

 USB 2.0 INTERFACE
USER MANUAL

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2000-2011 Issued 12/6/2014

1 Scope
Most new ComBlock modules support high-speed
communications with a host computer over a
standard USB 2.0 connection. These ComBlock
modules can be used as

(a) Ready-to-use application-specific
ComBlocks, or

(b) Development platforms with user-
developed code.

This manual addresses both use cases.

Users of ready-to-use application-specific
ComBlocks only need to read the “Windows
Device Driver Installation” section. A
troubleshooting section is also available, if needed,
at the end of this document.

FPGA developers should read the following
sections: “Windows Device Driver Installation”,
“Architecture” , “USB 2.0 Device” and
“FPGA/VHDL development”.

ARM developers should read the following
sections: “Windows Device Driver Installation”,
“Architecture”,

Java/C/C++ application developers on the host PC
should read the following sections: : “Windows
Device Driver Installation”, “Architecture”,
“Applications”.

2 Windows Device Driver
Installation (Windows 7)

When connecting a ComBlock for the first time, the
user must install a special driver once. The step-by-
step instructions are shown below for a typical
Windows 7 driver installation.

First, go to the Control Panel | Device Manager
window. Plug in the USB cable to a powered
ComBlock. The ComBlock appears under the
“other devices” section. Right-click to select
“Update Driver Software…”

 2

Select “Browse my computer”. The next window
will let the user specify the driver location for the
new hardware.

Select path to the ComBlock CD-ROM. Click on
“Next”

A window may pop up to warn the user that the
hardware and driver have not been tested officially
for Microsoft Windows operating systems.

 Click on “Install this driver anyway”. Wait….

The last window for the New Hardware Wizard
should appear, as shown below, for a successful
installation.

At this point, the USB driver for ComBlock has
been successfully installed and next time the
ComBlock is plugged in, the system automatically
finds appropriate driver. With the driver installed,
the user can talk to the ComBlock, using the ready-
to-use ComBlock control center or applications
based on the WinUSB API (see the Applications
section).

An easy way to verify the proper installation is to
go to the Windows device manager (Control Panel
| Device Manager). Once powered and properly
connected over USB, all the ComBlocks will show
up under the “ComBlocks” category as
“ComBlock_USB” (as shown below for two
concurrent USB connections to the same PC).

 3

3 Windows Device Driver
Installation (Windows 8 or
8.1)

The ComBlock USB driver is not signed by
Microsoft. One must therefore go through a few
extra steps for the operating system to allow the
driver.

1. Hold down the Windows key on your

keyboard and press the letter C to open the
Charm menu, then click the gear icon
(Settings).

2. In Windows 8 select ‘More PC settings >
General > Advanced startup > Restart now.

In Windows 8.1 select ‘Change PC settings
> Update & Recovery > Recovery

3. After restarting, click Troubleshoot.

4. Click Advanced Options.

5. Click Windows Startup

Settings.

6. Click
Restart.

 4

7. After restarting your computer a second

time, choose Disable driver signature
enforcement from the list by typing the
number 7 on your keyboard.

Your computer will restart
automatically.

8. After restarting, you will be able to install
the ComBlock USB driver as per the
instructions in section 2.

4 Linux
ComBlock does not supply any Linux driver.
Nevertheless it is possible to establish
communication over a standard USB cable between
a PC running Linux and ComBlocks, albeit with a
little more effort. The information needed to
connect with a ComBlock USB device is as
follows:

Vendor ID: 0x0000
Product ID: 0x0004

COM-16xx ARM:
• Monitoring & Control streams

o Bulk IN pipe: 0x82
o Bulk OUT pipe: 0x02

• High-Speed data streams (when applicable):
o Bulk IN pipe: 0x85
o Bulk OUT pipe: 0x05

All others USB-equipped:

• Monitoring & Control streams
o Bulk IN pipe: 0x81
o Bulk OUT pipe: 0x02

• High-Speed data streams (when applicable):
o Bulk IN pipe: 0x83
o Bulk OUT pipe: 0x04

 5

5 Architecture
The end-to-end communication architecture
between a host computer and the ComBlock
module as a USB device is illustrated below:

ComBlock
FPGA Development
Platform

PC Hardware

PC Operating System

Driver

.dll

Java app.
API

USB20
NGC
component

USB

C/C++
application

Blue: supplied hardware

Green: supplied ready-to-use software
Yellow: Source code examples

Host side (PC):
In order for a user to setup a USB 2.0 connection
between the host computer and a ComBlock, the
user must first create a Java or C/C++ application.
The Java application calls simple methods
described in the Java Application Programming
Interface (API) described further in this document.

