
San Francisco State University Nano-Electronics & Computing Research Lab 1

ASIC Design Flow Tutorial

Using Synopsys Tools

By

Hima Bindu Kommuru

Hamid Mahmoodi

Nano-Electronics & Computing Research Lab

School of Engineering

San Francisco State University

San Francisco, CA

Spring 2009

San Francisco State University Nano-Electronics & Computing Research Lab 2

TABLE OF CONTENTS

WHAT IS AN ASIC? .. 5

1.0 INTRODUCTION ... 5
1.1 CMOS TECHNOLOGY ... 6
1.2 MOS TRANSISTOR .. 6

Figure 1.2a MOS Transistor ... 6
Figure 1.2b Graph of Drain Current vs Drain to Source Voltage .. 7

1.3 POWER DISSIPATION IN CMOS IC’S ... 8
1.4 CMOS TRANSMISSION GATE ... 8

Figure 1.4a Latch.. 9
Figure 1.4b Flip-Flop ... 9

OVERVIEW OF ASIC FLOW ... 10

2.0 INTRODUCTION ..10
Figure 2.a : Simple ASIC Design Flow ..11

SYNOPSYS VERILOG COMPILER SIMULATOR (VCS) TUTORIAL 13

3.0 INTRODUCTION ..13
3.1 TUTORIAL EXAMPLE ..14

3.1.1 Compiling and Simulating ..14
Figure 3.a: vcs compile ..15
Figure 3.b Simulation Result ...16

3.2 DVE TUTORIAL..17
APPENDIX 3A: OVERVIEW OF RTL ..28

3.A.1 Register Transfer Logic ..28
3.A.2 Digital Design ...30

APPENDIX 3B: TEST BENCH / VERIFICATION ..30
3.B.1 Test Bench Example: ..33

DESIGN COMPILER TUTORIAL [RTL-GATE LEVEL SYNTHESIS] 37

4.0 INTRODUCTION ..37
4.1 BASIC SYNTHESIS GUIDELINES ..39

4.1.1 Startup File ...39
4.1.2 Design Objects ..40
4.1.3 Technology Library ...41
4.1.4 Register Transfer-Level Description ...42
4.1.5 General Guidelines ...43
4.1.6 Design Attributes and Constraints ..44

4.2 TUTORIAL EXAMPLE ..46
4.2.1 Synthesizing the Code ...48
Figure 4.a : Fragment of analyze command ..50
Figure 4.b Fragment of elaborate command ...51
Figure 4.c: Fragment of Compile command ..53
4.2.2 Interpreting the Synthesized Gate-Level Netlist and Text Reports ..54
Figure 4.d : Fragment of area report ...55
Figure 4.e: Fragment of cell area report ..55
Figure 4.f : Fragment of qor report ...56
Figure 4.g: Fragment of Timing report ...57
Figure 4.h : Synthesized gate-level netlist ...58

4.2.3 SYNTHESIS SCRIPT ..58
Note : There is another synthesis example of a FIFO in the below location for further reference. This

synthesized FIFO example is used in the physical design IC Compiler Tutorial60
APPENDIX 4A: SYNTHESIS OPTIMIZATION TECHNIQUES ..60
4. A.0 INTRODUCTION ...60

San Francisco State University Nano-Electronics & Computing Research Lab 3

4. A.1 MODEL OPTIMIZATION..60
4.A.1.1 Resource Allocation ...60
Figure 4A.b. With resource allocation. ..61
4.A.1.2 Flip-flop and Latch optimizations ...64
4.A.1.3 Using Parentheses ...64
4.A.1.4 Partitioning and structuring the design. ..65

4.A.2 OPTIMIZATION USING DESIGN COMPILER ..65
4.A.2.1 Top-down hierarchical Compile ..66
4.A.2.2 Optimization Techniques ...67

4. A.3 TIMING ISSUES ..70
Figure 4A.b Timing diagram for setup and hold On DATA ...70
4.A.3.1 HOW TO FIX TIMING VIOLATIONS ...71
Figure 4A.c : Logic with Q2 critical path ..73
Figure 4A.d: Logic duplication allowing Q2 to be an independent path. ...73
Figure 4A.e: Multiplexer with late arriving sel signal ...74
Figure 4A.f: Logic Duplication for balancing the timing between signals ...74
Figure 4.A.g : Logic with pipeline stages ..74

4A.4 VERILOG SYNTHESIZABLE CONSTRUCTS ..75

5.0 DESIGN VISION .. 78

5.1 ANALYSIS OF GATE-LEVEL SYNTHESIZED NETLIST USING DESIGN VISION78
Figure 5.a: Design Vision GUI ...78
Figure 5.b: Schematic View of Synthesized Gray Counter ..79
Figure 5.c Display Timing Path ...81
Figure 5.d Histogram of Timing Paths ..81

STATIC TIMING ANALYSIS .. 82

6.0 INTRODUCTION ..82
6.1 TIMING PATHS ...82

6.1.1 Delay Calculation of each timing path: ..83
6.2 TIMING EXCEPTIONS ..83
6.3 SETTING UP CONSTRAINTS TO CALCULATE TIMING:...83
6.4 BASIC TIMING DEFINITIONS: ...84
6.5 CLOCK TREE SYNTHESIS (CTS): ...85
6.6 PRIMETIME TUTORIAL EXAMPLE ..86

6.6.1 Introduction...86
6.6.2 PRE-LAYOUT ..86

6.6.2.1 PRE-LAYOUT CLOCK SPECIFICATION ..87
6.6.3 STEPS FOR PRE-LAYOUT TIMING VALIDATION ...87

IC COMPILER TUTORIAL ... 92

8.0 BASICS OF PHYSICAL IMPLEMENTATION ..92
8.1 Introduction ...92
Figure 8.1.a : ASIC FLOW DIAGRAM ...92

8.2 FLOORPLANNING ..93
Figure 8.2.a : Floorplan example ..94

8.3 CONCEPT OF FLATTENED VERILOG NETLIST ...97
8.3.a Hierarchical Model: ...97
8.3.b Flattened Model: ...98
Figure 8.c Floorplanning Flow Chart ...98

8.4 PLACEMENT ...99
8.5 Routing ..100
Figure 8.5.a : Routing grid ..101

8.6 PACKAGING ...102
Figure 8.6.a : Wire Bond Example ..102

San Francisco State University Nano-Electronics & Computing Research Lab 4

Figure 8.6.b : Flip Chip Example ..103
8.7 IC TUTORIAL EXAMPLE ..103
8.7.1 INTRODUCTION ...103

CREATING DESIGN LIBRARY ...106
FLOORPLANNING ...109
PLACEMENT ...112
CLOCK TREE SYNTHESIS ...115
CTS POST OPTIMIZATION STEPS ..116
ROUTING ..117

EXTRACTION ... 121

9.0 INTRODUCTION ..121

APPENDIX A: DESIGN FOR TEST .. 126

A.0 INTRODUCTION ...126
A.1 TEST TECHNIQUES ..126

A.1.1 Issues faced during testing ...126
A.2 SCAN-BASED METHODOLOGY ..126
A.3 FORMAL VERIFICATION ..128

APPENDIX B: EDA LIBRARY FORMATS ... 128

B.1 INTRODUCTION ...128

San Francisco State University Nano-Electronics & Computing Research Lab 5

What is an ASIC?

1.0 Introduction

Integrated Circuits are made from silicon wafer, with each wafer holding hundreds of die.

An ASIC is an Application Specific Integrated Circuit. An Integrated Circuit designed

is called an ASIC if we design the ASIC for the specific application. Examples of ASIC

include, chip designed for a satellite, chip designed for a car, chip designed as an

interface between memory and CPU etc. Examples of IC’s which are not called ASIC

include Memories, Microprocessors etc. The following paragraphs will describe the types

of ASIC’s.

1. Full-Custom ASIC: For this type of ASIC, the designer designs all or some of

the logic cells, layout for that one chip. The designer does not used predefined

gates in the design. Every part of the design is done from scratch.

2. Standard Cell ASIC: The designer uses predesigned logic cells such as AND

gate, NOR gate, etc. These gates are called Standard Cells. The advantage of

Standard Cell ASIC’s is that the designers save time, money and reduce the risk

by using a predesigned and pre-tested Standard Cell Library. Also each Standard

Cell can be optimized individually. The Standard Cell Libraries is designed using

the Full Custom Methodology, but you can use these already designed libraries in

the design. This design style gives a designer the same flexibility as the Full

Custom design, but reduces the risk.

3. Gate Array ASIC: In this type of ASIC, the transistors are predefined in the

silicon wafer. The predefined pattern of transistors on the gate array is called a

base array and the smallest element in the base array is called a base cell. The

base cell layout is same for each logic cell, only the interconnect between the cells

and inside the cells is customized. The following are the types of gate arrays:

a. Channeled Gate Array

b. Channelless Gate Array

C. Structured Gate Array

When designing a chip, the following objectives are taken into consideration:

1. Speed

2. Area

3. Power

4. Time to Market

To design an ASIC, one needs to have a good understanding of the CMOS Technology.

The next few sections give a basic overview of CMOS Technology.

San Francisco State University Nano-Electronics & Computing Research Lab 6

1.1 CMOS Technology

In the present decade the chips being designed are made from CMOS technology. CMOS

is Complementary Metal Oxide Semiconductor. It consists of both NMOS and PMOS

transistors. To understand CMOS better, we first need to know about the MOS (FET)

transistor.

1.2 MOS Transistor

MOS stands for Metal Oxide Semiconductor field effect transistor. MOS is the basic

element in the design of a large scale integrated circuit is the transistor. It is a voltage

controlled device. These transistors are formed as a ``sandwich'' consisting of a

semiconductor layer, usually a slice, or wafer, from a single crystal of silicon; a layer of

silicon dioxide (the oxide) and a layer of metal. These layers are patterned in a manner

which permits transistors to be formed in the semiconductor material (the ``substrate'');

The MOS transistor consists of three regions, Source, Drain and Gate. The source and

drain regions are quite similar, and are labeled depending on to what they are connected.

The source is the terminal, or node, which acts as the source of charge carriers; charge

carriers leave the source and travel to the drain. In the case of an N channel MOSFET

(NMOS), the source is the more negative of the terminals; in the case of a P channel

device (PMOS), it is the more positive of the terminals. The area under the gate oxide is

called the ``channel”. Below is figure of a MOS Transistor.

Figure 1.2a MOS Transistor

The transistor normally needs some kind of voltage initially for the channel to form.

When there is no channel formed, the transistor is said to be in the ‘cut off region’. The

voltage at which the transistor starts conducting (a channel begins to form between the

source and the drain) is called threshold Voltage. The transistor at this point is said to be

in the ‘linear region’. The transistor is said to go into the ‘saturation region’ when there

are no more charge carriers that go from the source to the drain.

San Francisco State University Nano-Electronics & Computing Research Lab 7

Figure 1.2b Graph of Drain Current vs Drain to Source Voltage

CMOS technology is made up of both NMOS and CMOS transistors. Complementary

Metal-Oxide Semiconductors (CMOS) logic devices are the most common devices used

today in the high density, large number transistor count circuits found in everything from

complex microprocessor integrated circuits to signal processing and communication

circuits. The CMOS structure is popular because of its inherent lower power

requirements, high operating clock speed, and ease of implementation at the transistor

level. The complementary p-channel and n-channel transistor networks are used to

connect the output of the logic device to the either the VDD or VSS power supply rails for a

given input logic state. The MOSFET transistors can be treated as simple switches. The

switch must be on (conducting) to allow current to flow between the source and drain

terminals.

Example: Creating a CMOS inverter requires only one PMOS and one NMOS transistor.

The NMOS transistor provides the switch connection (ON) to ground when the input is

logic high. The output load capacitor gets discharged and the output is driven to a

logic’0’. The PMOS transistor (ON) provides the connection to the VDD power supply

rail when the input to the inverter circuit is logic low. The output load capacitor gets

charged to VDD . The output is driven to logic ’1’.

 The output load capacitance of a logic gate is comprised of

a. Intrinsic Capacitance: Gate drain capacitance (of both NMOS and PMOS

transistors)

b. Extrinsic Capacitance: Capacitance of connecting wires and also input

capacitance of the Fan out Gates.

In CMOS, there is only one driver, but the gate can drive as many gates as possible. In

CMOS technology, the output always drives another CMOS gate input.

 The charge carriers for PMOS transistors is ‘holes’ and charge carriers for NMOS

are electrons. The mobility of electrons is two times more than that of ‘holes’. Due to this

the output rise and fall time is different. To make it same, the W/L ratio of the PMOS

transistor is made about twice that of the NMOS transistor. This way, the PMOS and

San Francisco State University Nano-Electronics & Computing Research Lab 8

NMOS transistors will have the same ‘drive strength’. In a standard cell library, the

length ‘L’ of a transistor is always constant. The width ‘W’ values are changed to have to

different drive strengths for each gate. The resistance is proportional to (L/W). Therefore

if the increasing the width, decreases the resistance.

1.3 Power Dissipation in CMOS IC’s

The big percentage of power dissipation in CMOS IC’s is due to the charging and

discharging of capacitors. Majority of the low power CMOS IC designs issue is to reduce

power dissipation. The main sources of power dissipation are:

1. Dynamic Switching Power: due to charging and discharging of circuit

capacitances

 A low to high output transition draws energy from the power supply

 A high to low transition dissipates energy stored in CMOS transistor.

 Given the frequency ‘f’, of the low-high transitions, the total power drawn

would be: load capacitance*Vdd*Vdd*f

2. Short Circuit Current: It occurs when the rise/fall time at the input of the gate is

larger than the output rise/fall time.

3. Leakage Current Power: It is caused by two reasons;

a. Reverse-Bias Diode Leakage on Transistor Drains: This happens in

CMOS design, when one transistor is off, and the active transistor charges

up/down the drain using the bulk potential of the other transistor.

