
FWEB

A WEB system of structured documentation
for multiple languages

By John A. Krommes

Copyright c
 1993{1998 John A. Krommes

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the con-
ditions for verbatim copying, provided also that the section entitled \Copying" is included
exactly as in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the author.

Fweb 1

Fweb

This Texinfo documentation describes Fweb Version 1.61.

� To learn about new features of this version, see Section 14.1 [V1.61],
page 124.

� For a quick introduction to, and review of the structure of an Fweb source
�le, see Section 2.2 [Structure], page 5.

� If you used to receive e-mail information about Fweb but don't any longer,
it's probably because you need to update your e-mail address in the fweb-
users mailing list. Subscription instructions can be found in Chapter 15
[Support], page 131.

� Bug reports and suggestions are much appreciated, but are no longer ac-
knowledged individually. See Chapter 15 [Support], page 131.

� The next major release, Fweb Version 2.00, is planned for no earlier than
January 1, 2000.

This documentation is now accessible on the World-Wide Web from

http://w3.pppl.gov/~krommes/fweb_toc.html.

Other sources of information about Fweb are the archival �les of the fweb-users and
fweb-installers mailing lists. To learn how to obtain those, see Chapter 15 [Support],
page 131.

If you are learning Fweb for the �rst time, you will probably �nd that this (un�nished)
manual is not su�ciently pedagogical. For background, please refer to Knuth's book cited
in Chapter 1 [Intro], page 3. You should also browse through Chapter 2 [Concepts], page 5,
in particular Section 2.2 [Structure], page 5.

Fweb Copying Permissions 2

Fweb Copying Permissions

Fweb is \free." This means that everyone is free to use them and free to redistribute
them on a free basis. Fweb operates under the terms of the GNU General Public License;
see, for example, section \Distribution" in The GNU Emacs Manual.

Although it is hoped that Fweb will be useful, there is ABSOLUTELY NO WAR-
RANTY.

Chapter 1: INTRODUCTION to Fweb 3

1 INTRODUCTION to Fweb

Fweb is a system for literate programming. It enables one to maintain both documen-
tation and source code in a single place (the web �le), and to explain the code in terms of a
web of very small fragments. Because Fweb is intimately integrated with TEX, one gains
many advantages such as book-quality typesetting and extensive cross-referencing facilities.
A simple example program is described in Section 2.2 [Structure], page 5.

Fweb was originally intended for scienti�c programming (the 'F' stands for Fortran),
and is in wide use in that arena; however, it has much broader applicability. It is an
extension of Knuth's WEB system that handles the speci�c languages C, C++, Fortran
(both F77 and F90), Ratfor, and (in a limited fashion) TEX itself. It also attempts to
implement a WYSIWYG language-independent mode as well as a (closely-related but not
identical) verbatim `language'. The language-independent features are highly experimental
and are not recommended.

The origins and philosophy of literate programming are described in the very enjoy-
able book by D. E. Knuth, Literate Programming (Center for the Study of Language and
Information, Leland Stanford Junior University, 1992).

Knuth's original WEB was written in Pascal, and it formatted Pascal code. Silvio Levy
introduced Cweb, a WEB system written in C for C. Fweb is a (by now, substantial)
modi�cation of version 0.5 of Cweb that was graciously supplied by Levy. It also borrows
various ideas from the works of Ramsey and Briggs on language-independent webs.

The original WEB's worked with Plain TEX. More recently, many users have turned to
Lamport's LaTEX because of its ease of use and higher-level features. Excellent and exten-
sive development of LaTEX has been accomplished, as described by Goossens, Mittelbach,
and Samarin, The LaTEX Companion (Addison{Wesley, Reading, MA, 1994). The present
version of Fweb is intended to be used with LaTEX (LaTEX2e, in particular); Plain TEX is
no longer supported.

1.1 History of WEB and literate programming

(To be completed; see Knuth's book, cited in Chapter 1 [Intro], page 3.)

1.2 Features of Fweb

Fweb is distinguished from its relatives in several respects:

� Fweb introduces the concept of a current language (see Chapter 8 [Lan-
guages], page 83), so more than one compiler language can be processed
in a single Fweb run. For example, mixtures of C++ and Fortran are
common in modern scienti�c programming.

� Fweb understands the syntaxes of several of the more important compiler
languages: C, C++, Fortran (both F77 and F90), Ratfor, and TEX. For
other languages, Fweb can work in a language-independent mode that
essentially weaves and tangles the source code verbatim, but still provides
the user with the powerful web features related to TeX documentation,
module names, macro processing, etc.

Chapter 1: INTRODUCTION to Fweb 4

� Fweb contains a built-in Ratfor (RATional FORtran) translator. See
Chapter 9 [Ratfor], page 89.

� Fweb has a built-in C-like macro preprocessor. This is especially useful for
Fortran and Ratfor, which have no prede�ned preprocessor. However,
certain extensions such as variable numbers of arguments make the Fweb
preprocessor sometimes useful even for C and C++. See Chapter 7 [Macros],
page 62 and Section 7.3 [Preprocessing], page 80.

� Many aspects of Fweb's behavior, default strings, etc. can be customized
by means of setting parameters in a makeindex-like style �le (by default,
`fweb.sty'). See Section 12.3 [Style], page 112.

Chapter 2: WEB CONCEPTS 5

2 WEB CONCEPTS

The principle concepts ofWEB programming are laid out in Knuth's book, the reference
to which was given in Chapter 1 [Intro], page 3. Fweb follows most conventions introduced
by web and Cweb, except that the names of some commands have been changed for
consistency, symmetry, and/or clarity.

2.1 The Fweb processors: Fweave and Ftangle

Following Knuth's original design, Fweb consists of two processors, Ftangle and
Fweave. Both operate on a single source �le, say `test.web'. Ftangle produces com-
pilable code, say `test.c', whereas Fweave produces a TEX �le, `test.tex', that can
(in principle) be processed with either TEX or LaTEX. (If a �le `test.tex' already exists,
Fweave will ask for con�rmation before overwriting it if it does not think that the �le was
created by a previous run of Fweave.)

The output �le produced by Ftangle is not intended for human eyes (or for editors!);
it is for compiling only. All changes to the code should be made to the web �le, since
changes made directly to the output �le would be overwritten the next time the web source
is tangled. In an attempt to discourage messing with Ftangle's output �le, all unnecessary
spaces are deliberately removed.

A common way of integrating Fweb into ones program development is to do all com-
pilations through a make �le, into which one puts an extra dependency line that explains
how to produce the compilable output �le from the web source. For example,

test.c: test.web
ftangle test

test.o: test.c
gcc -c test test.c

With this approach, one is not so tempted to edit `test.c'.

Fweb development is now based on LaTEX; Plain TEX is no longer supported. For
detailed descriptions of the LaTEX support, see Section 10.1.3 [LaTeX], page 93.

2.2 The structure of a web

An Fweb source �le is structured into sections, which correspond to logical subunits
of the code (either a function or a fragment of a function). Each section consists of three
parts, each of which is optional: the

1. TEX part;

2. de�nition part; and

3. code part.

When Ftangle outputs code, it can combine the code parts of (possibly noncontiguous)
sections into larger units called modules, as explained in Section 2.3 [Modules], page 8.

With the aid of sections, one's possibly huge and logically complex code can be broken
down into bite-sized pieces, each one easily comprehensible. Since sections may correspond

Chapter 2: WEB CONCEPTS 6

to only a small part of a function or subroutine, 1000-line main programs (they still exist!)
should become a thing of the past.

Since sections can be combined into modules, there is no need for sections that must be
physically contiguous in the output �le to be contiguous in the source �le. This allows for
great
exibility in structuring the documentation of the code.

2.2.0.1 A simple example

A simple example of an Fweb source �le consisting of three sections is as follows:

@n/ % Set FWEB language to Fortran, and recognize short // comments.

\Title{example.web} % \Title is an FWEB TeX macro.
\author{J. A. Krommes} % \author is a LaTeX macro.

@* INTRODUCTION.
This code is intended to illustrate the use of the |write| statement.
It also provides a simple example of the \FWEB\ macro preprocessor.

@m A_CONSTANT 1.2345 // \FWEB\ preprocessor macro definition.

@a
program main
call compute
end

@ The computational routine is pretty boring.
@a

subroutine compute
write(*,*) 'Macro value = ', A_CONSTANT
end

@* \INDEX.

Commands to Fweb are begun by the `@' symbol (see Chapter 5 [AT commands],
page 38). In this example, the �rst command, `@n', sets the global language to Fortran-77.
One should always begin one's code with a language-setting command.

In this example, the language command is invoked with an optional argument `/'. That
is necessary in Fortran in order to tell Fweb to use the short (single-line) comment
form beginning with `//', which otherwise con
icts with the concatenation operator. See
Section 4.2.40 [-n/], page 27.

For more information about languages, see Chapter 8 [Languages], page 83. For a fuller
discussion of optional arguments, see Section 8.1 [Setting the language], page 83.

The `@*' command begins amajor or named section (corresponding to LaTEX's \section
command); this command is followed by the section name, terminated by a period. (The
period is essential; if it is omitted, weird errors may result.) Major sections are entered in
an automatically generated Table of Contents. They are also printed at the top of each
output page. If the full section name is too long to so print, one can shorten it with an
optional argument, as in

Chapter 2: WEB CONCEPTS 7

@* [INTRO]INTRODUCTION.

The command `@*n' (not illustrated in the above example) begins a major (sub)section
of level n, where `@*0' is equivalent to the simple `@*', `@*1' indicates a subsection, and
`@*2' indicates a subsubsection. The highest permissible major level is 2 (a subsubsection).
Such subsections are also entered in the Table of Contents. For more information, see
Section 10.1.3.4 [Sections], page 95.

As the example demonstrates, the name of the very last section, which should be starred,
should be `\INDEX'. Note the backslash; `\INDEX' is a TEX macro. This command tells
Fweave to write out the index in a special two-column format. By default, `\INDEX' ex-
pands to `INDEX', but this name can be overridden by the style-�le parameter `index.name'
(see Section 12.3.1.1 [S index], page 113). For more discussion of Fweb's indexing facilities,
see Chapter 11 [Index], page 103.

Minor (unnamed) sections are begun by `@ '(\at-space"); these have no associated names
and are not entered into the Table of Contents. A newline counts as a space.

2.2.0.2 The TEX part

All sections begin with (optional) TEX commentary. That can just be straight text; to
input that, no knowledge of TEX is required. It can also include mathematical exposition
or any of the other advanced features o�ered by TEX.

Whenever Fweb is in TEX mode, one can temporarily shift into code mode by enclosing
the code within vertical bars. That code is typeset just like code in the code part (see
below), except that newlines are replaced by spaces. Thus, one can say things like

Consider the C code fragment `|@c for(i=0; i<10; i++){}|', which ...

(If the global language were C instead of Fortran, the `@c' inside the vertical bars would
not be necessary.) The ability to switch back and forth between text mode and code mode
at will allows for a very convenient and
exible style of exposition.

2.2.0.3 The de�nition part

The TEX part is followed by an optional de�nition part. The beginning of the de�nition
part is signaled by the appearance of any one of the commands `@d', `@f', `@m', `@v', or `@W'
(explained later). In the previous example, the �rst section has a de�nition part consisting
of one Fweb macro de�nition (`@m'); the second section has no de�nition part. For more
information, see Chapter 7 [Macros], page 62.

(Failure to appreciate how easy it is to shift from part to part can get one into trouble.
For example, don't write documentation such as `Consider the @m command', because the
`@m' will inadvertently terminate the documentation part and begin the de�nition part.
What one needs to do here is to use the literal `@', as in `@@m'.)

2.2.0.4 The code part

An unnamed code part is begun by `@a'. A named code part is begun by the appear-
ance of a module name, such as `@<Global variables@>', followed by an equals sign; see
Section 2.3 [Modules], page 8. Within the code part, one can place any sequence of code

Chapter 2: WEB CONCEPTS 8

or code fragments (they need not be complete subroutines) that are valid for the current
language. (Setting the language is described in Chapter 8 [Languages], page 83.) The code
part is terminated by the next appearance of `@*' or `@ '(which signal the beginning of a
new section), or by the end of �le.

2.2.0.5 The limbo section

The portion of the source �le before the �rst section (i.e., before the �rst `@*' or `@ ')
is called in limbo or the limbo section. The only `@' commands that are allowed in limbo
(in addition to `@@', which stands for the character `@' and is allowed anywhere) are the
language-changing commands, and one of those, such as `@c', should appear. Other text
in limbo is ignored by Ftangle and is copied by Fweave to the tex output �le. Thus,
one can make or issue TEX macro de�nitions in limbo that override the defaults in Fweb's
macro package `fwebmac.sty'. In the above example, see the \Title command. This is
de�ned in `fwebmac.sty', and basically issues LaTEX's \title command.

(Another way of getting TEX text into the limbo section is by means of the `@l' command;
see Section 5.5.14 [ATl], page 45.)

LaTEX users may need to know that TEX commands in limbo are executed after the
`\begin{document}' command (which is issued automatically in `fwebmac.sty'). For more
information, see Section 10.1.3 [LaTeX], page 93.

2.3 Modules

The code parts of (possibly noncontiguous) sections can be combined into modules. For
Fweave, this is a logical combination, for purposes of cross-referencing di�erent pieces
of the code. But for Ftangle, the combination is physical; Ftangle's output proceeds
module by module.

Modules can be named or unnamed. There is exactly one unnamed module. The
fundamental operation of Ftangle is that

Ftangle outputs the unnamed module.

That output goes to a compilable �le with an extension appropriate to the current language.

The contents of a module, either unnamed or named, consists of a mixture of code and
comments. Ftangle ignores the comments; Fweave treats them as TEX text. Within any
TEX text, including comments, constructions delimited by `|...|' signify a temporary shift
into code mode. (In the present design, one cannot enclose a comment within the vertical
bars.)

2.3.1 The unnamed module

The unnamed code module is introduced by the command `@a'. Subsequent uses of `@a'
accrete code to the unnamed module. To repeat, the fundamental operation of Ftangle
is that

Ftangle outputs the unnamed module.

Thus, there must be at least one `@a' in the source �le or Ftangle will output nothing.

(Why is the command called `@a'? Historically, it was the �rst letter of the alphabet, as
be�ts its prominent status. However, one can also think of it as \accrete.")

Chapter 2: WEB CONCEPTS 9

2.3.2 Named modules

Named modules represent logically-connected fragments of code.

A module name is speci�ed by the construction

@< Arbitrary TEX text @>

Leading and trailing white space around the name text is ignored. The name text can
include the `|...|' construction, which tells Fweave to typeset a code fragment. Thus,
module names can be highly explicit|for example,

@< Check that |x >= 0.0|; |abort| if not @>

To de�ne a named module, replace the `@a' that begins the unnamed code part of a
section by `@< module name @>='. If one uses this construction with the same name in a
later section, the e�ect is to accrete to the contents of the module. Thus, a named module
might ultimately consist of the code from sections 2, 5, and 9, for example.

To use a named module, simply use the name anywhere in a code part; Ftangle will
insert the contents of the module at the point where the name is used. For example,

@c
@ Here's how to use a named module.
@a
for(i=1; i<n; i++)

@< Inner loop @>@;

@ Here's how to define a named module. Definitions may occur after use.
@< Inner...@>=
{
a[i] = i;
}

There are several details to notice about the above example. First, Fweave considers
module names to be simple expressions (such as the single identi�er x). In C, expressions are
made into complete statements (as is required in the body of a for statement) by appending
a semicolon. In this case, a pseudo-semicolon `@;' is appropriate; for more discussion of
that, see Section 5.13.2 [AT;], page 58.

Second, after a name has appeared once in full, it may be abbreviated by a unique
pre�x followed by three periods, as demonstrated in the above example. By convention, a
complete module name cannot be a subset of another. For example, `@<Test@>' and `@<Test
of graphics@>' will elicit an error message.

Commonly, the �rst unnamed section in the code indicates its modular structure. For
example, a C code might begin with

@c
@* DEMO.
@a
@<Include files@>@;
@<Typedefs@>@;
@<Function prototypes@>@;
@<Global variables@>@;

Chapter 2: WEB CONCEPTS 10

Subsequently one can accrete to the above named sections, as often as desired and in any
order. This way, de�nitions of global variables can be introduced anywhere in the web source
�le as logical and pedagogical exposition dictates, but will be guaranteed to appear at the
top of the code. Function prototypes could be handled this way as well; alternatively,
they could all be collected into one section, perhaps at the end of the source �le. (The
above organization still guarantees that they will appear at the beginning of the output.)
Functions could be introduced one at a time in subsequent unnamed sections.

Very rarely, one might try the following construction:

@
@a
@< Left side @> = @< Right side @>@;

Here the intent is to construct an assignment statement. However, this will be
agged as
an error because Fweb thinks one is trying to de�ne the named module `@<Left side@>',
which one shouldn't be doing while in code mode. To make it work, just put the invisible
expression `@e' (see Section 5.13 [ATe], page 57) before the equals sign.

2.4 Phases of processing

The Fweb processors perform their work in several distinct phases. (The following is
somewhat technical. Scan it, then use it for reference later if necessary.)

2.4.1 The phases of Ftangle

Ftangle has two phases. In phase 1, the source �le is read; in phase 2, compilable code
is written out in the order speci�ed by the web.

More speci�cally, phase 1

� discards TEX documentation;

� tokenizes the source;

� expands Fweb preprocessor commands such as `@#if' (see Section 7.3
[Preprocessing], page 80);

� expands `@'...'' (see Section 5.6 [ATquote], page 51), `@"..."' (see Sec-
tion 5.6.2 [ATdquote], page 51), and the binary notation `0b...' (see Sec-
tion 8.2.1 [C], page 84) [in Fortran, also the octal notation `0...' and
the hexadecimal notation `0x...'];

� stores code text in appropriate modules;

� memorizes macro de�nitions (`@d' and `@m') (see Section 5.5.6 [ATd],
page 42 and Section 5.5.16 [ATm], page 45).

Phase 2

� outputs outer macro de�nitions (`@d');

� outputs the unnamed module (`@a');

� expands Fweb macros (`@m');

� expands built-in macros such as `$IF' or `$PI' (see Section 7.2.3 [Built-in
functions], page 66);

� translates Ratfor statements (see Chapter 9 [Ratfor], page 89).

Chapter 2: WEB CONCEPTS 11

2.4.2 The phases of Fweave

Fweave has three phases. In phase 1, the source �le is read and cross-reference infor-
mation is collected. In phase 2, the source �le is read again, then pretty-printed with some
cross-reference information. (For discussion of pretty-printing, see Section 10.2 [Pretty-
printing], page 100.) In phase 3, an automatically-generated Index, List of Modules, and
Table of Contents are written.

More speci�cally, phase 1

� tokenizes and stores identi�ers and module names;

� collects cross-reference information (including, in C and C++, the scan-
ning of `#include' �les for `typedef' and/or `class' declarations (see Sec-
tion 4.2.17 [-H], page 20);

� stores limbo text de�nitions made with `@l' (see Section 5.5.14 [ATl],
page 45);

� collects information about overloaded operators (`@v') and identi�ers (`@W').
See Section 5.5.27 [ATv], page 49 and Section 5.5.28 [ATW], page 50.

Phase 2

� outputs limbo text;

� outputs special TEX macros for overloaded operators;

� copies TEX material directly to output;

� treats material between vertical bars (`|...|') as code to be typeset;

� tokenizes and stores contents of each code section;

� analyzes code syntax and converts it to appropriate TEX macros.

Phase 3 writes out cross-reference information. (To eliminate some of that, see Sec-
tion 4.2.67 [-x], page 34.) Speci�cally, it

� writes out the Index (`INDEX.tex' by default, but see Section 3.2 [Output
�les], page 13 and Section 12.3.1 [Index params], page 113);

� writes out a list of named modules (`MODULES.tex' by default, but see
Section 3.2 [Output �les], page 13 and Section 12.3.2 [Module params],
page 114);

� writes out macros to generate the Table of Contents. (Table of Contents
information is actually processed by LaTEX, not Fweave. The information
is written to the `aux' �le.)

Chapter 3: FILES 12

3 FILES

Fweb works with a variety of �les. File names have the form `[path]/root[.ext]',
where the brackets denote optional. Here the slash is called the pre�x end character. Since
this character di�ers for various operating systems, it can be changed by system installers
in `custom.h' (see Chapter 12 [Customization], page 107). The character that initiates the
�le-name extension (normally a period) can be changed with the `-E' command-line option
(see Section 4.2.13 [-E], page 19).

3.1 Input �les

Fweb reads �les with a variety of default extensions.

`.fweb' | Initialization �le (optional; for setting up default options used for
all runs). This �le is always in the user's home directory. See Section 12.2
[Initialization], page 108.

`fweb.sty' | Style �le (optional; for customizing the behavior of a particular
web �le or group of �les). See Section 12.3 [Style], page 112. This �le is always
in the directory of the web �le that is being tangled unless that is changed
by environment variable FWEB_STYLE_DIR. The basic name can be changed by
the `-z' option (see Section 4.2.71 [-z], page 35). A sample `fweb.sty' �le is
provided with the Fweb distribution.

`name.web' | Source �le.

`name.ch' | Change �le (optional; for making incremental changes to a web
source �le). See Section 3.3 [Change �les], page 13.

`name.hweb' | Code included into web �le with `@i' (see Section 5.5.9 [ATi],
page 43). Include �les are searched for in the path set by the environment vari-
able FWEB_INCLUDES and/or the `-I' option (see Section 4.2.19 [-I], page 21).
If that path is empty, then the current directory is searched.

`name.hch' | Optional change �le for include �le.

3.1.1 Automatic �le-name completion

Automatic completion of input �le names is turned on by the `-e' command-line option
(see Section 4.2.14 [-e], page 19). When this option is in e�ect, input �le names that include
no period (have no extension) are completed automatically according to the contents of the
following style-�le entries:

Type of �le Style-�le entry Default
WEB �le ext.web web
Change �le ext.ch ch
Include �le ext.hweb hweb
Change �le for
include �le

ext.hch hch

More than one extension may be speci�ed, as a space-delimited list|e.g., `ext.web = "web

wb"'; the �rst one that matches is used.

Chapter 3: FILES 13

3.2 Output �les

Fweave writes a variety of output �les.

`name.tex' | Woven output to be processed with LaTEX.

`CONTENTS.tex' | Temporary �le that accumulates Table-of-Contents infor-
mation. (For LaTEX, the `aux' �le is used instead.)

`INDEX.tex' | Temporary �le that stores indexing information.

`MODULES.tex' | Temporary �les that stores module list.

The names of the three temporary �les can be changed with style-�le parameters (see
Section 12.3 [Style], page 112). Commonly, one may put into the style �le `fweb.sty'
commands such as

index.tex "#.ndx"
modules.tex "#.mds"
contents.tex "#.cts"

The `#' is replaced by the root name of the web �le.

Ftangle writes �les of the form

`name.ext' | Compilable output �le.

The extensions for the compilable output �le(s) have certain defaults, but can be changed
by style-�le parameters according to the following table:

Language Style-�le entry unix default non-unix default
C suffix.C c c
C++ suffix.Cpp C C
Fortran{77 suffix.N f for
Fortran{90 suffix.N90 f90 for90
Ratfor{77 suffix.R r rat
Ratfor{90 suffix.R90 r90 rat90
TeX suffix.X sty sty
VERBATIM suffix.V mk mk

For example, to change the default extension for a C++ �le from `C' to `c++', put into
`fweb.sty' the line

suffix.C = "c++"

3.3 Change �les

The primary input to the Fweb processors is the `test.web' source �le. However, a
change �le `test.ch' can also be speci�ed. A change �le consists of instances of the following
structure:

@x
(One or more lines of text, EXACTLY as in the web file. Copy these
lines with an editor; don't type them from scratch.)
@y
(Replacement text.)
@z

The change-�le mechanism allows one to insert local changes or test new code without
physically modifying the original web �le.

Chapter 3: FILES 14

To specify a change �le, use its name as the second �le name on the command line. The
extension `.ch' is assumed by default. For example,

ftangle test test

processes `test.web' with the change �le `test.ch'.

In addition to `@x', `@y', and `@z', the only `@' commands allowed in a change �le are
language-changing commands such as `@c' and the special commands `@[' and `@]'. The
command `@[' is used for column-oriented languages such as Fortran{77 and means switch
into code mode. Similarly, `@]' means switch out of code mode.

All `@' commands in a change �le must begin in column 1. Lines not beginning with `@'
are ignored, so may be used as comments. Comments may also be included on the `@x',
`@y', and/or `@z' lines.

Chapter 4: RUNNING Fweb 15

4 RUNNING Fweb

Fweb has a unix-style command-line syntax. There are many command-line options,
but few or none of these are necessary for standard appplications. Proceed in blissful
ignorance until you need to do something tricky, then scan the list of options to see if they
can help.

Commonly-used command-line options can be placed into the initialization �le `.fweb'
(see Section 4.2 [Options], page 15) that resides in one's home directory.

A style �le (patterned after the utility makeindex; see Section 12.3 [Style], page 112)
can be associated with each manuscript or collection of related manuscripts in order to
customize their appearance. This �le is read after the command-line options are processed,
except that the `-p' option gets special treatment; see Section 4.2.46 [-p], page 28.

4.1 Command-line syntax

The command-line syntax is

{ftangle | fweave} [-option...] webfile[.web] [changefile[.ch]]

A �le name is anything that doesn't begin with a `-', except that a lone hyphen stands for
the special �le name `stdin', which means `read from the standard input.' (This should
not be used except for very special e�ects.)

Command-line options begin with a `-'. File names and options can be intermixed, or
the options may appear after the �le names. The �rst �le name encountered is the web
source �le; the second, if it exists, is the change �le (see Section 3.3 [Change �les], page 13).
[When no change �le is speci�ed, Fweb attempts to read from the null �le (`/dev/null'
on unix systems). This name should be speci�ed when Fweb is installed (see Chapter 12
[Customization], page 107), or can be set in the style �le `fweb.sty'. See Section 12.3.8.15
[null �le], page 120.]

The web �le is shown as required since one is normally processing a source. However,
some of the information options (see Section 4.2.82 [Info options], page 37) will work without
specifying any �le name. For example, one can obtain a list of all of the style-�le parameters
and their default values by saying `ftangle -Z'.

4.2 Command-line options

Command-line options may be put, one per line, into the initialization �le `.fweb' (which
is always in the user's home directory). In that �le, options beginning with a hyphen
are processed before the command-line options (so command-line options can override the
defaults). To force an option to be processed after the command-line options, preface it
with an ampersand rather than a hyphen; this is rarely necessary.

To make sense of the plethora of options, it helps to know that options beginning with
`n' are related to Fortran; those beginning with `r' are related to Ratfor. Some
ags
that can be set separately for those two languages also have a global option that sets the

ags for both languages simultaneously; cf. `-n/', `-r/', and `-/'.

Some options take arguments. For example, an Fweb macro can be de�ned from the
command line by saying something like `-mIBMPC=1'. Unlike many unix utilities, no spaces

Chapter 4: RUNNING Fweb 16

are allowed between any option and its argument. For example, if one says `-m IBMPC',
Fweb will think that `IBMPC' is a �le name.

4.2.1 Negating options

To negate a command-line option, use an extra hyphen. For example, `--v' means `Don't
make all comments verbatim.' This kind of construction isn't used very often, but it is useful
if an option such as `-v' is turned on in the `.fweb' initialization �le and one wishes to turn
it o� for just one run.

4.2.2 `-1': Turn on brief debugging mode (Fweave)

This option tells Fweave to display irreducible scrap sequences.

A scrap is a part of speech. The expression `x + y' consists of three scraps: `x' (an
expression), `+' (a binary operator), and `y' (an expression). Fweave contains production
rules such as \replace the combination `expr binop expr' with `expr'." If all goes well, the
result of Fweave's reduction process is ultimately just one scrap, such as `function'. If
Fweave is left with more than one scrap at the end of a section, this is called an irreducible
scrap sequence; `-1' displays them.

Irreducible scrap sequences can arise either because the programmer made a mistake or
because Fweave has not been taught the proper grammar.

While Fweave is reducing the scraps, it appends TEX macros that ultimately produce
the pretty-printed output. Frequently people ask how to change the appearance of that
output. Fundamentally, this is not possible at present; the grammar rules and the associated
TEX are hard-coded. A completely general, user-customizable scheme is very complex and
daunting; it has not been attempted.

This brief debugging mode can be turned on more locally by means of the `@1' command.
See Section 5.1.2 [AT1], page 38.

4.2.3 `-2': Turn on verbose debugging mode (Fweave)

This option tells Fweave to display detailed reductions of the scraps as it does the
pretty-printing. (For a discussion of scraps, see Section 4.2.2 [-1], page 16.) Sometimes
Fweave fails spectacularly at pretty-printing a section, either because of a syntax error on
the part of the user or because of a bug in Fweave's logic. This option helps one (usually
the system developer!) to �gure out why.

This feature can be turned on more locally by means of the `@2' command. See Sec-
tion 5.1.3 [AT2], page 38.

4.2.4 `-@': Display the control-code mappings

This option supplies information about the `@' control codes (see Chapter 5 [AT com-
mands], page 38). It shows the associated style-�le parameters that can be used to remap
the codes (but don't do that!), and it displays the precedence. (Some codes such as `@@' may
be used anywhere; others such as `@*' begin a new section or part of section. Codes that

Chapter 4: RUNNING Fweb 17

begin the de�nition part are labelled by `[D]'; codes that begin the code part are labelled
by `[C]'; codes that begin a new section are labelled by `[S]'.)

The option produces two columns of output: the �rst is sorted numerically, the second
alphabetically. The notation `USED_BY_OTHER' means that this command is ignored by
whatever processor (Ftangle or Fweave) is currently being run, but may be used by the
other processor. (For technical reasons, a very few commands such as `@i' do not show up
in this output at present.)

If one says just `-@', information about all control codes is produced. Selected con-
trol codes may be queried by listing them after the `-@'. For example, to learn about
the commands `@~' and `@a', say `-@~a'. Remember to quote certain characters on unix

systems|e.g., `-@'*?''. If a command is used by neither processor, its description will be
replaced by a question mark.

4.2.5 `-A': Turn on ASCII translations

This option is used primarily for debugging. Fweb works internally with the ASCII
character set. If Fweb is run on a non-ASCII machine (notably IBM mainframes), transla-
tions to and from the internal ASCII are done automatically; on an ASCII machine, these
translations are unnecessary and are not performed unless the `-A' option is used.

4.2.6 `-B': Turn o� audible beeps

Fweb sometimes beeps the terminal when it encounters certain errors. The `-B' option
turns o� the beeps, replacing them by a printed exclamation point.

(This option is sometimes called the \marriage-saver," after the situation that prompted
a user's request for this feature.)

4.2.7 `-b': Number blocks (Fweave)

Number do and if blocks in woven Fortran and Ratfor output. This feature is
particularly useful in Fortran-77 to help correlate the beginnings and ends of long blocks
(but note that appropriate use of literate programming techniques can keep all of one's
blocks short!). Output something like the following is produced, where the comments are
inserted automatically by the `-b' option:

do i=1,10 // Block 1
do j=1,10 // Block 2
if(i==j) then // Block 3

call sub1(i)
else // Block 3

call sub2(i,j)
endif // Block 3
end do // Block 2

end do // Block 1

The precise form of the block comment that is emitted can be changed by rede�ning the
macro \Wblock in `fwebmac.sty'.

Chapter 4: RUNNING Fweb 18

4.2.8 `-C': Set the color mode

The option `-Cn' sets the color mode to n, where the color modes are, brie
y,

0 No color

1 ANSI color

2 Bilevel

3 Trilevel

4 User-de�ned

These modes, and color output in general, are described more thoroughly in Section 12.3.7
[Color], page 117.

For obscure technical reasons, this command is processed di�erently than all other
command-line options. In the present incomplete implementation, the color mode must
be set on the command line, not in `.fweb'! To work around this annoyance, unix users
could alias commands such as `ftangle -C1'.

4.2.9 `-c': Set global language to C

Usually the global language (Chapter 8 [Languages], page 83) is set to C by means of
the command `@c' in limbo, rather than using `-c' on the command line. However, one
may need to use the command-line option `-c' if a subsequent command-line option is
language-dependent. See, for example, the discussion of the option `-D' in Section 4.2.11
[-D], page 18.

4.2.10 `-c++': Set global language to C++

For more information, see the discussion of `-c' in Section 4.2.9 [-c], page 18.

4.2.11 `-D': Display reserved words

This information option displays the list of reserved words for the language currently
in force. (For the purposes of this option, `reserved words' include \true" reserved words
such as `int'; they also include the names of intrinsic functions such as `sin' and, for
Fortran and Ratfor, I/O keywords such as `IOSTAT'.) Thus, to see the reserved words
for Ratfor{90, say

ftangle -Lr9 -D

(For this option one must set the language on the command line, because the `-D' option is
processed before the limbo section of the web �le is read.)

If one says `-Dabc', one will get just the reserved words that begin with "abc".

If one says `-D*', one will get all reserved words for all languages.

The `-D' may be followed by a list of one or more optional letters enclosed in square
brackets. (For unix systems, don't forget to quote the brackets, as they mean something
special to the shell.) The letters represent which kind of reserved word to display; they may
be `i' (`intrinsic'), `k' (`keyword'), or `r' (`reserved'). Thus, to see a list of the Fortran
keywords, say `-D[k]'. To see a list of the intrinsic functions for C++ that begin with `s',
say `-Lc++ -D[i]s'.

Chapter 4: RUNNING Fweb 19

4.2.12 `-d': Convert do...enddo

(This option is obsolete.)

4.2.13 `-E': Change the delimiter of a �le-name extension

The standard delimiter for �le-name extensions is a period, as in `test.web'. To change
this character to a comma, for example, say `-E,'. This feature is required by at least one
perverse system.

4.2.14 `-e': Turn on automatic �le-name completion

When the `-e' option is in e�ect, Fweb attempts to be helpful in �guring out what �le
name one intends. For any input �le name that has no extension (no embedded period),
Fweb completes the name by adding the extension contained in the style-�le parameter
listed in the following table:

Type of �le Style-�le entry Default
WEB file ext.web web
Change file ext.ch ch
Include file ext.hweb hweb
Change file
for include file ext.hch hch

More than one extension may be speci�ed, as a space-delimited list|e.g., `ext.web = "web

wb"'; the �rst one that matches is used.

4.2.15 `-F': Compare output �les with old versions (Ftangle)

When the `-F' option is in e�ect, Ftangle writes its output to a temporary �le (or �les)
instead of to its ultimate destination such as `test.c' and/or `test.f'. After all output is
written, the temporary �les are compared with the old version of the �les, if they exist. If
the �les are identical, the appropriate temporary �le is deleted; otherwise, the temporary
�le is renamed, e�ectively overwriting the old version. This feature avoids updating the
time stamp on the �le unnecessarily, so a make �le won't recompile the output unless it
really has to.

Note that with this option in e�ect, if one uses the unix utility touch to force processing
of a group of �les, but the web sources are never changed, the make �le will continue to
tangle the sources no matter how many times it is run, since Ftangle will never update
the time stamp on the �les. This is harmless, but annoying. To get things back in sync, do
a run without the `-F'.

The location of the temporary �le as well as details of the renaming procedure are
determined by the automatic con�guration script ./configure during installation of the
processors. The script �rst looks for the (non-ANSI) function tempnam. If it �nds it, it uses
it to place the temporary �le in the directory that Fweb would normally use for output in
the absence of the `-F' option. (That is usually the current directory.) If tempnam is not
available, the ANSI routine tmpnam is used. That places the temporary �le in a directory
determined by the system.

Chapter 4: RUNNING Fweb 20

To implement the renaming, the rename function is used. That may fail if tmpnam placed
the temporary �le on a di�erent device. If so, an attempt is made to force the rename by
using the system routine to issue a mv command. Terminal output indicates the progress
of the renaming. An asterisk following an output �le name indicates that rename did not
succeed, but the mv command did.

Some of the above-mentioned �le names and system commands are system-dependent;
see Chapter 12 [Customization], page 107.

4.2.16 `-f': Turn o� module references for identi�ers (Fweave)

In an attempt to be helpful, Fweave appends subscripts to many identi�ers indicating
in which section they are �rst de�ned (see Section 12.3.4 [Subscript params], page 114).
Sometimes these result in output that is too cluttered and confusing. The `-f' option turns
o� the subscripting operations.

4.2.17 `-H': Scan C/C++ include �les (Fweave)

For C or C++, the `-H' option tells Fweave to do a phase-1 scan of #include �les
for `typedef' and/or `class' declarations. This removes the necessity of including many
redundant `@f' format statements (see Section 5.5.8 [ATf], page 42), which would otherwise
be necessary in order that the code be pretty-printed correctly. For example, if one uses
the `-H' option with the code

@c++
@
#include <Complex.h>
Complex z;

the identi�er Complex will be properly formatted as a reserved word (in boldface), as though
one had said `@f Complex int'.

In addition to the basic `-H', there are several more detailed options:

-Hx Make index entries only for double-quoted include �les.

-HX Make index entries for all include �les.

-Hr Retain temporary �les generated by the preprocessor.

By default, index entries are not made for variables that are read during such scans. If
one says `-Hx', index entries will be made only for include �les whose names are enclosed in
double quotes rather than angle brackets, such as `#include "myheader.h"' (usually these
are de�ned by the user and reside in the local directory). If one says `-HX', index entries
will be made for all include �les. This can generate many entries, since system header �les
may be complicated and may include other �les as well.

This command is implemented as follows. When Fweave reads an #include statement,
it issues a system command to run the C preprocessor on the included �le. Output from
the preprocessor is written to a temporary �le, which Fweave scans.

By default, the C preprocessor will look in certain default paths for the included �les.
To add to those defaults, use one or more `-I' options after the `-H'. These colon-delimited

Chapter 4: RUNNING Fweb 21

lists are concatenated to the contents of the environment variable FWEB_HDR_INCLUDES, if
that is de�ned. The entire list is then passed as multiple `-I' options to the preprocessor.

This command, new with version 1.53, is highly experimental and incomplete. The
installation script attempts to determine what command to use to run the preprocessor,
but that is not guaranteed to work in general. `-H' has been tested only with gcc.

