
Institutionen för datavetenskap
Department of Computer and Information Science

Master’s thesis

CUSTOMIZATION OF DOCBOOK TO GENERATE

PDF, HTM & CHM

by

Muhammad Asif
LIU-IDA/LITH-EX-A--09/053--SE

 Linköping, 2009

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN LIU-IDA/LITH-EX-A--09/053--SE

ISRN LIU-IDA/

Serietitel och serienummer ISSN
Title of series, numbering

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

CUSTOMIZATION OF DOCBOOK TO GENERATE PDF, HTM & CHM

Muhammad Asif

Software documentation is an important aspect of software projects. Software documentation plays a key role in software

development if it is up-to-date and complete. Software documentation should have the synchronization with the software

development. One of the problems is duplication; same information is written in different documents and stored in different

places with different formats making things complex to manage. By using traditional documentation tools, it’s hard to maintain

documentation for complex systems and it is time consuming.

To overcome these problems, we have used XML Docbook that is a good solution for it. Docbook provides single sourcing

technique in which documents are written ideally in one place and can convert it into different other formats from the same

location. Actually docbook is based on xml which can be easily edited by most of the programming languages. If there are many

developers are writing documentation for their software modules then we don’t need to copy and paste all the documents into

one document to produce a complete document for the software product. We have to just add the references to all those files

that should be present in the final document and then compile it with some processors and it automatically get document

contents from all files and put it into one document, so it’s easy to handle and maintain software documentation with docbook.

XML, Docbook, single source, documentation

2009-10-20

Linköpings universitet

x

Customization of Docbook to generate PDF, HTML and CHM Page 1

Intitutionen för datavetenskap

Department of Computer and Information Science

Master Thesis

CUSTOMIZATION OF DOCBOOK TO

GENERATE PDF, HTM & CHM

LIU-IDA/LITH-EX-A--09/053--SE

By

Muhammad Asif

Supervisor: Dr. Rego Granlund (IDA, Lith)

Examiner: Dr. Arne Jönsson (IDA, Lith)

Customization of Docbook to generate PDF, HTML and CHM Page 2

Dedication

I dedicate my work to my loving parents. Without their love, prayers, encouragement and

moral support it was difficult to complete the work.

Customization of Docbook to generate PDF, HTML and CHM Page 3

Acknowledgment

This thesis work was performed at Department of Computer and Information Science, IDA at

Linköpings University, Sweden.

 First of all I am thankful to ALLAH ALMIGHTY for providing me the strength to complete my

work successfully.

 I am really thankful to my supervisor Dr. Rego Granlund for his continuous guidance,

inspiration and fruitful advices to complete my work. Without his guidance, it was difficult to

complete my work within given time span. My special thanks to Muhammad Ayaz student of

Software Engineering and Management at LITH for his support and helpful comments.

I am equally grateful to my colleagues Rizwan Rashid, Adeel Blouch and Abdul Qudus for

their comments and suggestions. And I would like to thanks to all of my friends for their

companionship.

Customization of Docbook to generate PDF, HTML and CHM Page 4

Abstract

Software documentation is an important aspect of software projects. Software

documentation plays a key role in software development if it is up-to-date and complete.

Software documentation should have the synchronization with the software development.

One of the problems is duplication; same information is written in different documents and

stored in different places with different formats making things complex to manage. By using

traditional documentation tools, it’s hard to maintain documentation for complex systems

and it is time consuming.

To overcome these problems, we have used XML Docbook that is a good solution for it.

Docbook provides single sourcing technique in which documents are written ideally in one

place and can convert it into different other formats from the same location. Actually

docbook is based on xml which can be easily edited by most of the programming languages.

If there are many developers are writing documentation for their software modules then we

don’t need to copy and paste all the documents into one document to produce a complete

document for the software product. We have to just add the references to all those files that

should be present in the final document and then compile it with some processors and it

automatically get document contents from all files and put it into one document, so it’s easy

to handle and maintain software documentation with docbook.

Key words: XML, Docbook, single source, documentation

Customization of Docbook to generate PDF, HTML and CHM Page 5

ACRONYMS AND ABBREVIATIONS

API Application Programming Interface, a source code interface provided by

computer system or application library.

CHM Microsoft Compressed HTML Help, a help manual format based on HTML.

CLI Command Line Interface, non-graphical user interface for the application.

CSS Cascading Style Sheet, style definition file for HTML.

DTD Document Type Definition, technique to validate documents written in XML.

DocBook XML based format designed for technical documentation.

FOP Formatting Objects Processor, part of the Apache XML Graphics project.

GUI Graphical User Interface, visual user interface for the application.

HHC HTML Help Compiler, used to produce CHM documents.

HTML Hyper Text Markup Language, used for creation of web pages.

HTTP Hyper Text Transfer Protocol, communication method to transfer for example

HTML pages.

OASIS Organization for the Advancement of Structured Information Standards, a non-

profit international consortium that drives the development and adoption of e-

business standards.

ODF Open Document Format standardized documenting format for office

applications.

PDF Portable Document Format widely used printing format developed by Adobe.

PS PostScript, a page description and programming language used primary in

the electronic publishing.

SGML Standard Generalized Markup Language. Meta language, predecessor of XML.

SVG Scalable Vector Graphics, XML based format for two dimensional vector

graphics.

SQL Structured Query Language, the most popular computer language to create,

modify, retrieve and manipulate data in the relational database.

TeX Typesetting system, developed in the beginning of 1980, but still widely used

especially in the academic spheres.

Customization of Docbook to generate PDF, HTML and CHM Page 6

TIFF Tagged Image File Format, popular image format for high color depth images.

TOC Table of Contents shows the structure and the listing of the main entries in the

document.

W3C World Wide Web Consortium, a group formed by over four hundred

organization, which controls and develops common web techniques.

WikiText Wiki type of website allows easy modification and additions to the content.

Term also means text based, both computer and human readable documenting

format.

XML Extensible Markup Language, widely used for information definition developed

and controlled by W3C.

XSL Extensible Stylesheet Language, definition for products that are used to format

and interpret XML documents.

XSL-FO Extensible Stylesheet Language Formatting Objects, markup language for

document formatting. Used mainly to generate PDF documents.

XSLT Extensible Stylesheet Language Transformation, formatting rules especially for

XML data.

XSLTProc Open source XSLT processor available for multiple operating systems.

Customization of Docbook to generate PDF, HTML and CHM Page 7

Table of contents

1 Introduction ... 11

1.1 Objective.. 12

2 Software Documentation .. 13

2.1 Documentation .. 13

2.1.1 Requirement documentation .. 13

2.1.2 Technical Documentation .. 13

2.1.3 User documentation .. 14

2.2 Software documentation issues .. 15

2.3 Documentation format .. 16

3 Docbook Vs Latex .. 20

3.1 Docbook ... 20

3.2 Why use docbook .. 20

3.3 Maturity ... 22

3.4 XML/SGML ... 23

3.5 Data Separation ... 25

3.6 Modularity ... 26

3.7 Docbook Advantages ... 28

3.7.1 Profiling ... 28

3.8 Docbook Disadvantages .. 31

3.9 Latex .. 31

3.9.1 Features of Latex ... 32

3.9.2 Basic Layout of Latex ... 32

3.9.3 What is TeX .. 34

3.9.4 BibTeX .. 34

3.9.5 SliTeX ... 34

3.10 Advantages and disadvantages of LaTeX/TeX ... 34

Customization of Docbook to generate PDF, HTML and CHM Page 8

3.11 Docbook usage over Latex... 37

4 Document building & Scripting ... 38

4.1 Xml Docbook ... 38

4.2 XSLT Style sheet ... 39

4.3 4.3 CSS (Cascading Style Sheet) ... 42

4.4 XSL-FO .. 43

4.5 XSLTPROC .. 45

4.6 FOP .. 45

4.7 FOP Limitations .. 47

4.8 HTML Help Compiler ... 48

4.9 Htmlhelp.hhp ... 48

4.10 Docbook Processing Options ... 48

4.10.1 Display the menu ... 49

4.10.2 Custom buttons ... 49

4.10.3 Table of contents pan .. 50

5 Implementations ... 51

5.1 Installation of cygwin .. 51

5.2 Docbook to html and chm ... 56

5.3 Adding an index ... 59

5.4 How to produce single html file .. 60

5.5 Tables... 62

Chapter 1. On Foo's ... 63

5.6 Links ... 64

5.7 Graphics ... 64

5.8 Figures ... 64

5.9 Special formatting ... 65

5.10 Plain text formatting ... 65

Customization of Docbook to generate PDF, HTML and CHM Page 9

5.11 Customizing the style sheets ... 66

5.12 CSS Support ... 67

5.13 Custom header and footers ... 69

5.14 Docbook versioning ... 70

5.15 Docbook to pdf .. 71

6 Conclusion and Final Work .. 72

6.1 C3Fire Problems .. 72

6.2 Conclusion ... 72

6.3 Future Work .. 73

7 References ... 74

Customization of Docbook to generate PDF, HTML and CHM Page 10

Table of figures

Figure 2-1 B is Transcluded in the document A ... 18

Figure 3-1 Docbook structure .. 21

Figure 3-2 Docbook build process ... 22

Figure 3-3 XML Document Components ... 24

Figure 3-4 SGML Document Components ... 25

Figure 3-5 Data and Style separation .. 26

Figure 3-6 Document references ... 27

Figure 3-7 Source document to other formats process .. 31

Figure 3-8 LATEX relationship with other formats .. 35

Figure 3-9 Latex output ... 36

Figure 4-1 XSLT Processing Model ... 39

Figure 4-2 XSLTPROC Processing ... 45

Figure 4-3 FOP Rendering .. 46

Figure 5-1 Installation directory .. 52

Figure 5-2 Choose download site .. 53

Figure 5-3 Select Packages .. 54

Figure 5-4 HTML Output .. 57

Figure 5-5 CHM Output ... 59

Figure 5-6 CHM with Index .. 60

Figure 5-7 Single HTML Output ... 61

Figure 5-8 HTML Header ... 70

Customization of Docbook to generate PDF, HTML and CHM Page 11

1 Introduction

One of the cornerstones to any quality program is documented processes.

Processes are “codified good habits” [Down-94] that “define the sequence of steps

performed for a given purpose” [IEEE-610]. By using software documentation in a proper

way, we can find that what works best in our organization and where are the faults.

We can make better planning for the new coming projects because with the help of

appropriate software documentation we can have the idea that what we have learned in the

previous project. So that we can repeat our successes in the incoming projects and stop

repeating those actions that leads to problems. In this way we can eliminate the need to

“reinvent the wheel” with each new projects by providing a basic architecture to the new

project.

