
Stock Assessment Software Catalogue

1

Contents

1 Objectives 3

2 Strategic Plan 3

3 Catalogue 4

4 Tables 4

5 Proposal 5
5.1 Objectives . 5
5.2 Issues . 5
5.3 Procedure . 6

6 Stock Assessment 6
6.1 International Initiatives . 6
6.2 Testing . 6

7 Software 7
7.1 Testing . 7
7.2 Version Control . 8
7.3 Validation . 9

8 Appendix 11

2

1 Objectives

An action under the SCRS Strategic Plan is to “Consolidate the stock assess-
ment catalogue to ensure the best use of models that should be fully docu-
mented”. The objectives of this document are to

• Reinvigorate the ICCAT Software Catalogue as required under the Strate-
gic Plan.

• Encourage software development and innovation; while ensuring reliability,
stability, auditability, accountabilty and supportability of software.

• Ensure procedures are consistent with best practice elsewhere, i.e. that
of other RFMOs and bodies responsible for developing advice based on
software.

Steps

1. Contact rapporteurs of assessment WG with a summary of the old require-
ments and issues that have arisen since the establishment of the Software
Catalogue, e.g. related to the Strategic Plan, Kobe advice framework,
SISAM/WCSAM, recent assessment and the evaluation of Management
Procedures (MP) using Management Strategy Evaluation.

2. Ask rapporteurs to review if the old requirements are still adequate or
need updating and to propose a set of revised requirements.

3. Ask rapporteurs to use these new requirements to ”certify” ASPIC.

4. In parallel canvass views of software developers since if the process be-
comes too burdensome then no software will be developed.

5. Canvass views of other RFMOs and bodies that use stock assessment
methods.

6. Presented results of the exercise to the SCRS which would approve the
new protocol.

2 Strategic Plan

Action 1.3 Consolidate the stock assessment catalogue to ensure the
best use of models that should be fully documented

Strategies

1.3.1 Update the current Stock Assessment Catalogue 1 to remove outdated
software and update the software versions that are currently being used.

1.3.2 Ensure that all software used in the most recent assessments are matched
up with the versions in the catalogue.

1.3.3 Ensure that software is well documented and have an accompanying user’s
manual and code.

1https://www.iccat.int/en/AssessCatalog.htm

3

https://www.iccat.int/en/AssessCatalog.htm

Table 1: Software in Catalogue
Catalogued Software
Package Version Author Description
PRODFIT 1.0 Alain Fonteneau Equilibrium Biomass

Model
ASPIC 5.05 Mike Prager Biomass Dynamic Model

fitted using maximum
likelihood

ASPIC 3.82 Mike Prager Biomass Dynamic Model
fitted using maximum
likelihood

BSP2 3.0 Murdoch MacAllister Biomass Dynamic Model
fitted using Bayesian sim-
ulation

VPA-2Box 3.01 Clay Porch Virtual Population Analy-
sis fitted using maximum
likelihood

Pro-2Box 2.01 Clay Porch Projection for VPA-2Box
FSIM 3.0 Phil Goodyear A general purpose fish

population simulator de-
signed to simulate many
forms of fisheries data rou-
tinely collected from real
fisheries

SEEPA 3.0 Phil Goodyear Simulates longline catch
and effort data to test
the robustness of the habi-
tat approach to cpue stan-
dardization.

Measurable targets

Reactivate the Working Group of the Stock Assessment Catalogue and review
the protocols of inclusion and updating the software used for stock assessments
while maintain a historic repository of version control

3 Catalogue

4 Tables

Stock assessments underpin the scientific advice for management that is pro-
vided by the Standing Committee on Research and Statistics to the Commis-
sion. In recent years, the SCRS has implemented a number of activities whose
purpose is to improve the quality of this advice. Part of this effort is the so-called
”software catalogue”. The aim of the catalogue is to document the procedures
taken to validate some of the stock assessment programs that are commonly
used by the various working groups.

4

Inclusion of a particular computer program in the ICCAT software catalogue
does not guarantee that the software is free of bugs, nor does it imply any sort of
institutional endorsement for its use. Inclusion in the catalogue is simply a way
of documenting what steps, if any, the programmer has taken to ensure that the
program does what it purports to do. Recent problems, even for software in the
catalogue, have included different results being obtained when assessment are
rerun due to lack of appropriate diagnostics, numerous versions of source code
and differences between compilers and operating systems.

