Chapter Three

Routine administration

m Editing files

m Virtual terminals

m Security basics

m Users on the system
m Processes

m Redirection and pipes
m Manipulating text files
m Date and time

m System logs

“And are you not,” said Fook leaning anxiously forward, “a
greater analyst than the Googleplex Star Thinker in the Seventh
Galaxy of Light and Ingenuity which can calculate the trajectory
of every single dust particle throughout a five-week Dangrabad
Beta sand blizzard?”

Editing files

As a Linux administrator, the one thing you will do more often than any other is to edit files. This is so basic and
fundamental an action that it has to be the first topic taken up in the course after the intro tutorial.

You use a text editor to edit text files — but you probably already know that. There are a great many text editors
available on Linux, and from these there will be at least one that you like and fits your needs.

The ultimate in editors is of course emacs. This baby can do just about anything, including reading your email
for you. It is highly configurable, and comes with it's own programming language built in that allows you to cre-
ate new functionality. emacs come from the GNU stable, and was written by Richard Stallman himself. It is one
of two editors that are standard on most Linux systems. But because of the sheer size and complexity of emacs,
it probably is not the best choice to start your editing experience.

The other common editor is vi . It has been expanded and improved far beyond the original, and is now actually
known as vi m(vi improved), but the command vi will also work — it ends up at the same place as vi m

vi dates back to the early days of Unix, and was very advanced for it's time. Nowadays it's user interface can
best be described as, um, quaint®.

So why learn vi ? Because it will be installed on just about any system you ever come across. Sometimes it may
be the only editor on the system so you have to use it. To do that, you have to know how to use it.

Vi operates in one of two modes — command mode or insert mode. Command mode is where you tell vi what
you want it to do, insert mode is where to type text that will go into the file.

Why two modes? Because vi was developed in the days of stripped down keyboards, with no F-keys and such
fancy things. If you want to delete an entire line for example, you use the “d” key, which is obviously the same
key used to enter a “d” in the text.

I could give a several page tutorial on vi at this point, but I decided not to because someone else has already
written one. It's called vi nt ut or and leads you through all the basic vi functions that you need to know.

You should run this tutorial now by entering vi nt ut or on the command line and pressing
Enter.

List of vi commands

Complete Documentation

The vi editor is a common editor for unix systems in that it makes use of a regular keyboard with an escape key.
On the DECstation, the escape key is the F11 key. It therefore works on all unix computers. Complete document-
ation is available by typing

man vi at the unix prompt.

Starting an Editing Session

vi filename
where filename is the name of the file to be edited.

Undo Command

u
undo the last command.

1 quaint: cute or attractive because it's unusual or old-fashioned

Page 2

Screen Commands

CTL/1
Reprints current screen.
CTL/L
Exposes one more line at top of screen.
CTL/E
Exposes one more line at bottom of screen.
CTL/F
Pages forward one screen.
CTL/B
Pages back one screen.
CTL/D
Pages down half screen.
CTL/U
Pages up half screen.

Cursor Positioning Commands

J

Moves cursor down one line, same column.
k

Moves cursor up one line, same column.
h

Moves cursor back one character.
1

Moves cursor forward one character.
RET

Moves cursor to beginning of next line.
0

Moves cursor to beginning of current line.
$

Moves cursor to end of current line.
SPACE
Moves cursor forward one character.

nG

Moves cursor to beginning of line n. Default is last line of file.
0

Moves the cursor to the first character of the line.
‘n

Moves cursor to beginning of line n.
b

Moves the cursor backward to the beginning of the previous word.
e

Moves the cursor backward to the end of the previous word.
w

Moves the cursor forward to the next word.
/pattern

Moves cursor forward to next occurrence of pattern.
?pattern

Moves cursor backward to next occurrence of pattern.
n

Repeats last / or ? pattern search.

Text Insertion Commands

a
Appends text after cursor. Terminated by escape key.

A
Appends text at the end of the line. Terminated the escape key.

Inserts text before cursor. Terminated by the escape key.

Page 3

Inserts text at the beginning of the line. Terminated by the escape key.

0
Opens new line below the current line for text insertion. Terminated by the escape key.
(0]
Opens new line above the current line for text insertion. Terminated by the escape key.
DEL
Overwrites last character during text insertion.
ESC

Stops text insertion. The escape key on the DECstations is the F11 key.

Text Deletion Commands

X
Deletes current character.
dd
Deletes current line.
dw
Deletes the current word.
d)

Deletes the rest of the current sentence.
D, d$
Deletes from cursor to end of line.

Puts back text from the previous delete.

Changing Commands

cw
Changes characters of current word until stopped with escape key.
c$
Changes text up to the end of the line.
C, cc
Changes remaining text on current line until stopped by pressing the escape key.
Changes case of current character.
Xp
Transposes current and following characters.
J
Joins current line with next line.
s
Deletes the current character and goes into the insertion mode.
rx
Replaces current character with x.
R

Replaces the following characters until terminated with the escape key.

Cut and Paste Commands

yy
Puts the current line in a buffer. Does not delete the line from its current position.

p
Places the line in the buffer after the current position of the cursor.

Appending Files into Current File

‘R filename
Inserts the file filename where the cursor was before the ' *:" was typed.

Exiting vi

77

Page 4

Exits vi and saves changes.
"wq

Writes changes to current file and quits edit session.
:q!

Quits edit session (no changes made).

Virtual terminals

Linux allows you to be logged in more than once at the same time. This is how it accomplishes multi-tasking —
running more than one program at one time. To do this, press Al t - F2 at the command prompt. You will see the
normal Linux log-in screen. Log in, and | s the / directory. Press Al t - F1 and you will see the previous screen
you were working on is still there. Use Al t - F1 and Al t - F2 to switch between these screens. You can log in on
up to 6 different sessions (Al t - F1 to Al t - F6) simultaneously.

Each of these sessions is called a virtual terminal®> (VT) because each acts like a completely separate terminal
with keyboard and screen. Of course, there is only one real keyboard and screen, the 6 are simulated by the
software, hence the description “virtual”.

You might ask the question, “can more than one person log in with a separate physical terminal?” Yes you can,
you plug the other machine into one of the sockets on the back. You have to set it up to do this, and some soft-
ware is needed, but this software comes standard with Linux.

Security basics

So far, you have learned the essential basics of getting the computer to do something useful. You have learned
how to create and delete directories, list files in those directories and change directories. Now it's time to move
onto the user security features of Linux.

Users

Linux security is built around the concept of a user - a person with an account on the system. The account has a
password, and the system checks that the password matches the user name before allowing access. Each user is
given a place on the disk drive to store their own private files, and initially the only person that can access those
files is the user. The user can later allow other users to have access to his files if he wants — you will often come
across files that have to be shared between more than one user. For example a group of programmers working
on one project might all need to be able to access all files for the project.

By default, all users must have a password. It is possible to create an account that does not have a password — in
other words, anyone can log in as that user. This practice is not recommended, but it does have uses in certain
cases — an information directory for the general public would be an example.

Passwords should be difficult to guess. There are many published tips regarding dos and dont s of passwords-
here is a quick summary:

* Don't use your name, or the name of a family member, pet or some other significant (to you) person or thing
for your password. These are easy to guess.

* Don't use telephone numbers, addresses, significant dates as the basis for your password.

* Don't use words in the dictionary for your password. There are about 80,000 words in the English language,
and programs exist to try them all in an effort to crack your password.

* Do use a password that is at leasts 8 characters long, and is a mixture of upper and lower case characters,
numbers and punctuation.

* Don't write your password down, and paste it on the side of your monitor — don't laugh, this happens more
often than you think.

* Don't give your password to others — this is like giving out the access code on your bank account.

2 virtual terminal: a terminal that is not a separate physical terminal, but is set up in software to behave like
one

Page 5

* The best passwords are those that are completely random and have no actual meaning. But these are diffi-
cult to remember, so an equally good choice would be the first or last letters of each word of an easy to re-
member sentence.

A user name can be any name that the administrator chooses to assign to the user, but must be unique. Two
users cannot share the same user name. Linux does not impose any special rules about user names — there is
nothing to stop you from creating a user with the name 123 for example. But if your name is Bill, then bi | | is a
better choice.

There is one particular special user account — r oot . We have already encountered this user name - it is for the
system administrator. r oot has certain privileges that no other user has, such as adding and modifying other
user accounts. All access controls are switched off for the r oot user — r oot has complete access to every file on
the system.

Routinely logging on as the r oot user is a very bad idea! This might be fine for one stand-alone machine for
home use, but in all other cases full user accounts should be used. It is very easy to mistype a command and
cause damage to the data on your system if r oot is the current user. Rather create a regular account for every-
day work, and switch to root mode when you really need it — there is a command to temporarily do this, which
we will cover later.

Thus far we have been operating as the r oot user (and breaking an important rule in doing so). We had to do
this because there were a few things to learn about before getting into user security. From now on you should
always log into the system using the normal account we are about to create.

useradd

The command to create a new user is user add. Most systems also have the equivalent command adduser —
they do the same thing. The format is:

user add [usernane]

You must be logged in as r oot to use this command. Enter it now, entering your own choice of user for [user -
nane] . The system will create this user account, and create a directory for the user to store their personal files.

This directory has the same name as the user name, and is in the /home directory. These directories are collect-
ively called home directories’. It does this by copying the existing /etc/skel directory to /home and renaming it
to the same name as the new user. This is more than just a convenient way to create a new directory — any files
that are in /etc/skel are also copied over. Certain programs look in a user's home directory for configuration
files specific to that user, so /etc/skel (skel stands for skeleton) is a good place to put default versions of these
files, which the user can then customize to his liking. Enter:

I's /home

to see this new directory.

The system provides a convenient shortcut for the name of the home directory - ~. This character is called the
tilde*. If the system sees a tilde when it expects a directory name, it replaces ~ with the full name of the home
directory of the current user. If user al an is logged in, ~ expands to /home/alan; if user bi | | is logged in, ~
expands to /home/bill.

This new user account does not have a password yet. To enter the initial password, root can either do it immedi-
ately, or the user can do it the first time they log in. In both cases, the relevant command is passwd

passwd

This command updates the password for a user account. The format is:
passwd <user name>

The user name portion is optional, and only root can do this. The system will ask for the new password for
<user nane> to be entered twice — this prevents typing errors when entering the password. Note that the char-
acters typed are not printed on the screen — a security feature.

Users can also enter their initial password themselves. Log in as the new user, and note that the system does not
ask for a password (because there isn't one yet). Enter the command

passwd

3 home directory: a directory in /home set aside for a specific user's private use
4 tilde: the ~ character.