To send arguments to the C preprocessor, see Section 4.2.65.4 [-WH], page 33.

The `-H' mechanism uses temporary �les to do its work. By default, those are deleted
after use. However, for debugging purposes, one can force those to be retained by saying
`-Hr'. That option also has the side e�ect of displaying the actual command line that was
sent to the preprocessor.

4.2.18 `-h': Get help

If just `-h' is typed, a message is printed saying where further help is available. It
refers one to the various information options (see Section 4.2.82 [Info options], page 37) and
the on-line documentation (see Chapter 15 [Support], page 131). If the stand-alone info

program (the GNU hypertext browser) is installed, one can enter `info FWEB' at this time
by typing `?' or a space-separated list of Fweb menu items such as `Macros FWEB built-in

$PI'. In fact, since `$PI' appears in the detailed node listing, one can simply type `$PI'.
More generally, one can type anything that info accepts on its command line (the option
`-f FWEB' is implicit).

One can bypass the printed message and directly enter info by specifying the info

arguments as arguments to `-h'. For example, on a unix system, one could type `-h'\$PI''.
Here the dollar sign must be escaped because it has special signi�cance to the shell, and the
quotes are necessary in order to preserve that escape character as the argument is supplied
to info. To get to the top-level Fweb info directory, type `-h.' or `-h'?''.

4.2.19 `-I': Append to search list for include �les

The fundamental search list for include �les (read in via `@i' or `@I') is de�ned by the
environment variable FWEB_INCLUDES, which is a colon-delimited list such as

setenv FWEB_INCLUDES .:/usr/fweb:/other/stuff

The `-I' option appends to this list.

For information about include �les, see Section 5.5.9 [ATi], page 43.

4.2.20 `-i': Don't print `@I' include �les (Fweave)

If a web �le is included via `@I' (see Section 5.5.10 [ATI], page 44), for example

@I formats.hweb

then the `-i' option means to read and process the web �le, but don't print its contents.
This option is often used for large �les of macro de�nitions, formats, or typedef statements
that must be included at the beginning of even very short web �les; it clutters things up
to print such header �les all of the time. (C and C++ programmers will �nd that the `-H'
option substantially reduces the need to include such header �les; see Section 4.2.17 [-H],
page 20.)

Chapter 4: RUNNING Fweb 22

Note that �les included via `@i' (lower case) do not respond to `-i' or `-i!'.

By default, identi�ers that are referenced in non-printed include �les are not cross-
referenced or indexed in any way. To force them to be cross-referenced, say `-ix' instead of
`-i'. In the present implementation, the cross-reference information for such non-printed
�les is presented in the form `#n', where n is the integer section number. (The LaTEX
section label is unde�ned for sections in non-printed �les.)

The option `-i!' means skip the include �les completely. This is usually not very useful.

4.2.21 `-i!': Don't read `@I' include �les

If a web �le is included via `@I', for example

@I formats.hweb

then the `-i!' option means to ignore such �les completely. This option is seldom useful;
the `-i' option (see Section 4.2.20 [-i], page 21) is more often used.

4.2.22 `-j': Inhibit multiple includes

File inclusion via Fweb's `@i' command su�ers from a design de�ciency: they cannot be
inhibited by means of Fweb's preprocessor commands. (The reason is that `@i' is processed
very early in the input stage, before tokenization. This design decision was inherited from
Cweb, and is very di�cult to change.) A particularly annoying situation arises when the
same �le is included multiple times; various array space may be eaten up unnecessarily.
The `-j' option inhibits such multiple includes.

4.2.23 `-k': Don't recognize lower-case forms of keywords

By de�nition, in Fortran and Ratfor, a keyword is one of the parameters such as
IOSTAT used in the parameter list of an I/O statement. For example,

open(21, FILE=file_name, STATUS='old', IOSTAT=io_flag)

Such keywords are typeset in typewriter type to better highlight them. In Fortran,
these keywords are case-insensitive. However, note that certain of the lower-case forms|in
particular, `end', `read', and `write'|have other special meanings, and one can in principle
use any of these keywords as ordinary variables in other parts of the code; however, Fweb
identi�ers can have just one meaning throughout the code. By default, the lower-case forms
are also recognized as keywords (except for the three special identi�ers just mentioned),
so one shouldn't use those as regular variables. To cause only the upper-case forms to be
recognized, use the `-k' option.

4.2.24 `-L': Select global language

To select a global language from the command line, say `-Ll', where l is one of
{c,c++,n,n9,r,r9,v,x}. See Chapter 8 [Languages], page 83.

Usually, the global language is set via an `@' command in limbo, not on the command
line. However, one may need to use a command-line option such as `-L_' if a subsequent
command-line option is language-dependent. See, for example, the discussion of the option
`-D' in Section 4.2.11 [-D], page 18.

Chapter 4: RUNNING Fweb 23

4.2.25 `-l': Echo input line

The option `-l[mmm[:nnn]]' echoes the input lines constructed by the input driver be-
tween lines mmm and nnn. Missing nnn means echo to the end of �le. Missing mmm means
echo from the beginning.

This option is useful as a debugging tool (usually by the system developer). It is often
used to verify that the input driver is inserting semicolons correctly. For Fortran{77, it
is also useful to verify that comments are being processed correctly.

4.2.26 `-M': Set output message level

By default, Fweb is relatively verbose; as it proceeds, it prints messages about what
�les it is reading and writing, numbers of the starred sections, line numbers, etc. However,
di�erent levels of verbosity can be set by the command `-Mlevel', where the level may be 0
(least verbose) through 4 (most verbose; the default), as described in the following table:

0 Like level 1, but the start-up banner is not printed. If Fweb runs
to completion with no errors, nothing at all will be printed.

1 Print only error messages.

2 Print error and warning messages.

3 Print errors, warnings, and short information messages (excluding
starred section numbers and line numbers).

4 Print everything.

The start-up banner, which includes the version number, is printed for all message levels
except 0. For level 0, one can use the `-V' option to request the start-up banner. See
Section 4.2.63 [-V], page 32.

This option is very recent, and may not be fully debugged for obscure combinations of
command-line options. Please report any annoyances.

Another way of discriminating message types is via color output. See Section 12.3.7
[Color], page 117.

4.2.27 `-m': De�ne Fweb macro (Ftangle)

The command-line construction

-mA(x)=x

de�nes the Fweb macro A as though the de�nition

@m A(x) x

had appeared in the �rst de�nition part of the web �le.

One can also say `-m'A(x) x'', where the quotes are removed by the shell. That is, an
`=' appearing immediately after the macro name (or argument list, if there is one) plays the
role of the space in the conventional de�nition. Thus, carefully distinguish the forms

-m'A(x)=x' // A(x) expands to `x'
-m'A(x) =x' // A(x) expands to `=x'
-m'A(x)==x' // Precisely equivalent to the previous example.

The equals sign is permitted only with command-line macro de�nitions, not with `@m'
commands (see Section 5.5.16 [ATm], page 45) in the de�nition parts of the web �le.

Chapter 4: RUNNING Fweb 24

4.2.28 `-m4': Understand m4 built-in commands

This tells Fweave to properly format the reserved words of the m4 preprocessor. The use
of that preprocessor is not recommended in conjunction with Fweb; use Fweb's built-in
C-like preprocessor instead.

4.2.29 `-m;': Append pseudo-semicolons

When `-m;' is in e�ect, the construction `@;' is appended automatically to all Fweb
macro de�nitions.

This option is not recommended. Please insert the `@;' by hand when necessary, as in

@m SET(x,y) x=1; y=2@;
@m TEST(x) if(x) y; else z@;

4.2.30 `-n': Set global language to Fortran{77

This is Fweb's default, so it generally does not need to be used explicitly. (See also the
discussion of Section 4.2.24 [-L], page 22.) However, variants of this option, as described
below, may be useful.

See also Chapter 8 [Languages], page 83 and Section 8.2.3 [Fortran], page 85.

4.2.31 `-n9': Set global language to Fortran{90

See Chapter 8 [Languages], page 83 and Section 8.2.3 [Fortran], page 85; see also the
discussion of `-L' in Section 4.2.24 [-L], page 22.

4.2.32 `-n@;': Supply automatic pseudo-semicolons [Fortran]

(Don't forget that a semicolon has special meaning to unix shells, so you'll probably
have to quote this command: `-n'@;''.)

This is the default mode of operation for free-form Fortran-90; the input driver auto-
matically appends a pseudo-semicolon (invisible) to each logical line of source code. Since
it is the default, one doesn't have to use it unless one wishes to negate it (see Section 4.2.1
[Negating options], page 16). In that case, it is best to place the `--n@;' command in
the source �le, as `@n9[--n@;]'. If one places it on the command line, be sure to set the
language �rst: -n9 --n@;.

For free-format Fortran-90, when `-n@;' is in e�ect (the default), `-np' is also turned
on. See Section 4.2.37 [-np], page 26.

For further discussion, see the companion command Section 4.2.33 [-n;], page 24.

4.2.33 `-n;': Supply automatic semicolons [Fortran]

(Don't forget that a semicolon has special meaning to unix shells, so you'll probably
have to quote this command: `-n';''.)

This command functions the same as `-n@;' (see Section 4.2.32 [-nAT;], page 24, except
that actual (visible) semicolons rather than pseudo-semicolons are appended. This is the

Chapter 4: RUNNING Fweb 25

default mode of operation for Fortran-77 (and for that language, it cannot be turned o�
by negation).

The distinction between `-n@;' and `-n;' has to do with what is visible on output. In
Fortran-77, semicolons are not printed by default since that seemed to annoy many users.
However, that causes trouble with Fortran-90 code containing multiple statements per
line, as in

a = b; c = d

If `-np' is not used, then the semicolon in the above example is not printed, hindering
legibility. Thus, the default mode of operation for free-format Fortran-90 is `-n@;' and
`-np'. This turns the above example into `a = b; c = d@;' and displays it correctly.

When `-n;' is used, semicolons will not be printed by default. To force them to be
printed, use the `-np' option (see Section 4.2.37 [-np], page 26).

Do not insert semicolons by hand in Fortran-77; they are always inserted automatically.
If you have terminated Fortran-90 statements by hand, turn o� auto-semis by `-n;' (and
use `-np' at your discretion).

The following table summarizes the defaults for auto-semi insertion and semicolon print-
ing in Fortran, both �xed and free formats (`N/A' means `not applicable'):

Fixed Free
F77 `-n;' N/A
F90 `-n;' `-n@; -np'

4.2.34 `-n:': Put statement label on separate line [Fortran]

By default, in Fortran statement labels are placed on the same line, and backspaced
from, the command that is being labeled, as in

EXIT: continue

This can look ugly if the label is very long. The command `-n:' places the label on a
separate line, as is done automatically for Ratfor|e.g.,

EXIT:
continue

If neither of these options appeals to you, you could try rede�ning the macro \Wlbl,
found with some discussion in `fwebmac.web'. That macro is emitted only when `-n:' is
not used.

4.2.35 `-nb': Number ifs and dos [Fortran] (Fweave)

In the woven output, extra comments are added to help one correlate the block structure
of the code. For more discussion, see Section 4.2.7 [-b], page 17.

4.2.36 `-nC': Ignore single-line comments [Fortran]

Ignore, at the input-driver stage, comment lines beginning with `C', `c', or `*'.

Interpretation: In the usual mode of operation, the Fortran-77 input driver makes a
heroic attempt to mix the original single-line column-1 commenting style with the Fweb

Chapter 4: RUNNING Fweb 26

style (`/*...*/' and `//'). It converts single-line comments to the `/*...*/' style and
passes them along to the innards of the processors.

Problems sometimes arise when converting an existing Fortran code to Fweb. Such
codes may have very large blocks of code or documentation commented out with a `C' in
column 1. Special TEX characters in those comments can cause problems for Fweave;
sometimes Ftangle gets confused as well. The `-nC' option short-circuits these problems
by simply throwing all such lines away at the input driver stage.

This option is not a recommended long-term solution. Instead, consider the following:

� In Fweb, blocks of code should be commented out with the preproces-
sor commands @#if 0...@#endif; see Section 6.3 [Temporary comments],
page 61.

� Textual comments for documentation should be converted to the standard
Fweb commenting style.

� If one has a block of code prefaced by an extremely long comment, replace
that by a named module and put the comment into the TEX part of that
section.

4.2.37 `-np': Print semicolons [Fortran] (Fweave)

Although the Fortran input driver automatically terminates logical lines with semi-
colons (Fortran-77; see Section 4.2.33 [-n;], page 24) or pseudo-semicolons (Fortran-90;
see Section 4.2.32 [-nAT;], page 24) so that the innards of Fweave can process them cor-
rectly, the semicolons are not printed by default. To make actual semicolons be printed,
use the `-np' option.

`-np' is turned on automatically for free-format Fortran-90 when `-n@;' is in e�ect
(the default). For more discussion, see Section 4.2.33 [-n;], page 24.

4.2.38 `-n\': Free-form syntax continued by backslash

In Fortran{90, this turns on free-form syntax and sets the continuation character to
be the backslash (as it would be in C). For example,

-n9[-n\]
@
@a
program main
x = \
y

end

In the tangled output the backslash is converted into Fortran-90's standard continuation
character, the ampersand.

See also Section 4.2.39 [-n&], page 26.

4.2.39 `-n&': Free-form syntax continued by ampersand

In Fortran{90, this turns on free-form syntax and sets the continuation character to
be the ampersand. For example,

Chapter 4: RUNNING Fweb 27

-n9[-n&]
@
@a
program main
x = &
y

end

For Fortran-90, free-form syntax continued by the ampersand is Fweb's default, so
one probably will not need to use `-n&' explicitly.

See also Section 4.2.38 [-n\], page 26.

4.2.40 `-n/': Recognize short comments [Fortran]

The standard Fweb notation for a short comment (one terminated by the next newline)
is `// ...'. However, in Fortran the `//' denotes concatenation by default. To make
it denote a short comment, use the `-n/' option. One can do this in the `.fweb' �le (see
Chapter 12 [Customization], page 107) or with the language-setting command in limbo, as
in `@n/'.

In Fweb, one may always use `\/' for concatenation, so there's no penalty for using `-n/'.

4.2.41 `-n!': Make `!' denote short comment [Fortran]

In Fortran-90, `!' starts a short comment. However, by default Fweb usurps `!' for
the logical not, as in `if(x != y)'. To force it to recognize `!' as a comment, use `-n!'.
However, the recommended style is to use Fweb's standard convention that `//' denotes
the start of a short comment (see Section 4.2.40 [-n/], page 27). See also Section 4.2.81 [-!],
page 37 and Section 4.2.56 [-r!], page 30.

In Fortran-77, to include the exclamation point inside a string, escape it with a back-
slash, as in

s = "A \! inside a string"

This possibly annoying restriction arises because the unduly complicated Fortran input
driver does some preprocessing of the Fortran source before it feeds it to the cores of the
processors.

4.2.42 `-n)': Reverse array indices [Fortran] (Ftangle)

This somewhat experimental
ag permits Fortran programmers to use C-style array
indices. Conversions such as the following are made (during the output phase of Ftangle):

a(k)(i) => a(i,k)
a(k)(i,j) => a(i,j,k)
a(k)(j)(i) => a(i,j,k)

[No spaces may intervene between `)' and `('; e�ectively, `)(' is treated as one token for
the purposes of `-n)'.] This feature permits convenient de�nitions of macros that deal with
multi-dimensional vectors.

Chapter 4: RUNNING Fweb 28

Unfortunately, Ftangle doesn't fully understand the syntax of the source code|and
never will, unless it is fully integrated with a compiler. It will therefore be confused by
situations like the following Fortran example:

dimension x(0:4)(1:2) // OK
character*90 ch(4) // OK
write(6,*) ((x(i)(j),i=1,2), j=3,4) // Will reverse incorrectly.
c = ch(4)(3:4) // Shouldn't reverse, but will.

One solution, due to Charles Karney, is to insert a space to prevent `)(' from being rec-
ognized as a single token. However, since ordinary white space is eaten on input, one
must resort to something like the following (`$UNQUOTE' is a built-in Fweb function; see
Section 7.2.3.64 [$UNQUOTE], page 78):

@m SP $UNQUOTE(' ')
@a
dimension x(0:4)(1:2)
character*90 ch(4)
write(6,*) SP ((x(i)(j),i=1,2), j=3,4)
c = ch(4)SP(3:4)

This option is controlled by the three style-�le parameters `paren.len', `paren.num',
and `paren.nest'. (See Section 12.3 [Style], page 112.) `paren.len' is the default number
of bytes to be allocated for each index; if an index is longer than this number, the current
length is increased by this number and storage is automatically reallocated. `paren.num'
is the maximum number of allowed indices; for example, when processing `a(i)(j)(k)',
`paren.num' is 3. `paren.nest' is the maximum parenthesis nesting level. In the example
`x(a(i)(j)(k))', `paren.nest' is 2. If either of the last two parameters is exceeded, a
message will be issued asking you to increase the appropriate value.

4.2.43 `-o': Don't overload operators

This option inhibits the operator-overloading feature invoked by the command `@v' (see
Section 10.2.3 [Overloading], page 101).

4.2.44 `-q': Don't translate Ratfor

(This option is obsolete.)

4.2.45 `-P': Select TEX processor

Say `-PT' or `-PL' to inform Fweave that its output will be processed by TEX or LaTEX,
respectively. Beginning with Version 1.50, the default processor is LaTeX (`-PL'). If you
always use TEX, it's easiest to put `-PT' into the `.fweb' initialization �le.

Please note that `-PT' is no longer supported; Fweb development is now based exclu-
sively on LaTEX.

4.2.46 `-p': Bu�er up a style-�le entry

This option speci�es a style-�le entry (see Section 12.3 [Style], page 112). Its argument
is exactly the same as a line that one may put into the local Fweb style �le. Thus,

Chapter 4: RUNNING Fweb 29

if in `fweb.sty' one would say `entry="value"', the form of the `-p' option would be
`-pentry='"value"''. (The single quotes are required on a unix system because the double
quotes have special signi�cance to the shell.)

This option can be used either in the `.fweb' initialization �le (see Section 12.2 [Initializa-
tion], page 108), to record style-�le entries that are common to all runs, or on the command
line, to override a local style-�le entry for a single run. This behavior is a consequence of
the following order of processing style parameters:

1. `-p' options in `.fweb';

2. entries in the local style �le `fweb.sty';

3. `-p' options on the command line.

4.2.47 `-r': Set global language to Ratfor{77

See Chapter 8 [Languages], page 83 and Chapter 9 [Ratfor], page 89. See also Sec-
tion 4.2.24 [-L], page 22.

4.2.48 `-r9': Set global language to Ratfor{90

See Chapter 8 [Languages], page 83 and Chapter 9 [Ratfor], page 89. See also Sec-
tion 4.2.24 [-L], page 22.

4.2.49 `-rg': Set goto parameters

This obscure option is used for con�guring Ratfor (and really should be a style-�le
parameter). (Discussion not �nished.)

4.2.50 `-rk': Suppress comments about Ratfor translation
(Ftangle)

By default, the Ratfor translator writes comments about what command it is trans-
lating. The `-rk' option suppresses those comments. Arguments to this option allows one
to suppress comments about only particular commands, according to the following list:

b | break
c | case
t | default
d | do
f | for
i | if
n | next
p | repeat, until
r | return
s | switch
h | where
w | while

For example, one can say `-rkrb' to suppress comments about the return and break state-
ments.

Chapter 4: RUNNING Fweb 30

4.2.51 `-rK': Write comments about Ratfor translation (Ftangle)

This is the negative of `-rk' (see Section 4.2.50 [-rk], page 29); it forces comments about
particular Ratfor commands.

4.2.52 `-r@;': Turn on auto-semi mode using pseudo-semis
[Ratfor]

Please don't use this option (it may not work). Insert semicolons by hand in your
Ratfor code, just as one does in C.

4.2.53 `-r;': Turn on auto-semi mode using actual semis [Ratfor]

Please don't use this option (it may not work). Insert semicolons by hand in your
Ratfor code, just as one does in C.

4.2.54 `-rb': Number ifs and dos [Ratfor]

In the woven output, extra comments are added to help one correlate the block structure
of the code. For more discussion, see Section 4.2.7 [-b], page 17.

4.2.55 `-r/': Recognize short comments [Ratfor]

The standard Fweb notation for a short comment is `// ...'. However, in Ratfor the
`//' denotes concatenation by default. To make it denote a short comment, use the `-r/'
option. For concatenation, use `\/'.

For an example, see Section 4.2.40 [-n/], page 27.

4.2.56 `-r!': Make `!' denote short comment [Ratfor]

See the corresponding discussion of `-!' in Section 4.2.81 [-!], page 37 and Section 4.2.41
[-n!], page 27.

In Fortran-77, to include the exclamation point inside a string, escape it with a back-
slash, as in

s = "A \! inside a string"

4.2.57 `-r)': Reverse array indices [Ratfor] (Ftangle)

See the corresponding discussion of `-n)' in Section 4.2.42 [-n)], page 27.

4.2.58 `-s': Print statistics

`-s' prints statistics about memory usage at the end of the run.

`-sm' prints statistics about memory usage at the end of the run, just as does `-s'; it
also prints information about dynamic memory allocations as they occur. `-smnnn' displays
allocations of nnn bytes or more; if nnn is missing, 10000 is assumed.

Chapter 4: RUNNING Fweb 31

4.2.59 `-T': Flag-setting options for Ftangle

This is a family of options that set miscellaneous
ags appropriate only for Ftangle.

4.2.59.1 `-TD': Permit processing of deferred macro de�nitions

Deferred macro de�nitions are `@m' (or, equivalently, `@#define') commands that appear
in the code part rather than the usual de�nition part. These de�nitions are evaluated during
the output (phase 2), and can cause confusion when used with the preprocessor commands,
which are evaluated during the input (phase 1). Because of this confusion, deferred macro
de�nitions are prohibited by default. To permit them, use the `-TD' option (then be prepared
to make some obscure programming errors).

4.2.59.2 `-Tb': Permit built-functions to be rede�ned

By default, built-in functions such as $IF (see Section 7.2.3 [Built-in functions], page 66)
may not be rede�ned by an @m command. To allow this extremely dangerous operation, use
the `-Tb' option.

4.2.59.3 `-Tm': Permit user macros to be rede�ned

By default, user macros may not be rede�ned by an @m command. To permit this, use the
`-Tm' option. Note that many functions described under Section 7.2.3 [Built-in functions],
page 66, such as $PI, are in fact implemented as macros.

4.2.59.4 `-Tv': Don't print header info

By default, Ftangle attempts to be helpful and writes some information about the
command line, input and change �les, etc. at the beginning of the output �le. This infor-
mation can be deleted by means of the `-Tv'
ag. [This is done automatically when the `-F'

ag (see Section 4.2.15 [-F], page 19) is in e�ect, since the header information includes a
time stamp that would defeat a successful �le comparison.]

4.2.59.5 `-T%': Don't retain trailing comments (TEX)

Unless the `-v' option is used, comments are generally deleted by Ftangle as it writes
the output �le. However, in the TEX language such deletions can change the behavior of the
output (by introducing extra spaces). Therefore, TEX comments that do not begin a line
are always retained unless the `-T%' option is used. This option has no e�ect for languages
other than TEX.

4.2.59.6 `-T#': Don't insert `#line' command after `@%'

If the `@%' command (see Section 5.8.3 [AT%], page 52) is used to comment out a line,
it eats the trailing newline. An undesirable consequence of this is that, if nothing is done,
the subsequent line numbering will be misunderstood by a debugger, at least until Fweb
inserts a `#line' command for some reason. To prevent this, Fweb inserts by default an
implicit `@#line' command (see Section 7.3 [Preprocessing], page 80) after each `@%' that

Chapter 4: RUNNING Fweb 32

begins a line. To prevent this from happening (possibly because the feature doesn't work
correctly, in which case you should report it; see Chapter 15 [Support], page 131), use the
`-T#' option.

4.2.60 `-t': Truncate identi�ers

The truncation option enables one to use a wider character set for identi�ers than the
language compiler will accept. The standard example is vanilla-
avored Fortran-77, which
doesn't allow the underscore. If one says ``-tn6{_}'', underscores will be removed from all
identi�ers, then the result will be truncated to length 6. If the truncation procedure results
in non-unique identi�ers, these are listed.

4.2.61 `-U': Convert reserved output tokens to lower case
(Ftangle)

Particularly during Ratfor expansion, certain tokens such as `DO' are output by Ftan-
gle in upper case. The `-U' option forces such tokens to be produced in lower case.

4.2.62 `-u': Unde�ne Fweb macro (Ftangle)

`-uA' unde�nes the Fweb macro `A' previously de�ned on the command line (or in
`.fweb') via `-m'.

CAUTION : This option can also unde�ne built-in functions such as $IF. Don't do that,
since built-ins can use other built-ins behind the scenes; unde�ning one can cause very
strange behavior.

4.2.63 `-V': Print Fweb version number

This
ag requests the startup banner, which includes the Fweb version number, to be
printed. This is usually done anyway, so it is only relevant when the message level is 0 (see
Section 4.2.26 [-M], page 23).

4.2.64 `-v': Make all comments verbatim (Ftangle)

By default, comments are not passed to the tangled output. With `-v', all comments
are included verbatim in the tangled output. Since there's generally no harm in this, one
might want to put this option into `.fweb' (see Section 12.2 [Initialization], page 108).

4.2.65 `-W': Flag-setting options for Fweave

This is a family of options that set miscellaneous
ags appropriate only for Fweave.
Options such as `-W[' and `-Wf' can be combined as `-W[f'.

4.2.65.1 `-W@': Set module warning
ag.

Fweave can check module names for the possible anomalous conditions of \never used"
or \multiple uses." These correspond to a module warning level, as in the following num-
bered list:

Chapter 4: RUNNING Fweb 33

1. Never used.

2. Multiple uses.

The module warning
ag is the bitwise OR of the desired warning levels; warning messages
are printed only when the relevant bits are turned on. By default, it is 1, so only messages
about never-used modules are printed. The `-W@
ag ' overrides the default. For example,
to get messages only about multiple uses, say `-W@2'; to get no messages, say `-W@0'. One
can put such an option into the `.fweb' initialization �le (see Section 12.2 [Initialization],
page 108).

Fweave will always complain about module names that are never de�ned.

4.2.65.2 `-W1': Cross-reference single-character identi�ers

By default, Fweb does not index uses of single-character identi�ers (following Knuth's
original design). (It does index their de�nitions.) To get complete cross-reference informa-
tion for single-character identi�ers, use the `-W1' option.

4.2.65.3 `-W[': Process bracketed array indices

This experimental option makes square brackets behave like parentheses in the context
of array indices.

In Fortran, Ftangle will just replace the brackets by parentheses. In C, the brackets
will be left alone.

Fweave, however, will typeset the indices according to the `fwebmac.sty' macro
`\WARRAY'. This macro takes one argument, which is just the array index or indices. (In
C, indexing like `a[i][j][k]' generates the argument `i,j,k'.) By default, `\WARRAY' just
surrounds its argument with brackets. However, the user may change its de�nition to get
special e�ects such as superscripted or subscripted indices. A simple example macro `\WSUB'
is provided in `fwebmac.sty'; one can say `\let\WARRAY\WSUB' in the limbo section to have
bracketed indices print as subscripts.

This feature may not work when the contents of the brackets are too complicated (so
that Fweave tries to typeset them by going in and out of math mode).

For more information, experts can see `fwebmac.web', command \WXA.

4.2.65.4 `-WH': Send additional arguments to the C preprocessor

When the `-H' option (see Section 4.2.17 [-H], page 20) is used, the C preprocessor is
invoked to scan include header �les for typedef's and class declarations. That is called with
a standard set of options. (Presently, gcc is actually called to invoke the preprocessor; it is
sent the options `-E', `-P', and `-I'.) Occasionally it may be necessary to send additional
options. Those can be speci�ed as the (string) argument to `-WH'. Thus, to de�ne two
macros to the preprocessor, one could say either of

-WH-Dtest1=1 -WH-Dtest2=2
-WH"-Dtest1=1 -Dtest2=2"

The �rst form shows that `-WH' accretes to earlier uses. The second form shows how to
handle embedded blanks (in a unix shell). Then, if one were programming in C, use of `-H'
would issue the system command

Chapter 4: RUNNING Fweb 34

gcc -E -P -Dtest1=1 -Dtest2=2

4.2.65.5 `-WdfFlmvw': Don't print various things in woven output

The printing of selected de�nition-part commands can be suppressed as follows:

-Wd | outer de�nitions (`@d' or `@D')
-Wf | format statements (`@f')
-WF | format statements (`@F')
-Wl | limbo text de�nitions (`@l')
-Wm | FWEB macro de�nitions (`@m' or `@M')
-Wv | operator overloads (`@v')
-Ww | identi�er overloads (`@w' or `@W')

When these options used, associated cross-referencing is suppressed as well.

4.2.66 `-w': Change name of macro package (Fweave)

The option `-w' means \Don't print `\input fwebmac.sty' as the �rst line of the `.tex'
output �le." The option `-wfname' means \Print `\input fname' as the �rst line." For
example, when working with REVTEX (see Section 10.1.3.2 [REVTeX], page 94), one needs
to say `-wrwebmac.sty'.

This option can be used for special e�ects when one is trying to obtain behavior di�er-
ent from that de�ned by Fweb's macro package `fwebmac.sty' (see Section 10.1.2 [fweb-
mac.sty], page 92). However, try to not do that. Please submit requests for such behavior
modi�cations to the developer; see Chapter 15 [Support], page 131.

4.2.67 `-x': Eliminate or reduce cross-reference information
(Fweave).

Cross-reference information (for Fweave) includes the Table of Contents ('c'), the Index
('i'), and the Module List ('m'). The option `-x' eliminates all of that information. The
option `-xletters' eliminates the piece of information corresponding to each letter in the list.
For example, `-xim' eliminates the Index and the Module List.

Another possibility is to say `-xu', which prevents cross-references from unnamed sections
(begun with `@a' or `@A') from appearing in the Index.

4.2.68 `-X': Print selected cross-reference information (Fweave)

When used with any of the arguments `cim', this option is the opposite of `-x'. See
Section 4.2.67 [-x], page 34.

The option `-XI' tells Fweave to write its index cross-references to a �le formatted for
input by the makeindex utility. This feature facilitates creation of a master index that
spans several individual web �les. For more discussion, see Section 11.2 [Using makeindex],
page 103.

The construction `-XI' stands alone; one may not mix the `I' with the list `cim'. Also,
this option is overridden by `-xi', which suppresses output of all index information.

Chapter 4: RUNNING Fweb 35

4.2.69 `-y': Allocate dynamic memory

This option changes the default size for a dynamically allocated memory bu�er. The
bu�ers are indicated by a one- or two-character abbreviation such as `op'. For example, the
option `-yop200' allocates 200 units for the `op' bu�er.

To query the default allocations, just say `-y'.

When Fweb runs out of space, it usually (but not always) issues a message telling one
which `-y' command to use in order to increase the allocations. (Someday it will reallocate
automatically.) One may wish to add some such options to the `.fweb' �le.

For a more detailed discussion of memory allocation and a menu of the various dynamic
arrays, see Section 12.2.2 [Memory allocation], page 108.

4.2.70 `-Z': Display default style-�le parameters

The information option `-Zabc' prints to the screen the default contents of the style-�le
parameters beginning with `abc'. Just `-Z' prints everything.

After printing the defaults, the `-p' options (see Section 4.2.46 [-p], page 28) and the
style �le `fweb.sty' are processed. If that processing has overridden any of the defaults,
the parameters are printed again, preceded by an asterisk.

To see only the parameters that have been modi�ed from the defaults, say `--Z'.

The `-Z' option behaves slightly di�erently for color escape sequences than for other
parameters; see Section 12.3.7 [Color], page 117.

4.2.71 `-z': Change name of style �le

The command `-znew.sty' changes the default style-�le name `fweb.sty' to `new.sty'.
The command `-z' (with no argument) means \Don't read any style �le."

Normally the style �le is read from the same directory in which the web source �le
resides (or from the path de�ned by the environment variable FWEB_STYLE_DIR). To force
fweb.sty to be read from the current directory, say `-z.'.

4.2.72 `-.': Don't recognize dot constants

If this command is used, the processors will not understand that constructions such as
`.LT.' are operators in Fortran or Ratfor. This command is useful if one is trying to
modernize the source code to use Fweb conventions such as `<' instead of `.LT.'.

4.2.73 `-\': Explicitly escape continued strings

In Fweb, long strings are continued with the backslash. Normally, the continuation of
the string must start in the �rst column of the next line; otherwise, spurious blanks will be
introduced. However, when the `-\' option is in e�ect, Fweb expects that the continuation
will also begin with the backslash, and it will ignore leading white space and the backslash.
(This feature was inspired by Fortran-90.) Thus, in the example

Chapter 4: RUNNING Fweb 36

"This is \
\continued";

the e�ective string is "This is continued" when `-\' is in e�ect.

Note that this option a�ects all strings in the source �le; one cannot mix and match.

4.2.74 `-(': Continue parenthesized strings with backslashes

This option is like `-\' (see Section 4.2.73 [-\], page 35), but it refers to certain strings
that are not normally quoted, such as the arguments of `ifelse' commands in m4.

4.2.75 `-:': Set starting automatic statement number

This option is useful for Fortran and Ratfor. Symbolic statement labels that are
de�ned with the `#:0' macro command (Section 7.2.2 [Tokens], page 65; Section 8.2.3 [For-
tran], page 85), as in `@m EXIT #:0', are incremented starting with the default of 90000. To
change this to, e.g., 789, say `-:789'.

4.2.76 `->': Redirect output (Ftangle)

This changes the name of Ftangle's output �le. If no name is given, output is redirected
to the terminal.

This command has no e�ect for Fweave.

Although the appearance of this command is highly intuitive, it may be hard to type
quickly. An equivalent command is `-=' (see Section 4.2.77 [-=], page 36).

4.2.77 `-=': Redirect output (Ftangle)

Equivalent to `->' (see Section 4.2.76 [->], page 36), and faster to type on many key-
boards.

4.2.78 `-#': Turn o� comments about line and section numbers
(Ftangle)

By default, tangled output includes comments about the line and section numbers cor-
responding to the current piece of code. To eliminate this clutter, say `-#'. (But note that
the line-number information is very useful for debugging in C and C++, as it enables the
debugger to display the source line in the web �le.)

In some cases, bugs in tangled output, particularly from Fortran, can be eliminated
by using `-#'. (But please report the bug anyway; Chapter 15 [Support], page 131.)

In some cases, it is useful to turn o� the line- and section-number information locally.
This can be done with the `@q' command. See Section 5.5.22 [ATq], page 48.

Chapter 4: RUNNING Fweb 37

4.2.79 `-+': Don't interpret compound assignment operators

Both Ratfor and Fortran attempt to translate the commands `++', `--', `+=', `-=',
`*=', and `/=' into code that behaves as their C/C++ counterparts. To turn this feature o�,
use `-+'.

Notice that in Fortran-90 `/=' is a token for \not equal," so if you want to use that
you must turn o� the compound assignment operators with use `-+'. However, a better
solution is to leave them turned on and use Fweb's standard `!=' token for \not equal."

See also Section 12.2.2.16 [-ylx], page 110.

4.2.80 `-/': Recognize short comments (Fortran & Ratfor)

If this command is not used with the Fortran-like languages, the `//' construction will
be interpreted as concatenation rather than as the beginning of a short comment.

Concatenation can be signi�ed with Fweb's token`\/', so no penalty is incurred for using
`-/'.

One way of invoking this option is with the global language command, such as `@n/'.
Another is to put the command into the initialization �le `.fweb'.

See also Section 4.2.40 [-n/], page 27 and Section 4.2.55 [-r/], page 30.

4.2.81 `-!': Make `!' denote short comment (Fortran & Ratfor)

This option is not recommended; use Fweb's standard `//' to begin short comments.

To include the exclamation point inside a string, escape it with a backslash, as in

s = "A \! inside a string"

4.2.82 Information options

Several of the command-line options can be used to elicit information about the initial
state of Fweb.

`-@' displays information about the control codes. See Section 4.2.4 [-AT],
page 16.

`-D' displays information about reserved words. See Section 4.2.11 [-D],
page 18.

`-y' displays default dynamic memory allocations. See Section 4.2.69 [-y],
page 35.

`-Z' displays default values of style-�le parameters. See Section 4.2.70 [-Z],
page 35.

The `-h' option reminds one about these information options; it also provides convenient
access to the GNU info browser. See Section 4.2.18 [-h], page 21.

Chapter 5: Fweb COMMANDS 38

5 Fweb COMMANDS

All Fweb commands begin with the character `@'. It is recommended that these begin
in column 1 if possible. This is required in some cases [e.g., the `@x', `@y', and `@z' in change
�les (see Section 3.3 [Change �les], page 13), or column-oriented Fortran-77 processing].

Some of these control codes may be used anywhere; others begin a new part of the
current section. (For a discussion of sections and parts, see Section 2.2 [Structure], page 5.)
For a quick summary of the control-code mappings and to see which codes begin new parts,
say `ftangle -@'. See Section 4.2.4 [-AT], page 16.

5.1 Debugging commands

Several commands provide localized versions of the `-1' and `-2' options related to
debugging of pretty-printing.

5.1.1 `@0': Turn o� debugging

This cancels the e�ect of a previous `@1' or `@2' (see Section 5.1.2 [AT1], page 38 and
Section 5.1.3 [AT2], page 38). The `@0' command should appear in a di�erent section from
the `@1' or `@2' commands.

5.1.2 `@1': Display irreducible scraps

This is a local version of the command-line option `-1' (see Section 4.2.2 [-1], page 16);
refer to that discussion for more information.

5.1.3 `@2': Display detailed reductions of the scraps

This is a local version of the command-line option `-2' (see Section 4.2.3 [-2], page 16);
refer to that discussion for more information.

5.2 Literal control characters

Several commands insert speci�c characters.

5.2.1 `@@': The character `@'

`@@' inserts the single character `@'.

