its
reset state is latched during reset from bit #8 of the
address port, AD[8].

Bits 7, 6, 4, 3, 2 and 1 keep their meaning after reset
and are use to control their corresponding specific
FIPSOC features at any time. In particular the SPI or
2-wire interface could be independently used
regardless of the boot mode.

1.1. Booting from external parallel
ROM
This mode is entered when external pins boot1 and
boot0 are both tied to 1 during the reset sequence. In
this mode the 8051 is booted from a external parallel
ROM as the 8051 standard device, starting execution
at position $0000.

1.2. Booting from a serial link
FIPSOC boots from a serial link when external pins
boot1 and boot0 are not both tied to 1 during the reset
sequence. In these three modes a boot program stored
in a 512-byte internal ROM located at address 0000H
is executed upon reset. The program is essentially the
same for the three modes except for the source the
data is fetched from, which is configured after
sampling external pins boot1 and boot0 upon reset: In
mode 10 (boot1=1 and boot0=0), data is received
from the serial port (typically from a PC); in modes
00 (boot1=0 and boot0=0) and 01 (boot1=0 and
boot0=1), data is fetched from an 2-wire or SPI
interface respectively (typically from a serial flash or
EEPROM).

1.2.1. Extended HEX records
After initialization, the boot program keeps
interpreting in real time configuration commands
similar to Intel's HEX records. The syntax of these
records is as follows:

: <number_of_bytes> <address_high>
<address_low> <record_type>
{<data_byte>} <checksum>

Each field in a record is a single byte, including a
leading 3AH (the ASCII code of the colon ":").

The number of bytes field only refer to the data bytes
represented in brackets in the syntax above. This

way, a zero number of bytes field is possible, and the
checksum field will closely follow the record type
field.

The checksum field is a byte such as the following
formula is satisfied:

(number_of_bytes + address_high + address_low +
record_type + { data_byte } ) mod 256 + checksum =
0

Note that the leading colon (ASCII 3AH) is not
included in the checksum calculation.

Up to nine record types are currently supported. They
are explained below:

Record type 00H: Write to external memory. The
general syntax for this record is the following:

: <number_of_bytes> <add_H> <add_L> 00H
{<byte>} <checksum>

Interpretation of this command writes
number_of_bytes bytes specified in the byte fields in
sequential memory locations of the external data
RAM memory starting from address add_H * 256 +
add_L. The number of bytes that can be written is
limited to 63, and an attempt to write more than that
will in general cause a checksum error.

Record type 08H: Read from external memory. The
general syntax for this record is the following:

:01H <add_H><add_L> 08H
<number_of_bytes> <checksum>

Interpretation of this command reads
number_of_bytes bytes from sequential memory
locations of the external data RAM memory starting
from address add_H * 256 + add_L. Data is sent
trough the serial link sequentially as it is read. This
record is not supported if 2-wire communication
mode is selected.

Record type 0CH: Read from code memory. The
general syntax for this record is the following:

:01H <add_H><add_L> 0CH
<number_of_bytes> <checksum>

Interpretation of this command reads
number_of_bytes bytes from sequential memory
locations of the external code (ROM) memory
starting from address add_H * 256 + add_L. Data is
sent trough the serial link sequentially as it is read.
This record is not supported if 2-wire communication
mode is selected.

Record type 10H: Indirectly write to internal
memory. The general syntax for this record is the
following:

: <number_of_bytes>  <add_H> <add_L> 10H
{<byte>} <checksum>

Interpretation of this command writes
number_of_bytes bytes specified in the byte fields in



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 4

sequential memory locations of the internal data
RAM memory starting from address add_L using
indirect addressing (the add_H field is ignored but
used in the checksum). This implies that writes to
addresses ranging from 80H to FFH will be done on
data memory rather than SFRs. The number of bytes
that can be written is limited to 63, and an attempt to
write more than that will in general cause a checksum
error.

Record type 18H: Indirectly Read from internal
memory. The general syntax for this record is the
following:

:01H <add_H><add_L> 18H
<number_of_bytes> <checksum>

Interpretation of this command reads
number_of_bytes bytes from sequential memory
locations of the internal data RAM memory starting
from address add_L using indirect addressing (the
add_H field is ignored but used in the checksum).
This implies that reads from addresses ranging from
80H to FFH will be done on data memory rather than
SFRs. Data is sent trough the serial link sequentially
as it is read. This record is not supported if 2-wire
communication mode is selected.

Record type 20H: Directly write to internal memory.
The general syntax for this record is the following:

: <number_of_bytes>  <add_H> <add_L> 20H
{<byte>} <checksum>

Interpretation of this command writes
number_of_bytes bytes specified in the byte fields in
sequential memory locations of the internal data
RAM memory starting from address add_L using
direct addressing (the add_H field is ignored but used
in the checksum). This implies that writes to
addresses ranging from 80H to FFH will be done on
SFRs rather than data memory. The number of bytes
that can be written is limited to 63, and an attempt to
write more than that will in general cause a checksum
error.

