
1

Text Transformation Project Report

CS 4624 Virginia Tech, Blacksburg, VA

2/27/2015

Professor: Edward A. Fox

Client: Nathan Hall

Developers: Stephen Fenton, Dustin Thompson, Zach Henke, Kevin Cox

2

Table of Contents

Introduction

1. Executive Summary ...

User’s Manual ...

1. Regular Expression Tree Usage ..
2. Text Transformation GUI Usage ...
3. Alternate Parsing Tool Usage ..

Developer’s Manual ...
 1. Requirements ...

1.1) Project Deliverables ...

1.2) Development Methodology ...

1.3) Development Tools ..

1.4) Preliminary Timeline ..

1.5) Project Extensions ..

1.6) VTechWorks Deliverables ...

 2. Backend Design ...
2.1) Introduction ..

2.2) Tools used ...

2.3) OO Design ...

2.4) Parsing ...

2.5) Error Catching ...

2.6) Alternatives ..

 3. Frontend Design ..
3.1) User Interface ..

3.2) Java Code Design ..

3.3) UI Flow Model ...

 4. Implementation Plan ..
4.1) Programming Language ..

4.2) Tools Employed ..

4.3) Parsing Strategy ...

4.4) Source Control ..
4.5) Agile Progress Tracking ..

4.6) Code Review ...

4.7) Timeline ..

4.8) Roles ..

 5. Prototyping..
5.1) Regular Expression Tree ..

Page(s)
4

5-6
5
5
6

7-31
7-10
7
8
9
9
10
10

10-12
10
10
10
11
12
12

12-15
12
13
13

16-18
16
16
16
17
17
18
18
19

20-29
20

3

5.2) Tree Tool ..
5.3) Binary Data Structure ..

5.4) Citation Parser Tool ...
5.5) Refinement 1 ...

5.5) Refinement 2 ...

 6. Testing ..
 6.1) Software-based Unit Testing ..

 6.2) Manual Interface Testing ...

Lessons Learned ..

1. Problems Encountered ..
2. Future Work ..

Acknowledgements ...

References ..

20
22
24
26
27

29
29
30

31
31
31

32

32

4

Introduction:

1) Executive Summary

The purpose of this project is to assist the VTTI in converting a large citation file
into a CSV file for ease of access. It required us to develop an application which can
parse through a text file of citations, and determine how to properly put the data into
CSV format. We designed the program in Java and developed a user-interface using
JavaFX, which is included in the latest edition of Java.

We came up with two main tools: the developer tool and the parsing program
itself. The developer tool is used to build a tree made up of regular expressions which
would be used in parsing the citations. The top nodes of the tree would be very general
regexes, and the leaf nodes of the tree would become much more specific. This
program can export the regex tree as a binary file which will be used by the main
parsing program.

The main parsing program takes three inputs: a binary regex tree file, a citation
text file, and an output location. Once run, it parses the citations based off of the tree it
was given. It outputs the parsed citations into a CSV file with the citations separated by
field. For any citations that the program is unable to process, it dumps them into a failed
output text file so.

We also created an additional program as an alternative solution to ours. It uses
Brown University’s FreeCite parsing program, and then outputs parsed citations to a
CSV file.

5

User Manual:

1) Regular Expression Tree Usage

The tree tool is a developer tool used to build a regex tree which the main

program uses to parse citations. Upon starting this program, you will see an empty tree,

as well as having the option to import or export a tree.

When dealing with an empty tree, you will see a bar labelled New Regex Node.

You may click it to fill in what the new node will be. The top bar is the regular

expression, and the bottom bar is for the field and capturing group. As an example, you

could put in ((?:a-zA-Z))+,\s((?:0-9)+) as your regex, and Author,Year as the capturing

groups. This regex would be capable of parsing something such as “Bob, 2005” and it

would designate Bob as the author, and 2005 as the year. Once you have entered

everything you want for your regex node, press enter and it will be entered into the tree.

Now you can export this tree file to be used by a citation parsing program. To do this

press file and export, and you will be able to name the file which will be saved.

You can also add child nodes to a node. Right click a node and press add child

node. It will create a new regex node which you can enter in another regex into. When

creating a tree, have the higher level nodes be more general, and have the lower level

nodes be more and more specific.

You can also remove leaf nodes. To do this, right click on a leaf node and press

remove leaf node. It will be deleted.

To import a tree, press file and import and it will open up your file explorer. Select

a .RGXT file which was created using this tool.

2) Text Transformation GUI Usage

 The Text Transformation program’s interface takes 3 main inputs. The first

is used to select which binary regex tree the parsing program will use. The second input

is to select which file you want to parse. You must ensure that it is a plain text file. The

third thing you must select is the output destination. Once you run the file, the output

csv file as well as the failed output text file will be placed in this destination.