Don't forget to double the `@' even inside strings. For example, the Fweb source line

puts("'@@' is represented by `@@@@'");

will be tangled to

puts("'@' is represented by `@@'");

Chapter 5: Fweb COMMANDS 39

5.2.2 `@|': Literal vertical bar, or optional line break

In the TEX (documentation) part of a section, `@|' inserts a vertical bar. This is useful
inside LaTEX verbatim environments. (A simple bar would signal a shift into code mode,
which is probably not what one wants.) For an example, see Section 5.12.4 [AT|], page 56.

In a code part, `@|' inserts an optional line break in an expression|e.g.,

`f(a,b,@|c+d,...)'.

This helps TEX to break the line at an appropriate place. If the line does not need to be
broken, the command does nothing. [Compare `@|' with `@\' (see Section 5.12.3 [ATbs],
page 56) and `@/' (see Section 5.12.2 [AT/], page 55), which always break the line.]

5.3 Beginning of section

Sections are begun by either `@*' or `@ '.

5.3.1 `@ ': Begin minor section

`@ ' begins a new minor (unstarred or unnamed) section that is not entered into the
Table of Contents. For example,

@ This is an example of a minor (unnamed) section. (No entry is made
in the Table of Contents.)

@a
main()
{}

5.3.2 `@*', `@*n': Begin major section

`@*' begins a new major (starred) section (of level 0). The command must be followed
by the name of the section (entry in the Table of Contents), followed by a period. (If a
period appears in the name itself, it must be protected by braces.)

The section name is also used as a running head on the output pages. To deal with the
possibility that the full name may be too long, the section name may be preceded by an
optional argument enclosed in brackets. If it is present, the optional argument is used as the
running head. (If a period appears as part of the optional argument, it must be protected
by braces.)

If `@*' is followed by a digit n, it begins a new major (sub)section of level n. This is also
entered into the Table of Contents. Thus, the complete syntax to begin a major section is

@*n [Short name]Full name.

For example,

@* MAIN PROGRAM. This begins a major section (of level 0).

@a
main()
{}

Chapter 5: Fweb COMMANDS 40

@*1 [Input routines\dots]A very long section name that essentially
means ``input routines.'' Now follow some subroutines.

@a
get_input()
{}

For LaTEX, the highest permissible major level is 2 (a subsubsection).

Section names can contain reasonably arbitrary TEX text, including font-changing com-
mands and other macros. However, it is necessary to understand that fragile commands
(in the sense of LaTEX) may not work because the section name is used in various contexts
(e.g., as a page header). If a macro in a section name doesn't work properly, try preceding
it with `\protect'.

Fweave converts `@*' commands to section numbers. For a discussion of section num-
bering, see Section 10.1.6 [Numbering], page 98.

5.4 Beginning of code part

The code part is begun by the appearance of either `@a' or `@< Module name @>='.

5.4.1 `@<': Begin module name

`@<' begins a module name, which has the form `@< TEX text @>'. (Module names inside
Fweb macro de�nitions begin with `@#', not `@<'.)

5.4.2 `@>': End module name

`@>' ends a module name, of the form `@< TEX text @>'.

Technically, `@>' is not a command; rather, it is a delimiter that terminates `@<'. An
unmatched `@>' is simply ignored (after a warning message is issued).

5.4.3 `@A': Begin code part of unnamed section

`@A' begins the code part of an unnamed section. For example,

@ In an unnamed section, the code part begins with `@a' or `@A'.
@A
main()
{}

For more discussion of the distinction between `@A' and `@a', see Section 5.4.4 [ATa],
page 40.

5.4.4 `@a': Begin code part of unnamed section, and mark

`@a' begins the code part of an unnamed section (just as does `@A'), and in addition
marks the next unreserved identi�er it �nds as de�ned in this section. Precisely,

Chapter 5: Fweb COMMANDS 41

`@a' == `@A@['

Originally, Fweb did not contain the `@A' command, so when the functionality of auto-
matically marking the next unreserved identi�er (see Section 5.7 [AT[], page 51) was added,
it was natural to add it to `@a'. A reasonable style of coding is to always use `@a' if you
don't know any better; if you sometime run into trouble, you can then change selected `@a's
to `@A's. For example, it is appropriate to use `@a' if one codes one function per section.
E.g.,

@c
@
@a
int
subrtn()
{}

Here the `@a' marks `subrtn' as de�ned in this section; if that identi�er is used elsewhere,
it will be subscripted with the section number. (To turn this feature o�, use `-f'; see
Section 4.2.16 [-f], page 20.) However, if a section contains an arbitrary code fragment, the
code part should probably begin with `@A'. E.g.,

@c
@
@A
x = y;

If one had used `@a' here, the x would have been marked as de�ned here, which is not what
one wants.

5.5 Control codes b{z

5.5.1 `@B': Suppress insertion of breakpoint command

This is for detailed debugging of Fweb codes. It inserts a left brace and suppresses
the insertion of a breakpoint command. See the discussion of `@b' in Section 5.5.2 [ATb],
page 41.

5.5.2 `@b': Insert a breakpoint command

(Discussion to be �nished. Useful only for very intimate debugging of Fweb codes. In
these days of safe sex, such intimacy may not be desirable.)

See also Section 5.5 [ATB], page 41.

5.5.3 `@c': Set language to C

The command `@c' is a shorthand for `@Lc'. For a discussion of language commands in
limbo, see Section 5.5.13 [ATL], page 45.

See Chapter 8 [Languages], page 83 and Section 8.2.1 [C], page 84.

Chapter 5: Fweb COMMANDS 42

5.5.4 `@c++': Set language to C++

The command `@c++' is a shorthand for `@Lc++'. For a discussion of language commands
in limbo, see Section 5.5.13 [ATL], page 45.

See Chapter 8 [Languages], page 83 and Section 8.2.2 [Cpp], page 85.

5.5.5 `@D': De�ne outer macro

This command begins the de�nition part.

`@D' de�nes an outer macro. For more discussion, see Section 7.1 [Outer macros], page 62.
For example, in C

@D A 1

will be tangled to the beginning of the output �le as `#define A 1'.

5.5.6 `@d': De�ne outer macro, and mark

This command begins the de�nition part.

`@d' de�nes an outer macro (just as `@D' does), and also marks the next identi�er as
de�ned in the present section. It is equivalent to

`@d' == `@D@['

(see Section 5.7 [AT[], page 51).

The distinction between `@d' and `@D' is analagous to the distinction between `@a' and
`@A'. See Section 5.4.4 [ATa], page 40.

5.5.7 `@E': Treat next identi�er as ordinary expression (Fweave)

For formatting purposes, treat the next identi�er as an ordinary expression.

This command is useful in pretty-printing certain kinds of macro constructions. Further
discussion is given in hunde�nedi [Macros and formatting], page hunde�nedi.

5.5.8 `@f': Format identi�er or module name

This command begins the de�nition part.

The construction

@f identifier old_identifier

makes Fweave treat identi�er like old identi�er. For example,

@f mytype int

says to treat the variable mytype just as int is treated (e.g., as a reserved word in C or
C++).

Traditionally, C programmers needed to use this command to format identi�ers that
were de�ned in #include �les. This annoying redundancy has now been eliminated by
means of the `-H' command, which tells Fweave to scan #include �les automatically. See
Section 4.2.17 [-H], page 20.

The old identi�er may be one of the following special names, which insert extra spaces
according to the positions of the underscores and behave as the part of speech indicated by
the base names:

Chapter 5: Fweb COMMANDS 43

$_BINOP_
$_COMMA_
$_EXPR
$_EXPR_
$EXPR_
$UNOP_

These are useful for dealing with certain macro constructions. For example,

@f PLUS $_BINOP_
@m PLUS +
@m ADD(x, y) ((x) PLUS (y))

Without the format command, the `ADD' macro will pretty-print without spaces before and
after the `PLUS'.

When the current language is TEX, the format command can be used to change a category
code according to the format

@f `TeXchar new_cat_code

Di�culties may ensue if one try to change the category code of `@' in this way; a fully
operational web for TEX is quite di�cult and has been neither accomplished nor attempted.

5.5.9 `@i': Include �le (unconditional)

If one says

@i test.hweb

the �le `test.hweb' is inserted at the present point of the web �le. By default, the current
directory is searched. Files can be included from other directories by means of the FWEB_

INCLUDES environment variable and/or the `-I' command-line option. See Section 12.1
[Environment variables], page 107 and Section 4.2.19 [-I], page 21.

In principle, the included �le may contain any fragment of source text. However, it is
best to make it a complete section (begun by `@*' or `@ ') if at all possible.

Unfortunately, the `@i' command cannot be commented out or conditionally included
by use of an Fweb preprocessor command. That is because `@i' is processed very early in
the parsing process. (Consider: `@i' could include TEX text, but the preprocessor is only
active in the de�nition and code parts.)

Include commands may be nested to a depth set by the option `-yid'. See Section 12.2.2.9
[-yid], page 109.

In the woven output, if a section comes from an include �le, the name of the include �le
is printed in square brackets as the �rst text of the TEX part. To inhibit printing of that
name, say

\def\WIF#1{}

in the limbo section. To change the way that name is formatted, rede�ne the macro
`\WIFfmt', whose single argument is the name of the include �le. (It is not called when
there is no current include �le.) The default de�nition is

\def\WIFfmt#1{[{\tt#1}]}

Chapter 5: Fweb COMMANDS 44

5.5.10 `@I': Include �le (conditional)

This command behaves like `@i' if the command-line option `-i' is not used. If it is used,
then the contents of the included �le is not printed in the woven output. See Section 4.2.20
[-i], page 21 and Section 4.2.21 [-i!], page 22.

5.5.11 `@K': Extract global RCS-like keyword

The construction `@K Keyword @>' accesses the value of a global RCS-like keyword. (For
more discussion of such keywords, see Section 5.5.31 [ATz], page 50.) The command is
treated di�erently by Ftangle and Fweave depending on its location in the source �le.

Fweave will expand the construction in the limbo section and TEX parts only. The
value is not surrounded by quotes. For example,

@z
$Id: test $
@x

@c

\def\ID{Id = \.{"@K Id @>"}}

@ \ID. This is a @K Id @>.

will expand into

@c

@ \ID. This is a test.

and when LaTEX is run the macro \ID will expand to `Id = \.{"Test"}'. The quotes are
not necessary in the macro de�nition; they are included only to emphasize that in this
(limbo) context the `@K' construction can e�ectively be put inside a string. This is possible
because the routine that copies the limbo section simply copies characters; it does not
tokenize anything.

Fweave does not expand `@K' constructions in the de�nition or code parts; it merely
gives them a symbolic representation.

Ftangle, on the other hand, expands `@K' constructions in the de�nition or code parts
(during input). The values are surrounded by quotes. (As usual, Ftangle ignores material
in the limbo section and TEX parts.)

For Ftangle, the built-in function `$KEYWORD' (see Section 7.2.3.30 [$KEYWORD],
page 72) behaves essentially as does `@K', except that it is expanded during output, not
input. Fweave does not expand `$KEYWORD'.

The command `@k' behaves as does `@K' except that it accesses local keywords, not global
ones. See Section 5.5.12 [ATk], page 44.

5.5.12 `@k': Access local RCS-like keyword

The construction `@k keyword' behaves as `@K' does (see Section 5.5.11 [ATK], page 44),
except it accesses local keywords (de�ned at the top of include �les).

Chapter 5: Fweb COMMANDS 45

5.5.13 `@L': Set language

`@Ll' sets the language to l, where l is one of `{c,c++,n,n9,r,r9,v,x}'. See Chapter 8
[Languages], page 83.

There are shorthand forms of this command for some languages; see `@c' (Section 5.5.3
[ATc], page 41), `@c++' (Section 5.5.4 [ATcpp], page 42), `@n' (Section 5.5.18 [ATn], page 47),
`@n9' (Section 5.5.19 [ATn9], page 47), `@r' (Section 5.5.24 [ATr], page 49), and `@r9' (Sec-
tion 5.5.25 [ATr9], page 49).

Generally, the global language should be set in the limbo section by means of `@L', `@c',
etc. rather on the command line by options such as `-L' or `-c'.

5.5.14 `@l': Specify limbo text

This command begins the de�nition part.

Limbo text is material that Fweave should output before the start of the �rst section.
For example,

@l "\\def\\A{abc}"

Note that `\\' stands for a backslash. In general, characters must be escaped just as in C
[so that one can include things like `\n' (newline) in the de�nitions].

Limbo text may also be typed directly into the limbo section; in that case, no escapes are
necessary since one is typing ordinary TEX text. Sometimes, however, the `@l' command
is useful for pedagogical purposes, as the limbo material can then be de�ned at the point
where the logical discussion is made.

5.5.15 `@M': De�ne Fweb macro

This command begins the de�nition part.

For a detailed discussion of Fweb macros, see Chapter 7 [Macros], page 62.

5.5.16 `@m': De�ne Fweb macro, and mark

This command begins the de�nition part.

`@m' de�nes an Fweb macro, and also marks the next identi�er as de�ned here. It is
equivalent to

`@m' == `@M@['

(see Section 5.7 [AT[], page 51).

For a detailed discussion of Fweb macros, see Chapter 7 [Macros], page 62.

The distinction between `@m' and `@M' is analagous to the distinction between `@a' and
`@A'. See Section 5.4.4 [ATa], page 40.

Chapter 5: Fweb COMMANDS 46

5.5.17 `@N': Turn on N mode

This command must appear before the code part. Generally, this means immediately
before `@a'. Do not use this command in limbo; use `@Lv' instead.

The N mode invokes language-independent behavior within the scope of a particular
language. The scoping rules are the same as for language changes; i.e., using `@N' within a
given section produces language-independent behavior for that section and for any modules
�rst referenced in that section.

Fundamentally, language-independent behavior essentially means a literal transcription
of the input to the output. For example, it inhibits blank compression by Ftangle and
tells Fweave to turn o� \pretty-printing" (instead, the output is printed in typewriter type
within a `\begin{verbatim}...\end{verbatim}' environment).

There are some subtleties with this mode (not to mention the likelihood of bugs):

1. Fweb macros and built-in functions will normally be expanded even in the N mode. To
inhibit expansion of a particular identi�er, place `@!' before the identi�er. For example,

@
@m A 1
@N
@a
@!A = A;

expands to `A = 1'.

2. Blank lines are signi�cant. The N mode is ended by the appearance of the `@*' or
`@ 'denoting the start of the next section. If that were preceded by one or more blank
lines, those would show up in both the tangled and woven output. They might or might
not be signi�cant in the tangled output, but they almost certainly will look ugly in the
woven output. To avoid this, use the command `@%%', which deletes the remainder of
the current line and all immediately following empty lines. For example,

@
@N
@a
x;@%%

@ Next section.

3. If the N mode is invoked from a compiler-like language such as Fortran, cross-
referencing of variables is done as usual. However, if the language is verbatim (which
turns on the N mode automatically), no cross-referencing is done. (Identi�ers are still
recognized according to Fweb's rules. Those rules as currently implemented may be
essentially meaningless for some languages; in the future, provision may be made for
generalizing these rules by the user.) To force an identi�er to be placed into the Index,
precede it by `@+'.

4. A module name must be within the scope of an `@N' the �rst time the name is seen, if
it is ever to be within such scope. Thus, the following does not work properly:

@ Consider the module @<Test@>. (Not yet within scope of \.{@N}.)

Chapter 5: Fweb COMMANDS 47

@N
@a
x;
@<Test@>@;
y;

What happens is that the N mode is not restored after the code-part use of `@<Test@>'.
This is a bug. There are very tricky design issues to be dealt with here.

5.5.18 `@n': Set language to Fortran{77

Fortran-77 is Fweb's default language, so this command is usually not strictly nec-
essary. However, it is good practice to include it, so a user looking at the web �le can tell
immediately what language it is supposed to process.

For more discussion of languages, see Section 5.5.13 [ATL], page 45 and Chapter 8
[Languages], page 83.

5.5.19 `@n9': Set language to Fortran{90

For more discussion of languages, see Section 5.5.13 [ATL], page 45 and Chapter 8
[Languages], page 83.

For hints about Fweb programming in Fortran, see Section 8.2.3 [Fortran], page 85.

5.5.20 `@O': Open output �le (global scope)

A statement of the form

@O new output �le name

changes the name of Ftangle's output �le. This change remains in e�ect for the duration
of the �le, or until another `@O' is encountered. (If that occurs, the previously open �le is
closed.)

This command is expanded during output, so it must appear in the code part.

For an example of using the `@O' command to produce both C header �les (`.h') and
source �les (`.c'), see the discussion in Section 7.1 [Outer macros], page 62.

To change the name of the output �le locally (for just the present section), see Sec-
tion 5.5.21 [ATo], page 47.

5.5.21 `@o': Open output �le (local scope)

This behaves like `@O', except that the new �le name is in e�ect only for the current
section. A subsequent `@o' issued in a di�erent section but for the same �le name accretes
material to the �le.

An annoying problem arises in C programming when `@o's are used to create multiple
source �les that are subsequently compiled under the control of a Makefile. Remember that
by default line-number information is written into the C �les. This means that a change in
the web �le code for one source �le can a�ect all of the others, because the line numbering
in the web �le changes. Therefore, a trivial change to the code for just one source �le can
cause all of the others to be recompiled.

Chapter 5: Fweb COMMANDS 48

As long as one desires debugging information relative to the original web �le, there is
really no solution to this problem; one needs the proper line information in each �le in
order to work with the debugger, so if line numbers change the sources must be recompiled.
One can, of course, turn o� the line numbering with the command-line option `-#' (see
Section 4.2.78 [-#], page 36), but then debugger statements will refer to the tangled C
code, which is undesirable. A better partial solution is to use `@q' (see Section 5.5.22 [ATq],
page 48) to turn o� the line numbering for output code that is currently stable. In the
following example, the code for each �le is put into a module, then the modules are output
in the unnamed section; it is assumed that the programmer is currently making changes to
the code for `file2.c':

@
@a
@q0
@o file1.c

@<File 1@>@;
@q1
@o file2.c

@<File 2@>@;
@q0
@o file3.c

@<File 3@>@;

For very large projects, another solution is to maintain multiple web source �les. To avoid
losing the substantial bene�ts of the automatic index, refer to the discussion in Section 11.3
[Merging indexes], page 105 to learn how to create a master index that contains information
about several web �les.

5.5.22 `@q': Turn o� module and line info locally

The command-line option `-#' (see Section 4.2.78 [-#], page 36) turns o� comments
about module and line numbers globally, for the entire code. However, in some cases one
wants to turn that o� in just a small block of code. One important example arises in
Fortran. Consider

@
@a

x = @<Some action@>

@
@<Some action@>=
y + z

This example will tangle to something like

x =
C* 1: *
*line 20 "test.web"

y + z
C* :1 *
*line 5 "test.web"

Chapter 5: Fweb COMMANDS 49

Unfortunately, the information comments have created invalid code that will not compile.

The `@q' command solves this problem by turning o� or on the information comments
locally. `@q0' turns them o�; `@q1' turns them on. Thus, if one rewrites the above example
as

@
@a
@q0

x = @<Some action@>
@q1

it will tangle to

x = y + z

as one desires.

For another use of the `@q' command, see Section 5.5.21 [ATo], page 47.

5.5.23 `@R': Treat next identi�er as integer-like reserved

word (Fweave)

For formatting purposes, treat the next identi�er as an integer-like reserved word.

This command is useful in pretty-printing certain kinds of macro constructions. Further
discussion is given in hunde�nedi [Macros and formatting], page hunde�nedi.

5.5.24 `@r': Set language to Ratfor{77

See Section 5.5.13 [ATL], page 45 and Chapter 8 [Languages], page 83.

5.5.25 `@r9': Set language to Ratfor{90

See Section 5.5.13 [ATL], page 45 and Chapter 8 [Languages], page 83.

5.5.26 `@u': Unde�ne outer macro

This command begins the de�nition part.

`@u' is the inverse of `@d'. For example, in C the command `@u A' tangles to `#undef A'.

5.5.27 `@v': Overload operator

This command begins the de�nition part.

`@v' is used to change the woven appearance of an operator. If one de�nes a new operator,
for example by a statement such as

interface operator(.BETA.)

in Fortran-90, one should also use an `@v' in the de�nition part|for example,

@v .BETA. "\\beta" +

For a detailed discussion of overloading (the output appearance of) operators, see Sec-
tion 10.2.3 [Overloading], page 101.

Chapter 5: Fweb COMMANDS 50

5.5.28 `@W': Overload identi�er

This command begins the de�nition part.

For a detailed discussion of overloading (the output appearance of) identi�ers, see Sec-
tion 10.2.3 [Overloading], page 101.

5.5.29 `@x': Terminate ignorable material, or begin material to be
changed

In a change �le, this command begins material to be changes; see Section 3.3 [Change
�les], page 13.

In web source �les, this command has a di�erent use; see the discussion of the `@z'
command (see Section 5.5.31 [ATz], page 50).

5.5.30 `@y': Begin change material

The `@y' command is permitted only in change �les. See Section 3.3 [Change �les],
page 13.

5.5.31 `@z': Begin ignorable material, or terminate change

Fweb �les may begin with the construction

@z
.
.
@x

where the `@z' occupies the very �rst two characters of the �le, and where the `@z' and `@x'
must begin in column 1. Material between the `@z' and `@x' is pure commentary and is
ignored by both processors, with one exception.

The exception is that an RCS-like line (RCS stands for \revision-control system") with
syntax

$Keyword: Text of Keyword $

(at least one blank after the colon, and at least one before the last dollar sign; unix users,
see `man ident') is parsed, and the text of the Keyword is made available to the control
codes `@K' (see Section 5.5.11 [ATK], page 44) and `@k' (see Section 5.5.12 [ATk], page 44)
as well as to Ftangle's built-in function $KEYWORD (see Section 7.2.3.30 [$KEYWORD],
page 72.

A distinction is made between keywords that are found in the ignorable commentary at
the beginning of the master web �le, which are called global keywords, and ones that are
found at the beginning of �les included via `@i', which are called local keywords.

The commands that access RCS-like keywords function as follows:

� `$KEYWORD(Keyword)' accesses a global keyword. It is a built-in function
that is expanded by Ftangle (during output) into the quoted character
string "Text of Keyword".

� `@K' and `@k' are expanded during input. `@K' accesses a global keyword,
whereas `@k' accesses a local keyword.

Chapter 5: Fweb COMMANDS 51

� In the limbo section or a TEX part, Fweave will expand `@K Keyword @>'
into Text of Keyword (without the surrounding quotes), and similarly for
`@k'. (The intention is that the expanded text can be used as bodies of
TEX macros.) Fweave will also print the values of global keywords at the
end of its output, whether or not they are referenced by `@K'.

� Elsewhere Fweave will just print the keyword name itself, surrounded by
double angle brackets. If the keyword was local (`@k'), the brackets will
carry the subscript 0.

� Ftangle treats the global command `@K Keyword @>' essentially like it
does `$Keyword', except that the construction is expanded on input rather
than output.

� Ftangle expands the command `@k keyword @>' on input, generating a
quoted string containing the value of the local keyword.

The command `@z' is also used in change �les to end a change. See Section 3.3 [Change
�les], page 13.

5.6 Conversion to ASCII

Several commands are useful for generating machine-independent code. For example,
Fweb works internally with the ASCII character set, so uses these commands heavily to
convert from the possibly non-ASCII native character set of the machine on which Fweb
is running.

5.6.1 `@'': Convert character to ASCII

The construction `@'c'' converts `c' to its ASCII value. In C and C++, it is converted
to octal; for example, `@'A'' is output as `0101'. In Fortran and Ratfor, it is converted
to decimal; the previous example would be output as `65'.

If the native character set of one's machine is ASCII, the conversion will not be done
unless the `-A' command-line option is used. See Section 4.2.5 [-A], page 17.

5.6.2 `@"': Convert string to ASCII

The construction `@"abc"' converts the enclosed string to its ASCII representation. For
example, in C and C++ `@"abc"' will be output as `"\141\142\143"'.

In Fortran and Ratfor, no such simple mechanism exists in the language, so a func-
tion call is issued. For example, the previous example would be output as `ASCIIstr('abc')'.
The user is responsible for de�ning the function `ASCIIstr'. The name of this function can
be changed by the style-�le entry `ASCII_fcn'. See Section 12.3.8.1 [ASCII fcn], page 118.

If the native character set of one's machine is ASCII, the conversion will not be done
unless the `-A' command-line option is used. See Section 4.2.5 [-A], page 17.

5.7 Forward referencing

Chapter 5: Fweb COMMANDS 52

5.7.1 `@[': Mark as de�ned

This command marks the next (non-reserved) identi�er that appears after the `@[' as
being de�ned in the current section. It is usually issued automatically; for example, `@a' is
equivalent to `@A@[', `@d' is equivalent to `@D@[', and `@m' is equivalent to `@M@['.

If the appropriate style-�le parameter mark_defined.??? is 1, this command causes any
appearance of the identi�er to be subscripted with a section number. For more information,
see Section 12.3.4 [Subscript params], page 114.

The utility of this command can be seen from the characteristic construction

@ This is section 5.
@a @% Issues an implicit @[, which marks |test| as defined in section 5.

subroutine test
...
end

@ This is section 6.
@a

program main
call test // This will print as $|test|_5$.
end

The `@[' command should be distinguished from `@_' (see Section 5.10 [AT], page 54).
The latter causes the index entry for the identi�er to be underlined; the former possibly
causes the identi�er to be subscripted by a section number. One may wish to turn o� the
subscripts because they become too cluttered; however, the underlined index entries remain
useful and unobtrusive.

5.8 Comments

Fweb supports a variety of commenting styles borrowed from C, C++, and TEX. For
more discussion, see Chapter 6 [Comments], page 60.

5.8.1 `@/*': Begin long verbatim comment

The following comment is copied to the tangled output. (By default, comments are not
copied.) If you desire all comments to be so copied, use `-v'. See Section 4.2.64 [-v], page 32.

5.8.2 `@//': Begin short verbatim comment

See the discussion of `@/*' in Section 5.8.2 [AT//], page 52.

5.8.3 `@%': Ignorable comment

If any line in a web source code contains the command `@%', all remaining material on
that line (to and including the newline character) is ignored by the input driver and never
processed at all.

Chapter 5: Fweb COMMANDS 53

A stronger form of this command is `@%%'. This deletes the current line as well any empty
lines that immediately follow. This command is particularly useful when the N mode is in
e�ect. See Section 5.5.17 [ATN], page 46.

Line-numbering problems can arise when these commands are used. For a discussion,
see Section 4.2.59.6 [-T#], page 31.

5.8.4 `@?': Begin compiler directive

The remainder of the line is processed as a compiler directive. Optional material may be
inserted automatically at the beginning of the tangled output line by means of the style-�le
option cdir_start. See Section 12.3.8 [Miscellaneous params], page 118.

5.8.5 `@(': Begin meta-comment

Material between `@(' and `@)' is treated in the N mode. For example,

@(
Comment 1
Comment 2
@)

Style-�le parameters allow optional material to be insert at the beginning and end of
the meta-comment, and at the beginning of each line of output. For more information, see
the style-�le parameters beginning with `meta' (see Section 12.3.8 [Miscellaneous params],
page 118).

5.8.6 `@)': End meta-comment

See the discussion of `@(', Section 5.8.5 [ATlp], page 53.

5.9 Special left brace

The command `@{' is useful in C/C++ programming to beautify some of the pretty-
printing. It translates into a left brace, but also suppresses the automatic insertion of
newlines into the subsequent function body or block. This is desirable for very short func-
tions, such as simple constructors in C++. For example,

class C
{
private:

int i;

public:
C(int i0) @{i = i0;}

}

Here the function will be typeset as

C(int i0)
{ i = i0; }

rather than the default

Chapter 5: Fweb COMMANDS 54

C(int i0)
{
i = i0;
}

5.10 Index entries

Although most information for the Index is gathered automatically, in some situations
it must be done by hand.

5.10.1 `@_': Force index entry to be underlined

This command applies to the next identi�er that appears after the `@_'. The index entry
for that identi�er will be underlined. (By convention, this means `de�ned' or `declared'.)

This command is usually issued automatically. For example, the index entries for the
variables `i' and `j' in the C statement `int i, j;' will be underlined, since Fweave un-
derstands enough of the syntax to know that variables are being de�ned. Macro de�nitions
(begun by `@D' or `@M') will also be underlined automatically.

5.10.2 `@-': Delete index entry

This command applies to the next identi�er that appears after the `@-'; it prevents an
index entry associated with that identi�er from being made. This might be useful when the
N mode is in e�ect.

5.10.3 `@+': Force index entry

This command applies to the next identi�er that appears after the `@+'; it forces an
index entry for that identi�er. It is particularly useful when the language is verbatim,
since cross-referencing is turned o� in that case.

5.10.4 `@^': Make index entry (Roman type)

To insert one's own index entry in Roman type, say `@^My entry@>'.

5.10.5 `@.': Make index entry (typewriter type)

To insert one's own index entry in typewriter type, say `@.My entry@>'.

5.10.6 `@9': Make index entry (user-de�ned format)

The construction `@9Text@>' is used to create an index entry in a format de�ned by the
user. It is associated with the macro \9, which will be called during TEX's processing of
the Index as \9{Text}. The user must de�ne \9 according to the format

\def\9#1{...}

where argument `#1' is the text between `@9' and `@>'. For example, to print that text in a
sans serif font, say

\def\9#1{{\sf #1}}

(Note the extra level of braces to prevent the font command from propagating.)

Chapter 5: Fweb COMMANDS 55

5.11 Control text

Control text is material terminated by `@>'; it must be all on one line and must not
contain any `@'s.

5.11.1 `@t': Put control text into a TEX \hbox (Fweave)

When Fweave sees the command `@tcontrol text@>', it packages the control text into
an \hbox and ships it to the output. This command is ignored by Ftangle.

5.11.2 `@=': Pass control text verbatim to the output

For Ftangle, the command `@=control text@>' sends the control text to the output
exactly as input. Fweave highlights the control text by drawing a box around it.

5.12 Spacing

The spacing commands are used to re�ne Fweave's pretty-printed output. Generally
it's not necessary to bother with these until one is putting the �nal touches on a code.

5.12.1 `@,': Insert a thin space

Extra spacings are sometimes necessary when working with unusual macro constructions.
`@,' inserts a thin space, analogous to TEX's \,.

An example where explicit spacing would be necessary is as follows:

@c
@
@m OP +
@m A(x,y) x @, OP @, y

@a
z = A(a, b);

Without the `@,''s, the body of the A macro will weave as the unappealing `xOPy'. This
occurs because although OP is de�ned to be a binary operator, Fweave thinks of it as just a
mere expression, and one of its fundamental production rules is to concatenate expressions
with no intervening expressions.

This demonstrates that situations arise in which one needs to override Fweave's default
processing. But for the above example, there is actually a better solution. Instead of using
the `@,''s, include the format command `@f OP $_BINOP_'. See Section 5.5.8 [ATf], page 42.

5.12.2 `@/': Force a line break, preserving indentation.

This command is used to override Fweave's natural inclinations. For example, if one
wants each piece of a declaration to appear on a separate line, one can say

int@/
i,@/
j,@/

Chapter 5: Fweb COMMANDS 56

k;

This command preserves the natural indentation that would have happened if Fweave
or LaTEX had broken a long line spontaneously. Thus, the declared variables are indented
in the above example. To remove that indent, use `@\' instead. See Section 5.12.3 [ATbs],
page 56.

Try to use the line-break commands sparingly|i.e., let Fweave do the work. Often, if
lines run together in an unexpected or unreadable way, it's because Fweave wasn't able to
parse the relevant block of code, perhaps because it didn't understand that some variable
in an include �le has a special meaning. In such cases, trying to �x things with `@/' is the
wrong solution. Either use `@f' (see Section 5.5.8 [ATf], page 42) or `-H' (see Section 4.2.17
[-H], page 20).

Distinguish the `@/' command from `@|' (see Section 5.2.2 [AT|], page 39), which inserts
an optional breakpoint into an expression.

5.12.3 `@\': Force a line break, then indent

The `@\' command behaves like `@/' (see Section 5.12.2 [AT/], page 55), except that it
backspaces one notch after the line break. This usually has the e�ect of undoing the natural
indentation that would have been inserted had a long line been spontaneously broken. One
common case where the `@\' command might be used would be to put the return type of a
C function on a separate line:

int @\
main()
{}

It would be nice to have Fweave do that automatically. Unfortunately, the syntax of a
function isn't recognized until the opening braces are sensed; by that time, the declaration
part of the statement has already been processed. This is one example of the fact that the
Fweb processors are much less intelligent and sophisticated than language compilers. A
clever (and simple) idea for getting around this kind of problem is lacking at this point.

5.12.4 `@|': Literal vertical bar, or optional line break

In the TEX (documentation) part of a section, `@|' inserts a vertical bar. Here's a LaTEX
example:

\begin{verbatim}
The constructions @|x@| and |x| are very different.

\end{verbatim}

You might wish to try this out to see what Fweave produces.

In a code part, `@|' inserts an optional line break in an expression.

5.12.5 `@#': Blank line

`@#' forces a line break with some extra vertical white space. However, note that blank
lines in the source are signi�cant, so this command should seldom if ever be necessary.

if `@#' is immediately followed by a letter (e.g., `@#if'), it is assumed that a preprocessor
command is beginning. See Section 7.3 [Preprocessing], page 80.

Chapter 5: Fweb COMMANDS 57

5.12.6 `@~': Cancel line break

`@~' is analogous to TEX's `~' (tie); it prevents a line break, which Fweave usually
inserts after each complete statement it recognizes. For example,

printf("Working..."); @~ fflush(stdout);
x = y; @~ break;

5.12.7 `@&': Join items

During Fweave's output, `@&' joins the items to either side with no spaces or line breaks
inbetween.

This command must be distinguished from the preprocessor construction ## (paste to-
kens together). In a macro de�nition, `a##bc' creates the single identi�er `abc'. If one said
`a@&bc', two identi�ers would be output with no spaces separating them. In simple cases,
the results may look identical, but consider how things would di�er if abc were itself an
Fweb macro that should itself be expanded.

5.13 Pseudo (invisible) operators

Pseudo- or invisible operators are ignored by Ftangle and not printed by Fweave;
however, they retain grammatical signi�cance that helps out Fweave in its attempts to
understand the syntax.

5.13.1 `@e': Pseudo-expression

`@e' is an invisible expression (`pseudo-expression') (see Section 10.2.1 [Pseudo-operators],
page 101). It is sometimes useful in situations where Fweave's pretty-printing has broken
down because it didn't properly understand the language syntax. If, for example, Fweave
failed to properly parse the C statement

p = (int (*))q;

one might get things to work properly by saying

p = (int (*@e))q;

In this particular case, one is patching up a de�ciency (all right, a bug) in Fweave's
\production rules." (This particular bug may no longer exist.) However, there are other
situations in which the use of `@e' might be necessary. Consider, for example, the C macro
de�nition

#define A(x) = x

Here the replacement text of the macro is `= x', which by itself is not a valid construction
in C. When the `-1' or `-2' options are used, Fweave will report an \irreducible scrap
sequence" in this situation (although it may typeset it correctly anyway). To eliminate the
warning message, say instead

#define A(x) @e = x

Now the fragment `@e = x' is interpreted as a valid expression.

Chapter 5: Fweb COMMANDS 58

5.13.2 `@;': Pseudo-semicolon

`@;' is an invisible semicolon. These are often used in C programming to terminate a
module name that expands to a compound statement. Carefully compare the uses of `@;'
and `;' in the following example:

@c
@a
if(flag)

@<Compound statement@>@;
else

@<Simple statement@>;

@ This compound statement ends with a brace, but is used as an
expression above.
@<Com...@>=

{
x;
y;
}

@ This fragment does not end with a semicolon, so one must be
supplied above.

@<Sim...@>=
z

Here is a case for which the pseudo-semicolon is not necessary. Consider

@c
@ The code fragment |x = y| ...

If the `-1' is turned on, one might think that Fweave would report an \irreducible scrap
sequence" because `x = y' is an expression but not a complete statement. (Turning on `-2'
demonstrates this.) However, it is not necessary to say `|x = y@;|' because the warning
message is not issued if the parsing reduces to just one unresolved scrap.

On the other hand, `|goto done|' does not reduce to just one unresolved scrap, so say
`|goto done@;|' in cases such as this. See Section 10.2.1 [Pseudo-operators], page 101.

In some situations, pseudo-semicolons are inserted automatically. An important case is
free-format Fortran-90. There the language syntax says that newlines terminate state-
ments (except when there's a trailing ampersand). However, newlines are thrown away
before tokenized text is seen by Fweave's parser (and in any event would just be in-
terpreted as white space). Therefore, by default newlines that terminate statements are
replaced by pseudo-semicolons, so the parsing proceeds correctly.

In the Fortran-90 case, one could also insert pseudo-semicolons or actual semicolons
by hand, and some users prefer that. The possibilities are controlled by the options `-n@;'
(see Section 4.2.32 [-nAT;], page 24) and `-n;' (see Section 4.2.33 [-n;], page 24).

Chapter 5: Fweb COMMANDS 59

5.13.3 `@:': Pseudo-colon

`@:' is an invisible colon (see Section 10.2.1 [Pseudo-operators], page 101). It can be
helpful in formatting certain C constructions correctly. For example, if one has a named
module de�ned as

@<Cases@>=
case 1:
case 2:
case 3@: @;

then one can use it as a case construction followed by the usual colon, as in

switch(c)
{

@<Cases@>:
stuff;
break;
}

5.14 Miscellaneous commands

5.14.1 `@!': Inhibit macro expansion

Fweb macros and built-in functions are always expanded by default. This may not
be desirable, particularly in the N mode. To inhibit expansion of an individual identi�er,
preface it by `@!'.

Chapter 6: COMMENTING STYLES 60

6 COMMENTING STYLES

Fweb allows a variety of commenting styles. The visible comments are in the font
\cmntfont, which defaults to \mainfont, a ten-point Roman font.

6.1 Invisible comments

@z...@x If a source or include �le begins with `@z' (in the very �rst two characters of the
�le), then all material is skipped until and including a line beginning in column
1 with `@x' [except that lines of the form `$Keyword: text of keyword $' are
processed; see Section 7.2.3.30 [$KEYWORD], page 72, Section 5.5.11 [ATK],
page 44 (source �les), or Section 5.5.12 [ATk], page 44 (include �les)].