Chisholm has pointed out that how-to documents have been closely associated with the use

of products [Chisholm, 1988]. Documents cover the gap between products and its potential

customers that how to use the products and what features, functionalities contain this

particular product. So documents are helpful for the customers to understand and operate

the products themselves. Software documentation has very important role in software

project. Documents are needed to plan, analyze, design and storing the information for the

future usages. Software documentation might help other resource groups to get benefit

from our process and save their time.

Normally Microsoft word is used for the software documentation which is easy to use. It

works well in small projects to fulfill the basic requirement of documentation but the

increasing competition, complexity of systems and accelerating development have made it

necessary to look for alternative, possibly more efficient documentation tools, formats and

methods. In Microsoft word, the technical writer or anyone who is involve in writing

documentation put more concentration on the formatting rather than the document

contents. In this thesis we have used XML Docbook to generate the documentation. XML

Docbook is a scripting language based on XML and used for writing technical documentation.

It provides lot of benefits over traditional software documentation tools. XML Docbook

provides single sourcing which means that with one xml docbook source, we can generate

lot of other formats according to the requirement and there will be no change effect on the

Customization of Docbook to generate PDF, HTML and CHM Page 12

source document. In this thesis, we will also discuss about how to convert xml docbook to

PDF, HTML and CHM formats.

Most of the time of software developer spends on maintenance and for software

maintenance two things should be in documentation, first it should be updated and second

it should be completed. Actually without documentation it is very difficult to do the software

maintenance because by looking into code it’s hard to get the idea of a specific module

implementation.

1.1 Objective

The objective of this thesis is

 To use docbook to generate html, pdf and chm formats.

 Comparison of docbook with latex.

 Docbook customization and its implementation.

 Generate the different formats of C3Fire Project documentation.

In this thesis, the documentation is written for a C3Fire project so that it’s easy to maintain

the future updates in it and to convert it into different target formats. Actually there are

many versions of this project for different target audiences so that docbook is used to

maintain and generate different versions according to the requirements. C3Fire is an

environment that supports training and research in team collaboration. The environment is

mainly used in Command, Control and Communication research and in training of team

decision making [c3fire.org
1
].

1
 http://c3fire.org/c3fire/home/home.en.shtml

Customization of Docbook to generate PDF, HTML and CHM Page 13

2 Software Documentation

There are different types of documentation in each phase of software development that is

used by different persons in a software firm.

2.1 Documentation

2.1.1 Requirement documentation

Requirement documents are the description about the software that what functionalities

and features are performed or will be performed. This documentation used throughout the

software development life cycle to communicate that what the software does or shall do. It

is also used as an agreement or foundation for agreement that what type of functionalities

will be performed by the software. Requirements are produced and consumed by everyone

that involved in the production of the software like end users, customers, product managers,

project managers, sales, marketing, software architects, usability experts, interaction

designers, developers, and testers, to name a few. Thus, requirements documentation has

many different purposes. It is difficult to estimate that how much documentation is needed

for the software project. Requirement documentation depends on the complexity of

product. If the product is very complex then of course more documentation is needed to

cover all of its modules and if the product is small then little documentation is enough. Some

time we need more formal documentation if the product is very critical and can have

negative impact on human life like “Nuclear power systems or Medical software systems”.

Requirement documentation is very important when there is need to modify some of the

component of the software. Otherwise it’s difficult to trace out that what was the actual

behavior of the software. Without proper requirement documentation software changes

become more difficult and there for more error prone [wiki2].

2.1.2 Technical Documentation

The term 'technical documentation' refers to different documents with product-related data

and information that are used and stored for different purposes. “Different purposes” mean:

Product definition and specification, design, manufacturing, quality assurance, product

liability, product presentation; description of features, functions and interfaces; intended,

2
 http://en.wikipedia.org/wiki/Software_documentation

Customization of Docbook to generate PDF, HTML and CHM Page 14

safe and correct use; service and repair of a technical product as well as its safe

disposal[transcom.de
3].

Technical documentation deals with the programmers during development of software.

When software developers develop some complex and big software modules, they need to

write technical documents about different modules and functions. These documents contain

description of the code but not in a verbose mode, otherwise it is difficult to maintain in

future. Normally software products documented by using API Writers. Technical documents

are used by the developer when they need to modify some part of the software product

otherwise it is difficult and take more time to check out that what is the functionality of a

particular code/function. Often, tools such as Doxygen, NDoc, javadoc, EiffelStudio,

Sandcastle, ROBODoc, POD, TwinText, or Universal Report can be used to auto-generate the

code documents.

Normally software developers write comments about code during the coding phase to

understand it easily later on and also when some other developer do the inspection of the

code, he or she can easily understand it. The above tools are used to extract these

comments from the source code and produce reference manuals in the form of text or html

files [wiki4].

2.1.3 User documentation

User documents are usually more diverse as compared to the technical documents because

it contains each and everything about the products that how to use it and how to

troubleshoot it. User documents are written in way that they can easily understand it

because all the users are not the technical persons. User documents are also used by the

software tester during usability testing. It is very important that user document should be

comprehensive and not a confusing. User documents should be up-to-date [wiki5].

Some people don’t think that incomplete user documentation as a problem because they

believe the myth that no one read documentation normally. According to the recent data

3
 http://transcom.de/transcom/en/technische-dokumentation.htm

4
 http://en.wikipedia.org/wiki/Software_documentation

5
 http://en.wikipedia.org/wiki/Software_documentation

Customization of Docbook to generate PDF, HTML and CHM Page 15

from Dataquest, 85% people solve their problem by reading documentation. Many of the

people used their manuals before calling to the support. If the user manuals are incomplete,

out dated, then the customers will be frustrated and create false expectations about the way

the program should work. If the user manual and help is correct and up to date then lot of

support calls can be avoided and time is saved. Errors that mislead the customers about the

functionalities of the product can lead to repeated, frustrated, support calls and unpleasant

views about the company’s other products as well. Some time user manual index is

incomplete and pointed to the wrong information. The table of contents provides no hint,

where to find the correct information and some time the information is incomplete,

incomprehensible or spread across to many places in the manual [Cem Kaner, 2000].

2.2 Software documentation issues

Some time simple systems are not necessarily easy to document and complex system do not

always require complex documentation. One of the major problems is that technical writers

and editors don’t have their professional skills to create user manuals.

Software documentation is plagued by various kinds of issues. Despite all the time used to

write software documentation, they are often considered of a poor quality, incomplete and

outdated. Furthermore, there seems to be a lot of false prejudices and presumptions about

documentation writing and usage, but also about the quality and quantity of documentation

[GREGORY R. McARTHUR, 1986].

Software engineers rely on software documentation to understand the system, its high level

design and implementation details of complex applications. Unfortunately, the

documentation of most of the software systems is normally out dated. So the developers

usually don’t trust on it and focus on the source code. But it’s time consuming and error

prone process.

One way of producing accurate documentation for the existing system is through reverse

engineering. In fact many tools can create documentation, graphical view of software

systems and extract the hidden knowledge from the source code. However the truth is that

no one knows that what type of documentation is useful. If no one knows what is required, it

should come as no surprise that tools that produce this type of documentation are rarely

used by real-world software engineers. This situation raises many fundamental questions:

Customization of Docbook to generate PDF, HTML and CHM Page 16

• What types of documentation does a software engineer need? What formats should the

documentation take? For example, inline or linked textual commentary? Graphical views?

Multimedia?

• Who will produce the document? What is the role of technical professional communication

in the process? Who will maintain document when it is produced? [Bill Thomas, 2001]

2.3 Documentation format

Microsoft word is nowadays using for the software documentation by most of the software

companies. Due to lot of use of Microsoft word, it also tends to be the tool causing more

frustration. Complex applications some time produce multi-volume references causing

confusion that which reference manual should be selected and where to locate the

information in the manual [Novick David G, 2006].

Documentation format can be categorized into several formats like they can be stored in

text file or binary files etc. There are several formats available that is based on xml.

Moreover, document contents can be defined by using either structural or semantic

information, or alternatively their definition can be based on typesetting rules. Originally,

the document format can always be any combination these, too. Open Document format

(ODF) is an OASIS standardized documentation format for office applications. The Open

Document Format (ODF) is an open XML-based document file format for office applications

to be used for documents containing text, spreadsheets, charts, and graphical elements. The

file format makes transformations to other formats simple by leveraging and reusing existing

standards wherever possible. As an open standard under the stewardship of OASIS, Open

Document also creates the possibility for new types of applications and solutions to be

developed other than traditional office productivity applications [oasis-open.org]. ODF is

comparable with the Microsoft word format and it is not considered very different for the

MS word format. Microsoft introduces a new Open XML format for office applications and it

shares the same ideology of Open Document format like metadata, style and other

resources are split into separate units and finally zipped as a single file. However, while style

and data are separated in terms of files, they do not provide full separation as the format

contains references to the style definition file. Furthermore, the format also uses less

descriptive and non-semantic names for the XML elements, making it quite hard to follow.

Customization of Docbook to generate PDF, HTML and CHM Page 17

Microsoft has also developed MAML (Microsoft Assistance Markup Language) which is xml

based and used for “Longhorn” Help. The current help system HTML Help 1.x is using HTML

topic files. HTML is a markup language that combines presentational and semantic elements.

The most significant aspect of MAML is the shift to a structured authoring model. In MAML,

the focus is on contents rather than the formatting and presentation is controlled at

rendering time. MAML contain lot of content types, each one specific to a type of document.

The MAML content types include: conceptual, FAQ, glossary, procedural, reference, reusable

content, task, troubleshooting, and tutorial. Contents authored in MAML can be output into

many formats like DHTML, XAML, RTF, and print. There are three levels of run-time

transformation: structural, presentational, and rendering.

Example

<conceptual>

 <title />

 <content>

 <para />

 ...

 </content>

 <sections>

 <section>

 <title />

 <content>

 <para />

 ...

 </content>

 </section>

 ...

 </sections>

</conceptual>

[Help-info.de6]

Another documenting tool is wiki. Wiki has introduced a dramatic change in documentation

solutions. The term WikiWikiWeb is associated to the web based solution that facilitate the

users to add, edit and delete the desired contents of it. It provides a very simple and easy

interface to do modifications in the contents of wiki. It is quite easy to learn the scripting

language for wiki. There is no commonly accepted standard for wiki text language. The

grammar, feature, structure, and keywords depend on particular wiki software that is used

for a particular website. Wiki text Markup Language provided a very easy syntax for hyper

6
 http://www.help-info.de/en/Help_Info_AP_Help/longhorn_maml_example.htm

Customization of Docbook to generate PDF, HTML and CHM Page 18

linking to other web pages within the website but there are also some other way for hyper

linking web pages with each other. Many wikis, especially the earlier ones, used Camel Case

to mark words that should be automatically linked [en.wikipedia.org7].