Record type 28H: Directly Read from internal
memory. The general syntax for this record is the
following:

:01H <add_H><add_L> 28H
<number_of_bytes> <checksum>

Interpretation of this command reads
number_of_bytes bytes from sequential memory
locations of the internal data RAM memory starting
from address add_L using direct addressing (the
add_H field is ignored but used in the checksum).
This implies that reads from addresses ranging from
80H to FFH will be done on SFRs rather than data
memory. Data is sent trough the serial link
sequentially as it is read. This record is not supported
if 2-wire communication mode is selected.

Record type 40H: Jump to address. The general
syntax for this record is the following:

:00H <add_H><add_L> 40H <checksum>

Interpretation of this command produces a direct
jump to address add_H * 256 + add_L. Depending on
the booting mode, parts of the serial link circuitry
may be powered down prior to jumping.

Record type 48H: Return from subroutine. The
general syntax for this record is the following:

:00H <add_H><add_L> 48H <checksum>

Interpretation of this command executes a "RET"
instruction, which pops the address to jump to from
the stack. It is used when the record parsing program
is used as a subroutine from an user application
program. fields add_H and add_L are ignored but
used in the checksum.

1.2.2. Extended record types and errors
Record types 80H to FFH are available for command
set extension. If such a record type is parsed the
program jumps to address $FF2B where an
appropriate parsing routine should be found. Upon
initialization a default error routine is written there.

This error routine is entered whenever a colon is not
found at the begining of an HEX record, a checksum
is incorrect, a record type is not recognized or any
other parsing problem is detected. This routine resets
the GOE bit to place the whole programmable logic
are in an idle mode and then keeps branching to the
same address.

1.2.3. Booting from SPI
When boot1 is 0 and boot0 is 1 during the reset
sequence, the extended HEX records are fetched from
the SPI serial link. The address port AD is also
sampled upon reset and automatically configures
several features of the SPI interface according to
external user-defined hardware settings:

7 6 5 4 3 2 1 0
Master CPOL CPHA CK1 CK0 OD

Master (bit 7): FIPSOC will act as an SPI master if
this bit is set, slave otherwise.

CPOL (bit 6): Selects the SPI clock polarity (refer to
the SPI section of this user's manual).

CPHA (bit 5): Selects the SPI clock phase (refer to
the SPI section of this user's manual).

CK1 and CK0 (bits 4 and 3): Select the SPI clock
frequency as shown in table 2 (refer to the SPI
section of this user's manual).



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 5

CK1 CK2 SPI clock
frequency

frequency for
fosc=16MHz

0 0 fosc/8 2 MHz
0 1 fosc/16 1 MHz
1 0 fosc/32 500 KHz
1 1 fosc/64 250 KHz

Table 2: SPI clock frequencies upon reset

OD (bit 2): Bit lines will be open-drain if OD is set
to 1, normal CMOS outputs otherwise.

Bits1 and 0: not sampled upon reset.

If configured as master, the initialization sequence
goes as follows:

step 1: bit 0 of the general purpose register is driven
low (and the corresponding bit of the data direction
register is set to "output") to select a slave through
the slave select line, typically the serial memory.

step 2: Command 03H is sent through the line, which
is interpreted by a serial SPI memory as a "read"
command.

step 3: Two zero bytes are sent through the line,
which is interpreted by a serial SPI memory as a the
initial memory location to start reading from.

step 4: A dummy FFH byte is sent through the line,
which provokes the first real data byte to be obtained
from the serial memory.

After initialization, the boot program keeps reading
the incoming bytes and interpreting extended HEX
records as the are completed. Once a byte has been
received, the same byte is echoed back through the
line to trigger the next read in the memory.

When a JUMP instruction is found (record type 40H),
bit 0 of the general purpose port is released and
configured again as input, and the SPI
communications system is switched off before
actually executing the jump.

If configured as a slave the program does the same
except for that no initialization is performed other
than placing an initial FFH in the outgoing shift
register. Bytes are echoed back as they arrive, which
can be checked out by the master to validate
transfers.

1.2.4. Booting from 2-wire
When boot1 and boot0 are both 0 during the reset
sequence, the extended HEX records are fetched from
the 2-wire serial link. The general purpose port
GPORT is also sampled upon reset and automatically
configures several features of the 2-wire interface
according to external user-defined hardware settings:

7 6 5 4 3 2 1 0
Master Major device address Minor device address

Master (bit 7): FIPSOC will act as an 2-wire master
if this bit is set, slave otherwise.

