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Preface

This book teaches you how to do Bayesian modeling. Using modern computer

software—and, in particular, the WinBUGS program—this turns out to be surpris-

ingly straightforward. After working through the examples provided in this book,

you should be able to build your own models, apply them to your own data, and

draw your own conclusions.

This book is based on three principles. The first is that of accessibility : the

book’s only prerequisite is that you know how to operate a computer; you do not

need any advanced knowledge of statistics or mathematics. The second principle is

that of applicability : the examples in this book are meant to illustrate how Bayesian

modeling can be useful for problems that people in cognitive science care about.

The third principle is that of practicality : this book offers a hands-on, “just do it”

approach that we feel keeps students interested and motivated to learn more.

In line with these three principles, this book has little content that is purely

theoretical. Hence, you will not learn from this book why the Bayesian philosophy

to inference is as compelling as it is; neither will you learn much about the intricate

details of modern sampling algorithms such as Markov chain Monte Carlo, even

though this book could not exist without them.

The goal of this book is to facilitate and promote the use of Bayesian modeling in

cognitive science. As shown by means of examples throughout this book, Bayesian

modeling is ideally suited for applications in cognitive science. It is easy to con-

struct a basic model, and then add individual differences, add substantive prior

information, add covariates, add a contaminant process, and so on. In other words,

Bayesian modeling is flexible and respects the complexities that are inherent in the

modeling of cognitive phenomena.

We hope that after completing this course, you will have gained not only a new

understanding of statistics (yes, it can make sense), but also the technical skills to

implement statistical models that professional but non-Bayesian cognitive scientists

dare only dream about.

We like to thank John Miyamoto, Eddy Davelaar, Hedderik van Rijn, and Thomas

Palmeri for constructive criticism and suggestions for improvement, and Dora Matzke

for her help in programming and plotting.

Michael D. Lee

Irvine, USA

Eric-Jan Wagenmakers

Amsterdam, The Netherlands

August 2011
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PART I

GETTING STARTED

(...) the theory of probabilities is basically just common sense reduced

to calculus; it makes one appreciate with exactness that which accurate

minds feel with a sort of instinct, often without being able to account

for it.

Laplace, 1829





1 The Basics of Bayesian Analysis

1.1 General Principles

The general principles of Bayesian analysis are easy to understand. First, uncer-

tainty or “degree of belief” is quantified by probability. Second, the observed data

are used to update the prior information or beliefs to become posterior information

or beliefs. That’s it!

To see how this works in practice, consider the following example. Assume we

give you a test that consists of 10 factual questions of equal difficulty. What we want

to estimate is your ability θ—the rate with which you answer questions correctly.

Note that we do not directly observe your ability θ; all that we observe is your score

on the test.

Before we do anything else (for example, before we start to look at your data) we

need to specify our prior uncertainty with respect to your ability θ. This uncertainty

needs to be expressed as a probability distribution, called the prior distribution. In

this case, keep in mind that θ can range from 0 to 1, and that you do not know

anything about the topic or about the difficulty level of the questions. Then, a rea-

sonable “prior distribution”, denoted by p (θ), is one that assigns equal probability

to every value of θ. This uniform distribution is shown by the dotted horizontal line

in Figure 1.1.

Now we consider your performance, and find that you answered 9 out of 10

questions correctly. After having seen these data, the updated knowledge about

θ is described by the posterior distribution, denoted p (θ | D), where D indicates

the observed data. Bayes rule specifies how we can combine the information from

the data—that is, the Binomial likelihood p (D | θ)—with the information from the

prior distribution p (θ) to arrive at the posterior distribution p (θ | D):

p (θ | D) =
p (D | θ) p (θ)

p(D)
. (1.1)

This equation is often verbalized as

posterior =
likelihood× prior

marginal likelihood
. (1.2)

Note that the marginal likelihood (i.e., the probability of the observed data) does

not involve the parameter θ, and is given by a single number that ensures that

the area under the posterior distribution equals 1. Therefore, Equation 1.1 is often

3
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tFig. 1.1 Bayesian parameter estimation for rate parameter θ, after observing 9 correct

responses and 1 incorrect response. The mode of the posterior distribution for θ is

0.9, equal to the maximum likelihood estimate, and the 95% confidence interval

extends from 0.59 to 0.98.

written as

p (θ | D) ∝ p (D | θ) p (θ) , (1.3)

which says that the posterior is proportional to the likelihood times the prior. Note

that the posterior distribution is a combination of what we knew before we saw

the data (i.e., the information in the prior distribution), and what we have learned

from the data.

The solid line in Figure 1.1 shows the posterior distribution for θ, obtained when

the uniform prior is updated with the data, that is, k = 9 correct answers out of n =

10 questions. The central tendency of a posterior distribution is often summarized

by its mean, median, or mode. Note that with a uniform prior, the mode of a

posterior distribution coincides with the classical maximum likelihood estimate or

MLE , θ̂ = k/n = 0.9 (Myung, 2003). The spread of a posterior distribution is

most easily captured by a Bayesian x% credible interval that extends from the

(x/2)th to the (100−x/2)th percentile of the posterior distribution. For the posterior

distribution in Figure 1.1, a 95% Bayesian credible interval for θ extends from 0.59

to 0.98. In contrast to the orthodox confidence interval, this means that one can be

95% confident that the true value of θ lies in between 0.59 and 0.98.

Exercises

Exercise 1.1.1 The famous Bayesian statistician Bruno de Finetti published two

big volumes entitled “Theory of Probability” (de Finetti, 1974). Perhaps sur-

prisingly, the first volume starts with the words “probability does not exist”.



5 Prediction

To understand why de Finetti wrote this, consider the following situation:

someone tosses a fair coin, and the outcome will be either heads or tails.

What do you think the probability is that the coin lands heads? Now suppose

you are a physicist with advanced measurement tools, and you can establish

relatively precisely both the position of the coin and the tension in the mus-

cles immediately before the coin is tossed in the air—does this change your

probability? Now suppose you can briefly look into the future (Bem, 2011),

albeit hazily—is your probability still the same?

Exercise 1.1.2 On his blog, prominent Bayesian Andrew Gelman wrote (March

18, 2010) “Some probabilities are more objective than others. The probability

that the die sitting in front of me now will come up ‘6’ if I roll it...that’s

about 1/6. But not exactly, because it’s not a perfectly symmetric die. The

probability that I’ll be stopped by exactly three traffic lights on the way to

school tomorrow morning: that’s...well, I don’t know exactly, but it is what

it is.” Was de Finetti wrong, and is there only one clearly defined probabil-

ity of Andrew Gelman encountering three traffic lights on the way to school

tomorrow morning?

Exercise 1.1.3 Figure 1.1 shows that the 95% Bayesian credible interval for θ

extends from 0.59 to 0.98. This means that one can be 95% confident that

the true value of θ lies in between 0.59 and 0.98. Suppose you did an ortho-

dox analysis and found the same confidence interval. What is the orthodox

interpretation of this interval?

Exercise 1.1.4 Suppose you learn that the questions are all true or false questions.

Does this knowledge affect your prior distribution? And if so, how would this

prior in turn affect your posterior distribution?

1.2 Prediction

The posterior distribution θ contains all that we know about the rate with which

you answer questions correctly. One way to use the knowledge is prediction.

For instance, suppose we design a new set of 5 questions, all of the same

difficulty as before. How can we formalize our expectations about your perfor-

mance on this new set? In other words, how can we use the posterior distribution

p (θ | n = 10, k = 9)—which after all represents everything that we know about θ

from the old set—to predict the number of correct responses out of the new set of

nrep = 5 questions? The mathematical solution is to integrate over the posterior,
∫

p (krep | θ, nrep = 5) p (θ | n = 10, k = 9) dθ, where krep is the predicted number

of correct responses out of the additional set of 5 questions.

Computationally, you can think of this procedure as repeatedly drawing a random

value θi from the posterior, and using that value to every time determine a single

krep
i . The end result is p (krep), the posterior predictive density of the possible

number of correct responses in the additional set of 5 questions. The important



6 Bayesian Basics

point is that by integrating over the posterior, all predictive uncertainty is taken

into account.

Exercises

Exercise 1.2.1 Instead of “integrating over the posterior”, orthodox methods of-

ten use the “plug-in principle”; in this case, the plug-in principle suggest that

we predict p(krep) solely based on θ̂, the maximum likelihood estimate. Why

is this generally a bad idea? Can you think of a specific situation in which

this may not be so much of a problem?

1.3 Sequential Updating

Bayesian analysis is particularly appropriate when you want to combine different

sources of information. For instance, assume that we present you with a new set of 5

questions. You answer 3 out of 5 correctly. How can we combine this new information

with the old? Or, in other words, how do we update our knowledge of θ? Consistent

with intuition, Bayes’ rule entails that the prior that should be updated based on

your performance for the new set is the posterior that was obtained based on your

performance for the old set. Or, as Lindley put it, “today’s posterior is tomorrow’s

prior” (Lindley, 1972, p. 2).

When all the data have been collected, however, the precise order in which this

was done is irrelevant; the results from the 15 questions could have been analyzed as

a single batch, they could have been analyzed sequentially, one-by-one, they could

have been analyzed by first considering the set of 10 questions and next the set of

5, or vice versa. For all these cases, the end result, the final posterior distribution

for θ, is identical. This again contrasts with orthodox inference, in which inference

for sequential designs is radically different from that for non-sequential designs (for

a discussion, see, for example, Anscombe, 1963).

Thus, a posterior distribution describes our uncertainty with respect to a pa-

rameter of interest, and the posterior is useful—or, as a Bayesian would have it,

necessary—for probabilistic prediction and for sequential updating. In general, the

posterior distribution or any of its summary measures can only be obtained in closed

form for a restricted set of relatively simple models. To illustrate in the case of our

binomial example, the uniform prior is a so–called beta distribution with parame-

ters α = 1 and β = 1, and when combined with the binomial likelihood this yields

a posterior that is also a beta distribution, with parameters α + k and β + n − k.

In simple conjugate cases such as these, where the prior and the posterior belong

to the same distributional family, it is possible to obtain closed form solutions for

the posterior distribution, but in many interesting cases it is not.
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1.4 Markov Chain Monte Carlo

For a long time, researchers could only proceed with Bayesian inference when the

posterior was available in closed form. As a result, practitioners interested in models

of realistic complexity did not much use Bayesian inference. This situation changed

dramatically with the advent of computer-driven sampling methodology generally

known as Markov chain Monte Carlo (MCMC: e.g., Gamerman & Lopes, 2006;

Gilks, Richardson, & Spiegelhalter, 1996). Using MCMC techniques such as Gibbs

sampling or the Metropolis-Hastings algorithm, researchers can directly sample

sequences of values from the posterior distribution of interest, foregoing the need

for closed form analytic solutions. The current adage is that Bayesian models are

limited only by the user’s imagination.

In order to visualize the increased popularity of Bayesian inference, Figure 1.2

plots the proportion of articles that feature the words “Bayes” or “Bayesian”, ac-

cording to Google Scholar (for a similar analysis for specific journals in statistics

and economics see Poirier, 2006). The time line in Figure 1.2 also indicates the pub-

lication of three landmark papers, Geman and Geman (1984), Gelfand and Smith

(1990), and Casella and George (1992), as well as the introduction of WinBUGS, a

general-purpose program that greatly facilitates Bayesian analysis for a wide range

of statistical models (Lunn, Thomas, Best, & Spiegelhalter, 2000; Lunn, Spiegelhal-

ter, Thomas, & Best, 2009; Sheu & O’Curry, 1998). Thus, MCMC methods have

transformed Bayesian inference to a vibrant and practical area of modern statistics.

For a concrete and simple illustration of Bayesian inference using MCMC, con-

sider again the binomial example of 9 correct responses out of 10 questions, and

the associated inference problem for θ, the rate of answering questions correctly.

Throughout this book, we use WinBUGS to specify and fit our models, saving us

the effort to code the MCMC algorithms ourselves. Although WinBUGS does not

work for every research problem application, it will work for many in cognitive sci-

ence. WinBUGS is easy to learn and is supported by a large community of active

researchers.1

The WinBUGS program requires you to construct a file that contains the model

specification, a file that contains initial values for the model parameters, and a

file that contains the data. The model specification file is most important. For our

binomial example, we set out to obtain samples from the prior and the posterior of

θ. The associated WinBUGS model specification code is three lines long:

model {

theta ~ dbeta(1,1) # the uniform prior for updating by the data

k ~ dbin(theta,n) # the data; in our example, k = 9 and n = 10

thetaprior ~ dbeta(1,1) # a uniform prior not for updating

1 Two alternative software programs are OpenBUGS and JAGS, programs that may be particu-

larly attractive for Mac and Linux users. The model code for OpenBUGS and JAGS is almost
identical to WinBUGS, so that the transition from one program to the other is easy.
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tFig. 1.2 A Google Scholar perspective on the increasing popularity of Bayesian inference.

}

In this code, the “∼” or twiddle symbol denotes “is distributed as”, dbeta(a,b)

indicates the beta distribution with parameters a and b2, and dbin(theta,n) in-

dicates the binomial distribution with rate theta and n observations. These and

many other distributions are build in to the WinBUGS program. The “#” or hash

sign is used for commenting out what should not be compiled. As WinBUGS is a

declarative language, the order of the three lines is inconsequential.

When this code is executed, you obtain a sequence of samples (i.e., an MCMC

chain) from the posterior p (θ | D) and a sequence of samples from the prior p (θ).

This sequence is called a chain. In more complex models, it may take some time

before a chain converges from its starting value to what is called its stationary

distribution. To make sure that we only use those samples that come from the

stationary distribution, and hence are unaffected by the starting values, it is good

practice to diagnose convergence by running multiple chains. It is often also good

practice to discard the first samples from each chain. These discarded samples are

called burn in samples. Finally, it can also be helpful, especially when the sampling

process produce auto-correlates sequences, not to record every sample taken in a

2 The dbeta(1,1) distribution is a uniform distribution from 0 to 1. Therefore, the prior distri-
bution for θ could also have been specified as theta ∼ dunif(0,1).
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MCMC Iteration
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tFig. 1.3 Three MCMC chains for rate parameter θ, after observing 9 correct responses and 1

incorrect response.

chain, but every second, or third, or tenth, or some other subset of samples. This

is known as thinning .

For example, Figure 1.3 shows the first 100 iterations for three chains that were

set up to draw values from the posterior for θ. It is evident that the three chains are

“mixing” well, suggesting early convergence. Quantitative measures for diagnosing

convergence are also available, such as the Gelman and Rubin (1992) R̂ statistic,

that compares within–chain to between–chain variability. For more recommenda-

tions regarding convergence see Gelman (1996) and Gelman and Hill (2007).

After assuring ourselves that the chains have converged, we can use the sampled

values to plot a histogram, construct a density estimate, and compute values of

interest. To illustrate, the three chains from Figure 1.3 were run for 3000 iterations

each, for a total of 9000 samples for the prior and the posterior of θ. Figure 1.4

plots histograms for the prior (i.e., dotted line) and the posterior (i.e., thick solid

line). To visualize how the histograms are constructed from the MCMC chains, the

bottom panel of Figure 1.4 plots the MCMC chains sideways; the histograms are

created by collapsing the values along the “MCMC iteration” axis and onto the “θ”

axis.

In the top panel of Figure 1.4, the thin solid lines represent density estimates.

The mode of the density estimate for the posterior of θ is 0.89, whereas the 95%

credible interval is (0.59, 0.98), matching the analytical result shown in Figure 1.1.

The key point is that the analytical intractibilities that limited the scope of

Bayesian parameter estimation have now been overcome. Using MCMC sampling,

posterior distributions can be approximated to any desired degree of accuracy. This

book teaches you to use MCMC sampling and Bayesian inference to do research

with cognitive science models and data.
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tFig. 1.4 MCMC–based Bayesian parameter estimation for rate parameter θ, after observing 9

correct responses and 1 incorrect response. The thin solid lines indicate the fit of a

density estimator. Based on this density estimator, the mode of the posterior

distribution for θ is approximately 0.89, and the 95% credible interval extends from

0.59 to 0.98, closely matching the analytical results from Figure 1.1.

Exercise 1.4.1 Use Google and list some other scientific disciplines that use

Bayesian inference and MCMC sampling.

Exercise 1.4.2 The text reads: “Using MCMC sampling, posterior distributions

can be approximated to any desired degree of accuracy”. How is this possible?
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1.5 Further Reading

This section provides some references for further reading. We first list Bayesian

textbooks and seminal papers, then some texts that specifically deal with Win-

BUGS. We also note that Smithson (2010) presents a useful comparative review of

six introductory textbooks on Bayesian methods.

1.5.1 Bayesian Statistics

This section contains an annotated bibliography on Bayesian articles and books

that we believe are particularly useful or inspiring.

Berger, J. O. and Wolpert, R. L. (1988). The Likelihood Principle (2nd ed.).

Institute of Mathematical Statistics, Hayward (CA). This is a great book if you want

to understand the limitations of orthodox statistics. Insightful and fun.

Bolstad, W. M. (2007). Introduction to Bayesian Statistics (2nd ed.). Wiley,

Hoboken (NJ). Many books claim to introduce Bayesian statistics, but forget

to state on the cover that the introduction is “for statisticians” or “for those

comfortable with mathematical statistics”. The Bolstad book is an exception, as

it does not assume much background knowledge.

Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic

Simulation for Bayesian Inference. Chapman & Hall/CRC, Boca Raton (FL). This

book discusses the details of MCMC sampling; a good book, but too advanced for

beginners.

Gelman, A. & Hill, J. (2007). Data Analysis Using Regression and Multi-

level/Hierarchical Models. Cambridge University Press, This book is an extensive

practical guide on how to apply Bayesian regression models to data. WinBUGS

code is provided throughout the book. Andrew Gelman also has an active blog

that you might find interesting: http://andrewgelman.com/

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte

Carlo in Practice. Chapman & Hall/CRC, Boca Raton (FL). A citation classic in

the MCMC literature, this book features many short chapters on all kinds of

sampling-related topics: theory, convergence, model selection, mixture models, and

so on.

Gill, J. (2002). Bayesian Methods: A Social and Behavioral Sciences Approach.

CRC Press, Boca Raton (FL). A well-written book that covers a lot of ground.

Readers need some background in mathematical statistics to appreciate the content.
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Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer,

Dordrecht, The Netherlands. A clear and well-written introduction to Bayesian

inference, with accompanying R code. This book requires some familiarity with

mathematical statistics.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Uni-

versity Press, Cambridge. Jaynes was one of the most ardent supporters of objective

Bayesian statistics. The book is full of interesting ideas and compelling arguments,

as well as being laced with Jaynes’ acerbic wit, but it requires some mathematical

background to appreciate all of the content.

Jeffreys, H. (1939/1961). Theory of Probability. Oxford University Press, Oxford, UK.

Sir Harold Jeffreys is the first statistician who exclusively used Bayesian methods

for inference. Jeffreys also invented the Bayesian hypothesis test, and was generally

far ahead of his time. The book is not always an easy read, in part because the nota-

tion is somewhat outdated. Strongly recommended, but only for those who already

have a solid background in mathematical statistics and a firm grasp of Bayesian

thinking. See www.economics.soton.ac.uk/staff/aldrich/jeffreysweb.htm

Lindley, D. V. (2000). The philosophy of statistics. The Statistician, 49, 293-

337. Dennis Lindley, one the godfathers of current-day Bayesian statistics, explains

why Bayesian inference is right and everything else is wrong. Peter Armitage

commented on the paper: “Lindley’s concern is with the very nature of statistics,

and his argument unfolds clearly, seamlessly and relentlessly. Those of us who

cannot accompany him to the end of his journey must consider very carefully

where we need to dismount; otherwise we shall find ourselves unwittingly at the

bus terminus, without a return ticket.”

McGrayne, S. B. (2011). The Theory That Would Not Die: How Bayes’ Rule

Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Tri-

umphant From Two Centuries Of Controversy. Yale University Press.. A fascinating

and accessible overview of the history of Bayesian inference.

Ntzoufras, I. (2009). Bayesian Modeling using WinBUGS. Wiley, Hoboken (NJ).

A great book for learning how to do regression and ANOVA using WinBUGS. See

www.ruudwetzels.com for a detailed review.

O’Hagan, A. & Forster, J. (2004). Kendall’s Advanced Theory of Statistics Vol.

2B: Bayesian Inference (2nd ed.). Arnold, London. If you are willing to read only a

single book on Bayesian statistics, this one is it. The book requires a background

in mathematical statistics.

Royall, R. M. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman &

Hall, London. This book describes the different statistical paradigms, and highlights
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the deficiencies of the orthodox schools. The content can be appreciated without

much background knowledge in statistics. The main disadvantage of this book is

that the author is not a Bayesian. We still recommend the book, which is saying

something.

1.5.2 WinBUGS Texts

Kruschke, J. K. (2010). Doing Bayesian Data Analysis: A Tutorial Introduction with

R and BUGS. Academic Press, Burlington (MA). This is one of the first Bayesian

books geared explicitly towards experimental psychologists and cognitive scientists.

Kruschke explains core Bayesian concepts with concrete examples and OpenBUGS

code. The book focuses on statistical models such as regression and ANOVA, and

provides a Bayesian approach to data analysis in psychology, cognitive science,

and empirical sciences more generally.

Lee, S.–Y. (2007). Structural Equation Modelling: A Bayesian Approach. Chich-

ester, UK: Wiley.

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.

Provides an easily accessible introduction to the use of WinBUGS. The book

also presents a variety of Bayesian modeling examples, with the emphasis on

Generalized Linear Models.

Spiegelhalter, D., Best, N. & Lunn, D. (2003). WinBUGS User Manual 1.4.

MRC Biostatistic Unit, Cambridge, UK. Provides an introduction to the use of

WinBUGS, including a useful tutorial and various tips and tricks for new users.



2 Getting Started with WinBUGS

with Dora Matzke

Throughout this course book, you will use the WinBUGS (Lunn et al., 2000)

software to work your way through the exercises. Although it is possible to do the

exercises using the graphical user interface provided by the WinBUGS package, you

can also use the Matlab or R programs to interact with WinBUGS.

In this chapter, we start by working through a concrete example using just Win-

BUGS. This provides an introduction to the WinBUGS interface, and the basic

theoretical and practical components involved in Bayesian graphical model analy-

sis. Completing the example will also quickly convince you that you do not want

to rely on WinBUGS as your primary means for handling and analyzing data. It is

not especially easy to use as a graphical user interface, and does not have all of the

data management and visualization features needed for research.

Instead, we encourage you to choose either Matlab or R as your primary research

computing environment, and use WinBUGS as an ‘add-on’ that does the Bayesian

inference part of analyses. Some WinBUGS interface capabilities will remain useful,

especially in the exploratory stages of research. But either Matlab or R will be pri-

mary. Accordingly, this chapter re-works the concrete example, originally done in

WinBUGS, using both Matlab and R. You should complete just the one correspond-

ing to your preferred research software. You will then be ready for the following

chapters, which assume you are working in either Matlab or R, but understand the

basics on the WinBUGS interface.