C/C++ applications can call drivers functions
directly as described in the C/C++ Application
described further in this document.

Device side (ComBlock):
On the device side, the USB connection is
implemented partly within a PHY integrated circuit
and partly within the FPGA as illustrated below:

FPGA

USB 2.0
PHY

USB 2.0
Controller
Flash
Memory
(FPGA
configuration)

Micro-
Controller

USB
Connector

USB Hub / PC

40
-p

in
 I/

O

40
-p

in
 I/

O

to/from
other
ComBlocks

to/from
other
ComBlocks

Block Diagram of ComBlock as USB 2.0 Device

Supplied Components:
The USB 2.0 software package provides software
to help users and developers create USB high-speed
communication between the ComBlock platform
and a host PC. The software components include
the following:

• Windows device driver for XP/2000
(.sys and .inf files)

• Java API, DLL and simple application
code example

• C/C++ simple application code
example

• USB20 NGC component for integration
within the VHDL code

The USB 2.0 software package is available in the
ComBlock CD and can also be downloaded from
www.comblock.com/download/usb20.zip

USB Capable ComBlock Platforms
The ComBlock Platforms currently capable of high-
speed USB 2.0 connections are listed below:

• COM-1100
• COM-1200
• COM-1400
• COM-1600

 6

VHDL top-level code examples (templates) for
these ComBlock platforms are available from the
ComBlock CD and ComBlock website
(www.comblock.com/download).

6 Applications

6.1 Java API
The Java API is documented in the
…\Java\API\USB.html document found in the USB
2.0 software package.

The user applications can transfer data using
UsbRead and UsbWrite function calls.

The DLL (…\Java\simpleappJava\usbcpp.dll),
which links the Java application to the drivers, is
provided in the USB 2.0 software package.

Polling is the primary method for transferring data
from the USB device to the user application (as
opposed to interrupt which is not supported).
Polling is achieved by attempting to read data from
the USB device using the UsbRead function call.
The user application can poll as frequently as it
needs. If no data is present in the USB device, the
UsbRead function will return 0. Otherwise, it will
return the number of bytes actually read into the
read buffer.

The user application supplies buffers for data
transfer using the UsbRead and UsbWrite function
calls. The minimum and maximum buffer sizes are:

• 1 to 4096 bytes for write
• 64 to 4096 bytes for full speed read
• 128 to 4096 bytes for high speed read

The UsbRead and UsbWrite functions return the
number of bytes actually transferred, depending on
flow control and the availability of data. For
example, UsbRead may return 1 if only one byte
was read from the USB device.

6.2 C/C++ Application
The C++ application can transfer data using the
DeviceIoControl function call.

Application example can be found at
...\CPP\simpleappCpp\simpleappCpp.dsw

The buffer size limitations are the same as for Java.

6.3 Addressing Multiple
ComBlocks

Multiple ComBlocks can be attached to a Host PC.
Each ComBlock can be identified by a unique
device name assigned when it is attached. The
device name would be “comblock_usb_X” where X
is a number starting with 0 and it depends on the
order in which the ComBlock has been attached.
The user applications can communicate with any of
the ComBlocks exclusively by addressing them
with the device name.

Application 1

Host Side

Peripheral Side

comblock_usb_0

Application 2

comblock_usb_1

Data Stream 1

Data Stream 2

Data Stream 1

Data Stream 2

Sample communication model 1: Two user applications
communicating with two ComBlocks over two USB
cables.

Application 1

Host Side Peripheral Side

comblock_usb_0

comblock_usb_1

Data Stream 1

Data Stream 2

Data Stream 1

Data Stream 2

Sample communication model 2: One user application
communicating with two ComBlocks over two USB
cables.

7 USB 2.0 Device

The USB20.ngc (Xilinx) FPGA component is
supplied in the ComBlock CD-ROM with the

 7

ComBlock FPGA development platforms. This
component implements the USB communication
protocol (Serial Interface Engine SIE) for a USB
device within an FPGA.

This code implements the following:

• High Speed (480 Mbits/s) and Full
Speed (12 Mbits/s) data transfer. Speed
selection is done automatically by auto-
negotiation between the host PC and
this device.