However, the changing requirements of the Commission and the development
the demands for new scientific approaches means that the original objectives of
the catalogue may need to be reviewed.

5 Proposal

Therefore it is proposed to review the protocols of inclusion and updating the
software used for stock assessments while maintaining a historic repository of
version control. The 1st step is to canvass rapporteurs of stock assessment
working groups

5.1 Objectives

The objectives, as given in the Strategic plan are

Update the current stock assessment catalogue to remove outdated software
and update the software versions that are currently being used.

Version Control Ensure that all software used in the most recent assessments
are matched up with the versions in the catalogue.

Documentation Ensure that software is well documented and have an accom-
panying user’s manual and code.

5.2 Issues

What about software that is extensively used by other RFMOs and management
bodies and has been used to provide advice by ICCAT WGs but is not in the
catalogue. E.g. ICES and XSA [Shepherd, 1999], WCPFC and Multifan-CL
[Fournier et al., 1998], IATCC and SS [Methot, 2005].

• Do developers have the time or be interested in going through an ICCAT
certification process?

• Is a peer review paper good enough?

• Could the review committee complete the application?

Should the source code be open source e.g. GPL2? Since the more people
who can see and test a set of code, the more likely that bugs and flaws will be
caught and fixed quickly [Raymond, 1999]. Benefits include

2http://www.gnu.org/licenses/gpl.html

5

• Open source software is better at adhering to standards than proprietary
software, e.g. allows recompiling for running on clusters and that algo-
rithms produce the same results across operating systems. With closed
source software, you have nothing but the authors claims telling you that
they’re adhering to standards.

• Code can be modified to meet specific needs and encourages developers to
work in parallel, so that a best solution can be chosen instead of the only
solution.

• Where source code is open source users of the product will often discover
and correct defects themselves.

• Developers are likely to consider reducing the complexity and improve the
maintainability of software.

This requires a version control system.

5.3 Procedure

The latest version of ASPIC3 is version 7.01, there are two versions in the ICCAT
catalogue i.e. 3.82 and 5.05; while the version on the NOAA Fisheries Toolbox
is 5.34.9. There is also an R version developed under the GBYP [Merino et al.,
2013].

6 Stock Assessment

6.1 International Initiatives

The Strategic Initiative for Stock Assessment Methods (SISAM) is designed to
ensure that scientists apply the best stock assessment methods when develop-
ing management advice. The first stage culminated in the World Conference
on Stock Assessment Methods (WCSAM) and a simulation-based workshop to
evaluate performance of stock assessment methods. The second stage involves
continued coordination with RFMOs and national agencies to development good
practice guidelines and further evaluation of model performance.

WCSAM included a workshop on testing assessment methods using simu-
lations based on datasets from 14 representative fish stocks from around the
world; one of which was North Atlantic albacore. Two types of simulations
were used i.e. self-testing and cross-testing [see Deroba et al., 2014].

6.2 Testing

There are a variety of approaches for testing stock assessment software e.g.

Self testing: a model is first fitted to data, then psuedo data are simulated
based on the fit and the same model is refitted [e.g. Lee et al., 2011]

Cross testing: again a model is fitted to data and psuedo data generated but
a different model is then fitted.

3http://www.mhprager.com/aspic.html

6

Simulation: where psuedo data based on a variety of assumptions about the
dynamics are simulated for fitting to a model but without fitting a model
to data first.

Cross validation a model is fitted to only part of a time series of data, then
the dynamics are projected forward and compared to with model fits to
the entire time series [e.g. Patterson et al., 2001].

MSE: the stock assessment method is tested as part of a Management Proce-
dure (MP) using Operating Models, which may or may not be based on
fits to data [Kell et al., 2006].

7 Software

7.1 Testing

Testing is a vital part of software development as it ensures that code does what
it is intended to. Unit tests are simple to write, easily invoked, and help the
software development process, from early stage exploratory code, to late stage
maintenance of a long-established project.

For example the Bioconductor4 project that provides tools in the form of R
packages for the analysis and comprehension of genomic data. Unit tests are a
standard part of the Bioconductor build process uses the RUnit package to write
unit tests. There are other R package for developing unit tests e.g. testThat5.
All available from CRAN6 a network of ftp and web servers that store identical,
up-to-date, versions of code and documentation for R.