After you have selected all 3 files/directories, you will be able to press the start

button to begin running the parsing program. You will see a progress bar which shows

you how far along the parsing is. It will increment forward for every citation it hits or

misses.

6

Once it has completed parsing the citations, it will produce two output files. The

first is a csv file which contains citations which were successfully hit by the parsing

program. Each citation will be broken up into different fields. The second output file is a

text file which contains the citations the parser wasn’t able to match. If you end up with

a large failed output file, the regex tree may need to be refined to parse the file better.

The output csv file will be labeled as "parsed_citations[timestamp].csv"

The failed output file will be labeled as "failed_citations[timestamp].csv"

The timestamp will be in the format yyyy-MM-dd--hh-mm-ss

3) Alternate Parsing Tool Usage

 This program simply takes 2 inputs. The first is the citation file you want to parse.

It needs to be a text file. The second is the output destination. Once you have entered

both files/directories, press run and you will see the number of citations it has parsed

out of the number there are total. After it has finished running you will get an output csv

file with the citations separated by field.

7

Developer’s Manual:

1) Requirements

Outlined here are the methodologies we will use to develop our text
transformation tool, our overall goals for the project and end output, and ways we intend
to at least explore extending the project to facilitate other institutes within the University.
We will define individual roles and goals for these jobs, set a preliminary timeline for
deliverables, and detail any other mechanisms for ensuring a successful product.

1.1) Project Deliverables

 We are working with the Virginia Tech Transportation Institute2, or VTTI2,
to help organize their citation data. The primary goal of this project is to take in a
text file consisting of a variable number x of citations and transform them into a
comma-separated value (henceforth referred to as .CSV) file. Each citation is
separated from other citations by a newline character. Examples of citation inputs
and expected outputs can be seen in Figure 1a and Figure 1b. These citations
are not guaranteed to fall into one category, and even citations of the same
format can have mild variations that could cause parsing to fail. Therefore, it will
be in our best interests to develop one of the following tools:

A. A robust, extensible regular expression suite that will allow us to read
through the file and get exact matches to specific regular expression
types.

B. A tool that utilizes pre-existing natural language tools to help in our
analysis of the text.

 Both of these tools will present their own advantages and disadvantages
in terms of development effort, usability, etc; as an example, the regular
expression example is quicker to develop, but the processing time could
potentially become very large, and without an extensible design, adding regular
expressions could be a tedious task.

 We also intend on delivering a user interface that will allow users to select
a text input file and output directory for a created file. This interface will also be
responsible for displaying any errors that our backend parser runs into. Additional
options may be added as development furthers and requirements are tweaked or
altered.

 Finally, we will be delivering a robust test suite that will cover a variety of
cases that may affect performance and/or correctness of the utility. All code will
be covered by these tests; the user interface will be manually tested to ensure
correctness. These tests will run the gamut of anything from a null input to an
attempted memory overflow in order to ensure the best possible product for our
client.

8

Citation Examples

Aatique, M., Mizusawa, G., and Woerner, B. (1997). Performance of hyperbolic
position location techniques for code division multiple access, Proceedings of
Wireless ‘97, Calgary, Canada, July 9-11, 1997.

Ahmadian, M. and Ahn, Y.K. (2000). “Performance Analysis of Magneto-Rheological
Mounts,” Journal of Intelligent Material Systems and Structures, Vol. 10, No. 3, March,
pp. 248-256.

Figure 1a. Shown above are examples of citation inputs.

CSV Output Examples

"Aatique, M.||Mizusawa, G.||Woerner, B. ",1997,Performance of hyperbolic position
location techniques for code division multiple access,Proceedings of Wireless
Ô97,"Calgary, Canada","July 9-11, 1997",,,

"Ahmadian, M.||Ahn, Y.K. ",2000,Performance Analysis of Magneto-Rheological
Mounts,Journal of Intelligent Material Systems and Structures,,,10,3,248-256

Figure 1b. Shown above are the CSV outputs expected for the citation examples in Figure 1a. Double
quotes are used to bypass reserved characters. The CSV columns are ordered as follows: Author, Date,

Title, Publication, Location, Date, Volume, Issue, Pages

1.2) Development Methodology

 For the Text Transformation tool, we will be using an agile methodology8.
Agile is defined as such:

Agile development is an alternative to traditional project management where
emphasis is placed on empowering people to collaborate and make team

decisions in addition to continuous planning, continuous testing and continuous
integration.

