Com
Block

1 Scope

Most new ComBlock modules support high-speed
communications with a host computer over a
standard USB 2.0 connection. These ComBlock
modules can be used as

(a) Ready-to-use application-specific
ComBlocks, or

(b) Development platforms with user-
developed code.
This manual addresses both use cases.

Users of ready-to-use application-specific
ComBlocks only need to read th&indows

Device Driver Installation’section. A
troubleshootingsection is also available, if needed,
at the end of this document.

FPGA developers should read the following
sections: “Windows Device Driver Installation”
“Architecture”, “USB 2.0 Devictand
“FPGA/VHDL development”

ARM developers should read the following
sections*Windows Device Driver Installation”
“Architecture”,

Java/C/C++ application developers on the host PC
should read the following sectionsWindows
Device Driver Installation™Architecture”,

“Applications”.

USB 2.0 INTERFACE
USER MANUAL

2 Windows Device Driver
Installation (Windows 7)

When connecting a ComBlock for the first time, the
user must install a special driver once. The step-b
step instructions are shown below for a typical
Windows 7 driver installation.

First, go to the Control Panel | Device Manager
window. Plug in the USB cable to a powered
ComBlock. The ComBlock appears under the
“other devices” section. Right-click to select
“Update Driver Software...”

= Device Manager.

File Action View Help
e | E HE O F xS
a2 ACERL
. @ Batteries
i 88 Cornputer
P Disk drives
. B Display adapters
+ e DVD/CD-ROM drives
by IDE ATASATAPI controllers
=% Imaging devices
- -E¥ Jungo
- <2 Keyboards
8 .-,i-ﬂ Mice and other pointing devices
B Moenitors
. -m¥ Metwork adapters
a -5 Other devices
- tllp COM-1600 |
: D Processors| Update Driver Software...
-8 Sound, vidl picaple
» M Sys '
£ }r.tem I:‘IE": Uninstall
{ - Universal §
Scan for hardware changes
Properties

MSS « 18221-A Flower Hill Way ¢ Gaithersburg, M&nd 20879 « U.S.A.

Telephone: (240) 631-1111

Facsimile: (240) 6876 www.ComBlock.com
© MSS 2000-2011

Issued 12/6/2014

= Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
seftings.

= Browse my computer for driver software
Locate and install driver software manually.

Select “Browse my computer”. The next window
will let the user specify the driver location fdwet
new hardware.

Browse for driver software on your computer

Search for driver software in this location:

D:\comblock CD\Windows Drivers\USB 2.0\Windows Driver]

-

[#] Include subfolders

¥ Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

Select path to the ComBlock CD-ROM. Click on
“Next”

A window may pop up to warn the user that the
hardware and driver have not been tested officially
for Microsoft Windows operating systems.

w Il Update Driver Software - COM-1600

Installing driver software...

Q’_“-‘ Windows can't verify the publisher of this driver software

Don'tinstall this driver software
You should check your manufacturer's website for updated driver software
for your device.

+ Install this driver software anyway
Only install driver software obtained from your manufacturer's website or
disc. Unsigned software from other sources may harm your computer or steal
information.

(s See details

Click on “Install this driver anyway”. Wait....

The last window for the New Hardware Wizard
should appear, as shown below, for a successful
installation.

Windows has finished installing the driver software for this device:

% ComBlock USB

At this point, the USB driver for ComBlock has
been successfully installed and next time the
ComBlock is plugged in, the system automatically
finds appropriate driver. With the driver installed
the user can talk to the ComBlock, using the ready-
to-use ComBlock control center or applications
based on the WinUSB API (see tApplications
section).

An easy way to verify the proper installation is to
go to the Windows device manager (Control Panel
| Device Manager). Once powered and properly
connected over USB, all the ComBlocks will show
up under the “ComBlocks” category as
“ComBlock_USB” (as shown below for two
concurrent USB connections to the same PC).

l| File Action View Help
== | =5 HE|®
4 é ACERL
> 4@ Batteries
4 {8 ComBlocks |
. .M ComBlock USB

. .48 Computer

b 1=y Disk drives

I+ B Display adapters

b) DVD/CD-ROM drives
b IDE ATA/ATAPI controllers

3 Windows Device Driver Choose an option
Installation (Windows 8 or el
8.1) ‘ i

The ComBlock USB driver is not signed by
Microsoft. One must therefore go through a few
extra steps for the operating system to allow the
driver.

