
(12) United States Patent
Harmon et al.

US006810373B1

(10) Patent N0.:
(45) Date of Patent:

US 6,810,373 B1
Oct. 26, 2004

(54)

(75)

(73)

(*)

(21)
(22)

(60)

(51)

(52)
(58)

(56)

METHOD AND APPARATUS FOR OTHER PUBLICATIONS
MODELING USING A HARDWARE
SOFTWARE CO-VERIFICATION “MPC860 PoWerQUICC User’s Manual,” PoWerPC,
ENVIRONMENT Motorola, MPC860UM/AD, Rev. 1.

Inventors: Bruce Harmon, Portland, OR (US); Logic Modeling Corporation, LM Division, “Simulation
Michael Butts, Portland, OR (Us); Integration Manual” Aug. 1992, pp. i—Xiii, and pp. 1—208.
Gordon Battaile, Beaverton, OR (US); _ _ _ _ _ _ _

Kevin Heilman, Sherwood, OR (Us); Logic Modelmg Corporation, LM DlVlSlOIl, “LM—Fam1ly
Leveht caglar, Fremont, CA (Us); User’s Manual: Hardware Modeler Manual,” Sep. 1993, pp.
Raju Marchala, Palo Alto, CA (US); i—XViii and PP- 1—1 to IndeX—4~

Larry Carner’ Beaverton’ OR (Us); S no s s, Inc. “LM—1400 S stems, HardWare Modelin
Kama] Vanna’ Portland’ OR (Us) Szstelmf” http address: “WWvZsysnopsys.com/products/lm7

Assignee: Synopsis, Inc., Mountain View, CA hwimodels/lmilémo'htm ’ Oct' 13’ 1997’ pp' 1_4'

(Us) Synopsys, Inc., “LM—Family Modeler Manual,” Mar. 2000,
pp. 1—182.

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (List Continued on next page‘)
U.S.C. 154(b) by 831 days.

App1_ NO; 09/637,984 Primary Examiner—Ramesh Patel
_ Assistant Examiner—Crystal J Barnes

Flled: Aug‘ 11’ 2000 (74) Attorney, Agent, or Firm—Bever, Hoffman & Harms,
_ _ LLP; Jeanette S. Harms

Related US. Application Data
Provisional application No. 60/148,822, ?led on Aug. 13, (57) ABSTRACT
1999.

A method and apparatus for modeling using a hardware
nn. c1? G06F 17/50 software software eo-verr?eetron environment is nrovreteel~

An instruction set simulator is coupled to a simulator circuit

US. Cl. 703/14' 703/25' 716/5 to determine if the hardware design is Correct‘ Speci?cally’
F. M f S h ’ 703/4 ’13_25_ the instruction set simulator acts as a “master” to the
1e 0 earc , ,

716/4_6 simulator circuit, thus providmg a faster simulation envi
ronment. The simulator c1rcu1t contams a bus functional

References Cited model, a hardWare model, transfer memory, and the hard
Ware design to be tested. The hardWare model is designed to

Us PATENT DOCUMENTS emulate a micro-controller. By disabling a processor Within
the hardWare model, the speed of the simulation is restricted

5,768,567 A * 6/1998 Klein et al. 703/13 only by the Speed of the instruction Set Simulater or the

2 i 1;; llg’un?zta J ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ hardWare design. Furthermore, the hardWare design may be
To I‘. ' ' ' ' ' ' ' '

6:052:24 A * 4/2000 Palm; ~~~~~~~~~~ n 7O3/22 uncoupled from the simulator circuit in order to initialize the
6,212,489 B1 * 4/2001 Klein et al. 703/13 Operanng System‘
6,279,146 B1 * 8/2001 Evans et al. 716/18

6,298,320 B1 * 10/2001 Buckmaster et al. 703/28 27 Claims, 3 Drawing Sheets

Vimm! Pmduc!
Console (VPC)

240

US 6,810,373 B1
Page 2

OTHER PUBLICATIONS

Synopsys, Inc., “Hardware Models, ModelSource 3000
Series and Options,” http address “WWW.synopsys.corn/
products/1rn/hWirnodels/hWisysterns.htr,” Oct. 13, 1997,
pp. 1—9.
Applied Microsysterns Corp., Co—Veri?cation Presentation
Slides, 1988, pp. 2—18.

Carner, Larry & Eaglei HW/SW Co—Veri?cation., “VieW
logic Software Group, Providing Solutions for Embedded
Systerns,”1997, pp. 1—7.

BunZa, J. Geoffrey, VieWlogic Systems, Inc., “The Magic of
Building HW/SW Systems,” 1997, pp. 1—143.