Example: Consider an inverter with a high input voltage, output is low

which means NMOS is on and PMOS is off. The bulk of PMOS is

connected to VDD. Therefore there is a drain-to –bulk voltage –VDD,

causing the diode leakage current.

 b. Sub-Threshold Leakage through the channel to an ‘OFF’ transistor/device.

1.4 CMOS Transmission Gate

A PMOS transistor is connected in parallel to a NMOS transistor to form a Transmission

gate. The transmission gate just transmits the value at the input to the output. It consists

of both NMOS and PMOS because, PMOS transistor transmits a strong ‘1’ and NMOS

transistor transmits a strong ‘0’. The advantages of using a Transmission Gate are:

1. It shows better characteristics than a switch.

2. The resistance of the circuit is reduced, since the transistors are connected in parallel.

Sequential Element

In CMOS, an element which stores a logic value (by having a feedback loop) is called a

sequential element. A simplest example of a sequential element would be two inverters

connected back to back. There are two types of basic sequential elements, they are:

1. Latch: The two inverters connected back to back, when connected to a

transmission gate, with a control input, forms a latch. When the control input is

high (logic ‘1’), the transmission gate is switched on and whatever value which

was at the input ‘D’ passes to the output. When the control input is low, the

transmission gate is off and the inverters that are connected back to back hold the

San Francisco State University Nano-Electronics & Computing Research Lab 9

value. Latch is called a transparent latch because when the ‘D’ input changes, the

output also changes accordingly.

G

D Q

Figure 1.4a Latch

2. Flip-Flop: A flip flop is constructed from two latches in series. The first latch is

called a Master latch and the second latch is called the slave latch. The control

input to the transmission gate in this case is called a clock. The inverted version of

the clock is fed to the input of the slave latch transmission gate.

a. When the clock input is high, the transmission gate of the master latch is

switched on and the input ‘D’ is latched by the 2 inverters connected back

to back (basically master latch is transparent). Also, due to the inverted

clock input to the transmission gate of the slave latch, the transmission

gate of the slave latch is not ‘on’ and it holds the previous value.

b. When the clock goes low, the slave part of the flip flop is switched on and

will update the value at the output with what the master latch stored when

the clock input was high. The slave latch will hold this new value at the

output irrespective of the changes at the input of Master latch when the

clock is low. When the clock goes high again, the value at the output of

the slave latch is stored and step’a’ is repeated again.

 The data latched by the Master latch in the flip flop happens at the rising clock

edge, this type of flip flop is called positive-edge triggered flip flop. If the latching

happens at negative edge of the clock, the flip flop is called negative edge triggered flip

flop.

CLK

D Q

Master Slave

Figure 1.4b Flip-Flop

San Francisco State University Nano-Electronics & Computing Research Lab 10

Overview of ASIC Flow

2.0 Introduction

To design a chip, one needs to have an Idea about what exactly one wants to design. At

every step in the ASIC flow the idea conceived keeps changing forms. The first step to

make the idea into a chip is to come up with the Specifications.

Specifications are nothing but

 Goals and constraints of the design.

 Functionality (what will the chip do)

 Performance figures like speed and power

 Technology constraints like size and space (physical dimensions)

 Fabrication technology and design techniques

The next step is in the flow is to come up with the Structural and Functional

Description. It means that at this point one has to decide what kind of architecture

(structure) you would want to use for the design, e.g. RISC/CISC, ALU, pipelining etc …

To make it easier to design a complex system; it is normally broken down into several

sub systems. The functionality of these subsystems should match the specifications. At

this point, the relationship between different sub systems and with the top level system is

also defined.

 The sub systems, top level systems once defined, need to be implemented. It is

implemented using logic representation (Boolean Expressions), finite state machines,

Combinatorial, Sequential Logic, Schematics etc.... This step is called Logic Design /

Register Transfer Level (RTL). Basically the RTL describes the several sub systems. It

should match the functional description. RTL is expressed usually in Verilog or VHDL.

Verilog and VHDL are Hardware Description Languages. A hardware description

language (HDL) is a language used to describe a digital system, for example, a network

switch, a microprocessor or a memory or a simple flip-flop. This just means that, by

using a HDL one can describe any hardware (digital) at any level. Functional/Logical

Verification is performed at this stage to ensure the RTL designed matches the idea.

 Once Functional Verification is completed, the RTL is converted into an optimized

Gate Level Netlist. This step is called Logic/RTL synthesis. This is done by Synthesis

Tools such as Design Compiler (Synopsys), Blast Create (Magma), RTL Compiler

(Cadence) etc... A synthesis tool takes an RTL hardware description and a standard cell

library as input and produces a gate-level netlist as output. Standard cell library is the

basic building block for today’s IC design. Constraints such as timing, area, testability,

and power are considered. Synthesis tools try to meet constraints, by calculating the cost

of various implementations. It then tries to generate the best gate level implementation

for a given set of constraints, target process. The resulting gate-level netlist is a

completely structural description with only standard cells at the leaves of the design. At

this stage, it is also verified whether the Gate Level Conversion has been correctly

performed by doing simulation.

 The next step in the ASIC flow is the Physical Implementation of the Gate Level

Netlist. The Gate level Netlist is converted into geometric representation. The geometric

San Francisco State University Nano-Electronics & Computing Research Lab 11

representation is nothing but the layout of the design. The layout is designed according to

the design rules specified in the library. The design rules are nothing but guidelines based

on the limitations of the fabrication process. The Physical Implementation step consists

of three sub steps; Floor planning->Placement->Routing. The file produced at the output

of the Physical Implementation is the GDSII file. It is the file used by the foundry to

fabricate the ASIC. This step is performed by tools such as Blast Fusion (Magma), IC

Compiler (Synopsys), and Encounter (Cadence) Etc…Physical Verification is performed

to verify whether the layout is designed according the rules.

Figure 2.a : Simple ASIC Design Flow

Idea

Specifications

RTL

Gate Level Netlist

Physical

Implementation

GDSII

CHIP

San Francisco State University Nano-Electronics & Computing Research Lab 12

 For any design to work at a specific speed, timing analysis has to be performed.

We need to check whether the design is meeting the speed requirement mentioned in the

specification. This is done by Static Timing Analysis Tool, for example Primetime

(Synopsys). It validates the timing performance of a design by checking the design for all

possible timing violations for example; set up, hold timing.

 After Layout, Verification, Timing Analysis, the layout is ready for Fabrication. The

layout data is converted into photo lithographic masks. After fabrication, the wafer is

diced into individual chips. Each Chip is packaged and tested.

San Francisco State University Nano-Electronics & Computing Research Lab 13

Synopsys Verilog Compiler Simulator (VCS) Tutorial

3.0 Introduction

Synopsys Verilog Compiler Simulator is a tool from Synopsys specifically designed to

simulate and debug designs. This tutorial basically describes how to use VCS, simulate a

verilog description of a design and learn to debug the design. VCS also uses VirSim,

which is a graphical user interface to VCS used for debugging and viewing the

waveforms.

There are three main steps in debugging the design, which are as follows

1. Compiling the Verilog/VHDL source code.

2. Running the Simulation.

3. Viewing and debugging the generated waveforms.

You can interactively do the above steps using the VCS tool. VCS first compiles the

verilog source code into object files, which are nothing but C source files. VCS can

compile the source code into the object files without generating assembly language files.

VCS then invokes a C compiler to create an executable file. We use this executable file to

simulate the design. You can use the command line to execute the binary file which

creates the waveform file, or you can use VirSim.

Below is a brief overview of the VCS tool, shows you how to compile and simulate a

counter. For basic concepts on verification and test bench, please refer to APPENDIX 3A

at the end of this chapter.

SETUP

Before going to the tutorial Example, let’s first setup up the directory.

You need to do the below 3 steps before you actually run the tool:

1. As soon as you log into your engr account, at the command prompt, please type “csh

“as shown below. This changes the type of shell from bash to c-shell. All the commands

work ONLY in c-shell.

[hkommuru@hafez]$csh

2. Please copy the whole directory from the below location (cp –rf source destination)

[hkommuru@hafez]$cd

[hkommuru@hafez]$ cp -rf /packages/synopsys/setup/asic_flow_setup ./

This creates directory structure as shown below. It will create a directory called

“asic_flow_setup ”, under which it creates the following directories namely

San Francisco State University Nano-Electronics & Computing Research Lab 14

asic_flow_setup

src/ : for verilog code/source code

vcs/ : for vcs simulation ,

synth_graycounter/ : for synthesis

synth_fifo/ : for synthesis

pnr/ : for Physical design

extraction/: for extraction

pt/: for primetime

verification/: final signoff check

The “asic_flow_setup” directory will contain all generated content including, VCS

simulation, synthesized gate-level Verilog, and final layout. In this course we will always

try to keep generated content from the tools separate from our source RTL. This keeps

our project directories well organized, and helps prevent us from unintentionally

modifying the source RTL. There are subdirectories in the project directory for each

major step in the ASIC Flow tutorial. These subdirectories contain scripts and

configuration files for running the tools required for that step in the tool flow. For this

tutorial we will work exclusively in the vcs directory.

3. Please source “synopsys_setup.tcl” which sets all the environment variables necessary

to run the VCS tool.

Please source them at unix prompt as shown below

 [hkommuru@hafez]$ source /packages/synopsys/setup/synopsys_setup.tcl

Please Note : You have to do steps 1 and 3 above everytime you log in.

3.1 Tutorial Example

In this tutorial, we would be using a simple counter example . Find the verilog code and

testbench at the end of the tutorial.

Source code file name : counter.v

Test bench file name : counter_tb.v

Setup

3.1.1 Compiling and Simulating

NOTE: AT PRESENT THERE SEEMS TO BE A BUG IN THE TOOL, SO

COMPILE AND SIMULATION IN TWO DIFFERENT STEPS IS NOT

WORKING. THIS WILL BE FIXED SHORTLY. PLEASE DO STEP 3 TO SEE

THE OUTPUT OF YOUR CODE. STEP 3 COMMAND PERFORMS

COMPILATION AND SIMULATION IN ONE STEP.

San Francisco State University Nano-Electronics & Computing Research Lab 15

1. In the “vcs” directory, compile the verilog source code by typing the following at the

machine prompt.

[hkommuru@hafez vcs]$ cd asic_flow_setup/vcs

[hkommuru@hafez vcs]$ cp ../src/counter/* .

[hkommuru@hafez vcs]$ vcs –f main_counter.f +v2k

Please note that the –f option means the file specified (main_counter.f) contains a list of

command line options for vcs. In this case, the command line options are just a list of the

verilog file names. Also note that the testbench is listed first. The below command also

will have same effect .

 [hkommuru@hafez vcs]$ vcs –f counter_tb.v counter.v +v2k

The +v2k option is used if you are using Verilog IEE 1364-2000 syntax; otherwise there

is no need for the option. Please look at Figure 3.a for output of compile command.

Figure 3.a: vcs compile

 Chronologic VCS (TM)

 Version B-2008.12 -- Wed Jan 28 20:08:26 2009

 Copyright (c) 1991-2008 by Synopsys Inc.

 ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys Inc.

and may be used and disclosed only as authorized in a license agreement

controlling such use and disclosure.

Warning-[ACC_CLI_ON] ACC/CLI capabilities enabled

 ACC/CLI capabilities have been enabled for the entire design. For faster

 performance enable module specific capability in pli.tab file

Parsing design file 'counter_tb.v'

Parsing design file 'counter.v'

Top Level Modules:

 timeunit

 counter_testbench

TimeScale is 1 ns / 10 ps

Starting vcs inline pass...

2 modules and 0 UDP read.

recompiling module timeunit

recompiling module counter_testbench

Both modules done.

gcc -pipe -m32 -O -I/packages/synopsys/vcs_mx/B-2008.12/include -c -o rmapats.o rmapats.c

if [-x ../simv]; then chmod -x ../simv; fi

g++ -o ../simv -melf_i386 -m32 5NrI_d.o 5NrIB_d.o IV5q_1_d.o blOS_1_d.o rmapats_mop.o rmapats.o

SIM_l.o /packages/synopsys/vcs_mx/B-2008.12/linux/lib/libvirsim.a /packages/synopsys/vcs_mx/B-

2008.12/linux/lib/librterrorinf.so /packages/synopsys/vcs_mx/B-2008.12/linux/lib/libsnpsmalloc.so

San Francisco State University Nano-Electronics & Computing Research Lab 16

/packages/synopsys/vcs_mx/B-2008.12/linux/lib/libvcsnew.so /packages/synopsys/vcs_mx/B-

2008.12/linux/lib/ctype-stubs_32.a -ldl -lz -lm -lc -ldl

../simv up to date

VirSim B-2008.12-B Virtual Simulator Environment

Copyright (C) 1993-2005 by Synopsys, Inc.

Licensed Software. All Rights Reserved.

By default the output of compilation would be a executable binary file is named simv.

You can specify a different name with the -o compile-time option.

 For example :

vcs –f main_counter.f +v2k –o counter.simv

 VCS compiles the source code on a module by module basis. You can incrementally

compile your design with VCS, since VCS compiles only the modules which have

changed since the last compilation.

2. Now, execute the simv command line with no arguments. You should see the output

from both vcs and simulation and should produce a waveform file called counter.dump in

your working directory.

[hkommuru@hafez vcs]$./counter.simv

Please see Figure 3.b for output of simv command

Figure 3.b Simulation Result

Chronologic VCS simulator copyright 1991-2008

Contains Synopsys proprietary information.