• Two independent data streams for
communication between the host and
the ComBlock

o Data Stream 1 consists of
endpoints 1 and 2

o Data Stream 2 consists of
endpoints 3 and 4

• Endpoints 1 and 3: can be used to read
from the ComBlock

• Endpoints 2 and 4: can be used to write
to the ComBlock

“Endpoint is a simplex connection that supports
data flow in one direction”.

The data streams are to be used in conjunction with
Java or C/C++ applications. The user applications
can communicate with either of the two data
streams or both.

Application 1

Host Side Peripheral Side

Data Stream 1

Application 2

Data Stream 2

Endpoint 1

Endpoint 2

Endpoint 3

Endpoint 4

Read from

Read from

Write to

Write to

Sample communication model 3: Two user applications
communicating with two independent data streams on a
single ComBlock over a single USB cable.
Note: Application 1 must release the handle before
Application 2 can take it and vice versa.

Application 1

Host Side Peripheral Side

Data Stream 1

Data Stream 2

Endpoint 1

Endpoint 2

Endpoint 3

Endpoint 4

Read from

Read from

Write to

Write to

Sample communication model 4: One user application
communicating with two independent data streams on a
single ComBlock over a single USB cable.

.ngc components are supplied for the following
ComBlock FPGA development platforms:
COM-1200, COM-1400, COM-1600.

8 FPGA/VHDL Development
This section describes how to create a custom
application that makes use of the high-speed USB
2.0 connection on ComBlock FPGA-based
development platforms. Users of ready-to-use
application-specific ComBlock modules can skip
this section.

This section focuses exclusively on the device side
of the USB connection.

8.1 Device Architecture

8.1.1 Overview
The USB device is compliant with the USB 2.0
specification that allows for high data transfer
throughputs. The hardware supports both the Full
Speed (FS) mode for USB operation at 12 Mbits/s
and the High Speed (HS) mode for USB operation
at 480 Mbits/s. The Low Speed mode is not
supported.

8.1.2 USB device
implementation

The USB device implementation is divided into two
sections: a very high-speed physical layer, mostly
analog processing (USB transceiver macrocell),
and a lower speed digital section comprised of the

 8

serial interface engine (SIE), the SIE controller, and
the end-point logic. The physical layer is
implemented by a specific PHY integrated circuit
(SMSC GT3200) whereas the digital processing is
implemented within the FPGA.

USB 2.0
PHY

USB
Connector

Serial Interface
Engine (SIE)

SIE controller

End-
point
Logic

End-
point
Logic

End-
point
Logic

USB 2.0 Transceiver
Macrocell Interface (UTMI)

FPGA

The interface between the FPGA and the USB 2.0
PHY transceiver is a standard as described by the
“USB 2.0 Transceiver Macrocell Interface (UTMI)
Specifications”, Version 1.05 3/29/2001 found at
www.usb.org

The ComBlock is a self-powered device and does
not draw power from the USB device.

The USB PHY (SMSC GT3200) interfaces
exclusively with the USB20 component. No other
interface signaling is needed.

Data is exchanged between the USB20 component
and the application through a 16Kbit dual-port
(elastic) buffer in each direction. Hence the
application-processing clock (CLK_P) can be
selected independently of the USB20 60 MHz clock
USB_CLK60G. [Note: application clock must be
faster].

8.2 USB20 NGC Component
A NGC component encapsulating the USB serial
interface engine (SIE) is provided as part of the
ComBlock VHDL code template. The SIE works in
conjunction with the Windows drivers to establish a
virtual channel between the ComBlock and a host
computer.

8.2.1 User Interface
The component is described primarily by its
interface definition:

entity USB20 is
 port (

--// Clocks Resets
ASYNC_RESET: in std_logic;
USB_CLK60G: in std_logic;
 -- reference clock. 60 MHz.
 -- Supplied by the SMSC GT3200 IC (CLK0UT)
 -- Generally not used outside of this component.
 -- Global clock (BUFG MUST be instantiated outside).
CLK_P: in std_logic;
 -- Main processing or I/O clock used outside of this component.
 -- All application interface signals are synchronous with CLK_P
 -- Key assumption: CLK_P is slightly faster than USB_CLK60G/2.
 -- Other key assumption: CLK_P < 4 * CLK60G