A simple example of wiki documents is shown in the figure as

= Simple Wiki Document =

== First Chapter ==

This document is really ''simple'', but complex

enough to show how a short example:

{{{

#!python

from datetime import datetime

#show current date and time

print datetime.now().isoformat()

}}}

Wiki normally comes with browser based solution with the functionality to create, edit,

search and recognize pages. Additionally, the history of changes can be reviewed, comments

can be left and existing material can be reused by using the transclusion mechanism [Green

Robin, 1997]. Transclusion is the inclusion of part of a document into another document by

reference as shown in the figure

Figure 2-1 B is Transcluded in the document A

Most of the wiki solutions store documentation in relational or file-like databases. There

should be the connection to the system to read the wiki documents where as offline

7
 http://en.wikipedia.org/wiki/Wikitext

Customization of Docbook to generate PDF, HTML and CHM Page 19

documents cannot be used to read. Wiki did not meet the high standards for the layout of

the deliverable document formats [en.wikipedia.org8].

8
 http://en.wikipedia.org/wiki/Transclusion

Customization of Docbook to generate PDF, HTML and CHM Page 20

3 Docbook Vs Latex

3.1 Docbook

Docbook is a general purpose document format being designed, but not limited to computer

hardware and software documentation. Docbook uses both xml and sgml. Docbook is

standardized and maintain by OASIS. Docbook is a popular format for electronic publishing

and features an XML representation. One of the advantages of using Docbook, single-source

publishing is arguably the most useful. A Docbook document can be converted into many

different formats, such as HTML or PDF, without having to change the source document

[ausweb.scu.edu.au9].

Docbook is a markup language that is defined by xml or sgml document type definition

(DTD). Docbook is a set of tags that define the structure of document. It is much more similar

to HTML tags but more useful then plain HTML because it can be converted into several

formats. Basically docbook is developed for the documentation of open source projects like

Linux [ibm.com10].

3.2 Why use docbook

The main advantage of docbook is its portability. A document written in Docbook markup

can be converted into HTML, PostScript, PDF, RTF, DVI, and plain ASCII text easily and quickly

without any expensive tools. Actually docbook and all others tools that are used with

docbook to convert it into many formats are free and under open source licenses. Another

thing is that docbook documents are written in plain text so that any text editor can be used

for it. The author of the docbook doesn’t need to take care about the layout and formatting

of document. This is main difference between docbook and other word processors that by

using Microsoft word, we need to take care about the formatting and contents both at the

same time but in docbook the author only concentrate on the contents of the document

rather than its formatting. Actually the formatting part is stored in a separate file like CSS

which is applied during the rendering of the document [ibm.com11].

9 http://ausweb.scu.edu.au/aw05/papers/edited/ball/poster.html
10
 http://www.ibm.com/developerworks/library/l-docbk.html

11
 http://www.ibm.com/developerworks/library/l-docbk.html

Customization of Docbook to generate PDF, HTML and CHM Page 21

Using standard docbook tags we can build a complete document using its syntactic

structure. The Docbook document is then processed using XSL style sheets so that each

tagged Docbook element is transformed to a corresponding element in the target output

format. For example each <Para></Para> element in Docbook could be transformed into a

<p></p> element in XHTML. Instead of setting the style, color and font for each text, the

content of the document is defined. The granularity of the parts depends on the used

document format as shown in the figure.

Figure 3-1 Docbook structure

Using different XSL style sheets, we can generate different output formats. For example, we

can generate both XHTML and PDF outputs from a single Docbook source. We can also

generate multiple versions of XHTML (or PDF) files each with a different style if necessary as

shown in the figure.

Customization of Docbook to generate PDF, HTML and CHM Page 22

Figure 3-2 Docbook build process

[docs.jboss.org12].

3.3 Maturity

Docbook has been developed since 1991 and today it is enough mature and OASIS

standardized technical documentation format that is quite widely used in both open source

and commercial projects [www.docbook.org]. Actually there is a strong community behind

it making it technically strong day by day.

12
 http://docs.jboss.org/docbook/userguide/html_single/

Customization of Docbook to generate PDF, HTML and CHM Page 23

3.4 XML/SGML

The docbook document based on xml or sgml that provide advantages over the other

documentation formats. As xml is widely used and there are lot of tools are available to

create, edit, validating and querying it. Also the existing and developed techniques can be

used in docbook, because it also based on xml.

The XML format itself is an understandable format between human and computer

readability. Fortunately, the Docbook definition uses logical element names as show in the

figure below

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD Docbook XML V4.4//EN"

"http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">

<book>

<title>Simple Docbook Document</title>

<bookinfo>

<author>

<surname>Mustonen</surname>

<firstname>Juha</firstname>

<email>juham@ee.oulu.fi</email>

</author>

</bookinfo>

<chapter>

<title>First chapter</title>

<para>This document is really <emphasis>simple</emphasis>, but complex

enough to show how a short example:</para>

<example>

<title>Short example</title>

<programlisting language="python">

from datetime import datetime

#show current date and time

print datetime.now().isoformat()

</programlisting>

</example>

</chapter>

</book>

 But it cannot be considered as readable as the Wiki format. The compact XML format also

goes well with existing software projects.

Xml is subset of sgml. XML is designed for introduce an easy-to-learn way to use SGMLs

structure-defining power and to combine it with HTMLs popular features to describe easily

Customization of Docbook to generate PDF, HTML and CHM Page 24

text and graphics in the Internet. XML is a simplified version of SGML; XML was designed to

maintain the most useful parts of SGML. Whereas SGML requires that structured documents

reference a Document Type Definition (DTD) to be "valid," XML allows for "well-formed"

data and can be delivered without a DTD. XML was designed so that SGML can be delivered,

as XML, over the Web [irt.org13].

As we see from the following figures, structures of XML and SGML do not differ much. This is

due the fact that XML is a real subset of SGML. The most important difference is that output

specification is not defined by SGML, but it is fixed in XML as shown in the figure below.

Figure 3-3 XML Document Components

13
 http://www.irt.org/script/5206.htm

Customization of Docbook to generate PDF, HTML and CHM Page 25

Figure 3-4 SGML Document Components

 [students.tut.fi14]

3.5 Data Separation

There are lot of differences between docbook and other word processors but the major

difference is the data separation in docbook. In docbook content documents are written

separately from its presentation. The formatting of the document is stored in CSS document.

Whenever the template is changed, it can be applied to all the documents without any

manual modifications to the source document. A more practical example is to generate the

same document with different layouts, each filling its own specific purpose. Another, yet

bigger, advantage is to produce multiple target formats from a single source. In general,

Docbook documents are transformed into PDF, CHM and (X) HTML, but also other formats

like Man pages, Java Help and WordML are supported. Therefore, the deliverable documents

can be easily provided with the software in the format that is most suitable for the reader.

The Docbook XSL style sheets are a set of XSLT style sheets for the XML-based Docbook

14
 http://www.students.tut.fi/~leppane7/leppanen.html

Customization of Docbook to generate PDF, HTML and CHM Page 26

language. XSLT is used for the transformation of xml document to other xml document.

Actually xml document is notable for the presentation of its contents that’s why XSLT

 style sheets are used to convert xml documents into html or xhtml documents

for display as web page [wiki15].

 The contents of original documents didn’t changed rather than a new document is created

based on the contents of original document. It is also used to create printed output. As

docbook document is written in xml so XSLT stylesheet is used to convert it into target

format. Also during the transformation, various styles, text and image definitions are added

to the document, in order to get a more readable and better-looking output. High level

design about the style and data separation is shown in the figure below.

Figure 3-5 Data and Style separation

3.6 Modularity

One of the docbook features is its modularity in which instead of including everything in one

document, we can divide it into separate files as shown in the figure below. For example its

layout and formatting is kept separately. In the same way images are also kept separately

from the original contents files. When we need to modify some of the parts of document

then the focus is only on those parts instead of the entire document. In addition, documents

can include other documents either partially or completely. The technique thus enables

writing reusable document parts and updating them separately. This is also the idea behind

the single-sourcing method and therefore it is an appreciated feature in software

documentation. Docbook does not provide a self-made technique to include selective parts

15
 http://en.wikipedia.org/wiki/XSLT

Customization of Docbook to generate PDF, HTML and CHM Page 27

of another document inside the current one, but uses a standardized XInclude technique to

do it [w3.org16].

Figure 3-6 Document references

XInclue is generic method to include one document to other document either complete or

partially.

For example an XHTML document

<?xml version="1.0"?>

...

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <head>...</head>

 <body>

 ...

 <p><xi:include href="license.txt" parse="text"/></p>

 </body>

</html>

Will give

<?xml version="1.0"?>

...

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <head>...</head>

 <body>

16
 http://www.w3.org/TR/xinclude/

Customization of Docbook to generate PDF, HTML and CHM Page 28

 ...

 <p>This document is published under GNU Free Documentation License</p>

 </body>

</html>

[en.wikipedia.org
17

]

In this example we have included license.txt file which contain some text and by using

XInclude, the text comes in the resulting document.

3.7 Docbook Advantages

There is lot of advantages of docbook over other word processors used for software

documentation. Some of the advantages are

 One source file, multiple outputs (mostly PDF and HTML)

 Easy change tracking in SVN or a similar versioning system

 Automatic cross-referencing

 Automatic index generation

 Separation of content and design (with XSL) [docbook.theblog.ca18]

3.7.1 Profiling

There is one useful technique is used in docbook called Profiling. Profiling is an easy way to

personalize your contents for several target audience, for different operating systems and

for different user groups or levels [kosek.cz
19

]. Profiling is a mechanism to describe the

conditional text. Conditional text mean, you can specify the text in a single xml document

that which text element should be include in the resulting document after docbook

processing. This technique is useful when we need to produce different versions of the same

document. In this case style sheets are used to include or exclude the marked text to satisfy

the condition. So if we want to produce different versions of the same document that

include or exclude some text portion then we don’t need to make separate document for

each version. We will just apply the profiling technique on it that specify that which portion

of text should be include of excluded and just process the docbook document to get the

desired output.

17 http://en.wikipedia.org/wiki/XInclude
18
 http://docbook.theblog.ca/?page_id=6

19
 http://www.kosek.cz/xml/dboscon/profiling/frames.html

Customization of Docbook to generate PDF, HTML and CHM Page 29

This feature is normally used to produce different versions of a document for different

audiences. That's where the term profiling comes in. You can create a document profiled for

a particular audience. For example, software that runs on different platforms might require

different installation instructions for each platform, but might otherwise be the same. You

can create one version profiled for Linux customers and another profiled for Windows

customers [sagehill.net20].

Part of documents can be assigned to different target audiences:

 attribute os – target operating system

 attribute user level – target group of users

 attribute arch – target hardware architecture

 other application specific attributes can be used – conformance or role

Sample docbook document with profiling information is shown in the figure below.