Page 6

and enter the new password as above. Normally this command first asks you to enter the current password,
then has you enter the new password twice. This is another security feature and prevents other users from chan-
ging a user's password if the user steps away from the terminal for a short while without logging out. But in this
case there is no current password, so the first step is omitted.

su
From now on you should always log in as a regular user. But what if you need to do something that only r oot
can do? You can't do it if logged in as a regular user.
You do this with the su command, short for superuser (another name for r oot). If you use the — or -1 op-
tion, the system will duplicate the entire login process all over again. Without these options, you are only asked
for a password. su also needs to know which user you wish to change to, supply this as an argument on the
command line. If no user is supplied, r oot is assumed. Use the command like this:
su — root
which is the same as
su -
You can su to any other user (if you have the password) like this
su — [usernane]
And finally, r oot can su to any user at all on the system without giving a password.

userdel
This is the command to delete a user. The format is:
userdel [usernane]
Only r oot can do this. After using user del , the user's home directories are not deleted — they still exist. This
is because there may well be files is those directories that should be preserved. To delete the user's home direct-
ories as well, use the -r switch like this:
userdel -r [usernane]

Groups

In practice, using only user names is very limited. Users often have to share files between themselves, so it
makes sense to be able to assign permissions to entire groups of people. Linux uses the simplest possible solu-
tionfor this:
A separate group account is created for each desired group, and a list of users that belong to that group is main-
tained in the file /etc/group. At any one time while logged in, a user is recorded as belonging to one of these
groups, and can change their current group at any time.
It's important to understand how simple this scheme is. The one thing it does not do is keep a full list of each
user's group in memory and give the user all access permissions for all groups all the time.
a way and certain groups of users need to do operations on the system that other groups of users can't do. For
example, in a college each lecturer and student has a login account. Lecturers may run programs that update
student exam marks, but students may not do this. It is possible to assign each lecturer and each student the
correct permissions one by one, but this is prone to error and a real pain to keep updated.
The solution is to create two groups of users — one for lecturers and and one for students. Assign each user to
one or other of the group, and assign group permissions to the files and programs having to do with exam marks.
Administering such a system is much easier — you simply tell the system which group a user belongs to.

groupadd

This command adds a new group to the system. It does not add any users to the group — that is done separately.
The format is:

groupadd [groupnane]

Page 7

groupdel

This command deletes a group. The format is:

groupdel [groupnane]
usermod

This command allows you to change a user's settings, especially the groups the user belongs to. The format to

do this is:
usernod -G [group] [, group]... [usernane]
List the names of the groups the user is to belong to, separated by commas without any spaces between group
names.
gpasswd

This command changes the password for a group. It operates similarly to the passwd command, you supply the
group name on the command line:

gpasswd [gr oupnane]

The system will issue all the necessary prompts for the password to be correctly changed.
groups

This command lists the groups a user is in. To use, enter the command followed by a user name. Here is a listing
from my machine for user r oot and user al an:

[al an@ot ebook al an] $ groups root

root : root bin daenpn sys adm di sk wheel
[al an@not ebook al an]$ groups al an

alan : al an

If you don't supply a user name, the command uses the currently logged in user.
Default groups

When a new user is added to the system, most Linux versions will also create a new group with the same name
as the user. If the user is bi | | , a group named bi | | is also created. User bi | | is automatically a member of
group bi | | .

This can be useful if a user wants to give another user the same access to his files that he has. If Bill has an as-
sistant called Joe, whom he trusts completely, he could make Joe a member of the bi | | group. This may be
easier to set up in some cases than a full-blown group. We will cover the topic of access rights to files shortly,
and then all will become clear.

User and group IDs

Each user and group name on the system has a unique number ID assigned to it. These are called UID and GID.
The computer internally uses only these IDs, the user and group name is there for the benefit of humans (we are
more comfortable with user names than user numbers). When you log in, the computer finds your login name,
reads the ID that goes with the name, and thereafter uses the ID. You can change the login name if you want.

To change a user's login name, use user nod:
usernod -1 [newusernane] [ol dusernane]

For this to work, the user must not be currently logged into the system, and no programs can be running that
the user started.

There is a similar command for changing group names:
groupnod -n [newgroupnane] [ol dgroupnane]

Note that the option is different — user mod uses a -1 option, while gr oupnod uses a - n option.

Page 8

File

IDs between 0 and 99 are normally reserved for system use. Regular users should be numbered from 100 and
higher. Most distributions start numbering user IDs even higher — Red Hat starts at 500. It's not impossible for
the system to want to create more than 100 user IDs

ownership

All files and directories are marked as having an owner®. This is usually the user that created the file, but r oot
can change this. Files and directories also have group owners®, meaning the group that owns the file. By default
the group owner is whichever group that the owner belongs to. If bi | | creates a new file, the owner is (user)
bi | | and the group owner is (group) bi I | .

If you were wondering what the reason for default groups is while reading that section earlier - now you know.
It simplifies the process of group ownership for new files.

Permissions

We briefly touched on permissions above without going into any detail. The general idea of permissions is obvi-
ous — users may or may not do certain things on the system, depending on whether they have the necessary per-
mission to do so or not. Linux uses three permissions for three classes of users. The permission types are:

1. read A user with read permission may open and look inside a file
2. write Write permission allows the user to modify the file

3. execute If the file is a program, the user may execute the program. For directories, the user may open
the directory (cd into it)

The classes of users are:

1. owner the user owner of the file

2. group the group owner of the file

3. otherall other users, who are neither the owner of the file, nor members of the group that owns the file.

Now that we have covered files, directories, users, groups and permissions, we can introduce a useful option to
the | s command. The option is -1 (for long). Enter the following:

Ils -al /

The output from this command on my machine looks like this (details may differ on your machine but the
format is the same):

drwxr-xr-x 19 root root 4096 Mar 12 08: 31 .
drwxr-xr-x 19 root root 4096 Mar 12 08: 31 .
STWF--T-- 1 root root 0 Mar 12 08: 31 . autof sck
dr wxr - Xr - X 2 root root 4096 Mar 10 16:15 bin

dr wxr - Xr - X 4 root root 1024 Mar 10 16: 02 boot
drwxr-xr-x 21 root root 118784 Mar 12 08: 32 dev
drwxr-xr-x 67 root root 8192 Mar 12 09:49 etc
STWr--T1-- 1 root root 51 Mar 10 18:03 .fonts.cache-1
dr wxr - Xr - x 5 root root 4096 Mar 12 09: 49 hone

dr wxr - Xr - X 2 root root 4096 Oct 7 13:16 initrd

dr wxr - Xr - X 9 root root 4096 Mar 12 09:40 |lib
drwx------ 2 root root 16384 Mar 10 17:54 | ost+f ound
dr wxr - Xr - x 2 root root 4096 Sep 8 2003 m sc

dr wxr - Xr - X 3 root root 4096 Mar 10 17:57 mmt

dr wxr - Xr - x 2 root root 4096 Oct 7 13:16 opt
dr-xr-xr-x 76 root root 0 Mar 12 10: 31 proc
drwxr-x--- 23 root root 4096 Mar 12 09: 54 root

dr wxr - Xr - X 2 root root 8192 Mar 10 19: 42 shin
drwxrwxrwt 23 root root 4096 Mar 12 09: 37 tnp
drwxr-xr-x 15 root root 4096 Mar 10 16: 00 usr
drwxr-xr-x 22 root root 4096 Mar 10 19: 40 var

The listing is divided up into 7 columns:

1. permissions for the file

5 owner: the user in charge of a file or directory. The owner is often the creator of the file, but this is not re-
quired.
6 group owner: a group that has special rights to a file or directory. Similar to owner, but applies to groups.

Page 9

N o vk w DN

The permissions column consists of 10 entries — each usually a letter. The first letter indicates if the line refers to
a file or a directory. Directories are indicated with a “d”, regular files with a

The 2™, 3" and 4" letters give the permissions for the owner of the file, in the order read, write, execute. If the
action is allowed, the relevant r, w or x (for execute) is printed. If the permission is not allowed, a dash is prin-

a number (which we will cover later but basically it is the number of existing copies of the file)

file owner

group owner

the size of the file on disk

date and time the file was last modified (omitting the year)

the file name

ted.

The 5%, 6™ and 7" letters give permission for the group owner of the file, listed the same way as user permis-

sions.

The 8%, 9" and 10™ letters give the permissions for all other users on the system, listed the same way as user

permissions.

Lets examine closely two entries from the above listing (numbers have been added above the permission column

to make reading easier):

1234567890
STWIr--1--
dr wxr - Xr - x

1 root
2 root

r oot
r oot

0 Mar
4096 Mar

12 08: 31 . aut of sck
10 16: 15 bin

The first line refers to a hidden file called .autofsck. The first letter is a dash, so it is not a directory. Letters 2-4

read “r w ” so the owner (r oot) may read and write to the file. Letters 5-7 read “r - - ”, so other users who are
members of group r oot may read the file, but not write to it. Letters 8-0 also read “r - - ”, so for this file all oth-
er users may also read the file but not write to it. This file contains data and is not a program, so the executable
columns (4, 7 and 10) all contain dashes. You could put x's in these columns, but this doesn't make sense and
the system will probably give you an error if you try and execute the file, because it is not a program.

The second line refers to a directory called bin, the owner and group owner are r oot . r oot may read from,
write to, and enter the directory, members of the group owner (group) r oot may read from and enter the dir-
ectory, but not write to it, and all other users have the same permission as the group owners.

The “sticky” bit

One of the lines in the above sample from my machine shows an unusual permission. The line is:

|drwxrvvxrwt

23 root

r oot

4096 Mar

12 09: 37 tnp

The tenth column under permissions lists a “t”, meaning that the /tmp directory is marked sticky’. Sticky is typ-
ical Unix slang, and for a directory it means that for files in that directory, only the file owner or root may delete
or rename the files. This is useful for directories like /tmp (which are accessible to all users) where programs

write temporary files that will be deleted later — you wouldn't want some other user to delete your temporary
files that your program is still using!

These days you will seldom see the sticky bit applied to a file. It dates back to the early days of Unix, and was
intended to set important system programs to remina in memory so they could be available quickly when
needed. These days memory management works very differently to back then and Linux has always totally ig-
nored the sticky bit on files. Some other (non-Linux) systems use the sticky bit for their own purposes, and some

systems only allow r oot to set the sticky bit.

The sticky bit is described here for completeness, it is not all that important, but setting the sticky bit for a dir-

ectory may come up in your exam.