@% All material until and including the next newline is completely ignored.

@%% As `@%', but also skip blank lines that immediately follow the current line.

For example,

@z
Author: J. A. Krommes
@x
@c @% This sets the global language to C.
@* EXAMPLE.

6.2 Visible comments

`/* ... */' is a long comment (it may extend over several lines).

`// ...' is a short comment (terminated by the next newline).

`@(...@)' is a meta-comment. Meta-comments are a localized form of the N mode
(see Chapter 8 [Languages], page 83). Tangled meta-comments are begun by the con-
tents of the style-�le entry `meta.top' and terminated by `meta.bottom'. Each line of
the meta-comment is begun by `meta.prefix'. Woven meta-comments are begun by
`meta_code.begin' and ended by `meta_code.end'. See Section 12.3.8 [Miscellaneous
params], page 118.

@n
@a

program main
/* Get input. */

call get_input // Read the parameter file.
/* Process information. Comments like this

can be split over several lines. */
@(
Meta-comments provide a poor-person's alignment feature
i --- counter
x --- data value

@)
i = 1

Chapter 6: COMMENTING STYLES 61

x = 2.0
call exec(i,x)
end

The use of meta-comments is not recommended; they are only marginally supported.
Use ordinary long comments instead. Inside of them, use the various powerful features of
TEX or LaTEX (such as \halign or \begin{verbatim} ... \end{verbatim}) to format
your comment appropriately.

6.3 Temporary comments

During development, one frequently desires to temporarily comment out a section of
code. C programmers sometimes try to do this by enclosing the code in /*...*/, but
this is not good style for several reasons. First, it is impossible if the code itself includes
comments, since comments do not nest in C. Second, Fweave will treat the commented
code as TEX rather than C code and will (at best) format it very poorly. In fact, LaTEX
will frequently complain, because the commented code might contain characters such as
underscores that TEX expects to be in math mode. (Those are dealt with automatically
when Fweave is in code mode.) The trivial example `/* a_b; */' is su�cient to illustrate
this point.

The proper way of commenting out sections of code is to use preprocessor constructions:
#if 0...#endif in C, or more generally @#if 0...@#endif (usable in all languages). (The
Fweb preprocessor is described in Section 7.3 [Preprocessing], page 80.) With this method,
there is no trouble with nested comments, and Fweave will continue to format the code
as code, so the documentation will make sense.

For Fortran programmers converting an existing code to Fweb, the `-nC' option (see
Section 4.2.36 [-nC], page 25) may be helpful.

Chapter 7: MACROS and PREPROCESSING 62

7 MACROS and PREPROCESSING

Fweb o�ers a built-in preprocessor facility, especially useful for Fortran programmers.
It is closely patterned after the C/C++ preprocessor, but with some extensions such as
variable numbers of arguments. In addition, there are some built-in functions that provide
functionality that cannot be emulated by user-de�ned macros.

When working with a language such as C that has its own preprocessor, the question
arises when to use that and when to use Fweb's facilities. The answer generally comes with
experience. Remember that Fweb's macros have been expanded by the time the tangled
output �le is produced, whereas language-speci�c preprocessor commands are just passed
through to that �le.

If you're a Fortran programmer, strongly consider the use of Fweb's macro facilities;
they will simplify your present and future life by creating more legible codes and reducing
programming errors by eliminating redundant pieces of code. C/C++ programmers may
also appreciate the preprocessor extensions.

In addition to conventional macro processing, Fweb also o�ers the convenience of cer-
tain built-in functions that behave in many ways like macros. As a trivial example, the
value of � is available through the built-in function `$PI'. Built-in functions are described
in Section 7.2.3 [Built-in functions], page 66. They can be useful to programmers in all
languages.

Fweb recognizes two kinds of macros: outer macros, and WEB macros (inner macros).
Control codes associated with either of these kinds normally begin the de�nition part.
However, Fweb macros are sometimes allowed in the code part as well; see Section 7.2
[FWEB macros], page 63.

Macros are expanded by Ftangle only; Fweave merely prints them as they occur in
the source �le.

7.1 Outer macros

Outer macros provide a shorthand way of invoking macro de�nitions in the source lan-
guage; they are not expanded by Fweb. Outer macros are de�ned by `@d' (see Section 5.5.6
[ATd], page 42) or `@D' (see Section 5.5.5 [ATD], page 42). They may be placed in any de�-
nition part. Ftangle collects them during phase 1; during phase 2, they are simply copied
in order of their appearance to the beginning of the output �le. This is most useful for C
or C++ codes; it's a quick way of typing `#define' when the positioning of the `#define' is
unimportant.

As an example,

@c
@
@d YES 1
@d NO 0
@a
main()
{}

Chapter 7: MACROS and PREPROCESSING 63

@
@d BUF_LEN 100
@a
...

The keyword into which the `@d' is translated is language-dependent; it is controlled by
the style-�le parameter `outer_def'. See Section 12.3.8 [Miscellaneous params], page 118.

Outer macros can be unde�ned by `@u'. The translation is controlled by the style-�le
parameter `outer_undef'. See Section 12.3.8 [Miscellaneous params], page 118.

The default behavior, in which the outer macro de�nitions are just copied to the top
of the output �le, is �ne for simple applications. However, often C programmers prefer
to maintain their macro de�nitions in a header �le such as `test.h'. One way of accom-
plishing this is to redirect Ftangle's output from the command line, as in `ftangle test

-=test.h', then use an `@O' command immediately after the �rst `@a' in the web �le to open
up `test.c'. A more complicated variant of this allows additional information to be placed
into the header �le, as in the following example:

@c
@* INTRO.
We assume command-line redirection into \.{test.h} (`\.{-=test.h}').

@d A 1 // This will go into \.{test.h}.

@a
@<Header material@>@; // Also goes into \.{test.h}.
@O test.c // Remaining unnamed sections go into \.{test.c}.

@ Header material may be defined as needed throughout the code, but
with this design it will all go into \.{test.h}.

@<Header material@>=

@<Includes@>@;
@<Typedefs@>@;
@<Global variables@>@;

7.2 Fweb macros

Fweb macros (sometimes called inner macros) are de�ned by `@m' (see Section 5.5.16
[ATm], page 45) or `@M' (see Section 5.5.15 [ATM], page 45). These should normally be
placed in the de�nition part, as in

@n
@ Documentation...

@m CUBE(x) (x)**3

@a
z3 = CUBE(x) + CUBE(y)

Chapter 7: MACROS and PREPROCESSING 64

(the appearance of an `@m' in the documentation part begins the de�nition part). They
are collected during Ftangle's phase 1 and e�ectively placed at the top of the unnamed
section, so they are all known during the output in phase 2.

In unusual situations when macros are being conditionally de�ned and/or unde�ned,
the order of processing a macro de�nition becomes signi�cant. If the command-line option
`-TD' is used, then Fweb macros may be used in the code part as well; they are then called
deferred macros. These de�nitions will be processed during phase 2 in the order that the
code sections are processed, which may not be the same as the physical order in the source
�le.

The use of deferred macros is highly discouraged, for the following reason. Fweb macros
are often used in conjunction with the Fweb preprocessor commands. Preprocessor com-
mands are always processed during phase 1, so they do not interact properly with deferred
macros. It is for this reason that deferred macros are normally prohibited from appearing
in the code part.

7.2.1 Various features of Fweb macros

� Fundamentally, Fweb macros follow the syntax for ANSI C. There are also
a few extensions, notably the possibility of variable (optional) arguments
(see Section 7.2.1.1 [Variable arguments], page 64) and some additional
preprocessing tokens (see Section 7.2.2 [Tokens], page 65).

� Adjacent strings in macro text are automatically concatenated.

7.2.1.1 Fweb macros with variable arguments

An important extension to the ANSI-C syntax is to allow macros with variable (optional)
arguments. Fweb macros with a variable number of arguments are indicated by an ellipsis,
as in

@m VAR(x,y,z,...) text

The tokens `#0' (number of variable arguments), `#n' (value of the nth optional argument),
and `#.' (comma-delimited list of the optional arguments) are useful in this context.

7.2.1.2 Recursion

ANSI C does not permit recursive macros (for good reason). Thus, in the example

@m recurse recurse

the identi�er recurse simply expands as `recurse', not as an in�nite loop. However,
in Fweb recursion may be useful in conjunction with some of the built-in functions (see
Section 7.2.3 [Built-in functions], page 66). To permit a macro to be recursive, say `@m*'.

No formal support is provided for recursive macros! If they don't work, or suddenly stop
working in a new release, you're on your own!

7.2.1.3 Protecting macros against rede�nition

Normally an Fweb macro can be rede�ned at will. The example

Chapter 7: MACROS and PREPROCESSING 65

@m PI 3.14159
@m PI (-3)

is permissible, but probably not a good idea. If you want to ensure that a crucial macro
de�nition is never rede�ned inadvertently, say `@m!', as in

@m! PI 3.14159

That is called protecting the macro.

Fweb's built-in functions and macros (beginning with `$') are protected by default; see
Section 7.2.3.2 [Protection], page 67. To override that protection, use the command-line
options `-Tb' (Section 4.2.59.2 [-Tb], page 31; for built-in functions) or `-Tm' (Section 4.2.59.3
[-Tm], page 31; for macros).

7.2.2 Special tokens

The following special tokens may be used in the text of Fweb macro de�nitions:

7.2.2.1 ANSI C-compatible tokens

| Paste tokens on either side to form a new identi�er.
#parameter | Convert parameter to string (without expansion).

For example,

@m FORTRAN(type, name) type _##name()
@m TRACE(where) puts("At " #where)
@a
FORTRAN(int, fcalc); // Expands to `int _fcalc();'
TRACE(predictor); // Expands to `puts("At " "predictor");'

7.2.2.2 Extensions to ANSI C macro syntax

The most frequently used extensions are the following ones associated with variable
arguments: `#0', `#n', and `#.'. Fortran-77 users should also employ `#:0' to allow sym-
bolic rather than numeric statement labels. Try not to use the other extensions; they are
experimental, complicated, and unlikely to work in all situations.

In the following list, the forms `#{n}' and `#[n]' may not work correctly in complicated
situations. This is a design de�ciency that may be corrected someday.

#*param Like `#parameter', but pass a quoted string through unchanged.

#!param Don't expand argument.

#'param Convert parameter to a single-quoted string (no expansion).

#"param Convert parameter to a double-quoted string (no expansion).

#0 Number of variable arguments.

#n n-th variable argument, counting from 1.

#{0} Like `#0', but the argument may be a macro expression known at
run time.

#{n} Like `#n', but the argument may be a macro expression.

Chapter 7: MACROS and PREPROCESSING 66

#[0] The total number of arguments (�xed + variable). (The argument
inside the brackets may be a macro expression.)

#[n] The nth argument (including the �xed ones), counting from 1. (The
argument inside the brackets may be a macro expressions.

#. Comma-separated list of all variable arguments.

#:0 Unique statement number (expanded in phase 1).

#:nnn Unique statement number for each invocation of this macro (ex-
panded in phase 2).

#< Begin a module name.

#, Internal comma; doesn't delimit macro argument.

A few examples of the more important of these tokens are as follows:

@c
@m FPRINTF(fmt,...) fprintf(fp,fmt,#.)

// Use the whole list of variable args.
@m B(...) printf("There were %i arguments\n", #0)

// Use the number of var args.

@n
@
@m DONE #:0 // Symbolic statement label in Fortran.
@a

goto DONE
...

DONE:
call endup

7.2.3 Built-in functions

Built-in functions behave in most ways like macros. In some cases they actually are
macros, but other times they implement functions that a user could not de�ne. They all
begin with a dollar sign and are in upper case.

In using these built-ins, confusion may arise regarding the order of expansion of various
arguments. When they are implemented as macros, they are subject to the same ANSI-C
preprocessor rules as other Fweb macros, which is that all arguments are fully expanded
before generating the replacement text of the macro. When they are directly implemented
as a primitive function, however, that rule may not apply. For example, $IF expands only its
�rst argument during its �rst pass of processing; depending on the results of that expansion,
it then expands either its second or third argument, but not both.

The built-in function $DUMPDEF can be used to understand and debug the action of the
built-in functions. See Section 7.2.3.14 [$DUMPDEF], page 70.

In the original Fweb design, built-in functions began with an underscore. This usage
con
icts with the conventions for reserved words in ANSI C, and has been eliminated. All
Fweb built-ins now begin with a dollar sign.

No user-de�ned macro should begin with a dollar sign! It might interfere with the
functioning of some internal built-in function.

Chapter 7: MACROS and PREPROCESSING 67

7.2.3.1 Strings and quotes

Several of the built-in functions expect or return a string argument. Examples include
$STRING (see Section 7.2.3.58 [$STRING], page 77), $UNQUOTE (see Section 7.2.3.64 [$UN-
QUOTE], page 78), and $UNSTRING (see Section 7.2.3.65 [$UNSTRING], page 78). In
understanding the operation of those functions, it is important to understand just what a
string means in the Fweb context. As usual, it is a vector of characters. However, those
need not be delimited by quotes, although they may be. Internally, a string is represented
by the construction sqc...cqs, where s is a special string delimiter never seen by the user, q
is an optional quote character (either single or double quote depending on the language),
and c is an ordinary character. Whether or not the quotes are present, the string delimiters
inhibit macro expansion.

The di�erence between $UNQUOTE and $UNSTRING can now be stated as follows. Given a
quoted string such as "abc" (in C),

� `$UNQUOTE' removes the quote characters q, leaving sabcs (still a string).

� `$UNSTRING' removes both the quote characters q and the string delimiters s, leaving
abc (a collection of three characters). This collection is not tokenized; it does not
represent the single identi�er name abc (and therefore is not very useful). $UNSTRING
is primarily used internally.

The built-ins $P (see Section 7.2.3.46 [$P], page 76) and $PP (see Section 7.2.3.49 [$PP],
page 76), which both generate the preprocessor character `#', provide a good illustration
of the di�erences between $UNQUOTE and $UNSTRING. Consider Fortran as an example.
Essentially, $P is de�ned as `$UNQUOTE('#')', which is internally s#s. When this single-
character string is sent to the output, it is treated like any other expression and therefore
would appear in column 7 or greater even if the construction appeared at the very beginning
of the line. On the other hand, $PP is (essentially) de�ned as `$UNSTRING('#')', which is
internally the single character #. Because this character is not a string, the Fortran output
driver treats it as a special control character, de�ned in this case to force the character into
the �rst column.

7.2.3.2 Rede�ning built-in functions

By default, built-in functions are protected|that is, they may not be rede�ned by
an @m command. (To do so cavalierly invites many kinds of weird disasters.) If it is
absolutely necessary to rede�ne a built-in function, use the command-line option `-Tb' (see
Section 4.2.59.2 [-Tb], page 31).

Many of Fweb's \built-in functions" are in fact ordinary macros that are implemented in
terms of lower-level built-ins. An example is $POW (see Section 7.2.3.48 [$POW], page 76),
which is constructed from the built-in function $EVAL (see Section 7.2.3.17 [$EVAL],
page 70). By default, such macros are also protected against rede�nition; to override, use
the option `-Tm' (see Section 4.2.59.3 [-Tm], page 31).

Chapter 7: MACROS and PREPROCESSING 68

7.2.3.3 $A: Convert to ASCII

`$A(string)' is the built-in equivalent of `@'...'' or `@"..."'. (See Section 5.6 [ATquote],
page 51 and Section 5.6.2 [ATdquote], page 51.) Note the extra parentheses required by
the built-in.

$A �rst expands its argument, in case it is a macro de�ned as a string.

7.2.3.4 $ABS: Absolute value

`$ABS(expression)' returns the absolute value of the macro expression. It is a macro
implemented in terms of $IF and $EVAL.

7.2.3.5 $ASSERT: Assert a condition

`$ASSERT(expression)' evaluates the macro expression. If the expression is false, an error
message is printed and the run aborts.

This built-in is useful for ensuring that Fweb macros required by the code are properly
initialized. Because it is expanded during the output phase, it must appear in the code part
(not in the de�nition part).

7.2.3.6 $AUTHOR: Value of RCS global keyword Author

Equivalent to `$KEYWORD(Author)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.7 $COMMENT: Generate a comment

`$COMMENT'(string) generates a comment in the output �le.

This function is sometimes useful in conjunction with the processing of Fweb macros,
since ordinary comments are removed when macros are processed. For example, if one says

@c
@
@m M "abc" $COMMENT("Test")
@a
m = M

the tangled output will be `m= "abc"/* Test */'

7.2.3.8 $DATE: Today's date

`$DATE' generates a string consisting of the date in the form "August 16, 2001". It is
implemented as a macro that calls other macros and primitive functions.

7.2.3.9 $DATE_TIME: Value of RCS global keyword Date

Equivalent to `$KEYWORD(Date)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.10 $DAY: The day

`$DAY' generates a string consisting of the day of the week, such as "Monday". It is
implemented as a macro that calls other macros and primitive functions.

Chapter 7: MACROS and PREPROCESSING 69

7.2.3.11 $DECR: Decrement a macro

`$DECR(N)' rede�nes the numeric macro N to be one less than its previous value. (If N
does not simplify to a number, an error results.) In other words, in the language of C the
e�ect is to say `N--'.

The two-argument form `$DECR(N,m)' executes the equivalent of `N -= m'.

7.2.3.12 $DEFINE: Deferred macro de�nition

`$DEFINE' behaves like the Fweb macro command @m, but it is intended to appear in
the code part, not the de�nition part (so it is processed during output, not input). Thus,
the code fragment

a = A;
$DEFINE(A 1)@%
a = A;

tangles to

a= A;
a= 1;

(Notice how the `@%' command was used to kill an unwanted newline, analogous to the `dnl'
macro in m4.)

In the above example, one could also say `$DEFINE(A=1)'. To de�ne a macro with
arguments, say something like `$DEFINE(A(x)x*x)'. Do not say `$DEFINE(A(x)=x*x)', as
in this case the equals sign will be included in the macro expansion. One must use the
equals sign as a means of preventing parentheses from being interpreted as an argument in
examples like

$DEFINE(A=(x))

This expands to `(x)'.

A completely equivalent shorthand notation for $DEFINE is $M.

7.2.3.13 $DO: Macro do loop

`$DO(macro,imin,imax[,di]){...}' repetitively de�nes macro as would the Fortran

statement `do macro = imin,imax,di'. For example,

$DO(I,0,2)
{
a[I] = I;
}

generates the three statements

a[0] = 0;
a[1] = 1;
a[2] = 2;

In general, the macro name used as loop counter should not be explicitly de�ned as a
macro prior to the $DO. If it is not, it will remain unde�ned after the end of the iteration.

Instead of the delimiting braces, parentheses may be used. These may be useful to help
Fweave format certain constructions correctly.

Chapter 7: MACROS and PREPROCESSING 70

Nested delimiters are handled correctly. The delimiters are required even if only a single
statement is to expanded.

$DO is implemented in terms of a command $UNROLL. However, if one says something like
`$DUMPDEF($UNROLL(0,5,1))', Fweb will respond that $UNROLL is not an Fweb macro.
Rather, $UNROLL is processed like expandable commands in Ratfor such as while. This
implies that it cannot be rede�ned as ordinary macros or built-in functions can be.

7.2.3.14 $DUMPDEF: Dump macro de�nitions to the terminal

In the call `$DUMPDEF(m1, m2, ...)', m1, m2, and so on are macro calls (with arguments
if appropriate). Two lines of output are generated for each argument. Line 1 is the macro
de�nition; line 2 is its expansion using the provided arguments.

One can use this built-in to debug one's own macros, or to �nd out the secrets of Fweb's
built-ins. As an example, if one says

$DUMPDEF($EVAL(2^^4))@%

it responds with the two lines

$EVAL($0) = $$EVAL($0)
$EVAL(2**4) = 16

(The $n notation indicates the n-th argument of the macro.) If one replaces $EVAL with
$$EVAL in the above $DUMPDEF, it will respond

$$EVAL($0) = <built-in>
$$EVAL(2**4) = 16

The purpose of code such as `$EVAL($0) = $$EVAL($0)' is to ensure that the argument
of $EVAL is expanded if it contains macros; the primitive function $$EVAL does not do that
expansion automatically.

Names indicated as `<built-in>' by $DUMPDEF may be rede�ned as ordinary macros,
but this is in general a very bad idea; other parts of Fweb may mysteriously stop working.

7.2.3.15 $E: Base of the natural logarithms

The expression `$E' returns e, the base of the natural logarithms, to the default machine
precision. The expression `$E(iprec)' returns e to the decimal precision iprec (which must
be less than 50).

7.2.3.16 $ERROR: Send error message to output

`$ERROR(string)' prints an error message in Fweb's standard form.

7.2.3.17 $EVAL: Evaluate a macro expression

`$EVAL(expression)' uses Fweb's macro-expression evaluator (see Section 7.3 [Prepro-
cessing], page 80) to reduce the macro expression to its simplest form. An attempt to per-
form arithmetic on combinations of non-macro identi�ers and numbers generates a warning
message.

Chapter 7: MACROS and PREPROCESSING 71

7.2.3.18 $EXP: Exponential function

`$EXP(x)' returns ex.

7.2.3.19 $GETENV: Get value of environment variable

`$GETENV(name)' returns a string consisting of the current value of the environment
variable name. (Under VMS, logical names behave like environment variables.)

The argument to $GETENV need not be a string (double-quoted), but it may be if necessary
to avoid the expansion of a macro.

7.2.3.20 $HEADER: Value of RCS global keyword Header

Equivalent to `$KEYWORD(Header)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.21 $HOME: The user's home directory

`$HOME' is a convenience macro equivalent to `$GETENV(HOME)'.

7.2.3.22 $ID: Value of RCS global keyword Id

Equivalent to `$KEYWORD(Id)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.23 $IF: Two-way conditional

$IF is a primitive function (not a macro) that is the code-part version of `@#if'. The
syntax is

$IF(expr, action-if-true, action-if-false)

The expr is an Fweb macro expression that must reduce to 0 (false) or 1 (true). First that
argument is expanded. If it is true, action-if-true is expanded; otherwise action-if-false is
expanded.

There may be peculiarities with this and the other built-in $IF function having to do
with the order of expansion when the actions contain macros whose arguments themselves
are macros. Therefore, do not use them unless absolutely necessary.

Do not rede�ne $IF or any other built-in conditionals, as they are used internally to
Fweb.

7.2.3.24 $IFCASE: n-way conditional

This primitive built-in behaves like TEX's `\ifcase' command. The syntax is

$IFCASE(expr, case-0, case-1, ...,case-n-1, default)

If expr reduces to an integer between 0 and n-1, inclusively, the appropriate case is selected;
otherwise, the default case is selected.

As examples,

$IFCASE(2, zero, one, two, default) => `two'
$IFCASE(2, zero, one, three) => `three'
$IFCASE(2, zero, one) => `one'

Chapter 7: MACROS and PREPROCESSING 72

7.2.3.25 $IFDEF: Two-way conditional

This built-in primitive is the code-part version of `@#ifdef'. The syntax is

$IFDEF(macro, action-if-de�ned,action-if-not-de�ned)

7.2.3.26 $IFNDEF: Two-way conditional

This built-in primitive is the code-part version of `@#ifndef'. The syntax is `$IFNDEF(macro,
action-if-not-de�ned, action-if-de�ned)'.

7.2.3.27 $IFELSE: Two-way conditional

The syntax of this built-in primitive is `$IFELSE(expr1, expr2, action-if-equal, action-
if-not-equal)'. The expansions of expr1 and expr2 are compared on a byte-by-byte basis.
If they are equal, the �rst action is taken, otherwise the second action is taken.

For example,

$M(S="abc")@%
$IFELSE("abc", S, yes, no)

evaluates to `yes'.

7.2.3.28 $INCR: Increment a macro

`$INCR(N)' rede�nes the numeric macro N to be one greater than its previous value.
(If N does not simplify to a number, an error results.) In other words, in the language of
C the e�ect is to say `N++'.

The two-argument form `$INCR(N,m)' executes the equivalent of `N += m'.

7.2.3.29 $INPUT_LINE: Line number that begins current section

`$INPUT_LINE' is the number of the line in the web source �le that begins the cur-
rent section (not the source line in which the $INPUT_LINE command appears). Compare
$OUTPUT_LINE, Section 7.2.3.45 [$OUTPUT LINE], page 76.

7.2.3.30 $KEYWORD: Value of global RCS-like keyword

`$KEYWORD' provides a built-in function alternative to the use of `@K' in a code part. (see
Section 5.5.11 [ATK], page 44).

`$KEYWORD(Keyword)' extracts (as a character string) the text of an RCS-like keyword
de�ned in the ignorable commentary between `@z' and `@x' at the beginning of the web
source �le (see Section 5.5.31 [ATz], page 50). (RCS stands for \revision-control system.")
The general syntax is (unix users, see `man ident')

$Keyword: text of keyword $

For example,

@z
$Author: krommes $
@x

Chapter 7: MACROS and PREPROCESSING 73

@c
@
@a
char author[] = $KEYWORD(Author);

This tangles to

char author[] = "krommes";

In this example, `$Author' is one of the standard RCS keywords. However, any keyword
that �ts the syntax `$keyword: contents $' can be accessed by `$KEYWORD'. (At least one
blank is necessary before and after contents.) The argument of `$KEYWORD' need not be
quoted, but it may be. In either event, the output is a quoted string.

Keywords extracted from ignorable commentary at the beginning of a web �le are called
global and are known throughout the code. Distinguish these from local keywords extracted
from ignorable commentary at the beginning of an include (`@i') �le. Such keywords are
known only during the time that �le is being read and are accessible via `@k' (see Sec-
tion 5.5.12 [ATk], page 44).

For convenience, built-ins are de�ned for some standard RCS global keywords. These
are

$AUTHOR => $KEYWORD(Author)
$DATE_TIME => $KEYWORD(Date)
$HEADER => $KEYWORD(Header)
$ID => $KEYWORD(Id)
$LOCKER => $KEYWORD(Locker)
$NAME => $KEYWORD(Name)
$RCSFILE => $KEYWORD(RCSfile)
$REVISION => $KEYWORD(Revision)
$SOURCE => $KEYWORD(Source)
$STATE => $KEYWORD(State)

There are no such abbreviations for local keywords, because such abbreviations would be
expanded during output whereas it is necessary to recognize and expand the local keywords
during input. Presumably such local keywords will be used rarely, if at all.

7.2.3.31 $L: Change to lower case

`$L(string)' changes string to lower case. The argument is �rst expanded in case it is a
macro.

7.2.3.32 $L_KEYWORD: Value of local RCS-like keyword

For most purposes, `$L_KEYWORD' behaves as `@k' (see Section 5.5.12 [ATk], page 44). It
is still under development and should not be used yet.

`$L_KEYWORD("Keyword")' extracts (as a character string) the text of an RCS-like key-
word de�ned in the ignorable commentary between `@z' and `@x' at the beginning of a �le
included via `@i'. `$L_KEYWORD("local keyword")' is expanded during input, and the results
are known only during the time the include �le is being read.

Chapter 7: MACROS and PREPROCESSING 74

Note that the argument of `$L_KEYWORD' must be a quoted string. For more discussion of
the distinction between local and global keywords, please see Section 5.5.31 [ATz], page 50
and Section 7.2.3.30 [$KEYWORD], page 72.

It is expected that local keywords will rarely be used, as fundamental revision-control
information should presumably be extracted from the top of the master web �le.

7.2.3.33 $LANGUAGE: Identi�er for current language

This expands to an identi�er that denotes the current language, as follows:

Language $LANGUAGE
C $C
C++ $CPP
Fortran $N
Fortran-90 $N90
Ratfor $R
Ratfor-90 $R90
TeX $X
VERBATIM $V

Note that this outputs identi�ers, not Fweb macros. They are intended to be used in $IF

or $IFELSE statements such as

$IF($LANGUAGE==$C, C-text, other-text)

For multiway switches, the $LANGUAGE_NUM built-in is more useful; see Section 7.2.3.34
[$LANGUAGE NUM], page 74.

7.2.3.34 $LANGUAGE_NUM: Number of current language

`$LANGUAGE_NUM' expands to an integer that uniquely de�nes the current language, as
follows:

Language $LANGUAGE_NUM
C 0
C++ 1
Fortran 2
Fortran-90 3
Ratfor 4
Ratfor-90 5
TeX 6
VERBATIM 7

This built-in is useful in conjunction with an $IFCASE construction; see Section 7.2.3.24
[$IFCASE], page 71.

7.2.3.35 $LEN: Length of string

`$LEN(string)' returns the length of string in bytes. If string is not surrounded by
quotes, it is interpreted as if it were quoted (so it is not expanded if it is a macro). Thus,
in the example

Chapter 7: MACROS and PREPROCESSING 75

@m SS string
$LEN(SS)

the value returned is 2, not 5.

To expand the argument before taking the length, one can say something like

@m $XLEN(s) $LEN(s)

7.2.3.36 $LOCKER: Value of RCS global keyword Locker

Equivalent to `$KEYWORD(Locker)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.37 $LOG: Natural logarithm

`$LOG(x)' returns ln x.

7.2.3.38 $LOG10: Logarithm to the base 10

`$LOG10(x)' returns log10 x.

7.2.3.39 $M: De�ne a deferred macro

$M is equivalent to $DEFINE. See Section 7.2.3.12 [$DEFINE], page 69.

7.2.3.40 $MAX: Maximum of a list

`$MAX(x1,x2,...)' returns the maximum of the list of arguments. (There must be at
least one argument.)

7.2.3.41 $MIN: Minimum

`$MIN(x1,x2,...)' returns the minimum of the list of arguments. (There must be at
least one argument.)

7.2.3.42 $MODULE_NAME: Name of present web module

`$MODULE_NAME' returns the name of the present web module. If the present module is
unnamed, it returns the string "unnamed".

7.2.3.43 $MODULES: Total number of independent modules

`$MODULES' gives the total number of independent modules|that is, the number of in-
dependent module names, plus 1 for the unnamed module.

7.2.3.44 $NAME: Value of RCS global keyword Name

Equivalent to `$KEYWORD(Name)'. See Section 7.2.3.30 [$KEYWORD], page 72.

Chapter 7: MACROS and PREPROCESSING 76

7.2.3.45 $OUTPUT_LINE: Current line number of tangled output

This returns the current line number of the tangled output. Contrast this with $INPUT_

LINE, Section 7.2.3.29 [$INPUT LINE], page 72.

7.2.3.46 $P: The C preprocessor symbol

$P is (essentially) a synonym for `$UNQUOTE("#")' (see Section 7.2.3.64 [$UNQUOTE],
page 78). It is useful for constructing Fweb macro de�nitions that expand to C preprocessor
statements. For example,

@m CHECK(flag)
$P if(flag)

special code;
$P endif

Another version of the preprocessor symbol is $PP (see Section 7.2.3.49 [$PP], page 76).
For most purposes, $P and $PP will behave in exactly the same way. The di�erence between
them is that $P is treated as a string (without surrounding quotes), whereas $PP is treated
as a character. The character nature of $PP is used by Fortran to reset the column number
to 1, so C-like preprocessor commands appear there rather than in column 7.

For further discussion of strings and the di�erences between $P and $PP, see Sec-
tion 7.2.3.1 [Strings and quotes], page 67.

7.2.3.47 $PI: Pi

The expression `$PI' returns � to the default machine precision. The expression
`$PI(iprec)' returns � to the decimal precision iprec (which must be less than 50).

7.2.3.48 $POW: Exponentiation

`$POW(x,y)' generates xy. (It is a macro de�ned in terms of $EVAL (see Section 7.2.3.17
[$EVAL], page 70) and the exponentiation operator.)

7.2.3.49 $PP: The C preprocessor symbol

$PP is shorthand for `$UNSTRING($P)' (see Section 7.2.3.46 [$P], page 76), or (essen-
tially) a synonym for `$UNSTRING("#")' (see Section 7.2.3.65 [$UNSTRING], page 78). It
is useful, particularly in Fortran, for constructing Fweb macro de�nitions that expand
to C preprocessor statements. For an example, see Section 7.2.3.46 [$P], page 76. For a
detailed discussion of the di�erence between `$P' and `$PP', see Section 7.2.3.1 [Strings and
quotes], page 67.

7.2.3.50 $RCSFILE: Value of RCS global keyword $RCSfile

Equivalent to `$KEYWORD(RCSfile)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.51 $REVISION: Value of RCS global keyword Revision

Equivalent to `$KEYWORD(Revision)'. See Section 7.2.3.30 [$KEYWORD], page 72.

Chapter 7: MACROS and PREPROCESSING 77

7.2.3.52 $ROUTINE: Current function (Ratfor only)

When Ratfor is the current language, $ROUTINE expands to a string built of the name of
the current program, function, or subroutine. This function is not useful for other languages,
for which it expands to the null string.

7.2.3.53 $SECTION_NUM: Number of current Fweb section

`$SECTION_NUM' returns an integer greater than 0 that is the integer number of the
current web section. (This is not the LaTEX section number such as 3.4.)

7.2.3.54 $SECTIONS: Maximum section number

`$SECTIONS' is the maximum section number as understood by Fweave.

7.2.3.55 $SOURCE: Value of RCS global keyword Source

Equivalent to `$KEYWORD(Source)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.56 $SQRT: Square root

`$SQRT(x)' returns
p
x. It is a convenience macro de�ned in terms of $POW. See Sec-

tion 7.2.3.48 [$POW], page 76.

7.2.3.57 $STATE: Value of RCS global keyword State

Equivalent to `$KEYWORD(State)'. See Section 7.2.3.30 [$KEYWORD], page 72.

7.2.3.58 $STRING: Expand, then stringize

`$STRING(s)' expands its argument if it is a macro, then makes the expansion into a
quoted string. If the argument is already a quoted string, it is returned unchanged.

7.2.3.59 $STUB: Trap for missing module

When a missing module is detected, Ftangle inserts the command `$STUB(module name)'
into the output code. The built-in $STUB expands to a function call appropriate to the
current language. For example, in C it expands to `missing_mod', in Fortran it expands
to `call nomod'.

7.2.3.60 $TIME: The time

`$TIME' returns a string consisting of the local time in the form "19:59".

Chapter 7: MACROS and PREPROCESSING 78

7.2.3.61 $TRANSLIT: Transliteration

The macro `$TRANSLIT(s, from, to)' interprets each of its arguments as strings (without
expanding anything). Then s is modi�ed by replacing any of the characters found in from by
the corresponding characters in to. If to is shorter than from, then the excess characters in
from are deleted from s. As a limiting case, if to is empty, then all the characters in from are
deleted from s. For example, `$TRANSLIT(s, aeiou, 12345)' replaces the vowels in s by the
corresponding digits, and `$TRANSLIT(s, aeiou,)' deletes all the vowels. The backslash
may be used to escape a character, as in ANSI C. For example, `$TRANSLIT("a\\"\\\\d",
"d\\\\a\\"", "D,A'")' translates into `A',D'. Here one had to explicitly enclose strings
involving `\\"' in double quotes in order to avoid a complaint about an unterminated string.

7.2.3.62 $U: Change to upper case

`$U(string)' changes string to upper case.

7.2.3.63 $UNDEF: Unde�ne a macro

`$UNDEF(macro)' unde�nes an Fweb macro.

7.2.3.64 $UNQUOTE: Remove quotes from string

`$UNQUOTE(string)' returns string without its surrounding quotes. (However, the result-
ing construction is still treated as a string; no macro expansion is done.)

For a more detailed discussion and a comparison with $UNSTRING (see Section 7.2.3.65
[$UNSTRING], page 78), see Section 7.2.3.1 [Strings and quotes], page 67.

7.2.3.65 $UNSTRING: Convert string into characters

`$UNSTRING(string)' removes quotes from the string, if they are present, and treats the
result as a collection of characters. No tokenization is done, so macro expansion does not
operate on those characters.

For a more detailed discussion and a comparison with $UNQUOTE (see Section 7.2.3.64
[$UNQUOTE], page 78), see Section 7.2.3.1 [Strings and quotes], page 67.

7.2.3.66 $VERBATIM: (Obsolete)

This was an old name for $UNQUOTE (see Section 7.2.3.64 [$UNQUOTE], page 78). Please
remove all references to this macro from existing codes.

7.2.3.67 $VERSION: Present Fweb version number

`$VERSION' returns a string built out of the Fweb version number, such as "1.61".

Chapter 7: MACROS and PREPROCESSING 79

7.2.4 Debugging with macros

If an Fweb macro expands to more than one output line, debugging can be a bit confus-
ing if the debugger (e.g., gdb) displays lines in the web source �le instead of the output �le
(as it normally does for C and C++). While single-stepping through the code, the debugger
will incorrectly step the screen display for each output line even if the macro call occu-
pies just one line in the source �le. To localize the debugger's confusion, insert a `@#line'
command after the macro call. For example,

@c
@ Example of a macro that expands to several output lines.
@m UPDATE(i, delta_i)

i += delta_i;
store(i)@;

@a
main()
{
UPDATE(j, 5);
@#line
// More code. The debugger will be in sync from here on.
}

An alternative for highly confusing situations is to use the `-#' option (see Section 4.2.78
[-#], page 36).

Another potentially confusing situation occurs when `@%' is used to comment out a
line. Fweb deals with the line-number problem that arises here automatically; see Sec-
tion 4.2.59.6 [-T#], page 31.

Fweave makes a valiant attempt to pretty-print (see Section 10.2 [Pretty-printing],
page 100) the de�nitions of both outer macros and Fweb macros in a reasonable way.
However, this can be a formidable task, because macro syntax can be essentially arbitrary.
Consider, for example, the following de�nition:

@c
@d GET(type) type get_##type()
@a
GET(int){}@; // Expands into `int get_int(){}'.

The problem is that the identi�er `type' is used in two di�erent ways: as the type of
a reserved word (the second `type'), and as an ordinary expression (the third `type').
The �rst `type' has both meanings simultaneously. Unfortunately, within any particular
language Fweave associates one unique type or ilk with each identi�er.