<?xml version='1.0' encoding='iso-8859-1'?>

<!DOCTYPE chapter PUBLIC '-//OASIS//DTD Docbook XML V4.1.2//EN'

 'http://www.oasis-open.org/docbook/xml/4.0/docbookx.dtd'>

<chapter>

<title>How to setup SGML catalogs</title>

<para>Many existing SGML tools are able to map public identifiers to

files on your local file system. Mapping is specified in so called

catalog file. List of catalog files to use is stored in environment

variable <envar>SGML_CATALOG_FILES</envar>.</para>

<Para os="unix">On Unix systems you can set this variable by invoking

command <command>export SGML_CATALOG_FILES=/usr/lib/catalog</command>

on command line. If you want maintain value of the variable between

sessions, place this command into startup file,

e.g. <filename>.profile</filename>.</para>

<para os="win">In Windows NT/2000 you can set environment variable by

issuing command <menuchoice><guimenu>Start</guimenu>

<guisubmenu>Settings</guisubmenu> <guisubmenu>Control

Pannel</guisubmenu>

<guimenuitem>System</guimenuitem></menuchoice>. Then select

<guilabel>Advanced</guilabel> card in the dialog box and click on the

<guibutton>Environment Variables...</guibutton> button. Using the

<guibutton>New</guibutton> button you can add new environment variable

20
 http://www.sagehill.net/docbookxsl/Profiling.html

Customization of Docbook to generate PDF, HTML and CHM Page 30

into your system.</para>

</chapter>

In this example when we processed it, we will get only those contents which have specific

parameter name. For example if we use os=UNIX by telling to the xsltproc then the resultant

document will only contain document for Unix and if we use os=windows then the resultant

document will contain text for windows, so it depends on the situation that what we need to

produce. We will discuss more about xsltproc in the next chapter in detail. Docbook

documents are normally processed by apply XSLT Style sheets. By applying profiling on

docbook document, we need to perform two steps on it. First we have to filter out the

contents of the document that which contents should be produced as an output and in the

next step we have to process the docbook document by applying XSLT Style sheets as shown

in the figure.

In this example you can see that we have a source Docbook document and we want to

generate two different documents that will contain some of the different contents from

each other. As we know profiling is a two step process, first we have applied profiling for

target audience A and then we have applied profiling for target audience B to filter out the

desired contents for each audience. Now we have both profiled document for target

audience A and target audience B. After this we have applied XSLT Style sheets on each

profiled document to generate desired output in different format e.g. to generate HTML,

Compiled HTML (CHM) or PDF document as show in the figure below.

Customization of Docbook to generate PDF, HTML and CHM Page 31

Figure 3-7 Source document to other formats process

 [Jirka Kosek, 2001]

3.8 Docbook Disadvantages

The docbook is not without its problems. The setup environment of docbook is very

complicated. Setting of environment variable and paths could be complicated for unskilled

user. The separation between content and style can be somewhat complex to use, yet it is

powerful. Although the style definition needs to be made only once, it is a non-trivial task

and the outcome may not always be exactly as wanted. User need not learn tools that are

used in docbook and its element and the way to produce final output.

The Formatting Objects processores (e.g. XEP, Antenna House) come mostly under

commercial applications too. The development of open-source FO processores (e.g. FOP) is

at the beginning. These FO processores are not conducive to formatting of complicated

structures.

3.9 Latex

Latex is a document preparation system for the TEX typesetting program. We can produce

publication-quality output with great accuracy and consistency. LATEX works on any

Customization of Docbook to generate PDF, HTML and CHM Page 32

computer and produces industry-standard PS or PDF documents. It is available both in free

(open-source) and commercial implementations. LATEX can be used for any kind of

document, but it is especially suited to those with complex structure, repetitive formatting,

mathematics1, technical stability, and dimensional accuracy [tug.ctan.org21].

Latex is not a word processor. Latex encourages authors to more concentrate on the

contents of document rather than its appearance and format. Latex is faster for producing

documentation, but lacks the diverse transformation capabilities offered by Docbook XSL.

3.9.1 Features of Latex

Latex consists of a rich set of built-in-commands. As Latex support fully programming

features that make complicated macros to easily define. Latex macros do take care of

formatting decision for the author and one can use the default layout of Latex. If the default

layout is not suitable for you then you can customize the layout of the document according

to you your choice but while doing this some of the default setting will not be changed like

 Footnotes and marginal notes are automatically located on the page.

 Latex will automatically number sections and equations in a document.

 Latex makes it easy to control the actual width and format of columns in tables and

to set paragraph entries in columns.

Latex is output device independent. The output of the Latex is device-independent (DVI) in a

standard and well documented format. Filter programs then covert this file format to other

required formats. Latex works the same way on all the system and produce the same output

regardless of the type of the system. DVI files are interchangeable between the systems.

3.9.2 Basic Layout of Latex

Latex files consist of text of the particular document and commands. Everything is free-

format and Latex doesn’t care about spaces that how many spaces are in between words. It

reads the input as a byte stream, looking for commands or blocks of text (words), separated

by blanks, new-lines, tabs, or special symbols. Commands or text do not have to begin in a

specific column or be on a line by themselves.

21
 http://tug.ctan.org/tex-archive/info/latex-veryshortguide/veryshortguide.pdf

Customization of Docbook to generate PDF, HTML and CHM Page 33

The syntax of the command starts with the backslash \ followed by an alphabetic of arbitrary

length, for example

\make

The backslash and the command name do not appear in the target output document

because they are interpreted by Latex. Almost all Latex commands are to be written in

lowercase letters only.

Some commands required parameters to set the margin or heading name etc, for example

\section{text of the heading}

Some commands have optional parameter; if you don’t provide the parameter by yourself

then default value is used for example

\document style[11pt]{...}

A few commands do not have alphabetic names, but rather a single non-alphabetic

character after the backslash, for example:

This command // forces the start of a new line in the output

This command \% puts a percent sign in the output (% by itself has a special meaning).

The following "reserved" symbols are interpreted as special command names or arguments

and do not appear in the output. You can get them typeset in your output file with special

Latex commands in your input file.

$ % & ~ _ ^ \ { }

Some of the command will always present in the Latex document like

\documentstyle{stylename}

\begin{document}

\end{document}

Customization of Docbook to generate PDF, HTML and CHM Page 34

3.9.3 What is TeX

TeX is a low level markup and programming language to produce documentation precisely

land consistently. It’s a programming language as it uses if else structure to make

calculations with it while compiling the document with TeX compiler.

3.9.4 BibTeX

Separate program works with Latex to produce formatted bibliographies and reference lists.

3.9.5 SliTeX

Separate program works with LaTeX to format text for slides or overhead transparencies

[pangea.stanford.edu22].

3.10 Advantages and disadvantages of LaTeX/TeX

Since Latex comprises a group of TeX commands, Latex document processing is essentially

programming. You create a text file in Latex markup. The Latex macro reads this to produce

the final document.

Clearly this has disadvantages in comparison with a WYSIWYG (What You See Is What You

Get) program such as Openoffice.org Writer or Microsoft Word:

 You can't see the final result straight away.

 You need to know the necessary commands for Latex markup.

 It can sometimes be difficult to obtain a certain 'look'.

On the other hand, there are certain advantages to the markup language approach:

 The layout, fonts, tables and so on are consistent throughout.

 Mathematical formulae can be easily typeset.

 Indexes, footnotes and references are generated easily.

 You are forced to correctly structure your documents.

Latex document is a plain text file contains the contents of the documents and additional

markup tags. We cannot see the final output of unfinished document because we need to

compile all the document files with Latex or TeX macros.

22
 http://pangea.stanford.edu/computerinfo/unix/formatting/features.html

Customization of Docbook to generate PDF, HTML and CHM Page 35

Note that Latex is a collection of macros for Tex. So if we compile the TeX document with

Latex compiler it will work perfectly but if we try to compile Latex document with TeX

compiler then it will produce a lot of warning and errors. Latex natively supports DVI and

PDF, but by using other software you can easily create PostScript, PNG, JPG, etc.

When Latex was developed, on that time the only format for Latex was DVI. After this pdf

support was added with the name of pdf latex. So we can create pdf from both pdf latex and

dvipdfm but the out is pretty good with pdf latex as compare to dvipdfm. Actually DVI is an

old format and it also do not support hyperlinks in the document but the pdf latex support it

perfectly.

The following diagram shows the relationships between the (La)TeX source code and all the

formats you can create from it:

Figure 3-8 LATEX relationship with other formats

In this figure the red text denotes the file formats, blue text shows the commands to

produce different file format outputs and the green text represents the image formats that

are supported.

As we can see different paths in this diagram to get the desired output, some are shortest

and some are longer to get the same output. If we use the longer path then the quality of

target output will be decrease because each format conversion loses some pixel

Customization of Docbook to generate PDF, HTML and CHM Page 36

values/information and if we use the shortest path then we can get the better quality of the

documents [en.wikibooks.org23].

 A simple Latex template is shown in the figure below

% Example Latex document for GP111 - note % sign indicates a comment

\documentstyle[11pt]{article}

% Default margins are too wide all the way around. I reset them here

\setlength{\topmargin}{-.5in}

\setlength{\textheight}{9in}

\setlength{\oddsidemargin}{.125in}

\setlength{\textwidth}{6.25in}

\begin{document}

\title{LaTeX Typesetting By Example}

\author{Phil Farrell\\

Stanford University School of Earth Sciences}

\renewcommand{\today}{November 2, 1994}

\maketitle

This article demonstrates a basic set of Latex formatting commands.

Compare the typeset output side-by-side with the input document.

\end{document}

The output of this document will show as below

Figure 3-9 Latex output

23
 http://en.wikibooks.org/wiki/LaTeX/Introduction

Customization of Docbook to generate PDF, HTML and CHM Page 37

3.11 Docbook usage over Latex

It’s difficult to produce good html by using Latex. The standard tool that is used to produce

html from latex is latex2html which produce atrocious and unnavigable html.

It’s easier for those who are unexperienced with either latex or docbook to use xml docbook

because if anyone have knowledge about html then it is very easy to understand xml. For

example chapter tag in docbook will always begin with <chapter> and end with </chapter>.

XML has some built-in advantages. First, it makes it easy to check to see if the document is

"well-formed".

The book structure is very simple; including external files via entities is pretty simple.

Customization of Docbook to generate PDF, HTML and CHM Page 38

4 Document building & Scripting

Docbook is a very cool XML-based syntax that allows you to author documentation in a

single format, and then run it through various processors to create your final documentation

output. In this chapter we will show that how to process documentation using docbook help

processor and then creating customizations for producing plain html for offline and online

usage. We will also show that how to produce “compiled html (chm)” and pdf format from

xml docbook source.