* cited by eXarniner

U.S. Patent 0a. 26, 2004 Sheet 1 of3 US 6,810,373 B1

Vilma! Product
Console (VPC)

m 8210
0000000000000000000000000000 .40..---..-.. O...‘ / L 700

Bus 3Q STU d _’ _8_Q§
7% 1 Functional ill

_ ‘ ' Model

19-0- ' (BFM) slms'gzsm Memory
Instruction 7 702 a

Set Simmator Initialization /I_;:iware
USS) Memry " Model

- 806 Rest of
Memm'y System Bus Design

5% Hardware goi
Model

: 702
: CPU SIU

814 2 __ 702 L4

_ 704

Peripheral 834 t /
Dances _ Peripheral

I/Os

Virtual Software ‘

Processor “' m“

240

Fig. 1

US 6,810,373 B1 Sheet 2 0f 3 0a. 26, 2004 U.S. Patent

N ME

3§Ebw\ 3. mm»
wuzw __u2m 68 88 Sum 68

A 2 l A 0 A _ 0

0mm)‘, 96 MB.“- \
: 0mm

<29 7=E>~
6 “220

3.8mm: \ _

van.) an

In) . .530 is DEG;AH 3 i2 m

[In

3
< r GM! a MW3-D \ B00

Qdmv @Nm g a,

2: 882» 1! , ,

. Dosing \ m as 330 _ 3

§ a‘ a /

_ _ Z” a;

U.S. Patent 0a. 26, 2004 Sheet 3 of3 US 6,810,373 B1

/ 900

U I U

Putting CPU
into Inactive x902

Stale ‘

906 908
904 ‘y a a

Servicing ISS Servicing Servicing Peripheral
Access to Peripheral-Generated Generated Interrupt
Peripheral Cycles Request

Fig. 3

US 6,810,373 B1
1

METHOD AND APPARATUS FOR
MODELING USING A HARDWARE
SOFTWARE CO-VERIFICATION

ENVIRONMENT

RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119(e)
of the Ser. US. provisional application Ser. No. 60/148,822
?led on Aug. 13, 1999 and entitled “Method and Apparatus
for Modelling Using a HardWare-SoftWare Co-Veri?cation
Environment.” The provisional application Ser. No. 60/148,
822 ?led on Aug. 13, 1999 and entitled “Method and
Apparatus for Modelling Using a HardWare-SoftWare
Co-veri?cation Environment” is also hereby incorporated by
reference.

FIELD OF THE INVENTION

The present invention relates to veri?cation of electronic
hardWare designs. More speci?cally, the present invention
utiliZes a logic simulator With a hardWare model in combi
nation With an instruction set simulator to create a hardWare
softWare co-veri?cation environment.

BACKGROUND OF THE INVENTION

The use of computer simulation has become Widespread
in many areas such as circuit design. The cost of manufac
turing an integrated circuit is extremely high, and it is
desirable that the hardWare incorporated into the integrated
circuit be tested prior to actual fabrication of the chip.
Therefore, integrated circuit manufacturers often use simu
lators to test the hardWare and the softWare intended to be
executed by the hardWare.

In performing design veri?cation, it is frequently neces
sary to simulate not only the neWly designed hardWare, but
also enough of the surrounding electronic environment to
provide suitable interface signals to the circuit under test.
For this purpose, the engineer creates or obtains a model of
a “master” device that can, by Way of instructions, manipu
late the simulation environment in a desired fashion and
produce deterministic results. For example, in order to test
a memory chip, an engineer requires a master model to
generate functionally and correctly read and Write control
signals to the chip Within the simulation environment
Therefore, the constraints imposed by the instruction set of
the master model limit the extent of veri?cation.

A very popular series of microcontrollers have emerged
for serial interfaces in the digital communications arena. For
example, ?rst in the family Was the Motorola 68302 micro
controller. It Was replaced over time in terms of the popu
larity of the Motorola 68360 micro-controller. Then, the
Motorola PoWer PC and MPC860 micro-controller fol
loWed. The latest version of the microcontroller is the
Motorola MPC8260. Each micro-controller is characteriZed
by a very popular microprocessor core, and contains a series
of serial peripherals that are controlled by a common serial
communications engine. As a consequence, the micro
controller provides tools to support softWare development
associated With systems that use these particular kinds of
chips. A hardWare model has been built to match each
micro-controller to model portions of the design hardWare.