Compiler version B-2008.12; Runtime version B-2008.12; Jan 28 19:59 2009

time= 0 ns, clk=0, reset=0, out=xxxx

time= 10 ns, clk=1, reset=0, out=xxxx

time= 11 ns, clk=1, reset=1, out=xxxx

time= 20 ns, clk=0, reset=1, out=xxxx

time= 30 ns, clk=1, reset=1, out=xxxx

time= 31 ns, clk=1, reset=0, out=0000

time= 40 ns, clk=0, reset=0, out=0000

time= 50 ns, clk=1, reset=0, out=0000

time= 51 ns, clk=1, reset=0, out=0001

time= 60 ns, clk=0, reset=0, out=0001

time= 70 ns, clk=1, reset=0, out=0001

time= 71 ns, clk=1, reset=0, out=0010

time= 80 ns, clk=0, reset=0, out=0010

time= 90 ns, clk=1, reset=0, out=0010

time= 91 ns, clk=1, reset=0, out=0011

time= 100 ns, clk=0, reset=0, out=0011

time= 110 ns, clk=1, reset=0, out=0011

time= 111 ns, clk=1, reset=0, out=0100

San Francisco State University Nano-Electronics & Computing Research Lab 17

time= 120 ns, clk=0, reset=0, out=0100

time= 130 ns, clk=1, reset=0, out=0100

time= 131 ns, clk=1, reset=0, out=0101

time= 140 ns, clk=0, reset=0, out=0101

time= 150 ns, clk=1, reset=0, out=0101

time= 151 ns, clk=1, reset=0, out=0110

time= 160 ns, clk=0, reset=0, out=0110

time= 170 ns, clk=1, reset=0, out=0110

All tests completed sucessfully

$finish called from file "counter_tb.v", line 75.

$finish at simulation time 171.0 ns

 V C S S i m u l a t i o n R e p o r t

Time: 171000 ps

CPU Time: 0.020 seconds; Data structure size: 0.0Mb

Wed Jan 28 19:59:54 2009

If you look at the last page of the tutorial, you can see the testbench code, to understand

the above result better.

3. You can do STEP 1 and STEP 2 in one single step below. It will compile and simulate

in one single step. Please take a look at the command below:

[hkommuru@hafez vcs]$ vcs -V -R -f main_counter.f -o simv

In the above command,

-V : stands for Verbose

-R : command which tells the tool to do simulation immediately/automatically after

compilation

-o : output file name , can be anything simv, counter.simv etc...

-f : specifying file

To compile and simulate your design, please write your verilog code, and copy it to the

vcs directory. After copying your verilog code to the vcs directory, follow the tutorial

steps to simulate and compile.

3.2 DVE TUTORIAL

DVE provides you a graphical user interface to debug your design. Using DVE you can

debug the design in interactive mode or in postprocessing mode. In the interactive mode,

apart from running the simulation, DVE allows you to do the following:

• View waveforms

• Trace Drivers and loads

• Schematic, and Path Schematic view

• Compare waveforms

• Execute UCLI/Tcl commands

• Set line, time, or event break points

• Line stepping

San Francisco State University Nano-Electronics & Computing Research Lab 18

However, in post-processing mode, a VPD/VCD/EVCD file is created during simulation,

and you use DVE to:

• View waveforms

• Trace Drivers and loads

• Schematic, and Path Schematic view

• Compare waveforms

Use the below command line to invoke the simulation in interactive mode using DVE:

[hkommuru@hafez vcs]$simv –gui

A TopLevel window is a frame that displays panes and views.

• A pane can be displayed one time on each TopLevel Window. serves a specific debug

purpose. Examples of panes are Hierarchy, Data, and the Console panes.

• A view can have multiple instances per TopLevel window. Examples of views are

Source, Wave, List, Memory, and Schematic. Panes can be docked on any side to a

TopLevel window or left floating in the area in the frame not occupied by docked panes

(called the workspace).

You can use the above command or you can do everything, which is compile and

simulation, open the gui in one step.

1. Invoke dve to view the waveform. At the unix prompt, type :

[hkommuru@hafez vcs]$ vcs -V -R -f main_counter.f -o simv -gui –debug_pp

Where debug_pp option is used to run the dve in simulation mode. Debug_pp creates a

vpd file which is necessary to do simulation. The below window will open up.

San Francisco State University Nano-Electronics & Computing Research Lab 19

2. In the above window, open up the counter module to view the whole module like

below. Click on dut highlighted in blue and drag it to the data pane as shown below. All

the signals in the design will show up in the data pane.

San Francisco State University Nano-Electronics & Computing Research Lab 20

3. In this window, click on “Setup” under the “Simulator” option. A new small window

will open up as shown. Inter.vpd is the file, the simulator will use to run the waveform.

San Francisco State University Nano-Electronics & Computing Research Lab 21

The –debug_pp option in step1 creates this file. Click ok and now the step up is complete

to run the simulation shown in the previous page.

4. Now in the data pane select all the signals with the left mouse button holding the shift

button so that you select as many signals you want. Click on the right mouse button to

open a new window, and click on “Add to group => New group . A new window will

open up showing a new group of selected signals below.

You can create any number of signal groups you want so that you can organize the way

and you want to see the output of the signals .

San Francisco State University Nano-Electronics & Computing Research Lab 22

5. 4. Now in the data pane select all the signals with the left mouse button holding the

shift button so that you select as many signals you want. Click on the right mouse button

to open a new window, and click on “Add to waves New wave view”. A new

waveform window will open with simulator at 0ns .

San Francisco State University Nano-Electronics & Computing Research Lab 23

6. In the waveform window, go to “Simulator menu option” and click on “Start”. The tool

now does simulation and you can verify the functionality of the design as shown below.

In the waveform window, the menu option View Set Time Scale can be used to

change the display unit and the display precision

7. You can save your current session and reload the same session next time or start a new

session again. In the menu option , File Save Session, the below window opens as

shown below.

San Francisco State University Nano-Electronics & Computing Research Lab 24

8. For additional debugging steps, you can go to menu option

 1. Scope Show Source code: You can view your source code here and analyze.

 2. Scope Show Schematic: You can view a schematic view of the design .

San Francisco State University Nano-Electronics & Computing Research Lab 25

9. Adding Breakpoints in Simulation. To be able to add breakpoints, you have to use a

additional compile option –debug_all –flag when you compile the code as shown below.

[hkommuru@hafez vcs]$ vcs -V -R -f main_counter.f -o simv -gui –debug_pp -

debug_all –flag

Go to the menu option, Simulation Breakpoints , will open up a new window as shown

below. You need to do this before Step 6, i.e. before actually running the simulation.

You can browse which file and also the line number and click on “Create” button to

create breakpoints.

Now when you simulate, click on Simulate Start, it will stop at your defined

breakpoint, click on Next to continue.

You can save your session again and exit after are done with debugging or in the middle

of debugging your design.

Verilog Code

File : Counter.v

 module counter (out, clk, reset) ;

San Francisco State University Nano-Electronics & Computing Research Lab 26

 input clk, reset;

 output [3:0] out;

 reg [3:0] out;

 wire [3:0] next;

 // This statement implements reset and increment

 assign next = reset ? 4'b0 : (out + 4'b1);

 // This implements the flip-flops

 always @ (posedge clk) begin

 out <= #1 next;

 end

endmodule // counter

File : Counter_tb.v [Test Bench]

// This stuff just sets up the proper time scale and format for the

// simulation, for now do not modify.

`timescale 1ns/10ps

module timeunit;

 initial $timeformat(-9,1," ns",9);

endmodule

// Here is the testbench proper:

module counter_testbench () ;

 // Test bench gets wires for all device under test (DUT) outputs:

 wire [3:0] out;

 // Regs for all DUT inputs:

 reg clk;

 reg reset;

 counter dut (// (dut means device under test)

 // Outputs

 .out (out[3:0]),

 // Inputs

 .reset (reset),

 .clk (clk));

 // Setup clk to automatically strobe with a period of 20.

 always #10 clk = ~clk;

 initial

 begin

 // First setup up to monitor all inputs and outputs

 $monitor ("time=%5d ns, clk=%b, reset=%b, out=%b", $time, clk,

reset, out[3:0]);

San Francisco State University Nano-Electronics & Computing Research Lab 27

 // First initialize all registers

 clk = 1'b0; // what happens to clk if we don't

 // set this?;

 reset = 1'b0;

 @(posedge clk);#1; // this says wait for rising edge

 // of clk and one more tic (to prevent

 // shoot through)

 reset = 1'b1;

 @(posedge clk);#1;

 reset = 1'b0;

 // Lets watch what happens after 7 cycles

 @(posedge clk);#1;

 @(posedge clk);#1;

 @(posedge clk);#1;

 @(posedge clk);#1;

 @(posedge clk);#1;

 @(posedge clk);#1;

 @(posedge clk);#1;

 // At this point we should have a 4'b0110 coming out out

because

 // the counter should have counted for 7 cycles from 0

 if (out != 4'b0110) begin

 $display("ERROR 1: Out is not equal to 4'b0110");

 $finish;

 end

 // We got this far so all tests passed.

 $display("All tests completed sucessfully\n\n");

 $finish;

 end

 // This is to create a dump file for offline viewing.

 initial

 begin

 $dumpfile ("counter.dump");

 $dumpvars (0, counter_testbench);

 end // initial begin

endmodule // counter_testbench

San Francisco State University Nano-Electronics & Computing Research Lab 28

APPENDIX 3A: Overview of RTL

3.A.1 Register Transfer Logic

RTL is expressed in Verilog or VHDL. This document will cover the basics of Verilog.

Verilog is a Hardware Description Language (HDL). A hardware description language is

a language used to describe a digital system example Latches, Flip-Flops, Combinatorial,

Sequential Elements etc… Basically you can use Verilog to describe any kind of digital

system. One can design a digital system in Verilog using any level of abstraction. The

most important levels are:

 Behavior Level: This level describes a system by concurrent algorithms

(Behavioral). Each algorithm itself is sequential, that means it consists of a set of

instructions that are executed one after the other. There is no regard to the

structural realization of the design. Example (Use of ‘always’ statement in

Verilog).

 Register Transfer Level (RTL): Designs using the Register-Transfer Level

specify the characteristics of a circuit by transfer of data between the registers,

and also the functionality; for example Finite State Machines. An explicit clock is

used. RTL design contains exact timing possibility; and data transfer is scheduled

to occur at certain times.

 Gate level: The system is described in terms of gates (AND, OR, NOT, NAND

etc…). The signals can have only these four logic states (‘0’,’1’,’X’,’Z’). The

Gate Level design is normally not done because the output of Logic Synthesis is

the gate level netlist.

Verilog allows hardware designers to express their designs at the behavioral level and not

worry about the details of implementation to a later stage in the design of the chip. The

design normally is written in a top-down approach. The system has a hierarchy which

makes it easier to debug and design. The basic skeleton of a verilog module looks like

this:

module example (<ports >);

input <ports>;

output <ports>;

inout <ports>;

Data-type instantiation

#reg data-type stores values

reg <names>;

#Wire data-type connects two different pins/ports

wire <names> ;

<Instantiation>

San Francisco State University Nano-Electronics & Computing Research Lab 29

end module

The modules can reference other modules to form a hierarchy. If the module contains

references to each of the lower level modules, and describes the interconnections between

them, a reference to a lower level module is called a module instance. Each instance is an

independent, concurrently active copy of a module. Each module instance consists of the

name of the module being instanced (e.g. NAND or INV), an instance name (unique to

that instance within the current module) and a port connection list.

NAND N1 (in1, in2, out)

INV V1 (a, abar);

Instance name in the above example is ‘N1 and V1’ and it has to be unique. The port

connection list consists of the terms in open and closed bracket (). The module port

connections can be given in order (positional mapping), or the ports can be explicitly

named as they are connected (named mapping). Named mapping is usually preferred for

long connection lists as it makes errors less likely.

 There are two ways to instantiate the ports:

1. Port Mapping by name : Don’t have to follow order

 Example:

 INV V2 (.in (a), .out (abar));

2. Port mapping by order: Don’t have to specify (.in) & (.out). The

Example:

AND A1 (a, b, aandb);

If ‘a’ and ‘b ‘are the inputs and ‘aandb’ is the output, then the ports must be

mentioned in the same order as shown above for the AND gate. One cannot write

it in this way:

AND A1 (aandb, a, b);

It will consider ‘aandb’ as the input and result in an error.

Example Verilog Code: D Flip Flop

module dff (d, clk, q , qbar)

input d, clk;

output q;

always @(posedge clk)

begin

q<=d;

qbar = !d;

end

San Francisco State University Nano-Electronics & Computing Research Lab 30

endmodule

3.A.2 Digital Design

Digital Design can be broken into either Combinatorial Logic or Sequential Logic. As

mentioned earlier, Hardware Description Languages are used to model RTL. RTL again

is nothing but combinational and sequential logic. The most popular language used to

model RTL is Verilog. The following are a few guidelines to code digital logic in

Verilog:

1. Not everything written in Verilog is synthesizable. The Synthesis tool does not

synthesize everything that is written. We need to make sure, that the logic implied

is synthesized into what we want it to synthesize into and not anything else.

a. Mostly, time dependant tasks are not synthesizable in Verilog. Some of

the Verilog Constructs that are Non Synthesizable are task, wait, initial

statements, delays, test benches etc

b. Some of the verilog constructs that are synthesizable are assign statement,

always blocks, functions etc. Please refer to next section for more detail

information.

2. One can model level sensitive and also edge sensitive behavior in Verilog. This

can be modeled using an always block in verilog.

a. Every output in an ‘always’ block when changes and depends on the

sensitivity list, becomes combinatorial circuit, basically the outputs have

to be completely specified. If the outputs are not completely specified,

then the logic will get synthesized to a latch. The following are a few

examples to clarify this:

b. Code which results in level sensitive behavior

c. Code which results in edge sensitive behavior

d. Case Statement Example

i. casex

ii. casez

3. Blocking and Non Blocking statements

a. Example: Blocking assignment

b. Example: Non Blocking assignment

4. Modeling Synchronous and Asynchronous Reset in Verilog

a. Example: With Synchronous reset

b. Example: With Asynchronous reset

5. Modeling State Machines in Verilog

a. Using One Hot Encoding

b. Using Binary Encoding

APPENDIX 3B: TEST BENCH / VERIFICATION

After designing the system, it is very vital do verify the logic designed. At the front end,

this is done through simulation. In verilog, test benches are written to verify the code.