Benefits of testing include

Fewer bugs . Since it is explicit about how code should behave there will be
fewer bugs. The reason why is a bit like the reason double entry book-
keeping works: because you describe the behaviour of your code in two
places, both in your code and in your tests, you able to check one against
the other. By following this approach to testing, you can be sure that
bugs that you’ve fixed in the past will never come back to haunt you.

Better Code Structure Code that’s easy to test is usually better designed.
This is because writing tests forces you to break up complicated parts of
your code into separate functions that can work in isolation. This reduces
duplication in your code. As a result, functions will be easier to test,
understand and work with (it’ll easier to combine them in new ways).

Easier Restarts . If you always finish a coding session by creating a failing
test (e.g. for the next feature you want to implement), testing makes it
easier for you to pick up where you left off: your tests will let you know
what to do next.

4http://www.bioconductor.org/
5http://r-pkgs.had.co.nz/tests.html
6http://cran.r-project.org/

7

http://www.bioconductor.org/
http://r-pkgs.had.co.nz/tests.html
http://cran.r-project.org/

Robust Code If you know that all the major functionality of your package has
an associated test, you can confidently make big changes without worrying
about accidentally breaking something. For me, this is particularly useful
when I think I have a simpler way to accomplish a task (usually the reason
my solution is simpler is that I’ve forgotten an important use case!).

7.2 Version Control

Version controlis a system that records changes to a file or set of files over time
so that you can recall specific versions later, e.g. track changes in MS Word.
A Version Control System (VCS) allows you to revert files back to a previous
state, revert the entire project back to a previous state, compare changes over
time, see who last modified something that might be causing a problem, who
introduced an issue and when, and more. Using a VCS also generally means
that if you screw things up or lose files, you can easily recover.

A simple version-control method is to copy files into another directory (time-
stamped if you are wise). This approach is very common because it is so simple,
but it is also incredibly error prone. It is easy to forget which directory you’re
in and accidentally write to the wrong file or copy over files you don’t mean
to. To deal with this issue, programmers long ago developed local VCSs that
had a simple database that kept all the changes to files under revision control.
The next major issue that people encounter is that they need to collaborate
with others. Therefore, Centralized Version Control Systems (CVCSs) were
developed. These systems, such as CVS7, Subversion8, and Perforce9, have a
single server that contains all the versioned files, and a number of clients that
check out files from that central place. For many years, this was the standard for
version control. This offers many advantages, especially over local VCSs. For
example, everyone knows to a certain degree what everyone else on a project is
doing. Administrators have fine-grained control over who can do what; and it’s
far easier to administer a CVCS than it is to deal with local databases on every
client.

However, this setup also has some serious downsides. The most obvious is
the single point of failure that the centralized server represents. If that server
goes down for an hour, then during that hour nobody can collaborate at all
or save versioned changes to anything they’re working on. If the hard disk the
central database is on becomes corrupted, and proper backups haven’t been
kept, you lose absolutely everything – the entire history of the project except
whatever single snapshots people happen to have on their local machines. Local
VCS systems suffer from this same problem – whenever you have the entire
history of the project in a single place, you risk losing everything.

Therefore Distributed Version Control Systems (DVCSs) was developed. In
a DVCS (such as Git10, Mercurial11, Bazaar12 or Darcs13), clients don’t just
check out the latest snapshot of the files: they fully mirror the repository. Thus

7http://www.tortoisecvs.org/
8https://subversion.apache.org/
9http://www.perforce.com/

10http://github.com/
11http://mercurial.selenic.com/
12http://bazaar.canonical.com/en/
13http://darcs.net/

8

http://www.tortoisecvs.org/
https://subversion.apache.org/
http://www.perforce.com/
http://github.com/
http://mercurial.selenic.com/
http://bazaar.canonical.com/en/
http://darcs.net/

if any server dies, and these systems were collaborating via it, any of the client
repositories can be copied back up to the server to restore it. Every clone is
really a full backup of all the data.

Furthermore, many of these systems deal pretty well with having several
remote repositories they can work with, so you can collaborate with different
groups of people in different ways simultaneously within the same project.

7.3 Validation

Software validation is a complex issue. The U.S. Food and Drug Administra-
tion (FDA) takes The Least Burdensome Approach14. This does not prescribe
specific practices, tools, coding methods or any other technical activity. Instead
organisations determine, and then strictly adhere to their self-defined validation
and verification processes.