One solution to this problem is to use the `@R' command (see Section 5.5.23 [ATR],
page 49), which changes the ilk of the very next identi�er to integer-like. Thus,

@d GET(type) @R type get_##type()@;

will format correctly. An alternative solution uses the related command `@E', which changes
the ilk of the very next identi�er to an ordinary expression. Thus,

@f type int
@d GET(type) type get_##@Etype()@;

Chapter 7: MACROS and PREPROCESSING 80

Other types of troublesome situations involve spaces. When Fweb understands the
syntax, it inserts spaces automatically to make the output pleasing. Consider, however, the
(somewhat contrived) example

@c
@d A(x, y) x y
@d B s1;
@d C s2;
@a
A(B, C)@;

Here Fweave will consider `x' and `y' to be ordinary identi�ers (simple expressions), and
will abut them with no intervening spaces, which is confusing to read. The solution is to
insert a space manually with `@,':

@d A(x, y) x @, y

(Whether one should write macros like this at all is a separate issue.) For a related example,
see the discussion of Section 5.12 [ATcomma], page 55.

7.3 Preprocessing

Generally, the Fweb preprocessor commands follow a syntax identical to their C/C++
counterparts. The one exception is the `@#line' command. Whereas the C command takes
a line number and �le name as arguments, the Fweb command takes no arguments; its
expansion automatically inserts the current line number and �le name. This command
should be necessary only in rare circumstances. One of those involves situations in which
an Fweb macro expands to more than one output line; see Section 7.2.4 [Debugging with
macros], page 79.

The Fweb preprocessor commands may appear in either the de�nition or the code
parts. But BEWARE: No matter where they appear, they are expanded during INPUT,
not output. (This is probably a design
aw.) For more discussion, see Section 7.2 [FWEB
macros], page 63.

The syntax of each command is as follows:

@#line | Insert a #line command.

@#define identi�er
| De�ne an FWEB macro; equivalent to `@m'.

@#undef identi�er
| Unde�ne an FWEB macro.

@#ifdef identi�er
| Is FWEBmacro de�ned? Equivalent to `@#if defined identifier'.

@#ifndef identi�er
| Is FWEBmacro not de�ned? Equivalent to `@#if !defined identifier'.

@#if expression

@#elif expression

@#else

Chapter 7: MACROS and PREPROCESSING 81

@#endif

In the `@#if' statement, the expression may contain Fweb macros, but must ultimately
evaluate to a number. If that number is zero, the expression is false; otherwise, it is true.

The expression following constructions such as `@#if' is evaluated by a built-in expression
evaluator that can also be used for other purposes, such as in macro expansion. Its behavior
is again motivated by expression evaluation in ANSI C; it is not quite as general, but
should be more than adequate. (One design
aw that will be �xed someday is that the
order of expression evaluation is not necessarily left-to-right, as it is in C.) It supports both
integer and
oating-point arithmetic (with type promotion from integer to
oating-point
if necessary), and the ANSI defined operator. Operators with the highest precedence
(see table below) are evaluated �rst; as usual, parentheses override the natural order of
evaluation. The unary operator defined has the highest precedence; all the other unary
operators have the next highest (and equal) precedence; then come the binary operators.
When the operator exists in C, the action taken by Fweb is precisely that that the C
compiler would take. Arithmetic is done in either long or double variables, as implemented
by the C compiler that compiled Ftangle. (This was the easy choice, not necessarily the
most desirable one.)

The operators, listed from highest precedence to lowest, are as follows

Chapter 7: MACROS and PREPROCESSING 82

Unary operators
�

:

defined | defined is a unary operator that acts on identi�er tokens. `defined
id' or equivalently `defined(id)' evaluates to 1 (true) if the
identi�er is de�ned as an Fweb macro; to 0 (false) other-
wise. The construction `@#if defined A' works the same way
as `@#ifdef A', but one can use `defined' in expressions, as in

@#if defined(A) || defined(B):

(The parentheses around the macro names are optional.) With
the advent of `defined', the Fweb preprocessor statements
`@#ifdef' and `@#ifndef' become redundant, but are often useful
shorthands.

- | Unary minus.
! | Logical NOT. !expr evaluates to 0 if expr is nonzero, and evaluates

to 1 if expr is 0.

~ | One's complement of an integer. For example, ~0 = �1.
Binary operators

�
:

^^ | Exponentiation (all languages). 2^^3 = 8.
^, ** | Exponentiation (Fortran or Ratfor).
*, /, % | Multiplication, division, and modulus: `a % b' means `a mod b'; for

example, 5 % 3 = 2.

+, - | The usual plus and minus.
<< | `a << b' means shift integer a left b bits. 1� 3 = 8.
>> | As above, but right-shift. 7� 2 = 1.
<, <=, >, >= | Evaluates to 1 if the inequality holds, to 0 otherwise. E.g., `(2.0 <

3.0)' evaluates to 1.

==, != | `a==b' (`a!=b') evaluates to 1 (0) if a equals b; evaluates to 0 (1)
otherwise.

& | Bitwise AND. The truth table is 0b1100 & 0b1010 = 0b1000.
^ | Bitwise EXCLUSIVE OR (C). (For Fortran, use `.xor.'.) The truth

table is 0b1100 .xor. 0b1010 = 0b0110.

| | Bitwise OR. The truth table is 0b1100 | 0b1010 = 0b1110.
&& | Logical AND. `a && b' evaluates to 1 if both a and b are true (nonzero).
|| | Logical OR. `a || b' evaluates to 1 if either a or b are true.

Note in particular the use of the single caret, which is language-dependent: it is an expo-
nentiation operator for Fortran (just as in TEX), but is the exclusive-or operator for C.
Also, note that the bitwise operators should almost never be used. For logic, almost always
one will be using `==', `!=', `&&', and `||'.

Chapter 8: LANGUAGES 83

8 LANGUAGES

Fweb has the ability to work with more than one source language during a single run.
The language in e�ect at the beginning of the �rst section de�nes the global language.
Further language changes within a section have scope local to that section.

Usually, `language' means a compiler language like Fortran or C. These languages will
be \pretty-printed" by Fweave. Pretty-printing can be inhibited by turning on the N
mode (globally, with the command-line option `-N'; locally, with `@N') or by selecting the
verbatim `language'; in both of these cases, the input text is echoed literally to the output
of both Ftangle and Fweave.

`Language' is a stronger concept than `mode'. For example, when a language is se-
lected, the extension of the tangled output �le is changed appropriately|for example, if
`test.web' contains C code (that is, contains the command `@c'), `test.web' tangles into
`test.c' (compressing blanks and otherwise (deliberately) making the tangled output rela-
tively unreadable) and Fweave pretty-prints using the C syntax. Turning on the N mode
does not a�ect the language; Ftangle copies the source code literally into `test.c' (no
blank compression or other modi�cations), and Fweave typesets the source code within a
verbatim environment (no pretty-printing). When the verbatim language is selected, the
N mode is turned on automatically, but Ftangle writes its output to a �le with a special
default extension that can be customized in the style �le. See Section 12.3.8 [Miscellaneous
params], page 118.

8.1 Setting the language

The most general form of a language command is

@[L]ltext[options]

where l is a language symbol, text is converted into the option `-ltext', and options have
the same syntax as on the command line.

The language symbols must be in lower case; they are

C c
C++ c++
Fortran-77 n
Fortran-90 n9
Ratfor-77 r
Ratfor-90 r9
TeX x
VERBATIM v

An example of a command with the optional text �eld is `@n/'. By de�nition, this is
equivalent to `@n[-n/]'. Thus, it both sets the language and invokes a command-line option.

As another example, `@n9' really means `@n[-n9]'. Thus the language is �rst set to
Fortran, then reset to Fortran-90. One doesn't need to worry about this detail.

@n9[-n&]

means set the language to Fortran{90 and use free-form syntax with the ampersand as
the continuation character. (This construction is now Fweb's default.)

Chapter 8: LANGUAGES 84

The brackets may contain more than one space-delimited option.

A language command should appear somewhere in limbo, before the start of the �rst
section. The language in e�ect at the beginning of the �rst section de�nes the global
language. For historical reasons, the default language is Fortran-77, but do not rely on
this; always include a language command.

Language commands may be used within sections, but the new language remains in force
only for that section. The language of a named module is inherited from the language in
e�ect at the time the name is �rst used. Thus, in the following example, the global language
is Fortran{77, but an arbitrary number of C functions can be placed into a C-language
module with just one `@c' language-changing command.

@n
@
@a

program main
end

@c
@<C@>@;

@
@<C@>=
int fcn()
{}

Ftangle will write two output �les for this example|e.g., `test.f' and `test.c'. Partic-
ularly note that one did not need an `@c' command in the last section because the language
was C when `@<C@>' was �rst encountered.

8.2 Special hints and considerations for each language

One important thing to keep in mind is that in Fweb an identi�er may have, for each
language, precisely one meaning throughout the document. This restriction is not neces-
sarily in accord with the syntaxes of the various source languages. See, for example, the
discussions in Section 8.2.2 [Cpp], page 85 and Section 8.2.3 [Fortran], page 85.

8.2.1 Special considerations for C

� Ftangle treats the construction `0b...' as a binary notation that it expands to an
unsigned decimal number. Thus, `0b101' expands to 5 and `0b1111111111111111'
expands to 65535.

� Fweave processes typedef statements during phase one, so they will format properly
even if they are used in a documentation part before they are de�ned in a code part.

� The `-H' option helps one to deal with identi�ers de�ned in header �les. See Sec-
tion 4.2.17 [-H], page 20.

� Note that in C structure and enum tags do not de�ne a new type, so the tag name
does not get highlighted in boldface, underlined in the index, etc. (That is, if one says

Chapter 8: LANGUAGES 85

`struct S {...};', one can't say `S s;', one must say `struct S s;'.) This is a good
reason for using C++, where such tags do de�ne a new type.

(To be completed.)

8.2.2 Special considerations for C++

� All of the items in the previous section (see Section 8.2.1 [C], page 84) still apply.

� The `@{' command is very useful for beautifying very short de�nitions of member
functions such as constructors. See Section 5.9 [ATlb], page 53

� Essentially, Fweave has only one name space, global to the entire code; those names
do not obey any concept of scope. In various situations in C and C++, however, multiple
namespaces are used, or the interpretation of a name changes according to its scope.
Thus, the design of Fweave imposes a few restrictions on one's programming style.
(Remember, Fweave doesn't know nearly as much as a language compiler.)

One example in C++ has to do with formal types in templates. Consider the following
example:

template <class Type>
class A
{
private:

Type *p;
}

In order that the class de�nition be typeset correctly, `Type' must be understood to be
a reserved word like int, and that is correctly �gured out by the �rst class command.
However, according to C++, the scope of `Type' is local to the class de�nition; unfor-
tunately, Fweave does not respect that locality and will always treat `Type' as an int

from the point of the `class Type' construction to the end of the source code. Thus,
one should use such dummy variables as `Type' only as formal template parameters,
never as ordinary variables.

8.2.3 Special considerations for Fortran

8.2.3.1 Items for both Fortran-77 and Fortran-90

� Ftangle will translate into unsigned decimal numbers the binary notation `0b...', the
octal notation `0...', and the hexadecimal notation `0x...'. Thus, `0b101' expands
to 5, `0101' expands to 65, and `0x101' expands to 257.

� Don't use the column 1 `C' commenting convention. Use `/* ... */' or `// ...'.

� For compiler directives, use `@?' (see Section 5.8.4 [AT?], page 53), not a `C' in column
1.

� If you are going to use the recommended `// ...' convention for short comments,
you must say `@n/' (see Section 4.2.40 [-n/], page 27) or `@n9[-n/]' as your language
command. Otherwise, \FWEB\ will treat the `//' as \Fortran's standard token for
concatenation. (You may always use `\/' for concatenation.)

Chapter 8: LANGUAGES 86

� If you want to completely comment out a whole block of code, use the preprocessor
construction `@#if 0...@#endif' (see Section 7.3 [Preprocessing], page 80). Don't
put a comment character at the beginning of each line; that prevents Fweave from
formatting the code sensibly and can be annoying to undo. With the preprocessor form,
one can also implement conditional comments by using Fweb preprocessor macros:
e.g., `@#if(DEBUG)...@#endif'.

Pre-Fweb codes may have such blocks commented out with a `C' in column 1. Those
should be converted to the preprocessor construction. However, if you're in a real hurry,
temporarily use the `-nC' option (see Section 4.2.36 [-nC], page 25) to kill those lines
very early in the processing, before they can give you all kinds of trouble.

� An unfortunate byproduct of using `//' for short comments is that, in general, for-
mat constructions like format(//) won't work. (It will work if one uses `-nC'; see
Section 4.2.36 [-nC], page 25.) Alternatively, one can say format(/ /).

� Consecutive lines commented out with a `C', `c', `*', or `!' in column 1 are converted
into a single comment before processing by Fweb. Large blocks of such lines (common
in pre-Fweb code) may over
ow Fweb's tables. To avoid that, insert blank lines
between some of the comments. Better, however, is to move most such blocks out of
the code part to the TEX part of the section. It's most readable to have only a few
very short comments interspersed in the code.

To help with conversion of existing codes, the command-line option `-nC' can be used
to completely ignore comment lines.

� `@' commands should, by and large, start in column 1. That's not necessary for short
module names that �t on one line. However, a long module name that must be broken
across lines must begin in column 1, as in

@n
@
@a
@<This is a module name
broken across lines@>@;

Failure to do this results in a spurious semicolon being inserted in the middle of the
name. This happens because the Fortran-77 input driver does various low-level
manipulations of the source before it presents it to the innards of Fweb; it's not
tokenizing the source at that time and doesn't understand all of the Fweb syntax such
as module names.

� De�ne symbolic statement labels with `#:0' (see Section 7.2.2 [Tokens], page 65). Such
names should be followed by a colon. Thus,

@n
@
@m EXIT #:0
@m ABORT #:0
@a
.
.
ABORT: continue
.

Chapter 8: LANGUAGES 87

.
EXIT: continue
.
.

� By default, statement labels are \llap'd from the body of the statement. With this con-
vention, long labels can extend too far into the left margin. Instead, try the command-
line option `-n:' (see Section 4.2.34 [-ncolon], page 25), which puts them on a separate
line. Alternatively, one can rede�ne the macro \Wlbl, found with some discussion in
`fwebmac.sty'.

� As a suggestion, use upper case for I/O keywords such as IOSTAT. However, by default
the lower-case forms are also recognized. To permit only upper case, use `-k' (see
Section 4.2.23 [-k], page 22). Note that although there is a command `-nk', it is
unfortunately not related to `-k'.

� One may use `^' as an alternative for the exponentiation operator `**'.

� Fweb attempts to be helpful and tries to expand the operators `++', `--', `+=', `-=',
`*=', and `/=' in a way compatible with the usage in C and C++. For example, it
expands `x += y' into `x = x + (y)'. This feature can be a great time-saver and also
makes the code substantially more legible; it is strongly recommended. To turn o� this
feature, use the option `-+'. See Section 4.2.79 [-plus], page 37.

Notice that in Fortran-90 `/=' is a token for \not equal," so if you want to use that you
must use the `-+' option. However, a better solution is to use `!=', Fweb's preferred
operator for \not equal."

� By default, the operators .true. and .false. will weave as caligraphic T and F. That
appearance be changed by rede�ning the macros \WTRUE and \WFALSE in `fwebmac.sty'
or in the limbo section of your source �le.

� If Ftangle messes up and outputs incorrect Fortran code, try tangling with the
command-line option `-#' (see Section 4.2.78 [-#], page 36) (and then report the prob-
lem.)

8.2.3.2 Items speci�c to Fortran-77 and �xed-form Fortran-90

� By default, when processing the code part the Fortran driver inserts semicolons au-
tomatically at the end of each logical statement. Thus, the core of Fweb is presented
with a uniform syntax. However, when one escapes into code mode by using vertical
bars, those semicolons aren't inserted, so something that appears a �rst glance to be
complete statement may not be formatted as one might expect. Thus, the construction
`|5: continue|' doesn't format quite properly (the colon disappears); this problem
is solved by putting a semicolon after the `continue'. Also, if one is talking about
multiple statements (for example, with a shift into code mode during TEX documenta-
tion), there's no choice but to insert the semicolon between statements. For example,
`|a = b; c = d;|'.

8.2.3.3 Items speci�c to Fortran-90

Chapter 8: LANGUAGES 88

� If Fortran-90 is selected (see Section 4.2.31 [-n9], page 24), the default is free-form
syntax (lines are continued by a trailing ampersand). However, automatic line breaking
is done in a way compatible with �xed-form syntax as well.

� With free-form syntax, comment lines in the tangled output �le begin with `!'. But
such lines are not recognized on input unless `-n!' is used. See Section 4.2.41 [-n!],
page 27.

� Beginning with Version 1.61, by default (pseudo-)semicolons are automatically inserted
in free-form \Fortran-90 code, as one would expect. For more discussion, see Sec-
tion 4.2.32 [-nAT;], page 24 and Section 4.2.33 [-n;], page 24.

(To be completed.)

8.2.4 Special considerations for Ratfor

For some warnings about Ratfor, see Section 9.3 [Caveats], page 90.

8.2.5 Special considerations for TeX

`@Lx' is supported only to the extent that fwebmac.sty can be generated correctly from
fwebmac.web. You are welcome to experiment, but you may encounter di�culties (which
you should report; see Chapter 15 [Support], page 131).

(To be completed.)

8.2.6 Special considerations for the verbatim language

Unfortunately, the VERBATIM language is not fully debugged. Therefore, it is not
recommended for general use. (To be completed.)

Chapter 9: Ratfor 89

9 Ratfor

\Ratfor" stands for \RATional FORtran." It endows Fortran with a C-like syn-
tax. Certain loop and other constructions (such as `switch' or `i++') that are not allowed
in Fortran are allowed in Ratfor; Fweb translates those into proper Fortran.

Although Ratfor is a de�nite improvement over Fortran, it certainly does not have
the power of C (e.g., elegant pointer notation) or C++ (e.g., classes). Many advantages
accrue by taking the time to learn C. Ratfor o�ers a gentle transition. (It is not supported
very actively any more.)

9.1 Ratfor syntax

A sample Ratfor program is

@r
@
@a
program main
{
integer k;
real fcn, x;

for(k=0; k<10; k++)
{
x = fcn(k);

if(x < 0.0)
{
x = 0.0;
break;
}

}
}

The concluding brace of a function is translated into an END statement. Note the use of
semicolons to terminate statements, braces to delimit compound statements, `<' instead of
`.LT.', the C-like for construction, and the `k++' expression.

Constructions like `k++' or `k -= l + 1' must be used with great care. They translate
to statements involving `=' signs, so they can be used only where simple statements are
allowed, not essentially anywhere as in C (for example, they cannot be used as function
arguments).

9.2 Ratfor commands

9.2.1 Ratfor{77 commands

Chapter 9: Ratfor 90

break; // Used with case or to break out of loops, as in C.
case i: // Used with switch.
default: // Used with case, as in C.
do ...; {...} // Note the semicolon (unnecessary if followed by a compound stmt).
else {...} // Used after if as in C.
for(a;b;c) {...} // As in C.
if(condition) {...}
next; // Equivalent to C's |continue| statement; go to bottom of loop.
repeat {...} until(condition); // Equivalent to C's do {...} while();
return expression; // As in C.
switch(expression) {...} // As in C.
while(condition) {...} // Like C's while.

9.2.2 Additional Ratfor{90 commands

contains:
interface name {...}
interface operator(op) {...}
interface assignment(assgnmnt) {...}
module name {...}
private:
sequence:
type name {...}
where(expression) {...}

9.3 Caveats about Ratfor

The version of Ratfor built into Fweb di�ers slightly from its unix counterpart:

1. Numeric statement labels must be followed by a colon; they should be �rst
on their line. (Use symbolic statement labels instead; see the discussion of
`#:0' in Section 7.2.2 [Tokens], page 65.)

2. The quoting convention for characters and strings follows that of C: Single-
quote single characters, double-quote strings.

3. In a switch, cases fall through to the next case unless terminated by break
(just as in C).

4. The do statement must be terminated by a semicolon if followed by a
simple statement. (It's unnecessary if followed by a left brace that begins
a compound statement.)

5. Use && and || for the logical AND and OR.

6. Do not use an end statement at the very end of a Ratfor program unit;
it is added automatically by Fweb when the closing brace is sensed.

Chapter 10: DOCUMENTATION 91

10 DOCUMENTATION

Fweb uses LaTEX to produce its documentation. Plain TEX is no longer supported.

It is not necessary to be very familiar with LaTEX in order to use Fweb e�ectively. Fweb
does complicated things behind the scenes, relieving the programmer of many burdens. If
you don't need complicated mathematics, one needs to know virtually no LaTEX at all in
order to document a section of code. And if you do need to typeset math, consider that
LaTEX makes this daunting task about as simple as one could hope.

If you're an Fweb beginner, don't bother diving into the details of this section until you
really need to.

10.1 Typesetting

Fweb's \new look" (beginning with version 1.40) is designed to work only with LaTEX.
The new look is more book-like, following ideas from Briggs' nuweb. By default, it uses
default LaTEX section numbers such as 1.5.32; however, sections may be numbered with
consecutive integers by specifying the LaTEX2e package fwebnum; see Section 10.1.6 [Num-
bering], page 98.

10.1.1 Fweave's OUTPUT

When one says `fweave test', the �le `test.tex' is created. Some TEX commands
contained in this �le are created automatically; others are copied from the web source �le.
They are organized into several sequential groups, as follows.

1. \input command to read in Fweave's macro package.

By default, the initial input command is `\input fwebmac.sty' (see Sec-
tion 10.1.2 [fwebmac.sty], page 92). The name of the macro package can
be changed with the `-w' command-line option, but that is dangerous and
useful only for very special e�ects. See Section 4.2.66 [-w], page 34.

2. \Wbegin command.

The \Wbeginmacro sets up certain defaults (which can be overridden in the
limbo section). In LaTEX, it also issues the `\documentclass{article}'
and `\begin{document}' commands.

3. Limbo text from the style-�le parameter limbo.begin. See Section 12.3.8.11
[S limbo], page 120.

4. Limbo text from `@l' commands. See Section 5.5.14 [ATl], page 45.

5. User's limbo section.

6. Limbo text from the style-�le parameter limbo.end. See Section 12.3.8.11
[S limbo], page 120.

7. TEX commands for individual WEB sections.

8. \input command to read in the index data �le.

9. \input command to read in the module-list data �le.

10. \Winfo command (summarizes some status information).

11. \Wcon command (generates the Table of Contents, and ends the run).

Chapter 10: DOCUMENTATION 92

10.1.2 The macro package `fwebmac.sty'

Fweave works in conjunction with the macro package `fwebmac.sty', which is always
read into the `.tex' �le by default. This �le is (overly) complicated, so one should not mess
with it unless in dire emergency. Most of its commands are intended for behind-the-scenes
processing. However, some features may be of general interest; these are described in the
items below.

For the most part, macros used internally by `fwebmac.sty' begin with an uppercase
`W'. If you are worried about macro con
icts, a complete list of the macros appearing in
`fwebmac.sty' can be found in the Index produced by weaving `fwebmac.web'.

10.1.2.1 User macros

For the user's convenience, `fwebmac.sty' de�nes a variety of macros such as `\FWEB',
`\Fortran', etc. Refer to `fwebmac.web' for a complete list.

Fweave usurps various common single-character macros such as `\.' for its own pur-
poses. So the user can still access their original de�nitions, those are `\let' equal to
alternative commands such as `\period'. For example, commands such as the following are
executed in fwebmac.sty:

\let\amp\&
\let\at\@@
\let\bslash\\
\let\caret\^
\let\dollar\$
\let\dstar*
\let\equals\=
\let\leftbrace\{
\let\period\.
\let\rightbrace\}
\let\vertbar|
\let\PM\#
\let\PC\%

(Some of the more inscrutable synonyms are for historical reasons.)

For the most up-to-date and detailed information, refer to `fwebmac.web'.

10.1.2.2 Fonts

Several fonts have been declared. Those include

� `\titlefont' (large sans serif),

� `\ttitlefont' (large typewriter),

� `\SC' (small caps),

� `\Csc' (Caps/small caps), and

� `\tentex' (TEX's extended character set).

For illustrations and further details, see `fwebmac.web'.

Chapter 10: DOCUMENTATION 93

To typeset a string of characters in typewriter type, one may use the `\.' macro. (More
precisely, the name of this macro is the value of the style-�le parameter format.typewriter.
For more information, see Section 12.3.5.1 [S format], page 115.) When using this, one
must escape the special characters ` \#%$^_{}~&', as in `\.{\\alpha}'. (Fweave does
that escaping automatically when typesetting strings in code mode.) You may wish to
surround `\.{...}' with an `\hbox'; that is not done by default because Fweave uses
special trickery to break long strings in code mode automatically, and that breaking would
be inhibited by an `\hbox'.

10.1.3 LaTEX support

Original LaTEX support (through version 1.30) was substantially incomplete in that
LaTEX's \output routine was usurped by the relatively simple one used for Fweb's TEX
support. However, beginning with version 1.40, full LaTEX support is provided (and Plain
TEX is not supported); version 1.50 supports LaTEX2e. LaTEX's \output routine is used,
as are its sectioning commands (with minor changes), Table-of-Contents facilities, etc.

The following discussion is based on LaTEX2e. If LaTEX2e is not installed, Fweave rec-
ognizes that fact and issues the `\documentstyle' command instead of `\documentclass'.

Users are strongly encouraged to upgrade to LaTEX2e. A useful book that describes
the present state of LaTEX is Goossens, Mittelbach, and Samarin, The LaTEX Companion
(Addison{Wesley, Reading, MA, 1994).

10.1.3.1 LaTEX's document class

An Fweb/LaTEX document is set up with the `\Wbegin' command, issued automatically
by Fweave. See the summary at the end of this section for the essence of what the `\Wbegin'
command accomplishes.

Fweave uses \documentclass{article} by default. In principle, the document class
can be changed by the Fweb style-�le option `LaTeX.class'; see Section 12.3.5 [Fweb-
mac params], page 115. However, Fweave has not been tested with most other document
classes. It will probably not work with most document classes that rede�ne the section-
ing commands from those of \documentclass{article}. However, it may work with the
revtex scienti�c macro package. See Section 10.1.3.2 [REVTeX], page 94.

To incorporate class options|i.e., to obtain the e�ect of `\documentclass[myoptions]{article}'|
use the style-�le parameter LaTeX.class.options, as in

LaTeX.class.options "myoptions"

To get two-sided printing, for example, one would say

LaTeX.class.options "twoside"

To specify user packages|i.e., to obtain the e�ect of `\usepackage[pkgoptions]{pkgname}'|
use the style-�le parameters LaTeX.package and LaTeX.package.options, as in

LaTeX.package "pkgname"
LaTeX.package.options "pkgoptions"

For example, to indent the �rst line of every section and to permit the use of the multicol
package (the latter is a useful way of substantially cutting down on white space), say

Chapter 10: DOCUMENTATION 94

LaTeX.package "indentfirst,multicol"

Note that specifying LaTeX.package and LaTeX.package.options results in the execu-
tion (by the \Wbegin macro) of precisely one line of the form

\usepackage[myoptions]{mypackages}

Sometimes one instead needs to have multiple \usepackage lines, such as

\usepackage[option1]{package1}
\usepackage[option2]{package2}

To get this e�ect, one can put these commands explicitly into the style-�le parameter
doc.preamble (see discussion two paragraphs below), as in

doc.preamble = "\\usepackage[option1]{package1}\
\\usepackage[option2]{package2}"

TEX commands in the user's limbo section of the web source �le will be processed after
the \begin{document} command. Limbo commands from the style �le can be inserted
before and/or after those in the limbo section with the aid of the style-�le parameters
`limbo.begin' and `limbo.end'; see Section 12.3.8.11 [S limbo], page 120.

If there is a compelling reason to insert one's own LaTEX commands between the
`\usepackage' and `\begin{document}' commands, one may use the style-�le parameter
`doc.preamble', whose value is a string consisting of LaTEX commands (empty by de-
fault). Those commands are processed immediately before `\begin{document}'. One use
of `doc.preamble' is to inhibit Fweb's tendency to keep a section together on one page.
To make it break more readily in the middle of sections (particularly useful for multicolumn
output), say

doc.preamble "\\secpenalty=0"

In summary, the beginning of the �le output by Fweave looks like the following, where
`<parameter>' means the contents of the style-�le string called `parameter':

\input fwebmac.sty
\Wbegin{many obscure arguments}
<limbo.begin>
Optional TeX commands copied from user's limbo section
<limbo.end>

The `\Wbegin' command essentially does the following:

\documentclass[<LaTeX.class.options>]{<LaTeX.class>}
\usepackage[<LaTeX.package.options>]{<LaTeX.package>}
<doc.preamble>
\begin{document}

For precise information about how `\Wbegin' works, see fwebmac.web. If you feel that macro
absolutely needs to be changed, please inform the developer (see Chapter 15 [Support],
page 131).

10.1.3.2 Using REVTEX

REVTEX is the standard macro package used for formatting scienti�c papers submitted
to the American Physical Society, the American Institute of Physics, and some European

Chapter 10: DOCUMENTATION 95

journals. It modi�es the sectioning commands of \documentclass{article} and provides
various other useful macros.

Unfortunately, as of August, 1998, REVTEX is not fully compatible with LaTEX2e; it
must be invoked with \documentstyle{revtex}, not \documentclass. This is annoying,
because Fweb's macros in `fwebmac.sty' default to \documentclass if they recognize that
LaTEX2e is loaded.

To use REVTEX, uncomment the line in `fwebmac.sty' that says \useREVTeXtrue. (One
cannot say `\useREVTeXtrue' in the limbo section of one's web source, because the document
class has already been selected by that time.) You may wish to rename the resulting �le, say
to `rwebmac.sty', so it can be loaded in place of the standard `fwebmac.sty'. To do that,
one would use the command-line option `-wrwebmac.sty' (see Section 4.2.66 [-w], page 34).

Saying \useREVTeXtrue selects \documentstyle rather than \documentclass. To im-
plement a standard command such as \documentstyle[aps,my_macros]{revtex}, use the
style-�le (`fweb.sty') parameters LaTeX.style and LaTeX.options, as in

LaTeX.style "revtex"
LaTeX.options "aps,my_macros"

Here `my_macros.sty' would be a user's macro package loaded in addition to those of
REVTEX and Fweb.

REVTEX support is extremely recent. There may be glitches; please report those. In a
pinch, if LaTEX stops while processing a REVTEX �le produced by Fweave, try typing `s'
(scroll mode) to force it to continue; you might get usable output.

10.1.3.3 LaTEX packages related to Fweb

The following packages are supplied with the Fweb distribution and can be used to
achieve special e�ects. Packages are invoked by giving their names as arguments to the
LaTeX.package command; see Section 12.3.5.3 [S LaTeX], page 116.

� fwebinsert | Enables insertion of woven code into a LaTEX document. See Sec-
tion 10.1.6.1 [Inserting woven code], page 99.

� fwebnum | Number each section in ascending integer order. See Section 10.1.6 [Num-
bering], page 98.

� idxmerge | Merge several stand-alone indexes. See Section 11.3 [Merging indexes],
page 105.

10.1.3.4 Sections in LaTEX

Fweb's sectioning commands `@*' and `@*n' are converted into LaTEX's section com-
mands such as \section (n=0), \subsection (n=1), and \subsubsection (n=2). During
LaTEX's processing of the .tex �le, it keeps track of the maximum depth achieved by `@*n'.
This number is written as the last item in the `aux' �le. During the next LaTEX run, that
number is used to map the untitled `@ 'commands to the next most insigni�cant sectioning
command. That level of sectioning command is slightly rede�ned from LaTEX's default, so
don't try to rede�ne it.

The previous scheme means that it may be necessary to run LaTEX as many as three
times in order to resolve all sectioning and cross-reference information correctly. You should

Chapter 10: DOCUMENTATION 96

be warned in such cases. If not, you will recognize di�culties by noting that the Table of
Contents or section numbering is incomplete.

The `aux' �le is also used by both processors to generate appropriate error messages that
refer to the LaTEX section number instead of the internal one.

A discussion of alternative section-numbering schemes is given in Section 10.1.6 [Num-
bering], page 98.

10.1.3.5 LaTEX's index.

The Index should be the last section of the code, and should be begun by the command
`@* \INDEX.'. For more information, see Section 12.3.1.1 [S index], page 113.

The challenge of typesetting the Index is to get it into two-column mode in the best
possible way. In the original Plain-TEX Fweb, special code was provided for this. With
LaTEX, however, one wants to use standard features.

The best solution is to use the user package multicol. If that is loaded by means of the
style-�le statement `LaTeX.package "multicol"', then any text typed by the user following
the `@* \INDEX.' command will be typeset in single-column mode, after which two-column
mode is entered. If it is not loaded, a `\twocolumn' command is issued before the index
section is begun (in order to get the Index started on a new page).

More precisely, what happens is the following. When the `@* \INDEX.' command is rec-
ognized, essentially the following operations are performed, where the results are bracketed
in the form `[multicol : nomulticol]':

\beforeindex [\newpage : \twocolumn]
[print INDEX section heading]
\startindex [\begin{multicols}{2} : \medskip]
\Wfin [\end{multicols} : \relax]

(Use of the asymmetrical name `\Wfin' is for historical reasons.)

The positioning of `\beforeindex' suggests a way of printing the entire document in two-
column mode. If one enters multi-column mode in the limbo section, then `\beforeindex'
can be used to terminate it. It is best to do this at the end of the limbo section; otherwise
user macro de�nitions in the limbo section must be made \global in order that they remain
de�ned in the Index. The relevant commands can be placed in the style �le:

LaTeX.package "multicol"

doc.preamble "\\secpenalty=0"

limbo.end "\\def\\beforeindex{\\end{multicols}\\newpage}\n\
\\begin{multicols}{2}\n\
\\raggedcolumns"

Just to repeat, use only the �rst command to get just the Index printed in two-column
format; use the second and third ones to make the entire document two-column.

10.1.3.6 LaTEX's Table of Contents

LaTEX uses the `aux' �le to accumulate the information for the Table of Contents.

Chapter 10: DOCUMENTATION 97

When LaTEX is used, the Table of Contents appears at the front of the document
by default (beginning with version 1.61). This is accomplished by setting the default
value of the style-�le parameter limbo.end to "\\FWEBtoc", where \FWEBtoc is de�ned
in `fwebmac.sty'. If you initialize limbo.end yourself in `fweb.sty', you should include
"\\FWEBtoc" at the end of that initialization if you want the Table of Contents to appear
in the beginning. Otherwise, it will appear at the end.

In essence, the Table of Contents is produced by the LaTEX commands

\pagenumbering{roman}
\maketitle
\topofcontents
\tableofcontents
\botofcontents
\newpage

By default, the Fweb hooks \topofcontents and \botofcontents are empty, but they
may be used in special circumstances to override the usual behavior. One can set the
parameters for \maketitle in the limbo section in the usual LaTEX way, except that it is
better to use Fweb's \Title macro instead of \title:

\Title{MYCODE.WEB}
\author{My name}
\date{January 1, 2001}

By default, the argument of the \Title macro is printed both on the title page and as
a running headline in the document. The default font for the title is \ttitlefont; that
for the running headline is \large\tt. However, \Title has one optional argument that
allows one to override the running headline, perhaps by specifying a shorter form. Say

\Title[Short title]{Long title}

to make the running headline be `\large\tt Short title' and the title-page title be
`\ttitlefont Long title'.

The \Fweb \Title macro calls LaTEX's \title macro with the long title as its argu-
ment. By default, Fweave uses (in the `\Wbegin' macro)

\title{}%
\author{}%
\date{\today\\[3pt]\Time}%

Section numbers in the Table of Contents are produced by the LaTEXmacro \numberline.
LaTEX's default de�nition is inadequate when section numbers are very large; they extend
to the right and can overwrite the section name. The macro is rede�ned more appropriately
when the package fwebnum (see Section 10.1.6 [Numbering], page 98) is used.

10.1.3.7 Customizing LaTEX's output

Several (TEX)
ags are provided to change the appearance of the �nal LaTEX document.
(This appearance is a bit experimental, and it is fair to say that not everything may be
fully debugged; please report problems.) These are (`...' means either `true' or `false')

� \pagerefs... (index references by pages or section numbers);

� \numberTeX... (number the beginning of unnamed TeX parts);

Chapter 10: DOCUMENTATION 98

� \numberdefs... (number the beginning of the de�nition part);

� \numbercode... (number the beginning of the code part).

The defaults for these
ags are

\pagerefsfalse
\numberTeXfalse
\numberdefstrue
\numbercodetrue

If desired, one may override these in the limbo section. (They are de�ned using Plain TEX's
`\newif' rather than the equivalent LaTEX command because they may also be used when
LaTEX is not present.)

\numberTeX is on the verge of obsolescence. Try to not use it; never use it in conjunction
with the package fwebnum. See Section 10.1.6 [Numbering], page 98

10.1.4 Page references

When one says `\pagerefstrue' (LaTEX only), index references are made by page num-
bers rather than module numbers or LaTEX section numbers. If there is more than one
section per page, they are identi�ed by `a', `b', `c', etc., such as `section 17b'. (Presently,
this will not work correctly when multicol is used for the body of the document.)

The information necessary to process page references in this way is written into the `aux'
�le. As is usual with LaTEX, several runs may be required for the references to be fully
consistent with the source �le.

10.1.5 Page headers

The very top (header) line on each page of Fweave's output contains several pieces of
information:

� the current section name or document title;

� the page number;

� the range of LaTEX section numbers on the page (these are preceded by the x symbol);
and

� the range of integer section numbers as understood internally by Fweave (those are
in square brackets and preceded by the `#' sign).

10.1.6 Section numbering schemes

The Fweb commands `@*' and `@ 'are translated by complicated magic into LaTEX com-
mands such as \section, \subsection, etc. By default, use of \documentclass{article}
then produces Dewey-decimal section numbers such as 2.13.4 (subsubsection 4 of subsec-
tion 13 of section 2). When the section tree is very deep, these numbers can look somewhat
obtrusive.

An alternative scheme (that of the original web) is to merely number each section in
ascending integer order, beginning with 1. This can be done by specifying the package
fwebnum, as in

Chapter 10: DOCUMENTATION 99

LaTeX.package = "fwebnum"

This package is supplied with the Fweb distribution; it is still somewhat experimental.