--// USB PHY interface (SMSC GT3200 IC)
-- Direct connection between the USB20 component and the USB
-- PHY. Synchronous with USB_CLK60G clock
USB_RESET: out std_logic;
USB_DATABUS16_8: out std_logic;
USB_SUSPENDN: out std_logic;
USB_XCVRSELECT: out std_logic;
USB_TERMSELECT: out std_logic;
USB_OPMODE: out std_logic_vector(1 downto 0);
 -- operational mode
 -- 00 = normal operation
 -- 01 = non-driving (all terminations removed)
 -- 10 = disable bit stuffing and NRZI encoding (unused)
 -- 11 = reserved (unused)
USB_LINESTATE: in std_logic_vector(1 downto 0);
USB_TXVALID: out std_logic;
USB_TXREADY: in std_logic;
USB_VALIDH: inout std_logic;
 -- VALIDH is not used in 8-bit mode
USB_RXVALID: in std_logic;
USB_RXACTIVE: in std_logic;
USB_RXERROR: in std_logic;
USB_DATA_IN: in std_logic_vector(7 downto 0);
USB_DATA_OUT: out std_logic_vector(7 downto 0);

-- time critical. User should add OFFSET OUT constraints in the
 constraint editor.
USB_VBUS_SENSE: in std_logic;

--// Data Stream 1
-- Synchronous with CLK_P clock
DATA1_OUT: out std_logic_vector(7 downto 0);
DATA1_OUT_SAMPLE_CLK: out std_logic;
 -- read DATA1_OUT at rising edge of CLK_P when
 -- DATA1_OUT_SAMPLE_CLK = '1'
DATA1_OUT_BUFFER_EMPTY: out std_logic;
DATA1_OUT_SAMPLE_CLK_REQ: in std_logic;
 -- requests data. If no data is available in the buffer, the
 -- DATA1_OUT_SAMPLE_CLK will stay low.
 -- (flow control)

DATA1_IN: in std_logic_vector(7 downto 0);
DATA1_IN_SAMPLE_CLK: in std_logic;
 -- read DATA1_IN at rising edge of CLK_P when
 -- DATA1_IN_SAMPLE_CLK = '1'
DATA1_IN_SAMPLE_CLK_REQ: out std_logic;
 -- requests data when the input elastic buffer is less than half full.
 -- (flow control)

--// Data Stream 2
-- Synchronous with CLK_P clock
DATA2_OUT: out std_logic_vector(7 downto 0);
DATA2_OUT_SAMPLE_CLK: out std_logic;

 9

 -- read DATA2_OUT at rising edge of CLK_P when
 -- DATA2_OUT_SAMPLE_CLK = '1'
DATA2_OUT_BUFFER_EMPTY: out std_logic;
DATA2_OUT_SAMPLE_CLK_REQ: in std_logic;
 -- requests data. If no data is available in the buffer, the
 -- DATA2_OUT_SAMPLE_CLK will stay low.
 -- (flow control)
DATA2_IN: in std_logic_vector(7 downto 0);
DATA2_IN_SAMPLE_CLK: in std_logic;
 -- read DATA2_IN at rising edge of CLK_P when
 -- DATA2_IN_SAMPLE_CLK = '1'
DATA2_IN_SAMPLE_CLK_REQ: out std_logic;
 -- requests data when the input elastic buffer is less than half full.
 -- (flow control)

--// Test Points
 USB_TP: out std_logic_vector(10 downto 1)
 -- bit 1: speed after auto-negotiation with host PC: '1' if high-speed.
 -- bit 2: speed after auto-negotiation with host PC: '1' if full-speed.
 -- bit 3: valid SETUP message (PID valid, CRC5 valid).
 -- SETUP is the first message from the host PC to this USB device
 -- bit 4: Host asks to read the descriptor table.
 -- bit 5: data stream 2 input, elastic buffer write pointer LSb
 -- (address bit 0)

-- bit 6: data stream 2 input, elastic buffer read pointer LSb
 -- (address bit 0)

-- bit 7: data stream 2 input, elastic buffer write pointer MSb
 -- (address bit 10)

-- bit 8: data stream 2 input, elastic buffer read pointer MSb
 -- (address bit 10) Useful in checking flow control

-- bit 9: data stream 2 output, elastic buffer write pointer MSb
 -- (address bit 10)

-- bit 10: data stream 2 output, elastic buffer read pointer MSb
 --(address bit 10) Useful in checking flow control

-- Other useful test points available at the component interface:
-- VBUS_SENSE. Goes high upon cable being plugged in at both ends
-- USB_RXERROR: USB PHY detects receive errors
-- USB_CLK60G: 60 MHz reference clock from the USB PHY through
-- global buffer. Useful in checking input and output signal timing.
-- USB_RXVALID from PHY (useful in checking the input timing
w.r.t. USB_CLK60G.
);
end entity;

8.2.2 USB Device Descriptors
Several data structures (descriptors) are stored in
non-volatile memory within the ComBlock. They
are read by the host computer operating system
upon attaching the ComBlock to the host USB port.