 What this entails to the client is that we will not blindly come back with a
product that will not match their needs; we will return iteratively with both minor
and major improvements so that we can work out any issues together and have
the product that they desire completed at the end of the project timeline.

 We intend to meet up with our client after an initial month of work, barring
any immediate need for a meeting, followed up by bi-weekly meetings where we
showcase improvements and request feedback or ideas to implement new
features.

 While agile development methods traditionally employ a Scrum master
and have daily standups, due to the nature of the project and the distance of the
team members, we will not hold traditional standups and instead communicate

9

during in-class sessions, through e-mail, and using messenger applications if the
need arises.

1.3) Development Tools

 For this project, we have decided to develop our tool in Java. Java is a
portable language that will allow our utility to be run across a variety of devices
with Windows, Mac, and Linux being the primary targets. It is a well-known and
globally-accepted language used often by each of our team members. Java also
allows for an easy User Interface (GUI) design using the JavaFX3 and Swing
libraries.

We will develop our project in the Eclipse4 development environment
(IDE), which all team members have used for 2+ years. Eclipse4 allows for easy
unit testing, helpful debugging, and easy integration with any other Java tools if
we need to use them. Code will be stored both locally on team member
machines, and in a public GitHub5 repository where we can all collaborate on
code.

1.4) Preliminary Timeline

Weeks 1-4 ● Finish the wiki write up and get it signed by our client and Dr.
Fox. (Completed)

● Setup code repositories and tools required for development.
(Completed)

● Code first iterations of text parsing utilities. (Completed)
● Set up an initial user interface.
● Set up testing classes and initial tests for the utility. (Completed)
● Deliver an initial working demonstration to the client by March

20th.

Weeks 5-6 ● Add in more parsing utility code to improve citation coverage.
● Add error output code to parser.
● Add error output to user interface.
● Increase code coverage of tests.

Weeks 7-8 ● Further parser improvement.
● Further test coverage to go with improvement.
● Focus on improving performance if necessary.

Weeks 9-
10

● Finalize project for client.
● Final push for improved performance.
● Assure that the project will run on different platforms as expected.

Figure 2. Shown above is the timetable to be followed for the project’s duration.

10

 This timeline, as one should expect, is subject to change and new goals
may be added (e.g., we have discussed the possibility of a website with the
client).

1.5) Project Extensions

 While we have laid out a solid plan for our utility, we certainly can extend
upon it, as we have discussed with our client. We anticipate having a solid,
functional, and extensible utility ready for our client at the end of the timeline, but
in the event that we have more time or resources than we anticipate, we have
several ways to extend the project:

● Working with other institutes. While this project focuses solely on the
output of files submitted by VTTI2, we have been told that working with VBI
would be a natural next step to improving our project.

● Creating a website. Having the program posted on a website to use
would increase ease-of-use for any users unfamiliar with the technical
requirements (having Java installed) of running our utility.

 These ideas and more can be adapted into our project, and this space
may expand as we come up with other ways to improve our project and leave it
long-lasting after we have departed the University.

1.6) VTechWorks Deliverables

The following is a list of files delivered to VTechWorks for consumption:

CitationParser.jar: An executable Java JAR file that transforms text
citations.
TreeTool.jar: An executable Java JAR file for regex tree developers.
CitationParserProject.zip: A zip file containing all source code for the
project.
FinalReport.pdf/docx: A PDF file and a DOCX file comprised of this
document.
FinalPresentation.pdf/pptx: A PDF file and a PPTX file of our final
presentation.
VTTI_clean.txt: A text file comprised of citations to parse.
regex_tree.rgxt: A sample tree to parse VTTI_clean.txt.
FreeCiteTool.zip: A side tool for non-specific parsing using Brown’s
FreeCite API.

2) Backend Design

2.1) Introduction

The problem we need to solve is parsing through a large list of citations,
several of them having variations, making them different from each other. To

11

tackle this, we are going to program in Java and use an object-oriented approach
to help separate the different fields in each citation.

2.2) Tools Used

Our IDE of choice is Eclipse4. Eclipse4 has several nice features for
programming in Java, as well as integration with GIT, so we will easily be able to
keep our program in source control. This is vital since we are working in a
medium sized group of 4 people.

2.3) OO Design

We will parse the document of citations and store them as citation objects,
each one containing different fields for all of the members of a citation. For
example, the citation class would hold several different fields such as author,
title, etc.

Figure 3. Shown above is an example Java Class for storing citations after parsing.

With this framework in place, we would then write the Citations object, in
CSV format, to the file specified by the user.