2.1 Installing WinBUGS, Matbugs, and R2WinBugs

2.1.1 Installing WinBUGS

WinBUGS is a currently free software, and is available at http://www.mrc-bsu.

cam.ac.uk/bugs/. Download the most recent version, including any patches, and

make sure you go to the effort of downloading and applying the registration key.

Some of the exercises in this course might work without the registration key, but

some of them will not. You can download WinBUGS and the registration key di-

rectly from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

14
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2.1.2 Installing Matlab and Matbugs

Matlab is a commercial software, and is available at http://www.mathworks.com/.

As best we know, any reasonably recent version of Matlab should let you do the

exercises in this course. Also, as best we know, no toolboxes are required. To

give Matlab the ability to interact with WinBUGS, download the freely avail-

able matbugs.m function and put it in your Matlab working directory. You can

download matbugs.m directly from http://www.cs.ubc.ca/~murphyk/Software/

MATBUGS/matbugs.html.

2.1.3 Installing R and R2WinBUGS

R is a free software, and is available at http://www.r-project.org/. You can

download the Windows version of R directly from http://cran.nedmirror.nl/

bin/windows/base/. To give R the ability to interact with WinBUGS, you have

to install the R2WinBUGS package. To install the R2WinBUGS package, start R and

select the Install Package(s) option in the Packages menu. Once you chose your

preferred CRAN mirror, select R2WinBUGS in the Packages window and click on OK.

2.2 Using the Applications

2.2.1 An Example with the Binomial Distribution

We will illustrate the use of WinBUGS, Matbugs, and R by means of a simple

example involving a binary process. A binary process is anything where there are

only two possible outcomes. It might be that something either happens or does

not happen, or that something either succeeds or fails, or that something takes one

value rather than the other. An inference that is often important for these sorts of

processes is the underlying rate at which the process takes one value rather than

the other. Inferences about the rate can be made by observing how many times the

process takes each value over a number of trials.

Suppose that one of the values (e.g., the number of successes) happens on k out

of n trials. These are known, or observed, data. The unknown variable of interest is

the rate θ at which the values are produced. Assuming that what happened on one

trial does not influence the other trials the number of successes k follows a Binomial

distribution, k ∼ Binomial
(

θ, n
)

. This relationship means that by observing the k

successes out of n trials, it is possible to update our knowledge about the rate θ. The

basic idea of Bayesian analysis is that what we know, and what we do not know,

about the variables of interest is always represented by probability distributions.

Data like k and n allow us to update prior distributions for the unknown variables

into posterior distributions that incorporate the new information.
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The graphical model representation of our binomial example is shown in Fig-

ure 2.1. The nodes represent all the variables that are relevant to the problem. The

graph structure is used to indicate dependencies between the variables, with chil-

dren depending on their parents. We use the conventions of representing unobserved

variables without shading and observed variables with shading, and continuous vari-

ables with circular nodes and discrete variables with square nodes.

Thus, the observed discrete counts of the numbers of successes k and the number

of trials n are represented by shaded and square nodes, and the unknown continuous

rate θ is represented by an unshaded and circular node. Because the number of

successes k depends on the number of trials n and on the rate of success θ, the

nodes representing n and θ are directed towards the node representing k. We will

start with the prior assumption that all possible rates between 0 and 1 are equally

likely. We will thus assume a uniform prior θ ∼ Uniform
(

0, 1
)

.

θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 2.1 Graphical model for inferring the rate of a binary process.

One advantage of using the language of graphical models is that it gives a com-

plete and interpretable representation of a Bayesian probabilistic model. Another

advantage is that WinBUGS can easily implement graphical models, and its var-

ious built-in computational algorithms are then able to do all of the inferences

automatically.

2.2.2 Using WinBUGS

WinBUGS requires the user to construct a file that contains the data, a file that

contains the starting values for the model parameters, and a file that contains the

model specification. The WinBUGS model specification code associated with our

binomial example is as follows:

# Inferring a Rate
model {

# Prior on Rate Thetat
theta ~ dbeta(1,1)
# Observed Counts
k ~ dbin(theta,n)

}
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Note that, even though conceptually the prior on θ is Uniform
(

0, 1
)

, it has been

implemented as Beta
(

1, 1
)

. These two distributions are the same, but our experi-

ence is that WinBUGS seems to have fewer computational problems with the Beta

distribution implementation.

Implementing the model shown in Figure 2.1, and obtaining samples from the

posterior distribution of θ, can be done by following these steps.

1. Copy the model specification text above and paste it in a text file. Save the file,

for instance as “Rate 1.txt”.

2. Start WinBUGS. Open your newly created model specification file by select-

ing the Open option in the File menu, choosing the appropriate directory, and

double-clicking on the model specification file. Do not forget to select files of

type “txt”, or you might be searching for a long time. Now check the syntax

of the model specification code by selecting the Specification option in the

Model menu. Once the Specification Tool window is opened, as shown in

Figure 2.2, highlight the word “model” at the beginning of the code and click on

check model. If the model is syntactically correct and all parameters are given

priors, the message “model is syntactically correct” will appear in the status

bar all the way in the bottom left corner of the WinBUGS window. (Although

beware, the letters are very small and difficult to see).

3. Create a text file that contains the data. The content of the file should look like

this:

list(
k=5,
n=10
)

Save the file, for instance as “Data.Rate 1.txt”.

4. Open the data file and load the data. To open the data file, select the Open

option in the File menu, select the appropriate directory, and double-click on

the data file. To load the data, highlight the word “list” at the beginning of the

data file and click on load data in the Specification Tool window, as shown

in Figure 2.2. If the data are successfully loaded, the message “data is loaded”

will appear in the status bar.

5. Set the number of chains. Each chain is an independent run of the same model

with the same data, although you can vary the set different starting values of

parameters for each chain.1 Chains provide a key test of convergence—something

we will discuss in more detail in a later chapter. In our binomial example, we

will run two chains. To set the number of chains, type “2” in the field labelled

num of chains in the Specification Tool window, shown in Figure 2.2.

6. Compile the model. To compile the model, click on compile in the

1 Running multiple chains is the best and easiest way to ensure WinBUGS uses different random

number sequences in sampling. Doing a single-chain analysis multiple times can use the same
random number sequence, and so produce the same results.
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tFig. 2.2 Model Specification Tool.

Specification Tool window, shown in Figure 2.2. If the model is success-

fully compiled, the message “model compiled” will appear in the status bar.

7. Create a text file that contains the starting values of the unobserved variables

(i.e., just the parameter θ for this model). If you do not specify the starting

values, WinBUGS will try to get them from the prior, which may or may not

lead to numerical crashes. It is therefore safer to give a starting value to all

unobserved variables, and especially for variables at nodes ‘at the top’ of the

graphical model, which have no parents.

The content of the file should look like this:

list(
theta=0.1
)

list(
theta=0.9
)

Save the file, for instance as “Start.values.txt”.

8. Open the file that contains the starting values by selecting the Open option in

the File menu, selecting the appropriate directory, and double-clicking on the

file. To load the starting value of θ for the first chain, highlight the word “list” at

the beginning of the file and click on load inits in the Specification Tool
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window, shown in Figure 2.2). To load the starting value for the second chain,

highlight the second “list” command and click on load inits once again. If the

starting values are successfully loaded, the message “model is initialized” will

appear in the status bar.

9. Set monitors to store the sampled values of the parameters of interest. To set a

monitor for θ, select the Samples option from the Inference menu. Once the

Sample Monitor Tool window, shown in Figure 2.3, is opened, type “theta” in

the field labelled node and click on set.

10. Specify the number of samples you want to record. To this end, you first have

to specifythe total number of samples you want to draw from the posterior of θ,

and the number of burn-in samples that you want to discard at the beginning

of a sampling run. The number of recorded samples equals the total number of

samples minus the number of burn-in samples. In our binomial example, we will

not discard any of the samples and will set out to obtain 20, 000 samples from

the posterior of θ. To specify the number of recorded samples, type “1” in the

field labelled beg (i.e., WinBUGS will start recording from the first sample) and

type “20000” in the field labelled end in the Sample Monitor Tool window,

shown in Figure 2.3).

tFig. 2.3 Sample Monitor Tool.

11. Set “live” trace plots of the unobserved parameters of interest. WinBUGS allows

you to monitor the sampling run in real-time. This can be useful on long sampling

runs, for debugging, and for diagnosing whether the chains have converged. To

set a “live” trace plot of θ, click on trace in the Sample Monitor Tool window,

shown in Figure 2.3, and wait for an empty plot to appear on the screen. Once

WinBUGS starts to sample from the posterior, the trace plot of θ will appear

live on the screen.

12. Specify the total number of samples that you want to draw from the posterior.

This is done by selecting the Update option from the Model menu. Once the

Update Tool window (see 2.4) is opened, type “20000” in the field labelled

updates. Typically, the number you enter in the Update Tool window will cor-

respond to the number you entered in the end field of the Sample Monitor

Tool.

13. Specify how many samples should be drawn between the recorded samples.
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You can, for example, specify that only every second drawn sample should be

recorded. This ability to “thin” a chain is is important when successive samples

are not independent but autocorrelated. In our binomial example, we will record

every sample that is drawn from the posterior of θ. To specify this, type “1” in

the field labelled thin in the Update Tool window, shown in Figure 2.4.

14. Specify the number of samples after which WinBUGS should refresh its display.

To this end, type “100” in the field labelled refresh in the Update Tool window,

shown in Figure 2.4.

15. Sample from the posterior. To sample from the posterior of θ, click on update in

the Update Tool window, shown in Figure 2.4). During sampling, the message

“model updating” will appear in the status bar. Once the sampling is finished,

the message “update took x secs” will appear in the status bar.

tFig. 2.4 Update Tool.

16. Specify the output format. WinBUGS can produce two types of output; it can

open a new window for each new piece of output or it can paste all output

into a single log file. To specify the output format for our binomial example,

select Output options from the Options menu, and click on log in the Output

options window.

17. Obtain summary statistics of the posterior distribution. To request summary

statistics based on the sampled values of θ, select the Samples option in the

Inference menu, and click on stats in the Sample Monitor Tool window,

shown in Figure 2.3. WinBUGS will paste a table reporting various summary

statistics for θ in the log file.

18. Plot the posterior distribution. To plot the posterior distribution of θ, click on

density in the Sample Monitor Tool window, shown in Figure 2.3. WinBUGS

will paste the posterior distribution of θ in the log file.

Figure 2.5 shows the log file that contains the results for our binomial example.

The first five lines of the log file document the steps taken to specify and initialize

the model. The first output item is the Dynamic trace plot that allows the θ

variable to be monitored during sampling and is useful for diagnosing whether the

chains have reached convergence. In this case, we can be reasonably confident that

convergence has been achieved because the two chains, shown in different colors,

are overlapping one another. The second output item is the Node statistics table

that presents the summary statistics for θ. Among others, the table shows the mean,
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the standard deviation, and the median of the sampled values of θ. The last output

item is the Kernel density plot that shows the posterior distribution of θ.

tFig. 2.5 Example of an output log file.

How did WinBUGS produce the results in Figure 2.5? The model specification

file implemented the graphical model from Figure 2.1, saying that there is a rate

θ with a uniform prior, that generates k successes out of n observations. The data

file supplied the observed data, setting k = 5 and n = 10. WinBUGS then sampled

from the posterior of the unobserved variable θ. ‘Sampling’ means drawing a set

of values, so that the relative probability that any particular value will be sampled

is proportional to the density of the posterior distribution at that value. For this

example, the posterior samples for θ are a sequence of numbers like 0.5006, 0.7678,

0.3283, 0.3775, 0.4126, . . .. A histogram of these values is an approximation to the

posterior distribution of θ.

In one sense, it would be nice to understand exactly how WinBUGS managed to

generate the posterior samples. In another sense, if you are interested in building

and analyzing models and data, you do not necessarily need to understand the

computational basis of posterior sampling (any more than you need to know how

SPSS calculates a t-test statistic). If you understand the conceptual basis that
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underlies the generation of the posterior samples, you can happily build models and

analyze data without worrying about the intricacies of Gibbs Sampling, Adaptive

Rejection Sampling, Markov-Chain Monte-Carlo, and all the rest.2

Error Messages

If the syntax of your model file is incorrect or the data and starting values are

incompatible with your model specification, WinBUGS will balk and produce an

error message. Error messages can provide useful information when it comes to

debugging your WinBUGS code.3 The error messages are displayed in the bottom

left corner of the status bar, in very small letters.

With respect to errors in the model specification, suppose, for example, that you

mistakenly use the “assign” operator (<-) to specify the distribution of the prior

on the rate parameter θ and the distribution of the observed data k:

model {

#Prior on Rate

theta <- dbeta(1,1)

#Observed Counts

k <- dbin(theta,n)

}

As WinBUGS requires you to use the tilde symbol “∼” to denote the distributions of

the prior and the data, it will produce the following error message: “unknown type

of logical function”, as shown in Figure 2.6. As another example, suppose that

you mistype the distribution of the observed counts k, and you mistakenly specify

the distribution of k as follows:

k ~ dbon(theta,n)

WinBUGS will not recognize dbon as an existing probability distribution, and will

produce the following error message: “unknown type of probability density”,

as shown in Figure 2.7.

With respect to errors in the data file, suppose that your data file contains the

following data: k = -5 and n = 10. Note, however, that k is the number of successes

in the 10 trials and it is specified to be binomially distributed. WinBUGS therefore

2 Some people find the idea that WinBUGS looks after inference, and there is no need to un-
derstand the computational sampling routines in detail, to be a relief. Others find it deeply

disturbing. For the disturbed, there are many Bayesian texts that give detailed accounts of
Bayesian inference using computational sampling. Start with the summary for cognitive scien-

tists presented by Griffiths, Kemp, and Tenenbaum (2008). Continue with the relevant chapters
in the excellent book by MacKay (2003), which is freely available on the Web, and follow the

more technical references from there.
3 Although nobody ever accused WinBUGS of being user friendly in this regard. The error trap

messaging, in particular, seems to have been written by the same people who did the Dead Sea
Scrolls.
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tFig. 2.6 WinBUGS error message as a result of incorrect logical operators.

tFig. 2.7 WinBUGS error message as a result of a misspecified probability density.

expects the value of k to lie between 0 and n and it will produce the following er-

ror message: “value of binomial k must be between zero and order of k”,

as shown in Figure 2.8.

Finally, with respect to erroneous starting values, suppose that you chose 1.5

as the starting value of θ for the second chain. Because θ is the probability of

getting 5 successes in 10 trials, WinBUGS expects the starting value for θ to
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tFig. 2.8 WinBUGS error message as a result of incorrect data.

lie between 0 and 1. Therefore, specifying a value such as 1.5 produces the fol-

lowing error message: “value of proportion of binomial k must be between

zero and one”, as shown in Figure 2.9.

2.2.3 Using Matbugs

We will use the matbugs function to call the WinBUGS software from within Mat-

lab, and to return the results of the WinBUGS sampling to a Matlab variable for

further analysis. The code we are using to do this follows:

% Set the working directory
cd D:\WinBUGS_Book\Matlab_codes

% Data
k=5;n=10;

% WinBUGS Parameters
nchains=2; % How Many Chains?
nburnin=0; % How Many Burn-in Samples?
nsamples=2e4; %How Many Recorded Samples?

% Assign Matlab Variables to the Observed WinBUGS Nodes
datastruct = struct(’k’,k,’n’,n);

% Initialize Unobserved Variables
start.theta= [0.1 0.9];
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tFig. 2.9 WinBUGS error message as a result of an incorrect starting value.

for i=1:nchains
S.theta = start.theta(i); % An Intial Value for the Success Rate
init0(i) = S;

end

% Use WinBUGS to Sample
[samples, stats] = matbugs(datastruct, ...

fullfile(pwd, ’Rate_1.txt’), ...
’init’, init0, ...
’nChains’, nchains, ...
’view’, 1, ’nburnin’, nburnin, ’nsamples’, nsamples, ...
’thin’, 1, ’DICstatus’, 0, ’refreshrate’,100, ...
’monitorParams’, {’theta’}, ...
’Bugdir’, ’C:/Program Files/WinBUGS14’);

Some of the options in the Matbugs function control software input and output.

• datastruct contains the data that you want to pass from Matlab to WinBUGS.

• fullfile gives the name of the text file that contains the WinBUGS scripting

of your graphical model (i.e., the model specification file).

• view controls the termination of WinBUGS. If view is set to 0, WinBUGS is

closed automatically at the end of the sampling. If view is set to 1, WinBUGS

remains open and it pastes the results of the sampling run in a log output

file. To be able to inspect the results in WinBUGS, maximize the log output
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file and scroll up to the top of the page. Note that if you subsequently want

WinBUGS to return the results to Matlab, you first have to close WinBUGS.

• refreshrate gives the number of samples after which WinBUGS should refresh

its display.

• monitorParams gives the list of variables that will be monitored and returned to

Matlab in the samples variable.

• Bugdir gives the location of the WinBUGS software.

Other options define the values for the computational sampling parameters.

• init gives the starting values for the unobserved variables.

• nChains gives the number of chains.

• nburnin gives the number of ‘burn-in’ samples.

• nsamples gives the number of recorded samples that will be drawn from the

posterior.

• thin gives the number of drawn samples between those that are recorded.

• DICstatus gives an option to calculate the Divergence Information Criterion

(DIC) statistic. The DIC statistic is intended to be used for model selection,

but is not universally accepted theoretically among Bayesian statisticians. If

DICstatus is set to 0, the DIC statistic will not be calculated. If it is set to 1,

WinBUGS will calculate the DIC statistic.

How did the WinBUGS script and Matlab work together to produce the posterior

samples of θ? The WinBUGS model specification script defined the graphical model

from Figure 2.1. The Matlab code supplied the observed data and the starting values

for θ, and called WinBUGS. WinBUGS then sampled from the posterior of θ and

returned the sampled values in the Matlab variable samples.theta. You can plot

the histogram of these sampled values using Matlab, in the way demonstrated in

the script Rate 1.m. It should look something like the jagged line in Figure 2.10.

Because the probability of any value appearing in the sequence of posterior samples

is decided by its relative posterior probability, the histogram is an approximation

to the posterior distribution of θ.

Besides the sequence of posterior samples, WinBUGS also returns some useful

summary statistics to Matlab. The variable stats.mean gives the mean of the

posterior samples for each unobserved variable, which approximates its posterior

expectation. This can often (but not always, as later exercises explore) be a useful

point-estimate summary of all the information in the full posterior distribution.

Similarly, stats.std gives the standard deviation of the posterior samples for each

unobserved variable.

Finally, WinBUGS also returns the so-called R̂ statistic in the stats.Rhat vari-

able. This is a statistic about the sampling procedure itself, not about the posterior

distribution. The R̂ statistic is proposed by Brooks and Gelman (1997) and it gives

information about convergence. The basic idea is to run two or more chains and

measure the ratio of within–to between–chain variance. If this ratio is close to 1, the
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tFig. 2.10 Posterior distribution of rate θ for k = 5 successes out of n = 10 trials, based on

20,000 posterior samples.

independent sampling sequences are probably giving the same answer, and there is

reason to trust the results.

2.2.4 Using R2WinBUGS

We will use the bugs() function in the R2WinBUGS package to call the WinBUGS

software from within R, and to return the results of the WinBUGS sampling to a

R variable for further analysis. The code we are using to do this follows.

setwd("D:/WinBUGS_Book/R_codes") #Set the working directory
library(R2WinBUGS) #Load the R2WinBUGS package
bugsdir = "C:/Program Files/WinBUGS14"

k = 5
n = 10

data = list("k", "n")
myinits = list(

list(theta = 0.1),
list(theta = 0.9))

parameters = c("theta")

samples = bugs(data, inits=myinits, parameters,
model.file ="Rate_1.txt",
n.chains=2, n.iter=20000, n.burnin=0, n.thin=1,
DIC=F, bugs.directory=bugsdir,
codaPkg=F, debug=T)

Some of these options control software input and output.

• data contains the data that you want to pass from R to WinBUGS.
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• parameters gives the list of variables that will be monitored and returned to R

in the samples variable.

• model.file gives the name of the text file that contains the WinBUGS scripting

of your graphical model (i.e., the model specification file). Avoid using non-

alphanumeric characters (e.g., “&” and “*”) in the directory and file names.

Also, make sure that the name of the directory that contains the model file is

not too long, otherwise WinBUGS will generate the following error message :

“incompatible copy”. If WinBUGS fails to locate a correctly specified model

file, try to include the entire path in the model.file argument.

• bugs.directory gives the location of the WinBUGS software.

• codaPkg controls the content of the variable that is returned from WinBUGS.

If codaPkg is set to FALSE, WinBUGS returns a variable that contains the

results of the sampling run. If codaPkg is set to TRUE, WinBUGS returns a

variable that contains the file names of the WinBUGS outputs and the corre-

sponding paths. You can access these output files by means of the R function

read.bugs().

• debug controls the termination of WinBUGS. If debug is set to FALSE, Win-

BUGS is closed automatically at the end of the sampling. If debug is set to

TRUE, WinBUGS remains open and it pastes the results of the sampling run

in a log output file. To be able to inspect the results in WinBUGS, maximize

the log output file and scroll up to the top of the page. Note that if you subse-

quently want WinBUGS to return the results in the R samples variable, you

first have to close WinBUGS. In general, you will not be able to use R again

until after you terminate WinBUGS.

The other options define the values for the computational sampling parameters.

• inits assigns starting values to the unobserved variables. If you want WinBUGS

to choose these starting values for you, replace inits=myinits in the call to

bugs with inits=NULL.

• n.chains gives the number of chains.

• n.iter gives the number of recorded samples that will be drawn from the pos-

terior.

• n.burnin gives the number of ‘burn-in’ samples.

• n.thin gives the number of drawn samples between those that are recorded.

• DIC gives an option to calculate the DIC statistic. If DIC is set to FALSE, the DIC

statistic will not be calculated. If it is set to TRUE, WinBUGS will calculate

the DIC statistic.

WinBUGS returns the sampled values of θ in the R variable samples. You can

access these values by typing samples$sims.array. You can also plot the his-

togram of these sampled values using R, in the way demonstrated in the script

Rate 1.R). Besides the sequence of posterior samples, WinBUGS also returns some
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useful statistics to R. You can access the summary statistics of the posterior sam-

ples, as well as the R̂ statistic mentioned in the previous section by typing samples.

2.3 Online Help and Useful URLs

2.3.1 Online Help for WinBUGS

• The BUGS Project webpage http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/

webresource.shtml provides useful links to various articles, tutorial materials,

and lecture notes about Bayesian modeling and the WinBUGS software.

• The BUGS discussion list https://www.jiscmail.ac.uk/cgi-bin/webadmin?