San Francisco State University Nano-Electronics & Computing Research Lab 31

This topic deals with the whole verification process. Some basic guidelines for writing

test benches:

Test bench instantiates the top level design and provides the stimulus to the design.

 Inputs of the design are declared as ‘reg’ type. The reg data type holds a value until a

new value is driven onto it in an initial or always block. The reg type can only be

assigned a value in an always or initial block, and is used to apply stimulus to the inputs

of the Device Under Test.

Outputs of design declared as ‘wire’ type. The wire type is a passive data type that

holds a value driven on it by a port, assign statement or reg type. Wires can not be

assigned values inside always and initial blocks.

Always and initial blocks are two sequential control blocks that operate on reg types

in a Verilog simulation. Each initial and always block executes concurrently in every

module at the start of simulation. An example of an initial block is shown below

reg clk_50, rst_l;

initial

begin

$display($time, " << Starting the Simulation >>");

clk_50 = 1’b0; // at time 0

rst_l = 0; // reset is active

#20 rst_l = 1’b1; // at time 20 release reset

end

Initial blocks start executing sequentially at simulation time 0. Starting with the first line

between the “begin end pair” each line executes from top to bottom until a delay is

reached. When a delay is reached, the execution of this block waits until the delay time

has passed and then picks up execution again. Each initial and always block executes

concurrently. The initial block in the example starts by printing << Starting the

Simulation >> to the screen, and initializes the reg types clk_50 and rst_l to 0 at time 0.

The simulation time wheel then advances to time index 20, and the value on rst_l changes

to a 1. This simple block of code initializes the clk_50 and rst_l reg types at the beginning

of simulation and causes a reset pulse from low to high for 20 ns in a simulation.

Some system tasks are called. These system tasks are ignored by the synthesis tool, so

it is ok to use them. The system task variables begin with a ‘$’ sign. Some of the system

level tasks are as follows:

a. $Display: Displays text on the screen during simulation

b. $Monitor: Displays the results on the screen whenever the parameter

changes.

c. $Strobe: Same as $display, but prints the text only at the end of the time

step.

d. $Stop: Halts the simulation at a certain point in the code. The user can add

the next set of instructions to the simulator. After $Stop, you get back to

the CLI prompt.

e. $Finish: Exits the simulator

f. $Dumpvar, $Dumpfile: This dumps all the variables in a design to a file.

You can dump the values at different points in the simulation.

San Francisco State University Nano-Electronics & Computing Research Lab 32

Tasks are a used to group a set of repetitive or related commands that would normally

be contained in an initial or always block. A task can have inputs, outputs, and inouts,

and can contain timing or delay elements. An example of a task is below

task load_count;

input [3:0] load_value;

begin

@(negedge clk_50);

$display($time, " << Loading the counter with %h >>", load_value);

load_l = 1’b0;

count_in = load_value;

@(negedge clk_50);

load_l = 1’b1;

end

endtask //of load_count

This task takes one 4-bit input vector, and at the negative edge of the next clk_50, it starts

executing. It first prints to the screen, drives load_l low, and drives the count_in of the

counter with the load_value passed to the task. At the negative edge of clk_50, the load_l

signal is released. The task must be called from an initial or always block. If the

simulation was extended and multiple loads were done to the counter, this task could be

called multiple times with different load values.

 The compiler directive `timescale:
‘timescale 1 ns / 100 ps

This line is important in a Verilog simulation, because it sets up the time scale and

operating precision for a module. It causes the unit delays to be in nanoseconds (ns) and

the precision at which the simulator will round the events down to at 100 ps. This causes

a #5 or #1 in a Verilog assignment to be a 5 ns or 1 ns delay respectively. The rounding

of the events will be to .1ns or 100 pico seconds.

 Verilog Test benches use a standard, which contains a description of the C language

procedural interface, better known as programming language interface (PLI). We can

treat PLI as a standardized simulator (Application Program Interface) API for routines

written in C or C++. Most recent extensions to PLI are known as Verilog procedural

interface (VPI);

Before writing the test bench, it is important to understand the design specifications of

the design, and create a list of all possible test cases.

You can view all the signals and check to see if the signal values are correct, in the

waveform viewer.

 When designing the test bench, you can break-points at certain times, or can do

simulation in a single step way, one can also have Time related breakpoints (Example:

execute the simulation for 10ns and then stop)

To test the design further, it is good to have randomized simulation. Random

Simulation is nothing but supplying random combinations of valid inputs to the

simulation tool and run it for a long time. When this random simulation runs for a long

time, it could cover all corner cases and we can hope that it will emulate real system

behavior. You can create random simulation in the test bench by using the $random

variable.

San Francisco State University Nano-Electronics & Computing Research Lab 33

Coverage Metric: A way of seeing, how many possibilities exist and how many of

them are executed in the simulation test bench. It is always good to have maximum

coverage.

a. Line Coverage: It is the percentage of lines in the code, covered by the

simulation tool.

b. Condition Coverage: It checks for all kinds of conditions in the code and

also verifies to see if all the possibilities in the condition have been

covered or not.

c. State Machine Coverage: It is the percentage of coverage, that checks to

see if every sequence of the state transitions that are covered.

d. Regression Test Suite: This type of regression testing is done, when a

new portion is added to the already verified code. The code is again tested

to see if the new functionality is working and also verifies that the old

code functionality has not been changed, due to the addition of the new

code.

Goals of Simulation are:

1. Functional Correctness: To verify the functionality of the design by verifies

main test cases, corner cases (Special conditions) etc…

2. Error Handling

3. Performance

Basic Steps in Simulation:

1. Compilation: During compilation, the verilog is converted to object code. It is done

on a module basis.

2. Linking: This is step where module interconnectivity takes place. The object files

are linked together and any kind of port mismatches (if any) occur.

3. Execution: An executable file is created and executed.

3.B.1 Test Bench Example:

The following is an example of a simple read, write, state machine design and a test

bench to test the state machine.

State Machine:

module state_machine(sm_in,sm_clock,reset,sm_out);

parameter idle = 2'b00;

parameter read = 2'b01;

parameter write = 2'b11;

parameter wait = 2'b10;

San Francisco State University Nano-Electronics & Computing Research Lab 34

input sm_clock;

input reset;

input sm_in;

output sm_out;

reg [1:0] current_state, next_state;

always @ (posedge sm_clock)

 begin

 if (reset == 1'b1)

 current_state <= 2'b00;

 else

 current_state <= next_state;

 end

always @ (current_state or sm_in)

 begin

 // default values

 sm_out = 1'b1;

 next_state = current_state;

 case (current_state)

 idle:

 sm_out = 1'b0;

 if (sm_in)

 next_state = 2'b11;

 write:

 sm_out = 1'b0;

 if (sm_in == 1'b0)

 next_state = 2'b10;

 read:

 if (sm_in == 1'b1)

 next_state = 2'b01;

 wait:

 if (sm_in == 1'b1)

 next_state = 2'b00;

 endcase

 end

endmodule

Test Bench for State Machine

San Francisco State University Nano-Electronics & Computing Research Lab 35

module testbench;

// parameter declaration section

// ...

parameter idle_state = 2'b00;

parameter read_state = 2'b01;

parameter write_state = 2'b11;

parameter wait_state = 2'b10;

// testbench declaration section

reg [500:1] message;

reg [500:1] state_message;

reg in1;

reg clk;

reg reset;

wire data_mux;

// instantiations

state_machine #(idle_state,

 read_state,

 write_state,

 wait_state) st_mac (

 .sm_in (in1),

 .sm_clock (clk),

 .reset (reset),

 .sm_out (data_mux)

);

// monitor section

always @ (st_mac.current_state)

 case (st_mac.current_state)

 idle_state : state_message = "idle";

 read_state : state_message = "read";

 write_state: state_message = "write";

 wait_state : state_message = "wait";

 endcase

// clock declaration

initial clk = 1'b0;

always #50 clk = ~clk;

// tasks

task reset_cct;

 begin

 @(posedge clk);

 message = " reset";

San Francisco State University Nano-Electronics & Computing Research Lab 36

 @(posedge clk);

 reset = 1'b1;

 @(posedge clk);

 reset = 1'b0;

 @(posedge clk);

 @(posedge clk);

 end

endtask

task change_in1_to;

input a;

begin

message = "change in1 task";

@ (posedge clk);

in1 = a;

end

endtask

// main task calling section

initial

begin

message = "start";

reset_cct;

change_in1_to (1'b1);

change_in1_to (1'b0);

change_in1_to (1'b1);

change_in1_to (1'b0);

change_in1_to (1'b1);

@ (posedge clk);

@ (posedge clk);

@ (posedge clk);

$stop;

end

endmodule

How do you simulate your design to get the real system behavior?

The following are two methods with which it id possible to achieve real system behavior

and verify it.

1. FPGA Implementation: Speeds up verification and makes it more comprehensive.

2. Hardware Accelerator: It is nothing but a bunch of FPGA’s implemented inside of

a box. During compilation, it takes the part of the code that is synthesizable and

maps it onto FPGA. Al the other non synthesizable part of the code such as test

benches etc, are invoked by the simulation tools.

San Francisco State University Nano-Electronics & Computing Research Lab 37

a. Basically RTL is mapped onto FPGA. The FPGA internally contains

optimized files.

b. It translates signal transitions in the software part and signals on the FPGA

and basically maps into the real signals that are there on the FPGA board.

c. This method of verification is good when there is a big design which has a

lot of RTL, it also depends on the percentage of synthesizable code versus

non-synthesizable code, if the amount of interaction between the codes,

lesser the better.

Design Compiler Tutorial [RTL-Gate Level Synthesis]

4.0 Introduction

The Design Compiler is a synthesis tool from Synopsys Inc. In this tutorial you will

learn how to perform hardware synthesis using Synopsys design compiler. In simple

terms, we can say that the synthesis tool takes a RTL [Register Transfer Logic] hardware

description [design written in either Verilog/VHDL], and standard cell library as input

and the resulting output would be a technology dependent gate-level-netlist. The gate-

level-netlist is nothing but structural representation of only standard cells based on the

cells in the standard cell library. The synthesis tool internally performs many steps, which

are listed below. Also below is the flowchart of synthesis process.

1. Design Compiler reads in technology libraries, DesignWare libraries, and symbol

libraries to implement synthesis.

 During the synthesis process, Design Compiler [DC] translates the RTL description

to components extracted from the technology library and DesignWare library. The

technology library consists of basic logic gates and flip-flops. The DesignWare library

contains more complex cells for example adders and comparators which can be used for

arithmetic building blocks. DC can automatically determine when to use Design Ware

components and it can then efficiently synthesize these components into gate-level

implementations.

2. Reads the RTL hardware description written in either Verilog/VHDL.

3. The synthesis tool now performs many steps including high-level RTL optimization,

RTL to unoptimized Boolean logic, technology independent optimizations, and finally

technology mapping to the available standard cells in the technology library, known as

target library. This resulting gate-level-netlist also depends on constrains given.

Constraints are the designer’s specification of timing and environmental restrictions [area,

power, process etc] under which synthesis is to be performed.

 As an RTL designer, it is good to understand the target standard cell library, so

that one can get a better understanding of how the RTL coded will be synthesized into

gates. In this tutorial we will use Synopsys Design Compiler to read/elaborate RTL, set

timing constraints, synthesize to gates, and report various QOR reports [timing/area

reports etc]. Please refer to APPENDIX sA: Overview of RTL for more information.

San Francisco State University Nano-Electronics & Computing Research Lab 38

4. After the design is optimized, it is ready for DFT [design for test/ test synthesis]. DFT

is test logic; designers can integrate DFT into design during synthesis. This helps the

designer to test for issues early in the design cycle and also can be used for debugging

process after the chip comes back from fabrication.

 In this tutorial, we will not be covering the DFT process. The synthesized design in

the tutorial example is without the DFT logic. Please refer to tutorial on Design for Test

for more information.

5. After test synthesis, the design is ready for the place and route tools. The Place and

route tools place and physically interconnect cells in the design. Based on the physical

routing, the designer can back-annotate the design with actual interconnect delays; we

can use Design Compiler again to resynthesize the design for more accurate timing

analysis.

Figure 4.a Synthesis Flow

While running DC, it is important to monitor/check the log files, reports, scripts etc to

identity issues which might affect the area, power and performance of the design. In this

Read
Netlist

Map to
Link Library

(if gate-level)

Apply

Constraints

Netlist

Write-out
Optimized

Netlist
SDC

Const.

Map to
Target Library
and Optimize

Read
Libraries

Libraries

San Francisco State University Nano-Electronics & Computing Research Lab 39

tutorial, we will learn how to read the various DC reports and also use the graphical

Design Vision tool from Synopsys to analyze the synthesized design.

For Additional documentation please refer the below location, where you can get more

information on the 90nm Standard Cell Library, Design Compiler, Design Vision, Design

Ware Libraries etc.

4.1 BASIC SYNTHESIS GUIDELINES

4.1.1 Startup File

The Synopsys synthesis tool when invoked, through Design compiler command, reads a

startup file, which must be present in the current working directory. This startup file is

synopsys_dc.setup file. There should be two startup files present, one in the current

working directory and other in the root directory in which Synopsys is installed. The

local startup file in the current working directory should be used to specify individual

design specifications. This file does not contain design dependent data. Its function is to

load the Synopsys technology independent libraries and other parameters. The user in the

startup files specifies the design dependent data. The settings provided in the current

working directory override the ones specified in the root directory.

There are four important parameters that should be setup before one can start

using the tool. They are:

• search_path

This parameter is used to specify the synthesis tool all the paths that it should search

when looking for a synthesis technology library for reference during synthesis.