2.4) Parsing

The parsing will be the most difficult part of this project. The reason for this
is that all of the citations don’t follow an exact standard, so there are several
variations between them. To manage this, we will have to come up with a
complex set of regular expressions which can identify structure, keywords,
phrases, and certain special characters to determine which fields are which.
Some of the citations even leave out critical information such as the authors and
dates.

12

Figure 4. Shown above are example citations highlighting variations in formatting.

 Here, you can see that these two citations, while similar, have variations.
The first contains a date in parentheses near the beginning, as well as page
numbers, while the second only has a publication date at the end of the citation,
without any page numbers. These variations make parsing very tricky because of
how many there are. Since there are so many citations to deal with (approximately
1500), we will work on parsing smaller chunks of citations at a time. The more we
add into the parsing logic, the fewer unparsed citations there will be, until we
manage to cover 100% of the citations. While working through it, we will have a
way to display the ones not yet parsed, so that we know what we have to focus on
getting next.

2.5) Error Catching

An important design choice to make is how to handle the parser running
into errors. One initial thought is to have a separate file which will print out all of
the citations it couldn’t successfully parse. This way we will be able to see what
our code needs to handle next. Also, It allows the user to see if the remaining few
would be something that they just need to do by hand. We would know if a
specific citation could not be parsed correctly if it does not match any regular
expression used in the parser. A potential problem could be that a citation could
match a regular expression but not be correct. That is why we plan on being very
specific with our regular expressions so we do not run into that problem.

Every single parse will return a key-value pair of a boolean and a string.
The boolean will indicate if the parse was successful (i.e., a leaf-level matching
regular expression in the tree was found), and the string will represent either the
rearranged and corrected CSV-format string, a critical (unhelpful) error message
in event of emergency, or a representation of the closest regular expression
match that was found.

2.6) Alternatives

An alternate solution to this problem would be to find an open source
program with some similar parsing logic already built in, and then adjusting it to fit
our needs. Unfortunately, finding something like this has proven difficult, and the
ones we have seen so far are in languages not compatible with Java For
example, FreeCite7, an open-source citation parser from
http://freecite.library.brown.edu/ does something similar to what we need, but it is
in Ruby which isn’t compatible with our strategy.

http://freecite.library.brown.edu/

13

3) Frontend Design

3.1) User Interface

The planned user-interface would be developed in JavaFX3, a GUI
framework provided with Java SDK 8. JavaFX3 allows for quick and simplified UI
development, by providing a multitude of graphics object libraries as well as
allowing the integration of CSS files. The GUI will be responsible for letting the
user select a Citation Text File to parse and a location to output a CSV file with
the parsed citation data. It is also important that the UI alert the user to critical
program errors as well as file reading/writing errors. In addition, the UI will alert
the user if the parser had to create a log file containing any citations that could
not be parsed. If a Log file is produced it will be provided in the same folder
location as the CSV output file.

3.2) Java Code Design

The front end will branch off from the main program thread on program
start up to run on a separate application thread. The application thread will
ensure that the GUI does not pause or hang while the main thread deals with
parsing computations. The front end will communicate with the backend models
through standard action Listeners and Observers.

3.3) UI Flow Model

Below is our the idea for a flow model of the user interface. Figure 5a.
shows the main screen where you select which file you want to parse, and where
you want the output to go. Figure 5b. shows an example of the progress bar
once the parsing has begun, and allows it to be cancelled.. Figure 5c. shows an
example of the progress bar being completed for once the parsing program has
finished. In these images it still just has the placeholders for the files, but once
being used it would have actual filenames/destinations. Figure 5d. shows an
example of what would happen if the parsing program encountered a problem. It
gives a pop-up message telling the user where the output log will be.

14

Figure 5a. Shown above is the start screen for the Citation Parser. This screen allows for selection of

input/output file location and starts the parsing program.

Figure 5b. Shown above is the in progress screen for the Citation Parser. This screen displays the

current progress of the program and allows cancellation of the parsing.

15

Figure 5c. Shown above is the completion screen for the Citation Parser. This screen allows the user to

acknowledge parse completion and to return to the start screen.

Figure 5d. Shown above is the warning pop-up for the Citation Parser. The warning alerts the user to an

log file created when some citations can not be parsed.

16

Figure 5e. Shown above is the error pop-up for the Citation Parser. The Error Alert will open whenever

there is an error reading/writing files, or if the program critically fails.

4) Implementation Plan

4.1) Programming Language

The client requested that the final program be runnable on Windows, Mac,
and Linux so we need a language capable of running on each of these operating
systems; to meet the given criteria, we selected Java as our programming
language for the project. Java is also an object-oriented language, which is ideal
for the project, since we are breaking up the citations into “objects” for our
parsing logic. The GUI is going to be created using JavaFX3, which allows
simple, attractive interfaces to be created cleanly and easily.