A0=bugs is an online forum where WinBUGS users can exchange tips, ask

questions, and share worked examples.

2.3.2 For Mac users

You can run WinBUGS on Macs using emulators, such as Darwine. As best we

know, you need a Dual Core Intel based Mac and the latest stable version of Darwine

to be able to use R2WinBUGS.

• The Darwine emulator is available at www.kronenberg.org/darwine/.

• The R2WinBUGS reference manual on the R-project webpage cran.r-project.

org/web/packages/R2WinBUGS/index.html provides instructions on how to

run R2winBUGS on Macs.

• Further information for running R2WinBUGS on Macs is available at

ggorjan.blogspot.com/2008/10/runnning-r2winbugs-on-mac.html and

idiom.ucsd.edu/~rlevy/winbugsonmacosx.pdf.

• Further information for running WinBUGS on Macs using a Matlab or R interface

is available at web.mit.edu/yarden/www/bayes.html and www.ruudwetzels.

com/macbugs.

2.3.3 For Linux users

You can run WinBUGS under Linux using emulators, such as Wine and CrossOver.

• The BUGS Project webpage provides useful links to various examples on how to

run WinBUGS under Linux www.mrc-bsu.cam.ac.uk/bugs/faqs/contents.

shtml and how to run WinBUGS using a Matlab interface www.mrc-bsu.cam.

ac.uk/bugs/winbugs/remote14.shtml.

• The R2WinBUGS reference manual on the R-project webpage cran.r-project.

org/web/packages/R2WinBUGS/index.html provides instructions on how to

run R2winBUGS under Linux.
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3
Inferences With Binomial

Distributions

3.1 Inferring a Rate

Our first problem completes the introductory example from the “Getting Started

with WinBUGS” chapter, and involves inferring the underlying success rate for a

binary process. The graphical model is shown again in Figure 3.1. Recall that shaded

nodes indicate known values, while unshaded nodes represent unknown values, and

that circular nodes correspond to continuous values, while square nodes correspond

to discrete values.

The goal of inference in the graphical model is to determine the posterior distri-

bution of the rate θ having observed k successes from n trials. The analysis starts

with the prior assumption that all possible rates between 0 and 1 are equally likely.

This corresponds to the uniform prior distribution θ ∼ Uniform
(

0, 1
)

which can

equivalently be written in terms of a Beta distribution as θ ∼ Beta
(

1, 1
)

.

θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 3.1 Graphical model for inferring the rate of a binary process.

The script Rate 1.txt implements the graphical model in WinBUGS.

# Inferring a Rate
model {

# Observed Counts
k ~ dbin(theta,n)
# Prior on Rate Theta
theta ~ dbeta(1,1)

}

The code Rate 1.m for Matlab or Rate 1.R for R sets k = 5 and n = 10 and

calls WinBUGS to sample from the graphical model. WinBUGS then returns to

Matlab or R the posterior samples from θ1 . The Matlab or R code also plots the

33
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Box 3.1 Beta distributions as conjugate priors

One of the nice properties of using the θ ∼ Beta
(

α, β
)

prior distribution for

a rate θ, is that it has a natural interpretation. The α and β values can be

thought of as counts of “prior successes” and “prior failures”, respectively.

This means, using a θ ∼ Beta
(

3, 1
)

prior corresponds to having the prior

information that 4 previous observations have been made, and 3 of them were

successes. Or, more elaborately, starting with a θ ∼ Beta
(

3, 1
)

is the same

as starting with a θ ∼ Beta
(

1, 1
)

, and then seeing data giving two more

successes (i.e., the posterior distribution in the second scenario will be same

as the prior distribution in the first). As always in Bayesian analysis, inference

starts with prior information, and updates that information—by changing the

probability distribution representing the uncertain information—as more in-

formation becomes available. When a type of likelihood function (in this case,

the Binomial) does not change the type of distribution (in this case, the Beta)

going from the posterior to the prior, they are said to have a “conjugate” re-

lationship. This is valued a lot in analytic approaches to Bayesian inference,

because it makes for tractable calculations. It is not so important for that

reason in computational approaches, as emphasized in this book, because

sampling methods can handle easily much more general relationships between

parameter distributions and likelihood functions. But conjugacy is still use-

ful in computational approaches because of the natural semantics it gives in

setting prior distributions.

posterior distribution of the rate θ. A histogram of the samples looks something

like the jagged line in Figure 3.2.1

Exercises

Exercise 3.1.1 Alter the data to k = 50 and n = 100, and compare the posterior

for the rate θ to the original with k = 5 and n = 10.

Exercise 3.1.2 For both the k = 50, n = 100 and k = 5, n = 10 cases just

considered, re-run the analyses with many more samples (e.g., ten times as

many) by changing the nsamples variable in Matlab, or the niter variable in

R. This will take some time, but there is an important point to understand.

What controls the width of the posterior distribution (i.e., the expression of

uncertainty in the rate parameter θ)? What controls the quality of the estimate

of the posterior (i.e., the smoothness of the histograms in the figures)?

1 At least, this is what Matlab produces. The density smoothing used by default in R leads to a
different visual appearance.
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tFig. 3.2 Posterior distribution of rate θ for k = 5 successes out of n = 10 trials.

Exercise 3.1.3 Alter the data to k = 99 and n = 100, and comment on the shape

of the posterior for the rate θ.

Exercise 3.1.4 Alter the data to k = 0 and n = 1, and comment on what this

demonstrates about the Bayesian approach.

3.2 Difference Between Two Rates

Now suppose that now we have two different processes, producing k1 and k2 suc-

cesses out of n1 and n2 trials, respectively. First, we will make the assumption the

underlying rates are different, so they correspond to different latent variables θ1
and θ2. Our interest is in the values of these rates, as estimated from the data, and

in the difference δ = θ1 − θ2 between the rates.

The graphical model representation for this problem is shown in Figure 3.3. The

new notation is that the deterministic variable δ is shown by a double-bordered

node. A deterministic variable is one that is defined in terms of other variables,

and inherits its distribution from them. Computationally, deterministic nodes are

unnecessary—all inference could be done with the variables that define them—but

they are often conceptually very useful to include to communicate the meaning of

a model.

The script Rate 2.txt implements the graphical model in WinBUGS.

# Difference Between Two Rates
model {

# Observed Counts
k1 ~ dbin(theta1,n1)
k2 ~ dbin(theta2,n2)
# Prior on Rates
theta1 ~ dbeta(1,1)
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θ1

k1

n1

θ2

k2

n2

δ

k1 ∼ Binomial(θ1, n1)

k2 ∼ Binomial(θ2, n2)

θ1 ∼ Beta(1, 1)

θ2 ∼ Beta(1, 1)

δ ← θ1 − θ2

tFig. 3.3 Graphical model for inferring the difference in the rates of two binary process.

theta2 ~ dbeta(1,1)
# Difference Between Rates
delta <- theta1-theta2

}

The code Rate 2.m or Rate 2.R sets k1 = 5, k2 = 7, n1 = n2 = 10, and then

calls WinBUGS to sample from the graphical model. WinBUGS returns to Matlab

or R the posterior samples from θ1, θ2 and δ. If the main research question is

how different the rates are, then δ is the most relevant variable, and its posterior

distribution is shown in Figure 3.4.
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tFig. 3.4 Posterior distribution of the difference between two rates δ = θ1 − θ2.
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There are many ways the full information in the posterior distribution of δ might

usefully be summarized. The Matlab or R code produces a set of these from the

posterior samples, including

• The mean value, which approximates the expectation of the posterior. This is the

point-estimate corresponding to quadratic loss. That is, it tries to pick a single

value close to the truth, with bigger deviations from the truth being punished

more heavily.

• The value with maximum density in the posterior samples, approximating the

posterior mode. This is known as the maximum a posteriori (MAP) estimate,

and is the same as the maximum likelihood estimate (MLE) for ‘flat’ priors.

This point-estimate corresponds to 0-1 loss, which aims to pick the single most

likely value. Estimating the mode requires evaluating the likelihood function

at each posterior sample, and so requires a bit more post-processing work in

Matlab or R.

• The median value, which is the point-estimate corresponding to linear loss.

• The 95% credible interval. This gives the upper and lower values between which

95% of samples fall. Thus, it approximates the bounds on the posterior distri-

bution that contain 95% of the posterior density. The Matlab or R code can

be modified to produce credible intervals for criteria other than 95%.

For the current problem, the mean of δ estimated from the returned samples is

approximately -0.17, the mode is approximately -0.20, the median is approximately

-0.17, and the 95% credible interval is approximately [−0.52, 0.21].

Exercises

Exercise 3.2.1 Compare the data sets k1 = 8, n1 = 10, k2 = 7, n2 = 10 and

k1 = 80, n1 = 100, k2 = 70, n2 = 100.

Exercise 3.2.2 Try the data k1 = 0, n1 = 1, and k2 = 0, n2 = 5.

Exercise 3.2.3 In what context might different possible summaries of the posterior

distribution of δ (i.e., point estimates, or credible intervals) be reasonable, and

when might it be important to show the full posterior distribution?

3.3 Inferring a Common Rate

We continue to consider two binary processes, producing k1 and k2 successes out of

n1 and n2 trials, respectively, but now assume the underlying rate for both is the

same. This means there is just one rate, θ.

The graphical model representation for this problem is shown in Figure 3.5.

An equivalent graphical model, using plate notation, is shown in Figure 3.6.

Plates are bounding rectangles that enclose independent replications of a graphical

structure within a whole model. In this case, the plate encloses the two observed
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θ

k1

n1

k2

n2

k1 ∼ Binomial(θ, n1)

k2 ∼ Binomial(θ, n2)

θ ∼ Beta(1, 1)

tFig. 3.5 Graphical model for inferring the common rate underlying two binary processes.

counts and numbers of trials. Because there is only one latent rate θ (i.e., the

same probability drives both binary processes) it is not iterated inside the plate.

One way to think of plates, which some people find helpful, is as “for loops” from

programming languages (including WinBUGS itself).

θ

ki

ni

ki ∼ Binomial(θ, ni)

θ ∼ Beta(1, 1)

i

tFig. 3.6 Graphical model for inferring the common rate underlying two binary processes, using

plate notation.

The script Rate 3.txt implements the graphical model in WinBUGS.

# Inferring a Common Rate
model{

# Observed Counts
k1 ~ dbin(theta,n1)
k2 ~ dbin(theta,n2)
# Prior on Single Rate Theta
theta ~ dbeta(1,1)

}

The code Rate 3.m or Rate 3.R sets k1, k2, n1 and n2, and then call WinBUGS

to sample from the graphical model. Note that the R code sets debug=T, and so will

wait to terminate and return the sampling information. The code also produces a

plot of the posterior distribution for the common rate, as shown in Figure 3.7.
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tFig. 3.7 Posterior distribution of common rate θ.

Exercises

Exercise 3.3.1 Try the data k1 = 14, n1 = 20, k2 = 16, n2 = 20. How could you

report the inference about the common rate θ?

Exercise 3.3.2 Try the data k1 = 0, n1 = 10, k2 = 10, n2 = 10. What does this

analysis infer the common rate θ to be? Do you believe the inference?

Exercise 3.3.3 Compare the data sets k1 = 7, n1 = 10, k2 = 3, n2 = 10 and

k1 = 5, n1 = 10, k2 = 5, n2 = 10. Make sure, following on from the previous

question, that you understand why the comparison works the way it does.

3.4 Prior and Posterior Prediction

One conceptual way to think about Bayesian analysis is that Bayes Rule provides a

bridge between the unobserved parameters of models and the observed measurement

of data. The most useful part of this bridge is that data allows us to update the

uncertainty (represented by probability distributions) about parameters. But the

bridge can handle two way traffic, and so there is a richer set of possibilities for

relating parameters to data. There are really four distributions available, and they

are all important and useful.

• First, the prior distribution over parameters captures our initial assumptions or

state of knowledge about the psychological variables they represent.

• Secondly, the prior predictive distribution tells us what data to expect, given our

model and our current state of knowledge. The prior predictive is a distribution
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over data, and gives the relative probability of different observable outcomes

before any data have been seen.

• Thirdly, the posterior distribution over parameters captures what we know about

the psychological variables having updated the prior information with the ev-

idence provided by data.

• Finally, the posterior predictive distribution tells us what data expect, given the

same model we started with, but with a current state of knowledge that has

been updated by the observed data. Again, the posterior predictive is a dis-

tribution over data, and gives the relative probability of different observable

outcomes after data have been seen.

As an example to illustrate these distributions, we return to the simple problem

of inferring a single underlying rate. Figure 3.8 presents the graphical model, and

is the same as Figure 3.1.

θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 3.8 Graphical model for inferring the rate of a binary process.

The script Rate 4.txt implements the graphical model in WinBUGS, and pro-

vides sampling for not just the posterior, but also for the prior, prior predictive and

posterior predictive.

# Prior and Posterior Prediction
model{

# Observed Data
k ~ dbin(theta,n)
# Prior on Rate Theta
theta ~ dbeta(1,1)
# Posterior Predictive
postpredk ~ dbin(theta,n)
# Prior Predictive
thetaprior ~ dbeta(1,1)
priorpredk ~ dbin(thetaprior,n)

}

To allow sampling from the prior, we use a dummy variable thetaprior that is

identical to the one we actually do inference on, but is itself independent of the

data, and so is never updated. Prior predictive sampling is achieved by the vari-

able priorpredk that samples data using the same Binomial, but relying on the
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prior rate. Posterior predictive sampling is achieved by the variable postpredk that

samples predicted data using the same Binomial as the actual observed data.

The code Rate 4.m or Rate 4.R sets observed data with k = 1 successes out of

n = 10 observations, and then calls WinBUGS to sample from the graphical model.

The code also draws the four distributions, two in the parameter space (the prior

and posterior for θ), and two in the data space (the prior predictive and posterior

predictive for k). It should look something like Figure 3.9.
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tFig. 3.9 Prior and posterior for the success rate (top panel), and prior and posterior predictive

for counts of the number of successes (bottom panel), based on data giving k = 1

successes out of n = 15 trials.

Exercises

Exercise 3.4.1 Make sure you understand the prior, posterior, prior predictive

and posterior predictive distributions, and how they relate to each other (e.g.,

why is the top panel of Figure 3.9 a line plot, while the bottom panel is a

bar graph?). Understanding these ideas is a key to understanding Bayesian

analysis. Check your understanding by trying other data sets, varying both k

and n.

Exercise 3.4.2 Try different priors on θ, by changing θ ∼ Beta
(

1, 1
)

to θ ∼

Beta
(

10, 10
)

, θ ∼ Beta
(

1, 5
)

, and θ ∼ Beta
(

0.1, 0.1
)

. Use the figures produced

to understand the assumptions these priors capture, and how they interact

with the same data to produce posterior inferences and predictions.

Exercise 3.4.3 Predictive distributions are not restricted to exactly the same ex-

periment as the observed data, but for any experiment where the inferred
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model parameters make predictions. In the current simple Binomial setting,

for example, predictive distributions could be found by a new experiment with

n′ 6= n observations. Change the graphical model, and Matlab or R code, to

implement this more general case.

Exercise 3.4.4 In October 2009, the Dutch newspaper “Trouw” reported on re-

search conducted by H. Trompetter, a student from the Radboud University

in the city of Nijmegen. For her undergraduate thesis, Hester had interviewed

121 older adults living in nursing homes. Out of these 121 older adults, 24

(about 20%) indicated that they had at some point been bullied by their fel-

low residents. Trompetter confidently rejected the suggestion that her study

may have been too small to draw reliable conclusions: “If I had talked to more

people, the result would have changed by one or two percent at the most.”

Is Trompetter correct? Use the code Rate 4.m or Rate 4.R, by changing the

dataset variable, to find the prior and posterior predictive for the relevant

rate parameter and bullying counts. Based on these distributions, do you agree

with Trompetter’s claims?

3.5 Posterior Prediction

One important use of posterior predictive distributions is to examine the descriptive

adequacy of a model. It can be viewed as a set of predictions about what data

the most expects to see, based on the posterior distribution over parameters. If

these predictions do not match the data already seen, the model is descriptively

inadequate.

As an example to illustrate this idea of checking model adequacy, we return to the

problem of inferring a common rate underlying two binary processes. Figure 3.10

presents the graphical model, and is the same as Figure 3.5.

θ

k1

n1

k2

n2

k1 ∼ Binomial(θ, n1)

k2 ∼ Binomial(θ, n2)

θ ∼ Beta(1, 1)

tFig. 3.10 Graphical model for inferring the common rate underlying two binary processes.

The script Rate 5.txt implements the graphical model in WinBUGS, and pro-

vides sampling for the posterior predictive distribution.

# Inferring a Common Rate, With Posterior Predictive
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model{
# Observed Counts
k1 ~ dbin(theta,n1)
k2 ~ dbin(theta,n2)
# Prior on Single Rate Theta
theta ~ dbeta(1,1)
# Posterior Predictive
postpredk1 ~ dbin(theta,n1)
postpredk2 ~ dbin(theta,n2)

}

The code Rate 5.m or Rate 5.R sets observed data with k1 = 0 successes out

of n1 = 10 observations, and k2 = 10 successes out of n2 = 10 observations.

The code draws the posterior distribution for the rate and the posterior predictive

distribution, as shown in Figure 3.11.
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tFig. 3.11 The posterior distribution of the common rate θ for two binary processes (left panel),

and the posterior predictive distribution (right panel), based on 0 and 10 successes

out of 10 observations.

The left panel shows the posterior distribution over the common rate θ for two

binary processes, which gives density to values near 0.5. The right panel shows

the posterior predictive distribution of the model, with respect to the two success

counts. The size of each square is proportional to the predictive mass given to each

possible combination of success count observations. The actual data observed in

this example, with 0 and 10 successes for the two counts, are shown by the cross.

Exercises

Exercise 3.5.1 Why is the posterior distribution in the left panel inherently one

dimensional, but the posterior predictive distribution in the right panel inher-

ently two-dimensional?

Exercise 3.5.2 What do you conclude about the descriptive adequacy of the

model, based on the relationship between the observed data and the posterior

predictive distribution?

Exercise 3.5.3 What can you conclude about the parameter θ?
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3.6 Joint Distributions

So far, we have almost always assumed that the number of successes k and number

of total observations n is known, but that the underlying rate θ is unknown. This

has meant that our parameter space has been one-dimensional. Everything learned

from data is incorporated into a single probability distribution representing the

relative likelihood of different values for the rate θ.

For many problems in cognitive science (and more generally), however, there will

be more than one unknown variable of interest, and they will interact. A simple

case of this general property is a binomial process in which both the rate θ and the

total number n unknown, and so the problem is to infer both simultaneously from

counts of successes k.

To make the problem concrete, suppose there are five helpers distributing a bun-

dle of surveys to houses. It is known that each bundle contained the same number

of surveys, n, but the number itself is not known. The only available relevant in-

formation is that the maximum bundle is Nmax = 500, and so n must be between

1 and Nmax.

In this problem, it is also not known what the rate of return for the surveys

is. But, it is assumed that each helper distributed to houses selected in a random

enough way that it is reasonable to believe the return rates are the same. It is also

assumed to be reasonable to set a prior on this common rate θ ∼ Beta
(

1, 1
)

.

Inferences can simultaneously be made about n and θ from the observed number

of surveys returned for each of the helpers. Assuming the surveys themselves are

able to be identified with their distributing helper when returned, the data will

take the form of m = 5 counts, one for each helper, giving the number of returned

surveys for each.

θ

ki

n

i helpers

ki ∼ Binomial(θ, n)

θ ∼ Beta(1, 1)

n ∼ Categorical( 1
nmax

, . . . , 1
nmax

)

tFig. 3.12 Graphical model for the joint inference of n and θ from a set of m observed counts of

successes k1, . . . , km.

The graphical model for this problem is shown in Figure 3.12, and the script

Survey.txt implements the graphical model in WinBUGS. Note the use of the

Categorical distribution, which gives probabilities to a finite set of nominal out-

comes.

# Inferring Return Rate and Numbers of Surveys from Observed Returns
model {
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# Observed Returns
for (i in 1:m){

k[i] ~ dbin(theta,n)
}
# Priors on Rate Theta and Number n
theta ~ dbeta(1,1)
n ~ dcat(p[])
for (i in 1:nmax){

p[i] <- 1/nmax
}

}

The code Survey.m or Survey.R uses the data k = {16, 18, 22, 25, 27}, and then

calls WinBUGS to sample from the graphical model. Figure 3.13 shows the joint

posterior distribution over n and θ as a scatter-plot, and the marginal distributions

of each as histograms.

It is clear that the joint posterior distributions carries more information than the

marginal posterior distributions. This is very important. It means that just looking

at the marginal distributions will not give a complete account of the inferences

made, and may provide a misleading account.
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tFig. 3.13 Joint posterior distribution (scatter-plot) of the probability of return θ and the

number of surveys m for observed counts k = {16, 18, 22, 25, 27}. The histograms

show the marginal densities. The red cross shows the expected value of the joint

posterior, and the green circle shows the mode (i.e., maximum likelihood), both

estimated from the posterior samples.

An intuitive graphical way to see that there is extra information in the joint

posterior is to see if it is well approximated by the product of the marginal distri-
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butions. Imagine sampling a point from the histogram for n, and then sampling one

from the histogram for θ, and plotting the two-dimensional point corresponding to

these samples. Then imagine repeating this process many times. It should be clear

the resulting scatter-plot would be different from the joint posterior scatter-plot in

Figure 3.13. So, the joint distribution carries information not available from the

marginal distributions.

For this example, it is intuitively obvious why the joint posterior distribution has

the clear non-linear structure it does. One possible way in which 20 surveys might

be returned is if there were only about 50 surveys, but 40% were returned. Another

possibility is that there were 500 surveys, but only a 4% return rate. In general,

the number and return rate can trade-off against each other, sweeping out the joint

posterior distribution seen in Figure 3.13.

Exercises

Exercise 3.6.1 The basic moral of this example is that it is often worth think-

ing about joint posterior distributions over model parameters. In this case

the marginal posterior distributions are probably misleading. Potentially even

more misleading are common (and often perfectly appropriate) point estimates

of the joint distribution. The red cross in Figure 3.13 shows the expected value

of the joint posterior, as estimated from the samples. Notice that it does not

even lie in a region of the parameter space with any posterior mass. Does this

make sense?

Exercise 3.6.2 The green circle in Figure 3.13 shows an approximation to the

mode (i.e., the sample with maximum likelihood) from the joint posterior

samples. Does this make sense?

Exercise 3.6.3 Try the very slightly changed data k = {16, 18, 22, 25, 28}. How

does this change the joint posterior, the marginal posteriors, the expected

point, and the maximum likelihood point? If you were comfortable with the

mode, are you still comfortable?2

Exercise 3.6.4 If you look at the sequence of samples in WinBUGS, some au-

tocorrelation is evident. The samples ‘sweep’ through high and low values

in a systematic way, showing the dependency of a sample on those immedi-

ately preceding. This is a deviation from the ideal situation in which pos-

terior samples are independent draws from the joint posterior. Try thinning

the sampling, taking only every 100th sample, by setting nthin=100 in Mat-

lab or n.thin=100 in R. To make the computational time reasonable, reduce

the number of samples to just 500. How is the sequence of samples visually

different with thinning?