1. Hold down the Windows key on your
keyboard and press the letter C to open the
Charm menu, then click the gear icon
(Settings).

© Troubleshoot

Refresh your PC
If your PC isn't running well, you can
refresh it without losing your files

Reset your PC
If you want to remave all of your files,
you can reset your PC complstely

Advanced options

5. ClickWindows Startup
Settings.

2. In Windows 8 select ‘More PC settings >
General > Advanced startup > Restart now.

In Windows 8.1 select ‘Change PC settings System Image Startup Settings
> Update & Recovery > Recovery e B

Automatic Repair
Fie olems that keep Windows from

1}
= P
Metwork 43 Unavailable 6. C li Ck

Restart.
© Windows Startup Settings

2 O

Notifications Power Keyboard

Restart to change Windows options such as:

lution
+ Enable debugging mode

Change PC settings

+ Enable boot logging
+ Enable Safe Mode

3. After restarting, click roubleshoot.

7. After restarting your computer a second
time, choos®isabledriver signature
enfor cement from the list by typing the

number 7 on your keyboard.

Startup Settings

Press a number to choose from the options below:

Use number keys or functions keys F1-F9

1) Enable debugging

2) Enable boot logging

3) Enable low-resolution video

4) Enable Safe Mode

5) Enable Safe Mode with Networking

6) Enable Safe Mode with Command Prompt
7) Disable driver signature enforcement

8) Disable early launch anti-malware protection
9) Disable automatic restart after failure

Press F10 for more options

Press Enter to return to your operating system

Your computer will restart
automatically.

8. After restarting, you will be able to install
the ComBlock USB driver as per the
instructions in section 2.

4 Linux

ComBlock does not supply any Linux driver.
Nevertheless it is possible to establish
communication over a standard USB cable between
a PC running Linux and ComBIlocks, albeit with a
little more effort. The information needed to
connect with a ComBlock USB device is as

follows:

Vendor ID: 0x0000
Product ID: 0x0004

COM-16xx ARM:
e Monitoring & Control streams
0 Bulk IN pipe: 0x82
0 Bulk OUT pipe: 0x02
» High-Speed data streams (when applicable):
0 Bulk IN pipe: 0x85
0 Bulk OUT pipe: 0x05

All others USB-equipped:

Monitoring & Control streams
0 Bulk IN pipe: 0x81
0 Bulk OUT pipe: 0x02
High-Speed data streams (when applicable):
0 Bulk IN pipe: 0x83
0 Bulk OUT pipe: 0x04

5 Architecture

The end-to-end communication architecture
between a host computer and the ComBlock
module as a USB device is illustrated below:

Java app. | C/C++
API application
el
Driver

PC Operating System

PC Hardware

uUSB

USB20
NGC
component

ComBlock
FPGA Development
Platform

Blue: supplied hardware
Green: supplied ready-to-use software
Yellow: Source code examples

Host side (PC):

In order for a user to setup a USB 2.0 connection
between the host computer and a ComBlock, the

user must first create a Java or C/C++ application.

The Java application calls simple methods
described in thdava Application Programming
Interface (API)described further in this document.

C/C++ applications can call drivers functions
directly as described in ti&/C++ Application
described further in this document.

Device side (ComBlock):

On the device side, the USB connection is
implemented partly within a PHY integrated circuit
and partly within the FPGA as illustrated below:

USB Hub / PC
v
Flash USB
Memory
(FPGA Connector
configuration)
¢ USB 2.0
PHY
Micro-
Controller $

to/from
other
ComBlocks

to/from
other
ComBlocks

—>

L,

FPGA

<

40-pin I/O

9
£
<
=)
<

Block Diagram of ComBlock as USB 2.0 Device

Supplied Components:

The USB 2.0 softwar e package provides software

to help users and developers create USB high-speed
communication between the ComBlock platform

and a host PC. The software components include
the following:

* Windows device driver for XP/2000
(.sys and .inf files)

« Java API, DLL and simple application
code example

e C/C++ simple application code
example

» USB20 NGC component for integration
within the VHDL code

1 simpleappCpp
=l) Java

1 APT

[simpleapplava
+ £ wHOL

The USB 2.0 softwar e package is available in the
ComBlock CD and can also be downloaded from
www.comblock.com/download/usb20.zip

USB Capable ComBlock Platforms
The ComBlock Platforms currently capable of high-
speed USB 2.0 connections are listed below:

+ COM-1100

« COM-1200
+ COM-1400
» COM-1600

VHDL top-level code examples (templates) for
these ComBlock platforms are available from the
ComBlock CD and ComBlock website
(www.comblock.com/download).