Bits 6-0: These bits set the 7-bit logical device
address. The four most significant ones are said to be
the major device address which is only dependent on
the nature of the device itself. The three least
significant ones are the minor device address and are
the ones that change among instances of the same
device.

Bit 0 also configures the clock rate upon reset (refer
to the 2-wire section of this user's manual).

GPORT[0] 2-wire clock
frequency

frequency for
fosc=16MHz

0 fosc/16 1 MHz
1 fosc/160 100 KHz

Table 3: 2-wire clock frequencies upon reset

If configured as master, the initialization sequence
goes as follows:

step 1: The device waits until the 2-wire line is free,
and then it sends a START command to grab the line.

step 2: Once the line has been taken, a WRITE
command is sent to a device with address 1010000. If
no acknowldege is received, then FIPSOC sends a
RESTART command without releasing the line and
sends a WRITE command to the next device address,
1010001. It keeps restarting and trying until a device
answers.

step 3: Once a device answers by acknowledging the
ninth bit, two consecutive zeroes are sent to the line
to specify the address to start reading from.

step 4: If no error is detected (otherwise a STOP
command is issued and the program goes back to step
1), a RESTART command is issued and a READ
command is sent to the device address that answered
before.

step 5: A dummy FFH byte is sent through the line,
which provokes the first real data byte to be obtained
from the serial memory.

After initialization, the boot program keeps reading
the incoming bytes and interpreting extended HEX
records as the are completed. Once a byte has been
received, the same byte is echoed back through the
line to trigger the next read in the memory.

When a JUMP instruction is found (record type 40H),
a STOP command is issued, and the 2-wire
communications system is switched off before
actually executing the jump. When a RETURN
instruction is found (record type 48H), only the
STOP command is issued before returning.

If configured as a slave, the program waits to be
addressed (a WRITE command is received with the
appropriate device address) and then sends a dummy
FFH to acknowledge the reception. After that, the
program keeps receiving bytes through the 2-wire
line and interpreting extended HEX records as they



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 6

are completed. When a JUMP instruction is found
(record type 40H), the 2-wire communications
system is switched off before actually executing the
jump.

It is important to note that record types 08H, 0CH,
18H and 28H (used for memory reading) are not
supported in 2-wire boot modes. A program
extension has to be loaded somewhere else (for
example in the auxiliary upper RAM located in
$FF00 to $FFFF) to extend the supported record type
set.

1.2.5. Booting from SCI
When boot1 is 1 and boot0 is 0 during the reset
sequence, the extended HEX records are fetched from
the RS232 serial port. Bit #8 of the address port
(AD[8]) is latched upon reset into the BAUD bit of
the BTREG register and is used to determine the
initial baud rate of the incoming bytes: if set,
fosc/4992 is selected (3205,1 baud if a typical 16 MHz
xtal is used), fosc/1536 otherwise (10416,6 baud if a
typical 16 MHz xtal is used).

After initialization, the boot program keeps reading
the incoming bytes from the serial line and
interpreting extended HEX records as the are
completed. Once a byte has been received, the same
byte is echoed back through the line.

1.3. The internal boot ROM and the
auxiliary upper RAM
When booting from a serial link is selected, the
internal boot ROM which stores the boot program
that configures the serial link and parses the extended
HEX records is enabled. It is mapped at locations
$0000 to $01FF and, if enabled, overwrites any other

program memory that could mapped at these
locations.

In these modes the auxiliary 256-bytes RAM block
mapped at addresses $FF00 to $FFFF is also enabled
(bit #1 in RG2 set to one). Locations $FFFD through
$FFFF of this RAM block are modified by the direct
read and write commands over the internal memory.
These commands are especially provided to
dynamically read and write SFRs, and use self-
modifying code to do direct accesses rather than
indirect ones.

The normal interrupt vectors, located at addresses
$0003, $000B and so on, are also stored in ROM and
permanently point to the upper auxiliary RAM to
locations $FF03, $FF0B and so on. No initialization
is performed to these RAM locations.

Address $FF2B is used for HEX command extension.
The program branches to this address when a record
type between 80H and FFH is parsed. This address is
initialized with a jump to an error routine in case an
extended record arrives before the extension code is
downloaded. This error routine is entered whenever a
colon is not found at the begining of an HEX record,
a checksum is incorrect, a record type is not
recognized or any other parsing problem is detected.
This routine resets the GOE bit to place the whole
programmable logic are in an idle mode and then
keeps branching to the same address.