HoWever, a hardWare model is not an ef?cient means by
Which to develop softWare. The processor in the hardWare
model is often a dynamic device that must maintain a
running clock in order to retain data. Because the hardWare
model simulates the system responses event by event for an

10

15

20

25

35

40

45

55

60

65

2
arbitrarily small time slice, the microprocessor must Wait for
each simulation cycle to be completed by the hardWare
simulator. Therefore, the microprocessor must be reset at the
start of each simulation cycle, and all the previous vectors
rerun. As the simulations gets longer, the time taken to rerun
all the previous vectors increases. Executing the softWare
takes a large number of clock cycles, often exceeding the
maximum amount of vector memory available for the hard
Ware model, and thus severely limiting the length of the
softWare. In addition to the large memory requirement in the
hardWare model, the execution of the softWare at the object
code level does not provide a convenient means for debug
ging the program.

Further, it is not feasible to use a prototype of the
hardWare design With an evaluation board because that Will
not alloW the customer to do an arbitrary design. Instead,
typically the customer’s design is based around one of these
micro-controllers because the design requires the peripher
als of the micro-controller to access the design. The micro
controller has an interface to memory Which forms the basis
for executing instructions to the serial interface and provides
the communications to the hardWare design.

Creating a hardWare model in a simulator context is
previously knoWn. The Synopsys Eaglei@ family utiliZes
instruction set simulators, bus functional models and other
traditional hardWare-softWare co-veri?cation tools for a
microprocessor. Synopsys Eaglei @ is a trademark of
Synopsys, Inc. of Mountain VieW, Calif. While the use of a
hardWare model can provide a full functional processor
model, the signi?cant cost of the hardWare model is not
alWays re?ected by an increase in simulation performance.
The hardWare model contains a vector memory to store the
input data for each pin of the microprocessor for each time
slice of the hardWare simulator. A time slice can be arbi
trarily small, and is typically less than a typical micropro
cessor clock cycle. The detection of timing problems
requires an event by event analysis, including propagation
delays of the hardWare design. The hardWare model runs
lockstep With the hardWare simulator With the microproces
sor generating the next set up binary signals from the vector
memory at the microprocessor pin connections for incorpo
rating With the next simulated step of the hardWare simula
tor. Thus, the hardWare model operates in complete syn
chroniZation With the hardWare simulator.

The current problem facing the user is that the standard
instruction set simulator tools addressing the processor
Would not properly address the communication betWeen the
peripheral and the design to be tested. Additionally, it is very
dif?cult to make a softWare model of the entire microcon
troller because the modes associated With the multiple
peripherals and the different Ways they can be con?gured
does not lend itself to modeling very ef?ciently. It might take
years to build a completely accurate softvare model to
accomplish such a task, Whereas a hardWare model for a
microcontroller can be built in much less time, and is
intrinsically accurate.

SUMMARY OF THE INVENTION

The present invention in its preferred embodiment repre
sents the ability to model hardWare designs that include a
microcontroller integrated circuit Which has a processor and
peripheral devices through the combination of hardWare
model, instruction set simulator (ISS), and logic simulator
Within a hardWare-softWare co-veri?cation environment.
The present invention accomplishes this goal by breaking
the processor aWay from the peripheral devices, and substi

US 6,810,373 B1
3

tuting an ISS so that it can run software With much higher
performance. Furthermore, When the peripheral devices’
accuracy is an important requirement of the simulation, they
can be modeled With perfect accuracy by the hardWare
model.

In accordance With one aspect of the present invention,
the method and apparatus for modeling using this hardWare
softWare co-veri?cation environment comprises a logic
simulator program simulating the hardWare design, and an
ISS for representing the operation of the processor. The logic
simulation contains a bus functional model (BFM), a hard
Ware model of an integrated circuit, a remaining hardWare
design, and an initialiZation memory block. According to the
preferred embodiment, the integrated circuit is a micro
controller.
When the processor of the hardWare modeled microcon

troller is disabled, the ISS is coupled to the logic simulation
in its place. The object is to provide the high speed and
internal visibility of the ISS, With the accuracy and easier
availability of the rest of the micro-controller modeled in the
hardWare model. The design process is greatly simpli?ed by
not having to generate a softWare model of the peripheral
devices. Additionally, the modeling accuracy is perfect
because the actual peripheral devices of the integrated
circuit in the hardWare model are used.
When the softWare instruction stream executed by the ISS

Would cause a bus cycle to be issued by the actual processor,
such as for a read or Write of external memory or a peripheral
devices’ register, the ISS send a signal to the BFM, Which
issues the bus cycle to the rest of the design Which is in
simulation, including the hardWare model. The BFM trans
lates the bus cycle from the command issued by the ISS to
the level of pin changes happening in multiple time steps in
simulation, as if the actual processor Was present.