6 Applications

6.1 Java API

The Java API is documented in the
...\Java\APNUSB.htm| document found in tb&B
2.0 software package

The user applications can transfer data using
UsbRead and UsbWrite function calls.

The DLL (...\Java\simpleappJava\usbcpp.dIl),
which links the Java application to the drivers, is
provided in theJSB 2.0 software package

Polling is the primary method for transferring data
from the USB device to the user application (as
opposed to interrupt which is not supported).
Polling is achieved by attempting to read data from
the USB device using the UsbRead function call.
The user application can poll as frequently as it
needs. If no data is present in the USB device, the
UsbRead function will return 0. Otherwise, it will
return the number of bytes actually read into the
read buffer.

The user application supplies buffers for data
transfer using the UsbRead and UsbWrite function
calls. The minimum and maximum buffer sizes are:

e 1to 4096 bytes for write

e 64 to 4096 bytes for full speed read

« 128 to 4096 bytes for high speed read

The UsbRead and UsbWrite functions return the
number of bytes actually transferred, depending on
flow control and the availability of data. For
example, UsbRead may return 1 if only one byte
was read from the USB device.

6.2 C/C++ Application

The C++ application can transfer data using the
DeviceloControl function call.

Application example can be found at
...\CPP\simpleappCpp\simpleappCpp.dsw

The buffer size limitations are the same as fonJav

6.3 Addressing Multiple
ComBlocks

Multiple ComBlocks can be attached to a Host PC.
Each ComBlock can be identified by a unique
device name assigned when it is attached. The
device name would be “comblock usb_X" where X
is a number starting with 0 and it depends on the
order in which the ComBlock has been attached.
The user applications can communicate with any of
the ComBlocks exclusively by addressing them
with the device name.

Peripheral Side

Host Side comblock_usb_0

Data Stream 1

Application 1

o
=8
S
@
@
o
3
N

comblock_usb_1

Data Stream 1
Application2 | | ———¥

g
&
@
@
®
3
N

Sample communication model 1: Two user applications
communicating with two ComBIlocks over two USB
cables.

Host Side Peripheral Side

comblock_usb_0

Data Stream 1

Data Stream 2

Application 1

comblock_usb_1

|
\

\ Data Stream 1

Data Stream 2

Sample communication model 2: One user application
communicating with two ComBlocks over two USB
cables.

7 USB 2.0 Device

The USB20.ngc (Xilinx) FPGA component is
supplied in the ComBlock CD-ROM with the

6

ComBlock FPGA development platforms. This
component implements the USB communication
protocol (Serial Interface Engine SIE) for a USB
device within an FPGA.

This code implements the following:

» High Speed (480 Mbits/s) and Full
Speed (12 Mbits/s) data transfer. Speed
selection is done automatically by auto-
negotiation between the host PC and
this device.

* Two independent data streams for
communication between the host and
the ComBlock

o Data Stream 1 consists of
endpoints 1 and 2

o Data Stream 2 consists of
endpoints 3 and 4

* Endpoints 1 and 3: can be used to read
from the ComBlock

» Endpoints 2 and 4: can be used to write
to the ComBlock

“Endpoint is a simplex connection that supports
data flow in one direction”.

The data streams are to be used in conjunction with
Java or C/C++ applications. The user applications
can communicate with either of the two data
streams or both.

Host Side Peripheral Side
Data Stream 1
Read from | Endpoint 1
- 1 |
Application 1
I . Endpoint 2
Write to
Data Stream 2
Read from | | Endpoint 3
Application2 | —+— |
| —
— :
Write to T Endpoint 4

Sample communication model 3: Two user applications
communicating with two independent data streama on
single ComBlock over a single USB cable.

Note: Application 1 must release the handle before
Application 2 can take it and vice versa.

Host Side Peripheral Side

Data Stream 1

Read from Endpoint 1

Endpoint 2

i

Write to

Application 1

Read from

7\

Data Stream 2

Endpoint 3

Write to
Endpoint 4

i

Sample communication model 4: One user application
communicating with two independent data streama on
single ComBlock over a single USB cable.