The number of technologies that will be used with xml docbook to produce documentation

will be described below.

4.1 Xml Docbook

Docbook is a semantic markup language that is used for writing technical documentation. As

a semantic language, Docbook enables its users to create document content in a

presentation-neutral form that captures the logical structure of the content; that content

can then be published in a variety of formats, including HTML, XHTML, EPUB, PDF, man

pages and HTML Help, without requiring users to make any changes to the source

[en.wiki.org24].

We will write our documentation for C3Fire project in xml docbook format. The syntax of

xml docbook is show as below.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"

"http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">

<book>

<title>Simple DocBook Document</title>

<bookinfo>

<author>

<surname>Mustonen</surname>

<firstname>Juha</firstname>

<email>juham@ee.oulu.fi</email>

</author>

</bookinfo>

<chapter>

<title>First chapter</title>

<para>This document is really <emphasis>simple</emphasis>, but complex

24
 http://en.wikipedia.org/wiki/DocBook

Customization of Docbook to generate PDF, HTML and CHM Page 39

enough to show how a short example:</para>

<example>

<title>Short example</title>

<programlisting language="python">

from datetime import datetime

#show current date and time

print datetime.now().isoformat()

</programlisting>

</example>

</chapter>

</book>

4.2 XSLT Style sheet

XSL Transformation (XSLT) is a declarative xml based language for the transformation of xml

document to other xml documents. Actually we cannot display the xml directly as web page

or some other format. So that we have to transform it into HTML or XHTML so that it can be

display as a web page or some other formats. When we transform xml to other format then

the original document did not change rather than a new document based on the existing

document is created. To convert xml to other formats, we need some processors according

to our requirement but here we will use xsltproc processor that will be discussed later on.

The XSLT processing model is shown in the figure below.

Figure 4-1 XSLT Processing Model

Customization of Docbook to generate PDF, HTML and CHM Page 40

 [services.exeter.ac.uk25]

As we need to apply XSLT style sheet on xml document that’s why XSLT Processor takes two

inputs, one as a source xml document and another is XSLT style sheet. The XSLT style sheet

contains contain template rules: instructions and other directives that guide the processor in

the production of the output document.

The simple source xml is written as below

<?xml version="1.0" ?>

<persons>

 <person username="JS1">

 <name>John</name>

 <family-name>Smith</family-name>

 </person>

 <person username="MI1">

 <name>Morka</name>

 <family-name>Ismincius</family-name>

 </person>

</persons>

And now applying XSLT style sheet template on it to transform it into other xml document

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/persons">

 <root>

 <xsl:apply-templates select="person"/>

 </root>

 </xsl:template>

 <xsl:template match="person">

 <name username="{@username}">

 <xsl:value-of select="name" />

 </name>

 </xsl:template>

</xsl:stylesheet>

25
 http://services.exeter.ac.uk/cmit/modules/meaningful_markup/webct/ch-xslt-intro.html

Customization of Docbook to generate PDF, HTML and CHM Page 41

The format of new xml document will be

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <name username="JS1">John</name>

 <name username="MI1">Morka</name>

</root>

To transform XML to XHTML, first we need XSLT document as shown below

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" encoding="UTF-8"/>

 <xsl:template match="/persons">

 <html>

 <head> <title>Testing XML Example</title> </head>

 <body>

 <h1>Persons</h1>

 <xsl:apply-templates select="person">

 <xsl:sort select="family-name" />

 </xsl:apply-templates>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="person">

 <xsl:value-of select="family-name"/><xsl:text>, </xsl:text>

 <xsl:value-of select="name"/>

 </xsl:template>

</xsl:stylesheet>

After transforming it into XHTML

<?xml version="1.0" encoding="UTF-8"?>

Customization of Docbook to generate PDF, HTML and CHM Page 42

<html xmlns="http://www.w3.org/1999/xhtml">

 <head> <title>Testing XML Example</title> </head>

 <body>

 <h1>Persons</h1>

 Ismincius, Morka

 Smith, John

 </body>

</html>

[en.wikipedia.org
26

]

4.3 4.3 CSS (Cascading Style Sheet)

Cascading style sheet is a mechanism to add style like color, font and spacing etc to the web

documents to make them more attractive.

CSS preliminary separate the html content document from its presentation like color, font

size and layout etc and gives more control to manage it. It enables multiple pages to share

formatting style and give consistency among all the pages. So if we want to change the style

of some html tags then we don’t need to go on each particular tag to change its style, we will

just do some change in the CSS document and all the pages that contain that particular tag

will update their formatting according to CSS. So it’s easy to control the formatting style of

multiple pages by doing less effort.

For example, here you can see the html document

<html>

<head>

<link rel="stylesheet"

type="text/css" href="test.css" />

</head>

<body>

<h1>This header is 36 pt</h1>

<h2>This header is blue</h2>

<p>This paragraph has a left

margin of 50 pixels</p>

</body>

26
 http://en.wikipedia.org/wiki/DocBook

Customization of Docbook to generate PDF, HTML and CHM Page 43

</html>

Here you can see the test.css template for the above html document

body {background-color: yellow}

h1 {font-size: 36pt}

h2 {color: blue}

p {margin-left: 50px}

We can see that test.css contain body, h1, h2 and p tag with different attribute values. If we

see the html document above, there is a link tag that contains the reference to the “test.css”

style sheet. So the body color in html document will be yellow, the h2 header size will always

be 36 pt either we use it in single html page or multiple and same for the other tags. If we

want to change the appearance and layout of any tag, we will just do a smaller changing in

CSS document.

4.4 XSL-FO

XSL-FO stands for Extensible Style sheet Language Formatting Objects. It is xml based and a

formatting language. XSL-Fo is a markup language for XML document formatting which is

most often used to generate PDFs. XSLT is a language for transforming xml documents and

XSL-FO is a language for formatting xml documents.

Styling is both about transforming and formatting information. When the World Wide Web

Consortium (W3C) made their first XSL Working Draft, it contained the language syntax for

both transforming and formatting XML documents.

Later, the Working Group at W3C split the original draft into separate Recommendations

[w3schools.com27].

The general idea behind XSL-FO is not to write document in FO (formatting Object)

but in XML. After writing required document in xml format then we need to use some xslt

processor for example in our case we are using xsltproc, to convert it into XSL-FO format.

Once the XSL-FO document is generated then we need FO processors to convert it into

27
 http://www.w3schools.com/xslfo/xslfo_intro.asp

Customization of Docbook to generate PDF, HTML and CHM Page 44

readable, printable or both. The most common output of XSL-FO is a PDF file or as PS, but

some FO processors can output to other formats like RTF files [en.wikipedia.org28]

XSL-FO documents normally stored in files with .fo or .fob extensions. Each XSL-FO Page

contains a number of Regions:

 region-body (the body of the page)

 region-before (the header of the page)

 region-after (the footer of the page)

 region-start (the left sidebar)

 region-end (the right sidebar)

 XSL-FO Regions contain Block areas.

A simple template of XSL-FO is shown in the figure below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

 <fo:simple-page-master master-name="A4">

 <fo:region-body />

 </fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference="A4">

 <fo:flow flow-name="xsl-region-body">

 <fo:block>Hello W3Schools</fo:block>

 </fo:flow>

</fo:page-sequence>

</fo:root>[w3schools.com29]

The output of this template will be simple showing the text “Hello W3Schools”.

28
 http://en.wikipedia.org/wiki/XSL_Formatting_Objects

29
 http://www.w3schools.com/xslfo/xslfo_intro.asp

Customization of Docbook to generate PDF, HTML and CHM Page 45

4.5 XSLTPROC

XSLTPROC ia a command line tool for applying XSLT style sheets on XML documents. It is a

part of libxslt, the XSLT C library for GNOME. While it was developed as part of the GNOME

project, it can operate independently of the GNOME desktop.

xsltproc is invoked from the command line with the name of the style sheet to be used

followed by the name of the file or files to which the style sheet is to be applied. By

default, output is to stdout. We can specify a file for output using the -o option.

[linuxcomman30d.org] .

We can use xsltproc to generate html pages, fo objects and compiled html pages from xml

documents.

Figure 4-2 XSLTPROC Processing

 [mirrors.bieringer.de31]

4.6 FOP

FOP is open source software under Apachi Software License and abbreviated as Formatting

Object Processor. FOP is a java application that converts XSL-FO files to pdf or other

printable formats.

Apache FOP supports embedding a number of image formats in the XSL-FO (through the

<fo:external-graphic> element). These include:

 SVG

30 http://linuxcommand.org/man_pages/xsltproc1.html

31
 http://mirrors.bieringer.de/www.deepspace6.net/contribute/ds6-architecture.html

Customization of Docbook to generate PDF, HTML and CHM Page 46

 PNG

 Bitmap BMP

 PostScript (as EPS)

 JPEG

 Some TIFF formats.

Apache FOP does not implement the <fo:float> element. External graphics objects are thus

limited to being drawn inline or in a block with no wrapped text.

Apache FOP supports the following output formats:

 PDF (best output support)

 ASCII text file facsimile

 PostScript

 Direct printer output (PCL)

 AFP

 RTF

 Java2D/AWT for display, printing, and page rendering to PNG and TIFF

In progress:

 MIF

 SVG [en.wikipedia.com32]

The current release of FOP is 0.95 and the primary output target is pdf.

Figure 4-3 FOP Rendering

 [xmlgraphics.apache.org
33

]

32
 http://en.wikipedia.org/wiki/Formatting_Objects_Processor

Customization of Docbook to generate PDF, HTML and CHM Page 47

4.7 FOP Limitations

Development of FOP is in under process and it is not enough mature to work accordingly. As

it works but have some limitations.

 dropped Text if inline FOs fall near page boundaries

 dropped lines if inline images and other elements cause page breaks

 fo:inline is basically ineffective, can only be used as property holder like fo:wrapper

 fo:character lacks basically all features you'd want to use it for

 no proper vertical alignment in lines, most of the values aren't recognized

 no handling of different font sizes within the same line

 linefeed-treatment not implemented

 whitespace-treatment not implemented

 improper line breaking

 improper hyphenation

 no implementation for the advanced hyphenation controls

 no reparenting for markers after retrieval

 retrieve-marker-position only really works to first-starting-within-page and

occasionally for

 last-ending-within-page, everything else is pure coincidence

 retrieval of wrong markers in case page rendering is deferred

 footnotes are not broken correctly

 footnotes don't mix well with multi-column layout

 leaders may be misaligned (even after the recent fixes)

 conditional spaces and borders are not implemented

 margins are not properly implemented

 forced page breaking is not properly implemented

 the space resolution algorithm mandated by the spec is not

 Implemented

 collapsed table borders are not properly implemented [osdir.com
34

]

33
 http://xmlgraphics.apache.org/fop/

34
 http://osdir.com/ml/text.xml.fop.devel/2003-03/msg00111.html

Customization of Docbook to generate PDF, HTML and CHM Page 48

4.8 HTML Help Compiler

Microsoft HTML Help is a standard help system for windows platform. Authors can use Html

Help to generate online help for software applications and contents for multimedia title or

website etc. Developers can use the HTML Help API to program a host application or hook up

context-sensitive help to an application. As an information delivery system, HTML Help is

suited for a wide range of applications, including training guides, interactive books, and

electronic newsletters, as well as help for software applications.