7

sticky: for files — an obsolete attribute having to do with swap space memory. For directories — only the own-

er of a file in the directory may delete or rename the file.

Page 10

setuid and setgid bits

Jut as files have user and group owners, programs running in the computer's memory also have owners, called
the process owner®. This is normally the user that started the program, as opposed to the owner of the file that
contains the program on disk. But this can be changed. You may occasionally see the letter “s” in the executable
permission column (columns 4 & 7). If present, these mean that when the program executes, the system will set
the process owner to the owner of the disk file, not the user that started the program. There is a setting for the
process user owner — setuid, and a setting for the process group owner — setgid.

Changing file permissions with chmod
Everything we have covered so far regarding permissions is very interesting, but we still don't have a way to
change permissions on a file or directory. The command to do this is chnpd. This command can accomplish the
same thing in two different ways.

Text method

The first method is the text method. You enter three characters, specifying who the new permissions apply to,
how to apply them, and which permissions to apply. The first character must be one of the following:

u

the owner of the file name
g

the group owner of the file
o)

all other users
a

all users, i.e. u, g and o combined
The second character must be one of the following

+
adds the new permission(s)

removes the permission(s)

set these permissions and remove all others

The third character must be one of the following

r
read permission
w
write permission
X
execute permission
X
execute permission, but only if the entry is for a directory or a file that already has an execute permission
set
s
set user or group id on execution
t
sticky bit
u

the permissions already assigned to the file's owner

8 process owner: Usually the ID of the owner that started a process. Sometimes it is the ID of the owner of
the program's disk file.

Page 11

the permissions already assigned to the file's group owner

the permissions already assigned to other users

For the most basic method of using chnpd, you supply one character from each one of the above three groups.

To give the owner of the file write permission on the file, enter
chmod u+w [file nane]

To remove read permission to the file from all other users, enter

chmod o-r [file nane]

To give the file's group owner only read and write permissions on a file, enter
To give the file's group owner the same permissions as the file owner, enter

chmod g+u [file nane]
chmod g=rw [file nane]

To give read permission and remove execute permission for the file to all other users, enter

chmod o+r,o0-w [file nane]

To give read permission to every user on the system and remove execute permission for all other users, enter
chnmod a+r,o0-x [file name]

The last three examples show how operations can be combined. To assign more than one permission type at a
time, simply list them all after the operation sign (+, - or =). For other combinations, list them all separated by
commas.

« 7

Take note of the difference between “0” and “a” in the first group of characters. “o” is users who are not the
owner or in the owner group — columns 8 to 10 in an |s -| listing. “a”is every user on the system, columns 2
tol0inan |s -1 listing.

The third group of characters has an interesting option — X. A common mistake that can occur is to assign ex-
ecute permissions to a file where this does not apply - it is not a program. X helps prevent this and will only ap-
ply the permission if the file name is a directory (where execute permission allows users to enter the directory)
or one of the execute permissions is already set. The “s” and “t” permissions are seldom used, but are included
here for completeness.

Numeric method

Using this method, permissions are given numerical values and added up for each different class of user.
« set user ID has the value 4

* set group ID has the value 2

* sticky bit has the value 1

Regular permissions have the following values:

* read permission has the value 4

* write permission has the value 2

e execute permission has the value 1

This form of the command is used as follows:

chnod [node] [file nane]

where [mode] is four digits. The first digit is the values of set user ID, set group ID and sticky bit. The second di-
git is the values of regular permissions for the file owner, the third is the values of regular permissions for the
group owner, the fourth digit is the value of regular permissions for all other users. If any of these four digits are
omitted, they are assumed to be leading zeros (added on the left).

To assign all permissions to the file owner, and read and write permissions only to group owner and other users,
enter

chmod 0766 [fil e name]

Page 12

For a data file that may be read by everyone in the owner's group (and no-one else), but only modified by the
owner, you could use this command:

chnmod 0640 [fil e nane]

No execute permissions were set with this example.

The user ID, group ID and sticky bit options are seldom used, so the last example is often entered as:
chmod 640 [fil e nane]

The first digit is omitted, so it is assumed to be zero.

When using chnod, you can specify multiple file names by listing them all separated by spaces. File globbing
characters are also allowed.

The numeric method is often called the octal method, because it uses the values 1, 2 and 4 like a number system
that has only 8 digits.

Students often find the text method easier to grasp at first, but the numeric method is the more common. But as
soon as the student groks® the numeric method, it usually becomes second nature, then the syntax of the text
method becomes difficult to remember!

Setting default permissions with umask

Setting permissions is all very well and fine — but what are the default permissions? The answer is — whatever
you have set them to be. They are set with the umask command. Using this command is a little non-intuitive at
first, because you specify the permissions that will not be set. So it operates as a mask, blanking out something
that you don't want, hence the name.

A common default setting is 022. The order and value of the permissions is the same as for chrmod. The group
owner value is 2 — this is the group owner write permission. The other user value is also 2. What this means is
that those permissions will not be allowed, all others will.

So finally we get to see what the default permissions are if we use a umask of 022 — the file owner may read
form, write to and execute the file. The group owner and other users may read from and execute the file, but
may not write to it.

If you are a super-secret-paranoid type of individual, and wanted to remove all permissions on your new files,
except that other members of your group could at least read them, you would use the mask 037 — the write and
execute values total 3, and read, write and execute values total 7.

Note that umask sets only the default permissions for new files. If you want a different set of permissions for a
specific file, you have to change that file with chnod.

umask applies only to your own files — each user can start a session at the terminal with a different mask set-
ting. Later in the course we will cover the method to use to automatically set this value each time you log in.

Using the umask command is easy — supply the mask value as an argument on the command line. With no argu-
ments, umask prints the current mask, with the -S option, it prints the current mask in the chmod text style.
Here are examples of all these usages:

[root @ot ebook /]# umask 022
[root @ot ebook /]# umask
0022

[root @ot ebook /]# umask -S
u=r wx, g=r X, 0=r X

Changing a file's owner

The command that does this is chown. In it's most basic form, it is used liked this:
chown [newowner] [fil e nane]

This will assign a new owner to the file. Multiple files can be specified like this:
chown [newowner] [file nanme] [file nane]...

in this case the owner is changed for each listed file. Group ownership can be changed at the same time, like
this:

9 grok: yet more Unix slang. It means “to understand” or “to grasp the meaning” of something.

Page 13

chown [newowner]:[groupowner] [file nane]

This changes the owner and the group owner at the same time. A dot can be used instead of a colon, but there
must be no spaces on either side of the colon or dot.

The colon or dot can be entered, but group owner can be left off, like this

chown [newowner]: [file nane]

this is the same as not entering a colon at all.

Lastly, the colon or dot can be given with a group name, but without a user name, like this
chown :[groupnane] [file nane]

this will change only the group owner and leave the user owner unchanged.

User and group IDs can be entered instead of user and group names.
Changing a file's group owner

The command that does this is chgr p. The format is
chgrp [groupnane] [file nane] [file nanme]...

This changes the group ownership of each listed file to [gr oupnane] . This does exactly the same thing as the
last example for chown.

User and password information

So where does the system store this password information? You might think perhaps they are stored in some
deep dark hole that no-one can ever get to. Well, you'd be wrong. They are stored in open view to the entire
world, in two files, both in the /etc directory. User information is in the file /etc/passwd. | ess this file to see
what it looks like. A sample of the passwd file on my machine looks like:

root: x:0:0:root:/root:/bin/bash

bi n: x: 1: 1: bi n:/ bi n: / sbi n/ nol ogi n

al an: x: 500: 500: Al an McKi nnon: / hone/ al an: / bi n/ bash
t enp: x: 501: 501: : / hone/ t enp: / bi n/ bash

This shows four different users: r oot , bi n, al an and t enp. al an is my everyday use account, t enp is just
that — a temporary account made during testing, and bi n is a system account. The passwd file consists of one
entry per line, and each entry is divided up into 7 fields, separated by colons:

. username
. password

. user ID

. extra information - intended to be the user's full name, etc. This field is seldom used in practice.

1

2

3

4. group ID

5

6. user's home directory

7. the shell program that will run after login. The shell is the program that displays the system prompt and ac-
cepts commands at the keyboard. There are many shell programs available, but /bin/bash is by far the most

popular. You should leave this field as is, at least for now.

The various user and group commands we have covered so far all update these files. But there is no reason why
you can't edit them directly yourself if you know what to do. After some practice, this is often easier and quicker
than entering the command - especially if you just want to update one user.

So where is the password? Each entry above just shows an “x” in the password field. In the early days, the pass-
word was stored in the passwd file (hence the name), but this is not secure.

The actual user password itself is never stored anywhere on the system. Instead, the password is encrypted - it
goes through a complex mathematical process that gives out a long string of letters and this string is what is
stored. This process is one-way - it is easy to generate the long string, but if you have the long string, it is im-
possible to figure out what was the original password. Well, maybe it's not impossible, but so far no-one has
figured out a way to do it and published the results. And the process is guaranteed to generate different long
strings for different passwords.

Page 14

To validate a password, the system passes the entered password through the same encryption process to gener-
ate a new long string, then compares that string with what is stored in the password field. If the two long strings
match, the entered password is the same as the original password.

This looks fine, and the passwords seem to be safe, but there is a loophole. Any user and program on the system
must be able to read the passwd file (but not write to it — only r oot can do that) to validate users, so anyone
can get their hands on the encrypted strings. Programs exist that check every word in the dictionary against the
encrypted password strings in the passwd file. If you have several hundred users on the system, it's a sure bet
that at least a few of them used dictionary words as their password. Someone wanting to break system security
could easily find those user's passwords. Adding a number to the start and end of a word doesn't help either —
those cracking programs are smart enough to try that trick as well.

The solution is to remove the password out of the passwd file and put it some place safe. This is indicated with
the “*” field in passwd, and the encrypted password is stored in /etc/shadow. This file has a very strict set of
permissions — r oot may read it, everyone else has no permissions on the file at all. In making this change, the
designers also made the encryption process even stronger and more difficult to crack'®, and added extra useful
features to the system. These features are covered in the next section, password policies.

Password policies

Password policies implement sensible rules regarding passwords. There is nothing we can do about users who
choose silly passwords, or give their password to the milk man, but we can enforce rules to make users change
their passwords often, and we can also cause accounts to become expired or disabled.