.ngc components are supplied for the following
ComBlock FPGA development platforms:
COM-1200, COM-1400, COM-1600.

8 FPGA/VHDL Development

This section describes how to create a custom
application that makes use of the high-speed USB
2.0 connection on ComBlock FPGA-based
development platformdJsers of ready-to-use
application-specific ComBlock modules can skip
this section.

This section focuses exclusively on the device side
of the USB connection.

8.1 Device Architecture

8.1.1 Overview

The USB device is compliant with the USB 2.0
specification that allows for high data transfer
throughputs. The hardware supports both the Full
Speed (FS) mode for USB operation at 12 Mbits/s
and the High Speed (HS) mode for USB operation
at 480 Mbits/s. The Low Speed mode is not
supported.

8.1.2 USB device
implementation

The USB device implementation is divided into two
sections: a very high-speed physical layer, mostly
analog processing (USB transceiver macrocell),
and a lower speed digital section comprised of the

7

serial interface engine (SIE), the SIE controléard
the end-point logic. The physical layer is
implemented by a specific PHY integrated circuit
(SMSC GT3200) whereas the digital processing is
implemented within the FPGA.

USB
Connector

USB 2.0 Transceiver
Macrocell Interface (UTMT)" ~~ "~~~ "~~~ "7~

Serial Interface

SIE controller Engine (SIE)

End- | End- | End-
point | point | point
Logic| Logic| Logic

Vb

FPGA

The interface between the FPGA and the USB 2.0
PHY transceiver is a standard as described by the
“USB 2.0 Transceiver Macrocell Interface (UTMI)
Specifications”, Version 1.05 3/29/2001 found at

www.usb.org

The ComBlock is a self-powered device and does
not draw power from the USB device.

The USB PHY (SMSC GT3200) interfaces
exclusively with the USB20 component. No other
interface signaling is needed.

Data is exchanged between the USB20 component
and the application through a 16Kbit dual-port
(elastic) buffer in each direction. Hence the
application-processing clock (CLK_P) can be
selected independently of the USB20 60 MHz clock
USB_CLK60G. [Note: application clock must be
faster].

8.2 USB20 NGC Component

A NGC component encapsulating the USB serial
interface engine (SIE) is provided as part of the
ComBlock VHDL code template. The SIE works in
conjunction with the Windows drivers to establish a
virtual channel between the ComBlock and a host
computer.

8.2.1 User Interface

The component is described primarily by its
interface definition:

entity USB20is
port(

--/ Clocks Resets
ASYNC_RESETin std_logic;
USB_CLK60G:in std_logig
-- reference clock. 60 MHz.
-- Supplied by the SMSC GT3200 IC (CLKOUT)
-- Generally not used outside of this component.
-- Global clock (BUFG MUST be instantiated oug&id
CLK_P:in std_logic;
-- Main processing or 1/O clock used outsidehig tomponent.
-- All application interface signals are synchwas with CLK_P
-- Key assumption: CLK_P is slightly faster tHaS8B_CLK60G/2.
-- Other key assumption: CLK_P < 4 * CLK60G

--// USB PHY interface (SMSC GT3200 IC)
-- Direct connection between the USB20 componedttae USB
-- PHY. Synchronous with USB_CLK60G clock
USB_RESEToutstd_logic;
USB_DATABUS16_8poutstd_logic;
USB_SUSPENDNoutstd_logic;
USB_XCVRSELECTputstd_logic;
USB_TERMSELECTDbutstd_logic;
USB_OPMODEDutstd_logic_vector(1 downto 0);
-- operational mode
-- 00 = normal operation
-- 01 = non-driving (all terminations removed)
-- 10 = disable bit stuffing and NRZI encodingi(ised)
-- 11 =reserved (unused)
USB_LINESTATE:in std_logic_vector(1 downto 0);
USB_TXVALID: outstd_logic;
USB_TXREADY:in std_logic;
USB_VALIDH: inoutstd_logic;
-- VALIDH is not used in 8-bit mode
USB_RXVALID: in std_logic;
USB_RXACTIVE:in std_logic;
USB_RXERRORIn std_logic;
USB_DATA_IN:in std_logic_vector(7 downto 0);
USB_DATA_OUT:outstd_logic_vector(7 downto 0);
-- time critical. User should add OFFSET OUT coaisits in the
constraint editor.
USB_VBUS_SENSEIn std_logic;