HTML Help offers some diverse advantages over standard HTML, such as the capability to

employ a combined table of contents and index and the use of keywords for advanced hyper

linking capability. The HTML Help compiler (part of the HTML Help Workshop) makes it

possible to compress HTML, graphic, and other files into a relatively small compiled help

(.chm) file, which can then be distributed with a software application, or downloaded from

the Web. [msdn.microsoft.com35]

4.9 Htmlhelp.hhp

When we process an xml docbook document with htmlhelp.xsl by using xsltproc, then the

output of this process is a collection of HTML files and some non-HTML files. The HTML files

are chunked HTML files with the navigational headers and footers removed. In fact, you can

use all of the stylesheet parameters and customizations you would normally use when

generating chunked HTML.

The non-html files are

 Htmlhelp.hhp: this file is used for producing compiled html document (.chm) with

help of Html Help Compiler.

 Toc.hhc: this file is used to produce table of contents in a document.

 Index.hhk: tis file is used to produce indexing in a document.

4.10 Docbook Processing Options

We can customize the htmlhelp.xsl style sheet to display different options in a final output

document. With style sheet parameter we can control

35
 http://msdn.microsoft.com/en-us/library/ms670169(VS.85).aspx

Customization of Docbook to generate PDF, HTML and CHM Page 49

 The help window title, size and position.

 Whether the help menu appears.

 Which standard toolbar buttons are displayed

 Adding custom toolbar buttons.

4.10.1 Display the menu

If the value of htmlhelp.show.menu is set to 1 then the help application will have the

standard menu at the top otherwise there will no menu displayed.

We can select which toolbar buttons are displayed in our Help application. Each parameter

controls one button. Set its value to 1 to display the button, or to zero to hide it. The

following table lists the button parameters.

Standard button name Parameter

Hide/Show htmlhelp.button.hideshow

Back htmlhelp.button.back

Forward htmlhelp.button.forward

Stop htmlhelp.button.stop

Refresh htmlhelp.button.refresh

Home htmlhelp.button.home

Options htmlhelp.button.options

Print htmlhelp.button.print

Locate htmlhelp.button.locate

Next htmlhelp.button.next

Previous htmlhelp.button.previous

Zoom htmlhelp.button.zoom

Table 4.1 Parameter values

4.10.2 Custom buttons

We can add custom button in a help application that link to the external links. These buttons

are called jump buttons, and each one has three parameters: to display the button, to label

the button, and to identify the link for the button. The following table lists the parameters

that control the custom buttons.

Custom button Parameters Description

Custom button 1 htmlhelp.button.jump1 When set to 1, display this button.

Customization of Docbook to generate PDF, HTML and CHM Page 50

Custom button Parameters Description

htmlhelp.button.jump1.title Specify the text to show below the button.

htmlhelp.button.jump1.url Jump to this URL when pressed.

Custom button 2

htmlhelp.button.jump2 When set to 1, display this button.

htmlhelp.button.jump2.title Specify the text to show below the button.

htmlhelp.button.jump2.url Jump to this URL when pressed.

Table 4.2 Parameter values

4.10.3 Table of contents pan

We can customize the various aspects of table of contents window pane that appears to the

left of the Help text. Some of them are described below.

Htmlhelp.hhc.width: Specifies the width of TOC (table of content).

Htmlhelp.hhc.section.depth: Specifies how many levels of nested sections to include in the

TOC pane. Set to 5 by default, which means all section levels are included.

Htmlhelp.show.favorites: If set to 1, then a Favorites tab is added to the top of the TOC

pane. The Favorites pane lets the reader save bookmarks into the Help file. The default is

zero.

Htmlhelp.show.advanced.search: By enabling this feature, help application will have more

advanced search options.

Htmlhelp.hhc.binary: If set to 1 (the default), it compiles the TOC into a binary form to

improve performance. This setting also enables the Next and Previous buttons [

sagehill.net36].

36
 http://www.sagehill.net/docbookxsl/HtmlHelp.html

Customization of Docbook to generate PDF, HTML and CHM Page 51

5 Implementations

In this chapter we will discuss that how to setup and configure docbook environment to

produce documentation. We will focus on that how

 To convert xml docbook to html

 To convert xml docbook to pdf

 To convert docbook to chm

Cygwin tool is used to configure docbook environment. Cygwin is a Linux-like environment

for Windows. It consists of two parts:

 A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing substantial

Linux API functionality.

 A collection of tools which provide Linux look and feel.

Cygwin is not a way to run native Linux apps on Windows. You have to rebuild your

application from source if you want it to run on Windows. Cygwin is free and open source

tool that provides the command line interface for Microsoft Windows. Some of the tools

included (in no particular order) are ssh, cvs, gcc, make, touch, scp, more, less, cat, bash,

perl, python, and many, many others [cygwin.com
37

].

5.1 Installation of cygwin

1. Download and run "setup.exe" from http://www.cygwin.com/setup.exe

2. Accept all defaults, clicking "Next" until you get to "Choose a installation directory"

37
 http://www.cygwin.com/

Customization of Docbook to generate PDF, HTML and CHM Page 52

Figure 5-1 Installation directory

In this window you have to select DOS/text choice for default text file type.

3. Accept all defaults, clicking "Next" until you get to "Choose a installation directory"

Customization of Docbook to generate PDF, HTML and CHM Page 53

4. Choose a download site. "http://mirror.mcs.anl.gov" is a good choice.

Figure 5-2 Choose download site

Click next and now the installer grabs a list of available packages, and displays it in

this rather clumsy way:

Customization of Docbook to generate PDF, HTML and CHM Page 54

Figure 5-3 Select Packages

Click on plus sign to change the value to install all and click next. This will install everything

you need to run xml docbook.

Now open up your bash command line and type (you can do this via Start > Programs >

Cygwin > Cygwin Bash Shell):

After installing cygwin, now it’s time to test cygwin that it is working fine or not. Open the

cygwin base shell and write

Xsltproc –version

You should get message like

$ xsltproc –version

Using libxml 20423, libxslt 10013 and libexslt 705

xsltproc was compiled against libxml 20417, libxslt 10013 and libexslt 705

libxslt 10013 was compiled against libxml 20417

libexslt 705 was compiled against libxml 20417

Customization of Docbook to generate PDF, HTML and CHM Page 55

Next you need to download docbook xsl style sheet. If you don’t find it under

C:\cygwin\usr\share\docbook-xsl then you can download it from sourceforge.net and unzip

it at C:\cygwin\usr\share\.

Now we can write simple test program. Create a simple.xml and write

<?xml version="1.0"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"

 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" >

<book>

 <title>Simple Book</title>

 <titleabbrev>Simple</titleabbrev>

 <preface><title>Introduction</title>

 <para>

 Hello! Here's an introduction!

 </para>

 </preface>

 <chapter><title>On Foo's</title>

 <para>

 Stuff about Foo's goes here.

 </para>

 </chapter>

 <chapter><title>On Bars's</title>

 <para>

 Stuff about Bars's goes here.

 </para>

 </chapter>

</book>

In this example you can see lot of things like dtd, book, title, preface, Para, and chapter etc.

DTD is used for the verification of xml docbook. Don’t forget to add <?xml version="1.0"?>

on top of each xml docbook file otherwise you will get lot of errors about xml parsing. The

basic building blocks that are needed to organize various sections in a docbook are book,

chapter and section etc.

Chapters can nest under a book, and sections can nest under a chapter or another section.

Paragraphs are wrapped with the <Para> tags and can occur most anywhere you want. You

can include section tag under section tag for subsections etc.

Customization of Docbook to generate PDF, HTML and CHM Page 56

5.2 Docbook to html and chm

First of all put simple.xml under C:\cygwin\home\<User name> and then just go there by

writing CD: C:\cygwin\home\<User name> on cygwin bash command line.

Use xsltproc to generate html files by writing this command

xsltproc –nonet /usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl simple.xml

This will produce

$ xsltproc --nonet /usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl simple.xml

Attempt to load network entity http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd

Writing pr01.html for preface

Writing ch01.html for chapter

Writing ch02.html for chapter

Writing index.html for book

Writing htmlhelp.hhp

Writing toc.hhc

You can see the different files have been created under C:\cygwin\home\<User name>. Now

you can open index.html in a web browser

Customization of Docbook to generate PDF, HTML and CHM Page 57

Figure 5-4 HTML Output

The –nonet option tells to the xsltproc that not to connect via the network to verify the xml

docbook with dtd.

As you can see that we have added two chapters in the same xml file, we can break up it into

multiple files for easy handling. For example we make two separate chapter files, chap1.xml

<chapter><title>On Foo's</title>

 <para>

 Stuff about Foo's goes here.

 </para>

</chapter>

And chap2.xml

<chapter><title>On Bars's</title>

 <para>

 Stuff about Bars's goes here.

Customization of Docbook to generate PDF, HTML and CHM Page 58

 </para>

</chapter>

Now we have to modify simple.xml

<?xml version="1.0"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"

 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" [

 <!ENTITY chap1 SYSTEM "chap1.xml">

 <!ENTITY chap2 SYSTEM "chap2.xml">

]>

The use of the <!ENTITY> tags creates entities named chap1 and chap2. Using them

automatically includes their contents in to the simple.xml file, so be careful to not put the

<?xml?> preprocessor tags in the included files (chap1.xml and chap2.xml respectively). We

can verify that all this works by running xsltproc again:

xsltproc –nonet /usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl simple.xml

Again we will get the same output as above.

Now we can generate the chm. It’s really easy to produce it, just call the command line html

help compiler and pass the htmlhelp.hhp file that is already generated by executing xsltproc.

You can see out chm output below

Customization of Docbook to generate PDF, HTML and CHM Page 59

Figure 5-5 CHM Output

5.3 Adding an index

You can see above the chm output figure, there is no indexing support, we can add it by

using <indexterm> in both chap1.xml

<chapter><title>On Foo's</title>

 <para><indexterm><primary>About Foo's</primary></indexterm>

 Stuff about Foo's goes here.

 </para>

</chapter>

And chap2.xml

<chapter><title>On Bars's</title>

 <para><indexterm><primary>About Bar's</primary></indexterm>

 Stuff about Bars's goes here.