2.  Boot program listing
We provide here a complete assemble listing of the
boot program.



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 7

**********************************************
**********************************************
**********   FIPSOC boot program  ************
**********                        ************
**********   By Julio Faura and   ************
**********    Ignacio Lacadena    ************
**********                        ************
**********     (C) SIDSA 1998     ************
**********************************************
**********************************************

*****************************************************************
***************  FIPSOC SFRs symbol definition  *****************
*****************************************************************

; ********** SFRs in the standard 8051 ***********

SP     EQU 081H
DPL    EQU 082H
DPH    EQU 083H
PCON   EQU 087H
TCON   EQU 088H
TMOD   EQU 089H
TL0    EQU 08AH
TL1    EQU 08BH
TH0    EQU 08CH
TH1    EQU 08DH
SCON   EQU 098H
SBUF   EQU 099H
IE     EQU 0A8H
IP     EQU 0B8H
PSW    EQU 0D0H

* Definitions for bit addressing:

RI     EQU 098H   ;Receiver interrupt flag
TI     EQU 099H   ;Transmitter interrupt flag
RB8    EQU 09AH   ;9th bit (received)
TB8    EQU 09BH   ;9th bit (sent)
REN    EQU 09CH   ;Reception Enable
SM2    EQU 09DH   ;SM<2:0> == Mode specifier
SM1    EQU 09EH
SM0    EQU 09FH

; ***************** Internal ports definitions ********************

PORT0   EQU 80H
PORT1   EQU 90H
PORT2   EQU 0A0H
PORT3   EQU 0B0H

* Definitions for bit addressing:

RXD     EQU 0B0H   ; USART Receiver

TXD     EQU 0B1H   ; USART Transmitter

NINT0   EQU 0B2H   ; External interrupt input 0, active low

NINT1   EQU 0B3H   ; External interrupt input 1, active low
T0      EQU 0B4H   ; Timer 0 external input
T1      EQU 0B5H   ; Timer 1 external input
NWR     EQU 0B6H   ; External data memory write strobe, active low.
NRD     EQU 0B7H   ; External data memory read strobe, active low.

; *************** FIPSOC specific SFRs definitions ******************
;
; The following registers are *not* present in the standard 8051.
; Therefore, some (most) macro assemblers and compilers may not
; admit them as they are not legal direct memory locations (special
; function registers) in the standard device. To avoid this problem
; they should be assembled as an external module and exported with



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 8

; GLOBAL clauses, while they should be imported with EXTERNAL clauses
; from the main module. This normally suffice to trick the assembler
; into believing that these symbols will be placed in (legal) direct
; memory locations (lower than 7FH), although the linker could object
; if it notices the final memory locations (which is not usual as the
; linker does not use to perform any consistency check).

WDOG    EQU 9AH
RG3     EQU 9BH
SCREG   EQU 9CH
I2CREG  EQU 9CH
SPIREG  EQU 9CH
BTREG   EQU 9DH
DDRP    EQU 9EH
CMBUF   EQU 9FH

VPLLL   EQU 0A4H
VPLLH   EQU 0A5H
VHW1L   EQU 0A6H
VHW1H   EQU 0A7H

VCLKL   EQU 0ACH
VCLKH   EQU 0ADH
VHW2L   EQU 0AEH
VHW2H   EQU 0AFH

VDBGL   EQU 0B4H
VDBGH   EQU 0B5H
VHW3L   EQU 0B6H
VHW3H   EQU 0B7H

VHW4L   EQU 0BCH
VHW4H   EQU 0BDH
VANAL   EQU 0BEH
VANAH   EQU 0BFH

EIMR0   EQU 0C0H
EIMR1   EQU 0C1H
SGNI0   EQU 0C2H
SGNI1   EQU 0C3H
IRS     EQU 0C4H
IRSCKDB EQU 0C5H

DANA1   EQU 0D8H
DANA2   EQU 0D9H
DANA3   EQU 0DAH
DANA4   EQU 0DBH
DANA5   EQU 0DCH
DANA6   EQU 0DDH
DANA7   EQU 0DEH
DANA8   EQU 0DFH

ANAST   EQU 0E1H
DBGCNF  EQU 0E2H
DBGMSK  EQU 0E3H
DBG0L   EQU 0E4H
DBG0H   EQU 0E5H
DBG1L   EQU 0E6H
DBG1H   EQU 0E7H

DBG2L   EQU 0E8H
DBG2H   EQU 0E9H
DBG3L   EQU 0EAH
DBG3H   EQU 0EBH
DBG4L   EQU 0ECH
DBG4H   EQU 0EDH
DBG5L   EQU 0EEH
DBG5H   EQU 0EFH

CKCONF  EQU 0F1H
CKCNTL  EQU 0F2H
CKCNTH  EQU 0F3H
CKDMC2  EQU 0F4H
CKDMC1  EQU 0F5H
CKANA   EQU 0F6H
CK8051  EQU 0F7H



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 9

ROWL    EQU 0F8H
ROWH    EQU 0F9H
COLL    EQU 0FAH
COLH    EQU 0FBH
RG1     EQU 0FCH
RG2     EQU 0FDH
RGTX    EQU 0FEH
outCOMP EQU 0FFH