Here is a sample of the shadow file on my system for the same 4 users as above:

root : 1cW 1uMBk$saguncyH.wzgLl G81 p3SR/ : 12487: 0: 99999: 7: : :
bi n: *:12487: 0: 99999: 7: : :

al an: 1UazZ7ZkJZ$46gXv0Ov1b5JbgyglAuewRrl: 12487: 0: 99999: 7: : :
tenp:!!:12488:0:99999: 7: ::

Again, there is one entry per line and each line consists of 9 fields, separated with “:”
. user name — same as first entry in the passwd file
. encrypted password
. number of days since 1 Jan 1970 when password was last changed

. number of days that must pass before password can be changed again

. number of days before password expiry that user is warned
. number of days after password expiry that account will be disabled

1

2

3

4

5. number of days after which password must be changed

6

7

8. number of days since Jan 1, 1970 that account will be disabled
9

. reserved field

Password policies are entered by filling in fields 4, 5, 6 and 7. The system updates everything else. Point 4 re-
quires some explanation — without it, users can bypass the rule of changing passwords every x number of days
by changing their password to something temporary and immediately changing it back to their favourite pass-
word.

If a password has expired and that user logs in, the system will inform the user that the password has expired,
ask for the old password, and once verified immediately ask for the new password. There is no way to bypass
this, thus forcing a password change. The old and new password must of course be different. The system knows
when each password will expire, so shortly before it does, the system will start reminding the user that the pass-
word is due to expire. The number of days before expiry when this starts is specified in field 6. If an account is
not used for a period after the password expires, the system can be set to disable the account, and only root can
re-enable it again. This grace period is set in field 7. Field 8 contains the date when the account will be disabled
if the password has expired. Field 9 is reserved and is not for general use.

Most Linux distributions do not automatically set password policies — this would cause havoc if the person doing
the installation was not aware of it. Instead, field 5 is set to a very high value 99999 days (more than 270
years), field 6 is set to 7 (a reasonable value, but will never be used) and fields 7-9 are left blank.

10 For those who are interested and know about these things, the encryption process used is MD5

Page 15

Wsen

The entries for bi n and t enp also need explanation. bi n has a in the password field - this is a system ac-
count used only by the system and no-one will ever log in at the terminal with this user name. Account t enp
has been disabled - indicated with the first letter of the password field being “!”

Password policies are implemented with several commands and options.

usernod -e [expiredate] [usernane]

sets the date when a password will expire. [expi r edat €] must be in the form YYYY-MM-DD

usernod -f [inactivedays] [usernane]

sets field 7 in the shadow file

usernod -L [usernane]

disables (locks) an account

usernod -U [usernane]

enables (unlocks) an account

The user add command also has the identical - e and -f options for use when creating new accounts.

The master command that does everything is chage. Generally, only r oot can use this command. The format
is:

chage <-m m ndays> <-M naxdays> <-d | astday> <-1 inactive>
<-E expiredate> <-W war ndays> [usernane]

[user nane] is required, but if none of the options is specified, the command acts interactively, displaying each
current option and asking the user to update it. If the option doesn't need updating, simply press enter to accept
the current value.

-m m ndays
updates field 4

- M maxdays
updates field 5

-d | astday
updates field 3. The system accepts date input in the form YYYY-MM-DD.

-1 inactive
updates field 7

-E expiredate
updates field 8. The system accepts date input in the form YYYY-MM-DD.

- W war ndays
updates field 6

There is one option to chage that a regular user can use. This is:
chage -1 [usernane]

which displays when the user's password is due to expire.

Group files
There are two files that contain information about groups. They are similar to the /etc/passwd and /etc/shad-
ow files; these files are /etc/group and /etc/gshadow respectively.

The list of defined groups on the system is kept in the file /etc/groups. This file does the same thing for groups
as /etc/passwd does for users. A sample of this file from my machine looks as follows:

root : x: 0: root
bi n: x: 1: root , bi n, daenon
al an: x: 500:

The file consists of 4 fields, separated by colons. These fields are:
1. group name
2. encrypted group password

3. comma separated list of group administrators

Page 16

4. comma-separated list of users that belong to this group

The /etc/group file suffers from the same security weakness as /etc/passwd, so it too has a shadow file - this is
called /etc/gshadow. On my system, the file looks like this:

root:::root
bi n:::root, bi n, daenon

This is a 4-field file, and the fields have the same format as /etc/group.
Converting between password formats

You may find yourself in a position where a system is using the old-style user and group files, and has not con-
verted over to the better shadow format. Although you could do this manually, re-creating each user and group
at the command line, there are four commands that automate the process. There are two each for users and
groups, one to convert to shadow format, one to convert back to the old format.

These commands are:

pwconv
creates or updates /etc/shadow

pwunconv
converts back to /etc/passwd only format

gr pconv
creates or updates /etc/gshadow

gr punconv
converts back to /etc/group format

None of these commands take any arguments, as there is no optional behaviour. The location of all files is
known beforehand, and the command simply has to get on with doing it's job.

If the pwconv and gr pconv commands find an existing shadow file, they will add to the file — not replace it.
Necessary encrypted password are added to the shadow file, the password field in the main file is replaced with

«y,”

an “x”, and system defaults for the password policies are used for new entries to the shadow file.

The pwunconv and gr punconv commands move information out of the shadow file into the main file, and the
shadow file is then deleted. Information that is only stored in the shadow file — like some password ageing fields
— is lost in the process. There is nothing that can be done about this — the process is a conversion to a format
with less detail.

Some odd entries in the files can cause these programs to fail in strange ways or go round and round in circles
forever. There are two commands that check the files and interactively allow oddities to be corrected. These
commands are:

pwek
checks /etc/passwd and /etc/shadow

gr pck
checks /etc/group and /etc/gshadow

Without options, these commands automatically use the normal user, group and shadow files. You can tell them
to use other files if you wish:

pwck [userfile] [shadowfile]
grpck [groupfile] [shadowfile]

This might be useful if you wanted to avoid making any disastrous changes to your user and group files. To
simply check if the files are OK and not make any changes to them, use the -r option with either command -
this opens the files read-only, the user is not offered the chance to correct any oddities, and the files are not
altered at all.

Users on the system

You might want to know who is currently logged in and using the system. Several commands let you do this.

Page 17

who

who lists the users logged in on the system. An output from running who on my system shows:

[al an@not ebook al an] $ who

r oot ttyl Mar 14 12: 33
al an tty2 Mar 14 12:33
al an :0 Mar 12 19:14

user r oot is logged on virtual terminal 1, and user al an is logged in on virtual terminal 2. User al an is also
logged in somewhere called “:0” - this is the graphical user interface that I am currently using to write this
manual. The time each user logged in is also listed.

Sometimes who doesn't give enough information. You might want to know what each user is currently doing. w
gives this information. Running w on my system shows:

12:37:09 wup 1 day, 17:27, 3 users, l|oad: 0.01, 0.10, 0.09

USER TTY FROM LOG N@ |IDLE JCPU PCPU WHAT

r oot ttyl - 12: 33pm 3: 49 0.10s 0.10s top

al an tty2 - 12: 33pm 3: 39 0.06s 0.06s -bash
al an 10 - Fri 7pm ? 0.00s 0.13s /bin/sh

The first line tells me the current time, how long the system has been running since last reboot or restart (like
most Linux systems, I let my machine run all the time, seldom switching it off),there are 3 users logged in, and
the average load the system experienced in the last 1, 5 and 15 minutes (loads less than 1 are ideal).

For each user, I can see where they logged in from using the FROM column. In this example, the entries are all
blank because all three users are logged in on this machine using virtual terminals. If other users were logged in
over the network, their network address would show up here. The 5" to 7 columns show statistics regarding
time usage of the system for each user, and the last column shows the command that each is currently running.

whoami

Forgot who you logged in as? whoani will remind you. It displays the name of the current user:

[al an@not ebook al an] $ whoam

al an
This doesn't look like much use — why ask the system who you logged in as when you a) probably remember it
anyway and b) can see it right there on the prompt.?
But a program doesn't know that, so it could use whoami to find it out.
id

Here's another useful little program. It shows the UserID, GroupID, and GroupID {*** FIXME - this is real and
effective groups. Need to define these somewhere so it doesn't cause confusion} of all groups the current user
belongs to. Here is what I get on my machine while logged in as al an:

[al an@not ebook /]$ id
ui d=500(al an) gi d=500(al an) groups=500(al an)

And when I log in as r oot I get the following:

[root @ot ebook /]# id
ui d=0(root) gid=0(root) groups=0(root), 1(bin), 2(daenmon), 3(sys), 6(di sk)

Processes

By now you know that Linux is a multi-task system — it runs more than one program (correctly called a pro-
cess'') at a time'?. So, what programs are running on the system? ps is the command that tells you this.

11 process: a program that is actually running in the computer's memory
12 Well, actually it only runs one program at any specific time but it jumps from one program to another so fast
it looks like they all run at the same time

Page 18

ps

al an@not ebook al an] $ ps

PID TTY TI ME CVD
14868 pts/1 00: 00: 00 bash
15064 pts/1 00: 00: 00 ps

Without any options, ps displays the processes for the current user only. We can see that this user is running
bash - the standard shell displayed at the console. He is also running ps — the very command that displays it-
self.

The first column gives a unique process ID (or PID) for each process — this identifies the process and is used by
commands that operates on running processes. The second column indicates which console the command was
started from - in this case pts/1 which is the first virtual console. The third column shows how much cpu time
the process has used so far — this is not the same thing as the elapsed time since the command was started. And
the last column is the command that is being run.

To see processes running on all terminals, use the - a option

Linux runs many processes by itself in the background. These include programs that allow communication
across the network, programs that log significant occurrences in the system logs, and more. To see these, use the
- X option.

ps is often run with both the - a and - x options, like this:

[al an@not ebook al an] $ ps -ax

Pl D

GO~ WNE

TTY STAT Tl ME COMVAND

? S 0:04 init [5]

? SW 0: 00 [keventd]

? SW 0: 00 [kapnd]

? SWN 0: 00 [ksoftirqd/ 0]
? SW 0: 00 [bdfl ush]

? SW 0: 06 [kswapd]

kill

This command on my machine actually displayed much more information than this — several screens full actu-
ally. I deleted most of it, the important thing to note is the second column - the “?” indicates that the process is
not being run from a terminal, the system itself is running it in the background. If you run this command on
your system, use the Shi f t - PgUp and Shi f t - PgDn keys to move backwards through the listing.

There are many more options to the ps command, allowing you to specify exactly what type of processes to list,
how to sort them, what information to display for each and in what format to display them — the options section
of the man page is many screens long. Consult this page for further information if you are interested.