Customization of Docbook to generate PDF, HTML and CHM Page 60

 </para>

</chapter>

Again compile simple.xml with xsltproc to generate htmlhelp.hhp and then run html help

compiler hhc htmlhelp.hhp to generate chm. This time you can see the indexing support in it

as shown below.

Figure 5-6 CHM with Index

5.4 How to produce single html file

When we compile an xml docbook document with the help of xsltproc then we get multiple

html files. One of the features of docbook is to create single html file to write an article. To

achieve this, we can use the same xml file that is simple.xml.

By using xml docbook we can use single documentation source to generate multiple outputs

but this time we will use different XSL Style sheet to produce single html file as shown

below.

xsltproc –nonet /usr/share/docbook-xsl/htmlhelp/docbook.xsl simple.xml

By using this style sheet, we will simply dump the output to stdout format but we can dump

it into html format.

Customization of Docbook to generate PDF, HTML and CHM Page 61

xsltproc –nonet /usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl simple.xml >simple.html

Now we can see the output in a single html file

Figure 5-7 Single HTML Output

Customization of Docbook to generate PDF, HTML and CHM Page 62

With Docbook we can describe various pieces of information about the documentation, such

as the author, legal notices, book version, and copyright(s) notice. We start this by adding a

<bookinfo> tag.

By adding these tags in simple.xml we will have

<book>

 <bookinfo>

 <legalnotice>

 <para>

 Here a short legal notice: You agree that all your base

 belongs to me!

 </para>

 </legalnotice>

 <author>

 <firstname>Bob</firstname>

 <surname>Grey</surname>

 </author>

 <copyright>

 <year>2003</year>

 <year>2021</year>

 <holder>Pennywise the Clown</holder>

 </copyright>

 </bookinfo>

 <title>Simple Book</title>

 <!-- ... -->

</book>

5.5 Tables

Table is very important in any documentation and docbook fully support it.

<chapter><title>On Foo's</title>

 <para><indexterm><primary>About Foo's</primary></indexterm>

 Stuff about Foo's goes here.

 </para>

 <para>And now for some data in a table:

 <table frame="none" pgwide="1">

 <tgroup cols="3" align="left" colsep="1" rowsep="1">

 <thead>

 <row>

 <entry>Column 1</entry>

 <entry>Column 2</entry>

Customization of Docbook to generate PDF, HTML and CHM Page 63

 <entry>Column 3</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>Heres</entry>

 <entry>A</entry>

 <entry>Row entry!</entry>

 </row>

 </tbody>

 </tgroup>

 </table>

 </para>

</chapter>

<tgroup> tag is very important otherwise table will not rendered properly. After processing it

the output will be

Chapter 1. On Foo's

Stuff about Foo's goes here.

And now for some data in a table:

Table 1.1.

Column 1 Column 2 Column 3

Heres A Row entry!

You have to specify the number of rows and columns before execution otherwise it will

produce errors.

If under <thead> tag, we specify that one row will contain 3 columns and then under

<tbody> we specify that one row will contain more than 3 columns then you will get error

about it, so be careful when using table in it.

Docbook automatically add number to the tables for example if the chapter 4 contains 3

tables then it will be numbered like Table 4.1, Table 4.2 and Table 4.3 etc. We can turnoff

this feature by using <informaltable> tag then we will get simple table with no numbering.

Customization of Docbook to generate PDF, HTML and CHM Page 64

5.6 Links

Docbook fully support links to other things. <ulink> tag is used to link to external URL’s.

<chapter><title>On Bars's</title>

 <para><indexterm><primary>About Bar's</primary></indexterm>

 Stuff about Bars's goes here.

 </para>

 <para>To learn more about the wonderful world of Bar's look

 <ulink url="http://www.google.com/search?q=Bars">

 here

 </ulink>

 </para>

</chapter>

The url attribute is used to specify a link to load.

5.7 Graphics

Graphics are very important in documentation. Docbook provide <graphic> tag to add

graphics in a document

<chapter><title>On Bars's</title>

 <para><indexterm><primary>About Bar's</primary></indexterm>

 Stuff about Bars's goes here.

 </para>

 <para>To learn more about the wonderful world of Bar's look

 <ulink url="http://www.google.com/search?q=Bars">

 here

 </ulink>

 </para>

 <para>

 Don't forget: Graphics are important!

 <graphic fileref="smiley.bmp"></graphic>

 </para>

</chapter>

5.8 Figures

Figures are also very important in documentation. We can add automatically number figured

just like table numbers by using <figure> tag and in the same way we can use without

numbered figures by using <informalfigure>

<chapter><title>On Bars's</title>

Customization of Docbook to generate PDF, HTML and CHM Page 65

 <para><indexterm><primary>About Bar's</primary></indexterm>

 Stuff about Bars's goes here.

 </para>

 <para>To learn more about the wonderful world of Bar's look

 <ulink url="http://www.google.com/search?q=Bars">

 here

 </ulink>

 </para>

 <para>

 <figure><title>Hierarchic organisation</title>

<mediaobject>

 <imageobject>

 <imagedata fileref="C:\cygwin\home\Asif\C3Fire\gfx\hierarchic.gif"/>

 </imageobject>

 </mediaobject>

</figure>

 </para>

</chapter>

5.9 Special formatting

<emphasis> tag is used for special formatting like

<para>

 Not only are Foo's important to proper software development, but they are

 critical to understanding the synergistic relationship between Neo

 <emphasis>and</emphasis> Trinity.

 </para>

It will produce output like

Not only are Foo's important to proper software development, but they are critical to

understanding the synergistic relationship between Neo and Trinity.

5.10 Plain text formatting

Some time we need to write text as it is as we get it from some command line source. For

this purpose docbook provide <programlisting> tag as show below

<para>

 Here's an example of a code listing:

 <programlisting>

 int foo = 12 * 23;

Customization of Docbook to generate PDF, HTML and CHM Page 66

 multiply_endlessly(foo);

 </programlisting>

 </para>

Some time we have to use some special characters in documentation for example if we use <

or > character in xml docbook document and compile it with xsltproc then there will be

errors about parsing. For this purpose docbook provide <CDATA> tag. Xsltproc ignore all the

character in between <CDATA> tag as shown below.

<para>

 Here's an example of a code listing:

 <programlisting>

 <![CDATA[

 int foo = 12 * 23;

 std::vector<int> vec;

 vec.push_back(foo);

]]>

 </programlisting>

 </para>

5.11 Customizing the style sheets

We can customize the XSL style sheets to control header, footer and CSS etc. For this

purpose first of all we make a simple.xsl style sheet that will be inherited from htmlhelp.xsl.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:import href="/usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl "/>

</xsl:stylesheet>

The import tag is used to tell the process to include or import the URL that is referred by the

href attribute. Now we can run xsltproc like

xsltproc --nonet simple.xsl simple.xml

By using simple.xsl, we have replaced the default html help style sheet. To generate legal

info as a separate html page we have to include

Customization of Docbook to generate PDF, HTML and CHM Page 67

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:import href="/usr/share/docbook-xsl/htmlhelp/htmlhelp.xsl "/>

 <xsl:param name="generate.legalnotice.link" select="1"/>

</xsl:stylesheet>

By using <xsl:param> tag we can specify a parameter’s value. In this case we have specified

that generate.legalnotice.link value is 1 or true.

For the addition of next and back navigation links at the bottom of each page, we need to

include parameter

<xsl:param name="suppress.navigation" select="0"/>

Docbook provide the facility of using standard graphics for different tags. For example when

we use some specific tag then docbook automatically load graphics according to that tag to

represent it with graphic sign. For using standard image, a specific image directory is needed

otherwise broken link will be shown on the page. If you don’t want to use standard graphics

then don’t add this parameter in xsl style sheet.

<xsl:param name="admin.graphics" select="1"/>

<xsl:param name="admin.graphics.path">gfx/</xsl:param>

You can see that gfx is a directory that contains images to be used with the specific docbook

tags and you have to put that directory on the same level of other xml files.

This will be the output of above tags and you can see a standard image with “Note”. Actually

note is a docbook tag to write something as a note.

Note

Not only can Docbook do graphics, but it can handle notes as well! Isn't that just cool?

5.12 CSS Support

Docbook fully support CSS (Cascading Style Sheets) to control the layout of the contents.

Here we will describe how to add CSS support in docbook. First of all we have to design the

Customization of Docbook to generate PDF, HTML and CHM Page 68

CSS that will be applied on the contents of the docbook that how it should be layout and for

its contents presentation. You can see the simple.css below

a, body, div, table, td

{

 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}

body

{

 background-color: #DDDDDD;

 color: #000000;

 margin: 0px 0px 0px 0px;

 padding : 0px 5px 5px 5px;

 border: 1px solid #000000;
}

We can set different style, color, font etc with the help of CSS. You see that background

color, margin, body, div color and font etc. after completing the CSS template , now it’s time

to add it in XSL Style sheet.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:import href="D:/docbook-xsl-1.60.1/htmlhelp/htmlhelp.xsl"/>

 <xsl:param name="generate.legalnotice.link" select="1"/>

 <xsl:param name="suppress.navigation" select="0"/>

 <xsl:param name="admon.graphics" select="1"/>

 <xsl:param name="admon.graphics.path">gfx/</xsl:param>

 <xsl:param name="html.stylesheet" select="'simple.css'"/>

</xsl:stylesheet>

This will instruct the docbook to use CSS and apply its effect on html.

We can do lot of modification using CSS, for example adding header and footer etc. We can

control the name of .chm file by add the parameter in a XSL style sheet. Previously the

default name of chm file is generated but now the chm file name will be simple.chm every

time.

<xsl:param name="htmlhelp.chm" select="'simple.chm'"/>

Customization of Docbook to generate PDF, HTML and CHM Page 69

Next, we'll control how deep various sections should be shown. Each time you nest a

<section> tag inside another <section> tag it causes a new level of numbering (i.e. 1.1, and

its first child 1.1.1). The top of each page can display a certain amount of the pages sections

and sub sections in a TOC style set of links. By adjusting the style sheet, we can control how

deep this goes.

<xsl:param name="toc.section.depth" select="4"/>

5.13 Custom header and footers

We can add custom header and footer in all pages by using <xsl:template> tag. We can use

html tag in it. For header we have to add the below tag in XSLT style sheet.