         PAGE

         TITLE "boot.asm"

;Constants for bit-addressing the accumulator:
BOOT1    EQU 7      ;These three flags store the boot mode
BOOT0    EQU 6      ;
MASTER   EQU 5      ;
BAUD     EQU 0      ;Baud rate when booting from SCI

;Constants for bit-addressing the accumulator:
CCF      EQU 7      ;Comunicación complete flag
I2CMAST  EQU 6      ;Sets to one when we are master
SDRC     EQU 5      ;1=Send, 0=receive
CK0      EQU 4      ;1=100KHz, 0=1MHz
ID       EQU 3      ;To see if we have been addressed (slave)
ERR      EQU 2      ;Sets to one when we don't get an acknowledge
CMD      EQU 1      ;Write this bit to send commands
BBUSY    EQU 0      ;Bus Busy (also used to send commands)

**********************************************

         DATA

         ORG 7BH    ;This is located here so the data buffer starts on 80H

COLON    DS 1       ;Dummy buffer to store the frame start (a colon)
LENGTH   DS 1       ;Number of bytes in DATABUF
ADD_H    DS 1       ;Address high byte
ADD_L    DS 1       ;Address low byte
REC_T    DS 1       ;00  == Write to external mem
                    ;08H == Read from external (data) mem
                    ;0CH == Read from external program mem
                    ;10H == Indirectly write to internal mem
                    ;18H == Indirectly read from internal mem
                    ;20H == Directly write to internal mem
                    ;28H == Directly read from internal mem
                    ;40H == Jump to address (LJMP)
                    ;48H == Return (ends with RET instead of LJMP)
                    ;Codes 80H to FFH are used for command set extension

DATABUF  DS 40H     ;Data buffer + checksum

STACK    DS 1       ;Where the stack pointer should initially point to

SFMDCOD  EQU FFFDH  ;This is the self modifying code location
                    ;for SFR indirect access.
EXT_CMD  EQU FF2BH  ;Code for extending the HEX command set

COLONVAL EQU ':'    ;Constant value for the colon character
FIRSTDEV EQU A1H    ;The first I2C device to be probed



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 10

*******************************************************

         CODE

; Interrupt pseudovectors pointing to upper RAM

; Linked to INIT program (this is quite tricky!!)

         ORG 00H

RESET    MOV R3,A            ;This clears R3 for the first TXBYTE
         SJMP INIT

VEC_IE0  LJMP FF03H          ;This should be $03
INIT     MOV SP,#STACK
         SJMP INIT1

VEC_TF0  LJMP FF0BH          ;This should be $0B
INIT1    MOV DPTR,#EXT_CMD
         SJMP INIT2

VEC_IE1  LJMP FF13H          ;This should be $13
INIT2    MOV A,#02H          ;Op-code for LJMP
         SJMP INIT3
         nop                 ;Empty byte

VEC_TF1  LJMP FF1BH          ;This should be $1B
INIT3    MOV RG2,A           ;Maps the aux RAM memory for program and data
         MOVX @DPTR,A
         SJMP INIT4

VEC_RITI LJMP FF23H          ;This should be $23

*******************************************************
; Off we go
*******************************************************

INIT4    INC DPTR
         MOV A,#ERROR/100H
         MOVX @DPTR,A
         INC DPTR
         MOV A,#ERROR-(ERROR/100H)*100H
         MOVX @DPTR,A
         MOV A,SCREG           ;Strongly recommended ;)
         MOV A,BTREG           ;Select the subsystem to initialize
         JNB A.BOOT1,INIT_SCI  ;If boot1==0 then we are booting from SCI
         JNB A.BOOT0,INIT_SPI  ;If boot0==0 then we are booting from SPI
         JB A.MASTER,INIT_I2C  ;If we are I2C master

********************************************
; I2C configuration as slave
********************************************
INI2C_SL MOV A,SCREG           ;Wait for BBUSY == ID == 1
         ANL A,#9
         CJNE A,#9,INI2C_SL
         ACALL TXBYTE
         MOV A,R5
         CJNE A,#89,INI2C_SL
         MOV CMBUF,#FFH       ;This is the acknowledge
         SJMP GET_FRAM



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 11

********************************************
; Send an STOP command and start again
********************************************
STOPNGO  ACALL I2CSTOP
;Uncomment the following if the next label is not INIT_I2C
;        SJMP INIT_I2C

********************************************
; I2C configuration as master
********************************************
INIT_I2C MOV A,SCREG
         JB A.BBUSY,W4BUSFRE
         ACALL START
         MOV R3,#FIRSTDEV    ;We probe the first device
I2CLOOP  ACALL TXBYTE
         JNB A.CCF,INIT_I2C
         JNB A.ERR,I2CFOUND
         INC R3              ;Next device
         INC R3
         ACALL RESTART
         SJMP I2CLOOP