--// Data Stream 1
-- Synchronous with CLK_P clock
DATAL1_OUT: outstd_logic_vector(7 downto 0);
DATA1_OUT_SAMPLE_CLK:outstd_logic;
--read DATA1_OUT at rising edge of CLK_P when
-- DATA1_OUT_SAMPLE_CLK ="'1'
DATA1_OUT_BUFFER_EMPTYbutstd_logic;
DATA1_OUT_SAMPLE_CLK_REQin std_logic;
-- requests data. If no data is available intthier, the
-- DATA1_OUT_SAMPLE_CLK will stay low.
-- (flow control)

DATAL_IN: in std_logic_vector(7 downto 0);
DATA1_IN_SAMPLE_CLK:in std_logic;

--read DATA1_IN at rising edge of CLK_P when

-- DATAL1_IN_SAMPLE_CLK =1
DATA1_IN_SAMPLE_CLK_REQuoutstd_logic;

-- requests data when the input elastic buffégss than half full.

-- (flow control)

--// Data Stream 2

-- Synchronous with CLK_P clock
DATA2_OUT: outstd_logic_vector(7 downto 0);
DATA2_OUT_SAMPLE_CLK:outstd_logic;

--read DATA2_OUT at rising edge of CLK_P when

-- DATA2_OUT_SAMPLE_CLK ='1'
DATA2_OUT_BUFFER_EMPTYbputstd_logic;
DATA2_OUT_SAMPLE_CLK_REQin std_logic;

-- requests data. If no data is available inttiiéer, the

-- DATA2_OUT_SAMPLE_CLK will stay low.

-- (flow control)
DATAZ2_IN: in std_logic_vector(7 downto 0);
DATA2_IN_SAMPLE_CLK:in std_logic;

--read DATA2_IN at rising edge of CLK_P when

--DATA2_IN_SAMPLE_CLK ='1'
DATA2_IN_SAMPLE_CLK_REQqoutstd_logic;

-- requests data when the input elastic buffégs than half full.

-- (flow control)

--/ Test Points

USB_TPoutstd_logic_vector(10 downto 1)

-- bit 1: speed after auto-negotiation with h@et 1" if high-speed.
-- bit 2: speed after auto-negotiation with Heet '1' if full-speed.
-- bit 3: valid SETUP message (PID valid, CRCbhdja

-- SETUP is the first message from the host P@isoUSB device
-- bit 4: Host asks to read the descriptor table.

-- bit 5: data stream 2 input, elastic bufferterpointer LSb

-- (address bit 0)

-- bit 6: data stream 2 input, elastic buffer reathter LSb

-- (address bit 0)

-- bit 7: data stream 2 input, elastic buffer wgtenter MSb

-- (address bit 10)

-- bit 8: data stream 2 input, elastic buffer reathter MSb

-- (address bit 10) Useful in checking flow cahtr

-- bit 9: data stream 2 output, elastic buffer e/pbinter MSb

-- (address bit 10)

-- bit 10: data stream 2 output, elastic buffedrpainter MSb
--(address bit 10) Useful in checking flow cahtr

-- Other useful test points available at the congmdinterface:

-- VBUS_SENSE. Goes high upon cable being plugget both ends
-- USB_RXERROR: USB PHY detects receive errors

-- USB_CLK60G: 60 MHz reference clock from the UBBY through
-- global buffer. Useful in checking input and auttgignal timing.

-- USB_RXVALID from PHY (useful in checking the inptiming
w.r.t. USB_CLK60G.

);
endentity;

8.2.2 USB Device Descriptors

Several data structures (descriptors) are stored in
non-volatile memory within the ComBlock. They
are read by the host computer operating system
upon attaching the ComBIlock to the host USB port.

The NGC USB20 component includes the standard
descriptors listed below. The user cannot modify
them. The descriptors below may be of use for
software developers who want to develop a driver
for the host computeReaders intending to use the
supplied Windows driver can skip this section.