4.2) Tools Employed

We are utilizing the latest version of Eclipse4 as our IDE. It comes with
several handy features such as a visual debugger, and a GIT plugin. Since we
are all going to be working on the same program, it will be useful to have the
ability to grab the latest branches and merge changes all from within Eclipse4.

17

Here you can see from inside Eclipse4 that we can view local and remote
branches that are currently being tracked.

 Figure 6. Eclipse4 built in source control.

4.3) Parsing Strategy

Our parsing strategy for the citation file will revolve around several combinations
of regular expressions to break up the citations and identify the proper parts. To
make adding more regular expressions easy, we will develop a separate tool
which builds up a tree of regular expressions. The top of nodes of the tree are
very general regexes and as you go to the leaf nodes in the tree they become
more specific. Our program will use the tree to find which regex matches each
citation and it will traverse the tree getting more and more specific until it has an
exact match. The purpose of using a tree is to save time, because now it won’t
have to go through every possible regex.

4.4) Source Control

We are using GIT for our code’s source control. It allows us to keep track
of what changes we make, and who is making them. It also provides the
functionality to revert to a previous commit if something were to go wrong, and
we need to return to an earlier point. We have a master branch, and then we
have other branches for specific purposes (such as parsing, GUI, etc) which we
can work on and make changes to. Once a branch gets to a solid state and after
a code review then will we merge with the master branch. See Code Review
section for details on our code review process. Here you can see an example of
a source file in the master branch on Github5.

18

Figure 7. Github5 image example

4.5) Agile Process Tracking

To track our progress and tasks to do we are using an online scrum board
at Trello.com. Our columns consist of backlog, to-do, in-progress, test, code
review, and completed. The backlog will consist of cards that are stretch goals
that we might not have time to get to. To-do are tasks that are waiting to be
worked on. In-progress are our tasks that we are currently implementing. The
test column is for cards that need to be tested. Code review is for cards that have
been tested and need to be reviewed before merging with the master branch.
See the Code Review section for more details on our code review process.
Once the task has been merged to the master branch then it is finally completed
and will be moved to the completed section.

Figure 8. Shown above is an image of our scrum board early on in our development.

4.6) Code Review

In order to assure that our code works properly, is clean, readable, and
easily maintainable, we are enforcing code reviews of up to two people before

19

commits are pushed and merged into the master code branch. Code reviews will
allow for other team member input on code and get constructive feedback and
criticism back to the code author so that we can produce the best possible
product. At least 2 group members must review major changes before merging.
For smaller changes, 1 person would be okay, and for incredibly miniscule
changes; no review would be necessary.

4.7) Timeline

● Feb. 9-23
○ Finish the wiki write up and get it signed by our client and Dr. Fox.

(Completed)
○ Setup code repositories and tools required for

development(Completed).
● Feb. 23-March 9

○ Put Requirements and Design into Project Report. (Completed)
○ Determine tools and libraries to use. (Completed)

● March 9-March 23
○ Set up an initial user interface.
○ Set up testing classes and initial tests for the utility. (Completed)
○ Deliver an initial working demonstration to the client by March 20th.

● March 23-April 6
○ Add in more parsing utility code to improve citation coverage.
○ Add error output code to parser.
○ Add error output to user interface.
○ Increase code coverage of tests.

● April 6-April 20
○ Finalize project for client.

■ Demonstrate project for client.
■ Hand over source code, documentation, and compiled

executable.
○ Final push for improved performance.
○ Assure that the project will run on different platforms as expected.

4.8) Roles

We have three main coding roles and three external roles in this project.
The roles are:

● Backend Developer: The backend will undoubtedly be the bulk of the
project; it is, after all, the backbone. Without it, we do not have a project.
Therefore, it is imperative that every team member collaborates and
contributes to it. We will all need to understand the inner workings of the
project in order to explain it, test it, develop an interface for it, and,
ultimately, extend it. The backend will include overall design, the parsing
structure, and performance concerns.

20

● GUI Developer: The GUI will be a small but important part of the utility. As
Dustin is the most experienced with the JavaFX3 and Java Swing utilities,
he will be in charge of designing and deploying the interface. The interface
will be responsible for file input and output selection, passing this
information to the backend, and displaying any errors that arise when
using the tool.

● Test Developer: Unit testing will be a critical and large part of ensuring
that the utility acts as expected and does not collapse under unexpected
circumstances. While it is large, as it will be developed in concert with the
backend to ensure correctness as we proceed, only one person will be
necessary to develop the tests. Fenton is experienced with testing through
work experience and therefore will be in charge.