In accordance With another aspect of the present
invention, the processor part of the hardWare modeled
microcontroller is disabled, even if there is no facility built
into the microcontroller integrated circuit to literally turn off.
Methods and apparatus of this invention cause the processor
part to be effectively disabled, so far as the ISS and the logic
simulator are functioning, even if not literally turned off,
While retaining complete accuracy.

In accordance With another aspect of the present
invention, the ISS is uncoupled from time synchroniZation
With the rest of the design in logic simulation, for example,
during periods of little interaction betWeen instruction
execution and the peripheral devices of the other hardWare,
such as While the operating system is initialiZed. Much faster
veri?cation performance results. Furthermore, the instruc
tion stream executed in the ISS may issue bus cycles Which
access registers in the peripheral devices or the rest of the
design While the ISS is uncoupled from logic simulation.
The hardWare-softWare co-veri?cation environment of this
invention detects such occurrences and temporarily couples
the ISS With the logic simulator to correctly execute such
bus cycles.

In accordance With another aspect of the present
invention, any of the hardWare modeled peripheral devices
may issue an interrupt request to the processor, Which is
intercepted by the BFM and passed on to the ISS for
servicing, as if the actual processor Was present in the logic
simulation. Likewise, any of the hardWare modeled periph
eral devices may issue a direct memory access (DMA) bus
cycle, Which is intercepted by the BFM and passed on to the
rest of the design (ROD) in logic simulation.

The nature, principle and utility of the present invention
Will become more apparent from the folloWing detailed
description When read in conjunction With the accompany
ing drawings.

10

15

25

40

45

55

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional diagram of a preferred embodiment
of the present invention

FIG. 2 is a block diagram of the components that com
prise the micro-controller in the preferred embodiment of
the present invention.

FIG. 3 is a How chart Which illustrates the method of
modeling a complex microprocessor.

Detailed Description of the Present Invention

Referring to FIG. 1, the present invention includes mainly
a virtual product console (VPC) 200, an instruction set
simulator (I55) 400, and a logic simulator 800. The instruc
tion set simulator (I55) 400 is coupled to the logic simulator
800 via a command path 711.

The VPC 200 is a Well-knoWn product in the pertinent
hardWare/softWare co-veri?cation market. The VPC 200
provides a hardWare/softWare co-development environment
that can simulate both softWare and hardWare vieWs simul
taneously. The VPC 200 also let designers test softWare
against the hardWare model at behavioral, register, and gate
level of abstraction. Accordingly, the VPC 200 controls the
I55 400 and the logic simulator 800.
The I55 400 is another Well-knoWn product in the market.

It is an instruction set interpreter- Which takes an instruction
stream and processes each instruction by decoding the
opcode and sending a command or commands out indicating
the bus cycles associated With that opcode’s execution if
any. The I55 400 accurately simulates the execution of an
instruction stream in softWare, rather than running it on the
actual CPU and memory hardWare for Which it is intended.
At any point in the execution of the instruction stream, When
the actual CPU Would issue an external bus cycle, such as to
external memory or a peripheral device, the I55 400 issues
a corresponding bus cycle command to the logic simulator
800 via command path 711. The I55 400 accurately simu
lates the execution of softWare instruction streams, rather
than modeling correctly some complete and complex pro
cessor functions such as pipelining timing problems.
Depending on each application, designers Write speci?c
instruction streams and storc them in the system memory
402. Further, the I55 400 contains a softWare representation
of system memory 402 Which also has a hardWare repre
sentation 842. The system memory 402 is not a real memory,
but is preferably an abstraction of memory. The I55 400
Works closely With the logic simulator 800 to create a model
for a micro-controller.

The logic simulator 800 is a tool for simulating the logical
behavior of all hardWare components. The logic simulator
800 comprises a Bus Functional Model (BFM) 802, a
hardWare model 804, an initialiZation memory 806, and a
rest of the design (ROD) 808. The Bus Functional Model
(BFM) 802 is a central component of the simulation envi
ronment. In this invention, BFM 802 is used to model the
bus interface of a CPU Without the internal states such as its
caches or instruction execution. The BFM 802 contains
mainly tWo system interface units (SIU): a ?rst system
interface unit (SRIU 812, and a second system interface unit
called a slave SIU 822. In a regular application, a system
interface unit (SIU) controls system startup, initialiZation
and operation, protection, as Well as external system bus.
But in the BFM application, these tWo SIUs 812 and 822
control tWo versions of the external system bus. The SIU 812
controls the interface betWeen the BFM 802 With the ROD
808 via the simulated system bus 700. The BFM 802

US 6,810,373 B1
5

processes each bus cycle command from the I55 400 by
translating that commnand into pin level signals on simu
lated system bus 700, Which accurately represent the elec
trical signals that the actual CPU simulated by the I55 400
Would issue. The BFM 802 is connected With the hardWare
model 804 via the hardWare modeled system bus 702 in the
logic simulator 800. The hardWare model 804 connects With
the ROD 808 via the peripheral input/output nets 704. The
VPC 200 controls the operation of the I55 400, the logic
simulator 800, and the BFM 802. The VPC 200 handles
initialiZation and provides a graphical user interface for
control.