Device Descriptor

Offset | Data Description and interpretation

(hex)
0 12 Size of this descriptor in bytes
1 01 DEVICE descriptor type
2 00 USB specification release 2.00
3 02 (High-speed capable device)
4 FF Vendorspecific class (not register

with USB-IF)

5 FF Vendor-specific subclass class (hot
registered with USB-IF)

6 FF Vendor specific protocol class (not
registered with USB-IF)

7 40 Maximum packet size for endpoint
zero (64 when operating at high-
speed)

8 00 Vendor ID

9 00

10 04 Product ID

11 00

12 01 Device release number 1.01

13 01

14 01 Index of string descriptor describing
manufacturer

15 02 Index of string descriptor describing
product

16 00 Index of string descriptor describing
the device’s serial number. (No
string)

17 01 Number of possible configurations at
the current operating speed

Device Qualifier Descriptor
Offset | Data Description and interpretation
(hex)

0 0A Size of this descriptor in bytes

1 06 Device qualifier type

2 00 USB specification release 2.00

3 02 (High-speed capable device)

4 FF Vendor-specific class (not registerefd
with USB-IF)

5 FF Vendor-specific subclass class (not
registered with USB-IF)

6 FF Vendor specific protocol class (not
registered with USB-IF)

7 08 Maximum packet size for endpoint
zero for other speed (8 when
operating at high-speed)

8 00 Number of other-speed configurations

9 00 Reserved for future use.

Configuration Descriptor
Offset | Data | Description and interpretation
(hex)

0 09 Size of this descriptor in bytes

1 02 CONFIGURATION descriptor type

2 2E Total length of data returned for this

3 00 configuration (this configuration + one
interface descriptor + four endpoints

4 01 Number of interfaces supported by this
configuration

5 01 Configuration number

6 00 Index of string descriptor describing
this configuration (no string)

7 D6 Self-powered.

[8 | 00 | Does not use power from the USB bus. | 1 05 ENDPOINT descriptor type
2 83, or IN, EP3, most ComBlocks
Other_Speed Configuration Descriptor 85 COM-16xx
Offset | Data | Description and interpretation 3 02 Attribute: Bulk, data endpoint
(hex) 4 40 Maximum packet size: 64
0 09 Size of this descriptor in bytes 5 00
1 07 Other_Speed_Configuration 6 00 No polling in this direction
descriptor type
2 2E Total length of data returned for this Endpoint Descriptor 4 (host to device direction)
3 00 configuration Offset | Data (hex) | Description and interpretation
4 01 Number of interfaces supported by 0 07 Size of this descriptor in bytes
this configuration 1 05 ENDPOINT descriptor type
5 01 Configuration number 2 04 OUT, EP4
6 00 Index of string descriptor describing 3 02 Attribute: bulk, data endpoint
this configuration (no string) 4 40 Maximum packet size: 64
7 D6 Self-powered. 5 00
8 00 Does not use power from the USB 6 00 No polling in this direction
bus.
e 8.2.3 Constraint File
nterface Descriptor - .
Offset | Daia e Timing of the60 MHz interface _betvy(?en the NGC
(hex) component and the USB PHY is crltlcql. The
0 09 Size of this descriptor in bytes following constraints should be added in the .ucf
1 04 INTERFACE descriptor type constraint file (using the PACE editor for example)
2 00 Number of this interface to ensure proper timing:
3 00 Alternate settings
4 04 Number of endpoints (excluding NET "USB_CLK60" TNM_NET = "USB_CLK60";
endpoint 0 default control pipe) TIMESPEC "TS_USB_CLK60" = PERIOD
5 FF Interface class code "USB_CLK60" 16 ns HIGH 50 %;
6 FE Interface subclass code # 60 MHz clock period is 16.666 ns
7 FF Interface protocol " "
8 00 Index of string descriptor NET "USB_TXVALID" OFFSET = OUT 10 ns AFTER

Endpoint Descriptor 1 (device to host direction)

Offset | Data (hex) | Description and interpretation
0 07 Size of this descriptor in bytes
1 05 ENDPOINT descriptor type
2 81l or IN, EP1, most ComBlocks
82 COM-16xx
3 02 Attribute: Bulk, data endpoint
4 40 Maximum packet size: 64
5 00
6 00 No polling in this direction

Endpoint Descriptor 2 (host to device direction)

Offset | Data (hex) | Description and interpretation

0 07 Size of this descriptor in bytes
1 05 ENDPOINT descriptor type

2 02 OUT, EP2

3 02 Attribute: bulk, data endpoint
4 40 Maximum packet size: 64

5 00

6 00 No polling in this direction

Endpoint Descriptor 3 (device to host direction)

Offset

Data (hex)

Description and interpretation

0

07

Size of this descriptor in bytes

"USB_CLK60" ;
NET "USB_DATA_OUT<0>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<1>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<2>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<3>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<4>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<5>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<6>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;
NET "USB_DATA_OUT<7>" OFFSET = OUT 10 ns
AFTER "USB_CLK60" ;

requested output delay for the DATA_OUT bus and
USB_TXVALID is 10ns. 11 ns is generally acceptable.