<xsl:template name="user.header.navigation">

 <hr>

 <p>Documentation by ACME Data Inc. No Coyote's allowed.</p>

 <hr>

 </xsl:template>

If we compile this code with xsltproc, we will get lot of error about mismatch tag about valid

xml because xsltproc was accepting xml tag instead of html tag

$ xsltproc --nonet simple.xsl simple.xml

simple.xsl:22: error: Opening and ending tag mismatch: hr and xsl:template

 </xsl:template>

 ^

simple.xsl:23: error: Opening and ending tag mismatch: hr and xsl:stylesheet

</xsl:stylesheet>

 ^

simple.xsl:23: error: Premature end of data in tag xsl:template

</xsl:stylesheet>

 ^

simple.xsl:23: error: Premature end of data in tag xsl:stylesheet

</xsl:stylesheet>

 ^

cannot parse simple.xsl

 But we can use all the html ending tags with back slash, for example <hr></hr> which is

even acceptable to all browsers.

Customization of Docbook to generate PDF, HTML and CHM Page 70

Adding custom footer is same as header as shown below

 <xsl:template name="user.header.navigation">

 <hr></hr>

 <p>Documentation by ACME Data Inc. No Coyote's allowed.</p>

 <hr></hr>

 </xsl:template>

 <xsl:template name="user.footer.navigation">

 <hr></hr>

 <p>The Road Runner was here - All Wrongs Reserved.</p>

 <hr></hr>

 </xsl:template>

Header can be shown in the figure like

Figure 5-8 HTML Header

5.14 Docbook versioning

We can use profiling for docbook versioning but there is another simple method for making

different versions of same document. First of adjust the xml docbook files for a new version

that what chapters, sections you want to include in it and save all the xml files.

In our case, we will add "Version BOOK_VERSION" in a simple.xml. The text

"BOOK_VERSION" will be used as a place holder for the actual version that we will store in a

text file.

Customization of Docbook to generate PDF, HTML and CHM Page 71

First of all we will write some text 1.2.1 as a version number and store it in a file named

version.txt. Now we will define one variable to get the value from the version.txt

$ bk_ver=`cat version.txt`

After this we will use “SED”, a UNIX program that perform find and replace operation. So it

will find BOOK_VERSION text in all the documents and replace the version number that is

written in version.txt by using bk_ver variable as shown below.

sed "s?BOOK_VERSION?$bk_ver?g" simple.xml > simple.xml.tmp

As you can see that we are dumping the simple.xml into new tmp file. After this just remove

the tmp extension and rename it with valid xml extension. Now this new file contains the

version number in all places where we have written BOOK_VERSION text. Just run this new

xml file with xsltproc and now we will get new documentation version.

5.15 Docbook to pdf

Docbook to pdf is a two step process, first we have to convert xml file to FO (Formatting

Object) by using xsltproc and then we have to use FOP to convert FO file to finished pdf.

Here is the complete process that how to do. First of all convert simple.xml to simple.fo by

using

xsltproc –nonet /usr/share/docbook-xsl/fo/docbook.xsl simple.xml > simple.fo

After this we have to use FO processor to convert simple.fo to finished pdf. If FOP exists

under docbook-xsl directory then we will write the command like

/usr/share/docbook-xsl/fop/fop simple.fo –pdf simple.pdf

This will produce pdf from xml docbook file.

Customization of Docbook to generate PDF, HTML and CHM Page 72

6 Conclusion and Final Work

6.1 C3Fire Problems

During the conversion of C3Fire Project documentation into different formats, we have

found some problems in it.

When we use tables in XML Docbook to convert it into html and chm then it works fine but

when we try to convert it into pdf using FOP then it produces some errors about table

colums. Actually we have to specify the table columns before the rendering because the FOP

is immature and cannot handle table without pre-defined number of columns in a table. If

we don’t specify number of columns in the case of html or chm conversion then it works as

expected.

Another problem is when we convert xml docbook to chm. When we use “graphic” or

“figure” tag then we should use the path like

fileref=file:///C:/cygwin/home/Asif/gfx/FireSimulation-BurnOut-2.gif Otherwise no figure

will be displayed in chm. We should not use the path like

fileref="C:\cygwin\home\Asif\C3Fire\image-2\simulation-1.gif".

6.2 Conclusion

We have tested and setup an environment for generating documentation by using XML

Docbook. We have concluded that there is lot of advantages to use docbook over other

traditional software documentation tools. Docbook provides single sourcing technique, to

covert document into several other formats from the centralized location with minimum

effort. We don’t need to buy costly commercial tools for generating many other formats.

Docbook provides easy handling of documentation versioning system by using profiling

technique. We have concluded that by using docbook, the author don’t need to concentrate

on formatting of document because formatting and style thing is stored in separate files

which is applied during the compilation of document. So the author feels comfortable to

concentrate only on the actual document contents. When the writing thing is finished then

we can apply different stylesheet to get the desired formatted output from the single source

and the original document source is not affected by applying different styles and formats on

it. Otherwise if we use some other traditional software documentation tools like Microsoft

word, the author need to concentrate more on formatting rather than the document

Customization of Docbook to generate PDF, HTML and CHM Page 73

contents that’s why it’s time consuming and maintenance is not easy. Docbook provides

modularity which mean that content files are separate from the style sheets, pictures etc. so

the maintenance and editing is very easy in it.

6.3 Future Work

In the future work, we can enhance the software documentation by using docbook. Actually

it’s bit hard to maintain the environment for docbook to produce software documentation.

And the docbook is based on xml, so the author of the docbook should be good in xml as

well to write documentation properly and the document conversion is also an error prone

process for example if we write an xml document that is needed to convert into html and

pdf then the xml document should be written in a format that can be easily converted into

desired output. Actually FOP is not enough mature to process the same xml document that is

written for generating pdf and html. As we have discussed the table formatting problem

with FOP.

So we need to make an application that can generate xml docbook scripting language

automatically to make easiness for the author who is not good in xml etc or it can make

documentation writing process speedily. We can include the functionality of converting the

source document into different formats by using simple button click. In this way we can

handle different xml files and directories easily. We can accept xml and style sheet

documents from external sources and by using the brows option in an application can save

the those files in appropriate directories automatically to make the work speedy.

Customization of Docbook to generate PDF, HTML and CHM Page 74

7 References

Bill Thomas, Scott Tilley. Documentation for software engineers: what is needed to aid

system understanding?

Chisholm, Richard M. 1988. Improving the Management of Technical Writers: Creating a

Context for Useable Documentation. In Stephen Doheny-Farina (ed.), Effective

Documentation: What We Have Learned From Research. Cambridge, Massachusetts: MIT

Press.

Cem Kaner, Ph.D., J.D. & David Pels, B.A. April, 2000. Improving User Documentation and

Customer Care

Down-94: Alex Down, Michael Coleman, Peter Absolon, Risk Management for Software

Projects, McGraw-Hill Book Company, London 1994.

Green Robin (1997) A Web-based Documentation Review Tool. Proceedings of the 15th

annual international conference on Computer documentation SIGDOC '97, ACM Press,

IEEE-610: IEEE Standards Software Engineering, Volume 1, IEEE Standard Glossary of

Software Engineering Terminology, IEEE Std. 610-1990, The Institute of Electrical and

Electronics Engineers, 1999, ISBN 0-7381-1559-2.

Jirka Kosek (2001), Profiling Docbook documents. An easy way to personalize your content

for several target audiences

Mc Arthur Gregory R. (1986) If Writers Can't Program and Programmers Can't Write, Who's

Writing User Documentation?. ACM Press

Novick David G. & Ward Karen (2006) Documentation usability: What users say they want in

documentation. Proceedings of the 24th annual conference on Design of communication

SIGDOC '06, ACM Press,

W3C (15.11.2006) XML Inclusions (XInclude). URL:http://www.w3.org/TR/xinclude/

Walsh Norman & Muellner Leonard (2000) Docbook: The Definitive Guide. URL:

http://www.docbook.org/tdg/en/html/ O'Reilly & Associates,

Customization of Docbook to generate PDF, HTML and CHM Page 75

http://en.wikipedia.org/wiki/Software_documentation (Access date 2009-08-29)

http://transcom.de/transcom/en/technische-dokumentation.htm (Access date 2009-08-29)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office (Access date

2009-08-30)

http://www.help-info.de/en/Help_Info_AP_Help/longhorn_maml_example.htm (Access

date 2009-08-30)

http://en.wikipedia.org/wiki/Wikitext (Access date 2009-08-30)

http://en.wikipedia.org/wiki/Transclusion (Access date 2009-08-30)

http://ausweb.scu.edu.au/aw05/papers/edited/ball/poster.html (Access date 2009-09-03)

http://www.ibm.com/developerworks/library/l-docbk.html (Access date 2009-09-03)

http://docs.jboss.org/docbook/userguide/html_single/ (Access date 2009-09-03)

http://www.irt.org/script/5206.htm (Access date 2009-09-04)

http://www.students.tut.fi/~leppane7/leppanen.html (Access date 2009-09-04)

http://en.wikipedia.org/wiki/XSLT (Access date 2009-09-04)

http://www.w3.org/TR/xinclude/

http://en.wikipedia.org/wiki/XInclude (Access date 2009-09-05)

http://docbook.theblog.ca/?page_id=6 (Access date 2009-09-06)

http://www.sagehill.net/docbookxsl/Profiling.html (Access date 2009-09-06)

http://www.kosek.cz/xml/dboscon/profiling/frames.html (Access date 2009-09-07)

http://tug.ctan.org/tex-archive/info/latex-veryshortguide/veryshortguide.pdf (Access date

2009-09-08)

http://en.wikibooks.org/wiki/LaTeX/Introduction (Access date 2009-09-08)

Customization of Docbook to generate PDF, HTML and CHM Page 76

http://pangea.stanford.edu/computerinfo/unix/formatting/features.html (Access date 2009-

09-09)

http://en.wikipedia.org/wiki/DocBook (Access date 2009-09-22)

http://services.exeter.ac.uk/cmit/modules/meaningful_markup/webct/ch-xslt-intro.html

(Access date 2009-09-22)

http://linuxcommand.org/man_pages/xsltproc1.html (Access date 2009-09-25)

http://mirrors.bieringer.de/www.deepspace6.net/contribute/ds6-architecture.html (Access date

2009-09-25)

http://www.w3schools.com/xslfo/xslfo_intro.asp (Access date 2009-09-25)

http://en.wikipedia.org/wiki/XSL_Formatting_Objects (Access date 2009-09-26)

http://en.wikipedia.org/wiki/Formatting_Objects_Processor (Access date 2009-09-26)

http://xmlgraphics.apache.org/fop/ (Access date 2009-09-26)

http://osdir.com/ml/text.xml.fop.devel/2003-03/msg00111.html (Access date 2009-09-26)

http://msdn.microsoft.com/en-us/library/ms670169(VS.85).aspx (Access date 2009-09-26)

http://www.sagehill.net/docbookxsl/HtmlHelp.html (Access date 2009-09-27)

http://www.cygwin.com/ (Access date 2009-09-28)

http://c3fire.org/c3fire/home/home.en.shtml (Access date 2009-09-29)