The hardWare model 804 of a microcontroller is a con
ventional and Well-knoWn device in the pertinent art. The
hardWare model 804 is built With an actual hardWare inte
grated circuit microcontroller chip commonly used by
designers for design veri?cation and debugging. The hard
Ware model 804 is interfaced With the logic simulator 800 to
act as a model of the microcontroller in system simulation,
using its internal actual integrated circuit device to provide
accurate functional behavior. The microcontroller, modeled
by the hardWare model 804, is the representative of Widely
used microcontrollers. The hardWare model 804 comprises a
CPU 814 that executes an instruction stream during
operation, the peripheral devices 834 that provide special
iZed functionality such as communication ports into and out
of the microcontroller, and the SIU 824 that interfaces the
CPU 814 and/or the peripheral devices 834 With an external
bus for integration of memory and/or other devices external
to the microcontroller. The external system bus in the
hardWare model of this microcontroller is the hardWare
modeled system bus 702.

The microcontroller modeled by the hardware model 804
in the preferred embodiment is a Motorola MPC860, Whose
internal block diagram is shoWn in FIG. 2. The CPU 814
contains tWo types of caches: an instruction cache 816, and
a data cache 818. A cache memory is another type of
memory consisting of fast memory located closest to the
CPU and acts as a safe storage to store both instructions and
data for the CPU. Both the data cache 816 and the instruc
tions cache 818 have 4-Kbyte of memory and are tWo-Way
set associative to alloW rapid core access to data and
instructions. The CPU 814 also have tWo types of memory
management units (MMU): an IMMU 817 for instructions,
and a DMMU 819 for data. These MMUs provide memory
management, cache control, memory access protection, and
effective-to-physical address translation. The caches 816,
818, and MMUs 817, 819 are connected to a CPU 815 core
via the instruction buses 811 for instructions and 812 for the
data. These caches and MMUs are of the conventional sort
Widely used in modem CPUs and are Well-knoWn in the
pertinent art.

The MPC860’s peripheral devices 834 are in the form of
a communications processor module (CPM), Which contains
an array of serial communication controllers (SCC) 835, and
serial management channels (SMC) 836, Which can conduct
a direct memory access (DMA) 837, and other peripheral
devices, via a peripheral bus 839 under the local control of
a dedicated peripheral microcontroller and program Read
Only-Memory (ROM). The detailed description of the
MPC860 is described in the MPC860 PoWer QUICC User
Manual published by Motorola Co., MPC860UM/AD pub
lished in July 1998. Any person of ordinary skill in the art
can use the manual to program and operate the microcon
troller MPC 860 according to the instructions disclosed by
the invention. Combining the I55 400 and the HardWare
Model 804 to Form Single Accurate and High Performance
Model.

20

25

30

35

40

45

55

60

65

6
When a softWare instruction is executed by the I55 400

that accesses an address in either the peripheral devices 834
or the ROD 808, it issues the bus cycle command to the
BFM 802. When the bus cycle command is for an address in
the ROD 808, the BFM 802 translates the bus cycle com
mand into pin-level activity on the bus 700. The simulation
of the ROD 808 responds to this activity on bus 700. The
pin-level hardWare response of the ROD 808 is translated
back to the command level by the BFM 802, Which provides
the bus cycle command response to the I55 400. During this
bus cycle command, the SIU 812 manages all commands,
accesses, and translations.
When the I55 400 issues a bus cycle command for an

address in the peripheral devices 834, the hardWare model
804 models the peripheral devices 834. The BFM 802
translates the bus cycle command into pin level activity on
the hardWare model system bus 702, driving the hardWare
model 804 through the separate slave SIU 822 of the BFM
802. Response from the hardWare model 804 is translated
into the command level by the BFM 802, Which provides the
bus cycle response back to the I55 400.