Most of the commands we have looked at so far do their required action and exit immediately. Some commands
carry on for longer than this, and some are interactive — meaning you keep giving them instructions (perhaps
from a menu) and they keep doing something. Interactive programs usually have some kind of a menu option to
get them to exit.

If you really can't figure out how to get a program to stop, you can normally force it to do so by pressing Ct r | -
C. This makes the system give the command a standard signal to end itself.

But computers, being machines, don't always behave. What do you do if even Ctr| - C doesn't work? You use
the ki I I command. Use ps to find the PID of the offending process, and issue the ki | | command like this:

kill [pid]
This should do the trick. Some systems will allow you to specify the process name instead of the PID.

The Linux system is designed so that the kernel can send a number of signals to running processes, these signals
are given signal numbers, and names starting with “SIG”. Two useful signals are SIGTERM and SIGKILL. The
signal number for SIGTERM is 15, and the signal number for SIGKILL is 9. SIGTERM is the normal signal to stop
a process, as it causes the process to shut down properly — it is common for processes to store information in
memory and then write that information to disk when they shut down. The SIGTERM signal allows this to hap-
pen, sort of like the manager at a night club politely asking you to leave when you had too much. SIGKILL on
the other hand, is more like the bouncer - the process is forced to end whether it wants to or not. This can res-
ult in lost data, but sometimes it is the only way to stop a process that has gone berserk.

There are several options for the ki | | command:

Page 19

specifies the signal to send. This can be the signal name or number.

doesn't actually send the signal, just prints the PID. This can be useful in checking that the command will
do what you want it to do before running it for real.

prints the full list of signal names and numbers — 63 in total. Here is the full list:

[al an@ot ebook tnmp]$ kill -1
1

) SI GHUP 2) SIG NT 3) SIGQUIT 4) SIGLL

5) SI GTRAP 6) SI GABRT 7) SI GBUS 8) SI GFPE

9) SIGKILL 10) SI GUSRL 11) SI GSEGV 12) Sl GUSR2
13) SI GPI PE 14) S| GALRM 15) S| GTERM 17) SI GCHLD
18) S| GCONT 19) SI GSTOP 20) SI GTSTP 21) SIGITIN
22) Sl GTTOU 23) Sl GURG 24) S| GXCPU 25) S| GXFSZ
26) SIGVTALRM 27) S| GPROF 28) SIGNNCH 29) SIGO
30) SI GPVR 31) SIGSYS 33) SIGRTMN 34) S| GRTM N+1
35) SIGRTM N+2 36) SIGRTM N+3 37) SIGRTM N+4 38) SI GRTM N+5
39) SIGRTM N+6 40) SIGRTM N+7 41) SIGRTM N+8 42) S| GRTM N+9
43) SI GRTM N+10 44) SI GRTM N+11 45) S| GRTM N+12 46) SI GRTM N+13
47) SI GRTM N+14 48) SI GRTM N+15 49) S| GRTMAX- 15 50) SI GRTMAX- 14
51) SI GRTMAX- 13 52) S| GRTMAX- 12 53) S| GRTMAX- 11 54) S| GRTMAX- 10
55) SI GRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) S| GRTMAX- 6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) S| GRTMAX- 2
63) SI GRTMAX-1 64) S| GRTMAX

Process priority

nice

It should be obvious that some processes are more important than other processes. If you are running a very in-
tensive calculation — some engineering problem for example — and the time comes due for updat edb to do it's
daily thing, you probably wouldn't want the engineering program to slow down so that updat edb can run. You
set this up with process priorities. The cpu is jumping from one process to another many times a second giving
each a chance to run, and it uses priorities to determine how large a fraction of cpu time each process actually
gets.

A process' priority is a number between -20 and 19, with O being the default. But it works the wrong way round
to what you expect. 19 is the lowest possible priority — such a process will only run when nothing else in the
system wants to, and -20 is the highest. Only r oot can give a process a negative priority, and regular users are
free to give their own processes any priority in the range 0 to 19.

When used properly, programs that don't need huge amounts of cpu time and have their priorities set low, can
be seen to be nice to other programs that do need lots of cpu time. In fact they are so nice that the command to
set priorities is called ni ce, and priorities are commonly called niceness or nice value.

When using ni ce, specify the command you want to run on the command line, like this

ni ce updat edb

This will run the updat edb command with the default nice value of 10. The full syntax of the command is:
nice [option] [command [arg]...]

Where [ar g] is the normal arguments for [commrand] . The option is:

-n [adj]
sets the nice value to [adj] . The default is 10, and only r oot can set a niceness less than 0.

renice

ni ce sets the niceness of a command when it is started. You can also alter the niceness of a process while it is
running, and the command for that is r eni ce. Regular users can only decrease the niceness of their own pro-
cesses, but once done they cannot increase it again — only r oot can do that.

The normal way to use r eni ce is to state the new priority and the PID in that order on the command line. If
updat edb was running and interfering with another process, you might want to set it's niceness to say 10 or
15. Lets assume that updat edb had a PID of 1234, you would then use this command:

Page 20

renice 15 1234

reni ce can also adjust all processes owned by a user, and all processes owned by a group. The full syntax of
the command is:

renice priority [[-p] pid ...] [[-9] gid ...] [[-u] user ...]

Here are the options:

P
renice the process with the following PID. this is the default, and you normally only use -p if one of the
other two options were earlier used in the same command

-u
renice all processes belonging to the following user

-8

renice all processes with the following process group ID

Here is an example:
renice +1 987 -u daenon root -p 32

This will adjust the niceness (to 1) of PID 987 and 32, and all processes belonging to users daenon and r oot .
If user bob really irritated you this morning in the parking lot, here's a good way to take revenge:

renice 20 -u bob

Background processes

Normally, when the user runs a process, the process does it's work and sends it's output to the screen. The key-
board is tied up until this process completes. If this process is expected to take a long time, the user will prob-
ably want to continue with some other work while the first process does it's thing.

To do this, the user could open another virtual terminal and continue working there. Or, the process can be set
to work in the background. For this to work correctly, the process must not require user input, as the keyboard
will not be available. To cause a program to run in the background, you can do one of two things:

* append an ampersand (&) to the end of the command line used to run the program.
» Start the command normally from the command line, then press Ctrl - Z.

The updat edb command (which updates the database used by the | ocat e command) can take a while to run,
as it searches the entire hard disk for programs and files. To run this program in the background, enter the fol-
lowing as r oot :

updat edb &

On my machine this gives the following output:

[r oot @ot ebook root]# updatedb &
[1] 6442

fg

fg %
fg 6442

The command returned two values — the process PID (covered earlier) — in this case it is 6442 — and a job num-
ber’® — in this case 1. Job numbers are assigned to background processes in order starting at 1. They are easier
to remember and type than PIDs.

There can be many programs running in the background, but only one can run in the foreground, and this is the
program that receives keyboard input. To bring a job to the foreground, use the f g command. To specify which
program to bring to the foreground, you must supply either the job number or the PID. If you supply the job
number, add a % sign before the job number to indicate it is a job number. If you supply the PID, only the PID
number is required. For the updat edb command above, the following two commands are identical:

If no job number or PID is supplied, the system will bring whatever job it considers to be the current job to the
foreground.

13 job number: a unique identifying number assigned to a process running in the background

Page 21

bg
This command is the complement to f g — it sends jobs to the background. Just like f g, to specify which jobs is

to move to the background, specify a job number with a “9% character in front, or use the PID. If neither are sup-
plied, the shell will send the current job to the background.

jobs

To get a listing of all current background jobs, use the j obs command. This is the output I get if I start up-
dat edb in the background then run j obs:

[r oot @ot ebook root]# updatedb &
[1] 6442
[root @ot ebook root]# jobs
[1]+ Runni ng updatedb &
To get rid of a command in the background, you can use the ki | | command with the job number:
kill %
nohup

Some mathematical and engineering programs take ages to run, some take so long that they have to be left run-
ning overnight. But this opens a large security hole, because we assume that the engineer running the program
would like to go home and sleep overnight too. What should he do? If he just leaves, he is still logged in to the
system, so anyone can come along, move his program to the background, and do whatever they want on the
system. If he logs out, the program stops running.

The solution is to be able to let the program continue running in the background after the user logs out. One of
the signals that the kernel sends to processes is SIGHUP - it means “hangup”, and is sent to all processes started
at a terminal when that terminal is logged out. The nohup command allows a program to ignore the SIGHUP
signal, which means it just keeps running after the user has logged out, and continues till it terminates normally.

When using nohup, there is no screen available to the program to send output to, so it has to send it to a file.
nohup tries to append output to the file nohup.out. If that doesn't work, it tries ~/nohup.out. If that doesn't
work, it gives up and the command is not run. If nohup has to create a nohup.out file, it does so with no group
and other user permissions at all. If such a file already exists, the permissions are not changed.

nohup does not automatically run the program in the background, you have to do that yourself by adding “&”
to the end of the command line. nohup does not alter the priority or niceness of the program, you need to ni ce
it yourself.

The syntax for nohup is very simple:
nohup [command [args]]

where [conmand] is the command you want to run in the background, and [ar gs] are the regular argu-
ments for that command.

free

Once you have a bunch of process running on your system, you may want to know how much memory they are
using. The f r ee command displays the total memory usage of the system as a whole. It looks like this:

[root @ot ebook etc]# free

t ot al used free shared buffers cached
Mem 190660 184876 5784 0 38084 78956
-/ + buffers/cache: 67836 122824
Swap: 192772 30880 161892

Each number is a total amount in KB. But first a quick introduction is needed to some topics that will be covered
later in detail:

The hard disk is thousands of times slower at reading and writing data than RAM. To help out, the system in-
cludes a few tricks. Large amounts of data to be written to disk don't go there immediately — they are stored in
spare RAM first and later written to disk as a background process.

If some data is read from the disk, there is a pretty good chance the data immediately after it in the file will be
the next thing to be read. So when a process asks for data from disk, the system delivers it, and also reads the

Page 22

next bunch of sectors from disk as well, and stores them in spare RAM. Hopefully the next few disk reads the
process asks for will be in this RAM and can be delivered quicker than having to read the disk again.

These two ideas go under the name of buffers and cache. The Linux kernel is designed to use as much spare
memory as it can for buffers and cache. If another process needs more memory than is free, a lot of the buffer
and cache space can be freed up and used rapidly - it was only a temporary holding area after all.

Shared memory is exactly that - RAM memory that can be shared by more than one process. A good idea, but
unfortunately few current programs actually use it.