● Point of Contact: It will be a simple job, but a necessary one for the
project. Fenton has been designated for contacting the client, the VTTI2,
and the professor, in order to obtain meeting times, updates, and send
information to any interested parties.

● Scrum-Master: Zach person is in charge on making sure everybody is
using the scrum board correctly and that cards are moving across the
board. Also, he is in charge of making sure the Github5 branches are up-
to-date, deleted, etc.

● Presentation Manager: Kevin is in charge of making sure that the
presentation is finished and of informing the group about who is
presenting what.

5) Prototyping

5.1) Regular Expression Tree

 In order to save processing time and make it easier to branch out regular
expressions so that our text transformation project can quickly identify the best
solution to a problem, we use a tree structure that the transformation project
traverses. Each node of the tree contains the following information:

● A data field, which contains the compiled regular expression we want to
use;

● A children field, which contains all instances of children of this node;
● An order list, which contains a list of Order enumerations dictating the

order of the string, for when we piece the regular expression matches
back together.

 This tree is compiled from binary data created by secondary tool we have
developed to allow for ease of creating a tree structure. The secondary tool and
binary data structure are detailed below.

5.2) Tree Tool

21

 The Tree Tool was developed so that the team could easily build and edit
a Regular Expression Tree as development moved forward. The tool allows
developers to create a tree from scratch or to import an existing tree from a
binary file; when the developers are done, they can export the tree on screen
into a binary file format.

 To edit any node in the tree, double click the node and edit the text in the
text boxes that appear. The top text field should contain only Java compliant
regex strings, and the bottom text field should contain citation orderings
separated by commas. Acceptable citation orderings are:

● Author
● Year
● Title
● Publication
● Location
● Date
● Volume
● Issue
● Pages

 Moving forward, the team plans to implement some updates to the Tree
Tool; however, as the Tree Tool is a secondary developer tool, it does not take
top priority. Possible updates include:

● Improved GUI, using CSS
● Text Indicating text field purpose
● Integration with the main Citation Parser Tool

22

Figure 6a. The Tree Tool used to create Regex Parsing Tree Files. This image shows an example of a
Regex Tree being imported and edited in the tool.

Figure 6b. This image shows the process for editing the regex and order fields in the tree.

5.3) Binary Data Structure

The binary data structure was developed in order to allow easy transfer of
information from the Tree Tool to the Text Transformation utility, as well as easy
modification within the Tree Tool. Within the binary, there are two chunks of
information:

● The String Table;
● The Node Object.

The chunks are composed as follows:

i) String Table

The string table has a header of 32 bytes, composed of:

● 4 bytes, the identifier; always “STbl”;
● 4 bytes, the size of the chunk, disregarding the identifier and size;
● 8 bytes, zeroed, for future-proofing;
● 4 bytes, the number of entries in the string table;
● 4 bytes, zeroed, for future-proofing;

23

● 4 bytes, the size of the string table;
● 4 bytes, the size leading up to the string table, including these 4

bytes.

Figure 7a. The hexadecimal representation of the header of our string table chunk.

Next, we have the string table entry section:

● 8 bytes, the string key;
● 4 bytes, the offset to the string for the key, starting at the

beginning of the string table;
● 4 bytes, zeroed, for future-proofing.

Figure 7b. The hexadecimal representation of three string table entries.

Finally, once all of the entries are done, we have our string table- a dump
of strings, each separated by a zeroed byte.

Figure 7c. The hexadecimal representation of our string dump.

When the string table is parsed, each program runs through the chunk,
grabs all the entries, gets the string from the offset, and adds it to a key-
value list. The object then uses the key-value list to find the matching
regular expression from string keys contained within its binary.

ii) Node Object Chunk

 The node object chunk has a header of 28 bytes, composed of:

● 4 bytes, the identifier, always “NOBJ”;
● 4 bytes, the size of the chunk, disregarding the identifier and size;
● 8 bytes, zeroed, for future-proofing;
● 4 bytes, the number of nodes to read;
● 4 bytes, the size of a node entry;
● 4 bytes, zeroed, for future-proofing.

Figure 7d. The hexadecimal representation of the header of our node object chunk.

24

 Next, we have the node entry section:

● 8 bytes, the string key containing the regular expression data in
the string table section;

● 4 bytes, zeroed, for future-proofing;
● 4 bytes, the number of children for this node;
● 4 bytes, the offset to the children of this node;
● 4 bytes, the number of Order elements for this node;
● 4 bytes, the offset to Order data for this node;
● 32 bytes, zeroed, for future-proofing.