Activity on the peripheral devices 834 is seen directly by
both the hardWare model 804 and the logic simulation 800
via the peripheral input/output nets 704. When any of the
hardWare-modeled peripheral devices 834 initiates an activ
ity by issuing an interrupt request, the pin-level activity of
the hardWare model 804 is detected by slave SIU 822, and
is translated into a command for the I55 400. LikeWise,
pin-level bus cycle signals on the hardWare model system
bus 702 are detected by the slave SIU 822 Which, in turn,
drives the ROD 808 in the logic simulation 800. This activity
simulates execution of the DMA cycle.
As a result, the VSP 240 is a simulation model With the

speed of operation of the I55 400 and With the accuracy of
the hardWare model 804. In normal operation, the logic
simulator 800 and 155 400 must remain coupled
(synchroniZed in simulated time) to insure that all the
causeeffect relationships of the signalkevents betWeen the
tWo are preserved and accurately modeled. Then softWare
execution by the simulated system is timing accurate, so
hardWare and softWare execution times can be compared.
This coupled operation is relatively sloW because it is
limited by the speed of logic simulator 800.

Higher speed is achieved by coupling the I55 400 to the
logic simulation 800 only during those necessary bus cycles.
Thus, the I55 400 and the logic simulation 800 are not
synchroniZed in time during periods of little interaction
betWeen the I55 400 instruction execution and the peripheral
devices 834 or the ROD 808; in particular, When the I55 400
executes the initialiZation of the operating system softWare.
As a result, Without being held back by the much sloWer
speed of the simulator 800, the I55 400 can run at its full
speed, Which may be hundreds of thousands of instructions
per second. But during the cycles in Which the I55 400
issues a bus cycle command to a location modeled by an
element in the logic simulation 800, the I55 400 and the
logic simulation 800 are temporarily re-synchroniZed for the
duration of the simulation of the bus cycle. Coupling and
uncoupling may also be controlled manually by the user
through the VPC 200.
Operation When the HardWare Model’s CPU Cannot Be
Turned Off.

Sometimes the microcontroller chip’s CPU 814, used in
the hardWare model 804 cannot be disabled. Then, substi
tuting the I55 400 for the hardWare model of the CPU 814
Would be impossible simply because the hardWare model’s
CPU 814 activity could not be replaced by the activity of the

US 6,810,373 B1
7

I55 400. Also, When the microcontroller’s peripheral
devices 834 are not designed to be controlled from outside
the chip through its SIU 824, one ordinarily cannot use the
hardWare model 804 With the I55 400 to make the VSP 240,
because the ROD 808 Would not be able to access the
hardWare model’s peripheral devices 834. Both these limi
tations exist in the Motorola MPC860 microcontroller of the
preferred embodiment.

This invention overcomes these limitations, and makes
the hardWare/softWare co-veri?cation environment fully
functional and accurate. The method causes the hardWare
model ’s CPU 814 to be effectively disabled by causing it to
execute an idle loop, While still using it to pass memory
access cycles and interrupts betWeen the I55 400 and the
peripheral devices 834 of the hardWare model 804.

FIG. 3 illustrates a method 900 of modeling a complex
microcontroller. At the step 902, the CPU 814 of the
hardWare model 804 is put into an effectively inactive state.
At the step 904, the memory access from the I55 400 to
device registers in peripheral devices 834 is serviced. At the
step 906, the direct mermory access (DMA) 837 cycles
generated by peripheral devices 834 are serviced. At the step
908, the interrupt requests generated by peripheral devices
834 are serviced.

Referring to FIG. 3, it should be understood that the steps
902 to 908 are not sequential. After the CPU 814 is put into
the inactive state at the step 902, the steps 904 to 908 are
independently performed, as appropriate.

In the step 902, the CPU 814 is disabled: When the
hardWare model 804 is initialiZed, instruction cache 816 of
the CPU core 815 is turned on, fetches and executes a small
amount of branching code from the initialiZation memory
806 Which is connected to the hardware model 804 in the
BFM 802. This code ends With an idle loop, causing the
CPU 814 to continue executing a single cached instruction
inde?nitely. Since the idle loop is cached internally, it does
not generate any activity on the U-bus 820, thus effectively
disabling the CPU 814 of the hardWare model 804. The
initialiZation code enables the interrupts of the CPU 814 to
provide for the folloWing functions, modeled Within steps
904 to 908.

During the step 904, When the I55 400 issues a bus cycle
command to access a register in peripheral devices 834, the
BFM 802 uses the external interrupt request input (-INTI) of
the MPC860’s hardWare model 804 to conduct a handshake
type exchange of signals betWeen the BFM 802 and the
hardWare model 804 to access peripheral registers. Once the
BFM 802 asserts that signal, the CPU 814 of the hardWare
model 804 executes pre-cached instructions and conducts
the requested peripheral register access. This scheme can be
achieved in four steps described beloW:

1) The CPU 814 of the hardWare model 804 responds to
the external interrupt request of the BFM 802 input by
starting an interrupt service routine, Which Was stored in
instruction cache 816 from the initialiZation memory 806.