2 This example is based heavily on one we read in a book, but we have lost the reference. If you
know which one, could you please let us know, so we can acknowledge it?



4
Inferences Involving Gaussian

Distributions

4.1 Inferring Means and Standard Deviations

One of the most common inference problems involves assuming data following a

Gaussian (also known as the ‘Normal’, ‘Central’, ‘Maxwellian’) distribution, and

inferring the mean and standard deviation of this distribution from a sample of

observed independent data.

The graphical model representation for this problem is shown in Figure 4.1.

The data are the n observations x1, . . . , xn. The mean of the Gaussian is µ and

the standard deviation is σ. WinBUGS parameterizes the Gaussian distribution

in terms of the mean and precision, not the mean and variance or the mean and

standard deviation. These are all simply related, with the variance being σ2 and

the precision being λ = 1/σ2.

The prior used for µ is intended to be only weakly informative . It is a Gaussian

centered on zero, but with very low precision (i.e., very large variance), and gives

prior probability to a wide range of possible means for the data. When the goal is

to estimate parameters, this sort of approach is relatively non-controversial.

Setting priors for standard deviations (or variances, or precisions) is trickier, and

certainly more controversial. If there is any relevant information that helps put the

data on scale, so that bounds can be set on reasonable possibilities for the standard

deviation, then setting a uniform over that range is advocated by Gelman (2006).

In this first example, we assume the data are all small enough that setting an upper

bound of 10 on the standard deviation covers all the possibilities.

xi

µ σ µ ∼ Gaussian(0, 0.001)

σ ∼ Uniform(0, 10)

xi ∼ Gaussian(µ, 1
σ2 )

i data

tFig. 4.1 Graphical model for inferring the mean and standard deviation of data generated by a

Gaussian distribution.

The script Gaussian.txt implements the graphical model in WinBUGS. Note

47
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the conversion of the standard deviation sigma into the precision parameter lambda

used to sample from a Gaussian.

# Inferring the Mean and Standard Deviation of a Gaussian
model{

# Data Come From A Gaussian
for (i in 1:n){

x[i] ~ dnorm(mu,lambda)
}
# Priors
mu ~ dnorm(0,.001)
sigma ~ dunif(0,10)
lambda <- 1/pow(sigma,2)

}

The code Gaussian.m or Gaussian.R creates some artificial data, and applies the

graphical model to make inferences from data. The code does not produce a graph,

or any other output. But all of the information you need to analyze the results is

in the returned variable samples.

Exercises

Exercise 4.1.1 Try a few data sets, varying what you expect the mean and stan-

dard deviation to be, and how many data you observe.

Exercise 4.1.2 Plot the joint posterior of µ and σ. Interpret the plot.

Exercise 4.1.3 Suppose you knew the standard deviation of the Gaussian was 1.0,

but still wanted to infer the mean from data. This is a realistic question: For

example, knowing the standard deviation might amount to knowing the noise

associated with measuring some psychological trait using a test instrument.

The xi values could then be repeated measures for the same person, and their

mean the trait value you are trying to infer. Modify the WinBUGS script and

Matlab or R code to do this. What does the revised graphical model look like?

Exercise 4.1.4 Suppose you knew the mean of the Gaussian was zero, but wanted

to infer the standard deviation from data. This is also a realistic question:

Suppose you know the error associated with a measurement is unbiased, so

its average or mean is zero, but you are unsure how much noise there is in the

instrument. Inferring the standard deviation is then a sensible way to infer

the noisiness of the instrument. Once again, modify the WinBUGS script and

Matlab or R code to do this. Once again, what does the revised graphical

model look like?

4.2 The Seven Scientists

This problem is from MacKay (2003, p. 309) where it is (among other things)

treated to a Bayesian solution, but not quite using a graphical modeling approach,

nor relying on computational sampling methods.
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Seven scientists with wildly-differing experimental skills all make a measurement

of the same quantity. They get the answers x = {−27.020, 3.570, 8.191, 9.898, 9.603,

9.945, 10.056}. Intuitively, it seems clear that the first two scientists are pretty inept

measurers, and that the true value of the quantity is probably just a bit below 10.

The main problem is to find the posterior distribution over the measured quantity,

telling us what we can infer from the measurement. A secondary problem is to infer

something about the measurement skills of the seven scientists.

The graphical model for one (good) way of solving this problem is shown in

Figure 4.2. The assumption is that all the scientists have measurements that follow

a Gaussian distribution, but with different standard deviations. However, because

they are all measuring the same quantity, each Gaussian has the same mean, it is

just the standard deviation that differs.

xiµ

σi

i data

µ ∼ Gaussian(0, 0.001)

σi ∼ InvSqrtGamma(0.001, 0.001)

xi ∼ Gaussian(µ, 1
σ2

i

)

tFig. 4.2 Graphical model for the seven scientists problem.

Notice the different approach to setting priors about the standard deviations

used in this example. This approach has a theoretical basis in scale invariance

arguments (i.e., choosing to set a prior so that changing the measurement scale of

the data does not affect inference). The invariant prior turns is improper (i.e., the

area under the curve is unbounded), meaning it is not really a distribution, but the

limit of a sequence of distributions (see Jaynes, 2003). WinBUGS requires proper

distributions always be used, and so the InvSqrtGamma
(

.001, .001
)

is intended as

a proper approximation to the theoretically-motivated improper prior. This raises

the issue of whether inference is sensitive to the essentially arbitrary value 0.001.

Gelman (2006) raises some other challenges to this approach. But, it is still worth

knowing about.

The script SevenScientists.txt code implements the graphical model in Fig-

ure 4.2 in WinBUGS.

# The Seven Scientists
model{

# Data Come From Gaussians With Common Mean But Different Precisions
for (i in 1:n){

x[i] ~ dnorm(mu,lambda[i])
}
# Priors
mu ~ dnorm(0,.001)
for (i in 1:n){
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lambda[i] ~ dgamma(.001,.001)
sigma[i] <- 1/sqrt(lambda[i])

}
}

Notice that the Inverse-SquareRoot-Gamma prior distribution is implemented

by first setting a prior for the precision, λ ∼ Gamma
(

.001, .001
)

and then re-

parameterization to the standard deviation.

The code SevenScientists.m or SevenScientists.R applies the seven scientist

data to the graphical model.

Exercises

Exercise 4.2.1 Draw posterior samples using the Matlab or R code, and reach con-

clusions about the value of the measured quantity, and about the accuracies

of the seven scientists.

Exercise 4.2.2 Change the graphical model in Figure 4.2 to use a uniform prior

over the standard deviation, as was done in Figure 4.1. Experiment with the

effect the upper bound of this uniform prior has on inference.

4.3 Repeated Measurement of IQ

In this example, we consider how to estimate the IQ of a set of people, each of whom

have done multiple IQ tests. The data are the measures xij for the i = 1, . . . , n

people and their j = 1, . . . , m repeated test scores.

We assume that the differences in repeated test scores are Gaussian error with

zero mean, but some unknown precision. The mean of the Gaussian of a person’s

test scores corresponds to their IQ measure. This will be different for each person.

The standard deviation of the Gaussians corresponds to the accuracy of the testing

instruments in measuring the one underlying IQ value. We assume this is the same

for every person, since it is conceived as a property of the tests themselves.

The graphical model for this problem is shown in Figure 4.3. Because we know

quite a bit about the IQ scale, it makes sense to set priors for the mean and

standard deviation using this knowledge. Our first attempts to set priors (these are

re-visited in the exercises) simply assume the actual IQ values are equally likely to

be anywhere between 0 and 300, and standard deviations are anywhere between 0

and 100.

The script IQ.txt implements the graphical model in WinBUGS.

# Repeated Measures of IQ
model{

# Data Come From Gaussians With Different Means But Common Precision
for (i in 1:n){

for (j in 1:m){
x[i,j] ~ dnorm(mu[i],lambda)
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xij

µi

σ

j tests

i people

µi ∼ Uniform(0, 300)

σ ∼ Uniform(0, 100)

xij ∼ Gaussian(µi,
1
σ2 )

tFig. 4.3 Graphical model for inferring the IQ from repeated measures.

}
}
# Priors
sigma ~ dunif(0,100)
lambda <- 1/pow(sigma,2)
for (i in 1:n){

mu[i] ~ dunif(0,300)
}

}

The code IQ.m or IQ.R creates a data set corresponding to there being three

people, with test scores of (90, 95, 100), (105, 110, 115), and (150, 155, 160), and

applies the graphical model.

Exercises

Exercise 4.3.1 Use the posterior distribution for each person’s µi to estimate their

IQ. What can we say about the precision of the IQ test?

Exercise 4.3.2 Now, use a more realistic prior assumption for the µi means. Theo-

retically, IQ distributions should have a mean of 100, and a standard deviation

of 15. This corresponds to having a prior of mu[i] ∼ dnorm(100,.0044), in-

stead of mu[i] ∼ dunif(0,300), because 1/152 = 0.0044. Make this change

in the WinBUGS script, and re-run the inference. How do the estimates of IQ

given by the means change? Why?

Exercise 4.3.3 Repeat both of the above stages (i.e., using both priors on µi)

with a new, but closely related, data set that has scores of (94, 95, 96), (109,

110, 111), and (154, 155, 156). How do the different prior assumptions affect

IQ estimation for these data. Why does it not follow the same pattern as the

previous data?



5 Some Examples Of Data Analysis

5.1 Pearson Correlation

The Pearson-product moment correlation coefficient, usually denoted r, is a very

widely-used measure of the relationship between two variables. It ranges between

+1, indicating a perfect positive linear relationship, to 0, indicating no linear rela-

tionship, to −1 indicating a perfect negative relationship. Usually the correlation r

is reported as a single point estimate, perhaps together with a frequentist signifi-

cance test.

But, rather than just having a single number to measure the correlation, it would

be nice to have a posterior distribution for r, saying how likely each possible level

of correlation was. There are frequentist confidence interval methods that try to

do this, as well as various analytic Bayesian results based on asymptotic approx-

imations (e.g., Donner & Wells, 1986). An advantage of using a computational

approach is the flexibility in the assumptions that can be made. It is possible to

set up a graphical model that allows inferences about the correlation coefficient for

any data generating process and set of prior assumptions about the correlation.

xi

µ σr

i data

µ1, µ2 ∼ Gaussian(0, 0.001)

σ1, σ2 ∼ InvSqrtGamma(0.001, 0.001)

r ∼ Uniform(−1, 1)

xi ∼ MvGaussian

(

(µ1, µ2) ,





σ2
1 rσ1σ2

rσ1σ2 σ2
2





−1
)

tFig. 5.1 Graphical model for inferring a correlation coefficient.

One graphical model for doing this is shown in Figure 5.1. The observed data

take the form xi = (xi1, xi2) for the ith observation, and, following the theory

behind the correlation coefficient, are modeled as draws from a multivariate Gaus-

sian distribution. The parameters of this distribution are the means and standard

deviations of the two dimensions, and the correlation coefficient that links them.

In Figure 5.1, the variances are given the approximations to non-informative

discussed earlier. The correlation coefficient itself is given a uniform prior over its

possible range. All of these choices would be easily modified, with one obvious

possible change being to give the prior for the correlation more density around 0.

52
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The script Correlation 1.txt implements the graphical model in WinBUGS.

# Pearson Correlation
model {

# Data
for (i in 1:n){

x[i,1:2] ~ dmnorm(mu[],TI[,])
}
# Priors
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
lambda[1] ~ dgamma(.001,.001)
lambda[2] ~ dgamma(.001,.001)
r ~ dunif(-1,1)
# Reparameterization
sigma[1] <- 1/sqrt(lambda[1])
sigma[2] <- 1/sqrt(lambda[2])
T[1,1] <- 1/lambda[1]
T[1,2] <- r*sigma[1]*sigma[2]
T[2,1] <- r*sigma[1]*sigma[2]
T[2,2] <- 1/lambda[2]
TI[1:2,1:2] <- inverse(T[1:2,1:2])

}

The code Correlation 1.m or Correlation 1.R includes two data sets. Both

involve fabricated data comparing response times (on the x-axis) with IQ mea-

sures (on the y-axis), looking for a correlation between simple measures of decision-

making and general intelligence.

For the first data set in the Matlab and R code, the results shown in Figure 5.2

are produced. The left panel shows a scatter-plot of the raw data. The right panel

shows the posterior distribution of r, together with the standard frequentist point-

estimate.
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tFig. 5.2 Data (left panel) and posterior distribution for correlation coefficient (right panel).

The broken line shows the frequentist point-estimate.
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Exercises

Exercise 5.1.1 The second data set in the Matlab and R code is just the first data

set from Figure 5.2 repeated twice. Set dataset=2 to consider these repeated

data, and interpret the differences in the posterior distributions for r.

Exercise 5.1.2 The current graphical model assumes that the values from the

two variables—the xi = (xi1, xi2)—are observed with perfect accuracy. When

might this be a problematic assumption? How could the current approach be

extended to make more realistic assumptions?

5.2 Pearson Correlation With Uncertainty

We now tackle the problem asked by the last question in the previous section,

and consider the correlations when there is uncertainty about the exact values of

variables. While it might be plausible that response time could be measured very

accurately, the measurement of IQ seems likely to be less precise. This uncertainty

should be incorporated in an assessment of the correlation between the variables.

yi

xi

µ σr

σ
e

i data

µi ∼ Gaussian(0, 0.001)

σi ∼ InvSqrtGamma(0.001, 0.001)

r ∼ Uniform(−1, 1)

yi ∼ MvGaussian

(

(µ1, µ2) ,





σ2
1 rσ1σ2

rσ1σ2 σ2
2





−1
)

xij ∼ Gaussian(yij, σ
e
j)

tFig. 5.3 Graphical model for inferring a correlation coefficient, when there is uncertainty

inherent in the measurements.

A simple approach for including this uncertainty is adopted by the graphical

model in Figure 5.3. The observed data still take the form xi = (xi1, xi2) for the

ith person’s response time and IQ measure. But these observations are now draws

from a Gaussian distribution, centered on the unobserved ‘true’ response time and

IQ of that person, denoted yi = (yi1, yi2). These true values are then modeled as

the x were in the previous model in Figure 5.1, as draws from the Multivariate

Gaussian distribution corresponding the correlation.

The precision of the measurements is captured by the standard deviations σ
e =

(σe
1, σ

e
2) of the Gaussian draws for the observed data, xij ∼ Gaussian

(

yij , σ
e
j

)

. The

graphical model in Figure 5.3 assumes that the standard deviations are known.



55 Pearson Correlation With Uncertainty

The script Correlation 2.txt implements the graphical model shown in Win-

BUGS.

# Pearson Correlation With Uncertainty in Measurement
model {

# Data
for (i in 1:n){

y[i,1:2] ~ dmnorm(mu[],TI[,])
for (j in 1:2){

x[i,j] ~ dnorm(y[i,j],lambdapoints[j])
}

}
# Priors
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
lambda[1] ~ dgamma(.001,.001)
lambda[2] ~ dgamma(.001,.001)
r ~ dunif(-1,1)
# Reparameterization
sigma[1] <- 1/sqrt(lambda[1])
sigma[2] <- 1/sqrt(lambda[2])
T[1,1] <- 1/lambda[1]
T[1,2] <- r*sigma[1]*sigma[2]
T[2,1] <- r*sigma[1]*sigma[2]
T[2,2] <- 1/lambda[2]
TI[1:2,1:2] <- inverse(T[1:2,1:2])

}

The code Correlation 2.m uses the same data set as in the previous section, but

has different data sets for different assumptions about the uncertainty in measure-

ment. In the first analysis, these are set to the values σe
1 = .03 for response times

(which seem likely to be measured accurately) and σe
2 = 1 for IQ (which seems near

the smallest plausible value). The results of this assumption using the model are

shown in Figure 5.4. The left panel shows a scatterplot of the raw data, together

with error bars representing the uncertainty quantified by the observed standard

deviations. The right panel shows the posterior distribution of r, together with the

standard frequentist point estimate.

Exercises

Exercise 5.2.1 Compare the results obtained in Figure 5.4 with those obtained

earlier using the same data in Figure 5.2, for the model without any account

of uncertainty in measurement.

Exercise 5.2.2 Generate results for the second data set, which changes σe
2 = 10

for the IQ measurement. Compare these results with those obtained assuming

σe
2 = 1.

Exercise 5.2.3 The graphical model in Figure 5.3 assumes the uncertainty for each

variable is known. How could this assumption be relaxed to the case where

the uncertainty is unknown?

Exercise 5.2.4 The graphical model in Figure 5.3 assumes the uncertainty for

each variable is the same for all observations. How could this assumption
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tFig. 5.4 Data (left panel), including error bars showing uncertainty in measurement, and

posterior distribution for correlation coefficient (right panel). The broken line shows

the frequentist point-estimate.

be relaxed to the case where, for examples, extreme IQs are less accurately

measured than IQs in the middle of the standard distribution?

5.3 The Kappa Coefficient of Agreement

An important statistical inference problem in a range of physical, biological, behav-

ioral and social sciences is to decide how well one decision-making method agrees

with another. An interesting special case considers only binary decisions, and views

one of the decision-making methods as giving objectively true decisions to which

the other aspires. This problem occurs often in medicine, when cheap or easily ad-

ministered methods for diagnosis are evaluated in terms of how well they agree with

a more expensive or complicated ‘gold standard’ method.

For this problem, when both decision-making methods make n independent as-

sessments, the data D take the form of four counts: a observations where both

methods decide ‘one’, b observations where the objective method decides ‘one’ but

the surrogate method decides ‘zero’, c observations where the objective method de-

cides ‘zero’ but the surrogate method decides ‘one’, and d observations where both

methods decide ‘zero’, with n = a+ b+ c+ d.

A variety of orthodox statistical measures have been proposed for assessing agree-

ment using these data (but see Basu, Banerjee, & Sen, 2000, for a Bayesian ap-

proach). Useful reviews are provided by Agresti (1992), Banerjee, Capozzoli, Mc-

Sweeney, and Sinha (1999), Fleiss, Levin, and Paik (2003), Kraemer (1992), Krae-

mer, Periyakoil, and Noda (2004) and Shrout (1998). Of all the measures, however,

it is reasonable to argue that the conclusion of Uebersax (1987) that “the kappa
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coefficient is generally regarded as the statistic of choice for measuring agreement”

(p. 140) remains true.

Cohen’s (1960) kappa statistic estimates the level of observed agreement

po =
a+ d

n

relative to the agreement that would be expected by chance alone (i.e., the overall

probability for the first method to decide ‘one’ times the overall probability for the

second method to decide ‘one’, and added to this the overall probability for the

second method to decide ‘zero’ times the overall probability for the first method to

decide ‘zero’)

pe =
(a+ b) (a+ c) + (b + d) (c+ d)

n2
,

and is given by

κ =
po − pe

1− pe

.

Kappa lies on a scale of −1 to +1, with values below 0.4 often interpreted as

“poor” agreement beyond chance, values between 0.4 and 0.75 interpreted as “fair

to good” agreement beyond chance, and values above 0.75 interpreted as “excellent”

agreement beyond chance (Landis & Koch, 1977). The key insight of kappa as a

measure of agreement is its correction for chance agreement.

D

πa πb πc πd

αβ γ

κξ ψ

κ ← (ξ − ψ)/ (1− ψ)

ξ ← αβ + (1− α) γ

ψ ← (πa + πb) (πa + πc) + (πb + πd) (πc + πd)

α, β, γ ∼ Beta(1, 1)

πa ← αβ

πb ← α (1− β)

πc ← (1− α) (1− γ)

πd ← (1− α) γ

D ∼ Multinomial([πa, πb, πc, πd] , n)

tFig. 5.5 Graphical model for inferring the kappa coefficient of agreement.

The graphical model for a Bayesian version of kappa is shown in Figure 5.5. The
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key latent variables are α, β and γ. The rate α is the rate at which the gold standard

method decides ‘one’. This means (1− α) is the rate at which the gold standard

method decides ‘zero’. The rate β is the rate at which the surrogate method decides

‘one’ when the gold standard also decides ‘one’. The rate γ is the rate at which the

surrogate method decides ‘zero’ when the gold standard decides ‘zero’. The best

way to interpret β and γ is that they are the rate of agreement of the surrogate

method with the gold standard, for the ‘one’ and ‘zero’ decisions respectively.

Using the rates α, β and γ, it is possible to calculate the probabilities that both

methods will decide ‘one’, πa = αβ, that the gold standard will decide ‘one’ but

the surrogate will decide zero, πb = α (1− β), the gold standard will decide ‘zero’

but the surrogate will decide ‘one’, πc = (1− α) (1− γ), and that both methods

will decide ‘zero’, πd = (1− α) γ.

These probabilities, in turn, describe how the observed data, D, made up of the

counts a, b, c, and d, are generated. They come from a Multinomial distribution

with n trials, where on each trial there is a πa probability of generating an a count,

πb probability for a b count, and so on.

So, observing the data D allows inferences to be made about the key rates α, β

and γ. The remaining variables in the graphical model in Figure 5.5 just re-express

these rates in the way needed to provide an analogue to the kappa measure of chance

corrected agreement. The ξ variable measures the observed rate of agreement, which

is ξ = αβ + (1− α) γ. The ψ variable measures the rate of agreement that would

occur by chance, which is ψ = (πa + πb) (πa + πc) + (πb + πd) (πc + πd), and could

be expressed in terms of α, β and γ. Finally κ is the chance corrected measure of

agreement on the −1 to +1 scale, given by κ = (ξ − ψ) / (1− ψ).

The script Kappa.txt implements the graphical model in WinBUGS.

# Kappa Coefficient of Agreement
model {

# Underlying Rates
# Rate objective method decides ’one’
alpha ~ dbeta(1,1)
# Rate surrogate method decides ’one’ when objective method decides ’one’
beta ~ dbeta(1,1)
# Rate surrogate method decides ’zero’ when objective method decides ’zero’
gamma ~ dbeta(1,1)
# Probabilities For Each Count
pi[1] <- alpha*beta
pi[2] <- alpha*(1-beta)
pi[3] <- (1-alpha)*(1-gamma)
pi[4] <- (1-alpha)*gamma
# Count Data
d[1:4] ~ dmulti(pi[],n)
# Derived Measures
# Rate surrogate method agrees with the objective method
xi <- alpha*beta+(1-alpha)*gamma
# Rate of chance agreement
psi <- (pi[1]+pi[2])*(pi[1]+pi[3])+(pi[2]+pi[4])*(pi[3]+pi[4])
# Chance corrected agreement
kappa <- (xi-psi)/(1-psi)

}
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The code Kappa.m or Kappa.R includes several data sets, described in the Exer-

cises below, to WinBUGS to sample from the graphical model.