However, development activities and outcomes must be clearly defined, doc-
umented, verified, and validated against an organisation’s process. The goal of
this approach is to give medical device makers enough rope to determine how
to best ensure public safety. But in practice, the effect has been that organisa-
tions have enough rope to hang themselves. This is because the requirements,
expressed in the relevant Federal Regulations , represent extensive planning and
testing, which require validation.

14http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126955.pdf

9

http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126955.pdf

References

J. Deroba, D. Butterworth, R. Methot, J. De Oliveira, C. Fernandez, A. Nielsen,
S. Cadrin, M. Dickey-Collas, C. Legault, J. Ianelli, et al. Simulation testing
the robustness of stock assessment models to error: some results from the ices
strategic initiative on stock assessment methods. ICES Journal of Marine
Science: Journal du Conseil, page fst237, 2014.

D. A. Fournier, J. Hampton, and J. R. Sibert. MULTIFAN-CL: a length-
based, age-structured model for fisheries stock assessment, with application
to south pacific albacore, thunnus alalunga. Canadian Journal of Fisheries
and Aquatic Sciences, 55(9):2105–2116, 1998.

L. Kell, J. A. De Oliveira, A. E. Punt, M. K. McAllister, and S. Kuikka. Op-
erational management procedures: an introduction to the use of evaluation
frameworks. Developments in Aquaculture and Fisheries Science, 36:379–407,
2006.

H.-H. Lee, M. N. Maunder, K. R. Piner, and R. D. Methot. Estimating natural
mortality within a fisheries stock assessment model: an evaluation using sim-
ulation analysis based on twelve stock assessments. Fisheries Research, 109
(1):89–94, 2011.

G. Merino, P. Bruyn, L. Kell, and J. Scott. A preliminary stock assessment
of the albacore tuna (thunnus alalunga) stock in the northern atlantic ocean
using a non-equilibrium production model. ICCAT Collect. Vol. Sci. Pap.,
69(56):xxx–xxx, 2013.

R. D. Methot. Technical description of the stock synthesis II assessment program
version 1.17-March 2005. Unpublished draft report provided on the CD-ROM
of background materials for the STAR. NOAA Fisheries, Seattle, Washington,
USA, 2005.

K. Patterson, R. Cook, C. Darby, S. Gavaris, L. Kell, P. Lewy, B. Mesnil,
A. Punt, V. Restrepo, D. W. Skagen, et al. Estimating uncertainty in fish
stock assessment and forecasting. Fish and Fisheries, 2(2):125–157, 2001.

E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49, 1999.

J. Shepherd. Extended survivors analysis: An improved method for the analysis
of catch-at-age data and abundance indices. ICES Journal of Marine Science:
Journal du Conseil, 56(5):584–591, 1999.

10

8 Appendix

11

INTERNATIONAL COMMISSION FOR THE CONSERVATION
OF ATLANTIC TUNAS

COMMISSION INTERNATIONALE POUR LA CONSERVATION
DES THONIDES DE L´ATLANTIQUE

COMISION INTERNACIONAL PARA LA CONSERVACION
DEL ATUN ATLANTICO

ASSESSMENT PROGRAM DOCUMENTATION

Program: xxx (ver. x.x.x)
Name

Current Catalog Entry: ?
First Cataloged by ICCAT: ?

Catalogue Committee
External:

ICCAT Secretariat:

NOTE: As part of its efforts to carry out Quality Management, ICCAT´s Standing Committee on Research and
Statistics is developing a catalog of stock assessment applications. The purpose of the catalog is not to evaluate the
relative merits of various assessment methods, but rather whether the software implementing the method works as
intended and is adequately documented.

ASSESSMENT PROGRAM DOCUMENTATION

1. Program name
xxx

2. Version (date) ***
Version x.x.x

3. Language

4. Programmer / contact person

5. Distribution limitations

6. Compiler needs / stand-alone

7. Purpose

8. Description

9. Required inputs

10. Program outputs

11. Diagnostics

12. Other features

13. History of method peer review

14. Steps taken by programmer for validation

15. Tests conducted by others

16. Notes by ICCAT

17. Sources cited

APPENDIX 1. Algorithm

APPENDIX 2. User´s guide

	Objectives
	Strategic Plan
	Catalogue
	Tables
	Proposal
	Objectives
	Issues
	Procedure

	Stock Assessment
	International Initiatives
	Testing

	Software
	Testing
	Version Control
	Validation

	Appendix