2) The interrupt service routine of the hardWare model
804 reads a memory location in the BFM 802, Which
informs it about the memory cycle’s address and access
type.

3) Then the interrupt service routine of the hardWare
model 804 executes the access to the peripheral devices 834
by reading or Writing data betWeen another memory location
in the BFM 802 and in the register of the peripheral devices
834.

4) Finally, the interrupt service routine of the hardWare
model 804 returns control to the idle loop. The BFM 802
completes execution of the bus cycle command for the I55
400.

10

15

20

25

30

35

40

45

55

60

65

8
An additional detail addresses the potential race betWeen

the interrupt requests generated by the BFM 802 and those
generated by the peripheral devices 834. The interrupt
pending register (SIPEND) of the MPC860 hardWare model
804 is reported to the BFM 802 both at the beginning and at
the end of these four steps. This Way, if a peripheral
generated interrupt is also pending, it Will not be lost When
servicing the interrupt from the BFM 802.

In the step 906, to handle accessing the DMA 837 from
peripheral devices, When one of the DMA controllers in the
peripheral devices 834 issues a memory bus cycle on the
U-bus 820, 1110 it passes through the SIU 824 to the
external bus pins of the hardWare model 804 Where the BFM
802 detects it. The BFM 802 passes the pin events onto the
ROD 808 in the logic simulation. The logic simulation 800
connects the bus cycle to the hardWare memory 842. The
Synopsys Eaglei’s Direct Memory Interface (DMI) keeps
memory coherent betWeen hardWare representation 842 in
the ROD 808 and softWare representation 402 in the I55
400.

During the step 908, When the peripheral device 834 of
the hardWare model 804 issues an interrupt request, it
interrupts the core CPU 814 of the hardWare model 804 out
of its idle loop. Its interrupt service routine Writes the
interrupt pending register (SIPEND) into the BFM 802,
sending an interrupt request command to the I55 400. Then
the CPU 815 of the hardWare model 804 returns to its idle
loop.

Alternative Embodiments

It is to be understood that even though various embodi
ments of the present invention have been set forth in the
foregoing description, the above disclosure is illustrative
only, and changes may be made in detail, yet remain Within
the broad principles of the invention.

Other alternative substantially same simulation and mod
eling tools, methods, and devices Widely available in the
market, instead of those disclosed in this application such as
the ISS, BFM, logic simulation, and hardWare model for the
MPC860, can be used in a substantially same manner to
achieve substantially the same goal as this invention.

Furthermore, the alternative embodiments to the micro
controller MPC860 are other microcontrollers,
microprocessors, Application Speci?c Integrated Circuit
(ASIC), and digital signal processing (DSP) devices Widely
used in the market. Each of the mentioned alternative
embodiments can be modeled by the method of this
invention, that is, to use the hardWare model in combination
With the ISS to achieve an accurate, loW-cost, and high speed
simulation model. When each of the alternative embodi
ments is used, it is understood that different methods other
than those disclosed above result because each device has its
oWn features and behaves differently. The methods resulted
from using different alternative embodiment devices are also
alternative embodiments of this invention.

Results

Application softWare is executed by the ISS, at an average
speed of at least 100,000 instructions per second, When it is
uncoupled from the rest of the VSP and the logic simulation.
As With other Synopsys Eaglei VSPs, softWare can execute
coupled or uncoupled With the HW simulation. In uncoupled
mode, softWare execution is not synchroniZed With opera
tion of the rest of the hardWare. The tWo proceed indepen
dently. When softWare accesses something in the hardWare,
temporary synchroniZation takes place to execute the access.

US 6,810,373 B1

Alternately, the user may select coupled mode, Where the
155 is kept in timing lockstep With hardware simulation.
Then software execution is timing-accurate, so hardWare
and softWare execution times can be compared.

In all cases, the MPC860 peripherals are modeled With
full accuracy by the real chip in the ModelSource HW
model. The desired combination of softWare execution
speed and hardWare accuracy and simulation performance is
achieved by this model.
What is claimed is:
1. Asystem for modeling a hardWare design for carrying

out an operation Wherein the hardWare design includes:
an integrated circuit having including a processor and an

internal bus;
a hardWare model containing the integrated circuit;
a bus functional model employing a ?rst system interface

unit and a second system interface unit;
means for disabling the processor of the integrated circuit,

Wherein disabling the processor is accomplished by
using initialiZation code to put the processor into an
endless loop;

means for simulating the operation of the processor; and
means for modeling the internal bus of the integrated

circuit and providing signals Which Would ordinarily
appear on the internal bus of the hardWare design.