Exercises

Exercise 5.3.1 Influenza Clinical Trial Poehling, Griffin, and Dittus (2002) re-

ported data evaluating a rapid bedside test for influenza using a sample of

233 children hospitalized with fever or respitory symptoms. Of the 18 children

known to have influenza, the surrogate method identified 14 and missed 4. Of

the 215 children known not to have influenza, the surrogate method correctly

rejected 210 but falsely identified 5. These data correspond to a = 14, b = 4,

c = 5, and d = 210. Examine the posterior distributions of the interesting

variables, and reach a scientific conclusion. That is, pretend you are a consul-

tant for the clinical trial. What would your two- or three-sentence ‘take home

message’ conclusion be to your customers?

Exercise 5.3.2 Hearing Loss Assessment Trial Grant (1974) reported data from

a screening of a pre-school population intended to assess the adequacy of a

school nurse assessment of hearing loss in relation to expert assessment. Of

those children assessed as having hearing loss by the expert, 20 were correctly

identified by the nurse and 7 were missed. Of those assessed as not having

hearing loss by the expert, 417 were correctly diagnosed by the nurse but

103 were incorrectly diagnosed as having hearing loss. These data correspond

to a = 20, b = 7, c = 103, d = 417. Once again, examine the posterior

distributions of the interesting variables, and reach a scientific conclusion.

Once again, what would your two- or three-sentence ‘take home message’

conclusion be to your customers?

Exercise 5.3.3 Rare Disease Suppose you are testing a cheap instrument for de-

tecting a rare medical condition. After 170 patients have been screened, the

test results shower 157 did not have the condition, but 13 did. The expen-

sive ground truth assessment subsequently revealed that, in fact, none of the

patients had the condition. These data correspond to a = 0, b = 0, c = 13,

d = 157. Apply the kappa graphical model to these data, and reach a conclu-

sion about the usefulness of the cheap instrument. What is special about this

data set, and what does it demonstrate about the Bayesian approach?

5.4 Change Detection in Time Series Data

This case study involves near-infrared spectrographic data, in the form of oxy-

genated hemoglobin counts of frontal lobe activity during an attention task in

Attention Deficit Hyperactivity Disorder (ADHD) adults. This gets up the quinella

of sounding neuro and clinical, and so must be impressive and eminently fundable

work.
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The interesting modeling problem is that a change is expected in the time series

of counts because of the attention task. The statistical problem is to identify the

change. To do this, we are going to make a number of strong assumptions. In

particular, we will assume that the counts come from a Gaussian distribution that

always has the same variance, but changes its mean at one specific point in time.

The main interest is therefore in making an inference about this change point.

µ1 µ2λ

ci tiτ

i samples

µ1, µ2 ∼ Gaussian(0, 0.001)

λ ∼ Gamma(0.001, 0.001)

τ ∼ Uniform(0, tmax)

ci ∼







Gaussian(µ1, λ) if ti < τ

Gaussian(µ2, λ) if ti ≥ τ

tFig. 5.6 Graphical model for detecting a single change-point in time series.

Figure 5.6 presents a graphical model for detecting the change point. The ob-

served data are the counts ci at time ti for the ith sample. The unobserved variable

τ is the time at which the change happens, and so controls whether the counts have

mean µ1 or µ2. A uniform prior over the full range of possible times is assumed for

the change point, and generic weakly informative priors are given to the means and

the precision.

The script ChangeDetection.txt implements this graphical model in WinBUGS.

# Change Detection
model {

# Data Come From A Gaussian
for (i in 1:n){

c[i] ~ dnorm(mu[z1[i]],lambda)
}
# Group Means
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
# Common Precision
lambda ~ dgamma(.001,.001)
sigma <- 1/sqrt(lambda)
# Which Side is Time of Change Point?
for (i in 1:n){

z[i] <- step(t[i]-tau)
z1[i] <- z[i]+1

}
# Prior On Change Point
tau ~ dunif(0,tmax)

}

Note the use of the step function. This function returns 1 if its argument is greater

than or equal to zero, and 0 otherwise. The z1 variable, however, serves as an

indicator variable for mu, and therefore it needs to take on values 1 and 2. This is
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tFig. 5.7 Identification of change-point in time series data.

the reason z is transformed to z1. Study this code and make sure you understand

what the step function accomplishes in this example.

The code ChangeDetection.m or ChangeDetection.R applies the model to the

near-infrared spectrographic data. Uniform sampling is assumed, so that t =

1, . . . , 1778.

The code produces a simple analysis, finding the mean of the posteriors for τ ,

µ1 and µ2, and using these summary points to overlay the inferences over the raw

data. The result look something like Figure 5.7.

Exercises

Exercise 5.4.1 Draw the posterior distributions for the change-point, the means,

and the common standard deviation.

Exercise 5.4.2 Figure 5.7 shows the mean of the posterior distribution for the

change-point (this is the point in time where the two horizontal lines meet).

Can you think of a situation in which such a plotting procedure can be mis-

leading?

Exercise 5.4.3 Imagine that you apply this model to a data set that has two

change-points instead of one. What could happen?

5.5 Censored Data

Starting 13 April 2005, Cha Sa-soon, a 68-year old grandmother living in Jeonju,

South Korea, repeatedly tried to pass the written exam for a driving license. In

South Korea, this exam features 50 four-choice questions. In order to pass, a score

of at least 60 points out of a maximum of 100. Accordingly, we assume that each
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correct answer is worth 2 points, so that in order to pass one needs to answer at

least 30 questions correctly.

What makes Cha Sa-soon special is that she failed to pass the test on 949 con-

secutive occasions, spending the equivalent of 4,200 US dollars on application fees.

In her last, 950th attempt, Cha Sa-soon scored the required minimum of 30 correct

questions and finally obtained her written exam. After her 775th failure, in Febru-

ary 2009, Mrs Cha told Reuters news agency “I believe you can achieve your goal

if you persistently pursue it. So don’t give up your dream, like me. Be strong and

do your best.”

We know that on her final and 950th attempt, Cha Sa-soon answered 30 questions

correctly. In addition, news agencies report that in her 949 unsuccessful attempts,

the number of correct answers had ranged from 15 to 25. Armed with this knowl-

edge, what can we say about θ, the latent probability that Cha Sa-soon can answer

any one question correctly? Note that we assume each question is equally difficult,

and that Cha Sa-soon does not learn from her earlier attempts.

What makes these data special is that for the failed attempts, we do not know

the precise scores. We only know that these scores range from 15 to 25. In statistical

terms, these data are said to be censored, both from below and above. We follow

and approach inspired by Gelman and Hill (2007, p. 405) to apply WinBUGS to

the problem of dealing with censored data.

yi

n

zi

θ

i attempts

θ ∼ Beta(1, 1)

zi ∼ Binomial(θ, n)

15 ≤ zi ≤ 25 if yi = 1

tFig. 5.8 Graphical model for inferring a rate from observed and censored data.

Figure 5.8 presents a graphical model for dealing with the censored data. The

variable zi represents both the first 949 unobserved, and the final observed attempt.

It is called a ‘partially observed’ variable, and is shaded more lightly to denote this.

The variable yi is a simple binary indicator variable, denoting whether or not the

ith attempt is observed. The bounds zlo = 15 and zhi = 25 give the known censored

interval for the unobserved attempts. Finally, n = 50 is the number of questions in

the test. This means that zi ∼ Binomial
(

θ, n
)

I(zlo,zhi)
when yi indicates a censored

attempt, but is not censored for the final known score z950 = 30. Note that this

means zi is observed once, but not observed the other times. This sort of variable

is known as partially observed , and is denoted in the graphical model by a lighter

shading (between the dark shading of fully observed nodes, and the lack of shading

for fully unobserved or latent nodes).
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tFig. 5.9 Posterior density for Cha Sa-soon’s rate of answering questions correctly.

The script ChaSaSoon.txt implements this graphical model in WinBUGS.

# ChaSaSoon Censored Data
model
{
for (i in 1:nattempts){

# If the Data Were Unobserved y[i]=1, Otherwise y[i]=1
z.low[i] <- 15*equals(y[i],1)+0*equals(y[i],0)
z.high[i] <- 25*equals(y[i],1)+n*equals(y[i],0)
z[i] ~ dbin(theta,n)I(z.low[i],z.high[i])

}
# Uniform Prior on Rate Theta
theta ~ dbeta(1,1)

}

Note the use of the equals command, which returns 1 when its arguments match,

and 0 when they mismatch. Thus, when y[i]=1, for censored data, z.low[i] is set

to 15 and z.hi[i] is set to 25. When y[i]=0 z.low[i] is set to 0 and z.hi[i]

is set to n. These z.low[i] and z.hi[i] values are then applied to censor the

Binomial distribution that generates the test scores.

The code ChaSaSoon.m or ChaSaSoon.R applies the model to the data from Cha

Sa-soon. The posterior density for θ is shown in Figure 5.9, and can be seen to be

relatively peaked. Despite the fact that we do not know the actual scores for 949

of the 950 results, we are still able to infer a lot about θ.
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Exercises

Exercise 5.5.1 Do you think Cha Sa-soon could have passed the test by just guess-

ing?

Exercise 5.5.2 What happens when you increase the interval in which you know

the data are located, from 15–25 to something else?

Exercise 5.5.3 What happens when you decrease the number of failed attempts?

Exercise 5.5.4 What happens when you increase Cha Sa-soon’s final score from

30?

Exercise 5.5.5 Do you think the assumption that all of the scores follow a Bi-

nomial distribution with a single rate of success is a good model for these

data?

5.6 Population Size

An interesting inference problem that occurs in a number of fields is to estimate

the size of a population, when a census is impossible, but repeated surveying is

possible. For example, the goal might be to estimate the number of animals in a

large woodland area that cannot be search exhaustively. Or, the goal might be to

decide how many students are on a campus, but it is not possible to count them

all.

A clever sampling approach to this problem is given by capture-and-recapture

methods. The basic idea is to capture (i.e., identify, tag, or otherwise remember) a

sample at one time point, and then collect another sample. The number of items

in the second sample that were also in the first then provides relevant information

as to the population size.

Probably the simplest possible version of this approach can be formalized with

t as the population total, x as the number in the first sample, n as the number in

the second sample, and k as the number in both samples. That is, x animals are

tagged or people remembered in the first sample, then k out of n are seen again

(i.e., recaptured) in the second sample.

The statistical model to relate the counts, and make inferences about the popu-

lation size t based on the hypergeometric distribution, so that the probability that

the true underlying population is t is given by
(

x
k

)(

t−x
n−k

)

(

t

n

) .

This makes intuitive sense, since the second sample involves taking n items from a

population of t, and has k out of x recaptures, n− k other items out of the other

t− x in the population.

The Bayesian approach to this problem involves putting a prior on t, and using the

hypergeometric distribution as the appropriate likelihood function. Conceptually,
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t

k

n

x
k ∼ Hypergeometric(n, x, t)

t ∼ Categorical(α)

tFig. 5.10 Graphical model for inferring a population from capture and recapture data.

this means k ∼ Hypergeometric
(

n, x, t
)

, as in the graphical model in Figure 5.10.

The vector α allows for any sort of prior mass to be given to all the possible counts

for the population total. Since, x+(n − k) items are known to exist, one reasonable

choice of prior might be to make every possibility from x+ (n− k) to tmax equally

likely, where tmax is a sensible upper bound on the possible population.

While simple conceptually, there is a a difficulty in implementing the graphical

model in Figure 5.10. The problem is that WinBUGS does not provide the hyper-

geometric distribution. It is, however, possible to implement distributions that are

not provided, but for which the likelihood function can be expressed in WinBUGS.

This can be done using the either the so-called ‘ones trick’ or ‘zeros trick’. These

tricks rely on simple properties of the Poisson and Bernoulli distributions. By im-

plementing the likelihood function of the new distribution within the Poisson or

Bernoulli distribution, and forcing values of 1 or 0 to be sampled, it can be shown

that the samples actually generated will come from the desired distribution.1

The script Population.txt implements the graphical model in Figure 5.10 in

WinBUGS, using the zeros trick. Note how the terms in the log-likelihoodexpression

for the hypergeometric distribution are built up to define phi, and a constant C is

used to insure the Poisson distribution is used with a positive value.

# Population
model{

# Hypergeometric Likelihood Via Ones Trick
logterm1 <- logfact(x)-logfact(k)-logfact(x-k)
logterm2 <- logfact(t-x)-logfact(n-k)-logfact((t-x)-(n-k))
logterm3 <- logfact(t)-logfact(n)-logfact(t-n)
C <- 1000
phi <- -(logterm1+logterm2-logterm3)+C
zeros <- 0
zeros ~ dpois(phi)
# Prior on Population Size
for (i in 1:tmax){

tptmp[i] <- step(i-(n-k+x))
tp[i] <- tptmp[i]/sum(tptmp[1:tmax])

1 The negative log-likelihood of a sample of 0 from Poisson
`

φ
´

is φ. The likelihood of a sample

of 1 from Bernoulli
`

θ
´

is θ. So, by setting log φ or θ appropriately, and forcing 1 or 0 to be
observed, sampling effectively proceeds from the distribution defined by φ or θ.
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tFig. 5.11 Posterior mass for the population size, known to be 50 or fewer, based on a

capture-recapture experiment with x = 10 items in the first sample, and k = 4 out of

n = 5 recaptured in the second sample.

}
t ~ dcat(tp[])

}

The code Population.m or Population.R applies the model to the data x =

10, k = 4, and n = 5, using uniform prior mass for all possible sizes between

x + (n − k) = 11 and tmax = 50. The posterior distribution for t is shown in

Figure 5.11. The inference is that it is mostly likely there are not many more than

6 items, which makes intuitive sense, since 4 out of 5 in the second sample were

from the original set of 10.

Exercises

Exercise 5.6.1 Try changing the number of items recaptured in the second sample

from k = 4 to k = 0. What inference do you draw about the population size

now?

Exercise 5.6.2 How important is it that the upper bound tmax = 50 correspond
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closely to available information when k = 4 and when k = 0? Justify your

answer by trying both the k = 4 and k = 0 cases with tmax = 100.

Exercise 5.6.3 Suppose, having obtained the posterior mass in Figure 5.11, the

same population was subjected to a new capture-recapture experiment (e.g.,

with a different means of identifying or tagging). What would be an appro-

priate prior for t?
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6.1 Exam Scores

Suppose a group of 15 people sit an exam made up of 40 true-or-false questions,

and they get 21, 17, 21, 18, 22, 31, 31, 34, 34, 35, 35, 36, 39, 36, and 35 right. These

scores suggest that the first 5 people were just guessing, but the last 10 had some

level of knowledge.

One way to make statistical inferences along these lines is to assume there are two

different groups of people. These groups have different probabilities of success, with

the guessing group having a probability of 0.5, and the knowledge group having a

probability greater than 0.5. Whether each person belongs to the first or the second

group is a latent and unobserved variable that can take just two values. Using this

approach, the goal is to infer to which group each person belongs, and also the rate

of success for the knowledge group.

n

ki

θi

zi

ψφ

i people

zi ∼ Bernoulli(0.5)

ψ ← 0.5

φ ∼ Uniform(0.5, 1)

θi ∼







φ if zi = 1

ψ if zi = 0

ki ∼ Binomial(θi, n)

tFig. 6.1 Graphical modeling for inferring membership of two latent groups, with different rates

of success in answering exam questions.

A graphical model for doing this is shown in Figure 6.1. The number of correct

answers for the ith person is ki, and is out of n = 40. The probability of success on

each question for the ith person is the rate θi. This rate is either φ0, if the person is

68
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in the guessing group, or φ1 if the person is in the knowledge group. Which group

they are in is determined by their binary indicator variable zi, with zi = 0 if the

ith person is in the guessing group, and zi = 1 is they are in the knowledge group.

We assume each of these indicator variables equally likely to be 0 or 1 a priori,

so they have the prior zi ∼ Bernoulli
(

1/2
)

. For the guessing group, we assume

that the rate is φ0 = 1/2. For the knowledge group, we use a prior where all rate

possibilities greater than 1/2 are equally likely, so that φ1 ∼ Uniform
(

0.5, 1
)

.

The script ExamsQuizzes 1.txt implements the graphical model in WinBUGS.

# Exam Scores
model{

# Each Person Belongs To One Of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(0.5)
z1[i] <- z[i]+1

}
# First Group Just Guesses
phi[1] <- 0.5
# Second Group Has Some Unknown Greater Rate Of Success
phi[2] ~ dunif(0.5,1)
# Data Follow Binomial With Rate Given By Each Person’s Group Assignment
for (i in 1:p){

theta[i] <- phi[z1[i]]
k[i] ~ dbin(theta[i],n)

}
}

Notice the use of a dummy variable z1[i] <- z[i]+1, which—just as in the

change-detection example in Section 5.4—allows WinBUGS array structures to be

indexed in assigning theta[i].

The code ExamsQuizzes 1.m or ExamsQuizzes 1.R makes inferences about group

membership, and the success rate of the knowledge group, using the model.

Exercises

Exercise 6.1.1 Draw some conclusions about the problem from the posterior dis-

tribution. Who belongs to what group, and how confident are you?

Exercise 6.1.2 The initial allocations of people to the two groups in this code is

random, and so will be different every time you run it. Check that this does

not affect the final results from sampling.

Exercise 6.1.3 Include an extra person in the exam, with a score of 28 out of 40.

What does their posterior for z tell you?

Exercise 6.1.4 What happens if you change the prior on the success rate of the

second group to be uniform over the whole range (0, 1), and so allow for

worse-than-guessing performance?

Exercise 6.1.5 What happens if you change the initial expectation that everybody

is equally likely to belong to either group, and have an expectation that people

generally are not guessing, with (say), zi ∼ Bernoulli
(

0.9
)

?
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6.2 Exam Scores With Individual Differences

The previous example shows how sampling can naturally and easily find discrete

latent groups. But the model itself has at least one big weakness, which is that it

assumes all the people in the knowledge group have exactly the same rate of success

on the questions.

One straightforward way to allow for individual differences in the knowledge

group is to extend the model hierarchically. This involves drawing the success rate

for each of the people in the knowledge group from an over-arching distribution.

One convenient (but not perfect) choice for this ‘individual differences’ distribution

is a Gaussian. It is a natural statistical model for individual variation, at least in

the absence of any rich theory. But it has the problem of allowing for success rates

below zero and above one. An inelegant but practical and effective way to deal with

this is simply to censor the sampled success rates to the valid range.

µ

λ

n

ki

θi

zi

ψφi

i people
zi ∼ Bernoulli(0.5)

µ ∼ Uniform(0.5, 1)

λ ∼ Gamma(0.001, 0.001)

φi ∼ Gaussian(µ, λ)

ψ ← 0.5

θi ←







φi if zi = 1

ψ if zi = 0

ki ∼ Binomial(θi, n)

tFig. 6.2 Graphical model for inferring membership of two latent groups, with different rates of

success in answering exam questions, allowing for individual differences in the

knowledge group.

A graphical model that implements this idea is shown in Figure 6.2. It extends

the original model by having a knowledge group success rate φi1 for the ith person.

These success rates are drawn from a Gaussian distribution with mean µ and pre-

cision λ. The mean µ is given a Uniform prior between 0.5 and 1.0, consistent with

the original assumption that people in the knowledge group have a greater than

chance success rate.

The script ExamsQuizzes 2.txt implements the graphical model in WinBUGS.

# Exam Scores With Individual Differences
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model {
# Data Follow Binomial With Rate Given By Each Person’s Group Assignment
for (i in 1:p){

k[i] ~ dbin(theta[i,z1[i]],n)
}
# Each Person Belongs To One Of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(0.5)
z1[i] <- z[i]+1

}
# The Second Group Now Allows Individual Differences
# So There Is a Rate Per Person
for (i in 1:p){

# First Group Is Still Just Guesses
theta[i,1] <- 0.5
# Second Group Drawn From A Censored Gaussian Distribution
thetatmp[i,2] ~ dnorm(mu,lambda)

theta[i,2] <- min(1,max(0,thetatmp[i,2])) # Censor The Probability To (0,1)
}
# Second Group Mean, Precision (And Standard Deviation)
mu ~ dunif(0.5,1) # Greater Than 0.5 Average Success Rate
lambda ~ dgamma(.001,.001)
sigma <- 1/sqrt(lambda)
# Posterior Predictive For Second Group
predphitmp ~ dnorm(mu,lambda)
predphi <- min(1,max(0,predphitmp))

}

Notice that is includes a posterior predictive variable predphi for the knowledge

group success rates of each person.

The code ExamsQuizzes 2.m or ExamsQuizzes 2.R makes inferences about group

membership, the success rate of each person the knowledge group, and the mean

and standard deviation of the over-arching Gaussian for the knowledge group.

Exercises

Exercise 6.2.1 Compare the results of the hierarchical model with the original

model that did not allow for individual differences.

Exercise 6.2.2 Interpret the posterior distribution of by the variable predphi.

How does this distribution relate to the posterior distribution for mu?

Exercise 6.2.3 What does the posterior distribution for the variable theta[1,2]

mean?

Exercise 6.2.4 In what sense could the latent assignment of people to groups in

this case study be considered a form of model selection?

6.3 Twenty Questions

Suppose a group of 10 people attend a lecture, and are asked a set of 20 questions

afterwards, with every answer being either correct or incorrect. The pattern of data
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is shown in Table 6.1. From this pattern of correct and incorrect answers we want

to infer two things. The first is how well each person attended to the lecture. The

second is how hard each of the questions was.

Table 6.1 Correct and incorrect answers for 10 people on 20 questions.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0

Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0

Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0

Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Person 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

One way to make these inferences is to specify a model of how a person’s at-

tentiveness and a question’s difficulty combine to give an overall probability the

question will be answered correctly. A very simple model involves assuming each

person listens to some proportion of the lecture, and that each question has some

probability of being answered correctly if the person was listening at the right point

in the lecture.

kij

θijpi qj

i people
j questions

pi, qj ∼ Beta(1, 1)

θij ← piqj

kij ∼ Bernoulli(θij)

tFig. 6.3 Graphical model for inferring the rate people listened to a lecture, and the difficulty of

the questions.

A graphical model that implements this idea is shown in Figure 6.3. Under the

model, if the ith person’s probability of listening is pi, and the jth question’s

probability of being answered correctly if the relevant information is heard is qj,

then the probability the ith person will answer the jth question correctly is just
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θij = piqj. The observed pattern of correct and incorrect answers, where kij = 1

if the ith person answered the jth question correctly, and kij = 0 if they did not,

then is a draw from a Bernoulli distribution with probability θij .

The script TwentyQuestions.txt implements the graphical model in WinBUGS.