NET "USB_DATA_OUT<0>" LOC = "FPGA pin
number" | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<1>" LOC =" FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;
NET "USB_DATA_OUT<2>" LOC =" FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;

10

NET "USB_DATA_OUT<3>" LOC =" FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;

NET "USB_DATA_OUT<4>" LOC =" FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;

NET "USB_DATA_OUT<5>" LOC =" FPGA pin
number " | DRIVE =24 | SLEW = FAST ;

NET "USB_DATA_OUT<6>" LOC =" FPGA pin
number " | DRIVE = 24 | SLEW = FAST ;

NET "USB_DATA_OUT<7>" LOC =" FPGA pin
number " | DRIVE =24 | SLEW = FAST ;

Increase the output drive for DATA_OUT to

minimize the output delay.

8.2.4 Synthesis Statistics

The FPGA size occupied by the USB20 component
is as follows (and percentage utilization in theeca
of a Xilinx Virtex-2 1000 FPGA):

Logic Utilization:

Number of Slice Flip Flops: 620 out of 10,240 6%
Number of 4 input LUTs: 1,351 out of 10,240 13%
Logic Distribution:

Number of occupied Slices: 854 out of 5,120 16%
Number of Slices containing only related logic: 854 out of
854 100%

Number of Slices containing unrelated logic: 0 out of
854 0%

Total Number 4 input LUTs: 1,449 out of 10,240 14%
Number used as logic: 1,351

Number used as a route-thru: 98

Number of Block RAMs: 5 out of 40 12%

Total equivalent gate count for design: 342,354

9 Troubleshooting help

In case of any problems encountered during the
communication setup please try the following:

- Check the version number of the driver to
be 3.0 or above (Go to - Control Panel ->
System -> Hardware -> Device Manager ->
Other Devices -> comblock_usb -> Driver)

- Make sure the cable is not too long
typically around not more than 5 feet.

- The cable has to be USB 2.0 compliant

During FPGA integration, the following test points
can be of some help in debugging a non-responsive
USB connection:

a) VBUS_SENSE goes high when a cable
connects the ComBlock module and a
computer. This low-tech test point is simply
based on the detection of +5V on the cable.

b) The outcome of the speed auto-negotiation
is shown on USB_TP(1) (‘1 if high-speed)
or USB_TP(2) (‘1' if full-speed).

c) Following speed auto-negotiation, activity
on test point USB_TP(3) indicates that
error-free data packet are received over the
USB connection by the ComBlock.

d) The host computer then tries to read the
descriptor tables to identify which driver to
load. This is visible by activity on test point
USB_TP(4).

e) Some read failures are detected by the PHY
and flagged by the USB_RXERROR
signal.

f) Failure of the host to read the descriptor
table (and thus inability to load the proper
driver) could be traced to excessive delay
when the 8-bit output data is transferred
from the FPGA to the USB PHY. Probe
DATA (7:0) and compare with the 60 MHz
reference clock at the PHY. The DATA
signal should be stable 8 ns before the
rising edge of the 60 MHz reference clock.
If so, timing constraints should be adjusted
in the constraint file.

g) Flow control issues between the user
VHDL code and the USB connection can
be traced by looking at the most significant
address bits of the elastic buffers embedded
within the USB component. See test points
USB_TP(10:5). When properly working,
the most significant address bits on the read
side and write side of the elastic buffer
should move in unison (i.e. the read pointer
never passes the write pointer).
Throughput:
The USB 2.0 device sustained (average) throughput
was measured using one-way data transfer
benchmarks as shown below:

Throughput test conditions Throughput
High speed. 86 Mbits/s
Host computer: Intel Pentium 4 2.8 (either
GHz. direction)

C runtime application, no hard disk data
transfers. No other application running.

Full speed. 6.5 Mbits/s
Host computer: AMD Duron processoy (either

850 MHz. direction)
C runtime application, no hard disk data
transfers. No other applications running.

11

12