2. The system of claim 1 Wherein the integrated circuit is
a micro-controller.

3. The system of claim 2 Wherein the microcontroller is a
Motorola MPC860.

4. The system of claim 1 Wherein the ?rst system interface
unit of the bus functional model communicates over an
external bus to the hardWare design, and the second system
interface unit of the bus functional model communicates
With the hardWare model.

5. The system of claim 1 Wherein the means for disabling
the processor of the hardWare model requires the a core of
the processor to not issue any bus cycles.

6. The system of claim 1 Whereby the endless loop is
accomplished by programming the processor to execute out
of Cache forever until the processor receives interrupts.

7. The system of claim 1 Wherein the means for simulating
the operation of the processor is accomplished such that the
functional behavior of the system is provided through a
combination of hardWare and softWare.

8. The system according to claim 7 Wherein at least some
of the softWare-provided functional behavior is provided by
the bus functional model.

9. The system according to claim 7 Wherein at least some
of the softWare-provided functional behavior is provided by
an instruction set simulator.

10. A hardWare model including an integrated circuit
having a processor and an internal bus, the hardWare model
including:

means for disabling the processor by using initialiZation
code to put the processor into an endless loop; and

means for alloWing a direct communication betWeen the
a bus functional model and the hardWare model to send
interrupt service routines Without passing through the
processor.

11. The hardWare model of claim 10 Wherein the inte
grated circuit is a microcontroller.

12. The hardWare model of claim 11 Wherein the micro
controller is a Motorola MPC860.

13. The hardWare model of claim 10 Wherein the internal
bus of the integrated circuit may be temporarily uncoupled
from the hardWare design so that initialiZation of an oper
ating system only communicates With an instruction set
simulator.

14. The hardWare model of claim 10 Wherein the means
for disabling the processor of the hardWare model requires
the core of the processor to not execute any code.

15

25

35

40

45

55

65

10
15. The hardWare model of claim 10 Whereby the endless

loop is accomplished by programming the processor to
execute out of Cache forever until the processor receives
interrupts.

16. A system for modeling a hardWare design for carrying
out an operation Wherein the hardWare design includes an
integrated circuit having a processor and an internal bus, the
system comprising:

a simulator circuit simulating the hardWare design and
including the integrated circuit;

an instruction set simulator for representing an operation
of the processor; and

means for disabling the processor by putting the processor
into an endless loop.

17. The system of claim 16 Wherein the simulator circuit
comprises:

a hardWare model containing the integrated circuit having
the processor and the internal bus;

a bus functional model for interfacing the instruction set
simulator to the simulator circuit,

Wherein the simulator circuit can carry out the operation
operate Without intervention of the processor for deter
mining Whether the hardWare design is correct; and

a transfer memory to pass system interrupts betWeen the
hardWare model and the bus functional model.

18. The system for modeling a hardWare of claim 17
Wherein the hardWare model simulates the integrated circuit
by communicating With the bus functional model through a
system interface unit.

19. The system of claim 16 Wherein the instruction set
simulator is external to the simulator circuit and executes
interrupt service routines.

20. A hardWare model including an integrated circuit, the
integrated circuit comprising a processor and an internal
bus, the hardWare model including:

means for effectively putting the processor into an endless
loop; and

means for alloWing a direct communication betWeen the
a bus functional model and the hardWare model to send
interrupt service routines Without passing through the
processor.

21. The hardWare model of claim 20 Wherein the internal
bus of the integrated circuit may be temporarily uncoupled
from a hardWare design so that initialiZation of an operating
system only communicates With an instruction set simulator.

22. A method of modeling an integrated circuit, compris
ing the folloWing steps:

putting a central processing unit (CPU) into an inactive
state by effectively placing the CPU into an endless
loop;

servicing an instruction set simulator (155) access into
peripheral devices;

servicing peripheral-generated cycles; and
servicing peripheral-generated interrupt requests.
23. The method of claim 22, Wherein the integrated circuit

is a micro-controller.
24. The method of claim 23, Wherein the microcontroller

is a Motorola MPC 860.
25. The method of claim 22, Wherein the steps are

performed independently of each other.
26. The method of claim 22, Wherein the steps are

performed in any order or simultaneously.
27. The method of claim 22, Wherein the peripheral

devices are communication processor modules (CPMs).

* * * * *