# Twenty Questions
model {
# Correctness Of Each Answer Is Bernoulli Trial
for (i in 1:np){

for (j in 1:nq){
k[i,j] ~ dbern(theta[i,j])

}
}
# Probability Correct Is Product Of Question By Person Rates
for (i in 1:np){

for (j in 1:nq){
theta[i,j] <- p[i]*q[j]

}
}
# Priors For People and Questions
for (i in 1:np){

p[i] ~ dbeta(1,1)
}
for (j in 1:nq){

q[j] ~ dbeta(1,1)
}

}

The code TwentyQuestions.m or TwentyQuestions.R makes inferences about

the data in Table 6.1 using the model.

Exercises

Exercise 6.3.1 Draw some conclusions about how well the various people listened,

and about the difficulties of the various questions. Do the marginal posterior

distributions you are basing your inference on seem intuitively reasonable?

Exercise 6.3.2 Now suppose that three of the answers were not recorded, for what-

ever reason. Our new data set, with missing data, now take the form shown

in Table 6.2.

Bayesian inference will automatically make predictions about these missing

values (i.e., “fill in the blanks”) by using the same probabilistic model that

generated the observed data. Missing data are entered as nan (“not a number”)

in Matlab, and NA (“not available”) in R or WinBUGS. Including the variable

k as one to monitor when sampling will then provide posterior values for the

missing values. That is, it provides information about the relative likelihood of

the missing values being each of the possible alternatives, using the statistical

model and the available data.

Look through the Matlab or R code to see how all of this is implemented in

the second dataset. Run the code, and interpret the posterior distributions

for the three missing values. Are they reasonable inferences?
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Table 6.2 Correct, incorrect and missing answers for 10 people on 20
questions.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 ? 0 0 1 0 1 0 0

Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0

Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0

Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Person 8 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 ? 0 0

6.4 The Two Country Quiz

Suppose a group of people take a historical quiz, and each answer for each person is

scored as correct or incorrect. Some of the people are Thai, and some are Moldovan.

Some of the questions are about Thai history, and would be very likely to be known

by any Thai person, but very unlikely to be known by people from outside the

region. The rest of the questions are about Moldovan history, and would be very

likely to be known by any Moldovan, but not by others.

We do not know who is Thai or Moldovan, and we do not know the content of

the questions. All we have are the data shown in Table 6.3. Spend some time just

looking at the data, and try to infer which people are from the same country, and

which questions relate to their country.

A good way to make these inferences formally is to assume there are two types

of answers. For those where the nationality of the person matches the origin of the

question will be correct with high probability. For those where a person is being

asked about the other country will have a very low probability of being correct.

A graphical model that implements this idea is shown in Figure 6.4. The rate

α is the (expected to be high) probability of a person from a country correctly

answering a question about their country’s history. The rate β is the (expected

to be low) probability of a person correctly answering a question about the other

country’s history. To capture the knowledge about the rates, the priors constrain

α ≥ β, by defining alpha ∼ dunif(0,1) and beta ∼ dunif(0,alpha). At first

glance, this might seem inappropriate, since it specifies a prior for one parameter

in terms of another (unknown, and being inferred) parameter. Conceptually, it is

clearer to think of this syntax as a (perhaps clumsy) way to specify a joint prior
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Table 6.3 Correct, incorrect and missing answers for 8 people on 8 questions.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

kij

θijxi zj

α β

i people
j questions

α ∼ Uniform(0, 1)

β ∼ Uniform(0, α)

xi ∼ Bernoulli(0.5)

θij ←







α if xi = zj

β if xi 6= zj

kij ∼ Bernoulli(θij)

tFig. 6.4 Graphical model for inferring the country of origin for people and questions.

over α and β in which the α ≥ β. Graphically, the parameter space over (α, β) is

a unit square, and the prior being specified is the half of the square on one side of

the diagonal line α = β.

In the remainder of the graphical model, the binary indicator variable xi assigns

the ith person to one or other country, and zj similarly assigns the jth question to

one or other country. The probability the ith person will answer the jth question

correctly is θij, which is simply α if the country assignments match, and β if they

do not. Finally, the actual data kij indicating whether or not the answer was correct

follow a Bernoulli distribution with rate θij .

The script TwoCountryQuiz.txt implements the graphical model in WinBUGS.

# The Two Country Quiz
model {

# Probability Of Not Forgetting And Guessing
alpha ~ dunif(0,1) # Match
beta ~ dunif(0,alpha) # Mismatch
# Group Membership For People and Questions
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for (i in 1:np){
pz[i] ~ dbern(0.5)
pz1[i] <- pz[i]+1

}
for (j in 1:nq){

qz[j] ~ dbern(0.5)
qz1[j] <- qz[j]+1

}
# Probability Correct For Each Person-Question Comination By Groups
# High If Person Group Matches Question Group
# Low If No Match
for (i in 1:np){

for (j in 1:nq){
theta[i,j,1,1] <- alpha
theta[i,j,1,2] <- beta
theta[i,j,2,1] <- beta
theta[i,j,2,2] <- alpha

}
}
# Data Are Bernoulli By Rate
for (i in 1:np){

for (j in 1:nq){
k[i,j] ~ dbern(theta[i,j,pz1[i],qz1[j]])

}
}

}

The code TwoCountryQuiz.m or TwoCountryQuiz.R makes inferences about the

data in Table 6.3 using the model.

Exercises

Exercise 6.4.1 Interpret the posterior distributions for x[i], z[j], alpha and

beta. Do the formal inferences agree with your original intuitions?

Exercise 6.4.2 The priors on the probabilities of answering correctly capture

knowledge about what it means to match and mismatch, by imposing an

order constraint α ≥ β. Change the code so that this information is not in-

cluded, by using priors alpha∼dbeta(1,1) and beta∼dbeta(1,1). Run a

few chains against the same data, until you get an inappropriate, and perhaps

counter-intuitive, result. Describe the result, and discuss why it comes about.

Exercise 6.4.3 Now suppose that three extra people enter the room late, and

begin to take the quiz. One of them (Late Person 1) has answered the first

four questions, the next (Late Person 2) has only answered the first question,

and the final new person (Late Person 3) is still sharpening their pencil, and

has not started the quiz. This situation can be represented as an updated data

set, now with missing data, as in Table 6.4. Interpret the inferences the model

makes about the nationality of the late people, and whether or not they will

get the unfinished questions correct.

Exercise 6.4.4 Finally, suppose that you are now given the correctness scores for

a set of 10 new people, whose data were not previously available, but who
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Table 6.4 Correct, incorrect and missing answers for 8 people and 3 late
people on 8 questions.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

Late Person 1 1 0 0 1 ? ? ? ?

Late Person 2 0 ? ? ? ? ? ? ?

Late Person 3 ? ? ? ? ? ? ? ?

form part of the same group of people we are studying. The updated data

set is shown in Table 6.5. Interpret the inferences the model makes about the

nationality of the new people. Revisit the inferences about the late people,

and whether or not they will get the unfinished questions correct. Does the

inference drawn by the model for the third late person match your intuition?

There is a problem here. How could it be fixed?

6.5 Latent Group Assessment of Malingering

Armed with the knowledge from the previous sections we now consider a ques-

tion of considerable practical interest: how to detect if people are cheating on

a test. For instance, people who have been in a car accident may seek financial

compensation from insurance companies by feigning cognitive impairment such as

pronounced memory loss1. When these people are confronted with a memory test

that is intended to measure the extent of their impairment, they may deliberately

under-perform. This behavior is called malingering, and it may be accompanied by

performance that is much worse than that which is displayed by real amnesiacs.

For instance, malingerers may perform substantially below chance.

However, malingerers may not always be easy to detect, and this is when Bayesian

inference with latent mixture models can be helpful. Not only can we classify people

in two categories—those who malinger and those who are truthful or bona fide—but

we can also quantify our confidence in each classification.

1 pronounced mem-uh-ree los.
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Table 6.5 Correct, incorrect and missing answers for 8 people, 3 late people,
and 10 new people on 8 questions.

Question

A B C D E F G H

New Person 1 1 0 0 1 1 0 0 1

New Person 2 1 0 0 1 1 0 0 1

New Person 3 1 0 0 1 1 0 0 1

New Person 4 1 0 0 1 1 0 0 1

New Person 5 1 0 0 1 1 0 0 1

New Person 6 1 0 0 1 1 0 0 1

New Person 7 1 0 0 1 1 0 0 1

New Person 8 1 0 0 1 1 0 0 1

New Person 9 1 0 0 1 1 0 0 1

New Person 10 1 0 0 1 1 0 0 1

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

Late Person 1 1 0 0 1 ? ? ? ?

Late Person 2 0 ? ? ? ? ? ? ?

Late Person 3 ? ? ? ? ? ? ? ?

In an experimental study on malingering, each of p = 22 participants was con-

fronted with a memory test. One group of participants was told to do their best;

these are the bona fide participants. The other group of participants was told to

under-perform by deliberately simulating amnesia. These are the malingerers. Out

of a total of n = 45 test items, the participants get 45, 45, 44, 45, 44, 45, 45, 45,

45, 45, 30, 20, 6, 44, 44, 27, 25, 17, 14, 27, 35, and 30 correct. Because this was an

experimental study, we know that the first 10 participants were bona fide and the

next 12 were instructed to malinger.

The first analysis is straightforward and very similar to the one we did in Sec-

tion 6.1. We assume that all bona fide participants have the same ability, and so

have the same rate φb of answering each question correctly. For the malingerers,

the rate of answering questions correctly is given by φm, and φb > φm.

The script Malingering 1.txt implements the graphical model in WinBUGS.

# Malingering
model
{



79 Individual Differences in Malingering

n

ki

θizi

ψb ψm

i people

ψb ∼ Uniform(0.5, 1)

ψm ∼ Uniform(0, ψb)

zi ∼ Bernoulli(0.5)

θi ←







ψb if zi = 1

ψm if zi = 0

ki ∼ Binomial(θi, n)

tFig. 6.5 Graphical model for the detection of malingering.

# Each person belongs to one of two latent groups
for (i in 1:p){

z[i] ~ dbern(0.5)
z1[i] <- z[i]+1

}
# Bonafide group has unknown success rate above chance
psi[1] ~ dunif(0.5,1)
# Malingering group has unknown rate of success below bonafide
psi[2] ~ dunif(0,psi[1])
# Data are binomial with group rate of each person
for (i in 1:p){

theta[i] <- psi[z1[i]]
k[i] ~ dbin(theta[i],n)

}
}

Notice the restriction in the dunif command, which prevents the so-called model

indeterminacy or label-switching problem by ensuring that φb > φm.

The code Malingering 1.m or Malingering 1.R allows you to draw conclusions

about group membership and the success rate of the two groups.

Exercises

Exercise 6.5.1 What are your conclusions about group membership? Did all par-

ticipants follow the instructions?

6.6 Individual Differences in Malingering

As before, it may seem needlessly restrictive to assume that all members of a group

have the same chance of answering correctly. So now we assume that the ith partic-
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ipant in each group has a unique rate parameter, θi, which is constrained by group

level distributions.

In Section 6.2, we used group level Gaussians. The problem with that approach

is that values can lie outside the range 0 to 1. These values can just be excluded

from consideration, as we did with the censoring, but this solution is not elegant.

One of several alternatives is to assume that instead of being Gaussian, the group

level distribution is Beta
(

α, β
)

. The α and β values can be thought of as counts of

“prior successes” and “prior failures”, respectively. Because the Beta distribution is

defined on the interval from 0 to 1 it respects the natural boundaries of rates. So we

now have a model in which each individual binomial rate parameter is constrained

by a group level Beta distribution—this complete model is known as the beta-

binomial.

It is useful to transform the α and β parameters from the Beta distribution to a

group mean µ = α/(α+β) and a group precision λ = α+β. In a first attempt, one

may then assign uniform priors to both µb (the group-level mean for the bona fide

participants) and µm (the group-level mean for the malingerers). Unfortunately,

this assignment does not reflect our knowledge that µb > µm, and so is subject to

label-switching. To avoid this problem we could use the dunif(0,mu bon) syntax

used in the previous example.

However, here we solve the label-switching problem differently. We first define

µm as the additive combination of µb and a difference parameter, as follows:

logit(µmal) = logit(µb) − µd. Note that this is an additive combination on the

logit scale, as is customary in beta-binomial models. The logit transformation is

defined as logit(θ) ≡ ln(θ/(1− θ)) and it transforms values on the rate scale (rang-

ing from 0 to 1) to values on the logit scale (ranging from −∞ to ∞). The logit

transformation is shown in Figure 6.6.

Next, we assign µd a positive-only Gaussian distribution, that is, mu diff ∼

dnorm(0,0.5)I(0,). This insures that the group mean of the malingerers is never

larger than that of the bona fide participants, and the label-switching problem is

solved.

One final note concerns the base rate of malingering φ. In the previous example

we set the base rate equal to 0.5. Now, we assign the base rate φ a prior distribution,

and use the data to infer group membership and at the same time learn about the

base rate.

A graphical model that implements the above ideas is shown in Figure 6.7. The

script Malingering 2.txt implements the graphical model in WinBUGS.

# Malingering, with individual differences
model {
# Each person belongs to one of two latent groups
for (i in 1:p){

z[i] ~ dbern(phi) # phi is the base rate
z1[i] <- z[i]+1

}
# Relatively uninformative prior on base rate
phi ~ dbeta(5,5)
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tFig. 6.6 The logit transformation. Probabilities θ range from 0 to 1 and are mapped to the

entire real using the logit transform, logit(θ) ≡ ln(θ/(1 − θ)). This transformation is

particularly useful for the modeling of additive effects.

# Data are binomial with rate of each person
for (i in 1:p){

k[i] ~ dbin(theta[i,z1[i]],n)
theta[i,1] ~ dbeta(alpha[1],beta[1])
theta[i,2] ~ dbeta(alpha[2],beta[2])

}
# Transformation to group mean and precision
alpha[1] <- mubon * lambdabon
beta[1] <- lambdabon * (1-mubon)
# Additivity on logit scale
logit(mumal) <- logit(mubon) - mudiff
alpha[2] <- mumal * lambdamal
beta[2] <- lambdamal * (1-mumal)
# Priors
mubon ~ dbeta(1,1)
mudiff ~ dnorm(0,0.5)I(0,) # Constrained to be postive
lambdabon ~ dunif(40,800)
lambdamal ~ dunif(4,100)

}

The code Malingering 2.m or Malingering 2.R allows you to draw conclusions

about group membership and the success rate of the two groups.
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n

ki

θizi

µbµm

µd

λbλm

φ

i people

µb ∼ Beta(1, 1)

µd ∼ Gaussian(0, 0.5)
I(0,∞)

λb ∼ Uniform(40, 800)

λm ∼ Uniform(4, 100)

zi ∼ Bernoulli(φ)

θi ∼







Beta(µbλb, (1− µb) λb) if zi = 0

Beta(µmλm, (1− µm)λm) if zi = 1

ki ∼ Binomial(θi, n)

logitµm ← logitµb + µd

φ ∼ Beta(5, 5)

tFig. 6.7 Graphical model for inferring membership of two latent groups, consisting of

malingerers and bona fide participants. Each participant has their own rate of

answering memory questions correctly, coming from group level distributions that

have their means constrained so that the bona fide group is greater than that for the

malingerers.

Exercises

Exercise 6.6.1 Assume you know that the base rate of malingering is 10%. Change

the WinBUGS script to reflect this knowledge. Do you expect any differences?

Exercise 6.6.2 Assume you know for certain that participants 1, 2, and 3 are bona

fide. Change the code to reflect this knowledge.

Exercise 6.6.3 Suppose you add a new participant. What number of questions

answered correctly by this participant would lead to the greatest uncertainty

about their group membership?

Exercise 6.6.4 Try to solve the label-switching problem by using the

dunif(0,mu bon) trick instead of the logit transform.

Exercise 6.6.5 Why do you think the priors for λb and λm are different?

6.7 Alzheimer’s Recall Test Cheating

In this section, we apply the same latent mixture model shown in Figure 6.7 to

different memory test data. Simple recognition and recall tasks are an important

part of screening for Alzheimer’s Disease and Related Disorders (ADRD), and are
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sometimes administered over the telephone. This practice raises the possibility of

people cheating by, for example, writing down the words they are being asked to

remember.

The data we use come from an informal experiment, in which 118 people (actually,

employees of an insurance company familiar with administering these tests) were

asked either to complete the test normally (giving a total of 61 bona fide people),

or were instructed to cheat (giving a total of 57 malingerers). The particular test

used was a complicated sequence of immediate and delayed free recall tasks, which

we simplify to give a simple score correct out of 40 for each person.

We assume that both the bona fide and malingering groups come from different

populations, following the model in Figure 6.7. Note that we expect the mean of the

malingerers to be higher, since the impact of cheating is to recall more words than

would otherwise be the case. The script Cheating.txt implements the analysis in

WinBUGS

# Cheating Latent Mixture Model
model
{
# Each Person Belongs To One Of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(phi) # phi is the Base Rate
z1[i] <- z[i]+1

}
# Relatively Uninformative Prior on Base Rate
phi ~ dbeta(5,5)
# Data Follow Binomial With Rate Given By Each Person’s Group Assignment
for (i in 1:p){

k[i] ~ dbin(theta[i,z1[i]],n)
thetatmp[i,1] ~ dbeta(alpha[1],beta[1])

theta[i,1] <- max(.001,min(.999,thetatmp[i,1]))
thetatmp[i,2] ~ dbeta(alpha[2],beta[2])

theta[i,2] <- max(.001,min(.999,thetatmp[i,2]))
}
# Transformation to Group Mean and Precision
alpha[1] <- mubon * lambdabon
beta[1] <- lambdabon * (1-mubon)
# Additivity on Logit Scale
logit(mumal) <- logit(mubon) - mudiff
alpha[2] <- mumal * lambdamal
beta[2] <- lambdamal * (1-mumal)
# Priors
mubon ~ dbeta(1,1)
mudifftmp ~ dnorm(0,0.5)
mudiff <- max(0,mudifftmp) # Constrained to be Postive
lambdabon ~ dunif(5,50)
lambdamal ~ dunif(5,50)
# Correct Count
for (i in 1:p){

pct[i] <- equals(z[i],truth[i])
}
pc <- sum(pct[1:p])

}
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tFig. 6.8 The distribution of total correct recall scores for the Alzheimer’s data, and

classification performance. The top panel shows the distribution of scores for the bona

fide and malingering groups. The bottom panel shows, with the line, the accuracy

achieved using various cut offs to separate the groups, and, with the distribution, the

accuracy achieved by the latent mixture model.

This script is essentially the same as for the previous example, although it modifies

the priors on the precisions of the group distributions. It also includes a variable

pc that keeps track of the accuracy of each classification sample made in sam-

pling, by comparing each person’s latent assignment to the known truth from the

experimental design.

The code Cheating.m or Cheating.R applies the graphical model to the data.

We focus our analysis of the results firstly on the classification accuracy of the

model. The top panel of Figure 6.8 summarizes the data, showing the distribution

of correctly recalled words in both the bona fide and malingering groups. It is clear

that malingerers generally recall more words, but that there is overlap between the

groups.

One way to provide a benchmark classification accuracy is the consider the best

possible ‘cut off’. This is a total correct score below which a person is classified as

bona fide, and at or above which they are classified as a malingerer. The line in

the bottom panel in Figure 6.8 shows the classification accuracy for all possible cut

offs, which peaks at 86.4% accuracy using the cut off of 35. The green distribution

at the left of the panel is the posterior distribution of the pc variable, showing the

range of accuracy achieved by the latent mixture model.
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tFig. 6.9 The relationship between each person’s total correct recall score, and their posterior

classification as belonging to the bona fide or malingering group.

In general, using generative model to solve classification problems is unlikely

to work as well as the best discriminative methods from machine learning and

statistics. The advantage of the generative model is in providing details about the

underlying processes assumed to produce the data, particularly by quantifying un-

certainty. A good example of this general feature is shown in Figure 6.9, which

shows the relationship between the total correct raw data score, and the posterior

uncertainty about classification, for each person. This figure shows that the model

infers people with scores below 35 as more likely to be bona fide. But it also shows

how certain the model is about each classification, which provides more informa-

tion (and more probabilistically coherent information) than many machine learning

methods.

This information about uncertainty is useful, for example, if there are costs or

utilities associated with different classification decisions. Suppose that raising a

false-alarm and suspecting someone of cheating on the screening test costs $25, per-

haps through a wasted follow-up in person test, but that missing someone cheated

on the screening test costs $100, perhaps through providing insurance that should

not have been provided. With these utilities, the decision should be to classify peo-

ple as bona fide only if it is four times more likely than them being a malingerer. In

other words, we need 80% certainty they are bona fide. The posterior distribution

of the latent assignment variable z provides exactly this information. It is clear
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from Figure 6.9 only people with a total correct score below 30 (not 35) should be

treated as bona fide, under this set of utilities.

Exercises

Exercise 6.7.1 Suppose the utilities are very different, so that a false-alarm costs

$100, because of the risk of litigation in a false accusation, but misses are

relatively harmless, costing $10 in wasted administrative costs. What decisions

should be made about bona fide and malingering now?

Exercise 6.7.2 What other potential information, besides the uncertainty about

classification, does the model provide? Give at least one concrete example.
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Preface

This document contains answers to the exercises from the book “A Course in

Bayesian Graphical Modeling for Cognitive Science”. Contrary to popular belief,

statistical modeling is rarely a matter of right or wrong; instead, the overriding

concerns are reasonableness and plausibility. Therefore, you may find yourself dis-

agreeing with some of our intended solutions. Please let us know if you believe your

answer is clearly superior to ours, and—if we agree with you—we will adjust the

text accordingly.

Michael D. Lee

Irvine, USA

Eric-Jan Wagenmakers

Amsterdam, The Netherlands

August 2011
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2 The Basics of Bayesian Analysis

2.1 Answers: General Principles

Exercise 2.1.1 The famous Bayesian statistician Bruno de Finetti published two

big volumes entitled “Theory of Probability” (de Finetti, 1974). Perhaps

surprisingly, the first volume starts with the words “probability does not

exist”. To understand why de Finetti wrote this, consider the following

situation: someone tosses a fair coin, and the outcome will be either heads or

tails. What do you think the probability is that the coin lands heads? Now

suppose you are a physicist with advanced measurement tools, and you can

establish relatively precisely both the position of the coin and the tension

in the muscles immediately before the coin is tossed in the air—does this

change your probability? Now suppose you can briefly look into the future

(Bem, 2011), albeit hazily—is your probability still the same?

These different situations illustrate how the concept of probability is al-

ways conditional on background knowledge, and does not exist in a vacuum.

This idea is central to the subjective Bayesian school, a school that stresses how

inference is, in the end, dependent on personal beliefs.

Exercise 2.1.2 On his blog, prominent Bayesian Andrew Gelman wrote (March

18, 2010) “Some probabilities are more objective than others. The probability

that the die sitting in front of me now will come up ‘6’ if I roll it...that’s

about 1/6. But not exactly, because it’s not a perfectly symmetric die. The

probability that I’ll be stopped by exactly three traffic lights on the way to

school tomorrow morning: that’s...well, I don’t know exactly, but it is what

it is.” Was de Finetti wrong, and is there only one clearly defined probability

of Andrew Gelman encountering three traffic lights on the way to school

tomorrow morning?