 String tables are always parsed first due to the necessity of finding
string keys for regular expression data. The nodes are stored in breadth-
first order; this is due to the fact that node children need to be stored next
to each other so that any parser can run recursively through the file to
import the tree. After all nodes, there is a raw dump if Order data.

Figure 7e. The hexadecimal representation of a node entry.

 The order data is stored as follows:

● 4 bytes, the enumeration ordinal.

Figure 7f. The hexadecimal representation of ordinal dump data.

For example, ordinal 1 represents Author, ordinal 2 represents Year, and
so on.

 The binary data structure was designed so that the size of an entry
could be easily modified without changing too much code internally, yet
could feasible store as many children and order elements as the byte limit
allowed (4 bytes being an integer). There can be even more string keys
stored as the type of key is a long integer, meaning that for most projects,
the node binary format should suffice and perform well.

5.4) Citation Parser Tool

25

Figure 7. The Citation Parser Tool. This is the tool used by the client to give an input text file with

citations in it, and to select a destination for Output files to be saved in.

 The primary tool developed for the client is the Citation Parser Tool; this
tool was created using JavaFX3 libraries and for prototyping purposes, only runs
from the developers IDE. The Parser Tool is responsible for and currently
capable of the following:

● Reading an input text file that contains a single citation string on each line
● Importing Regex Tree Binary Files to use as the basis for parsing citations
● Parsing citation strings into an output CSV file
● Creating an Error file that contains citations that were not able to be

parsed

Figure 8a. The output file from the citation parser. This is a CSV file that separates sections such as

Authors and Date by commas, so that the client may easily see portions of the citation.

Figure 8b. The Error Output File. This file contains all citations or text that failed the parsing process.

 Moving forward the tool will be extended so that it supports the following:

26

● Running as an executable Jar
● Using a complete, developer made Regex Parsing File by default
● Enhanced UI using CSS color and formatting
● Warning Dialog for when a citation is not able to be parsed
● Error Dialog and Error handling for program errors
● Possible addition of a progress bar, if needed for slower computers

5.5) Refinement 1

Our prototyping phase left us much further ahead than we anticipated;
therefore, refinement has been relegated to simply improving the tree structure
and tying the user interface into the backend code, making improvement and
fixing bugs where need be. Our first iteration of the tree is visualized as follows:

Figure 9. The Refined Tree. This tree parses over 1,000 citations, of which over 90% are correct.

This refined tree parses out the authors, year, and titles of over 1,000
citations, and the rest are filtered to nodes that will be appropriately filled at a
later date. Work remains to parse the rest of the strings, and it is anticipated that
the tree will grow in size appropriately.

Further refinement going forward will still involve increasing the citation
coverage of the regex tree, but will also involve debugging and fine tuning the
GUI. A GUI change we are planning to do is instead of having the binary tree file

27

input in a drop down we are going to add another field like the citation file and
output location. We are also planning to make the GUI more informative to the
user by adding some descriptions and tips.

Figure 10. Example of some of the citations from our output file given the VTTI_pubs.txt as input

You can see that up to the location field the citations are parsed correctly.
As of now the output is creating 1011 parsed citations out of around 1456
citations given. Future iterations of our code will refine the parsing of author,
year, title, and publication in order to increase the total citations parsed. From
there we will move on to location, date, volume, issue, and page.

5.6) Refinement 2

Refinements this week were based solely on the merits of the tree.
Expansions were made to ensure that as many Authors, Years, and Titles of
citations were being parsed out as possible. Below are examples of both the
expanded tree structure and the resulting output, showing the improved
correctness of our parsing engine.

28

Figure 13. Refinement of the RegexTree in the Tree Tool

29

Figure 14. Sample of CSV output when running the Parser with the Refined RegexTree
Figure 15. Example of some of the citations from our failed file given the VTTI_pubs.txt as input

Figure 11 shows us a sample of the failed output file, which shows us
which citations don’t get matched to one of the nodes in our regex trees. We will
use this file to create more specific regular expressions to cover more citations.
Viewing the citations in this file we can determine what our tree is missing. As we
add more regex nodes into our tree, this output file will shrink, until eventually we
reach the goal of hitting all or most of the citations. For any that we absolutely
cannot hit with the tree, we can manually add into the ending csv file.

6) Testing

 In order to assure that we have created the system we want, that the parts
operate sufficiently indepently of each other, and that the interface satisfies both the
needs of the project and the usability requirements of the client, we have implemented
both software-level testing and manual testing. They ensure correctness and expose
some issues present in the code.

 It should be noted that no code is perfect and different execution environments
can bring about unexpected issues.