The NGC USB20 component includes the standard
descriptors listed below. The user cannot modify
them. The descriptors below may be of use for
software developers who want to develop a driver
for the host computer. Readers intending to use the
supplied Windows driver can skip this section.

Device Descriptor
Offset Data

(hex)
Description and interpretation

0 12 Size of this descriptor in bytes
1 01 DEVICE descriptor type
2 00
3 02

USB specification release 2.00
(High-speed capable device)

4 FF Vendor-specific class (not registered

with USB-IF)
5 FF Vendor-specific subclass class (not

registered with USB-IF)
6 FF Vendor specific protocol class (not

registered with USB-IF)
7 40 Maximum packet size for endpoint

zero (64 when operating at high-
speed)

8 00
9 00

Vendor ID

10 04
11 00

Product ID

12 01
13 01

Device release number 1.01

14 01 Index of string descriptor describing
manufacturer

15 02 Index of string descriptor describing
product

16 00 Index of string descriptor describing
the device’s serial number. (No
string)

17 01 Number of possible configurations at
the current operating speed

Device Qualifier Descriptor

Offset Data
(hex)

Description and interpretation

0 0A Size of this descriptor in bytes
1 06 Device qualifier type
2 00
3 02

USB specification release 2.00
(High-speed capable device)

4 FF Vendor-specific class (not registered
with USB-IF)

5 FF Vendor-specific subclass class (not
registered with USB-IF)

6 FF Vendor specific protocol class (not
registered with USB-IF)

7 08 Maximum packet size for endpoint
zero for other speed (8 when
operating at high-speed)

8 00 Number of other-speed configurations
9 00 Reserved for future use.

Configuration Descriptor
Offset Data

(hex)
Description and interpretation

0 09 Size of this descriptor in bytes
1 02 CONFIGURATION descriptor type
2 2E
3 00

Total length of data returned for this
configuration (this configuration + one
interface descriptor + four endpoints)

4 01 Number of interfaces supported by this
configuration

5 01 Configuration number
6 00 Index of string descriptor describing

this configuration (no string)
7 D6 Self-powered.

 10

8 00 Does not use power from the USB bus.

Other_Speed_Configuration Descriptor
Offset Data

(hex)
Description and interpretation

0 09 Size of this descriptor in bytes
1 07 Other_Speed_Configuration

descriptor type
2 2E
3 00

Total length of data returned for this
configuration

4 01 Number of interfaces supported by
this configuration

5 01 Configuration number
6 00 Index of string descriptor describing

this configuration (no string)
7 D6 Self-powered.
8 00 Does not use power from the USB

bus.

Interface Descriptor 0
Offset Data

(hex)
Description and interpretation

0 09 Size of this descriptor in bytes
1 04 INTERFACE descriptor type
2 00 Number of this interface
3 00 Alternate settings
4 04 Number of endpoints (excluding

endpoint 0 default control pipe)
5 FF Interface class code
6 FF Interface subclass code
7 FF Interface protocol
8 00 Index of string descriptor

Endpoint Descriptor 1 (device to host direction)
Offset Data (hex) Description and interpretation
0 07 Size of this descriptor in bytes
1 05 ENDPOINT descriptor type
2 81 or

82
IN, EP1, most ComBlocks
COM-16xx

3 02 Attribute: Bulk, data endpoint
4 40
5 00

Maximum packet size: 64

6 00 No polling in this direction

Endpoint Descriptor 2 (host to device direction)
Offset Data (hex) Description and interpretation
0 07 Size of this descriptor in bytes
1 05 ENDPOINT descriptor type
2 02 OUT, EP2
3 02 Attribute: bulk, data endpoint
4 40
5 00

Maximum packet size: 64

6 00 No polling in this direction

Endpoint Descriptor 3 (device to host direction)
Offset Data (hex) Description and interpretation
0 07 Size of this descriptor in bytes

1 05 ENDPOINT descriptor type
2 83, or

85
IN, EP3, most ComBlocks
COM-16xx

3 02 Attribute: Bulk, data endpoint
4 40
5 00

Maximum packet size: 64

6 00 No polling in this direction

Endpoint Descriptor 4 (host to device direction)
Offset Data (hex) Description and interpretation
0 07 Size of this descriptor in bytes
1 05 ENDPOINT descriptor type
2 04 OUT, EP4
3 02 Attribute: bulk, data endpoint
4 40
5 00