You may already be familiar with the idea of virtual or swapped memory — they are different names for the same
thing. When the system runs low on memory, it can take some memory data that hasn't been used for a while
and write it to the hard disk. When it needs that data again, it can read it back in from the hard disk. This swap-
ping of memory to and from the hard disk gives it the name swap memory, or swap space.

The fr ee commands displays statistics about all these various kinds of memory. The first line of numbers dis-
plays the total amount of memory used in the various categories. The second line shows the amount of memory
used by processes, and the amount used by the buffers/cache, in that order. The third line shows the swap space
usage.

There are some options to f r ee, you can specify what units to use for display (bytes, KB, MB, GB) and whether
to display a running total or not. The normal usage is just f r ee without any options for a one-time display.

top

The ps command shows you the status of processes as they were when the command was run. To see the sys-
tem running dynamically, use the t op command:

13:19: 46 up 1 day, 18:10, 5 users, load: 0.12, 0.11, 0.09
65 processes: 64 sleeping, 1 running, O zonbie, 0 stopped

CPU. cpu wuser nice system irq softirg iowait 1dle
total 1.9% 0.0% 0.9% 0.0% 0. 0% 0. 0% 97. 1%
Mem 190660k av, 184072k used, 6588k free, Ok shrd, 56992k buff

90324k acti ve, 79948k inactive
Swap: 409648k av, 80008k used, 329640k free 55572k cach

PID USER PRI NI SIZE RSS SHARE STAT %PU %EM TI ME CPU CVD

15122 alan 17 0 1172 1172 908 R 2.4 0.6 0:00 0 top

15081 alan 15 0 1324 1324 1116 S 0.0 0.6 0:00 0 bash
15065 root 17 0 1172 1172 904 S 0.0 0.6 0:12 0 top

15001 alan 25 O 1316 1316 1116 S 0.0 0.6 0:00 0 bash
14946 root 15 0 1324 1324 1116 S 0.0 0.6 0:00 0 bash
14863 alan 16 0 2688 12M 10456 S 0.4 6.5 0:04 0 kdein
7609 root 16 0 2068 2044 1616 S 0.0 1.0 0:00 0 cupsd
7371 alan 16 0 6044 5560 5328 S 0.0 2.9 0:00 0 kdein
7050 alan 15 0 4240 22M 12776 S 0.0 11.9 1:01 0 kdein
2639 alan 15 0 4228 37M 34372 S 0.0 20.3 3:23 0 soff

The above is a sample of t op running on my machine (edited to fit on the printed page). The display is updated
is real time, so if you watch this for a while you will see the display update every second or so. The display also
updates every time you press the space bar.

t op also includes information about the amount of memory in use, niceness, total amount of cpu time used so
far, and more for those who are interested in that kind of thing.

Sometimes you want a quick display of the state of the system and who is logged in. The command w is often
good for this (no, I don't know where the command name comes from!) Using w gives a display like this:

[al an@ot ebook al an] $ w
23:06:11 up 4 days, 3:40, 7 users, |oad average: 0.42, 0.30, 0.21
CPU WHAT

USER TTY FROM LG N@ |IDLE JCPU P

al an pts/0 - Wed 7pm 4days 0.00s 3.49s kdeinit: kwited
al an pts/1 - Wed 7pm 25:34 0.41s 0.41s /bin/bash

al an pts/2 - Wed 7pm 25:00m 0.20s 0.20s /bin/bash

al an pts/3 - Wed 7pm 24:25m 0.10s 0.10s /bin/bash

al an pts/ 4 - Wed 7pm 24:25m 0.41s 0.41s /bin/bash

al an pts/5 - 1:13am 20: 39m 0.20s 0.10s /bin/bash

al an pts/ 6 - 12: 15pm 1.00s 0.12s 0.03s w

w displays the following information:

Page 23

A header showing (in this order) the current time, how long the system has been running, how many users are
currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

w then displays the following 8 columns for each user:
1. login name
2. tty (console) name

3. remote host (in other words, if they logged in over a network, from which machine over the network — we
cover this topic in a later chapter)

4. login time

5. idle time

6. JCPU - the time used by all processes attached to the tty
7. PCPU - the time used by the current process

8. the command line of their current process.

The syntax for w is as follows:
w - [-husfV] [user]

w supports the following command line options:

-h
Don't print the header.

-u
Ignores the username while figuring out the current process and cpu times. To demonstrate this, do a
"su"and doa"w'and a"w -u".

-s
Use the short format. Don't print the login time, JCPU or PCPU times.

-f
Toggle printing the from (remote hostname) field. The default is for the from field to be printed, al-
though your system administrator or distribution maintainer may have compiled a version in which the
from field is not shown by default.

-V
Display version information and exit.

user
Show information about the specified user only.

uptime

Linux system administrators love to brag about how long it's been since they last rebooted their machine. t op
and wdisplay this information, but the easiest way to get it is with the upt i e command:

[al an@ot ebook al an] $ upti me
23:14:59 up 4 days, 3:49, 7 users, |load average: 0.85, 0.50, 0.32

upt i me has only one option: -V displays the version number.
wall

To send a message to all users on the system, use the wal | command. This allows a message of up to 20 lines to
be sent to all active terminals. The full message can be entered on the command line. Or, just enter the com-
mand wal | then type the message - this allows you to break the message up into lines using the Ent er key,
which you can't do if the message is entered on the command line. End the message input by pressing Ct r | - D.
The following command:

[root @ot ebook root]# wall

This is root speaking.

Woul d the person on term nal 3 who is downl oadi ng a 30MB
video clip please stop doing it.

Thank you.

[root @ot ebook root] #

produced the following output on another terminal:

Page 24

[al an@not ebook al an] $
Br oadcast message fromroot (pts/1l) (Sun May 23 23:32:01 2004):

This is root speaking.

Woul d the person on terminal 3 who is downl oadi ng a 30MB
video clip please stop doing it.

Thank you.

Daemons

The system automatically starts some programs running in the background when it reboots. These programs
pretty much just sit there doing nothing most of the time, until something happens to make them wake up and
respond. A web server is a typical example. While no-one out there is looking at your web site, the server does
nothing. When a request for a page comes in, the system wakes up the web server, which delivers the page, then
goes back to sleep. At least that's the theory - if your web server just happens to be running the www.linux.org
site, it might never get a chance to go to sleep...

Such programs go by the delicious name of daemons'. The official line is that it means “disk and execution mon-
itor”, but don't believe a word of it — the word daemon was used long before someone figured out a reasonable
name that it was an abbreviation for. The truth is that it comes from Greek mythology and is similar to “demon”
without the evil part — daemons hang around in the background saying and doing things on your behalf, and
generally making life easier.

You normally control a daemon with the command ser vi ce using the following syntax:
service [servicenane] [start | stop | restart]
Remember this syntax well — you will be using it a lot. It is important!

I have a daemon installed on this notebook to control the pcmcia® cards which goes by the unlikely name of
pcmcia. I seldom start this daemon myself, because the machine does this when it boots up. I also never stop the
daemon myself, because I always want the pcmcia facility available. But my pcmcia network card occasionally
just stops working and I found out the hard way that the solution is to simply restart the daemon:

[root @hot ebook /]# service pcntia restart
Shutti ng down PCMClI A servi ces: cardngr nodul es.
Starting PCMCI A services: cardngr.

This is a system command, so I have to be r oot to use it. There are many other daemon programs you can use,
the print system is a typical example. We will return to this topic of daemons later in the chapter on networking,
which makes extensive use of them.

Redirection and pipes

All computer programs do basically three things: get some input from somewhere, manipulate that input some-
how, and do something with the output. It doesn't matter how complex or simple the program is, these three
things are always present. So where can a program get input from? Here are some examples:

* the keyboard

* amodem

« adiskfile

and some examples of where to put the output are:
¢ the screen

« adiskfile

e aprinter

¢ amodem

14 daemon: a process that usually starts when the machine boots, then runs in the background delivering sys-
tem services.

15 pcmcia: {define this} — small credit card-sized modules that plug into portable notebooks. Common cards
are modems, network cards, or extra memory

Page 25

Note that some items appear in both lists. The keyboard is an input device, and the screen is an output device.
Taken together they are often called the console’®, which is an input and output device.

A typical operation that you might want to do could be to read a list of words, sort them in alphabetical order
and display the results. There are three actions here:

» read a list of words is “getting some input from somewhere”,
» sorting the list of words is “doing some operation on the data”, and
» displaying the results is “doing something with the output”.

Where might this program get it's input from? Perhaps the keyboard, or from a disk file, or maybe even from the
modem.

Where could the output be displayed? On the screen, on a printer, or perhaps even through the modem.

In the bad old pre-Unix days, writing a program that did this involved the programmer getting low down and
dirty with all the fine details of how to get data from the keyboard, how to read from a modem, how to read a
disk file. At the nuts, bolts and wires level, these devices are all very different, and are programmed differently.
The same applies to the output devices. If a programmer in those days didn't include a facility to read from and
write to the modem, then using the modem could not be done with that program, and the user was stuck. This
kind of problem kept coming up as new input and output devices were designed, so the designers of Unix de-
cided to do something about it, to make the user's life easier.

The solution was in realizing that no matter how different input and output devices were from each other, they
all had at least one thing in common - you could read data from them or write data to them. The next step was
to represent each of these devices as nothing more than a place to read data from or a place to write data to. The
key word is “represent” - all input devices are represented similarly, no matter how different they may be at a
nuts and bolts level. The same applies to output devices.

The next bright idea was getting data into and out of a program. Imagine a stream of data — the list of words we
want to sort flows like a stream from the input device into the program, then the sorted list of words flows out
of the program to the output device.

In Unix, the system provides the input and output streams, freeing the program from having to worry about set-
ting them up, and freeing the programmer from having to worry about how to write programs that cope with
the latest new hardware — he can concentrate on writing a program that sorts words instead.

Earlier in the course we mentioned the two fundamental ideas that Unix is built on:
1. Everything is a file

2. The system consists of many small programs that do one thing well instead of a few large programs that try
and do everything.

This should now make more sense — a file is how the system represents everything that inputs and/or outputs
data. Note that “file” does not mean the same as “disk file” - a disk file is a certain kind of file, but a file is really
just the abstract idea of “a place to get data from” and “a place to put data to”.

Using this idea of files, the user can now specify the source of input and destination of output instead of waiting
for the programmer to write a program tuned to our specific input and output needs. The programmer can now
write a program that does one thing really well, which is the whole idea of point 2.