• target_library

The parameter specifies the file that contains all the logic cells that should used for

mapping during synthesis. In other words, the tool during synthesis maps a design to the

logic cells present in this library.

• symbol_library

This parameter points to the library that contains the “visual” information on the logic

cells in the synthesis technology library. All logic cells have a symbolic representation

and information about the symbols is stored in this library.

• link_library

This parameter points to the library that contains information on the logic gates in the

synthesis technology library. The tool uses this library solely for reference but does not

use the cells present in it for mapping as in the case of target_library.

An example on use of these four variables from a .synopsys_dc.setup file is given below.

search_path = “. /synopsys/libraries/syn/cell_library/libraries/syn”

target_library = class.db

link_library = class.db

symbol_library = class.db

Once these variables are setup properly, one can invoke the synthesis tool at the

command prompt using any of the commands given for the two interfaces.

San Francisco State University Nano-Electronics & Computing Research Lab 40

4.1.2 Design Objects

There are eight different types of objects categorized by Design Compiler.

Design: It corresponds to the circuit description that performs some logical function. The

design may be stand-alone or may include other sub-designs. Although sub-design may

be part of the design, it is treated as another design by the Synopsys.

Cell: It is the instantiated name of the sub-design in the design. In Synopsys terminology,

there is no differentiation between the cell and instance; both are treated as cell.

Reference: This is the definition of the original design to which the cell or instance refers.

For e.g., a leaf cell in the netlist must be referenced from the link library, which contains

the functional description of the cell. Similarly an instantiated sub-design must be

referenced in the design, which contains functional description of the instantiated

subdesign.

Ports: These are the primary inputs, outputs or IO’s of the design.

Pin: It corresponds to the inputs, outputs or IO’s of the cells in the design. (Note the

difference between port and pin)

Net: These are the signal names, i.e., the wires that hook up the design together by

connecting ports to pins and/or pins to each other.

Clock: The port or pin that is identified as a clock source. The identification may be

internal to the library or it may be done using dc_shell commands.

Library: Corresponds to the collection of technology specific cells that the design is

targeting for synthesis; or linking for reference.

Design Entry

Before synthesis, the design must be entered into the Design Compiler (referred to as DC

from now on) in the RTL format. DC provides the following two methods of design

entry:

read command

analyze & elaborate commands

The analyze & elaborate commands are two different commands, allowing designers to

initially analyze the design for syntax errors and RTL translation before building the

generic logic for the design. The generic logic or GTECH components are part of

Synopsys generic technology independent library. They are unmapped representation of

boolean functions and serve as placeholders for the technology dependent library.

The analyze command also stores the result of the translation in the specified design

library that maybe used later. So a design analyzed once need not be analyzed again and

can be merely elaborated, thus saving time. Conversely read command performs the

function of analyze and elaborate commands but does not store the analyzed results,

therefore making the process slow by comparison.

San Francisco State University Nano-Electronics & Computing Research Lab 41

Parameterized designs (such as usage of generic statement in VHDL) must use analyze

and elaborate commands in order to pass required parameters, while elaborating the

design. The read command should be used for entering pre-compiled designs or netlists

in DC .

One other major difference between the two methods is that, in analyze and elaborate

design entry of a design in VHDL format, one can specify different architectures during

elaboration for the same analyzed design. This option is not available in the read

command.

The commands used for both the methods in DC are as given below:

Read command:

dc_shell>read –format <format> <list of file names>

“-format” option specifies the format in which the input file is in, e.g. VHDL

Sample command for a reading “adder.vhd” file in VHDL format is given below

dc_shell>read –format vhdl adder.vhd

Analyze and Elaborate commands:

Or

dc_shell>read –format verilog adder.v

Analyze and Elaborate commands:

dc_shell>analyze -format <format> <list of file names>

dc_shell>elaborate <.syn file> -arch “<architecture >” –param “<parameter>”

.syn file is the file in which the analyzed information of the design analyzed is stored.

e.g: The adder entity in the adder.vhd has a generic parameter “width” which can be

specified while elaboration. The architecture used is “beh” defined in the adder.vhd file.

The commands for analyze and elaborate are as given below:

dc_shell> analyze -format vhdl adder.vhd

dc_shell> elaborate adder –arch “beh” –param “width = 32”

4.1.3 Technology Library

Technology libraries contain the information that the synthesis tool needs to generate a

netlist for a design based on the desired logical behavior and constraints on the design.

The tool referring to the information provided in a particular library would make

appropriate choices to build a design. The libraries contain not only the logical function

of an ASIC cell, but the area of the cell, the input-to-output timing of the cell, any

constraints on fanout of the cell, and the timing checks that are required for the cell.

San Francisco State University Nano-Electronics & Computing Research Lab 42

Other information stored in the technology library may be the graphical symbol of the

cell for use in creating the netlist schematic.

The target_library, link_library, and symbol_library parameters in the startup file are

used to set the technology library for the synthesis tool.

The Synopsys® .lib technology library contains the following information

• Wire-load models for net length and data estimation. Wire-load models available in the

technology library are statistical and hence inaccurate when estimating data.

• Operating Conditions along with scaling k-factors for different delay components to

model the effects of temperature, process, and voltage on the delay numbers.

• Specific delay models like piece-wise linear, non-linear, cmos2 etc. for calculation of

delay values.

For each of the technology primitive cells the following information is modeled

• Interface pin names, direction and other information.

• Functional descriptions for both combinational and sequential cells which can be

modeled in Synopsys®

• Pin capacitance and drive capabilities

• Pin to pin timing

• Area

4.1.4 Register Transfer-Level Description

A Register Transfer-Level description is a style that specifies a particular design in terms

or registers and combinational logic in between. This is be shown by the “register and

cloud” diagram in Fig 2.0

Figure 4.b. Register and cloud diagram

The registers can be described explicitly, through component instantiation, or implicitly,

through inference. The combinational logic is described either by logical equations,

sequential control statements (CASE, IF then ELSE, etc.), subprograms, or through

concurrent statements and are represented by cloud objects in figure 2.0 between the

registers.

San Francisco State University Nano-Electronics & Computing Research Lab 43

RTL is the most popular form of high-level design specification. A good coding style

would help the synthesis tool generate a design with minimal area and maximum

performance.

4.1.5 General Guidelines

Following are given some guidelines which if followed might improve the performance

of the synthesized logic, and produce a cleaner design that is suited for automating the

synthesis process.

 Clock logic including clock gating and reset generation should be kept in one block –

to be synthesized once and not touched again. This helps in a clean specification of

the clock constraints. Another advantage is that the modules that are being driven by

the clock logic can be constrained using the ideal clock specifications.

 No glue logic at the top: The top block is to be used only for connecting modules

together. It should not contain any combinational glue logic. This removes the time

consuming top-level compile, which can now be simply stitched together without

undergoing additional synthesis.

 Module name should be same as the file name and one should avoid describing more

that one module or entity in a single file. This avoids any confusion while compiling

the files and during the synthesis.

 While coding finite state machines, the state names should be described using the

enumerated types. The combinational logic for computing the next state should be in

its own process, separate from the state registers. Implement the next-state

combinational logic with a case statement. This helps in optimizing the logic much

better and results in a cleaner design.

 Incomplete sensitivity lists must be avoided as this might result in simulation

mismatches between the source RTL and the synthesized logic.

 Memory elements, latches and flip-flops: A latch is inferred when an incomplete if

statement with a missing else part is specified. A flip-flop, or a register, is inferred

when an edge sensitive statement is specified in the always statement for Verilog and

process statement for VHDL. A latch is more troublesome than a latch as it makes

static timing analysis on designs containing latches. So designers try to avoid latches

and prefer flipflops more to latches.

 Multiplexer Inference: A case statement is used for implementing multiplexers. To

prevent latch inferences in case statements the default part of the case statement

should always be specified. On the other hand an if statement is used for writing

priority encoders. Multiple if statements with multiple branches result in the creation

of a priority encoder structure.

Ex: always @ (A, B, C)

begin

if A= 0 then D = B; end if;

if A= 1 then D = C; end if;

end

San Francisco State University Nano-Electronics & Computing Research Lab 44

The above example infers a priority encoder with the first if statement given the

precedence. The same code can be written using a case statement to implement a

multiplexer as follows.

always @ (A, B, C)

begin

case (A) is

when 0 => D = B;

when others => D = C;

end case;

end

The same code can be written using if statement along with elsif statements to cover all

possible branches.

� Three state buffers: A tri-state buffer is inferred whenever a high impedance (Z) is

assigned to an output. Tri-state logic is generally not always recommended because it

reduces testability and is difficult to optimize – since it cannot be buffered.

� Signals versus Variables in VHDL: Signal assignments are order independent, i.e. the

order in which they are placed within the process statement does not have any effect on

the order in which they are executed as all the signal assignments are done at the end of

the process. The variable assignments on the other hand are order dependent. The signal

assignments are generally used within the sequential processes and variable assignments

are used within the combinational processes.

4.1.6 Design Attributes and Constraints

A designer, in order to achieve optimum results, has to methodically constrain the design,

by describing the design environment, target objectives and design rules. The constraints

contain timing and/or area information, usually derived from the design specifications.

The synthesis tool uses these constraints to perform synthesis and tries to optimize the

design with the aim of meeting target objectives.

4.1.6.1 Design Attributes

Design attributes set the environment in which a design is synthesized. The attributes

specify the process parameters, I/O port attributes, and statistical wire-load models. The

most common design attributes and the commands for their setting are given below:

Load: Each output can specify the drive capability that determines how many loads can

be driven within a particular time. Each input can have a load value specified that

determines how much it will slow a particular driver. Signals that are arriving later than

the clock can have an attribute that specifies this fact. The load attribute specifies how

much capacitive load exists on a particular output signal. The load value is specified in

the units of the technology library in terms of picofarads or standard loads, etc... The

command for setting this attribute is given below:

set_load <value> <object_list>

e.g. dc_shell> set_load 1.5 x_bus

San Francisco State University Nano-Electronics & Computing Research Lab 45

Drive: The drive specifies the drive strength at the input port. It is specified as a

resistance value. This value controls how much current a particular driver can source.

The larger a driver is, i.e 0 resistance, the faster a particular path will be, but a larger

driver will take more area, so the designer needs to trade off speed and area for the best

performance. The command for setting the drive for a particular object is given below

set_drive <value> <object_list>

e.g. dc_shell> set_drive 2.7 ybus

4.1.6.2 Design Constraints

Design constraints specify the goals for the design. They consist of area and timing

constraints. Depending on how the design is constrained the DC/DA tries to meet the set

objectives. Realistic specification is important, because unrealistic constraints might

result in excess area, increased power and/or degrading in timing. The basic commands to

constrain the design are

set_max_area: This constraint specifies the maximum area a particular design should

have. The value is specified in units used to describe the gate-level macro cells in the

technology library.

e.g. dc_shell> set_max_area 0

Specifying a 0 area might result in the tool to try its best to get the design as small as

possible

create_clock: This command is used to define a clock object with a particular period and

waveform. The –period option defines the clock period, while the –waveform option

controls the duty cycle and the starting edge of the clock. This command is applied to a

pin or port, object types.

Following example specifies that a port named CLK is of type “clock” that has a period

of 40 ns, with 50% duty cycle. The positive edge of the clock starts at time 0 ns, with the

falling edge occurring at 20 ns. By changing the falling edge value, the duty cycle of the

clock may be altered.

e.g. dc_shell> create_clock –period 40 –waveform {0 20} CLK

set_don’t_touch_network: This is a very important command, usually used for clock

networks and resets. This command is used to set a dont_touch property on a port, or on

the net. Note setting this property will also prevent DC from buffering the net. In addition

any gate coming in contact with the “don’t_touch” net will also inherit the attribute.

e.g. dc_shell> set_dont_touch_network {CLK, RST}

set_don’t_touch: This is used to set a don_touch property on the current_design, cells,

references, or nets. This command is frequently used during hierarchical compilation of

blocks for preventing the DC from optimizing the don’t_touch object.

e.g. dc_shell> set_don’t_touch current_design

San Francisco State University Nano-Electronics & Computing Research Lab 46

current_design is the variable referencing the current working design. It can be set using

the current_design command as follows

dc_shell>current_design <design_name>

set_input_delay: It specifies the input arrival time of a signal in relation to the clock. It is

used at the input ports, to specify the time it takes for the data to be stable after the clock

edge. The timing specification of the design usually contains this information, as the

setup/hold time requirements for the input signals. From the top-level timing

specifications the sub-level timing specifications may also be extracted.

e.g. dc_shell> set_input_delay –max 23.0 –clock CLK {datain}

dc_shell> set_input_delay –min 0.0 –clock CLK {datain}

The CLK has a period of 30 ns with 50% duty cycle. For the above given specification of

max and min input delays for the datain with respect to CLK, the setup-time requirement

for the input signal datain is 7ns, while the hold-time requirement is 0ns.

set_output_delay: This command is used at the output port, to define the time it takes for

the data to be available before the clock edge. This information is usually is provided in

the timing specification.

e.g. dc_shell> set_output_delay – max 19.0 –clock CLK {dataout}

The CLK has a period of 30 ns with 50% duty cycle. For the above given specification of

max output delay for the dataout with respect to CLK, the data is valid for 11 ns after the

clock edge.

set_max_delay: It defines the maximum delay required in terms of time units for a

particular path. In general it is used for blocks that contain combination logic only.

However it may also be used to constrain a block that is driven by multiple clocks, each

with a different frequency. This command has precedence over DC derived timing

requirements.

e.g. dc_shell> set_max_delay 5 –from all_inputs() – to_all_outputs()

set_min_delay: It defines the minimum delay required in terms of time units for a

particular path.. It is the opposite of the set_max_delay command. This command has

precedence over DC derived timing requirements.

e.g. dc_shell> set_max_delay 3 –from all_inputs() – to_all_outputs()

4.2 Tutorial Example

Setup

1. Write the Verilog Code. For the purpose of this tutorial, please consider the simple

verilog code for gray counter below.