I2CFOUND MOV A,R3            ;R3 has now the device that answered
         ANL A,#FEH          ;We prepare for a READ command
         MOV R3,A
         MOV CMBUF,#0        ;We send two zeroes as a 16-bit address
         ACALL WAIT4IT
         CJNE R5,#C9H,STOPNGO
         MOV CMBUF,#0
         ACALL WAIT4IT
         CJNE R5,#C9H,STOPNGO
         ACALL RESTART
         ACALL TXBYTE       ;We left the device address in R3
         CJNE R5,#C9H,STOPNGO
         SJMP GO_ON

********************************************
; RS232 Serial interface configuration
********************************************
INIT_SCI MOV SCON,#50H      ;Mode 010, REN enable, clear flags
         MOV PCON,#80H      ;Double baud rate, clear flags
         MOV TCON,#40H      ;Start the Timer #1
         MOV TMOD,#20H      ;Sets timer #1 in 8-bits reload mode
         MOV TH1,#F3H       ;243 for 3205 baud (with a 16 MHz xtal)
         JB A.BAUD,GET_FRAM ;3205 baud if GPORT.0 is 1, 10416 baud otherwise
         MOV TH1,#FCH       ;252 for 10416 baud (with a 16 MHz xtal)
         SJMP GET_FRAM

********************************************
; SPI configuration
********************************************
INIT_SPI ANL SCREG,#F3H      ;Clears dummy flags
         JNB A.MASTER,GO_ON  ;No more initialization required if slave
         MOV PORT1,#FEH      ;Select First SPI device
         MOV DDRP,#FEH       ;Bit 0 of general port as output
         MOV R3,#3
         ACALL TXBYTE
         MOV R3,#0
         ACALL TXBYTE
         ACALL TXBYTE
;Uncomment the following if the next label is not GO_ON
;         SJMP GO_ON

GO_ON    MOV CMBUF,#FFH

********************************************
; Main loop for frame fetching and parsing
********************************************
GET_FRAM MOV R0,#COLON       ;This is the main loop (fetching records)
         ACALL GET_BYTE
         JNZ ERROR
         MOV A,R3



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 12

         MOV @R0,A
         CJNE @R0,#COLONVAL,ERROR  ;Check if the colon was OK
         INC R0
         ACALL GET_BYTE
         JNZ ERROR
         MOV A,R3
         ANL A,#3FH          ;We limit the number of bytes to 3F
         MOV @R0,A
         ADD A,#4
         MOV R2,A

GF_LOOP  INC R0
         ACALL GET_BYTE      ;Get a byte and bring it in A
         JNZ ERROR
         MOV A,R3
         MOV @R0,A
         DJNZ R2,GF_LOOP

CHKSUM   MOV R0,#LENGTH
         MOV A,#4
         ADD A,@R0          ;Total number of bytes = length + 4
         MOV R2,A           ;R2 is used as a (down) counter
         MOV A,@R0
CHKLOOP  INC R0
         ADD A,@R0
         DJNZ R2,CHKLOOP
         JNZ ERROR          ;Sum of al bytes + checksum = 0

         MOV DPH,ADD_H      ;This is going to be used in the three commands
         MOV DPL,ADD_L
         MOV R0,#DATABUF
         MOV R1,ADD_L
         MOV R2,LENGTH
         MOV R4,REC_T

         MOV A,R4

         CJNE A,#40H,GOON1  ;Jump if REC_T == 40H
         ACALL ENDCOMS
         CLR A
         JMP @A+DPTR
GOON1    CJNE A,#48H,GOON2  ;Return if REC_T == 48H
;         ACALL ENDCOMS     ;Do not stop if this is a subroutine!
         RET
GOON2    JNB A.7,GOON3      ;REC_T >= 80H -> Extended command (in $FF2B)
         LJMP EXT_CMD

GOON3    JNB A.3,GOON4
         ACALL READMEM
         JNZ ERROR
         SJMP GET_FRAM

GOON4    ACALL PROGMEM
         JZ GET_FRAM
; Uncomment the following if the next label is not ERROR
;         SJMP ERROR

ERROR    ANL BTREG,#F7H    ;We reset GOE!!
         SJMP ERROR

********************************************
; End communications
********************************************
ENDCOMS  MOV A,BTREG
         JNB A.BOOT1,ENDSCI ;If SCI, wait for TI, clear it and bail out
         JNB A.BOOT0,ENDSL  ;IF SPI, just switch the system off and bail out
         JNB A.MASTER,ENDSL ;Otherwise, it's I2C
         ACALL I2CSTOP      ;If we're master, then stop the communication