Maximum packet size: 64

6 00 No polling in this direction

8.2.3 Constraint File
Timing of the60 MHz interface between the NGC
component and the USB PHY is critical. The
following constraints should be added in the .ucf
constraint file (using the PACE editor for example)
to ensure proper timing:

NET "USB_CLK60" TNM_NET = "USB_CLK60";
TIMESPEC "TS_USB_CLK60" = PERIOD
"USB_CLK60" 16 ns HIGH 50 %;
60 MHz clock period is 16.666 ns

NET "USB_TXVALID" OFFSET = OUT 10 ns AFTER
"USB_CLK60" ;
NET "USB_DATA_OUT<0>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<1>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<2>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<3>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<4>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<5>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<6>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<7>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
 # requested output delay for the DATA_OUT bus and
USB_TXVALID is 10ns. 11 ns is generally acceptable.

NET "USB_DATA_OUT<0>" LOC = "FPGA pin
number" | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<1>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<2>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;

 11

NET "USB_DATA_OUT<3>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<4>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<5>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<6>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<7>" LOC = " FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
 # Increase the output drive for DATA_OUT to
minimize the output delay.

8.2.4 Synthesis Statistics
The FPGA size occupied by the USB20 component
is as follows (and percentage utilization in the case
of a Xilinx Virtex-2 1000 FPGA):

Logic Utilization:
Number of Slice Flip Flops: 620 out of 10,240 6%
Number of 4 input LUTs: 1,351 out of 10,240 13%
Logic Distribution:
Number of occupied Slices: 854 out of 5,120 16%
Number of Slices containing only related logic: 854 out of
854 100%
Number of Slices containing unrelated logic: 0 out of
854 0%
Total Number 4 input LUTs: 1,449 out of 10,240 14%
Number used as logic: 1,351
Number used as a route-thru: 98
Number of Block RAMs: 5 out of 40 12%

Total equivalent gate count for design: 342,354

9 Troubleshooting help
In case of any problems encountered during the
communication setup please try the following:

- Check the version number of the driver to
be 3.0 or above (Go to - Control Panel ->
System -> Hardware -> Device Manager ->
Other Devices -> comblock_usb -> Driver)

- Make sure the cable is not too long
typically around not more than 5 feet.

- The cable has to be USB 2.0 compliant

During FPGA integration, the following test points
can be of some help in debugging a non-responsive
USB connection:

a) VBUS_SENSE goes high when a cable
connects the ComBlock module and a
computer. This low-tech test point is simply
based on the detection of +5V on the cable.

b) The outcome of the speed auto-negotiation
is shown on USB_TP(1) (‘1’ if high-speed)
or USB_TP(2) (‘1’ if full-speed).

c) Following speed auto-negotiation, activity
on test point USB_TP(3) indicates that
error-free data packet are received over the
USB connection by the ComBlock.

d) The host computer then tries to read the
descriptor tables to identify which driver to
load. This is visible by activity on test point
USB_TP(4).

e) Some read failures are detected by the PHY
and flagged by the USB_RXERROR
signal.

f) Failure of the host to read the descriptor
table (and thus inability to load the proper
driver) could be traced to excessive delay
when the 8-bit output data is transferred
from the FPGA to the USB PHY. Probe
DATA (7:0) and compare with the 60 MHz
reference clock at the PHY. The DATA
signal should be stable 8 ns before the
rising edge of the 60 MHz reference clock.
If so, timing constraints should be adjusted
in the constraint file.

g) Flow control issues between the user
VHDL code and the USB connection can
be traced by looking at the most significant
address bits of the elastic buffers embedded
within the USB component. See test points
USB_TP(10:5). When properly working,
the most significant address bits on the read
side and write side of the elastic buffer
should move in unison (i.e. the read pointer
never passes the write pointer).

Throughput:
The USB 2.0 device sustained (average) throughput
was measured using one-way data transfer
benchmarks as shown below:

Throughput test conditions Throughput
High speed.
Host computer: Intel Pentium 4 2.8
GHz.
C runtime application, no hard disk data
transfers. No other application running.

86 Mbits/s
(either
direction)

Full speed.
Host computer: AMD Duron processor
850 MHz.
C runtime application, no hard disk data
transfers. No other applications running.

6.5 Mbits/s
(either
direction)

 12