San Francisco State University Nano-Electronics & Computing Research Lab 47

Gray Code Counter

// MODULE: Sequential Circuit Example: gray_counter.v

// MODULE DECLARATION

module graycount (gcc_out, reset_n, clk, en_count);

 output [2-1:0] gcc_out; // current value of counter

 input reset_n; // active-low RESET signal

 input clk; // clock signal

 input en_count; // counting is enabled when en_count = 1

 // SIGNAL DECLARATIONS

 reg [2-1:0] gcc_out;

// Compute new gcc_out value based on current gcc_out value

 always @(negedge reset_n or posedge clk) begin

 if (~reset_n)

 gcc_out <= 2'b00;

 else begin // MUST be a (posedge clk) - don't need “else if (posedge clk)"

 if (en_count) begin // check the count enable

 case (gcc_out)

 2'b00: begin gcc_out <= 2'b01; end

 2'b01: begin gcc_out <= 2'b11; end

 2'b11: begin gcc_out <= 2'b10; end

 default: begin gcc_out <= 2'b00; end

 endcase // of case

 end // of if (en_count)

 end // of else

 end // of always loop for computing next gcc_out value

endmodule

2. As soon as you log into your engr account, at the command prompt, please type “csh

“as shown below. This changes the type of shell from bash to c-shell. All the commands

work ONLY in c-shell.

[hkommuru@hafez]$csh

2. Please copy the whole directory from the below location

[hkommuru@hafez]$cd

[hkommuru@hafez]$ cp –rf /packages/synopsys/setup/asic_flow_setup .

This ccreate directory structure as shown below. It will create a directory called

“asic_flow_setup ”, under which it creates the following directories namely

asic_flow_setup

San Francisco State University Nano-Electronics & Computing Research Lab 48

src/ : for verilog code/source code

vcs/ : for vcs simulation ,

synth_graycounter/ : for synthesis

synth_fifo/ : for synthesis

pnr/ : for Physical design

extraction/: for extraction

pt/: for primetime

verification/: final signoff check

The “asic_flow_setup” directory will contain all generated content including, VCS

simulation, synthesized gate-level Verilog, and final layout. In this course we will always

try to keep generated content from the tools separate from our source RTL. This keeps

our project directories well organized, and helps prevent us from unintentionally

modifying the source RTL. There are subdirectories in the project directory for each

major step in the ASIC Flow tutorial. These subdirectories contain scripts and

configuration files for running the tools required for that step in the tool flow. For this

tutorial we will work exclusively in the vcs directory.

3. Please source “synopsys_setup.tcl” which sets all the environment variables necessary

to run the VCS tool.

Please source them at unix prompt as shown below

 [hkommuru@hafez]$ source /packages/synopsys/setup/synopsys_setup.tcl

Please Note : You have to do steps 1 and 3 above everytime you log in.

4. Please open the “dc_synth.tcl” at below location

[hkommuru@hafez]$cd

[hkommuru@hafez.sfsu.edu] $cd asic_flow_setup/synth_graycounter

[hkommuru@hafez.sfsu.edu] $cd scripts

[hkommuru@hafez.sfsu.edu] $emacs dc_synth.tcl &

[hkommuru@hafez.sfsu.edu] $cd ..

4.2.1 Synthesizing the Code

5. First we will learn how to run dc_shell manually, before we automate the scripts. Use

the below command invoke dc_shell

[hkommuru@hafez.sfsu.edu] $ dc_shell-xg-t

Initializing...

dc_shell-xg-t>

Once you get the prompt above, you can run various commands to load verilog files,

libraries etc. To get more information on any command you can type “man

<command_name> at the prompt.

San Francisco State University Nano-Electronics & Computing Research Lab 49

6. Type/Copy in the below commands at the command prompt, from the “dc_synth.tcl”

which you have already opened in STEP 4.

dc_shell-xg-t> lappend search_path ../src/gray_counter

dc_shell-xg-t> define_design_lib WORK –path “work”

dc_shell-xg-t > set link_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max.db

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_min.db

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_typ.db]

dc_shell-xg-t > set target_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max.db]

The command “lappend search path” tells the tool to search for the verilog code in that

particular directory] to the verilog source code directory.

The next command “define_design_lib”, creates a Synopsys work directory, and the la

last two commands “ set link_library “ and “ set target_library “ point to the standard

technology libraries we will be using. The DB files contain wireload models [Wire load

modeling allows the tool to estimate the effect of wire length and fanout on the resistance,

capacitance, and area of nets, calculate wire delays and circuit speeds], area and timing

information for each standard cell. DC uses this information to optimize the synthesis

process. For more detail information on optimization, please refer to the DC manual.

7. The next step is to load your Verilog/VHDL design into Design Compiler. The

commands to load verilog are “analyze” and “elaborate”. Executing these commands

results in a great deal of log output as the tool elaborates some Verilog constructs and

starts to infer some high-level components. Try executing the commands as follows.

dc_shell_xg-t > analyze –library WORK –format verilog gray_counter.v

dc_shell_xg-t> elaborate –architecture verilog –library WORK graycount

Notice, that the graycount is the name of the top module to be synthesized and not the

name of the verilog file (gray_counter.v). You can see part of the analyze command in

Figure 7.a below

San Francisco State University Nano-Electronics & Computing Research Lab 50

Figure 4.a : Fragment of analyze command

You can see Figure 7.b, which shows you a part of the elaboration, for the above gray

code; the tool has inferred flipflop with 2 bit width. Please make sure that you check your

design at this stage in the log to check if any latches inferred. We typically do not want

latches inferred in the design.

Before DC optimizes the design, it uses Presto Verilog Compiler [for verilog code], to

read in the designs; it also checks the code for the correct syntax and builds a generic

technology (GTECH) netlist. DC uses this GTECH netlist to optimize the design. You

could also use “read_verilog” command, which basically combines both elaborate and

analyze command into one. You can use “read_verilog” as long as your design is not

parameterized, meaning look at the below example of a register.

module dflipflop(inp, clk, outp);

parameter SIZE = 8;

input [SIZE-1:0] inp;

input clk;

output [SIZE-1:0] outp;

reg [SIZE-1:0] outp;

reg [SIZE-1:0] tmp;

always @(clk)

if (clk == 0)

tmp = inp;

else //(clk == 1)

out1 <= tmp;

endmodule

If you want an instance of the above register to have a bit-width of 32, use the elaborate

command to specify this as follows:

elaborate dflipflop -param SIZE=32

San Francisco State University Nano-Electronics & Computing Research Lab 51

For more information on the “elaborate” command, and how the synthesis tool infers

combinational and sequential elements, please refer to Presto HDL Compiler Reference

Manual found in the documentation area.

Figure 4.b Fragment of elaborate command

8. Next, we check to see if the design is in a good state or consistent state; meaning that

there are no errors such as unconnected ports, logical constant-valued ports, cells with no

input or output pins, mismatches between a cell and its reference, multiple driver nets etc.

dc_shell-xg-t> check_design

Please go through, the check_design errors and warnings. DC cannot compile the design

if there are any errors. Many of the warning’s may not an issue, but it is still useful to

skim through this output.

9. After the design compile is clean, we need to tell the tool the constraints, before it

actually synthesizes. The tool needs to know the target frequency you want to synthesize.

Take a look at the “create_clock” command below.

dc_shell-xg-t> create_clock clk -name ideal_clock1 -period 5

San Francisco State University Nano-Electronics & Computing Research Lab 52

The above command tells the tool that the pin named clk is the clock and that your

desired clock period is 5 nanoseconds. We need to set the clock period constraint

carefully. If the period is unrealistically small, then the tools will spend forever trying to

meet timing and ultimately fail. If the period is too large, then the tools will have no

trouble but you will get a very conservative implementation.

You could also add additional constraints such as constrain the arrival of certain input

signals, the drive strength of the input signals, capacitive load on the output signals etc.

Below are some examples. These constraints are defined by you, the user; hence we can

call them user specified constraints.

Set input constraints by defining how much time would be spent by signals arriving into

your design, outside your design with respect to clock.

 dc_shell-xg-t> set_input_delay 2.0 [remove_from_collection [all_inputs] clk] –clock

ideal_clock1

Similarly you can define output constraints, which define how much time would be spent

by signals leaving the design, outside the design, before being captured by the same clk.

dc_shell-xg-t> set_output_delay 2.0 [all_outputs] –clock ideal_clock1

Set area constraints: set maximum allowed area to 0 , well it’s just to instruct design

compiler to use as less area as possible.

dc_shell-xg-t > set_max_area 0

Please refer to tutorial on “Basics of Static Timing Analysis” for more understanding of

concepts of STA and for more information on the commands used in STA, please refer to

the Primetime Manual and DC Compiler Manual at location /packages/synopsys/

10. Now we are ready to use the compile command to actually synthesize our design into

a gate-level netlist. Two of the most important options for the compile command are the

map effort and the area effort. Both of these can be set to one of none, low, medium, or

high. They specify how much time to spend on technology mapping and area reduction.

dc_shell-xg-t> compile -map_effort medium -area_effort medium

DC will attempt to synthesize your design while still meeting the constraints. DC

considers two types of constraints: user specified constraints and design rule constraints.

We looked at the user specified constraints in the previous step. Design rule constraints

are fixed constraints which are specified by the standard cell library. For example, there

are restrictions on the loads specific gates can drive and on the transition times of certain

pins. To get a better understanding of the standard cell library, please refer to Generic

90nm library documents in the below location which we are using in the tutorial.

San Francisco State University Nano-Electronics & Computing Research Lab 53

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digi

tal_Standard_Cell_Library/doc/databook/

Also, note that the compile command does not optimize across module boundaries. You

have to use “set flatten” command to enable inter-module optimization. For more

information on the compile command consult the Design Compiler User Guide (dc-user-

guide.pdf) or use man compile at the DC shell prompt.

The compile command will report how the design is being optimized. You should see DC

performing technology mapping, delay optimization, and area reduction. Figure 7.c

shows a fragment from the compile output. Each line is an optimization pass. The area

column is in units specific to the standard cell library, but for now you should just use the

area numbers as a relative metric. The worst negative slack column shows how much

room there is between the critical path in your design and the clock constraint. Larger

negative slack values are worse since this means that your design is missing the desired

clock frequency by a greater amount. Total negative slack is the sum of all negative slack

across all endpoints in the design - if this is a large negative number it indicates that not

only is the design not making timing, but it is possible that many paths are too slow. If

the total negative slack is a small negative number, then this indicates that only a few

paths are too slow. The design rule cost is an indication of how many cells violate one of

the standard cell library design rules constraints.

You can use the compile command more than once, as many iterations as you want, for

example, first iteration you can optimize only timing, but it might come with high area

cost, for second iteration, it optimizes area, but could cause the design to no longer meet

timing. There is no limit on number of iterations; however each design is different, and

you need to do number of runs, to decide how many iterations it needs.

We can now use various commands to examine timing paths, display reports, and further

optimize the design. Using the shell directly is useful for finding out more information

about a specific command or playing with various options.

Figure 4.c: Fragment of Compile command

San Francisco State University Nano-Electronics & Computing Research Lab 54

4.2.2 Interpreting the Synthesized Gate-Level Netlist and Text Reports

In addition to the actual synthesized gate-level netlist, the dc_synth.tcl also generates

several text reports. Reports usually have the rpt filename suffix. The following is a list

of the synthesis reports.

The synth area.rpt report contains area information for each module in the design. 7.d

shows a fragment from synth_area.rpt. We can use the synth_area.rpt report to gain

insight into how various modules are being implemented. We can also use the area report

to measure the relative area of the various modules.

You can find all these reports in the below location for your reference.

/packages/synopsys/setup/project_dc/synth/reports/

You can also look at command.log , in the synth directory, which will list all the

commands used in the current session.

synth_area.rpt - Contains area information for each module instance

San Francisco State University Nano-Electronics & Computing Research Lab 55

Figure 4.d : Fragment of area report

Library(s) Used:

 saed90nm_typ (File:

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm

/Digital_Standard_Cell_Library/synopsys/models/saed90nm_typ.db)

Number of ports: 5

Number of nets: 9

Number of cells: 5

Number of references: 3

Combinational area: 29.492001

Noncombinational area: 64.512001

Net Interconnect area: undefined (No wire load specified)

Total cell area: 94.003998

Total area: undefined

1

The synth_cells.rpt - Contains the cells list in the design , as you can see in Figure

4.e . From this report , you can see the breakup of each cell area in the design.

Figure 4.e: Fragment of cell area report

Attributes:

 b - black box (unknown)

 h - hierarchical

 n - noncombinational

 r - removable

 u - contains unmapped logic

Cell Reference Library Area Attributes

U2 AO22X1 saed90nm_typ 11.981000

U3 AO22X1 saed90nm_typ 11.981000

U4 INVX0 saed90nm_typ 5.530000

gcc_out_reg[0] DFFARX1 saed90nm_typ 32.256001 n

gcc_out_reg[1] DFFARX1 saed90nm_typ 32.256001 n

Total 5 cells 94.003998

1

Synth_qor.rpt – Contains summary information on the area , timing, critical paths

violations in the design. You can take a look at this report to understand the overall

quality of your design. Figure 4.f shows the example. As you can see in Figure 4.f , there

is no negative slack in the design that means the design is meeting timing.