By default, fwebnum numbers all sections, including unnamed ones. To prohibit num-
bering of unnamed sections, use the package option dontnumberunnamed, as in

LaTeX.package.options = "dontnumberunnamed"

This option will eventually make \numberTeX obsolete; do not use \numberTeX in conjunc-
tion with fwebnum.

10.1.6.1 Package fwebinsert: Inserting Fweave's output into a
LaTEX document

Beginning with version 1.61, it is (barely) possible to insert the TEX output woven by
Fweave into a LaTEX document. For example, a code listing could be an appendix to a
dissertation, or a handbook on numerical methods could insert fragments of code formatted
by Fweave.

Suppose one has the �le `test.web' and used Fweave to create `test.tex'. Unfortu-
nately, it does not work to simply \input test.tex into a LaTEX document, because by
default `test.tex' operates in a \stand-alone" mode and tries to issue a \begin{document}
command.

Instead, one must use the package fwebinsert and the special input command \FWEBinput,
as in the following example. There are two important steps.

1. Use Fweave to create `test.tex'. [You may wish to use the `-x'
ag (see
Section 4.2.67 [-x], page 34) to prevent some of the lists at the end, such
as the index or module list, from being printed.]

2. Now `latex test' until all of the section numbering is up-to-date. (This
step is necessary because information in the `aux' �le is used in processing
the section headings.)

Now `test.tex' is ready to be inserted in a code like the following:

\documentclass{article}
\usepackage{fwebinsert}

\begin{document}

\section{Body}

The body of the document.

\appendix

\FWEBinput{test}

\end{document}

Note that the `@*' commands in `test.web' are converted into LaTEX sectioning com-
mands such as \section. The above example works correctly because the �rst `@*' in
`test.web' is equivalent to a \section (level 0) command, which should indeed immediately

Chapter 10: DOCUMENTATION 100

follow an \appendix command. Suppose, however, that you wanted to input `test.web' as
part of the body of the above example, and wanted the `@*'s to be treated as subsections
(level 1) rather than sections. To tell fwebinsert what level number to assign to the `@*'s,
provide that number as an optional argument to \FWEBinput, as in the following example:

\documentclass{article}
\usepackage{fwebinsert}

\begin{document}

\section{Body}

The body of the document.

\FWEBinput[1]{test}

\end{document}

Alternatively, say \FWEBlevel{1} before the \FWEBinput. (The optional argument con-
struction merely calls \FWEBlevel.)

Here are some caveats about fwebinsert:

� Implementing this package was tricky. It may work in simple circumstances, but it is
not fully debugged.

� The \FWEBinput command surrounds the included TEX code with \begingroup...\endgroup,
in an attempt to prevent various macro con
icts. As it stands, the command
\fwebinput is \let equal to \FWEBinput. If necessary, one could rede�ne \fwebinput
to not include the enclosing \begingroup...\endgroup.

� For anything except level-0 inclusions, one should have just one \FWEBinput command
following each sectioning command. (This is a bug.)

� One is supposed to be able to use the package fwebnum (see Section 10.1.6 [Numbering],
page 98) in conjunction with fwebinsert. One can apply that to either the included
�le (via a LaTeX.package entry in `fweb.sty'), the including �le (via a \usepackage

command), or both. Try out these various combinations to see what emerges.

10.2 Pretty-printing

Pretty-printing refers to Fweave's attempt to typeset and highlight the code in a read-
able way. This is usually done automatically for all of the compiler-like languages such as C.
However, it can be inhibited by turning on the N mode with `@N' or by using the verbatim
language (selected with `@Lv').

Pretty-printing is one of those topics that can arouse strong passions: your idea of what's
esthetic may not be mine. Unfortunately, Fweb's formatting rules are mostly hard-coded,
so if, for example, you don't like the way braces are arranged in typeset C code, you're mostly
stuck. Most directly, this possibly undesirable choice comes from design decisions made by
previous authors. It also makes Fweave very fast, and enables certain complicated tricks
that seem di�cult or impossible to accomplish with a completely customizable approach.
The latter seems quite formidable, and has not been attempted|a good thesis project for
the 21st century.

Chapter 10: DOCUMENTATION 101

10.2.1 Pseudo-operators

Pseudo-operators behave like a particular part of speech for the purposes of Fweave's
formatting, but are invisible on output; they are ignored by Ftangle. The pseudo-
operators are

@e | pseudo-expression. See Section 5.13 [ATe], page 57.
@; | pseudo-semicolon. See Section 5.13.2 [AT;], page 58.
@: | pseudo-colon. See Section 5.13.3 [ATcolon], page 59.

10.2.2 Alternatives for various input tokens

Fweave translates various input constructions into allegedly more readable symbols|
for example, in Fortran it translates `.LT.' into `<'.

Here is a table of what one can type on input, and what Fweave will typeset. The �rst
entry is standard Fortran; the parenthesized material is an allowable input alternative.
(In most cases, the pretty input alternatives follow C's convention.)

.lt. (<) ! <

.le. (<=) ! �

.eq. (==) ! �

.ne. (!=,<>) ! 6=

.gt. (>) ! >

.ge. (>=) ! �

.and. (&&) ! ^

.or. (||) ! _

.neqv. ! 6�

.xor. ! 6�

.eqv. ! ?=

.not. (!) ! :
** (^) ! (a+b)^(c+d) ! (a+ b)c+d

// (\/) ! k

These same conventions are allowed in Ratfor mode. Note that in Fortran and Ratfor
`//' is interpreted by default as the concatenation symbol, not the start of a short comment.
To override that default, use one of the command-line options `-n/', `-r/', or `-/', or use a
language-changing command of the form `@n/'.

10.2.3 Overloading operators and identi�ers

For special e�ects in the woven output, there are commands to help one change the
appearance of operators and identi�ers.

10.2.3.1 Overloading operators

A feature common to both C++ and Fortran{90 is operator overloading, the ability
to extend or rede�ne the de�nition of an operator such as `.FALSE.' or `='. Fortran{90
even allows one to de�ne new dot operators|for example, one might de�ne the operator
`.IN.' to test for inclusion in a set. In a nontrivial extension of the original design, Fweave
allows one to de�ne how overloaded operators should appear on output. For example, in
the opinion of the author it is much more readable to read `if(x 2 set)' than `if(x .IN.

set).' Indeed, this feature can be used even when the compiler language itself does not
permit overloading in order to customize the appearance of the woven output.

The `@v' control code is used to change the appearance of an operator. The format is

Chapter 10: DOCUMENTATION 102

@v new_operator_symbol_or_name "TeX material" old_operator

This means \Display the new operator according to the TEX material, but treat it like the
old operator|e.g., unary or binary|for formatting purposes. The quoted TEX material is
treated just like a C string, so if one wants to include a backslash one must escape it with
another backslash. For example, one can make an equals sign display on output as a large
left arrow by saying

@v = "\\Leftarrow" =

Two Fortran examples are

@v .FALSE. "\\.{.FALSE.}" .FALSE.
@v .IN. "\\in" +

This feature can go a long way toward enhancing readability of the woven output, partic-
ularly when operators are actually being overloaded. It can also lead to arbitrarily bizarre
output that no-one else will understand. As usual, restraint is advised.

10.2.3.2 Overloading identi�ers

Although operator overloading is quite useful, it does not allow one to change the ap-
pearance of identi�ers. In its most general form, such a facility becomes quite complicated;
one must endow Fweave with a macro-processing facility analogous to that of Ftangle.
This has not been done yet (maybe it will be someday). In the meantime, one has the
command `@W', which provides a restricted form of such a facility. This command is experi-
mental, and not �rmly established. Changes in usage and/or syntax may be made in future
versions.

The most general form of the `@W' command is

@W identifier "replacement text"

This means: Replace any references to identi�er in the woven output with the replacement
text.

A more restrictive form is

@W identifier \newmacro

which replaces references to identi�er with a call to \newmacro. (Note that there are no
quotes in this form.)

The shortest form is

@W identifier .

which replaces references to identi�er with a call to \identifier. For example, the iden-
ti�er x normally appears in woven output as `\.{\Wshort\{x\}}'. If one says

@W x .

one will instead get the macro reference `\x', which could be de�ned to give a variety of
special e�ects. (However, one may need some rather intimate understanding of Fweave's
output in order to ensure that things always work correctly.)

One of the important uses of this facility is to expedite special formatting of array
references. This subject is discussed separately below in the section on \Special array
formatting" (sorry, that isn't here yet), where an example is given.

Chapter 11: Fweb's INDEX. 103

11 Fweb's INDEX.

Fweb has several powerful indexing facilities:

1. It sorts and writes its own self-contained (internal) index, including cross-
references to all the variables as well as items inserted by the user.

2. It can write its cross-reference information to a �le formatted for use by
the makeindex utility. This feature facilitates creation of a master index
that contains information about several web �les.

11.1 Fweb's self-generated index

One of the most useful features of Fweb is that it automatically generates an Index of
all variable usage. One can also insert one's own index entries by using the commands

� `@^' (entry in Roman type; see Section 5.10.4 [AT^], page 54),

� `@.' (entry in typewriter type; see Section 5.10.5 [ATdot], page 54), and

� `@9' (user-de�ned format; see Section 5.10.6 [AT9], page 54).

(More discussion to be completed.)

11.2 Creating a stand-alone index with makeindex

In addition to the internal index described in the previous section (see Section 11.1
[Internal index], page 103), Fweave can write the index data to a �le formatted for later,
stand-alone processing by the makeindex utility. (Several such indexes can be merged
together; see Section 11.3 [Merging indexes], page 105.) The procedure is simple, although
the following discussion goes into some rather arcane details.

11.2.1 Creating a stand-alone index: Summary

As a quick reference for those who have already read the details in the next subsection,
the procedure to print a stand-alone index with makeindex is as follows. First, create, if
necessary, a �le `index.tex' that \inputs `index.ind'. (A skeleton is illustrated in the
next subsection.) Then:

fweave -XI test.web % Creates test.idx and test.sty.
makeindex -s test.sty -o index.ind test.idx % Creates index.ind.
latex index

If you're not happy with the \pg macro supplied in `fwebmac.sty', de�ne it yourself in
`index.tex'.

In this procedure, note the use of the `-XI' option and the use of a di�erent root name
(`index' here) for the output �le.

Chapter 11: Fweb's INDEX. 104

11.2.2 Creating a stand-alone index: Details

To create an index �le in a form suitable for later stand-alone processing by makeindex,
use the `-XI' option to Fweave. If the web �le is `test.web', the default name of the
makeindex output �le is `test.idx'. (This name can be overridden by the style-�le param-
eter makeindex.out.) Run makeindex on `test.idx' to create the LaTEX �le `index.ind'
(see following discussion for details). A stand-alone index can then be produced by saying
`latex index', where a skeleton version of `index.tex' would be

% index.tex --- skeleton for printing a stand-alone index.
\documentclass{article}
\usepackage{fwebmac}

\begin{document}

\input{\jobname.ind}

\end{document}

(In practice, a more involved procedure will probably be followed; see below.)

Usually makeindex works in conjunction with a style �le. [In fact, the syntax of Fweb's
style �le (see Section 12.3 [Style], page 112) was motivated by that of makeindex.] When the
`-XI' option (see Section 4.2.68 [-X], page 34) is used, Fweave will create an appropriate
style �le for makeindex. (The default name of `test.sty' can be overridden by the style-�le
parameter makeindex.sty.) To run makeindex on the index data for `test.web' and create
the output �le `index.ind', one would thus say

makeindex -s test.sty -o index.ind test[.idx]

It's important to use the `-o' option with a name di�erent than the original �le name,
because it simpli�es the construction of the skeleton �le `index.tex' that prints the stand-
alone index.

Fweave writes `test.sty' because the contents of that �le may depend on parameter
settings in Fweb's style �le `fweb.sty'. Fweb's style vocabulary includes all parameters
understood by makeindex. If a makeindex parameter is called `param', one references it
in `fweb.sty' by `makeindex.param'. Thus, to change the `headings_flag' of makeindex,
one would put into `fweb.sty' a line like `makeindex.headings_flag = 1'. To see a list
of all makeindex-related parameters, say `fweave -Zmakeindex' (see Section 4.2.70 [-Z],
page 35). Remember, do all makeindex customizations in `fweb.sty'; the actual style �le
`test.sty' that will be read by makeindex is written automatically by Fweave.

The `.idx' �le will contain a list of entries that begin with `\indexentry' (more precisely,
the value of the parameter `makeindex.keyword'). The general form is

\indexentry{sort key:identifier expression|macro}{page number}

Typical entries are

\indexentry{istream:"\>{istream}|pg{}{}}{1}
\indexentry{main:"\>{main}|pg{}\underline}{1}
\indexentry{pow:"\@{pow}|pg{}{}}{2}
\indexentry{z:"\"|z|pg{}\underline}{2}

Chapter 11: Fweb's INDEX. 105

Here the colon is the value of `makeindex.actual'; it separates the sort key (before the
colon) from the actual expression to be printed. The macros such as `\>' typeset the
identi�ers in the appropriate way, depending on their use in the code. Note that the
backslashes are quoted with the value of `makeindex.quote', which is by default the double
quote.

Although one might guess that the typesetting macros such as `\>' would be de�ned in
`fwebmac.sty', that is not true. Rather, for various technical reasons they are equated to
macros in `fwebmac.sty' as one of the operations of the `\Wbegin' macro that is executed
at the beginning of every tex �le output by Fweave. For example, `\Wbegin' does the
equivalent of `\let\>\Wid'. Unfortunately, without further action that equating would be
forgotten by a LaTEX run made on the output `index.ind' of makeindex. For that reason,
Fweave appends the appropriate `\Wequate' macro to the end of `makeindex.preamble'.
This is one speci�c instance that necessitates that Fweave write the makeindex style �le.

Each of the `\indexentry's contains the encapsulation character `|' (the value of
`makeindex.encap'). By the conventions of makeindex, everything between the encapsula-
tion character and the closing right brace de�nes a macro expression that acts on the page
number. E.g., the general form above generates the command `\macro{page number}'.
The speci�c macro construction output by Fweave is

\pg{}{possible action macro}{page number}

Here the name `pg' is the value of `makeindex.page'. The action macro is something like
`\underline', which would be used by Fweave to underline the page number to indicate
where a variable is de�ned. A default de�nition of `\pg' is given is `fwebmac.sty'. It is a
three-argument macro, `\def\pg#1#2#3{...}', where the arguments are as follows:

#1 | Integer �le identi�cation number
#2 | Action macro.
#3 | Page number.

The de�nition should contain the construction `#2{#3}'|i.e., the page number must be the
argument of the action macro. The �rst argument is left empty in the `.idx' �le written
by Fweave. This can be �lled in later by the utility idxmerge (see Section 11.3 [Merging
indexes], page 105) that merges the indices from several web �les. For example, in a master
index one might ultimately print page numbers like `II.5', where `II' refers to a �le such
as `test2.web'. To aid this merging process, the root name of the web �le is written as a
comment at the top of the `.idx' �le output by Fweave.

11.3 Using the idxmerge utility to merge indexes

In a large project, one may maintain and work with several Fweb �les. It may be useful
to produce a global index that spans all of those �les. To this end, the utility idxmerge

and associated LaTEX package idxmerge are supplied with the Fweb distribution.

11.3.1 Using idxmerge: Summary

As quick reference for those who have already plowed through the following details, here
is a summary of the procedure. To print a stand-alone index by merging the indexes from
several web sources, do the following. First, create, if necessary, a �le `index.tex' that
\inputs `index.ind'. Then:

Chapter 11: Fweb's INDEX. 106

fweave -XI test1.web
fweave -XI test2.web
fweave -XI test3.web

idxmerge -oindex test1.idx test2.idx test3.idx
% Creates index.ind and index-names.tex.

makeindex -s test1.sty index
latex index

Note the use of the `-XI' option. For further background, see the previous section,
Section 11.2 [Using makeindex], page 103.

11.3.2 Using idxmerge: Details

Suppose one has three �les, `test1.web', `test2.web', and `test3.web'. To use
idxmerge, weave each of the �les separately, using the `-XI' option to create `test*.idx'
and `test*.sty'. Then say

idxmerge -oindex test1.idx test2.idx test3.idx

This creates two output �les: `index.idx', and `index-names.tex'. idxmerge �rst sorts
the list of �le names. It then writes one entry into `index-names.tex' for each �le, of the
form

\idxname{n}{file_namen}

This �le can be \input by the \topofindex command (for an example, see the LaTEX2e
package idxmerge) (supplied with the Fweb distribution) and used to create a list of the
merged �les.

Then it merges the \indexentry commands from each of the input �les into `index.idx',
�lling in the integer �le identi�er n (the position of the �le in the sorted list) into the �rst
argument of the \pg macro. One can now say

makeindex -s test1.sty index

This creates `index.ind', which can be processed by, for example, a simple modi�cation of
the simple LaTEX template given above in Section 11.2 [Using makeindex], page 103. The
only di�erence is that the package idxmerge was used; in that �le, the macros \topofindex
and \idxname are appropriately de�ned to print out a numbered list of the merged �les to
cross-reference into the numerical �le- and page-number entries in the body of the index.
Here is an example (provided in the Fweb distribution):

% index.tex --- skeleton for printing a stand-alone index.
\documentclass{article}
\usepackage{fwebmac,idxmerge}

\begin{document}

\input{\jobname.ind}

\end{document}

Chapter 12: CUSTOMIZATION 107

12 CUSTOMIZATION

The default behavior of Fweb can be changed in a variety of ways.

1. unix environment variables (logical variables in VMS) a�ect path or �le
names.

2. An initialization �le resides in the home directory.

3. A style �le resides in the current directory.

The initialization �le (usually called `.fweb') is intended to contain command-line op-
tions (one per line) that are to be used in every run. See Section 12.2 [Initialization],
page 108.

The style �le (called `fweb.sty' by default; see Section 4.2.71 [-z], page 35) is intended to
provide more local customization, perhaps di�ering for each source �le and group of source
�les. The style �le does not contain command-line options; rather, it contains parameter
settings that override Fweb's defaults. The `-p' option (see Section 4.2.46 [-p], page 28)
may be used to specify a style-�le entry in `.fweb' (i.e., a global value for all source �les)
or on the command line (i.e., a value used for a single run).

The order of processing is:

1. Evaluate environment variables. See Section 12.1 [Environment variables],
page 107.

2. Read `.fweb' and remember its contents; sort those into three groups:
options beginning with `-', beginning with `&', and beginning with a letter
(�le names) . See Section 12.2 [Initialization], page 108.

3. Process `.fweb' options beginning with `-' (or `+', for backward compati-
bility), except for `-p'.

4. Read and process command-line options, except for `-p'. See Section 4.2
[Options], page 15.

5. Process remaining `.fweb' options (either �le names, or options beginning
with `&').

6. Process any `-p' options from `.fweb'. See Section 4.2.46 [-p], page 28.

7. Process the style �le. See Section 12.3 [Style], page 112.

8. Process any `-p' options from the command line.

Unfortunately, because not all options are processed immediately when they are read,
errors may not show up when one expects. For example, nothing is actually processed while
`.fweb' is being read; its contents are just being stored. It could therefore happen that a
syntax error in entering a `-p' option in `.fweb' may not be reported until after the style
�le has been read, possibly confusing the user as to the source of the error.

12.1 Environment variables

FWEB_HDR_INCLUDES| Colon-delimited list of directories for the C preprocessor (in the
form of gcc) to search for `#include' header �les. This is used in conjunction with the `-H'
option; see Section 4.2.17 [-H], page 20. (One can append to this list by means of the `-I'
option, provided that option comes after the `-H'; see Section 4.2.19 [-I], page 21.)

Chapter 12: CUSTOMIZATION 108

FWEB_INCLUDES| Colon-delimited list of directories to search for `@i' include �les. (One
can append to this list by means of the `-I' option, provided that option comes before any
use of `-H'; see Section 4.2.19 [-I], page 21.)

FWEB_INI | Name of the initialization �le. If not de�ned, either `.fweb' or `fweb.ini'
is chosen, depending on the machine. The initialization �le always resides in $HOME.

FWEB_STYLE_DIR | Directory in which the style �le resides. If not de�ned, the current
directory is used.

12.2 Initialization

Although some aspects of Fweb's behavior are hard-coded, many can be changed and/or
initialized by the user.

12.2.1 The initialization �le

On startup, Fweb attempts to read an initialization �le. This always resides in the
user's home directory. It is usually called `.fweb' (`fweb.ini' on personal computers). The
default �le name can be overridden by the environment variable FWEB_INI.

One may put into `.fweb' any option that might be used as a command-line option.
(Presently, there must be just one entry per line.) If the option begins with a `-' (or a `+'
for backward compatibility), it is processed before the actual command-line options; if it
begins with `&' or is a �le name, it is processed after. Generally, `.fweb' options should
begin with `-' so that one may override them from the command line. The `%' sign begins
a comment terminated by the end-of-line.

12.2.2 Memory allocation

The command-line option `-y' (see Section 4.2.69 [-y], page 35) is used to change the
default allocation for a dynamic array. The arrays have a one- or two-character abbreviation
denoted by aa. Some error messages will use this abbreviation when suggesting that one
increase a default allocation. To query the present allocations of variable aa, just say `-yaa'.
To query everything, say `-y'.

This whole scheme is somewhat annoying. In most cases, dynamic arrays should be
reallocated automatically. That can be done without too much di�culty, but I was reluctant
to try it for Version 1.61 in fear of breaking something. Please wait for the year 2000.

If one uses `-y' to examine the maximum permitted values of these parameters, one will
note the magic number 10239 appearing occasionally. This number is a bit less than 64K/5;
it is a signature of an inherently 32-bit design that goes back to Knuth. Unfortunately, this
number can't be increased without some radical redesign. Wait for the year 2100.

12.2.2.1 `-yb': Maximum bytes for identi�ers, index entries, and
module names

Unique identi�ers, index entries, and module names are stored contiguously in a large
memory area, the size of which is controlled by `-yb'. The default may need to be increased
for very large source �les, or decreased to squeeze things into a personal computer. See also
Section 12.2.2.20 [-yn], page 111.

Chapter 12: CUSTOMIZATION 109

12.2.2.2 `-ybs': Size of the change bu�er, in bytes

Information from change �les is read into the change bu�er, whose size is controlled by
`-ybs'. It should not be necessary to change this unless an error message speci�cally tells
one to do so.

12.2.2.3 `-ycb': Size of line bu�er for C output, in bytes

Ftangle outputs lines of a �xed maximum length. It attempts to split them in a
reasonable way, dependent on the language. When it absolutely can't �gure out how to
split the line, it will issue a warning message and split it anyway. The `-ycb' option controls
the maximum output line length for C and C++.

The analogous command `-yxb' controls the output line length for TEX and the verbatim
mode. See Section 12.2.2.29 [-yxb], page 112.

12.2.2.4 `-ycf': Size of a Ratfor bu�er, in bytes

The sizes of bu�ers used by Ratfor for constructing messages about the commands it
is expanding are controlled by `-ycf' and `-ycg'.

12.2.2.5 `-ycg': Size of another Ratfor bu�er, in bytes

The sizes of bu�ers used by Ratfor for constructing messages about the commands it
is expanding are controlled by `-ycf' and `-ycg'.

12.2.2.6 `-yd': Increment for expanding the dots table

The \dots" table is used for Fortran to hold information relating to \dot" operators
such as `.NE.'. In Fortran{90, additional such operators can be added by the program,
so the table can grow dynamically. The `-yd' option controls how many additional entries
are made available each time the table size needs to be reallocated.

12.2.2.7 `-ydt': Maximum number of deferred macro tokens

Deferred Fweb macros are ones de�ned in the code part rather in the de�nition part.
(Their use is normally prohibited; see Section 4.2.59.1 [-TD], page 31.) `-ydt' controls how
many bytes are set aside for the storage of these replacement text of those macros. See also
Section 12.2.2.8 [-ydx], page 109.

12.2.2.8 `-ydx': Maximum number of deferred macro texts

`-ydx' controls how many deferred macros are permitted. See also Section 12.2.2.7 [-ydt],
page 109.

12.2.2.9 `-yid': Maximum depth of �le inclusion

Files included by `@i' can themselves contain `@i' commands, to a nesting level controlled
by `-yid'.

Chapter 12: CUSTOMIZATION 110

12.2.2.10 `-yif': Maximum number of unique include-�le names

The number of unique �le names appearing in `@i' commands is controlled by `-yif'.

12.2.2.11 `-ykt': Stack size for Ftangle

Ftangle uses a stack to deal with the web of module names|i.e., a named section can
refer to another module name. The size of this stack is controlled by `-ykt'.

12.2.2.12 `-ykw': Stack size for Fweave

Fweave's stack handles the possibilities that code mode can be embedded in a module
name, or vice versa. The maximum nesting level for such mode changes is controlled by
`-ykw'.

12.2.2.13 `-yll': Line length for Fweave's output, in bytes

`-yll' controls the length of each line in the .tex �le output by Fweave.

12.2.2.14 `-yln': Maximum length of module names or strings, in
bytes

When each module name or string is parsed, it is stored temporarily in a bu�er whose
length is controlled by `-yln'.

12.2.2.15 `-ylb': Maximum number of nested loops in Ratfor

In Ratfor, various loops such as `while' are translated into their Fortran equivalents.
`-ylb' controls the maximum nesting level of such expandable constructions.

12.2.2.16 `-ylx': Maximum length of expressions that can be
expanded with the post-increment operators of Fortran
or Ratfor

Fortran and Ratfor can expand expressions such as `x(i) += dx' into their Fortran
counterparts such as `x(i) = x(i) + dx'. It does so in a very straightforward way, by
copying the expression to the left of the equals sign. `-ylx' controls the maximum size of
that expression.

12.2.2.17 `-ym': Maximum number of sections

`-ym' limits the maximum number of sections, both named and unnamed. (Each un-
named section is counted separately.) The absolute maximum number of sections is 10239,
probably one of the most stringent restrictions in Fweb's design. (This number is a bit less
than 1/5 of 64K.)

12.2.2.18 `-yma': Maximum number of arguments to Fweb macros

The maximum number of arguments to Fweb macros (de�ned by `@m') is limited by
`-yma'.

Chapter 12: CUSTOMIZATION 111

12.2.2.19 `-ymb': Size of the bu�er for expanding Fweb macros

The expansion of each Fweb macro is done in a bu�er whose size is controlled by `-ymb'.
(In some situations, particularly in Ratfor, more than one such bu�er can be open at once.)

12.2.2.20 `-yn': Maximum number of identi�ers and module
names

A structure is associated with each unique identi�er and module name. The maximum
number of such structures is controlled by `-yn'. See also Section 12.2.2.1 [-yb], page 108.

12.2.2.21 `-ynf': Maximum number of open output �les

In addition to Ftangle's usual output �le|e.g., test.c|additional �les may be opened
by means of the `@O' (see Section 5.5.20 [ATO], page 47) or `@o' (see Section 5.5.21 [ATo],
page 47) commands. Depending on the situation, some of these �les may remain open
simultaneously. The maximum number of such �les is controlled by `-ynf'.

12.2.2.22 `-yop': Maximum number of entries in the table for
operator overloading.

In Fweave, the appearance of an operator can be changed (overloaded) by means of
the `@v' command (see Section 5.5.27 [ATv], page 49). Each such operator is entered into
a table, the maximum size of which is controlled by `-yop'.

12.2.2.23 `-yr': Maximum number of cross-references

The Index cross-reference information (in which sections each identi�er is used or de�ned)
is maintained in a large array of structures, one structure for each cross-reference. The
maximum number of cross-references is controlled by `-yr'.

12.2.2.24 `-ys': Maximum number of scraps

The maximum number of scraps is controlled by `-ys'. For a discussion of scraps, see
Section 4.2.2 [-1], page 16.

12.2.2.25 `-ysb': Size of style-�le input-line bu�er

The maximum length of each input line of the style �le (fweb.sty by default) is con-
trolled by `-ysb'.

12.2.2.26 `-ytt': Maximum number of tokens that Ftangle can
process

A token is an identi�er, numerical constant, operator, etc. Ftangle must read in and
store all tokens in the entire source �le, because they can be output in a di�erent order
than they are input. The maximum number of tokens is controlled by `-ytt'.

Chapter 12: CUSTOMIZATION 112

12.2.2.27 `-ytw': Maximum tokens in the current section being
processed by Fweave.

Unlike Ftangle, Fweave need only read in one section at a time. The maximum
number of tokens in any section is controlled by `-ytw'.

12.2.2.28 `-yx': Maximum number of texts

For Ftangle, a text is either the replacement text of a macro, or the contents of a
named section. The maximum number of such texts is controlled by `-yx'.

For Fweave, a text is a phrase that arises from combining primitive scraps during the
translation stage of phase 2.

For both processors, the absolute maximum number of texts is 10239.

12.2.2.29 `-yxb': Size of line bu�er for TEX and verbatim output

This option is like `-ycb' (see Section 12.2.2.3 [-ycb], page 109), but controls the size of
the output line for the TEX (`@Lx') and verbatim (`@Lv') languages.

12.3 The Style �le

A style �le (default name `fweb.sty') may reside in the user's current directory (or the
directory speci�ed by the environment variable FWEB_STYLE_DIR). The default name can
be changed by the command-line option `-z' (see Section 4.2.71 [-z], page 35).

The style �le is processed after all command-line options have been processed, except
that the command-line option `-p' (see Section 4.2.46 [-p], page 28) gets special treatment.
Note that that option bu�ers up style-�le entries (i.e., one may use more than one `-p'
option). `-p' options placed in `.fweb' are treated as residing in a temporary �le that is
read just before the local style �le; thus, those behave as `global' style-�le entries that will
be overridden by a matching entry in the local style �le. `-p' options on the command
line will be processed after the local style �le, thus override corresponding options in either
`.fweb' or the local style �le.

To summarize the previous discussion, the local style �le is intended to contain settings
that are common to a particular source �le. Settings common to all source �les can be put
into `.fweb' by means of the `-p' option. To override a setting for a single run, use a `-p'
option on the command line.

Style-�le entries have the form

keyword [=] value

The equals sign is always optional. The `value' is usually a double-quoted string, but may
sometimes be an integer or a single-quoted character. For example,

LaTeX.class.options = "twoside"
LaTeX.package "indentfirst,multicol"
mark_defined.fcn_name 0
line_char.N 'C'
color.error = "red"
Color.red = "\e[01;31m"

Chapter 12: CUSTOMIZATION 113

The syntax is completely free-form. Periods within keywords are precisely equivalent to
underscores, but are useful heuristically for associating a structure-like hierarchy to some
of the commands. Non-printable characters in strings can be speci�ed as octal constants
(e.g., `\033'), hexadecimal constants (e.g., `\x1B'), or one of the ANSI escape sequences
`\a', `\b', `\f', `\n', `\r', `\t', and `\v'. The non-ANSI escape sequence `\e' (escape) is
also supported; that is particularly useful for color processing (see Section 12.3.7 [Color],
page 117).

Various of the style-�le parameters take a language subscript. Those are

C C

Cpp C++

N Fortran-77

N90 Fortran-90

R RatFor-77

R90 RatFor-90

V Verbatim

X TEX

Thus, line_char.N is the comment character for Ftangle's line commands (see Sec-
tion 12.3.8.4 [line char], page 119), for Fortran-77 code.

Unfortunately, the descriptions of the parameters aren't all completed yet. To query the
default values, say `ftangle -Z' (see Section 4.2.70 [-Z], page 35).

12.3.1 Customizing Fweave's index

In the following, `???' denotes the name of various subparameters.

12.3.1.1 index.???

index.name is the name of the index section. This string is used in \Wbegin to initialize
the TEX macro \INDEX. The index section is recognized by matching, for a starred section,
the actual section name against the contents of \INDEX. When they match, a new page and
two-column mode are begun. These rules imply that the last section of one's source �le can
be titled `\INDEX', as in

@* \INDEX.

index.tex is the name of the �le into which the Index is written. The character `#' is
translated into the root name of the web �le, as for example `#.ndx'.

index.preamble are TEX commands that begin the Index.

index.postamble are TEX commands that end the Index.

index.collate speci�es the collating sequence for the Index.

12.3.1.2 delim_?

delim_0 is the string to insert after the identi�er in an index entry.

delim_n is the string to insert between two section numbers in an index entry.

Chapter 12: CUSTOMIZATION 114

12.3.1.3 group_skip

group_skip is a string of TEX commands to insert between letter groups.

12.3.1.4 item_0

item_0 is the TEX command to begin an index entry.

12.3.1.5 language.???

language.prefix begins a language entry.; language.suffix ends one.

12.3.1.6 lethead.???

lethead.prefix begins a letter group; lethead.suffix ends one. The
ag lethead.flag
controls the format of the letter group: if it is zero, nothing is inserted; if it is positive, an
upper-case letter is inserted; if it is negative, a lower-case letter is inserted.

12.3.1.7 underline.???

underline.prefix is the TEX command to begin an underlined index entry.

underline.suffix is the TEX command to end an underlined index entry.

12.3.2 Customizing the module list

modules.tex is the name of the �le into which the module names are written.

modules.preamble is a string of TEX commands to begin the list of modules.

modules.postamble is a string of TEX commands to end the list of modules.

modules.info is the name of the TEX macro that formats the command line and related
information.

12.3.3 Customizing the Table of Contents

contents.tex is the name of the �le into which the Table of Contents is written.

contents.preamble is the TEX string that begins printing the Table of Contents.

contents.postamble is the TEX string that ends the Table of Contents.

12.3.4 Customizing cross-reference subscripts

When Fweave pretty-prints code, it can attach cross-reference subscripts to various
kinds of identi�ers such as function or macro names. [A bullet (�) for a subscript indicates
that the name was de�ned in the current section.] The actual marking of the cross reference
is done by the command `@[' (see Section 5.7 [AT[], page 51). This is usually done implicitly;
for example, the commands `@a', `@d', and `@m' issue an implicit `@['. (See the discussion of
`@a' in Section 5.4.4 [ATa], page 40.) In C, various declarations of variables also result in
such an implicit mark.

Chapter 12: CUSTOMIZATION 115

Various nuances in the type (possibly underlined) used for the subscript give a hint about
what kind of identi�er Fweave thinks it's working with. For more information about the
typesetting conventions, see the de�nition of the primitive macro `\W@IN' in `fwebmac.web'.]
The following
ags select which identi�ers are so subscripted.

To see the default values of these parameters, say `ftangle -Zmark_defined'. To turn o�
the subscripting operations completely, use the `-f' option (see Section 4.2.16 [-f], page 20).

(Discussion to be completed.)

12.3.5 Customizing the behavior of `fwebmac.sty' macros

To some extent, the behavior of Fweb's macro package `fwebmac.sty' can be changed
by means of the following parameters. (Please try not to actually edit `fwebmac.sty' itself;
it is produced automatically from `fwebmac.web'. And please don't edit that �le either!)

12.3.5.1 format.???

The format parameters are strings that specify the macro to be used to pretty-print var-
ious kinds of identi�ers. These macro names are usually written automatically by Fweave,
but they may also be used directly by the user in the TEX documentation. One can see
their default values by typing `ftangle -Zformat.'. For example, the default value for
format.typewriter is "\\.".

The macro names de�ned by the format �elds are not de�ned in `fwebmac.sty'. They
are dummy names, and can be changed to any other name not already in use without
a�ecting the operation of Fweb. This ability is necessary because other packages might
usurp macros like \. for their own purposes.

Thus, Fweave normally writes out the macro \. to typeset a string. Suppose, however,
that some user package uses \. for something else. (One might realize this when LaTeX
crashes when it encounteres a \. that was written automatically by Fweave.) To �x this
problem, put into `fweb.sty' the lines

format_KEYWORD = "\\WTT"
format_keyword = "\\WTT"
format_typewriter = "\\WTT"

Here \WTT can be any name not already in use; you need not (and should not) give a
de�nition for \WTT.

Macros like \. or \WTT are given their values during the execution of the \Wbegin macro
that begins the output from Fweave. The style-�le values are written as arguments to
that macro, and essentially a command like \let\.\Wtypewriter is executed, where the
internal macro \Wtypewriter is de�ned in `fwebmac.sty'. If you want to change the way
Fweb typesets a particular kind of identi�er, you must rede�ne the internal macro name,
not the one used in the format parameters.

Here are the internal macros used by `fwebmac.sty' to typeset the various kinds of
identi�ers. The associated style-�le parameters are shown in parentheses.

\Wid ordinary identi�ers (format.id)

\WID completely upper-case ordinary identi�ers (format.ID)

Chapter 12: CUSTOMIZATION 116

\Wshort single-character ordinary identi�ers (format.short_id)

\WidD outer macros (format.outer_macro)

\WIDD completely upper-case outer macros (format.outer_macro)

\WidM FWEB macros (format.WEB_macro)

\WIDM completely upper-case FWEB macros (format.WEB_macro)

\Wreserved
reserved words (format.reserved)

\WRESERVED
completely upper-case reserved words (format.RESERVED)

\Wintrinsic
library/intrinsic function names (format.intrinsic)

\Wkeyword
certain Fortran keywords (format.keyword)

\WKEYWORD
completely upper-case keywords (format.KEYWORD)

\Wtypewriter
character strings (format.typewriter)

12.3.5.2 indent.???

indent.TeX speci�es paragraph indentation for the TEX part.

indent.code speci�es similar indentation for the code part.

12.3.5.3 LaTeX.???

For LaTEX2e, the default document class can be overridden by LaTeX.class. The
default class is article, and Fweb has not been tested with other document classes,
except minimally with revtex (see Section 10.1.3.2 [REVTeX], page 94).

Options to the document class can be speci�ed by LaTeX.class.options.

User packages can be given by LaTeX.package.

Options to user packages can be speci�ed by LaTeX.package.options. There may be
just one LaTeX.package command and just one LaTeX.package.options command. If it
is necessary to issue multiple such commands, then put them into doc.preamble. See the
discussion in Section 10.1.3.1 [Document class], page 93.

When running under LaTEX prior to LaTEX2e (or with REVTeX; see Section 10.1.3.2
[REVTeX], page 94), the document is (e�ectively) begun by the command \documentstyle[options]{style}.
The options �eld can be speci�ed by LaTeX.options; the style �eld by LaTeX.style.