Most programs read data from the keyboard and write information to the screen. Unless the user specifies other-
wise, the system assumes this is what is wanted. The system defines three things to help with this:

» standard input. Normally the keyboard
« standard output. Normally the display screen
» standard error. Error messages, normally also the display screen

Unless the user says otherwise, the above devices are used. But you don't have to do it this way; you might not
want error messages cluttering up the screen display, so send standard error to a printer instead. Some com-
puters do not have keyboards and screens so all three might use the modem instead.

To use a different input or output device for one run of a program, the user specifies them on the command line.
You do this using two symbols, called the redirection operators”:

16 console: the keyboard and screen taken together as a unit.
17 operator: a pre-defined word or symbol in a command line that causes a specific action to occur.

Page 26

>>

<<

* < input device

e > output device

Lets look at our example of sorting words alphabetically, and assume a command called sort exists. (Actually,
there is such a standard command, so these examples should work on any Linux system). Now create for your-
self a disk file containing several words, one per line, and save the file as /ftmp/words. To make this realistic,
enter at least ten words, all different and make sure they not not in alphabetical order.

Now enter the following command:
sort < /tnp/words

and the sorted list of words should appear on the screen. What we have done is to tell the sort program that
it's input does not come from standard in, but from a disk file called /tmp/words. The “<” symbol can be
viewed like an arrow showing that data goes from the file to the sort program. (Note that typing / t np/ wor ds
> sort is a common beginner mistake but doesn't work as the first word in a command must be the name of
the command - /tmp/words is not a command.)

Now enter the following command:
sort < /tnp/words > /tnp/words2

You will see that nothing appears on the screen. But, if you look in the /tmp directory, there will be a new file
there called words2. Display it on the screen using | ess and you will see it contains the sorted list of words.
Again the “>” symbol can be viewed like an arrow that sends data from the sort program to a disk file (don't
send it to /tmp/words - this will overwrite the existing file!)

The “<” and “>” symbols redirect input and output from standard in and standard out to user-defined places,
and they are called operators because they cause a redirect operation to take place.

You can do more with redirection. The example above sent output to /tmp/words2, and created this file if it
didn't exist. If it did exist, it was replaced with the new output. This may not be what you want though. If you
wanted to send the output of a program to a log file for example, you definitely would not want to overwrite
the existing file. You would want to append the output to the end of the existing file. This is done with the >>
operator. Running the command

sort < /tnp/words >> /tnp/words2

will cause a second copy of the same list to be appended to the end of the first.

This operator allows you to send multiple lines of input to a command until a certain line of text is reached. Re-
call how the wal | command is used interactively — you input up to 20 lines of text followed by Ent er until
Ctrl - Dis pressed, then wal | stops accepting input and sends the text received out as a message.

<< operates similarly, except that you specify a line of text to be used instead of being limited to only a Ctr| - D
keypress. You can actually use wal | like this:

wal | <<EndCf Message

The text “EndOfMessage” is called a limit string, and the subsequent input is called a here document — perhaps
becomes it conveys the idea of “continue reading input till you reach this line here”.

In this example, wal | will continue reading lines from standard input until you enter the exact text “EndOfMes-
sage” on one line, then it will send the complete message. Note that the line must consist of only the text after
<<, and it must be an exact match, not a partial match. Entering “ EndOfMessages” will not work, as it is differ-
ent from “EndOfMessage” - there is an extra leading space and an extra trailing “s”.

To include spaces in the limit string, you must quote the limit string.

Page 27

Files are often used as here documents, and the limit string might well be in the file, but with leading tab char-
acters because of indentation. This will obviously not work. You can ignore leading tabs (but not leading spaces)
by using the <<- operator like this:

wal | <<- EndOf Message

1> and 2>

>&

What about standard error? How do we redirect that? By putting a “2” in front of an output redirection operat-
or.

sort < /tnp/words > /tnp/words2 2>/tnp/words. err
will get input from file words, send output to file words2 and send error messages (if any) to file words.err.

You can also say 1> to redirect standard output, but as the system assumes “1” if you don't specifically say so,
you will seldom see this used on it's own. Where the “1” is used however, is to send output and error output to
the same place, which involves adding a “&” symbol.

Adding a “&” to the “>” symbol as in “x >& y” causes output stream x to be mixed in with and sent to wherever
output stream y is going. In all the examples below, “>&” is used to make the explanations simple, but “>>&”
also works.

sort < /tnp/words 1> /tnp/words2 2>&1
Wow. this is quite a command. Let's pull it apart piece by piece:
The first piece is sort < /t np/ wor ds - this is obvious

The next piece (1> /t np/ wor ds2) redirects standard output. There is nothing unusual here, except the “1” to
explicitly specify standard output is new. This is not normally done because 1 is the default.

The next part to look at is the last section 2>&1. This is an instruction to redirect standard error, indicated by
the “2>”. And where does standard error get sent to? Well, as usual it goes to the place indicated by what fol-
lows the “>” sign. That is “&1” which literally means “wherever standard output is being sent”'®. For this com-
mand, that is a file called /ftmp/words2.

In this case, the contents of /tmp/words2 will look exactly like they would have on screen, with error mixed in
with normal output (in other words, there is no magic procedure that takes all the errors and attaches them at
the bottom of normal output).

This command accomplishes exactly the same thing:
sort < /tnp/words 2> /tnp/words2 1>&2

What happened here is that normal output (1) gets mixed with error output (>&2), and both are then sent to
/tmp/words2 (2> /t np/ wor ds2).

When the system figures out what you are telling it to do, it reads the redirection instructions starting on the
right and working backwards, in order, towards the beginning. (The correct way to state this is redirection is spe-
cified from right to left).

If you try this
sort < /tnmp/words 2>&1 1> /tnp/ words2

you will probably not get what you want. This command will send normal output (1) to /tmp/words2 (>
/ t mpwor ds2), then send error output (2) to standard output (>&1). Redirection is first established for the en-
tire command, then used that way. The system is not smart enough to extract all the redirection definitions and
apply them uniformly no matter in what order they are specified — humans can do this naturally without think-
ing about it, but computers - not being able to think- can't.

So far we have learned how to redirect input and output, which is incredibly useful. Redirection is normally
used to indicate the start and end points of an entire command.

18 This is not complex, and there is nothing to figure out and understand here. &1 is defined as “wherever
standard output is being sent”.

Page 28

tee

Lets extend our sorting example further. Assume our /tmp/words file contains 10,000 words, and we want to
sort alphabetically all words that contain the letter a. We could contact the author of sort and ask him to add
this new function. If he's any good as a programmer, he'd tell us to go and jump in a lake — a function like that is
so specific to one user that it isn't worthwhile writing it at all — it would also annoy the other thousands of users
of sort that don't want this function.

A much better solution is to write a new program that filters input, looking for a pattern we specify, and then
outputting it only if it meets our pattern. There is a command that does this, it is called gr ep, which looks at an
input stream line by line and outputs only those lines that meet the pattern we specify. Our list of words was
entered one word per line, so this suits our needs exactly. What we now need to do is take our input (redirected
if necessary), pass it through gr ep, then take the output from gr ep and pass it through sort then end up with
the output from sort (redirected if necessary). This looks very similar to redirection, but redirection doesn't
help us here, because passing the output from gr ep to the input of sort is in the middle of the procedure we
want to accomplish, not at the end point. What we need is piping, indicated with the “|” symbol. This is the
command that does the job:

grep a < /tnmp/words | sort > /tnp/words2

This command line executes gr ep, taking input from /tmp/words, and sending that output (via the “|” operat-
or) to sort, which send the sorted list to /ftmp/words.

You can see how this fits with the Unix design goal of “small programs that do one thing well” - instead of one
large user-specific program that probably won't be useful somewhere else, we have two extremely useful pro-
grams (gr ep and sor t) which we combined to use the way we wanted to use them.

Students sometimes get confused about the difference between redirection and pipes, and when to use them. In
the example above ,is the connection between gr ep and sort a pipe or a redirect? Here are some simple rules
that should clear it up:

» redirection indicates where input comes from, or where output goes to. So, you can only redirection to or
from a file or other device.

* pipes connect two programs, never two files or a file and a program.

* You will normally find input redirection after the first command (it can't be before it as the file name is not a
valid command).

* You will normally find output redirection after the last command on the command line.
Many examples exist of how to use this piping feature. Here are a few typical ones:

Last Tuesday was a very problematic day for the email system, many user's mail got discarded by accident. The
administrator wants to know which users were affected. He knows the information is in the mail system's log
files, but these files are huge, and searching them would take all day. He decides instead to do what people do
best (think up solutions) and let the computer do what it does best (search huge amounts of data looking for
tiny small details). He knows that the mail system logs each entry one per line, and dropped mail is indicated
by the word “DROPPED?”, so he starts with the mail logs, runs gr ep on them looking for the word “DROPPED”,
then runs gr ep again on that output (using a pipe) looking for last Tuesday's date and finally pipes that output
through another useful program called cut which extracts pieces out of lines — in this case he specifies the piece
that contains the email user name.

A poet is tired of thinking of words that rhyme to use in his poems. Being a modern poet, he owns a computer
running Linux. He also has two useful things at hand: The dictionary file from his spell-checking program which
contains 80,000 words in plain text, one word per line, and a program called r ever se that accepts words and
reverses the order of the letters (the first letter becomes the last letter). So, he redirects the dictionary file
through the r ever se program, pipes that through sort, then pipes that output through sort again. Now he
has a sorted list of rhyming words. (OK, this only gives rhyming words where the end of the word is spelled the
same and ignores similar sounds that are spelled differently, but this is a Linux user's manual, not a book on
writing poetry...)

We are not finished yet with redirection and pipes. What do you do if you want to send the information in a
pipe to two places? Take the example above where we used gr ep to extract words that contained the letter a
and then sorted it. The output from gr ep is an intermediate result, and normally we are not interested in it,
only in the final result. But what if we do want to see this intermediate result?

With what you know so far you would have to issue two commands like this:

Page 29

grep a < /tnp/words > /tnp/words. tnp
sort < /tnp/words.tnp > /tnp/words2

Which will leave the intermediate result in /tmp/words.tmp. But there is a command that makes this easier,
called t ee.

t ee takes input from standard input (which can be redirected) and sends it to standard output (which can be
redirected) and also to a file whose name is listed on the command line.

To replace the two commands above with one command using t ee:
grep a < /tnp/words | tee /tnp/words.tnp | sort > /tnp/words2

This is essentially the same as the example in the pipe section with an extra command piped in between gr ep
and sort.

tee has an -a option: if the specified file already exists, t ee appends to that file. Without - a, any existing
file is overwritten.