San Francisco State University Nano-Electronics & Computing Research Lab 56

Figure 4.f : Fragment of qor report

 Timing Path Group 'ideal_clock1'

 Levels of Logic: 2.00

 Critical Path Length: 0.12

 Critical Path Slack: 2.77

 Critical Path Clk Period: 5.00

 Total Negative Slack: 0.00

 No. of Violating Paths: 0.00

 Cell Count

 Hierarchial Cell Count: 0

 Hierarchial Port Count: 0

 Leaf Cell Count: 5

 Area

 Combinational Area: 29.492001

 Noncombinational Area: 64.512001

 Net Area: 0.000000

 Cell Area: 94.003998

 Design Area: 94.003998

 Design Rules

 Total Number of Nets: 9

 Nets With Violations: 0

 Hostname: hafez.sfsu.edu

 Compile CPU Statistics

 Resource Sharing: 0.00

 Logic Optimization: 0.31

 Mapping Optimization: 0.33

 Overall Compile Time: 3.64

1

synth_timing.rpt - Contains critical timing paths

You can see below an example of a timing report dumped out from synthesis . You can

see at the last line of the Figure 7.f , this paths meets timing. The report lists the critical

path of the design. The critical path is the slowest logic path between any two registers

San Francisco State University Nano-Electronics & Computing Research Lab 57

and is therefore the limiting factor preventing you from decreasing the clock period

constraint

(and thus increasing performance). The report is generated from a purely static worst-

case timing analysis (i.e. independent of the actual signals which are active when the

processor is running). In the example below, since it’s a simple gray counter, the crtical

path is from the port to the register.

Please note that the last column lists the cumulative delay to that node, while the middle

column shows the incremental delay. You can see that the datapath is and Inverter,

complex gate before it reaches the register which is 0.12ns. From our SDC constraints,

we set 2ns delay on the input port. So, the total delay so far is 2.12ns. Notice, however,

that the final register file flip-flop has a setup time of 0.11 ns, the clock period is 5ns.

Therefore 5ns-0.11ns=4.89ns, is the time before which the register should latch the data.

The critical path delay is however only 2.12ns, so there is more than enough time for the

path to meet timing.

Figure 4.g: Fragment of Timing report

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

 Startpoint: en_count (input port)

 Endpoint: gcc_out_reg[1]

 (rising edge-triggered flip-flop clocked by ideal_clock1)

 Path Group: ideal_clock1

 Path Type: max

 Point Incr Path

 clock (input port clock) (rise edge) 0.00 0.00

 input external delay 2.00 2.00 f

 en_count (in) 0.00 2.00 f

 U4/QN (INVX0) 0.02 2.02 r

 U2/Q (AO22X1) 0.10 2.12 r

 gcc_out_reg[1]/D (DFFARX1) 0.00 2.12 r

 data arrival time 2.12

 clock ideal_clock1 (rise edge) 5.00 5.00

 clock network delay (ideal) 0.00 5.00

 gcc_out_reg[1]/CLK (DFFARX1) 0.00 5.00 r

 library setup time -0.11 4.89

 data required time 4.89

 data required time 4.89

 data arrival time -2.12

 slack (MET) 2.77

synth_resources.rpt - Contains information on Design Ware components

=> In the above example, the file will be empty since the graycounter

did not need any of the complex cells.

San Francisco State University Nano-Electronics & Computing Research Lab 58

**

Report : resources

Design : graycount

Version: X-2005.09-SP3

Date : Mon Mar 9 21:30:37 2009

**

No resource sharing information to report.

No implementations to report

No multiplexors to report

synth_check_design.rpt - Contains output from check design command, which is

clean in the above example.

Below is the gate-level netlist output of the gray counter RTL code after synthesis.

Figure 4.h : Synthesized gate-level netlist

module graycount (gcc_out, reset_n, clk, en_count);

 output [1:0] gcc_out;

 input reset_n, clk, en_count;

 wire N8, n1, n4, n5, n6;

 assign gcc_out[0] = N8;

 AO22X1 U2

(.IN1(gcc_out[1]), .IN2(n1), .IN3(en_count), .IN4(N8), .Q(n4));

 AO22X1 U3 (.IN1(en_count), .IN2(n6), .IN3(N8), .IN4(n1), .Q(n5));

 INVX0 U4 (.IN(en_count), .QN(n1));

 DFFARX1 \gcc_out_reg[0]

(.D(n5), .CLK(clk), .RSTB(reset_n), .Q(N8));

 DFFARX1 \gcc_out_reg[1]

(.D(n4), .CLK(clk), .RSTB(reset_n), .Q(gcc_out[1]),

 .QN(n6));

endmodule

4.2.3 Synthesis Script

Synthesis Script #######

Give the path to the verilog files and define the WORK directory

lappend search_path ../src/gray_counter

define_design_lib WORK -path "work"

San Francisco State University Nano-Electronics & Computing Research Lab 59

Define the library location

set link_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm

/Digital_Standard_Cell_Library/synopsys/models/saed90nm_max.db

packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/

Digital_Standard_Cell_Library/synopsys/models/saed90nm_typ.db

packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/

Digital_Standard_Cell_Library/synopsys/models/saed90nm_min.db]

set target_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm

/Digital_Standard_Cell_Library/synopsys/models/saed90nm_max.db]

read the verilog files

analyze -library WORK -format verilog gray_counter.v

elaborate -architecture verilog -library WORK graycount

Check if design is consistent

check_design > reports/synth_check_design.rpt

Create Constraints

create_clock clk -name ideal_clock1 -period 5

set_input_delay 2.0 [remove_from_collection [all_inputs] clk] –clock

ideal_clock1

set_output_delay 2.0 [all_outputs] –clock ideal_clock1

set_max_area 0

Compilation

you can change medium to either low or high

compile -area_effort medium -map_effort medium

Below commands report area , cell, qor, resources, and timing

information needed to analyze the design.

 report_area > reports/synth_area.rpt

 report_cell > reports/synth_cells.rpt

 report_qor > reports/synth_qor.rpt

 report_resources > reports/synth_resources.rpt

 report_timing -max_paths 10 > reports/synth_timing.rpt

Dump out the constraints in an SDC file

 write_sdc const/gray_counter.sdc

Dump out the synthesized database and gate leedl nedtlist

 write -f ddc -hierarchy -output output/gray_counter.ddc

 write -hierarchy -format verilog –output output/gray_counter.v

You can play with the commands or exit

 exit

San Francisco State University Nano-Electronics & Computing Research Lab 60

Note : There is another synthesis example of a FIFO in the below location for

further reference. This synthesized FIFO example is used in the physical

design IC Compiler Tutorial

Location :

/packages/synopsys/setup/asic_flow_setup/synth_fifo

APPENDIX 4A: SYNTHESIS OPTIMIZATION TECHNIQUES

4. A.0 Introduction

A fully optimized design is one, which has met the timing requirements and occupies the

smallest area. The optimization can be done in two stages one at the code level, the other

during synthesis. The optimization at the code level involves modifications to RTL code

that is already been simulated and tested for its functionality. This level of modifications

to the RTL code is generally avoided as sometimes it leads to inconsistencies between

simulation results before and after modifications. However, there are certain standard

model optimization techniques that might lead to a better synthesized

design.

4. A.1 Model Optimization

Model optimizations are important to a certain level, as the logic that is generated by the

synthesis tool is sensitive to the RTL code that is provided as input. Different RTL codes

generate different logic. Minor changes in the model might result in an increase or

decrease in the number of synthesized gates and also change its timing characteristics. A

logic optimizer reaches different endpoints for best area and best speed depending on the

starting point provided by a netlist synthesized from the RTL code. The different starting

points are obtained by rewriting the same HDL model using different constructs. Some of

the optimizations, which can be used to modify the model for obtaining a better quality

design, are listed below.

4.A.1.1 Resource Allocation

This method refers to the process of sharing a hardware resource under mutually

exclusive conditions. Consider the following if statement.

if A = ‘1’ then

E = B + C;

else

E = B + D;

end if;

San Francisco State University Nano-Electronics & Computing Research Lab 61

The above code would generate two ALUs one for the addition of B+C and other for the

addition B + D which are executed under mutually exclusive conditions. Therefore a

single ALU can be shared for both the additions. The hardware synthesized for the above

code is given below in Figure 4A.a.

Figure 4A.a Without resource allocation.

The above code is rewritten with only on addition operator being employed. The

hardware synthesized is given in Figure 4A.b.

if A = ‘1’ then

temp := C; // A temporary variable introduced.

else

temp := D;

end if;

E = B + temp;

Figure 4A.b. With resource allocation.

It is clear from the figure that one ALU has been removed with one ALU being shared

for both the addition operations. However a multiplexer is induced at the inputs of the

ALU that contributes to the path delay. Earlier the timing path of the select signal goes

through the multiplexer alone, but after resource sharing it goes through the multiplexer

San Francisco State University Nano-Electronics & Computing Research Lab 62

and the ALU datapath, increasing its path delay. However due to resource sharing the

area of the design has decreased. This is therefore a trade-off that the designer may have

to make. If the design is timing-critical it would be better if no resource sharing is

performed.

Common sub-expressions and Common factoring

It is often useful to identify common subexpressions and to reuse the computed values

wherever possible. A simple example is given below.

B := R1 + R2;

…..

C <= R3 – (R1 + R2);

Here the subexpression R1 + R2 in the signal assignment for C can be replaced by B as

given below. This might generate only one adder for the computation instead of two.

C <= R3 – B;

Common factoring is the extraction of common sub expressions in mutually-exclusive

branches of an if or case statement.

if (test)

A <= B & (C + D);

else

J <= (C + D) | T;

end if;

In the above code the common factor C + D can be place out of the if statement, which

might result in the tool generating only one adder instead of two as in the above case.

temp := C + D; // A temporary variable introduced.

if (test)

A <= B & temp;

else

J <= temp | T;

end if;

Such minor changes if made by the designer can cause the tool to synthesize better logic

and also enable it to concentrate on optimizing more critical areas.

Moving Code
In certain cases an expression might be placed, within a for/while loop statement, whose

value would not change through every iteration of the loop. Typically a synthesis tool

handles the a for/while loop statement by unrolling it the specified number of times. In

such cases redundant code might be generated for that particular expression causing

additional logic to be synthesized. This could be avoided if the expression is moved

outside the loop, thus optimizing the design. Such optimizations performed at a higher

San Francisco State University Nano-Electronics & Computing Research Lab 63

level, that is, within the model, would help the optimizer to concentrate on more critical

pieces of the code. An example is given below.

C := A + B;

…………

for c in range 0 to 5 loop

……………

T := C – 6;

// Assumption : C is not assigned a new value within the loop, thus the above expression

would remain constant on every iteration of the loop.

……………

end loop;

The above code would generate six subtracters for the expression when only one is

necessary. Thus by modifying the code as given below we could avoid the generation of

unnecessary logic.

C := A + B;

…………

temp := C – 6; // A temporary variable is introduced

for c in range 0 to 5 loop

……………

T := temp;

// Assumption : C is not assigned a new value within the loop, thus the above expression

would remain constant on every iteration of the loop.

……………

end loop;

Constant folding and Dead code elimination
The are possibilities where the designer might leave certain expressions which are

constant in value. This can be avoided by computing the expressions instead of the

implementing the logic and then allowing the logic optimizer to eliminate the additional

logic.

Ex:

C := 4;

….

Y = 2 * C;

Computing the value of Y as 8 and assigning it directly within your code can avoid the

above unnecessary code. This method is called constant folding. The other optimization,

dead code elimination refers to those sections of code, which are never executed.

Ex.

A := 2;

San Francisco State University Nano-Electronics & Computing Research Lab 64

B := 4;

if(A > B) then

……

end if;

The above if statement would never be executed and thus should be eliminated from the

code. The logic optimizer performs these optimizations by itself, but nevertheless if the

designer optimizes the code accordingly the tool optimization time would be reduced

resulting in faster tool running times.

4.A.1.2 Flip-flop and Latch optimizations

Earlier in the RTL code section, it has been described how flip-flops and latches are

inferred through the code by the synthesis tool. However there are only certain cases

where the inference of the above two elements is necessary. The designer thus should try

to eliminate all the unnecessary flip-flop and latch elements in the design. Placing only

the clock sensitive signals under the edge sensitive statement can eliminate the

unnecessary flip-flops. Similarly the unwanted latches can be avoided by specifying the

values for the signals under all conditions of an if/case statement.

4.A.1.3 Using Parentheses

The usage of parentheses is critical to the design as the correct usage might result in

better timing paths.

Ex.

Result <= R1 + R2 - P + M;

The hardware generated for the above code is as given below in Figure 4 (a).

If the expression has been written using parentheses as given below, the hardware

synthesized would be as given in Figure 4 (b).

Result <= (R1 + R2) – (P - M);

San Francisco State University Nano-Electronics & Computing Research Lab 65

It is clear that after using the parentheses the timing path for the datapath has been

reduced as it does not need to go through one more ALU as in the earlier case.

4.A.1.4 Partitioning and structuring the design.

A design should always be structured and partitioned as it helps in reducing design

complexity and also improves the synthesis run times since it smaller sub blocks

synthesis synthesize faster. Good partitioning results in the synthesis of a good quality

design. General recommendations for partitioning are given below.

 Keep related combinational logic in the same module

 Partition for design reuse.

 Separate modules according to their functionality.

 Separate structural logic from random logic.

 Limit a reasonable block size (perhaps a maximum of 10K gates per block).

 Partition the top level.

 Do not add glue-logic at the top level.

 Isolate state-machine from other logic.

 Avoid multiple clocks within a block.

 Isolate the block that is used for synchronizing the multiple clocks.

4.A.2 Optimization using Design Compiler

For the optimization of design, to achieve minimum area and maximum speed, a lot of

experimentation and iterative synthesis is needed. The process of analyzing the design for

speed and area to achieve the fastest logic with minimum area is termed – design space

exploration.