A detailed knowledge of the layout of the traffic signs along the route will

influence your assessment of this probability, as well as your knowledge of how

busy traffic will be tomorrow morning, how often the traffic signs malfunction,

whether traffic will be rerouted because of construction, and so on When you

can look one day into the future, the probability of Andrew Gelman encountering

90
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three traffic lights on the way to school is either zero or one. As before, probability

statements are conditional on your background knowledge.

Exercise 2.1.3 Figure 1.1 shows that the 95% Bayesian credible interval for θ

extends from 0.59 to 0.98. This means that one can be 95% confident that

the true value of θ lies in between 0.59 and 0.98. Suppose you would do

an orthodox analysis and find the same confidence interval. What is the

orthodox interpretation of this interval?

The orthodox interpretation is that if you repeat the experiment very many

times, and every time determine the confidence interval in the same way as you

did for the observed data, then the true value of θ falls inside the computed

intervals for 95% of the replicate experiments. Note that this says nothing about

the confidence for the current θ, but instead refers to the long-run performance

of the confidence interval method across many hypothetical experiments.

Exercise 2.1.4 Suppose you learn that the questions are all true/false questions.

Does this knowledge affect your prior distribution? And if so, how would this

prior in turn affect your posterior distribution?

With true or false questions, zero ability corresponds to guessing, that is,

θ = .5. Because negative ability is deeply implausible (unless the questions are

deliberately misleading), it makes sense to have a uniform prior that ranges from

.5 to 1, and hence has zero mass below .5. Because there is no prior mass below

.5, there will also be no posterior mass below 0.5.

2.2 Answers: Prediction

Exercise 2.2.1 Instead of “integrating over the posterior”, orthodox methods

often use the “plug-in principle”; in this case, the plug-in principle suggest

that we predict p(krep) solely based on θ̂, the maximum likelihood estimate.

Why is this a bad idea in general? And can you think of a specific situation

in which this may not be so much of a problem?

The plug-in principle ignores uncertainty in θ, and therefore lead to pre-

dictions that are overconfident, that is, predictions that are less variable than

they should be (?, ?). The overconfidence increases with the width of the

posterior distribution. This also means that when the posterior is very peaked,

that is, when we are very certain about θ (for instance because we have observed

many data), the plug-in principle will only result in very little overconfidence.
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2.3 Answers: Sequential Updating

No exercises.

2.4 Answers: Markov Chain Monte Carlo

Exercise 2.4.1 Use Google and list some other scientific disciplines that use

Bayesian inference and MCMC sampling.

Bayesian inference is used in almost all scientific disciplines (but we wanted you

to discover this yourself).

Exercise 2.4.2 The text reads: “Using MCMC sampling, you can approximate

posterior distributions to any desired degree of accuracy”. How is this

possible?

By drawing more and more MCM samples, the discrepancy between the

true distribution and the histogram can be made arbitrarily small. Or, in other

words, longer chains yield better approximations.



3
Inferences Involving Binomial

Distributions

3.1 Answers: Inferring a Rate

Exercise 3.1.1 Alter the data to k = 50 and n = 100, and compare the posterior

for the rate θ to the original with k = 5 and n = 10.

When you have more information (i.e., high n) the posterior becomes

more peaked. This means that you are more certain about what values for the

difference are plausible, and what values are not.

Exercise 3.1.2 For both the k = 50, n = 100 and k = 5, n = 10 cases just

considered, re-run the analyses with many more samples (e.g., ten times as

many) by changing the nsamples variable in Matlab or the niter variable in

R. This will take some time, but there is an important point to understand.

What controls the width of the posterior distribution (i.e., the expression

of uncertainty in the rate parameter θ)? What controls the quality of the

estimate of the posterior (i.e., the smoothness of the histograms in the

figures)?

The width of the posterior distribution, expressing the uncertainty in the

single true underlying rate, is controlled by the available information in the

data. Thus, higher n leads to narrower posterior distributions. The quality of

the estimate, visually evident by the smoothness of the posterior histogram, is

controlled by how many samples are collected to form the approximation. Note

that these two aspects of the analysis are completely independent. It is possible

to have many data but just collect a few samples in a quick data analysis, to get

a crude approximation to a narrow posterior. Similarly, it is possible to have only

a few data, but collect many samples, to get a very close approximation to a

very broad posterior.

Exercise 3.1.3 Alter the data to k = 99 and n = 100, and comment on the shape

of the posterior for the rate θ.

The posterior distribution is not symmetric, because of the ‘edge effect’

given by the theoretical upper bound of one for the rate. This goes some way
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to demonstrating how a Bayesian posterior distribution can take any form, and

certainly does not have to be symmetric, or Gaussian, or in any other simple form.

Exercise 3.1.4 Alter the data to k = 0 and n = 1, and comment on what this

demonstrates about the Bayesian approach.

The fact that a posterior distribution exists at all shows that Bayesian

analysis can be done even when there are very few data. The posterior distri-

bution is very broad, reflecting the large uncertainty following from the lack of

information, but nonetheless represents (as always) everything that is known and

unknown about the parameter of interest.

3.2 Answers: Difference Between Two Rates

Exercise 3.2.1 Compare the data sets k1 = 8, n1 = 10, k2 = 7, n2 = 10 and

k1 = 80, n1 = 100, k2 = 70, n2 = 100.

When you have more information (i.e., high n) the posteriors–for the individual

rates, as well as for the difference between them that is of interest—become

more peaked. This means that you are more certain about what values for the

difference are plausible, and what values are not.

Exercise 3.2.2 Try the data k1 = 0, n1 = 1, k2 = 0, n2 = 5.

The key to understanding the posterior is that you can be relatively sure

that θ2 is small, but you cannot be so sure about the value of θ1.

Exercise 3.2.3 In what context might different possible summaries of the poste-

rior distribution of δ (i.e., point estimates, or credible intervals) be reasonable,

and when might it be important to show the full posterior distribution?

In general, point estimates (usually mean, median, or mode) and credible

intervals are appropriate when they convey much the same information as would

be gained from examining the whole posterior distribution. For example, if the

posterior distribution is symmetric and with a small variance, its mean is a good

summary of the entire distribution.
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3.3 Answers: Inferring a Common Rate

Exercise 3.3.1 Try the data k1 = 14, n1 = 20, k2 = 16, n2 = 20. How could you

report the inference about the common rate θ?

One reasonable reporting strategy here might be to use a measure for

central tendency, such as a mean, median, or mode, together with a credible

interval, for instance a 95% credible interval.

Exercise 3.3.2 Try the data k1 = 0, n1 = 10, k2 = 10, n2 = 10. What does this

analysis infer the common rate θ to be? Do you believe the inference?

The analysis wants you to believe that the most plausible value for the

common rate is around 0.5. This example highlights that the posterior distri-

butions generated by a Bayesian analysis are conditional on the truth of the

observed data, and of the model. If the model is wrong in an important way,

the posteriors will be correct for that model, but probably not useful for the real

problem. If a single rate really did underly k1 = 0 and k2 = 10 then the rate

must be near a half, since it is the most likely way to generate those data. But

the basic assumption of a single rate seems problematic. The data suggest that

a rate of 0.5 is one of the least plausible values. Perhaps the data are generated

by two different rates, instead of one common rate.

Exercise 3.3.3 Compare the data sets k1 = 7, n1 = 10, k2 = 3, n2 = 10 and

k1 = 5, n1 = 10, k2 = 5, n2 = 10. Make sure, following on from the previous

question, that you understand why the comparison works the way it does.

The results for these data sets will be exactly the same. Because the model

assumes a common rate, both data sets can in fact be re-described as having

k = k1 + k2 = 10, n = n1 + n2 = 20.

3.4 Answers: Prior and Posterior Prediction

Exercise 3.4.1 Make sure you understand the prior, posterior, prior predictive

and posterior predictive distributions, and how they relate to each other

(e.g., why is the top panel of Figure 3.9 a line plot, while the bottom panel is

a bar graph?). Understanding these ideas is a key to understanding Bayesian

analysis. Check your understanding by trying other data sets, varying both

k and n.

Line plots are for continuous quantities (e.g., rate parameter θ) and bar plots are
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for discrete quantities (e.g., success counts of data).

Exercise 3.4.2 Try different priors on θ, by changing θ ∼ Beta
(

1, 1
)

to

θ ∼ Beta
(

10, 10
)

, θ ∼ Beta
(

1, 5
)

, and θ ∼ Beta
(

0.1, 0.1
)

. Use the figures

produced to understand the assumptions these priors capture, and how they

interact with the same data to produce posterior inferences and predictions.

One of the nice properties of using the θ ∼ Beta
(

α, β
)

prior distribution

for a rate θ, is that it has a natural interpretation. The α and β values can be

thought of as counts of “prior successes” and “prior failures”, respectively. This

means, using a θ ∼ Beta
(

3, 1
)

prior corresponds to having the prior information

that 4 previous observations have been made, and 3 of them were successes. Or,

more elaborately, starting with a θ ∼ Beta
(

3, 1
)

is the same as starting with

a θ ∼ Beta
(

1, 1
)

, and then seeing data giving two more successes (i.e., the

posterior distribution in the second scenario will be same as the prior distribution

in the first). As always in Bayesian analysis, inference starts with prior infor-

mation, and updates that information—by changing the probability distribution

representing the uncertain information—as more information becomes available.

When a type of likelihood function (in this case, the Binomial) does not change

the type of distribution (in this case, the Beta) going from the posterior to

the prior, they are said to have a “conjugate” relationship. This is valued a lot

in analytic approaches to Bayesian inference, because it makes for tractable

calculations. It is not so important for that reason in computational approaches,

because sampling methods can handle easily much more general relationships

between parameter distributions and likelihood functions. But conjugacy is still

useful in computational approaches because of the natural semantics it gives in

setting prior distributions.

Exercise 3.4.3 Predictive distributions are not restricted to exactly the same

experiment as the observed data, but for any experiment where the inferred

model parameters make predictions. In the current simple Binomial setting,

for example, predictive distributions could be found by a new experiment

with n′ 6= n observations. Change the graphical model, and Matlab or R

code, to implement this more general case.

The script Rate 4 answer.txt implements the modified graphical model.

# Prior and Posterior Prediction
model{

# Observed Data
k ~ dbin(theta,n)
# Prior on Rate Theta
theta ~ dbeta(1,1)
# Posterior Predictive
postpredk ~ dbin(theta,npred)
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# Prior Predictive
thetaprior ~ dbeta(1,1)
priorpredk ~ dbin(thetaprior,npred)

}

Exercise 3.4.4 In October 2009, the Dutch newspaper “Trouw” reported on

research conducted by H. Trompetter, a student from the Radboud Univer-

sity in the city of Nijmegen. For her undergraduate thesis, Trompetter had

interviewed 121 older adults living in nursing homes. Out of these 121 older

adults, 24 (about 20%) indicated that they had at some point been bullied

by their fellow residents. Trompetter confidently rejected the suggestion that

her study may have been too small to draw reliable conclusions: “If I had

talked to more people, the result would have changed by one or two percent

at the most.” Is Trompetter correct? Use the code Rate 4.m or Rate 4.R, by

changing the dataset variable, to find the prior and posterior predictive for

the relevant rate parameter and bullying counts. Based on these distributions,

do you agree with Trompetter’s claims?

The 95% credible interval on the predicted number of bullied elderly (out

of a total of 121) ranges from approximately (depending on sampling) 13 to 38.

This means that the percentage varies from 13/121 ≈ 10.7% to 38/121 ≈ 31.4%.

This is about a 20% spread, considerably more than Trompetter estimated.

3.5 Answers: Posterior Prediction

Exercise 3.5.1 Why is the posterior distribution in the left panel inherently

one dimensional, but the posterior predictive distribution in the right panel

inherently two-dimensional?

There is only one parameter, the rate θ, but there are two data, the success

counts k1 and k2.

Exercise 3.5.2 What do you conclude about the descriptive adequacy of the

model, based on the relationship between the observed data and the posterior

predictive distribution?

The posterior predictive mass, shown by the squares, is very small for the actual

outcome of the experiment, shown by the cross. The posterior prediction is

concentrated on outcomes (around k1 = k2 = 5) that are very different from the

data, and so the model does not seem descriptively adequate.

Exercise 3.5.3 What can you conclude about the parameter θ?

If the model is a good one, the posterior distribution for θ indicates that it is

somewhere between about 0.2 and 0.8, and most likely around 0.5. But, it seems
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unlikely the model is a good one, and so it is not clear anything useful can be

concluded about θ.

3.6 Answers: Joint Distributions

Exercise 3.6.1 The basic moral of this example is that it is often worth thinking

about joint posterior distributions over model parameters. In this case

the marginal posterior distributions are probably misleading. Potentially

even more misleading are common (and often perfectly appropriate) point

estimates of the joint distribution. The red cross in Figure 3.13 shows the

expected value of the joint posterior, as estimated from the samples. Notice

that it does not even lie in a region of the parameter space with any posterior

mass. Does this make sense?

In general, it seems unhelpful to have a point summary that is not a plausible

estimate of the true underlying value. One way to think about this result is in

terms of the goal of the point estimate. The mean in this example is trying to

minimize squared loss to the true value, and the possible values follow a curved

surface, causing it to lie in the interior. Another way to think about the location

of the mean is physically. It is the center of mass of the joint posterior (i.e., the

place where you would put your finger to make the curved scatterplot balance).

More mundanely, the expectation of the joint posterior is (by mathematical fact)

the combination of the expectations for each parameter taken independently.

Looking at the marginal posteriors, it is clear why the cross lies where it does.

Exercise 3.6.2 The green circle in Figure 3.13 shows an approximation to the

mode (i.e., the sample with maximum likelihood) from the joint posterior

samples. Does this make sense?

This estimate seems to be more useful, at least in the sense that it falls

on values that are plausible. In fact, it falls on the values with the highest density

in the (estimated) posterior. Think of it as sitting on top of the hill surface traced

out by the scatterplot. Nonetheless, it still seems unwise to try and summarize

the complicated and informative curved pattern shown by the joint posterior

scatterplot by a single set of values.

Exercise 3.6.3 Try the very slightly changed data k = {16, 18, 22, 25, 28}. How

does this change the joint posterior, the marginal posteriors, the expected

point, and the maximum likelihood point? If you were comfortable with the

mode, are you still comfortable?

The minor change to the data hardly affects the mean, but greatly shifts
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the mode. This shows that the mode can be very sensitive to the exact informa-

tion available, and is a non-robust summary in that sense. Metaphorically, the

hill traced out by the joint density scatterplot has a ‘ridge’ running along the top

that is very flat, and the single highest point can move a long way if the data are

altered slightly.

Exercise 3.6.4 If you look at the sequence of samples in WinBUGS, some auto-

correlation is evident. The samples ‘sweep’ through high and low values in a

systematic way, showing the dependency of a sample on those immediately

preceding. This is a deviation from the ideal situation in which posterior

samples are independent draws from the joint posterior. Try thinning the

sampling, taking only every 100th sample, by setting nthin=100 in Matlab

or n.thin=100 in R. To make the computational time reasonable, reduce

the number of samples to just 500. How is the sequence of samples visually

different with thinning?

With thinning, the sequence of samples no longer shows the visual pattern

of autocorrelation, as resembles more of a ‘block’ than a ‘curve’. One colorful

description of the ideal visual appearance of samples is as a ‘fat hairy caterpillar’.

Thinning is needed in this example to achieve that type of visual appearance.



4
Inferences Involving Gaussian

Distributions

4.1 Answers: Inferring Means and Standard
Deviations

Exercise 4.1.1 Try a few data sets, varying what you expect the mean and

standard deviation to be, and how many data you observe.

As usual, posterior distributions become more peaked the more data you

observe. The posterior distribution for µ should be located around the sample av-

erage. Highly variable numbers lead to a low precision λ, that is, a high standard

deviation σ. Note that with many data points, you may estimate the standard

deviation σ quite accurately (i.e., the posterior for σ can be very peaked).

In fact, with an infinite number of data, the posterior distribution converges

to a single point. This happens independently of whether the standard devia-

tion σ is large or small; for instance, after observing a large sequence of highly

variable data you can be relatively certain that the standard deviation is very high.

Exercise 4.1.2 Plot the joint posterior of µ and σ. Interpret the plot.

There is a tendency for the joint posterior to be U-shaped. This is be-

cause extreme values of µ are only plausible when σ is high.

Exercise 4.1.3 Suppose you knew the standard deviation of the Gaussian was 1.0,

but still wanted to infer the mean from data. This is a realistic question: For

example, knowing the standard deviation might amount to knowing the noise

associated with measuring some psychological trait using a test instrument.

The xi values could then be repeated measures for the same person, and their

mean the trait value you are trying to infer. Modify the WinBUGS script and

Matlab or R code to do this. What does the revised graphical model look like?

The script can be adjusted in several ways. The easiest is probably just to replace

the statement x[i] ∼ dnorm(mu,lambda) with x[i] ∼ dnorm(mu,1). In the

graphical model. This change means that the node for σ is now shaded, because

σ is no longer an unknown quantity that needs to be inferred.

Exercise 4.1.4 Suppose you knew the mean of the Gaussian was zero, but wanted

100
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to infer the standard deviation from data. This is also a realistic question:

Suppose you know the error associated with a measurement is unbiased, so

its average or mean is zero, but you are unsure how much noise there is

in the instrument. Inferring the standard deviation is then a sensible way

to infer the noisiness of the instrument. Once again, modify the WinBUGS

script and Matlab or R code to do this. Once again, what does the revised

graphical model look like?

Again, the script can be adjusted in several ways. Again, the easiest is

probably just to replace the statement x[i] ∼ dnorm(mu,lambda) with x[i]

∼ dnorm(0,lambda). In the graphical model, this change means that the node

for µ is now shaded, because µ is no longer an unknown quantity that needs

to be estimated. Follow-up question: if you set µ to zero as suggested above,

WinBUGS still provides a trace plot for µ. Why?

4.2 Answers: The Seven Scientists

Exercise 4.2.1 Draw posterior samples using the Matlab or R code, and reach

conclusions about the value of the measured quantity, and about the accura-

cies of the seven scientists.

The posterior distributions for most standard deviations are very skewed.

As a result, the posterior mean will be dominated by relatively low proportion of

extreme values. For this reason, it is more informative to look at the posterior

median. As expected, the first two scientists are pretty inept measurers and have

high estimates of sigma. The third scientist does better than the first two, but

also appears more inept than the remaining four.

Exercise 4.2.2 Change the graphical model in Figure 4.2 to use a uniform prior

over the standard deviation, as was done in Figure 4.1. Experiment with the

effect the upper bound of this uniform prior has on inference.

This exercise requires you to put a uniform distribution on sigma, so that the

code needs to read (for an upper bound of 100): sigma[i]∼ dunif(0,100).

Then lambda[i] <-1/pow(sigma[i],2). Note that this change also requires

that you change the Matlab or R code to assign initial values to sigma instead

of lambda, because now sigma is assigned a prior and lambda is calculated

deterministically from sigma, instead of the other way around.

When you make these changes you can see that the difference between

the scientists is reduced. To get a more accurate idea of what is going on you

may want to set the number of MCMC samples to 100,000 (and, optionally,
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set a thinning factor to 10, so that only every tenth sample is recorded –

this reduces the autocorrelation in the MCMC chains). As before, posterior

median for the first scientist is largest, followed by that of numbers two and

three.

4.3 Answers: Repeated Measurement of IQ

Exercise 4.3.1 Use the posterior distribution for each person’s µi to estimate

their IQ. What can we say about the precision of the IQ test?

The posterior means for the mu parameters are very close to the sample

means. The precision is 1/σ2, and because the posterior for sigma is concen-

trated around 6 the posterior precision is concentrated around 1/36 ≈ 0.03.

Exercise 4.3.2 Now, use a more realistic prior assumption for the µi means. Theo-

retically, IQ distributions should have a mean of 100, and a standard deviation

of 15. This corresponds to having a prior of mu[i] ~dnorm(100,.0044), in-

stead of mu[i] ~dunif(0,300), because 1/152 = 0.0044. Make this change in

the WinBUGS script, and re-run the inference. How do the estimates of IQ

given by the means change? Why?

Parameter mu[3] is now estimated to be around 150, which is 5 points

lower than the sample mean. Extremely high scores are tempered by the prior

expectation. That is, an IQ of 150 is much more likely, according to the prior,

than an IQ of 160. The same strong effect of the prior on inference is not evident

for the other people, because their IQ scores have values over a range for which

the prior is (relatively) flat.

Exercise 4.3.3 Repeat both of the above stages (i.e., using both priors on µi)

with a new, but closely related, data set that has scores of (94, 95, 96), (109,

110, 111), and (154, 155, 156). How do the different prior assumptions affect

IQ estimation for these data. Why does it not follow the same pattern as the

previous data?

The tempering effect of prior expectation has now disappeared, and even

under realistic prior assumptions the posterior means for mu are close to the

sample means. This happens because the data suggest that the test is very

accurate, and accurate data are more robust against the prior. One helpful way to

think about this is that the IQ test is now more informative (because it measures

more accurately), and that extra information now overwhelms the prior. Notice

how this example shows that is is not necessarily more data that is needed to
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remove the influence of priors, but rather more information. Often, of course,

the best way to get more information is to collect more data. But, another way

is to develop data that are more precisely measured, or in some other way more

informative.
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Some Examples Of Basic Data

Analysis

5.1 Answers: Pearson Correlation

Exercise 5.1.1 The second data set in the Matlab and R code is just the first

data set from Figure 5.2 repeated twice. Interpret the differences in the

posterior distributions for r for these two data sets.

With more data the posterior distribution for r becomes more peaked,

showing that there is less uncertainty about the true correlation coefficient when

more information is available.

Exercise 5.1.2 The current graphical model assumes that the values from the

two variables—the xi = (xi1, xi2)—are observed with perfect accuracy. When

might this be a problematic assumption? How could the current approach be

extended to make more realistic assumptions?

Very often in psychology, as with all empirical sciences, data are not mea-

sured with arbitrary precision. Other than nominal or ordinal variables (gender,

color, occupation, and so on), most variables are measured imperfectly. Some,

like response time, might be quite precise, consistent with measurement in the

physical sciences. Others, like IQ, or personality traits, are often very imprecise.

The current model makes the assumption that these sorts of measurements are

perfectly precise. Since they are the basis for the correlation coefficient, the

inference understates the uncertainty, and could lead to conclusions that are too

confident, or otherwise inappropriate. The next section shows one approach to

extending the model to address this problem.

5.2 Answers: Pearson Correlation With Uncertainty

Exercise 5.2.1 Compare the results obtained in Figure 5.4 with those obtained

earlier using the same data in Figure 5.2, for the model without any account

of uncertainty in measurement.