12.3.6 Remapping control codes

Control-code remappings are sophisticated and unwise. They are mostly intended for
the developer, so are not explained here.

Chapter 12: CUSTOMIZATION 117

12.3.7 Color output

In the design of Fweb, provision has been made for writing various messages to the ter-
minal in color|e.g., serious error messages might appear in red. This feature was motivated
by the color ls of Linux. It is installed automatically if the termcap library is present.

Messages output from Fweb are ranked according to an internal message-type table;
each type can be associated with a color that can be changed in the style �le. Presently,
the message types (hopefully self-explanatory) are

ordinary
program_name
mod_name
info
warning
error
fatal
mod_num
line_num
in_file
include_file
out_file
timing

The associated style-�le parameters are the above names prefaced by `color.'|e.g.,
color.warning. Each of those has a default value, such as color.error = "red". Those
defaults can be displayed by saying `ftangle -Zcolor'.

What the color actually means in practice depends on the color mode, set by the `-C'
option (see Section 4.2.8 [-C], page 18). That selects one of several primitive palettes, as
follows:

0 No color; ordinary black-and-white output. This is the default (and
the mode used when the termcap library is not present).

1 ANSI color. With a color terminal that supports ANSI color es-
cape sequences, one has available the following colors: "black",
"red", "green", "yellow", "blue", "magenta", "cyan", "white",
and "default". These are displayed with bold attribute (that is,
bright, not dim). `"default"' stands for the usual black on white
background, or vice versa.

2 Bilevel. This is for terminals that don't support true color, but
do support a double-bright mode and reverse video. Colors are
mapped onto various combinations of those two display attributes,
according to an internally de�ned scheme. For example, "red" is
mapped onto the pair of escape sequences `md', `mr' (double-bright
mode in reverse video).

3 Trilevel. As above, but adds underlining capability.

4 User-de�ned colors. This implements a minimal set of defaults. It
is intended that the user add de�nitions in the style �le to override
those defaults.

Chapter 12: CUSTOMIZATION 118

The mechanism is intended to work with systems that support the termcap library.
The terminal is controlled by writing appropriate escape sequences to it. The style-�le
parameters that store the escape sequences are the color name preceded by `Color.' (note
the upper case `C')|e.g., `Color.red'. For cases like reverse video (standard termcap
abbreviation `mr'), the escape sequences are determined by querying the termcap database
(usually `/etc/termcap') through the termcap library functions. For ANSI color (color
mode = 1), ANSI escape sequences are hard-coded into Fweb. One can see the escape
sequences Fweb assigns to colors by saying `ftangle -ZColor'.

For any non-zero color mode, one can override Fweb's default choices for color map-
pings and escape sequences by rede�ning one or more of the Color parameters in the style
�le. The escape sequences can either be speci�ed in raw form|e.g., for color mode = 1,
a default is Color.red = "\e[01;31m"|or in the form of a sequence of two-character ab-
breviations that are de�ned in the termcap documentation|e.g., for modes 2 and 3, the
default is Color.red = "mdmr". (When one displays that with the `-Z' option, Fweb will
display the actual escape sequences that it determines from the termcap database, not the
abbreviations. For both input and output, note that one may use the non-ANSI escape
sequence `\e' to represent the escape character `\033'.)

When one says `-ZColor', for color modes 1{3 all of the parameters are listed as modi�ed,
even if the user rede�nes none. That occurs because the defaults are overwritten internally
when the color mode is set.

Fweb's con�guration script attempts to determine whether the termcap library is
present; if not, they link in dummy termcap routines (`termcap0.web'). To override
this behavior, change the appropriate lines in `defaults.mk', produced by the command
./configure.

Color message output is not fully debugged (it's a frill, after all), so some messages that
should reasonably be colored may not be so in the present release.

12.3.8 Miscellaneous style-�le parameters

There are a variety of miscellaneous parameters.

12.3.8.1 ASCII_Fcn

See Section 5.6.2 [ATdquote], page 51.

12.3.8.2 cchar

Continuation character for Fortran code output.

12.3.8.3 cdir_start

This parameter has the form cdir_start.l, where l is one of `C', `Cpp', `N', `N90', `R',
`R90', `X', or `V'. The contents of this parameter is written immediately after the `@?' that
begins a compiler directive.

Chapter 12: CUSTOMIZATION 119

12.3.8.4 line_char.l (Ftangle)

By default, Ftangle outputs comments indicating line numbers in the web �le from
which the tangled output comes. (This information can be used by debuggers, especially
those for C and C++, to correlate error messages to the web source.) The line_char

parameter sets the comment character that begins the line comment.

12.3.8.5 line_length.l (Ftangle)

This parameter is used by the Fortran-like languages to control the length of the
output line in the `.f' �le produced by Ftangle. For Fortran-77, its default value is
the venerable 72. For Fortran-90, its default is 73. Using that value makes it possible to
generate code that is compatible with both �xed- and free-form format (by continuing lines
with an trailing ampersand in column 73 and another ampersand in column 6 of the next
line).

12.3.8.6 meta.???.?, meta.???.hdr.? (Ftangle)

These parameters customize the treatment of meta-comments. Fundamentally, meta-
comments consist of material enclosed by `@(...@)'. The header information usually written
at the top of the �le output by Ftangle (see Section 4.2.59.4 [-Tv], page 31) is also treated
as a meta-comment. For that header material, a separate set of parameters is provided,
such as meta.top.hdr.

meta.top.l speci�es text that precedes material enclosed by `@(...@)'. Here l is one of
the standard language subscripts (see Section 12.3 [Style], page 112) such as N90.

meta.prefix.l begins each line of the meta-comment.

meta.bottom.l speci�es text that follows the meta-comment.

12.3.8.7 outer.???

Ftangle converts `@d' (see Section 5.5.6 [ATd], page 42) to outer.def, and `@u' (see
Section 5.5.26 [ATu], page 49) to outer.undef.

12.3.8.8 protect.?

The strings protect.l specify the protection character(s) to end a continued line.

12.3.8.9 suffix.?

The extension for the �les output by Ftangle is speci�ed by suffix.l.

12.3.8.10 macros

The default name of the macro package to be read in. [This is usually `fwebmac.sty'
(see Section 10.1.2 [fwebmac.sty], page 92), but can be overridden by the command-line
option `-w'; see Section 4.2.66 [-w], page 34.]

Chapter 12: CUSTOMIZATION 120

12.3.8.11 limbo.begin, limbo.end

`limbo.begin' is TEX material to be printed at the beginning of the limbo section, just
before the text from `@l' commands. See Section 5.5.14 [ATl], page 45. (This command
was previous called just `limbo', and that still works.)

Similarly, `limbo.end' is printed at the end of the limbo section.

Thus, the beginning of the �le output by Fweave looks like this:

\input fwebmac.sty

\Wbegin{...}
[contains \documentclass, \usepackage, <doc.preamble>, \begin{document}]

<limbo.begin>
[contents of any @l commands]
[user's TeX commands from the limbo section]
<limbo.end>

The `limbo.end' command is useful for printing the entire document in two-column
format. For more discussion, see Section 10.1.3.5 [LIndex], page 96.

12.3.8.12 meta.??? (Fweave)

(To be �nished.)

12.3.8.13 preamble.???

Additional TEX material can be inserted at the beginning of a named section with
preamble.named and at the beginning of an unnamed one with preamble.unnamed.

12.3.8.14 dot_constant.???.?

In Fortran, `dot' constants such as .LT. are begun and ended by periods. In
special circumstances, the beginning and ending characters may be modi�ed by dot_

constant.begin.l and dot_constant.end.l.

12.3.8.15 null_file

The name of the null �le or device. For more discussion, see Section 3.3 [Change �les],
page 13.

12.3.9 Automatic �le name completion

For more information, see Section 4.2.14 [-e], page 19.

Chapter 13: USAGE TIPS and SUGGESTIONS 121

13 USAGE TIPS and SUGGESTIONS

In this section are collected various tips and suggestions to help one make full use of
Fweb. Additional hints broken down by each supported source language can be found in
Chapter 8 [Languages], page 83.

13.1 Converting an existing code to Fweb

To convert an existing code to Fweb, one should do the following. (The following simple
procedure assumes that one puts all the subroutines into the unnamed module. However,
other more elaborate schemes are possible.)

1. Place invisible commentary about the author, version, etc. at the beginning of the
source �le by bracketing it with `@z...@x'. The `@z' must be the �rst two characters
of the �le.

2. Next, set the language by including a command such as `@n' or `@c++'.

3. Place an `@a' command (switch into unnamed code) before each program unit (e.g.,
main program, subroutine, or function).

4. Before each `@a', place an `@*' or `@ 'command, followed by TEX documentation about
that particular section of code.

5. If you have program units longer than about twelve lines, either make them function
calls, if you can a�ord the overhead and can impart su�cient information via the
function name, or break them up into shorter fragments by using named modules.
Insert the command `@<Name of module@>' in place of the fragment you're replacing,
then put that fragment somewhere else, prefaced by `@ 'and `@<Name of module@>='.

6. Make sure your comments are valid TEX. (One can't have things like raw underscores
or dollar signs in comments, since those cause TEX to take special actions.)

7. Beautify and clarify your documentation by using code mode (enclosing stu� between
vertical bars) liberally within your TEX.

8. After you've seen the woven output, you may need to go back and format a few identi-
�ers or section names so that Fweave understands them properly, or you may need to
insert some pseudo-semicolons (`@;'), pseudo-expressions (`@e'), or pseudo-colons (`@:')
(see Section 10.2.1 [Pseudo-operators], page 101).

9. Consider using Fweb's built-in macro preprocessor (see Chapter 7 [Macros], page 62)
to make your code more readable|for example, replace raw numerical constants by
symbolic names.

10. Scienti�c programmers may bene�t from built-in macro-like functions like $PI; see
Section 7.2.3 [Built-in functions], page 66.

11. If you are a Fortran user, for ultimate readability consider converting to Ratfor.
The initial annoyance is getting rid of column-6 continuations. With the aid of a good
editor, this can be done simply. For example, in emacs one can replace the regular
expression [carriage return, �ve spaces, something not equal to space, tab, or 0] with
[backslash, carriage return, six spaces]:

M-x replace-regexp RET

Chapter 13: USAGE TIPS and SUGGESTIONS 122

C-q C-j \.{\ \ \ \ \ }[\^\.\ tab 0]RET
\\\\ C-q C-j \.{\ \ \ \ \ \ }RET

Get rid of the keywords such as then or end if in favor of braces. Change singly-quoted
character strings to doubly-quoted ones. The `-nC' option (see Section 4.2.36 [-nC],
page 25) may be helpful.

13.2 Programming tips and other suggestions

1. Learn how to use the GNU info browser to access the on-line documentation.

2. Read the list of new features and changes for the last several releases. See Chapter 14
[New features], page 124.

3. Periodically check ftp.pppl.gov:/pub/fweb/READ_ME for bug reports and other news.
Make bug reports! See Chapter 15 [Support], page 131.

4. If you have a color terminal, try the option `-C1' (see Section 4.2.8 [-C], page 18, see
Section 12.3.7 [Color], page 117).

5. Any option in `.fweb' that is intended to be processed after the command-line options
should begin with `&' rather than `-'. (This is rarely necessary.) See Section 12.2
[Initialization], page 108

6. Put standard command-line options into `.fweb'. Also put there standard style
parameters|e.g.,

-pindex.tex "#.ndx"
-pmodules.tex "#.mds"
-pcontents.tex "#.cts"

7. Learn how to use the style �le. See Section 12.3 [Style], page 112.

8. Use the info options `-@', `-D', `-y', and `-Z' to �nd out about various internal Fweb
tables (control codes, reserved words, memory allocations, and style-�le parameters).
See Section 4.2.82 [Info options], page 37.

9. Begin all Fweb sources with invisible commentary bracketed by `@z...@x'. See Sec-
tion 5.5.31 [ATz], page 50.

10. Always include an explicit language-setting command in the limbo section. Under
normal circumstances, do not set the language from the command line. See Chapter 8
[Languages], page 83.

11. Keep sections quite short. Knuth suggests a dozen lines. That's quite hard to achieve
sometimes, but almost never should a section be more than a page long. If a block of
code is longer than that, split it up using named modules.

12. It's easy to de�ne macros from the command line to expedite conditional preprocessing.
See Section 4.2.27 [-m], page 23.

13. Use the preprocessor construction `@#if 0...@#endif' to comment out unwanted code.
See Section 7.3 [Preprocessing], page 80.

14. For logical operations with the preprocessor, use `||', not `|'.

15. It's conventional to identify the ends of long preprocessor constructions as follows:

@#if A

Chapter 13: USAGE TIPS and SUGGESTIONS 123

.

.
@#endif // |A|

16. To debug an errant Fweb macro, use the built-in function `$DUMPDEF'. See Sec-
tion 7.2.3.14 [$DUMPDEF], page 70.

17. Use `@?' for compiler directives. See Section 5.8.4 [AT?], page 53. Use the style-
�le parameters `cdir_start' to specify information that will be written out at the
beginning of the line. See Section 12.3.8.3 [cdir start], page 118.

18. Stick to the standard Fweb commenting style `/*...*/' or `//...'. Don't use alter-
natives such as Fortran's column 1 convention; these may not work or may not be
supported someday. See Chapter 6 [Comments], page 60.

19. The meta-comment feature `@(...@)' provides a poor-person's alignment feature. But
it doesn't work very well, and it's not in the spirit of TEX; learn to use `\halign' or
the LaTEX alternatives.

20. In Fortran, use `#:0' to declare readable alphabetic statement labels. See Sec-
tion 7.2.2 [Tokens], page 65 and Section 4.2.75 [-colon], page 36.

21. When mixing languages, de�ne the language of a module at the highest possible level|
e.g., in the unamed module, not after `@<...@>='.

22. Use LaTEX. Plain TEX is no longer supported. Upgrade to LaTEX2e. See Section 10.1.3
[LaTeX], page 93.

23. If you are reading this documentation from printed pages, make sure it's also installed
as an Info package on your system so it can be read interactively with emacs. You can
also read it through a World-Wide Web browser such as Netscape. For the address,
see Chapter 15 [Support], page 131.

13.3 Features for scienti�c programming

Fweb contains a few features particularly intended for scienti�c programming.

1. Several built-in functions generate numerical constants. See `$PI' (Section 7.2.3.47
[$PI], page 76) and `$E' (Section 7.2.3.15 [$E], page 70).

2. Several built-in functions perform mathematical manipulations. See `$EXP' (Sec-
tion 7.2.3.18 [$EXP], page 71), `$POW' (Section 7.2.3.48 [$POW], page 76), `$SQRT'
(Section 7.2.3.56 [$SQRT], page 77), `$LOG' (Section 7.2.3.37 [$LOG], page 75), `$LOG10'
(Section 7.2.3.38 [$LOG10], page 75), `$MAX' (Section 7.2.3.40 [$MAX], page 75), and
`$MIN' (Section 7.2.3.41 [$MIN], page 75).

3. The do-loop macro `$DO' may be useful. See Section 7.2.3.13 [$DO], page 69.

4. C-style array indices can be used by means of the `-n)' option. See Section 4.2.42 [-n)],
page 27.

5. An active bracket feature helps improve the appearance of woven code that uses sub-
scripts and/or superscripts heavily. See Section 4.2.65.3 [-W[], page 33.

Chapter 14: NEW FEATURES 124

14 NEW FEATURES

This info documentation is now accessible on the World-Wide Web; see Chapter 15
[Support], page 131.

Some things that have been added or changed in recent releases are described in the
following.

14.1 Version 1.61

14.1.1 Updates to documentation (v1.61)

1. Fweb supports color modes in which messages to the terminal can appear
in colors chosen by the user; see Section 12.3.7 [Color], page 117. The color
mode is set by the new command-line option `-C' (see Section 4.2.8 [-C],
page 18).

2. A previously undocumented feature is that for the C-like and Fortran-like
languages, Ftangle expands the binary notation `0b...' to an unsigned
decimal number. See Section 2.4 [Phases], page 10.

14.1.2 Rede�ned commands (v1.61)

A few obscure commands have been slightly rede�ned. Sorry about that, but it makes
for more symmetry and ease of recall, and/or solves some technical problems.

1. Although it was never documented, previous versions permitted either
lower or upper case for the `@' commands that set the language|e.g.,
both `@c' and `@C' worked. Now only the lower-case forms work. (The
upper-case forms may have other meanings.)

2. The style-�le parameter `Ext_delimiter' now begins with an upper-case
`E'; formerly it was lower-case.

3. The behavior of the optional argument of the \Title macro has been
slightly rede�ned. The new, more symmetrical form is

\Title[Short title]{Long title}

where Long title is printed on the title page and Short title is used for
the running header within the document. See Section 10.1.3.6 [Table of
Contents], page 96.

4. The line-break commands `@/' and `@\' (formerly identical) now behave
slightly di�erently. `@/' breaks the line just as it would if the line had
been too long and been spontaneously broken. See Section 5.12.2 [AT/],
page 55. `@\' backspaces one unit of indentation after breaking the line.
See Section 5.12.3 [ATbs], page 56. Usually, one should use `@/' (sorry; I
was previously recommending `@\'. For an example in which it is natural
to use `@\', see Section 5.12.3 [ATbs], page 56.

5. The names of some of the code-typesetting macros in fwebmac.sty have
been changed to conform to the convention that they should all start with
`W'. This change will be invisible to you unless you happen to have user
macros of your own that start that way or (perish the thought) you have
rede�ned low-level and obscure code in `fwebmac.sty'.

Chapter 14: NEW FEATURES 125

14.1.3 New features (v1.61)

This release adds some features for managing large projects, including (i) the idxmerge
utility that merges indexes produced by several Fweb �les, (ii) a mechanism for accessing
RCS-like information in the ignorable commentary at the beginning of the �le, and (iii) the
ability to include Fweave-formatted code into a standard LaTEX document. It also �xes
a variety of miscellaneous bugs.

1. A stand-alone index �le suitable for processing by makeindex can be pro-
duced by the `-XI' option. See Section 11.2 [Using makeindex], page 103.

2. Stand-alone indexes produced by `-XI' can be merged with the idxmerge
utility. See Section 11.3 [Merging indexes], page 105.

3. Fweave-formatted code can be included in a standard LaTEX2e document
by means of the fwebinsert package. See Section 10.1.6.1 [Inserting woven
code], page 99.

4. Revision-control-system (RCS) information that appears in the ignor-
able commentary between the optional `@z' and `@x' that begin an Fweb
�le (see Section 5.5.31 [ATz], page 50) is accessible in the body of the
�le through the built-in function $KEYWORD (see Section 7.2.3.30 [$KEY-
WORD], page 72) and the new commands `@K' (see Section 5.5.11 [ATK],
page 44) and `@k' (see Section 5.5.12 [ATk], page 44). These features can
access RCS-like keywords that are not known to RCS itself, as long as they
�t the proper syntax (see Section 5.5.31 [ATz], page 50).

5. The `-h' option now permits easy access to the GNU info browser if it is
installed. See Section 4.2.18 [-h], page 21.

6. Underscored versions of built-in functions have been removed!!! E.g., use
$IF, not _IF. This change was warned about in the last release.

7. Single-character identi�ers can now be completely cross-referenced via the
`-W1' option. See Section 4.2.65.2 [-W1], page 33.

8. Some module warning messages can be eliminated with the `-W@' option.
See Section 4.2.65.1 [-WAT], page 32.

9. The `@q' command (still experimental) has been added to locally turn on
or o� the the line and module comments in the tangled output. See Sec-
tion 5.5.22 [ATq], page 48.

10. The level of verbosity of Fweb's informational messages can be controlled
with the `-M' option. See Section 4.2.26 [-M], page 23.

11. C/C++ programmers may �nd the command `@{' useful. See Section 5.9
[ATlb], page 53.

12. The `-nC' option has been added for Fortran users; it kills commented
lines at a very early stage in the processing. This can be useful when
converting existing codes to Fweb. See Section 4.2.36 [-nC], page 25

13. Fortran-90 (see Section 4.2.31 [-n9], page 24) now defaults to free-form
syntax.

14. As of the non-beta Version 1.61, free-form Fortran-90 now inserts semi-
colons automatically in the code part. Thus, textbook Fortran-90 exam-
ples will weave correctly without the annoyance of explicitly terminating

Chapter 14: NEW FEATURES 126

each statement with a semicolon. (If you prefer to put in the semicolons
explicitly, use `--n;' to turn o� the auto-insertion.) See Section 4.2.33 [-n;],
page 24

15. The default meaning of the `-k' option was changed; now both lower-
and upper-case forms of Fortran I/O keywords are recognized. See Sec-
tion 4.2.23 [-k], page 22.

16. Various changes were made to internal code in `fwebmac.sty'. This should
not a�ect anyone unless you have rede�ned fwebmac macros. If so, you'll
have to compare your versions with the present ones. For example, colons
as argument delimiters in \defs have been removed.

17. It is now (barely) possible to use \documentstyle{revtex} instead of
the default \documentclass{article}. See Section 10.1.3.2 [REVTeX],
page 94.

14.1.4 Signi�cant bugs (v1.61)

1. Perhaps the most signi�cant bug is that some high-order (>= 128) char-
acters in strings may not typeset or be processed correctly. This may be
an issue for some users of foreign-language packages. The di�culty arises
from a design decision made by a previous author. This has at least partly
been �xed, but I eschewed a substantial overhaul for fear of breaking other
things.

14.2 Version 1.53

This release �xes a relatively small number of obscure bugs in fweb-1.52-beta. A few
minor enhancements were also made. They include

1. Sections can be numbered by consecutive integers rather than LaTeX's
default Dewey-decimal form by saying

LaTeX.package = "fwebnum"

See Section 10.1.3.4 [Sections], page 95.

2. The `-H' option (experimental and incomplete) was added. For C and
C++, this option tells Fweave to scan #include �les for `typedef' and/or
`class' de�nitions. See Section 4.2.17 [-H], page 20.

3. The `-k' option was added. This tells Fortran and Ratfor to understand
the lower-case forms of I/O keywords such as `iostat' (with the exception
of `read', `write', and `end'). See Section 4.2.23 [-k], page 22.

4. The `-n:' option was added. This tells Fortran to place statement labels
on a separate line, which is useful when the labels are relatively long. (By
default, Fortran labels are placed on the same line as the thing they are
labeling, which looks good for short labels.) See Section 4.2.34 [-ncolon],
page 25

5. The preprocessor command `@#line' was added. For C code, this adds
an explicit `#line' command to the tangled output �le. This helps to
keep the line numbers between debugger and source �le in sync when an
Fweb preprocessor statement expands to several lines. See Section 7.2.4
[Debugging with macros], page 79.

Chapter 14: NEW FEATURES 127

An implicit `@#line' command is added after each `@%' (see Section 5.8.3
[AT%], page 52) that begins a line (this keeps line numbering correct). To
override this, use the option `-T#'. See Section 4.2.59.6 [-T#], page 31.

6. `-p' (style-�le) options (see Section 4.2.46 [-p], page 28) on the command
line are now processed after the local style �le. See Section 12.3 [Style],
page 112.

7. The functionality of the `-D' command was enhanced to include optional
arguments that limit the information that will be listed. See Section 4.2.11
[-D], page 18.

14.3 Version 1.52

This release was issued only as a beta version. It consists mostly of bug �xes. However,
there are a few other interesting points.

1. fwebmac.sty was enhanced to warn the user to run LaTEX again when the
section numbering hasn't yet been brought up to date. I'm not sure I've
covered all the bases, but before it didn't complain at all.

2. C++ classes are now formatted (identi�ed as reserved words) on the �rst
pass, so forward references such as

@ The class |C|...
@a
class C

{}

will now work. Note that typedef has done this for a while, although there
are still a few glitches.

3. For two years, the documentation has described two control codes as fol-
lows:

@~ --- inhibit line break.
@+ --- force an index entry.

Apparently the code had these de�nitions inverted; it has now been brought
up to date with the documentation. Fortunately these commands are evi-
dently not heavily used, since no one complained.

4. fwebmac.sty was further reworked to interact properly with the user pack-
age multicol. If in fweb.sty one says `LaTeX.package "multicol"', then
the two-column index is done with multicol; this gives various improve-
ments over the \twocolumn format that was used previously. Furthermore,
it's possible to use `multicol' to do one's entire document in two-column
format. This turned out to be relatively simple, but one needs to get the
commands in the proper order. See Section 10.1.3.5 [LIndex], page 96 for
more details. Two-column format substantially cuts down the white space;
I saved about 50% on a 200-page code.

One known glitch with Fweb/multicol is that if one selects page-number
cross-references instead of LaTEX section numbers, page references such as
98c don't get the 'c' correct. This is presumably not a big deal. At this
point, assume that the use of multicol is highly experimental.

5. Further bugs in the C and C++ production rules were �xed.

Chapter 14: NEW FEATURES 128

14.4 Version 1.50

1. The syntax for entries in the initialization �le `.fweb' (see Section 12.2
[Initialization], page 108) has been modi�ed (in a way that is as backward-
compatible as possible). Previously, `+' meant process the option before
the command-line options, `-' meant process it after. This convention was
somewhat hard to remember, given the statement that any command-line
option could be put into `.fweb'; furthermore, just about everything in
`.fweb' should, in fact, be processed before the command-line options. So
now both `+' and `-' mean the same thing, namely process before (and
the `+' notation should fade away as time goes on). If you explicitly want
something to be processed after all command-line options for some tricky
reason, begin it with `&'. I.e., scan your `.fweb' �le for any line beginning
with `-' and replace that with `&'.

2. The LaTEX processor (`-PL') is now the default.

3. The experimental `fwebmacL.sty' macro package supplied with version
1.40 has been substantially reworked and is now the default `fwebmac.sty'.
Remove any reference to `fwebmacL.sty' from your `.fweb' �le.

4. Support for LaTEX2e is now provided. See Section 10.1.3 [LaTeX], page 93.

5. The style-�le parameter index.name was added. This is the section name
to be given to the Index (see Chapter 11 [Index], page 103), which should
be the last major (starred) section. It becomes the contents of the macro
\INDEX. Therefore, one can end one's source �le by saying

@* \INDEX.

6. The `$IF...' class of built-in functions was reworked. They should now be
more robust, recursive, and intuitive. Simple uses of these functions should
work as before. However, complicated uses that depended on tricky things
about the order of expansion of arguments may require revision. Carefully
compare the descriptions of these functions in the documentation (e.g., see
Section 7.2.3.23 [$IF], page 71) with your usage of them in any pre-existing
code.

In some cases, if a previous constructions using $IF no longer works, it
might work if you say

@m $IF(a,b,c) $$IF(a,b,c)

and then use $$IF in your code. (This forces an extra level of macro
expansion.) The same remark goes for $DEFINE.

The old forms `_IF' etc. no longer work; convert to `$IF'.

7. The option `-j' was added. This inhibits multiple inclusions via `@i' of the
same include �le. See Section 4.2.22 [-j], page 22.

8. One now has the ability to change the comment character that begins
Ftangle's `line' command. In the style �le, say, e.g.,

line_char.N '#'

to change the default `*line' output by Ftangle in Fortran mode to
`#line'. This could be useful if one runs the C preprocessor on the tangled
Fortran output.

9. Fweave's processing of typedef statements in C and C++ was improved.

Chapter 14: NEW FEATURES 129

10. Fweb should now be able to process C++ templates and exception han-
dling, at least in simple situations. The typesetting of C++ references (e.g.,
`int&') was also improved. Please report any di�culties.

11. There were various miscellaneous obscure bug �xes.

14.5 Version 1.40

1. The meaning of `@+' has changed. (SORRY!) Formerly, this inhibited a
line break; that function is now performed by `@~'. The new meaning of
`@+' is to force an index entry (the opposite of `@-', which inhibits an index
entry).

If you have large codes using the old `@+' that you do not wish to convert,
you can recover the old mappings by placing the following commands into
`fweb.sty':

yes_index = "~"
no_line_break = "+"

However, please try to make the conversion; the new codes are intended to
be more symmetrical and easier to remember.

2. Built-in functions now begin with `$', not `_'. The underscore pre�x was
a bad design decision; it introduces con
icts with ANSI C in certain cir-
cumstances. To ease conversion, the old forms are still understood. Thus,
one can use `$EVAL' and `_EVAL' interchangably. However, do not use the
underscore forms; they will be deleted in future releases.

3. Full LaTEX support. Fweb no longer usurps LaTEX's \output routine,
and LaTEX's sectioning commands, Table-of-Contents commands, etc. are
used. The appearance of the woven output is changed to be more book-like.
(This is an experiment.)

4. Verbatim language. `@Lv' selects a language-independent format. See Sec-
tion 8.2.6 [Verbatim], page 88

5. Language-independent mode. The N mode inhibits pretty-printing, blank
compression, etc.; source code is essentially copied literally from input to
output. This mode is turned on automatically by the verbatim language,
but it can also be used with the other languages. It is turned on by the
command-line option `-N' or the local command `@N'. See Section 5.5.17
[ATN], page 46.

6. Writing of temporary �les. When the `-F' command-line option is in e�ect,
tangled output is written to temporary �les instead of the �nal target �les,
and the temporary �les are compared to the last version of the target �les
on disk. If there is no change, the target �les are not updated. This avoid
unnecessary recompilation if only the documentation, not the code, was
changed. See Section 4.2.15 [-F], page 19.

7. Converting output tokens to lower case. See Section 4.2.61 [-U], page 32.

8. The built-in functions `$E' and `$PI'. See Section 7.2.3.15 [$E], page 70,
Section 7.2.3.47 [$PI], page 76.

9. The built-in functions `$EXP', `$LOG', and `$LOG10'. See Section 7.2.3.18
[$EXP], page 71, Section 7.2.3.37 [$LOG], page 75, and Section 7.2.3.38
[$LOG10], page 75.

Chapter 14: NEW FEATURES 130

10. `$MAX' and `$MIN' generalized to take arbitrary list of arguments. See Sec-
tion 7.2.3.40 [$MAX], page 75, Section 7.2.3.41 [$MIN], page 75.

11. The marriage-saver option. In response to a serious user request, see Sec-
tion 4.2.6 [-B], page 17.

Chapter 15: SUPPORT 131

15 SUPPORT

Fweb is supported by John Krommes, krommes@princeton.edu. This project is a
de�nitively spare-time activity !!! Bug reports submitted with very short test �les will be
veri�ed, although not necessarily in real time. For very simple �xes, a change �le may be
provided. Generally, however, bugs are not �xed until the next release. Releases occur
intermittently, depending on my many other professional obligations.

Suggestions are very welcome. Many of Fweb's current features were incorporated in
response to users' requests. However, the queue for future improvements is long; nothing
may happen immediately. The next major release of Fweb, Version 2.00, is planned for ap-
proximately the year 2000. (You may be relieved to know that, to the best of my knowledge,
Fweb does not su�er from the Y2K bug.)

This info documentation is now accessible on the World-Wide Web from

http://w3.pppl.gov/~krommes/fweb_toc.html.

You can subscribe to one or both of two Fweb mailing lists, fweb-users and fweb-

installers. To subscribe, send e-mail to majordomo@pppl.gov. In the body of the mes-
sage, say, e.g.,

subscribe fweb-users

You will receive introductory information describing how these lists are intended to be
used. To unsubscribe at any time, substitute unsubscribe for subscribe in the above
instructions.

Archive �les containing the messages sent to the Fweb mailing lists are kept in

ftp.pppl.gov:/pub/fweb/archive/fweb-{users,installers}.archive.

In addition to anonymous ftp, these �les may be obtained by sending a message to
majordomo@pppl.gov of the form

get fweb-users fweb-users.archive.

Appendix A: Installing Fweb 132

Appendix A Installing Fweb

Here is the bare-bones installation procedure for unix users:

1. Download the zgip-compressed tar �le from ftp.pppl.gov:/pub/fweb. The name of
the �le contains the version number|e.g., `fweb-1.61.tar.gz'.

ftp ftp.pppl.gov
bin
get fweb-1.61.tar.gz
quit

2. Uncompress and unpack the tar �le:

gunzip fweb-1.61.tar.gz
tar -xf fweb-1.61.tar

If the GNU tar is installed, these two steps can be combined into

gtar -xzf fweb-1.61.tar.gz

Unpacking creates the directory `fweb-1.61', with at least the two subdirectories `Web'
and `Manual'.

3. Change to the new `Web' subdirectory and run the con�guration script.

cd fweb-1.61/Web
./configure

`./configure' is an sh script. It attempts to �gure out various local system fea-
tures automatically, then generates the three �les `defaults.mk', `config.h', and
`custom.h'; those are used in the make. For further information about the operation
of `./configure', see `fweb-1.61/READ_ME.FWEB'.

4. Make and install the release:

make [CFLAGS='special compiler
ags']
make install

If gcc is available, it will be used in the make; in that case, the default CFLAGS should
be su�cient. If another compiler is used, ensure that it is run in ANSI-compatible
mode, not the old-style Kernighan and Ritchie.

Fweb compiles on my system without any warnings with `gcc -ansi -pedantic'.
Please report any compiler warnings from an allegedly ANSI-C environment.

Concept index 133

Concept index

.