ENDSL    MOV PORT1,#FFH     ;Otherwise, switch off the coms system
         MOV DDRP,#FFH
         ANL BTREG,#7FH
         RET

ENDSCI   JNB TI,ENDSCI



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 13

         CLR TI
         RET

********************************************************
;
; Routine: PROGMEM
;
; Inputs: DPTR is ADD_H,ADD_L
;         R0 points to the first data byte in the buffer
;         R1 is ADD_L
;         R2 has the number of bytes to write
;         R4 is the record type
; Outputs: A == 0 if no error, FF otherwise
;
; Modifies: A, R0, R1, R2, DPTR
;
; Programs any kind of memory
;
********************************************************

PROGMEM  CJNE R2,#0,PROGLOOP
         RET
PROGLOOP MOV A,@R0
         CJNE R4,#00H,PROG1 ;Program external memory
         MOVX @DPTR,A
         SJMP GOPROG
PROG1    CJNE R4,#10H,PROG2 ;Indirectly program internal memory
         MOV @R1,A
         SJMP GOPROG
PROG2    CJNE R4,#20H,RETERR;Directly program internal memory
         MOV DPTR,#SFMDCOD  ;This is the self-modifying code location
         MOV A,#86H         ;Hex code for "MOV direct,@R0"
         MOVX @DPTR,A
         INC DPTR
         MOV A,R1
         MOVX @DPTR,A       ;Modify the code with the direct address
         INC DPTR
         MOV A,#22H         ;Hex code for "RET"
         MOVX @DPTR,A
         LCALL SFMDCOD

GOPROG   INC DPTR
         INC R0
         INC R1
         DJNZ R2,PROGLOOP
         CLR A              ;No error occurred
         RET

********************************************************
;
; Routine: READMEM
;
; Inputs: DPTR is ADD_H,ADD_L
;         R0 points to the number of bytes to read
;         R1 is ADD_L
;         R2 has the number of bytes to write
;         R4 is the record type
; Outputs: A == 0 if no error, FF otherwise
;
; Modifies: A, R0, R1, R3, DPTR
;
; Reads any kind of memory
;
********************************************************

READMEM  MOV R2,@R0         ;R0 equals #DATABUF
         CLR A
         CJNE R2,#0,READLOOP
         RET
READLOOP XCH A,R3
         CJNE R4,#08H,READ1 ;Read external memory
         MOVX A,@DPTR
         SJMP GOREAD



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 14

READ1    CJNE R4,#0CH,READ2 ;Read code
         CLR A
         MOVC A,@A+DPTR
         SJMP GOREAD
READ2    CJNE R4,#18H,READ3 ;Indirectly read internal memory
         MOV A,@R1
         SJMP GOREAD
READ3    CJNE R4,#28H,RETERR ;Directly read internal memory
         MOV DPTR,#SFMDCOD
         MOV A,#E5H         ;Hex code for "MOV A,direct"
         MOVX @DPTR,A
         INC DPTR
         MOV A,R1
         MOVX @DPTR,A
         INC DPTR
         MOV A,#22H         ;Hex code for "RET"
         MOVX @DPTR,A
         LCALL SFMDCOD      ;Now the data is in A

GOREAD   XCH A,R3
         ADD A,R3
         PUSH A             ;We save the sum
         ACALL SENDBYTE     ;We send R3
         JNZ RETERR
         POP A              ;We restore the sum
         INC DPTR
         INC R1
         DJNZ R2,READLOOP
; Now A has the sum and we must calculate and send the checksum
         CPL A              ;Calculate checksum
         INC A              ;'twas 2's complement
         MOV R3,A
; Uncomment the following if the next routine is not SENDBYTE
;         ACALL SENDBYTE     ;Send checksum
;         RET

********************************************************
;
; Routine: SENDBYTE
;
; Inputs: R3 is the byte to send
; Outputs: A == 0 if no error, FF otherwise
;
; Modifies: A, R5
;
; Sends a byte no matter where thru. It waits for a previous
; transmission to be completed:
;   - If SCI is used, then it waits for a serial byte to come
;     prior to send R3.
;   - If SPI is used, then it waits for SPIF to be up. If we
;     are slave, they should provoke a (dummy) transmission
;     before we send R3; if we are master, we should provoke
;     a dummy transmission before calling SENDBYTE. This is
;     normally used for sending a group of bytes, so each
;     transmission is used to trigger the following. Obviously
;     the first transmission has to be provoked manually.
;
********************************************************

SENDBYTE MOV A,BTREG
         JNB A.BOOT1,SB_SCI
         JNB A.BOOT0,SB_SPI
         MOV A,#FFH         ;I2C reads not supported
         RET