104
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The posterior distributions are (suprisingly, perhaps) quite similar.

Exercise 5.2.2 Generate results for the second data set, which changes σe
2 = 10

for the IQ measurement. Compare these results with those obtained assuming

σe
2 = 1.

These results are very different. Allowing the large (but perhaps plausibly

large, depending on the measurement instrument) uncertainty in the IQ data in-

troduces large uncertainty into inference about the correlation coefficient. Larger

values are more likely, but all possible values, including negative correlations,

remain plausible. Note also that the expectation of this posterior is the same as

in the case where the uncertainty of measurement is low or non-existent. This is

a good example of the need to base inference on posterior distributions, rather

than point estimates.

Exercise 5.2.3 The graphical model in Figure 5.3 assumes the uncertainty for

each variable is known. How could this assumption be relaxed to the case

where the uncertainty is unknown?

Statistically, it is straightforward to extend the graphical model, making

the σ
e variables into parameters with prior distributions, and allowing them to

be inferred from data. Whether the current data would be informative enough

about the uncertainty of measurement to allow helpful inference is less clear. It

might be that different sorts of data, like repeated measurements of the same

people’s IQs, are needed for this model to be effective. But is it straightforward

to implement.

Exercise 5.2.4 The graphical model in Figure 5.3 assumes the uncertainty for

each variable is the same for all observations. How could this assumption

be relaxed to the case where, for examples, extreme IQs are less accurately

measured than IQs in the middle of the standard distribution?

The basic statistical idea would be to model the σe
i2 variables, represent-

ing the ith persons error of measurement in their IQ score as a functions of µi2,

representing their IQ itself. This would express a relationship between where

people lie on the IQ scale, and how precisely their IQ can be measured. Whatever

relationship is chosen is itself a statistical model, formalizing assumptions about

this relationship, and so can have parameters that are given priors and inferred

from data.
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5.3 Answers: The Kappa Coefficient of Agreement

Exercise 5.3.1 Influenza Clinical Trial Poehling et al. (2002) reported data

evaluating a rapid bedside test for influenza using a sample of 233 children

hospitalized with fever or respitory symptoms. Of the 18 children known to

have influenza, the surrogate method identified 14 and missed 4. Of the 215

children known not to have influenza, the surrogate method correctly rejected

210 but falsely identified 5. These data correspond to a = 14, b = 4, c = 5,

and d = 210. Plot posterior distributions of the interesting variables, and

reach a scientific conclusion. That is, pretend you are a consultant for the

clinical trial. What would your two- or three-sentence ‘take home message’

conclusion be to your customers?

The surrogate method does a better job detecting the absence of influenza than

it does detecting the presence of influenza. The 95% Bayesian confidence interval

for kappa is (.51, .84), suggesting that the test is useful.

Exercise 5.3.2 Hearing Loss Assessment Trial Grant (1974) reported data from

a screening of a pre-school population intended to assess the adequacy of a

school nurse assessment of hearing loss in relation to expert assessment. Of

those children assessed as having hearing loss by the expert, 20 were correctly

identified by the nurse and 7 were missed. Of those assessed as not having

hearing loss by the expert, 417 were correctly diagnosed by the nurse but 103

were incorrectly diagnosed as having hearing loss. These data correspond to

a = 20, b = 7, c = 103, d = 417. Once again, plot posterior distributions of

the interesting variables, and reach a scientific conclusion. Once again, what

would your two- or three-sentence ‘take home message’ conclusion be to your

customers?

Compared to the expert, the nurse displays a bias to classify children as

having hearing loss. In addition, the nurse misses 7 out of 27 children with

hearing loss. The nurse is doing a poor job, and this is reflected in the 95%

credible interval for kappa of (approximately, up to sampling) (.12, .29).

Exercise 5.3.3 Rare Disease Suppose you are testing a cheap instrument for de-

tecting a rare medical condition. After 170 patients have been screened, the

test results shower 157 did not have the condition, but 13 did. The expen-

sive ground truth assessment subsequently revealed that, in fact, none of the

patients had the condition. These data correspond to a = 0, b = 0, c = 13,

d = 157. Apply the kappa graphical model to these data, and reach a conclu-

sion about the usefulness of the cheap instrument. What is special about this

data set, and what does it demonstrate about the Bayesian approach?
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The posterior mean for kappa is approximately .05, with a 95% credible interval

of approximately (0, .24). The data are noteworthy because the disease has never

been observed, so there are two zero cells, and a zero column sum. This poses

a challenge for frequentist estimators. In order to deal with the problem of zero

counts a frequentist may add a “1” to each cell in the design, but this amounts

to fabricating data. An attractive property of the Bayesian approach is that it is

always possible to do the analysis.

5.4 Answers: Change Detection in Time Series Data

Exercise 5.4.1 Draw the posterior distributions for the change-point, the means,

and the common standard deviation.

When you look at the trace plots, you may see that it takes a few sam-

ples for the chains to lose their dependence on the initial value that was used

as a starting point. These initial values are non-representative outliers, and they

also stretch out the y-axis of the trace plots. In the call to bugs, set burn-in to

10 and observe the change. We discuss this issue in detail in the chapter on

convergence.

With respect to the posterior distributions, it is worthwhile to note that

the key parameter tau is estimated relatively precisely around 732. One of the

reasons for this is that µ1 and µ2 are relatively easy to tell apart.

Exercise 5.4.2 Figure 5.7 shows the mean of the posterior distribution for the

change-point (this is the point in time where the two horizontal lines meet).

Can you think of a situation in which such a plotting procedure can be

misleading?

One case in which this procedure may be misleading is when the posterior

distribution is relatively wide (i.e., not peaked around its mean); in such a

situation, there is a lot of uncertainty about the location of the change-point,

and the plotting procedure, based on a point estimate, falsely suggests that the

location is determined precisely.

Exercise 5.4.3 Imagine that you apply this model to a data set that has two

change-points instead of one. What could happen?

In this case the model is seriously misspecified. The model assumes that

there are two regimes, but in reality there are three. One thing that could happen

is that the model groups together the two adjacent regimes that are most similar
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to each other and treats them as one. The problems that result should be visible

from mismatches between the posterior predictive distribution and the data.

5.5 Answers: Censored Data

Exercise 5.5.1 Do you think Cha Sa-soon could have passed the test by just

guessing?

It is unlikely that Cha Sa-soon was just guessing. First, the posterior dis-

tribution for theta is relatively peaked around .40, whereas chance performance

in a four-choice task is only 0.25. Second, the probability of scoring 30 or more

correct answers when guessing equals .00000016 (in R: 1-pbinom(29,50,.25)).

With this success probability, the number of attempts to pass the exam follows

a geometric distribution. Therefore we know that when guessing, the average

number of attempts equals 1/.00000016 ≈ 6, 097, 561, considerably more than

Cha Sa-soon required. The probability of guessing and “only” needing 950

attempts is a relatively low .00016 (in R: pgeom(950, prob=.00000016)).

In contrast, with a theta of .4 the the probability of scoring 30 or more correct

answers equals .0034 (in R: 1-pbinom(29,50,.40)). With this probability, the

associated expected number of attempts until success is 294, and the probability

of passing the exam and “only” needing 950 attempts is a relatively high 0.96.

Exercise 5.5.2 What happens when you increase the interval in which you know

the data are located, from 15–25 to something else?

Increasing the interval increases the posterior uncertainty for theta.

Exercise 5.5.3 What happens when you decrease the number of failed attempts?

When the number of failed attempts becomes low (say 20), the posterior

for theta becomes wider and shifts to values that are somewhat higher.

Exercise 5.5.4 What happens when you increase Cha Sa-soon’s final score from

30?

Not that much! Apparently, the extra information about Cha Sa-soon’s fi-

nal score is much less informative than the knowledge that she had failed 949

times (and with scores ranging from 15 to 25).

Exercise 5.5.5 Do you think the assumption that all of the scores follow a Bi-

nomial distribution with a single rate of success is a good model for these data?
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It seems to be a poor model. The chance of the same underlying rate

generating all of the censored scores below 25, and then producing the 30, can

be calculated according to the model, and is tiny. Alternative models would

assume some sort of change in the underlying rate. This could psychologically

correspond to learning, for at least some of the problems in the test, at some

point in the sequence of 950 attempts.
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Exams, Quizzes, Latent Groups, and

Missing Data

6.1 Answers: Exam Scores

Exercise 6.1.1 Draw some conclusions about the problem from the posterior

distribution. Who belongs to what group, and how confident are you?

Inspection of the z[i] nodes confirms that the first five people are con-

fidently assigned to the guessing group, and the remaining ten people are

confidently assigned to the knowledge group. The high confidence is clear from

the fact that the posteriors for z[i] are approximately located either at 0 or 1.

Exercise 6.1.2 The initial allocations of people to the two groups in this code is

random, and so will be different every time you run it. Check that this does

not affect the final results from sampling.

This is easily done by running the code again a few times.

Exercise 6.1.3 Include an extra person in the exam, with a score of 28 out of 40.

What does their posterior for z tell you?

Performance of the new participant is completely ambiguous. The poste-

rior for z is approximately 0.5, indicating that this participant is as likely to

belong to the guessing group as they are to belong to the knowledge group.

Exercise 6.1.4 What happens if you change the prior on the success rate of the

second group to be uniform over the whole range (0, 1), and so allow for

worse-than-guessing performance?

Nothing much. While the original prior assumption makes more sense,

since it captures information we have about the problem, the data are sufficiently

informative that inference is not significantly affected by this change.

Exercise 6.1.5 What happens if you change the initial expectation that every-

body is equally likely to belong to either group, and have an expectation that

people generally are not guessing, with (say), zi ∼ Bernoulli
(

0.9
)

?
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This expectation does not change the classification of the first 15 partici-

pants much, because these participants are unambiguous in terms of their

performance. However, the new participant with a score of 28 is inferred to be in

the knowledge group with probability 0.9, whereas this was 0.5 before. Because

the data for this participant are ambiguous it is the prior expectation that largely

determines how this participant is classified.

6.2 Answers: Exam Scores With Individual Differences

Exercise 6.2.1 Compare the results of the hierarchical model with the original

model that did not allow for individual differences.

For the first 15 participants the results are essentially unchanged. The

new participant with a score of 28 is now inferred to be in the knowledge group

with probability 0.8, compared to the original 0.5. This happens because the new

participant is more likely to be a low-knowledge member of the knowledge group

than a member of the guessing group. The fact that the current model allows

for individual differences helps it account for the relatively low score of 28.

Exercise 6.2.2 Interpret the posterior distribution of the variable predphi. How

does this distribution relate to the posterior distribution for mu?

The variable predphi is based on a draw from a Gaussian distribution

with mean mu and standard deviation sigma. This predictive distribution

indicates what we can expect about the success rate of a new, as yet unobserved

participant from the knowledge group. If there were no individual differences,

sigma would be zero and draws for predphi are effectively draws from the

posterior of mu. But because there are individual differences, this adds uncertainty

to what we can expect for a new participant and hence the posterior distribution

for predphi is wider than that of mu.

Exercise 6.2.3 What does the posterior distribution for the variable theta[1,2]

mean?

Participant 1 clearly belongs to the guessing group. In the samples, this

participant is almost never assigned to the knowledge group. The value for

theta[1,2] is therefore not directly informative. It is like saying “theta[1,2]

is what we expect the success rate to be if participant 1 was in the knowledge

group.” Perhaps the only sense in which this is useful information is if it is

conceived as hypothetically how the participant would have performed if they

had listened in class and put themselves in the knowledge group.
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Exercise 6.2.4 In what sense could the latent assignment of people to groups in

this case study be considered a form of model selection?

There are two rival explanations, specified as statistical models, for the

data. These are the guessing or knowledge-based responding accounts. When a

participant is assigned to the guessing group this means that, for that particular

participant, we believe the guessing model is a better explanation for the observed

data than is the knowledge-based model.

6.3 Answers: Twenty Questions

Exercise 6.3.1 Draw some conclusions about how well the various people listened,

and about the difficulties of the various questions. Do the marginal poste-

rior distributions you are basing your inference on seem intuitively reasonable?

This question is best answered by tallying the total number of correct re-

sponses separately for each participant and for each item. The result show that,

first, participants who answer most items correctly have the highest estimated

values for p, and, second, items answered correctly most often have the highest

estimated values for q. These results are consistent with intuition.

Exercise 6.3.2 Now suppose that three of the answers were not recorded. Think

of a Scantron1 with coffee spilled on it being eaten by a dog. This gives the

new data set shown in Table 6.2. Bayesian inference will automatically make

predictions about these missing values (i.e., “fill in the blanks”) by using

the same probabilistic model that generated the observed data. Missing data

are entered as nan (“not a number”) in Matlab, and NA (“not available”) in

R or WinBUGS. Including the variable k as one to monitor when sampling

will then provide posterior values for the missing values. That is, it provides

information about the relative likelihood of the missing values being each of

the possible alternatives, using the statistical model and the available data.

Look through the Matlab or R code to see how all of this is implemented in

the second dataset. Run the code, and interpret the posterior distributions

for the three missing values. Are they reasonable inferences? Finally, think of

a more realistic application for inferring missing values in cognitive modeling

than dogs eating coffee flavored Scantrons.

The estimates are reasonable. One of the nice things about Bayesian in-

ference is that, given that the model is appropriate, the estimates are always

reasonable. Sometimes the reasonableness may be hidden from your intuition,

1 A machine-readable form on which students mark answers to academic test questions.
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but this just means that your intuition was faulty. Consider person 1 on item

M. We know that person 1 is relatively attentive, because they answer relatively

many questions, and we also know that item M is relatively easy, because many

other people answer item M correctly. This item-person combination looks like it

could have resulted in a correct answer. The inferred probability for M-1 being

correct is approximately 0.74. For item-person combination E-8 the reverse holds.

The item is difficult and the participant is inattentive. Consequently, the inferred

probability for E-8 being correct is approximately 0.01. Finally, combination R-10

is middle-of-the-road on both dimensions, and the inferred probability for it being

correct is 0.41.

These inferred probabilities are directly related to the knowledge about

each participant and item. In fact, if you multiply the estimated p’s and q’s

you can recover the inferred probabilities. For instance, p[1] is approximately

0.88, and q[13] (the M) is approximately 0.84. The multiplication of these

probabilities yields .74. The same calculations may be performed for the other

missing item-participant calculations.

The last part of the question deals with plausible scenarios for missing

data in cognitive modeling. Participants in speeded response time experiments

may not answer fast enough, in designs where the trial is terminated without a

response and the next trial is presented; people answering a questionnaire may

fail to answer a specific question because they overlooked it; participants in

neuroscientific experiments may blink their eyes, distorting the signal and leading

to the removal of the trial; participants in longitudinal experiments may quit the

study prematurely; participants who are asked to monitor some aspect of their

lives at regular intervals over several days may sometimes forget to register their

response, and so on and so forth.

In general, data can be missing in several ways. When data are missing

“completely at random” it is easiest handled. It is more difficult when there

is a relationship between the missing-ness and the parameters of interest. For

example, say person 10 does not complete item Q because he or she realizes

the answer may well be wrong and time is better spend answering easier items.

To handle this situation we need more complicated models of the missing-ness.

Bayesian models, of course.

6.4 Answers: The Two Country Quiz

Exercise 6.4.1 Interpret the posterior distributions for x[i], z[j], alpha and

beta. Do the formal inferences agree with your original intuitions?
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Yes, people 1, 2, 5, and 6 form one group, and people 3, 4, 7, and 8

form the other group. The model also groups together questions A, D, E, and H

versus questions B, C, F, and G. And the rates of correct decisions for matched

and mismatched groups make sense, too.

Exercise 6.4.2 The priors on the probabilities of answering correctly capture

knowledge about what it means to match and mismatch, by imposing an

order constrain α ≥ β. Change the code so that this information is not

included, by using priors alpha∼dbeta(1,1) and beta∼dbeta(1,1). Run a

few chains against the same data, until you get an inappropriate, and perhaps

counter-intuitive, result. Describe the result, and discuss why it comes about.

The result you get from the analysis with uniform prior can change from chain

to chain, switching the inferences about alpha and beta. This is a basic and

common problem for mixture models, known as model indeterminacy . The

probability α is used whenever xi = zj . If this corresponds to a Thai person

answering a Thai question, then α should be high, as we expect. But there is

nothing stopping the model, without the order constraint, from coding Thai

people as xi = 1 and Moldovan questions as zj = 1, in which case α will

be low. Effectively, with this coding, α and β will swap roles. Overall, there

are four possibilities (two ways people can be encoded, by two ways questions

can be encoded). Our semantics of α being knowledge-based and β being

ignorance-based will apply for 2 of these 4 possible encodings, but will be

reversed for the other two. The core problem is that α and β are statistically

defined the same way in the revised model. This is the indeterminacy. A practical

but inelegant way to solve this problem is by being flexible in interpretation.

A better way is, as per the original model and code, by defining the statistical

model itself more carefully, introducing the order constraint, and removing the

indeterminacy.

Exercise 6.4.3 Now suppose that three extra people enter the room late, and

begin to take the quiz. One of them (Late Person 1) has answered the first

four questions, the next (Late Person 2) has only answered the first question,

and the final new person (Late Person 3) is still sharpening their pencil, and

has not started the quiz. This situation can be represented as an updated

data set, now with missing data, as in Table 6.4. Interpret the inferences the

model makes about the nationality of the late people, and whether or not

they will get the unfinished questions correct.

Late person 1 is confidently placed in the same category as people 1, 2,

5, and 6. This is also reflected in the probabilities of answering the remaining

four questions correctly: 0.88, 0.07, 0.05, 0.90, predicting a “1 0 0 1” pattern

that was also observed for people 1, 2, 5, and 6.

Late person 2 only answered a single question, but this information suf-
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fices to assign this person with probability .89 to the same category as persons

3, 4, 7, and 8. This is reflected in the probabilities of answering the remaining

seven questions correctly: .80, .80, .15, .15, .80, .80, .13 predicting a “1 1 0 0 1

1 0” pattern that was relatively typical for people 3, 4, 7, and 8.

Late person 3 did not answer a single question and is equally likely to be-

long to either group. Because each group has an opposite pattern of answering

any particular question correctly, the model predicts that the performance of

late person 3 will be around chance (slightly worse than chance because not all

questions are answered correctly even if the question matches the nationality).

Exercise 6.4.4 Finally, suppose that you are now given the correctness scores for a

set of 10 new people, whose data were not previously available, but who form

part of the same group of people we are studying. The updated data set shown

in Table 6.5. Interpret the inferences the model makes about the nationality of

the new people. Revisit the inferences about the late people, and whether or not

they will get the unfinished questions correct. Does the inference drawn by the

model for the third late person match your intuition? There is a problem here.

How could it be fixed?

The new people are all classified in the same group as people 1, 2, 5, and

6. However, late person 3 is still equally likely to be classified in either group.

This is a problem in the sense that the model is insensitive to changes in baseline

proportions: if we know that there are many more people in one category than

another this knowledge should affect our prediction for late person 3. In this

case, late person 3 is likely to belong to the same category as the new persons.

The model can be extended to deal with baseline proportions by changing

the line pz[i] ∼ dbern(0.5), which assumes equal baselines, to pz[i] ∼

dbern(phi), and phi ∼ dbeta(1,1), which now estimates the baseline.

6.5 Answers: Latent Group Assessment of
Malingering

Exercise 6.5.1 What are your conclusions about group membership? Did all

participants follow the instructions?

The expectation of the posterior for the indicator variable z shows every-

body to have (essentially) the value 0 or 1. This means there is certainly

of the classification into the bona fide and malingering classifications, with 0

corresponding to bona fide and 1 to malingering. The first 10 people, as expected,

are bona fide. The rest, with two exceptions, are inferred to be malingerers. The
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two exceptions are the 14th and 15th people, who scored 44. It seems likely these

people did not follow the instruction to malinger.

6.6 Answers: Individual Differences in Malingering

Exercise 6.6.1 Assume you know that the base rate of malingering is 10%. Change

the WinBUGS script to reflect this knowledge. Do you expect any differences?

The change can be made by changing the definition of the indicator vari-

ables to z[i]∼dbern(0.1), This base rate is different from the one that is

inferred for φ, which has posterior expectation of about 0.5, so it is reasonable to

expect inference to be affected. Specifically, when the base rate of malingering is

very low we should be less confident about the classification of participants who

performed poorly.

Exercise 6.6.2 Assume you know for certain that participants 1, 2, and 3 are

bona fide. Change the code to reflect this knowledge.

This change can be made by defining z[1] <- 0, z[2] <- 0 and z[3]

<- 0. It is important, once this change is made, to be sure that initial values are

not set for these three parameters, since they are no longer stochastic variables

to be inferred. This is not always straightforward, in terms of the data structures

being passed to and from WinBUGS from Matlab or R. An effective solution is

to define z[4] <- ztmp[1] to z[22] <- ztmp[19], and set the initial values

directly on the complete ztmp vector.

Exercise 6.6.3 Suppose you add a new participant. What number of questions

answered correctly by this participant would lead to the greatest uncertainty

about their group membership?

A little trial-and-error experimentation finds that an extra score of 41 questions

correct leads to a posterior expectation of about 0.45. This is more uncertain

than the neighboring possibilities of 40 questions correct, with posterior expec-

tation about 0.8, and 42 questions correct, with posterior expectation about 0.15.

Exercise 6.6.4 Try to solve the label-switching problem by using the

dunif(0,mu bon) approach to specifying a joint prior instead of the

logit transform.

To be written

Exercise 6.6.5 Why do you think the priors for λb and λm are different?
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Conceptually, it might be reasonable to expect less variability for the bona

fide group. Doing the task correctly seems more constraining than the freedom

to simulate amnesia and malinger. Computationally, the lack of variability in the

bona fide scores can cause under- and over-flow issues in sampling, and limiting

the priors to reasonable and computational ranges is a practical approach to

address this issue.

6.7 Answers: Alzheimer’s Recall Test Cheating

Exercise 6.7.1 Suppose the utilities are very different, so that a false-alarm

costs $100, because of the risk of litigation in a false accusation, but misses

are relatively harmless, costing $10 in wasted administrative costs. What

decisions should be made about bona fide and malingering now?

If it is 10 times more important not to make false-alarms (i.e., $100 vs

$10), then you should only treat someone as a cheater if that is 10 times more

likely. This means the expectation of zi should be less than 0.1 before the

decision is made to classify them as having cheated. It is clear from Figure 6.9

that his applies only to the few people who scored 39 or 40 on the test.

Exercise 6.7.2 What other potential information, besides the uncertainty about

classification, does the model provide? Give at least one concrete example.

The model provides information about the base rate of cheating, as well

as information about the levels of performance, and variability in that perfor-

mance, for the different groups of people, By providing a complete model of

the data-generating process, Bayesian inference is able to provide a much more

complete analysis of the data than a simple set of classifications.
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