.false. 87

.true. 87

@
@, literal . 7

A
Absolute value. 68

Allocation, memory . 35, 108

ASCII, converting to . 51, 68

Asserting a condition . 68

Assignment operators, compound 37, 87

Author . 68

Automatic pseudo-semicolons 24, 58, 88

Automatic semicolons . 24, 87

B
Bar, vertical . 39, 56

Binary notation . 84, 85

Blocks, numbering . 17, 25, 30

Brackets, active . 33

Breakpoints, inserting . 41

Breakpoints, suppressing . 41

Bugs . 131

Bugs, version 1.61 . 126

built-in functions, rede�ning 31

Bullet . 114

Bullet subscript . 115

C
C hints . 84

C++ hints. 85

Case, changing . 73, 78

Class options . 93

Code mode . 7

Code part, beginning unnamed 40

Code, converting to Fweb . 121

Code, temporarily commenting out 61, 86

Code, typesetting . 7

Colon, pseudo . 59

Color. 117

Color mode, ANSI . 117

Color mode, bilevel . 117

Color mode, trilevel . 117

Color mode, user-de�ned . 117

Color, and message types . 117

Color, ANSI . 117

Color, setting . 18

Columns, multiple . 96

Commands, rede�ned . 124

Commentary, optional . 7

Commenting styles . 60

Comments . 52, 60

Comments, Fortran . 27

Comments, generating . 68

Comments, ignorable . 52

Comments, ignore single-line Fortran. 25

Comments, invisible . 60

Comments, short . 37, 86

Comments, temporary . 61

Comments, TEX . 31

Comments, verbatim . 32

Comments, visible . 60

Compiler directives . 53

Completion, automatic �le-name 12

Concatenation . 27

Condition, asserting . 68

Conditional, n-way . 71

Conditional, two-way . 71, 72

Contents, table of . 96

Control text . 55

Converting an existing code to Fweb 121

Cross-references, eliminating 34

Cross-references, suppressing 34

Customization . 107

Customizing Fweb . 107

D
Date . 68

Date, generating the . 68

Day, generating the . 68

Debugging . 16, 38

Debugging macros . 70

Documentation format . 91

Dot constants, recognizing . 35

E
Environment variables . 71, 107

Environment, obtaining the . 71

Error messages, printing . 70

Escape sequences, ANSI . 118

Example, of Fweb �le . 6

Concept index 134

Exponentiation . 71, 76, 87

Expression evaluation . 81

Expression, pseudo . 57

Expressions, evaluating . 70

F
Features, new . 124

Features, version 1.40 . 129

Features, version 1.50 . 128

Features, version 1.52 . 127

Features, version 1.53 . 126

Features, version 1.61 . 125

File, including web . 43, 44

File, initialization . 108

File, opening output . 47

File, RCS . 76

File, style . 112

File-name completion . 12

Files . 12

Files, change . 13

Files, input . 12

Files, output . 13

Fonts . 92

Formatting . 91

Fortran hints . 85

Fortran, Rational . 89

Functions, built-in . 66

Functions, intrinsic . 18

FWEB output, inserting into LaTeX document

. 99

Fweb, customizing . 107

Fweb, initializing . 108

H
Header . 71

Header comments, printing . 31

Headers . 98

Hexadecimal notation. 85

Hints, C . 84

Hints, C++ . 85

Hints, Fortran . 85

Hints, TEX . 88

I
I/O keywords . 18

Identi�cation . 71

Identi�er, formatting . 42

Identi�ers, overloading . 50, 102

Identi�ers, single-character . 33

Identi�ers, truncating . 32

Include �le, formatting name of 43

Include �le, printing name of 43

Include �les, �nding . 21

Include �les, indexing . 21

Include �les, inhibiting . 22

Include �les, scanning . 20

Include �les, skipping . 21

Index . 7, 96

Index entries, deleting . 54

Index entries, forcing . 54

Index entries, Roman type . 54

Index entries, typewriter type 54

Index entries, underlining . 54

Index entries, user format . 54

Index, name of . 113

Index, stand-alone . 103

Indexes, merging . 105

Indexing commands . 54

Information options. 37

Initialization �le . 108

Input line, number of . 72

Installing Fweb . 132

Intrinsic functions . 18

Items, joining. 57

J
Joining items . 57

K
Keyword, RCS . 72, 73

Keyword, RCS-like . 50

Keywords, I/O . 18, 87

L
Language number . 74

Language, determining. 74

Language, determining the . 74

Language, global . 83

Language, setting . 18, 45, 83

Languages . 83

LaTEX . 93

LaTEX section . 95

LaTEX2e . 93

Left brace, inserting . 41

Length of string . 74

Level, message . 23

Limbo section . 8

Limbo text . 45

Line break, canceling . 57

Line break, forcing. 55

Concept index 135

Line break, forcing with indent 56

Line break, optional . 39, 56

Line number . 76

Line numbering, turning o� . 48

Literate programming . 3

Lock . 75

Logarithms, base 10 . 75

Logarithms, natural . 70, 75

Lower case . 73

M
Macros . 62

Macros, absolute value of . 68

Macros, debugging . 70

Macros, debugging with . 79

Macros, decrementing. 69

Macros, deferred . 31

Macros, de�ning . 69, 75

Macros, evaluating. 70

Macros, formatting . 79

Macros, Fweb . 63

Macros, incrementing . 72

Macros, inhibiting expansion of 59

Macros, outer . 62

Macros, preprocessing . 80

macros, rede�ning . 31

Macros, rede�nition of . 64

Macros, repetitively de�ning 69

Macros, special tokens for . 65

Macros, unde�ning . 78

Macros, with variable arguments 64

Major section, beginning . 39

Major section, optional argument for 39

Major subsection . 39

Make�les, using . 5

Makeindex, using . 103

Marriage . 17

Maximum . 75

Memory allocation . 35, 108

Message level . 23

Message types . 117

Mininum . 75

Module name, beginning . 40

Module name, ending . 40

Module, name of . 75

Module, named . 9

Module, unnamed . 8

Modules . 8

Modules, missing . 77

Modules, number of . 75

Modules, warning level for . 32

multicol, using . 96

N
Named module . 9

Not equal . 37, 87

Notation, binary . 84, 85

Notation, hexadecimal . 85

Notation, octal . 85

Numbering blocks . 17, 25, 30

O
Octal notation . 85

Operators, overloading 28, 49, 101

Operators, pseudo- . 57

Options, class . 93

Options, information 16, 18, 35, 37

Options, negating. 16

Ouput, redirecting . 36

Outer macro, de�ning . 42

Outer macros, unde�ning . 49

Output �les, changing names of 13

Output line. 76

Output, changing appearance of 16

Overloading . 101

Overloading identi�ers . 102

Overloading operators . 101

P
Package, fwebnum .. 98

Package, multicol .. 96

Packages, user . 93

Page headers . 98

Page numbers . 98

Part, code. 5, 7

Part, de�nition . 5, 7

Part, TEX . 5, 7

Parts . 5

Phases, of Ftangle . 10

Phases, of Fweave . 11

Pi . 76

Pound sign . 76

Preprocessing. 80

Preprocessor symbol . 76

Preprocessor, m4 . 24

Preprocessor, sending additional arguments to . . 33

Pretty-printing . 100

Printing, two-sided . 93

Processor, LaTEX . 28

Processor, TEX . 28

Concept index 136

Processors, Fweb . 5

Program unit . 77

Programming tips . 122

Pseudo-colon . 59

Pseudo-expression . 57

Pseudo-operators . 57, 101

Pseudo-semicolon . 58

Pseudo-semicolons, automatic 24, 58, 88

R
Ratfor . 89

Ratfor commands . 89

Ratfor, caveats about . 90

Rational Fortran. 89

RCS �le . 76

RCS-like keyword . 50, 72, 73

Recursion . 64

Rede�ned commands, version 1.61 124

References, forward . 51

Reserved words . 18

Revision . 76

Root, square . 77

S
Scienti�c programming . 123

Scrap, irreducible . 16

Section names, long. 39

Section names, short . 39

Section number, current . 77

Section number, maximum . 77

Section, beginning major . 39

Section, beginning minor . 39

Section, limbo . 8

Sections . 5

Sections, named . 6

Sections, numbering . 98

Sections, unnamed . 6

Semicolon, pseudo . 58

Semicolons, automatic . 24, 87

Semicolons, printing . 26

Sharp sign . 76

Spacing commands . 55

Spacing, thin space . 55

Square root. 77

State . 77

Statement numbers, automatic 36

Statistics, printing . 30

String length . 74

String, de�nition of . 67

String, quoted . 67

String, quoting a . 77

String, unquoted . 67

Strings, continuing . 35

Strings, long . 35

Strings, parenthesized . 36

Strings, unquoting . 78

Style �le . 112

Style �le, changing name of . 35

Style �le, for makeindex . 104

Subscript, bullet . 114

Subsection, beginning major 39

Suggestions. 122

Support . 131

Syntax, command-line . 15

Syntax, free-form . 26, 88

T
Table of Contents. 96

Table of contents, entries for 39

Tags, enum . 84

Tags, structure . 84

TEX hints . 88

Text, control . 55

Time . 68, 77

Tokens, upper-case . 32

Transliteration . 78

Typesetting . 91

U
Unnamed module . 8

Upper case . 78

User packages . 93

V
Variable arguments . 64

Variables, environment . 107

Version number . 32

Version, of FWEB . 78

Vertical bar . 39, 56

Vertical bars . 7

W
Warning level for modules . 32

Web, structure. 5

Words, reserved . 18

Option and command index 137

Option and command index

#
#line . 79

$
$A . 68

$ABS . 68

$ASSERT . 68

$AUTHOR . 68

$COMMENT .. 68

$DATE . 68

$DATE_TIME. 68

$DAY . 68

$DECR . 69

$DEFINE . 69

$DO . 69

$DUMPDEF .. 70

$E . 70

$ERROR .. 70

$EVAL . 70

$EXP . 71

$GETENV . 71

$HEADER . 71

$HOME . 71

$ID . 71

$IF . 71

$IFCASE . 71

$IFDEF .. 72

$IFELSE . 72

$IFNDEF . 72

$INCR . 72

$INPUT_LINE . 72

$KEYWORD .. 50, 72

$L . 73

$L_KEYWORD .. 50, 73

$LANGUAGE .. 74

$LANGUAGE_NUM .. 74

$LEN . 74

$LOCKER . 75

$LOG . 75

$LOG10 .. 75

$M . 75

$MAX . 75

$MIN . 75

$MODULE_NAME . 75

$MODULES .. 75

$NAME . 75

$OUTPUT_LINE . 76

$P . 76

$PI . 76

$POW . 76

$PP . 76

$RCSfile .. 76

$REVISION .. 76

$ROUTINE .. 77

$SECTION_NUM . 77

$SECTIONS .. 77

$SOURCE . 77

$SQRT . 77

$STATE . 77

$STRING . 77

$STUB . 77

$TIME . 77

$TRANSLIT .. 78

$U . 78

$UNDEF . 78

$UNQUOTE .. 78

$UNROLL . 70

$UNSTRING .. 78

$VERBATIM .. 78

$VERSION .. 78

-
- . 15

-! . 37

-# . 36, 87

-(. 36

-. 35

-/ . 37

-: . 36

-= . 36

-@ . 16

-+ . 37, 87

-> . 36

-\ . 35

-1 . 16

-2 . 16

-A . 17

-b . 17

-B . 17

-c . 18

-C . 17, 117

-c++ . 18

-d . 19

-D . 18

Option and command index 138

-e . 19

-E . 19

-f . 20

-F . 19

-h . 21

-H . 20

-Hr . 20

-Hx . 20

-HX . 20

-i . 21

-I . 21

-ix . 21

-j . 22

-k . 22, 87

-l . 23

-L . 22

-m . 23

-M . 23

-m; . 24

-m4 . 24

-n . 24

-n! . 27, 88

-n& . 26

-n) . 27

-n/ . 27

-n: . 25

-n; . 24, 58

-n@; . 24, 58

-n\ . 26

-n9 . 24

-nb . 25

-nC . 25

-np . 26

-o . 28

-p . 28

-P . 28

-r . 29

-r! . 30

-r) . 30

-r/ . 30

-r; . 30

-r@; . 30

-r9 . 29

-rb . 30

-rg . 29

-rk . 29

-rK . 30

-s . 30

-sm . 30

-t . 32

-T# . 31

-T% . 31

-Tb . 31

-TD . 31

-Tm . 31

-Tv . 31

-u . 32

-U . 32

-v . 32

-V . 32

-w . 34

-W . 32, 34

-W@ . 32

-W[. 33

-W1 . 33

-WH . 33

-x . 34

-X . 34

-XI . 104

-y . 35

-yb . 108

-ybs . 109

-ycb . 109

-ycf . 109

-ycg . 109

-yd . 109

-ydt . 109

-ydx . 109

-yid . 109

-yif . 110

-ykt . 110

-ykw . 110

-ylb . 110

-yll . 110

-yln . 110

-ylx . 110

-ym . 110

-yma . 110

-ymb . 111

-yn . 111

-ynf . 111

-yop . 111

-yr . 111

-ys . 111

-ysb . 111

-ytt . 111

-ytw . 112

-yx . 112

-yxb . 112

-z . 35

Option and command index 139

-Z . 35

.

.fweb. 12, 108

@
@ . 39

@! . 59

@# . 56

@#define .. 80

@#elif .. 80

@#endif . 80

@#if . 80

@#ifdef . 80

@#ifndef .. 80

@#line .. 80

@#undef . 80

@% . 52

@%% . 52

@& . 57

@' . 51

@(. 53

@) . 53

@* . 6, 39

@, . 55

@- . 54

@. 54

@/ . 55

@/* . 52

@// . 52

@: . 59

@; . 58

@= . 55

@? . 53

@@ . 38

@[. 14, 52

@] . 14

@_ . 54

@" . 51

@| . 39, 56

@~ . 57

@+ . 54

@> . 40

@^ . 54

@\ . 56

@< . 40

@0 . 38

@1 . 38

@2 . 38

@9 . 54

@a . 40

@A . 40

@b . 41

@B . 41

@c . 41

@c++ . 42

@d . 42

@D . 42

@e . 57

@E . 42

@f . 42

@i . 43

@I . 44

@k . 50

@K . 50

@l . 45

@L . 45

@m . 45

@M . 45

@n . 47

@N . 46

@n9 . 47

@o . 47

@O . 47

@q . 48

@r . 49

@R . 49

@r9 . 49

@t . 55

@u . 49

@v . 49

@W . 50

@x . 50

@y . 50

@z . 50

\
\/ . 27

\beforeindex . 96

\botofcontents .. 97

\documentclass .. 93

\documentstyle .. 93

\FWEBtoc .. 96

\idxname .. 106

\INDEX . 7, 96, 113

\maketitle.. 97

\numbercode . 98

\numberdefs . 98

\numberline . 97

\numberTeX.. 97

Option and command index 140

\pagerefs . 97, 98

\pg . 105

\section .. 95

\startindex . 96

\subsection . 95

\subsubsection . 95

\title .. 97

\Title .. 97

\topofcontents . 97

\topofindex . 106

\twocolumn. 96

\usepackage . 93

\WARRAY . 33

\Wbegin . 94

\Wblock . 17

\Wfin . 96

\Wid . 115

\WID . 115

\WidD . 116

\WIDD . 116

\WidM . 116

\WIDM . 116

\WIF . 43

\WIFfmt . 43

\Wintrinsic . 116

\Wkeyword.. 116

\WKEYWORD.. 116

\Wlbl . 25, 87

\Wreserved . 116

\WRESERVED . 116

\Wshort . 116

\Wtypewriter . 116

\WXA . 33

A
ASCIIstr .. 51

C
CONTENTS.tex . 13

F
fweb.sty . 12, 112

FWEB_HDR_INCLUDES . 107

FWEB_INCLUDES . 108

FWEB_INI .. 108

FWEB_STYLE_DIR .. 108

fwebinsert.sty .. 99

fwebmac.sty . 91, 92

fwebmac.web . 115

fwebnum.sty. 98, 100

I
idxmerge.sty .. 105

INDEX.tex .. 13

M
MODULES.tex . 13

multicol.sty . 96

T
tempnam . 19

termcap . 118

termcap0 .. 118

tmpnam . 19

Parameter index 141

Parameter index

A
ASCII_Fcn.. 118

C
cchar . 118

cdir_start . 118

Color.black . 118

Color.blue . 118

Color.cyan . 118

Color.default .. 118

color.error . 117

color.fatal . 117

Color.green . 118

color.in_file .. 117

color.include_file . 117

color.info . 117

color.line_num .. 117

Color.magenta .. 118

color.mod_name .. 117

color.mod_num .. 117

color.ordinary .. 117

color.out_file .. 117

color.program_name . 117

Color.red.. 118

color.timing . 117

color.warning .. 117

Color.white . 118

Color.yellow . 118

contents.postamble . 114

contents.preamble . 114

contents.tex . 114

D
delim_0 . 113

delim_n . 113

dot_constant.begin . 120

dot_constant.end.. 120

E
ext.ch . 120

ext.hch . 120

ext.hweb .. 120

ext.web . 120

F
format.id.. 115

format.ID .. 115

format.intrinsic. 115

format.keyword .. 115

format.KEYWORD .. 115

format.outer_macro . 115

format.reserved .. 115

format.RESERVED .. 115

format.short_id .. 115

format.typewriter . 115

format.WEB_macro. 115

G
group_skip . 114

I
indent.code . 116

indent.TeX . 116

index.collate . 113

index.name . 113

index.postamble .. 113

index.preamble .. 113

index.tex .. 113

item_0 . 114

L
language.prefix .. 114

language.suffix .. 114

LaTeX.class . 116

LaTeX.class.options .. 116

LaTeX.options . 116

LaTeX.package . 116

LaTeX.package.options . 116

LaTeX.style . 116

lethead.flag .. 114

lethead.prefix .. 114

lethead.suffix .. 114

limbo.begin . 120

limbo.end .. 120

line_char .. 119

line_length . 119

M
macros . 119

mark_defined.exp_type . 115

mark_defined.fcn_name . 115

mark_defined.generic_name 115

mark_defined.outer_macro 115

Parameter index 142

mark_defined.typedef_name 115

mark_defined.WEB_macro .. 115

meta . 120

meta.bottom . 119

meta.bottom.hdr .. 119

meta.prefix . 119

meta.prefix.hdr .. 119

meta.top .. 119

meta.top.hdr . 119

modules.info . 114

modules.postamble . 114

modules.preamble.. 114

modules.tex . 114

N
null_file.. 120

O
outer.def .. 119

outer.under . 119

P
preamble.named .. 120

preamble.unnamed. 120

protect . 119

S
suffix . 119

U
underline.prefix. 114

underline.suffix. 114

i

Short Contents

Fweb . 1

Fweb Copying Permissions . 2

1 INTRODUCTION to Fweb . 3

2 WEB CONCEPTS . 5

3 FILES . 12

4 RUNNING Fweb . 15

5 Fweb COMMANDS . 38

6 COMMENTING STYLES . 60

7 MACROS and PREPROCESSING 62

8 LANGUAGES . 83

9 Ratfor . 89

10 DOCUMENTATION . 91

11 Fweb's INDEX. 103

12 CUSTOMIZATION . 107

13 USAGE TIPS and SUGGESTIONS 121

14 NEW FEATURES. 124

15 SUPPORT . 131

Appendix A Installing Fweb . 132

Concept index . 133

Option and command index. 137

Parameter index . 141

ii

Table of Contents

Fweb . 1

Fweb Copying Permissions . 2

1 INTRODUCTION to Fweb 3
1.1 History of WEB and literate programming 3
1.2 Features of Fweb . 3

2 WEB CONCEPTS . 5
2.1 The Fweb processors: Fweave and Ftangle 5
2.2 The structure of a web . 5

2.2.0.1 A simple example . 6
2.2.0.2 The TEX part . 7
2.2.0.3 The de�nition part . 7
2.2.0.4 The code part . 7
2.2.0.5 The limbo section . 8

2.3 Modules . 8
2.3.1 The unnamed module . 8
2.3.2 Named modules . 9

2.4 Phases of processing . 10
2.4.1 The phases of Ftangle . 10
2.4.2 The phases of Fweave . 11

3 FILES . 12
3.1 Input �les . 12

3.1.1 Automatic �le-name completion 12
3.2 Output �les . 13
3.3 Change �les . 13

4 RUNNING Fweb . 15
4.1 Command-line syntax . 15
4.2 Command-line options . 15

4.2.1 Negating options . 16
4.2.2 `-1': Turn on brief debugging mode (Fweave) . . . 16
4.2.3 `-2': Turn on verbose debugging mode (Fweave)

. 16
4.2.4 `-@': Display the control-code mappings 16
4.2.5 `-A': Turn on ASCII translations 17
4.2.6 `-B': Turn o� audible beeps . 17
4.2.7 `-b': Number blocks (Fweave) 17
4.2.8 `-C': Set the color mode . 18

iii

4.2.9 `-c': Set global language to C 18
4.2.10 `-c++': Set global language to C++ 18
4.2.11 `-D': Display reserved words 18
4.2.12 `-d': Convert do...enddo. 19
4.2.13 `-E': Change the delimiter of a �le-name extension

. 19
4.2.14 `-e': Turn on automatic �le-name completion . . . 19
4.2.15 `-F': Compare output �les with old versions

(Ftangle) . 19
4.2.16 `-f': Turn o� module references for identi�ers

(Fweave) . 20
4.2.17 `-H': Scan C/C++ include �les (Fweave) 20
4.2.18 `-h': Get help . 21
4.2.19 `-I': Append to search list for include �les. 21
4.2.20 `-i': Don't print `@I' include �les (Fweave) 21
4.2.21 `-i!': Don't read `@I' include �les 22
4.2.22 `-j': Inhibit multiple includes 22
4.2.23 `-k': Don't recognize lower-case forms of keywords

. 22
4.2.24 `-L': Select global language . 22
4.2.25 `-l': Echo input line . 23
4.2.26 `-M': Set output message level 23
4.2.27 `-m': De�ne Fweb macro (Ftangle) 23
4.2.28 `-m4': Understand m4 built-in commands 24
4.2.29 `-m;': Append pseudo-semicolons 24
4.2.30 `-n': Set global language to Fortran{77 24
4.2.31 `-n9': Set global language to Fortran{90. 24
4.2.32 `-n@;': Supply automatic pseudo-semicolons

[Fortran] . 24
4.2.33 `-n;': Supply automatic semicolons [Fortran]

. 24
4.2.34 `-n:': Put statement label on separate line

[Fortran] . 25
4.2.35 `-nb': Number ifs and dos [Fortran] (Fweave)

. 25
4.2.36 `-nC': Ignore single-line comments [Fortran] . . 25
4.2.37 `-np': Print semicolons [Fortran] (Fweave) . . 26
4.2.38 `-n\': Free-form syntax continued by backslash . . 26
4.2.39 `-n&': Free-form syntax continued by ampersand

. 26
4.2.40 `-n/': Recognize short comments [Fortran]. . . . 27
4.2.41 `-n!': Make `!' denote short comment [Fortran]

. 27
4.2.42 `-n)': Reverse array indices [Fortran] (Ftangle)

. 27
4.2.43 `-o': Don't overload operators 28
4.2.44 `-q': Don't translate Ratfor. 28
4.2.45 `-P': Select TEX processor . 28

iv

4.2.46 `-p': Bu�er up a style-�le entry 28
4.2.47 `-r': Set global language to Ratfor{77 29
4.2.48 `-r9': Set global language to Ratfor{90 29
4.2.49 `-rg': Set goto parameters . 29
4.2.50 `-rk': Suppress comments about Ratfor

translation (Ftangle) . 29
4.2.51 `-rK': Write comments about Ratfor translation

(Ftangle) . 30
4.2.52 `-r@;': Turn on auto-semi mode using pseudo-semis

[Ratfor] . 30
4.2.53 `-r;': Turn on auto-semi mode using actual semis

[Ratfor] . 30
4.2.54 `-rb': Number ifs and dos [Ratfor] 30
4.2.55 `-r/': Recognize short comments [Ratfor] 30
4.2.56 `-r!': Make `!' denote short comment [Ratfor]

. 30
4.2.57 `-r)': Reverse array indices [Ratfor] (Ftangle)

. 30
4.2.58 `-s': Print statistics . 30
4.2.59 `-T': Flag-setting options for Ftangle 31

4.2.59.1 `-TD': Permit processing of deferred macro
de�nitions . 31

4.2.59.2 `-Tb': Permit built-functions to be
rede�ned . 31

4.2.59.3 `-Tm': Permit user macros to be rede�ned
. 31

4.2.59.4 `-Tv': Don't print header info 31
4.2.59.5 `-T%': Don't retain trailing comments

(TEX) . 31
4.2.59.6 `-T#': Don't insert `#line' command after

`@%' . 31
4.2.60 `-t': Truncate identi�ers . 32
4.2.61 `-U': Convert reserved output tokens to lower case

(Ftangle) . 32
4.2.62 `-u': Unde�ne Fweb macro (Ftangle) 32
4.2.63 `-V': Print Fweb version number 32
4.2.64 `-v': Make all comments verbatim (Ftangle) . . 32
4.2.65 `-W': Flag-setting options for Fweave 32

4.2.65.1 `-W@': Set module warning
ag. 32
4.2.65.2 `-W1': Cross-reference single-character

identi�ers . 33
4.2.65.3 `-W[': Process bracketed array indices . . 33
4.2.65.4 `-WH': Send additional arguments to the C

preprocessor . 33
4.2.65.5 `-WdfFlmvw': Don't print various things in

woven output . 34
4.2.66 `-w': Change name of macro package (Fweave)

. 34

v

4.2.67 `-x': Eliminate or reduce cross-reference
information (Fweave). 34

4.2.68 `-X': Print selected cross-reference information
(Fweave) . 34

4.2.69 `-y': Allocate dynamic memory 35
4.2.70 `-Z': Display default style-�le parameters 35
4.2.71 `-z': Change name of style �le 35
4.2.72 `-.': Don't recognize dot constants 35
4.2.73 `-\': Explicitly escape continued strings 35
4.2.74 `-(': Continue parenthesized strings with

backslashes . 36
4.2.75 `-:': Set starting automatic statement number . . 36
4.2.76 `->': Redirect output (Ftangle) 36
4.2.77 `-=': Redirect output (Ftangle) 36
4.2.78 `-#': Turn o� comments about line and section

numbers (Ftangle) . 36
4.2.79 `-+': Don't interpret compound assignment

operators . 37
4.2.80 `-/': Recognize short comments (Fortran &

Ratfor) . 37
4.2.81 `-!': Make `!' denote short comment (Fortran &

Ratfor) . 37
4.2.82 Information options . 37

5 Fweb COMMANDS . 38
5.1 Debugging commands . 38

5.1.1 `@0': Turn o� debugging. 38
5.1.2 `@1': Display irreducible scraps 38
5.1.3 `@2': Display detailed reductions of the scraps 38

5.2 Literal control characters . 38
5.2.1 `@@': The character `@' . 38
5.2.2 `@|': Literal vertical bar, or optional line break. . . 39

5.3 Beginning of section . 39
5.3.1 `@ ': Begin minor section . 39
5.3.2 `@*', `@*n': Begin major section 39

5.4 Beginning of code part. 40
5.4.1 `@<': Begin module name . 40
5.4.2 `@>': End module name . 40
5.4.3 `@A': Begin code part of unnamed section 40
5.4.4 `@a': Begin code part of unnamed section, and mark

. 40
5.5 Control codes b{z . 41

5.5.1 `@B': Suppress insertion of breakpoint command . . 41
5.5.2 `@b': Insert a breakpoint command 41
5.5.3 `@c': Set language to C . 41
5.5.4 `@c++': Set language to C++ . 42
5.5.5 `@D': De�ne outer macro . 42
5.5.6 `@d': De�ne outer macro, and mark 42

vi

5.5.7 `@E': Treat next identi�er as ordinary expression
(Fweave) . 42

5.5.8 `@f': Format identi�er or module name 42
5.5.9 `@i': Include �le (unconditional) 43
5.5.10 `@I': Include �le (conditional) 44
5.5.11 `@K': Extract global RCS-like keyword 44
5.5.12 `@k': Access local RCS-like keyword 44
5.5.13 `@L': Set language . 45
5.5.14 `@l': Specify limbo text . 45
5.5.15 `@M': De�ne Fweb macro. 45
5.5.16 `@m': De�ne Fweb macro, and mark 45
5.5.17 `@N': Turn on N mode . 46
5.5.18 `@n': Set language to Fortran{77 47
5.5.19 `@n9': Set language to Fortran{90 47
5.5.20 `@O': Open output �le (global scope) 47
5.5.21 `@o': Open output �le (local scope) 47
5.5.22 `@q': Turn o� module and line info locally 48
5.5.23 `@R': Treat next identi�er as integer-like reserved

. 49
5.5.24 `@r': Set language to Ratfor{77 49
5.5.25 `@r9': Set language to Ratfor{90 49
5.5.26 `@u': Unde�ne outer macro . 49
5.5.27 `@v': Overload operator . 49
5.5.28 `@W': Overload identi�er . 50
5.5.29 `@x': Terminate ignorable material, or begin

material to be changed . 50
5.5.30 `@y': Begin change material. 50
5.5.31 `@z': Begin ignorable material, or terminate change

. 50
5.6 Conversion to ASCII . 51

5.6.1 `@'': Convert character to ASCII 51
5.6.2 `@"': Convert string to ASCII 51

5.7 Forward referencing . 51
5.7.1 `@[': Mark as de�ned . 52

5.8 Comments . 52
5.8.1 `@/*': Begin long verbatim comment 52
5.8.2 `@//': Begin short verbatim comment 52
5.8.3 `@%': Ignorable comment . 52
5.8.4 `@?': Begin compiler directive 53
5.8.5 `@(': Begin meta-comment. 53
5.8.6 `@)': End meta-comment . 53

5.9 Special left brace . 53
5.10 Index entries . 54

5.10.1 `@_': Force index entry to be underlined 54
5.10.2 `@-': Delete index entry . 54
5.10.3 `@+': Force index entry . 54
5.10.4 `@^': Make index entry (Roman type) 54
5.10.5 `@.': Make index entry (typewriter type) 54

vii

5.10.6 `@9': Make index entry (user-de�ned format) 54
5.11 Control text . 55

5.11.1 `@t': Put control text into a TEX \hbox (Fweave)
. 55

5.11.2 `@=': Pass control text verbatim to the output . . 55
5.12 Spacing . 55

5.12.1 `@,': Insert a thin space . 55
5.12.2 `@/': Force a line break, preserving indentation.

. 55
5.12.3 `@\': Force a line break, then indent 56
5.12.4 `@|': Literal vertical bar, or optional line break . . 56
5.12.5 `@#': Blank line . 56
5.12.6 `@~': Cancel line break . 57
5.12.7 `@&': Join items. 57

5.13 Pseudo (invisible) operators . 57
5.13.1 `@e': Pseudo-expression . 57
5.13.2 `@;': Pseudo-semicolon . 58
5.13.3 `@:': Pseudo-colon . 59

5.14 Miscellaneous commands . 59
5.14.1 `@!': Inhibit macro expansion 59

6 COMMENTING STYLES 60
6.1 Invisible comments . 60
6.2 Visible comments . 60
6.3 Temporary comments . 61

7 MACROS and PREPROCESSING 62
7.1 Outer macros . 62
7.2 Fweb macros . 63

7.2.1 Various features of Fweb macros 64
7.2.1.1 Fweb macros with variable arguments . . 64
7.2.1.2 Recursion . 64
7.2.1.3 Protecting macros against rede�nition . . 64

7.2.2 Special tokens . 65
7.2.2.1 ANSI C-compatible tokens 65
7.2.2.2 Extensions to ANSI C macro syntax 65

7.2.3 Built-in functions . 66
7.2.3.1 Strings and quotes . 67
7.2.3.2 Rede�ning built-in functions 67
7.2.3.3 $A: Convert to ASCII 68
7.2.3.4 $ABS: Absolute value 68
7.2.3.5 $ASSERT: Assert a condition 68
7.2.3.6 $AUTHOR: Value of RCS global keyword

Author . 68
7.2.3.7 $COMMENT: Generate a comment 68
7.2.3.8 $DATE: Today's date. 68
7.2.3.9 $DATE_TIME: Value of RCS global keyword

Date . 68

viii

7.2.3.10 $DAY: The day . 68
7.2.3.11 $DECR: Decrement a macro 69
7.2.3.12 $DEFINE: Deferred macro de�nition . . . 69
7.2.3.13 $DO: Macro do loop 69
7.2.3.14 $DUMPDEF: Dump macro de�nitions to the

terminal . 70
7.2.3.15 $E: Base of the natural logarithms 70
7.2.3.16 $ERROR: Send error message to output

. 70
7.2.3.17 $EVAL: Evaluate a macro expression . . . 70
7.2.3.18 $EXP: Exponential function 71
7.2.3.19 $GETENV: Get value of environment

variable . 71
7.2.3.20 $HEADER: Value of RCS global keyword

Header . 71
7.2.3.21 $HOME: The user's home directory 71
7.2.3.22 $ID: Value of RCS global keyword Id . . 71
7.2.3.23 $IF: Two-way conditional 71
7.2.3.24 $IFCASE: n-way conditional 71
7.2.3.25 $IFDEF: Two-way conditional 72
7.2.3.26 $IFNDEF: Two-way conditional 72
7.2.3.27 $IFELSE: Two-way conditional 72
7.2.3.28 $INCR: Increment a macro 72
7.2.3.29 $INPUT_LINE: Line number that begins

current section . 72
7.2.3.30 $KEYWORD: Value of global RCS-like

keyword . 72
7.2.3.31 $L: Change to lower case 73
7.2.3.32 $L_KEYWORD: Value of local RCS-like

keyword . 73
7.2.3.33 $LANGUAGE: Identi�er for current language

. 74
7.2.3.34 $LANGUAGE_NUM: Number of current

language . 74
7.2.3.35 $LEN: Length of string 74
7.2.3.36 $LOCKER: Value of RCS global keyword

Locker . 75
7.2.3.37 $LOG: Natural logarithm 75
7.2.3.38 $LOG10: Logarithm to the base 10 75
7.2.3.39 $M: De�ne a deferred macro 75
7.2.3.40 $MAX: Maximum of a list 75
7.2.3.41 $MIN: Minimum. 75
7.2.3.42 $MODULE_NAME: Name of present web

module . 75
7.2.3.43 $MODULES: Total number of independent

modules . 75
7.2.3.44 $NAME: Value of RCS global keyword Name

. 75

ix

7.2.3.45 $OUTPUT_LINE: Current line number of
tangled output . 76

7.2.3.46 $P: The C preprocessor symbol 76
7.2.3.47 $PI: Pi. 76
7.2.3.48 $POW: Exponentiation 76
7.2.3.49 $PP: The C preprocessor symbol 76
7.2.3.50 $RCSFILE: Value of RCS global keyword

$RCSfile . 76
7.2.3.51 $REVISION: Value of RCS global keyword

Revision . 76
7.2.3.52 $ROUTINE: Current function (Ratfor

only) . 77
7.2.3.53 $SECTION_NUM: Number of current Fweb

section . 77
7.2.3.54 $SECTIONS: Maximum section number

. 77
7.2.3.55 $SOURCE: Value of RCS global keyword

Source . 77
7.2.3.56 $SQRT: Square root. 77
7.2.3.57 $STATE: Value of RCS global keyword

State . 77
7.2.3.58 $STRING: Expand, then stringize 77
7.2.3.59 $STUB: Trap for missing module 77
7.2.3.60 $TIME: The time . 77
7.2.3.61 $TRANSLIT: Transliteration 78
7.2.3.62 $U: Change to upper case 78
7.2.3.63 $UNDEF: Unde�ne a macro 78
7.2.3.64 $UNQUOTE: Remove quotes from string

. 78
7.2.3.65 $UNSTRING: Convert string into characters

. 78
7.2.3.66 $VERBATIM: (Obsolete) 78
7.2.3.67 $VERSION: Present Fweb version number

. 78
7.2.4 Debugging with macros . 79

7.3 Preprocessing . 80

8 LANGUAGES . 83
8.1 Setting the language . 83
8.2 Special hints and considerations for each language 84

8.2.1 Special considerations for C . 84
8.2.2 Special considerations for C++ 85
8.2.3 Special considerations for Fortran 85

8.2.3.1 Items for both Fortran-77 and
Fortran-90 . 85

8.2.3.2 Items speci�c to Fortran-77 and
�xed-form Fortran-90 87

8.2.3.3 Items speci�c to Fortran-90 87

x

8.2.4 Special considerations for Ratfor 88
8.2.5 Special considerations for TeX 88
8.2.6 Special considerations for the verbatim language

. 88

9 Ratfor . 89
9.1 Ratfor syntax . 89
9.2 Ratfor commands . 89

9.2.1 Ratfor{77 commands . 89
9.2.2 Additional Ratfor{90 commands 90

9.3 Caveats about Ratfor . 90

10 DOCUMENTATION . 91
10.1 Typesetting . 91

10.1.1 Fweave's OUTPUT. 91
10.1.2 The macro package `fwebmac.sty' 92

10.1.2.1 User macros . 92
10.1.2.2 Fonts . 92

10.1.3 LaTEX support . 93
10.1.3.1 LaTEX's document class 93
10.1.3.2 Using REVTEX . 94
10.1.3.3 LaTEX packages related to Fweb 95
10.1.3.4 Sections in LaTEX 95
10.1.3.5 LaTEX's index. 96
10.1.3.6 LaTEX's Table of Contents. 96
10.1.3.7 Customizing LaTEX's output. 97

10.1.4 Page references . 98
10.1.5 Page headers . 98
10.1.6 Section numbering schemes . 98

10.1.6.1 Package fwebinsert: Inserting Fweave's
output into a LaTEX document 99

10.2 Pretty-printing . 100
10.2.1 Pseudo-operators . 101
10.2.2 Alternatives for various input tokens 101
10.2.3 Overloading operators and identi�ers 101

10.2.3.1 Overloading operators 101
10.2.3.2 Overloading identi�ers 102

11 Fweb's INDEX. 103
11.1 Fweb's self-generated index . 103
11.2 Creating a stand-alone index with makeindex 103

11.2.1 Creating a stand-alone index: Summary 103
11.2.2 Creating a stand-alone index: Details 104

11.3 Using the idxmerge utility to merge indexes 105
11.3.1 Using idxmerge: Summary 105
11.3.2 Using idxmerge: Details . 106

xi

12 CUSTOMIZATION. 107
12.1 Environment variables . 107
12.2 Initialization . 108

12.2.1 The initialization �le . 108
12.2.2 Memory allocation . 108

12.2.2.1 `-yb': Maximum bytes for identi�ers,
index entries, and module names 108

12.2.2.2 `-ybs': Size of the change bu�er, in bytes
. 109

12.2.2.3 `-ycb': Size of line bu�er for C output, in
bytes . 109

12.2.2.4 `-ycf': Size of a Ratfor bu�er, in bytes
. 109

12.2.2.5 `-ycg': Size of another Ratfor bu�er, in
bytes . 109

12.2.2.6 `-yd': Increment for expanding the dots
table . 109

12.2.2.7 `-ydt': Maximum number of deferred
macro tokens . 109

12.2.2.8 `-ydx': Maximum number of deferred
macro texts . 109

12.2.2.9 `-yid': Maximum depth of �le inclusion
. 109

12.2.2.10 `-yif': Maximum number of unique
include-�le names . 110

12.2.2.11 `-ykt': Stack size for Ftangle 110
12.2.2.12 `-ykw': Stack size for Fweave 110
12.2.2.13 `-yll': Line length for Fweave's output,

in bytes . 110
12.2.2.14 `-yln': Maximum length of module

names or strings, in bytes. 110
12.2.2.15 `-ylb': Maximum number of nested loops

in Ratfor . 110
12.2.2.16 `-ylx': Maximum length of expressions

that can be expanded with the post-increment
operators of Fortran or Ratfor 110

12.2.2.17 `-ym': Maximum number of sections
. 110

12.2.2.18 `-yma': Maximum number of arguments
to Fweb macros . 110

12.2.2.19 `-ymb': Size of the bu�er for expanding
Fweb macros . 111

12.2.2.20 `-yn': Maximum number of identi�ers
and module names . 111

12.2.2.21 `-ynf': Maximum number of open output
�les . 111

12.2.2.22 `-yop': Maximum number of entries in
the table for operator overloading.. 111

xii

12.2.2.23 `-yr': Maximum number of
cross-references . 111

12.2.2.24 `-ys': Maximum number of scraps . . 111
12.2.2.25 `-ysb': Size of style-�le input-line bu�er

. 111
12.2.2.26 `-ytt': Maximum number of tokens that

Ftangle can process . 111
12.2.2.27 `-ytw': Maximum tokens in the current

section being processed by Fweave.. 112
12.2.2.28 `-yx': Maximum number of texts 112
12.2.2.29 `-yxb': Size of line bu�er for TEX and

verbatim output . 112
12.3 The Style �le . 112

12.3.1 Customizing Fweave's index 113
12.3.1.1 index.??? . 113
12.3.1.2 delim_? . 113
12.3.1.3 group_skip . 114
12.3.1.4 item_0 . 114
12.3.1.5 language.??? . 114
12.3.1.6 lethead.??? . 114
12.3.1.7 underline.??? . 114

12.3.2 Customizing the module list 114
12.3.3 Customizing the Table of Contents 114
12.3.4 Customizing cross-reference subscripts 114
12.3.5 Customizing the behavior of `fwebmac.sty' macros

. 115
12.3.5.1 format.??? . 115
12.3.5.2 indent.??? . 116
12.3.5.3 LaTeX.??? . 116

12.3.6 Remapping control codes . 116
12.3.7 Color output . 117
12.3.8 Miscellaneous style-�le parameters 118

12.3.8.1 ASCII_Fcn . 118
12.3.8.2 cchar . 118
12.3.8.3 cdir_start . 118
12.3.8.4 line_char.l (Ftangle) 119
12.3.8.5 line_length.l (Ftangle) 119
12.3.8.6 meta.???.? , meta.???.hdr.? (Ftangle)

. 119
12.3.8.7 outer.??? . 119
12.3.8.8 protect.? . 119
12.3.8.9 suffix.? . 119
12.3.8.10 macros . 119
12.3.8.11 limbo.begin, limbo.end 120
12.3.8.12 meta.??? (Fweave) 120
12.3.8.13 preamble.??? . 120
12.3.8.14 dot_constant.???.? 120
12.3.8.15 null_file . 120

xiii

12.3.9 Automatic �le name completion 120

13 USAGE TIPS and SUGGESTIONS. 121
13.1 Converting an existing code to Fweb 121
13.2 Programming tips and other suggestions 122
13.3 Features for scienti�c programming . 123

14 NEW FEATURES . 124
14.1 Version 1.61 . 124

14.1.1 Updates to documentation (v1.61) 124
14.1.2 Rede�ned commands (v1.61) 124
14.1.3 New features (v1.61) . 125
14.1.4 Signi�cant bugs (v1.61) . 126

14.2 Version 1.53 . 126
14.3 Version 1.52 . 127
14.4 Version 1.50 . 128
14.5 Version 1.40 . 129

15 SUPPORT . 131

Appendix A Installing Fweb 132

Concept index . 133

Option and command index 137

Parameter index . 141