Manipulating text files

Most of the commands in this section follow the “small program that does one thing well” philosophy. They
don't appear to be very useful on their own (this observation is quite accurate), but they are designed to be com-
bined with other programs (using redirection and piping) to do incredibly useful things.

Regular expressions

A regular expression (or “regexp”) is a search pattern — you use it to find text inside larger strings. When we
used grep above to search for the letter “a”, the “a” was a regular expression of just one character. The simplest
use of regular expression is looking for a text string. To find the string “myword” in a file called “myfile”, you
use:

grep nmyword nyfile

Regexps allow you to build complex search strings that look similar to glob expressions. But there are significant
differences. Regexps look for text strings, globs look for file names. Regexps use the [,], * and ? characters but
the syntax is different to that for globbing. Don't get them confused.

Searching for single characters

A regular expression is built up character by character. Letters and digits usually evaluate to themselves, like
“myword” in the previous example. This evaluates to the six characters m, y, w, o, r and d in that order.

A basic rule with regular expressions is that everything between square brackets [] evaluates to a single charac-
ter. [abc] is an a, b or a ¢, not the three characters “abc”. You would have to omit the square brackets to get
that.

A range of possible characters is indicated with the first and last characters separated by a dash. Examples: [a-
z], [A-Z], [0-9]. You can also combine ranges like this: [a-zA-Z0-9] which evaluates to any alphanumeric char-
acter. There are some predefined shortcuts for common ranges. The names are self-explanatory, and they are:
[:al pha:]

all letters, i.e. a-z and A-Z
[:digit:]

any decimal digit, i.e. 0-9
[:al num]

all alphanumeric characters, i.e. a-z, A-Z and 0-9
[:1ower:]

any lower-case letter, i.e. a-z
[:upper:]

any upper-case letter, i.e. A-Z
[:print:]

all printable characters, including space

Page 30

[:graph:]
all printable characters, excluding space
[:punct:]
all punctuation characters
[:space:]
all whitespace including space, tab and vertical tab
[:xdigit:]
any hexadecimal digit, i.e. 0-9, a-f, and A-F
[:centrl:]
non-printing control characters (tab, newline, newpage, etc.)

The square brackets in the shortcuts above are part of the full shortcut name. You use it like either character in
the usual [ab] form. This means that [a- zA- Z] is equivalent to [[: al pha:]] when used.

The expressions we have looked at so far specify the characters to be included. If you start the expression inside
square brackets with a carat ("), it means to exclude those characters. [#123] will match anything except 1, 2
or 3.

~

It doesn't look like we can search for the], or — characters inside square brackets, because these mean
something else. Actually there is a way, these are the rules to do it:

* to include a literal], make it the first item in the list. Regexps do not allow empty [] expressions, so it is un-
derstood that []] means to look for a “]”

* to include a literal ™, place it anywhere except the beginning. The “except” meaning applies only if it is the
first character. [abc”] searches forana, b,cora .

* to include a literal -, place it last in the list. Nothing then follows it, so it can't be a range specifier. [abc-]
matches an a, b, cora-.

Repeating characters

Regexps include a convenient set of shortcuts for dealing with repeated characters.

There are some special characters that allow searching for characters that may repeat. You place them after the
repeating character in the regexp.

?
The preceding item is optional and matched at most once.
The preceding item will be matched zero or more times.
+
The preceding item will be matched one or more times.
{n}
The preceding item is matched exactly n times.
{n,}
The preceding item is matched n or more times.
{n,m}

The preceding item is matched at least n times, but not more than m times.

Time for some examples:

abc?

means the last ¢ is optional. There are only two possible matches: ab and abc.
[0-9][0-9][a-2]*

will find any string of two digits followed by any amount of lower case letters, or no letters.
[0-9][0-9][a-2z] +

will find any string of two digits followed by any number of lower case letters, but there must be

at least one letter.

[1{2.}

will find all sequences of two or more spaces.

Page 31

So far all the examples we have looked at will find single characters that repeat. Next we look at finding com-
plete words.

Searching for a string

You will seldom do a search for a single character. Most searches involve more than one character, with com-
plete words being the most common. this is easy to do, just write them down in sequence one after another, or
concatenate them. To find the character “a”, do this:

grep a

To find the word “apple” do this:

grep appl e

To find any three letters followed by any three digits do this:
[a-zA-Z] {3}[0-9] {3}

Of course, you already figured this out. So why mention it? Because to find repeated words (more specifically,
sequences of two or more characters), you have to use brackets. To find the word “the” repeated more than
once', you might think t he+ will do the trick. It won't. It will find “theeee” though. What you really want is the
following:

(the) +

The brackets work the same way they do in arithmetic — they set precedence’. The “+” now indicates it should
look for one or more repeats of the whole expression inside the brackets. You can do this with any sequence of
characters.

Find this or find that

How do you go about the following: find either “smith” or “jones” or’brown”? Easy — use the “|” character.
sm t h|j ones| br own
The expressions on either side of the “|” can be any valid regexp of any length.
Regexp precedence
When evaluating a complex regexp, there are rules that the system follows. The expression is evaluated in the
following order:
1. Repetition with ?, *, + and {}
2. Concatenation — strings of characters
3. Alternates either side of a “|”
The example with repeated “the” above should now make sense. And it should be obvious why brackets in
(smith)|(jones)| (brown) are unnecessary.

More shortcuts

To round off this discussion of regexps, there are a few more shortcut characters:

A period (.) matches any single character, so sh. rt finds both “shirt” and “short”

\w evaluatesto [[: al num]]

\ W evaluates to [*[: al num]]

A outside of square brackets matches the start of a line. So, the regexp [a] means a line that starts with an a.
$ outside of square brackets matches the end of a line. So, the regexp [z] $ means a line that ends with z.

\ < outside of square brackets means matches the start of a word, so \ <book finds “bookmark” but not
“checkbook”

19 Some writers (like me) seem to do this a lot. I often type things like ‘Joe kicked the the ball”.
20 precedence: the order in which something will be executed. Precedence can be changes by putting the thing
to be done first in brackets.

Page 32

\ > outside of square brackets matches the end of a word, so book\ > finds “checkbook” but not “bookmark”
\ b outside of square brackets matches either edge of a word, i.e. either the start or the end.

\ B outside of square brackets is the opposite of \ b, i.e. anything except the start or edge of a word.
A complex example

I once had to conduct a search in a document for all valid MS-DOS file names. The resulting regexp was horrific
to see but it did the job. I will go through this in detail so you can see how it works. I need to go through this in
detail because regexp like this are more common than you might think.

A full MS-DOS file-name looks like this: C: \ ABC\ DEF\ 12345678. 123

To build the regexp we have to break the full file name up into it's several parts:
cC \ ABC\ ABC\ 12345678 . 123

* an optional drive letter followed by a colon

* an optional backslash for an absolute path

* an optional directory name followed by a backslash. The directory name can be up between 1 and 11 char-
acters long.

« further directories

* amandatory file name of between 1 and eight characters

* an optional dot followed by an extension of between 1 and three characters.
The optional drive letter and colon is specified like this:

([a-zA-2]:) 7

The optional backslash is specified like this:

\?

An optional directory name, followed by a backslash is specified like so:
[a-zA-Z0-9]{1, 11}\

But the file spec can contain zero or more directories, so we have to search for this pattern repeated with *. As a
regexp, this becomes:

([a-zA-Z0-9]{1, 11}\)*

The mandatory file name itself is the easiest part of the whole exercise:

[a-zA-Z0-9]{1, 8}

And finally the optional dot and extension is:

([-1[a-zA-Z0-9]{1,3})7

Now we string the whole thing together to get the final result:

([a-zA-Z]:)?\ ?([a-zA-Z0-9] {1, 11}\)*[a-zA-Z0-9]{1,8}([.][a-zA-Z0-9]{1,3})?
I told you it was horrific.

For simplicity sake, I have taken file and directory names as consisting of only letters and digits. In real life you
have to account for all the other valid MS-DOS file name characters as well like -, and ~.

Gotchas

We're not done yet. There are still some things to catch you out.

Regexps fall into two camps- the basic and extended types. The difference comes down to the handling of special
characters such as ? and *. With basic regexps, these special characters normally lose their special meaning, so
to get the special meaning you have to place a backslash before them like this: \?, *

With extended regexps, the special characters retain their special meaning, which makes things easier for the
poor guy writing the regexp. Except that now, to search for a ? character you backslash it like this: \?

Page 33

Oh no. Now we have the exact same syntax doing two completely different things. Basic mode — use the back-
slash to get the special meaning. Extended -use the backslash to get the regular meaning. You will have to check
the documentation for the software you are using to see which mode it uses.

Finally, the last thing that can catch you out is the sort order of letters. In all the examples above I used [a- z]
to mean all letters between a and z. This works, but only if your system is using the English alphabet and the
sort order is strictly according to the ASCII code. This is not always the case - the Linux system understands
something called a locale — which means where in the world you are, and what the local conventions are for dis-
playing currency, dates, the time and the alphabet. In Europe for example, many languages use characters like &
and &. English doesn't have these and usually puts them after z. But they really belong next to the
regular e and a.

ASCII sorts letters this way: AB...YZab...yz. In a human language, the following makes much more
sense: AadBb...Ee¢ YyZz. What this all means at the end of the day is that [a-z] or even [a-zA-Z]
might not give you what you really want, as they ignore the locale. Instead, use the [[:alpha:]]
form to specify any letter - this form always takes the locale into account, including the odd letters
with symbols above and below them.

Page 34

	Routine administration
	Editing files
	List of vi commands
	Virtual terminals
	Security basics
	Users
	useradd
	passwd
	su
	userdel

	Groups
	groupadd
	groupdel
	usermod
	gpasswd
	groups
	Default groups

	User and group IDs
	File ownership
	Permissions
	The “sticky” bit
	setuid and setgid bits

	Changing file permissions with chmod
	Text method
	Numeric method

	Setting default permissions with umask
	Changing a file's owner
	Changing a file's group owner
	User and password information
	Password policies
	Group files
	Converting between password formats

	Users on the system
	who
	w
	whoami
	id

	Processes
	ps
	kill
	Process priority
	nice
	renice
	Background processes
	fg
	bg
	jobs
	nohup
	free
	top
	w
	uptime
	wall
	Daemons

	Redirection and pipes
	<
	>
	>>
	<<
	1> and 2>
	>&
	|
	tee

	Manipulating text files
	Regular expressions
	Searching for single characters
	Repeating characters
	Searching for a string
	Find this or find that
	Regexp precedence
	More shortcuts
	A complex example
	Gotchas