6.1) Software-based Unit Testing

30

Figure 16. Demonstration of code-coverage plugin, indicating that the code shown is hit in-test.

Programmatically ensuring that code is working is an important part of
software development; being able to easily run tests, change code, re-run, and
assert that execution proceeds as expected is crucial to delivering a top-notch
product.

In order to assure the best for this project, we used a third-party tool called
EclEmma6. When this tool is used in Eclipse4 (our development environment), it
runs all unit tests, and displays in code where code is either:

● Hit
● Hit some branches of for loops, switch cases, etc.
● Not hit at all.

This tool assisted in developing tests for the backend system - the text/file
parsers, and the transformation into citations. The front end of the system was
tested manually.

To test the back end of the system, four files were created:

● A tree containing one single node.
● A tree containing one single node, and a child.
● A tree containing one matching regular expression.
● A text file with four text citations:

○ One that passed the tree
○ Three that failed the tree for various reasons.

These files, in conjunction with unit tests that simulated the interface,
successfully tested important elements of execution such as failed key-value
lookup, failed file import, asserting the correct number of nodes, and more.

31

6.2) Manual Interface Testing

Our user interface across both of our tools were simple enough to
manually test, and we deemed it unnecessary to take the extra time to create
GUI hooks for testing; rather, we would manually verify that the interfaces worked
as expected, and make changes based on what we thought were appropriate.

For the Tree Tool, testing helped us to determine several areas of
incorrectness:

● An empty area at the bottom of the screen that could not be resized
● Sometimes, clicked nodes opened for edit would display text that was not

associated with that node.

We were able to successfully replicate and eliminate these issues through
manual testing.

For the Text Transformation tool, we determined that the only major issue
we were running into was the fact that the “Import Binary” dropdown was more
appropriately placed as another input box, similar to the boxes indicating the file
locations for text input and CSV output.

The Text Transformation tool’s GUI backend interfacing with the actual
transformation was sufficiently simulated in the Text Transformation software-
based unit testing.

Lessons Learned:

1) Problems Encountered

The main problem we ran into was that there were so many different variations in

the citations that our parsing program really wasn’t able to achieve 100% coverage.
These variations stem from the fact that this list of citations we were given isn’t
complete, so some citations are incorrect and missing different parts. It will require
someone to manually go through to add in the citations we were unable to hit.

Another problem we faced was that sometimes the parsing program’s output isn’t
perfect. It has around 80% success rate. Sometimes though it has an error and ends up
sticking parts of the citations in the wrong fields. This is because of situations where it is
very difficult/near impossible to tell a citation’s title and publication apart from each
other. Fixing these errors in the output will require some manual labor to fix.

2) Future Work

 This project has a lot of potential for being used in the future. We designed it with
extensibility in mind. The developer tree tool allows someone to create a regex tree

32

tailored specifically to what they want to parse. With some development work, this
parsing program could easily be made to parse other institutions citation lists as well.
Since it is so customizable, it can search for whatever the client needs it to.

Acknowledgements:

1. We would like to thank our client, Nathan Hall. He met with us often and was very
clear and helpful when communicating what he wanted from us. He was very
understanding with the issues we had and adjusted what he expected from the
project as we went along. Through him we also got a meeting with some people
from the VTTI2 which was a valuable experience to see how a real-world client
meeting would go.

2. We would like to thank our professor Dr. Fox. He was able to give us some tips
with the project as well as giving us feedback along the way. He also answered
questions we had about deadlines and such.

References:

1. Java
a. https://www.java.com/en/

2. Virginia Tech Transportation Institute (VTTI)

https://www.java.com/en/

33

a. https://www.vtti.vt.edu/
b. Copyright © 2015 Virginia Polytechnic Institute and State University

3. JavaFX
a. http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-

2158620.html
4. Eclipse

a. https://eclipse.org/
b. Copyright © 2015 The Eclipse Foundation.

5. Github
a. https://github.com/
b. Copyright © 2015 GitHub, Inc.

6. EclEmma
a. http://www.eclemma.org/
b. Copyright © 2006, 2015 Mountainminds GmbH & Co. KG and Contributors

7. FreeCite
a. http://freecite.library.brown.edu/
b. Brought by Brown University (http://www.brown.edu/)
c. Implemented by Public Display (http://www.pubdisplay.com/)
d. Funded by the Mellon Foundation (https://mellon.org/).

8. Agile
a. http://agilemethodology.org

https://www.vtti.vt.edu/
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
https://eclipse.org/
https://github.com/
http://www.eclemma.org/
http://freecite.library.brown.edu/
http://www.brown.edu/
http://www.pubdisplay.com/
https://mellon.org/
http://agilemethodology.org/