SB_SPI   ACALL WAIT4IT      ;We wait for the previous transmission to end
         CJNE A,#80H,RETERR ;Maybe we shouldn't check this out
         MOV CMBUF,R3       ;We send R3
         CLR A              ;No error occurred
         RET

SB_SCI   JNB RI,SB_SCI      ;We wait for the previous transmission to end
         CLR RI             ;We assume nothing is left
         CLR TI
         MOV SBUF,R3        ;We send R3



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 15

         CLR A              ;No error occurred
         RET

********************************************
; Return with A == FF (error)
********************************************
RETERR   MOV A,#FFH
         RET

********************************************************
;
; Routine: GET_BYTE
;
; Inputs: None
; Outputs: A stores bits CCF and ERR
;          R3 stores the recevied byte
;          R5 stores SCREG but bits SDRC and CK0
;
; Modifies: A, R3, R5 (WAIT4IT is called afterwards)
;
; Gets a byte no matter where from and echoes it afterwards
;
********************************************************

GET_BYTE MOV A,BTREG        ;Get a byte no matter where from, result in R3
         JNB A.BOOT1,GB_SCI

GB_SCOM  ACALL WAIT4IT      ;Get a byte from I2C or SPI, master or slave
         CJNE A,#80H,RETERR
         MOV R3,CMBUF
         MOV CMBUF,R3
         CLR A                  ;No error
         RET

GB_SCI   JNB RI,GB_SCI      ;Get a byte from the serial port
         CLR RI
         MOV R3,SBUF
         CLR TI
         MOV SBUF,R3        ;Echo the received byte
         CLR A              ;No error
         RET

********************************************************
;
; Routine: TXBYTE
;
; Inputs: R3 is the byte to send
; Outputs: A stores bits CCF and ERR
;          R5 stores SCREG but bits SDRC and CK0
;
; Modifies: A, R5 (WAIT4IT is called afterwards)
;
; Transmits a byte trough the I2C or SPI line and waits until
; transmission is finished
;
********************************************************

TXBYTE   MOV CMBUF,R3        ;Send a serial byte (stored in R3)
; Uncomment the following if the next routine is not WAIT4IT
;         ACALL    WAIT4IT
;         RET

********************************************************
;



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 16

; Routine: WAIT4IT
;
; Inputs: None
; Outputs: A stores bits CCF and ERR
;          R5 stores SCREG but bits SDRC and CK0
;
; Modifies: A, R5
;
; Waits for a transmission to be completed (CCF or ERR)
;
********************************************************

WAIT4IT  MOV A,SCREG         ;Wait for a serial byte to be transmitted
         ANL A,#CFH          ;Bits 5 and 4 are not interesting
         MOV R5,A            ;Save SCREG in R5
         ANL A,#84H          ;Wait for CCF or ERR
         JZ WAIT4IT
         RET

********************************************************
;
; Routine: I2CSTOP
;
; Inputs: None
; Outputs: None
;
; Modifies: A and R2 (calls SENDCMD)
;
; Sends a STOP command to the I2C interface (using SENDCMD)
;
********************************************************

I2CSTOP  MOV R2,#2
         ACALL SENDCMD
         RET

********************************************************
;
; Routine: START, RESTART
;
; Inputs: None
; Outputs: None
;
; Modifies: A, R2 (calls SENDCMD)
;
; Sends a START command to the I2C interface (using SENDCMD)
;
********************************************************

START
RESTART  MOV R2,#3
; Uncomment the following if the next routine is not SENDCMD
;         ACALL SENDCMD
;         RET

********************************************************
;
; Routine: SENDCMD
;
; Inputs: R2 is used to specify the command
;         use XXXX_XX11b for START and RESTART
;         use XXXX_XX10b for STOP
; Outputs: None
;
; Modifies: A, R2
;
; Used for sending a STOP, START or RESTART command to the
; I2C interface
;
********************************************************

SENDCMD  MOV A,SCREG



SIDSA Semiconductor Design Solutions

Chapter 9. FIPSOC Boot Program 17

         ANL A,#FCH
         ORL A,R2
         MOV SCREG,A
CMDLOOP  MOV A,SCREG
         JB A.CMD,CMDLOOP

         RET

         end


	Chapter 9. FIPSOC Boot Program
	0. Overview
	1. Boot modes
	1.1. Booting from external parallel ROM
	1.2. Booting form a serial link
	1.2.1. Extended HEX records
	1.2.2. Extended record types and errors
	1.2.3. Booting from SPI
	1.2.4. Booting from 2-wire
	1.2.5. Booting from SCI

	1.3. The internal boot ROM and the auxiliary upper RAM

	2. Boot program listing
	Table Index
	1. FIPSOC boot modes
	2. SPI Clock frequencies upon reset
	3. 2-wire clock frequencies upon reset

	Boot Program
	Symbol Definition
	SFRs Definition
	Program