For the sake of optimization, changing of HDL code may impact other blocks in the

design or test benches. For this reason, changing the HDL code to help synthesis is less

desirable and generally is avoided. It is now the designer’s responsibility to minimize the

area and meet the timing requirements through synthesis and optimization. The later

San Francisco State University Nano-Electronics & Computing Research Lab 66

versions of DC, starting from DC98 have their compile flow different from previous

versions. In the DC98 and later versions the timing is prioritized over area. Another

difference is that DC98 performs compilation to reduce “total negative slack” instead of

“worst negative slack”. This ability of DC98 produces better timing results but has some

impact on area. Also DC98 requires designers to specify area constraints explicitly as

opposed to the previous versions that automatically handled area minimization. Generally

some area cleanup is performed but better results are obtained when constraints are

specified.

The DC has three different compilation strategies. It is up to user discretion to choose the

most suitable compilation strategy for a design.

a) Top-down hierarchical compile method.

b) Time-budget compile method.

c) Compile-characterize-write-script-recompile (CCWSR) method.

4.A.2.1 Top-down hierarchical Compile

Prior to the release of DC98 this method was used to synthesize small designs as this

method was extremely memory intensive and took a lot of time for large designs. In this

method the source is compiled by reading the entire design with constraints and attributes

applied, only at the top level. DC98 provided Synopsys the capability to synthesize

million gate designs by tackling much larger blocks (>100K) at a time. This approach is

feasible for some designs depending on the design style (single clock etc.) and other

factors. One may use this technique to synthesize larger blocks at a time by grouping the

sub-blocks together and flattening them to improve timing.

Advantages

� Only top level constraints are needed.

� Better results due to optimization across entire design.

Disadvantages

� Long compile time.

� Incremental changes to the sub-blocks require complete re-synthesis.

� Does not perform well, if design contains multiple clocks or generated clocks.

Time-budgeting compile.

This process is best for designs properly partitioned designs with timing specifications

defined for each sub-block. Due to specifying of timing requirements for each block,

multiple synthesis scripts for individual blocks are produced. The synthesis is usually

performed bottom-up i.e., starting at the lowest level and going up to the top most level.

This method is useful for medium to very large designs and does not require large

amounts memory.

Advantages

� Design easier to manage due to individual scripts.

� Incremental changes to sub-blocks do not require complete re-synthesis.

San Francisco State University Nano-Electronics & Computing Research Lab 67

� Can be used for any style of design, e.g. multiple and generated clocks.

Disadvantages

� Difficult to keep track of multiple scripts.

� Critical paths seen at top level may not be critical at lower level.

� Incremental compilations may be needed for fixing DRC’s.

Compile-Characterize-Write-Script-Recompile

This is an advanced synthesis approach, useful for medium to very large designs that do

not have good inter-block specifications defined. It requires constraints to be applied at

the top level of the design, with each sub-block compiled beforehand. The subblocks are

then characterized using the top-level constraints. This in effect propagates the required

timing information from the top-level to the sub-blocks. Performing a write_script on

the characterized sub-blocks generates the constraint file for each subblock.

The constraint files are then used to re-compile each block of the design.

Advantages

� Less memory intensive.

� Good quality of results because of optimization between sub-blocks of the design.

� Produces individual scripts, which may be modified by the user.

Disadvantages

� The generated scripts are not easily readable.

� It is difficult to achieve convergence between blocks

� Lower block changes might need complete re-synthesis of entire design.

Resolving Multiple instances

Before proceeding for optimization, one needs to resolve multiple instances of the sub-

block of your design. This is a necessary step as Dc does not permit compilation until

multiple instances are resolved.

Ex: Lets say moduleA has been synthesized. Now moduleB that has two instantiations of

moduleA as U1 and U2 is being compiled. The compilation will be stopped with an error

message stating that moduleA is instantiated 2 times in moduleB. There are two methods

of resolving this problem.

 You can set a don_touch attribute on moduleA before synthesizing moduleB, or

uniquify moduleB. uniquify a dc_shell command creates unique definitions of multiple

instances. So it for the above case it generates moduleA-u1 and moduleA_u2 (in VHDL),

corresponding to instance U1 and U2 respectively.

4.A.2.2 Optimization Techniques

Various optimization techniques that help in achieving better area and speed for

your design are given below.

Compile the design

The compilation process maps the HDL code to actual gates specified from the target

library. This is done through the compile command. The syntax is given below :

San Francisco State University Nano-Electronics & Computing Research Lab 68

compile –map_effort <low | medium | high>

-incremental_mapping

-in_place

-no_design_rule | -only_design_rule

-scan

The compile command by default uses the –map_effort medium option. This usually

produces the best results for most of the designs. It also default settings for the structuring

and flattening attributes. The map_effort high should only be used, if target objectives are

not met through default compile. The -incremental_mapping is used only after initial

compile as it works only at gate-level. It is used to improve timing of the logic.

Flattening and structuring

Flattening implies reducing the logic of a design to a 2-level AND/OR representation.

This approach is used to optimize the design by removing all intermediate variables and

parenthesis. This option is set to “false” by default. The optimization is performed in two

stages. The first stage involves the flattening and structuring and the second stage

involves mapping of the resulting design to actual gates, using mapping optimization

techniques.

Flattening

Flattening reduces the design logic in to a two level, sum-of-products of form, with few

logic levels between the input and output. This results in faster logic. It is recommended

for unstructured designs with random logic. The flattened design then can be structured

before final mapping optimization to reduce area. This is important as flattening has

significant impact on area of the design. In general one should compile the design using

default settings (flatten and structure are set as false). If timing objectives are not met

flattening and structuring should be employed. It the design is still failing goals then just

flatten the design without structuring it. The command for flattening is given below

set_flatten <true | false>

-design <list of designs>

-effort <low | medium | high>

-phase <true | false>

The –phase option if set to true enables the DC to compare the logic produced by

inverting the equation versus the non-inverted form of the equation. Structuring The

default setting for this is “true”. This method adds intermediate variables that can be

factored out. This enables sharing of logic that in turn results in reduction of area.

For ex.

Before structuring After structuring

P = ax + ay + c P = aI + c

Q = x + y + z Q = I + z

I = x + y

San Francisco State University Nano-Electronics & Computing Research Lab 69

The shared logic generated might effect the total delay of the logic. Thus one should be

careful enough to specify realistic timing constraints, in addition to using default settings.

Structuring can be set for timing(default) or Boolean optimization. The latter helps in

reducing area, but has a greater impact on timing. Thus circuits that are timing sensitive

should not be structured for Boolean optimization. Good examples for Boolean

optimization are random logic structures and finite state machines. The command for

structuring is given below.

set_structure <true | false>

-design <list of designs>

-boolean <low | medium | high>

-timing <true | false>

If the design is not timing critical and you want to minimize for area only, then set the

area constraints (set_max_area 0) and perform Boolean optimization. For all other case

structure with respect to timing only.

Removing hierarchy

DC by default maintains the original hierarchy that is given in the RTL code. The

hierarchy is a logic boundary that prevents DC from optimizing across this boundary.

Unnecessary hierarchy leads to cumbersome designs and synthesis scripts and also limits

the DC optimization within that boundary, without optimizing across hierarchy. To allow

DC to optimize across hierarchy one can use the following commands.

dc_shell> current_design <design name>

dc_shell> ungroup –flatten –all

This allows the DC to optimize the logic separated by boundaries as one logic resulting in

better timing and an optimal solution.

Optimizing for Area

DC by default tries to optimize for timing. Designs that are not timing critical but area

intensive can be optimized for area. This can be done by initially compiling the design

with specification of area requirements, but no timing constraints. In addition, by using

the don_touch attribute on the high-drive strength gates that are larger in size, used by

default to improve timing, one can eliminate them, thus reducing the area considerably.

Once the design is mapped to gates, the timing and area constraints should again be

specified (normal synthesis) and the design re-compiled incrementally. The incremental

compile ensures that DC maintains the previous structure and does not bloat the logic

unnecessarily. The following points can be kept in mind for further area optimization:

 Bind all combinational logic as much as possible. If combinational logic were

spreadover different blocks of the design the optimization of the logic would not

be perfect resulting in large areas. So better partitioning of the design with

San Francisco State University Nano-Electronics & Computing Research Lab 70

combinational logic not spread out among different blocks would result in better

area.

 At the top level avoid any kind of glue logic. It is better to incorporate glue logic

in one of the sub-components thus letting the tool to optimize the logic better.

4. A.3 Timing issues

There are two kind of timing issues that are important in a design- setup and hold timing

violations.

Setup Time: It indicates the time before the clock edge during which the data should be

valid i.e. it should be stable during this period and should not change. Any change during

this period would trigger a setup timing violation. Figure 4A.b illustrates an example with

setup time equal to 2 ns. This means that signal DATA must be valid 2 ns before the

clock edge; i.e. it should not change during this 2ns period before the clock edge.

Hold Time: It indicates the time after the clock edge during which the data should be

held valid i.e. it should not change but remain stable. Any change during this period

would trigger a hold timing violation. Figure 4A.b illustrates an example with hold time

equal to 1 ns. This means that signal DATA must be held valid 1 ns after the clock edge;

i.e. it should not change during the 1 ns period after the clock edge.

Figure 4A.b Timing diagram for setup and hold On DATA

The synthesis tool automatically runs its internal static timing analysis engine to check

for setup and hold time violations for the paths, that have timing constraints set on them.

It mostly uses the following two equations to check for the violations.

Tprop + Tdelay < Tclock - Tsetup (1)

Tdelay + Tprop > Thold (2)

Here Tprop is the propagation delay from input clock to output of the device in question

(mostly a flip-flop); Tdelay is the propagation delay across the combinational logic

through which the input arrives; Tsetup is the setup time requirement of the device;

Tclock is clock period;

Thold the hold time requirement of the device.

San Francisco State University Nano-Electronics & Computing Research Lab 71

So if the propagation delay across the combinational logic, Tdelay is such that the

equation (1) fails i.e. Tprop + Tdelay is more than Tclock – Tsetup then a setup timing

violation is reported. Similarly if Tdelay + Tprop is greater than Thold then a hold timing

violation is reported. In the case of the setup violation the input data arrives late due to

large Tdelay across the combinational logic and thus is not valid/unstable during the

setup time period triggering a violation. The flip-flop needs a certain time to read the

input. During this period the data must remain stable and unchanged and any change

would result in improper working of the device and thus a violation. In case of hold

timing violation the data arrives faster than usual because the Tdelay + Tprop is not

enough to delay the data enough. The flip-flop needs some time to store the data, during

which the data should remain stable. Any change during this period would result in a

violation. The data changes faster, without giving the flip-flop sufficient time to read it,

thus triggering a violation.

4.A.3.1 HOW TO FIX TIMING VIOLATIONS

When the synthesis tool reports timing violations the designer needs to fix them. There

are three options for the designer to fix these violations.

1) Optimization using synthesis tool: this is the easiest of all the other options. Few of

the techniques have been discussed in the section Optimization Techniques above.

Few other techniques will be dealt with later in this section.

2) Microarchitectural Tweaks: This is a manual approach compared to the previous one.

Here the designer should modify code to make microarchitectural changes that effect the

timing of the design. Some of these techniques were discussed in the section

Optimization Techniques and few new ones would be dealt with in this section.

3) Architectural changes: This is the last option as the designer needs to change the

whole architecture of the design under consideration and would take up a long time.

Optimization using synthesis tool

The tool can be used to tweak the design for improving performance. A designer for

performance optimization can employ the following ways.

a) Compilation with a map_effort high option;

b) Group critical paths together and give them a weight factor;

c) Register balancing;

d) Choose a specific implementation for a module;

e) Balancing heavy loading.

Compilation with a map_effort high

The initial compilation of a design is done with map_effort as medium when employing

design constraints. This usually gives the best results with flattening and structuring

options. In case the desired results are not met i.e. the design generates some timing

violations then the map_effort of high can be set. This usually takes a long time to run

San Francisco State University Nano-Electronics & Computing Research Lab 72

and thus is not used as the first option. This compilation could improve design

performance by about 10% .

Group critical paths and assign a weight factor

We can use the group_path command to group critical timing paths and set a weight

factor on these critical paths. The weight factor indicates the effort the tool needs to

spend to optimize these paths. Larger the weight factor the more the effort. This

command allows the designer to prioritize the critical paths for optimization using the

weight factor.

group_path –name <group_name> -from <starting_point> -to <ending_point> -weight

<value>

Register balancing

This command is particularly useful with designs that are pipelined. The command

reshuffles the logic from one pipeline stage to another. This allows extra logic to be

moved away from overly constrained pipeline stages to less constrained ones with

additional timing. The command is simply balance_registers.

Choose a specific implementation for a module

A synthesis tool infers high-level functional modules for operators like ‘+’, ‘-’, ‘*’, etc.. .

however depending upon the map_effort option set, the design compiler would choose

the implementation for the functional module. For example the adder has the following

kinds of implementation.

a) Ripple carry – rpl

b) Carry look ahead –cla

c) Fast carry look ahead –clf

d) Simulation model –sim

The implementation type sim is only for simulation. Implementation types rpl, cla, and

clf are for synthesis; clf is the faster implementation followed by cla; the slowest being

rpl. If compilation of map_effort low is set the designer can manually set the

implementation using the set_implementation command. Otherwise the selection will not

change from current choice. If the map_effort is set to medium the design compiler

would automatically choose the appropriate implementation depending upon the

optimization algorithm. A choice of medium map_effort is suitable for better

optimization or even a manual setting can be used for better performance results.

Balancing heavy loading Designs generally have certain nets with heavy fanout

generating a heavy load on a certain point. A large load would be difficult to drive by a

single net. This leads to unnecessary delays and thus timing violations. The

balance_buffers command comes in hand to solve such problems. this command would

make the design compiler to create buffer trees to drive the large fanout and thus balance

the heavy load.

Microarchitectural Tweaks

San Francisco State University Nano-Electronics & Computing Research Lab 73

The design can be modified for both setup timing violations as well as hold timing

violations. Lets deal with setup timing violations. When a design with setup violations

cannot be fixed with tool optimizations the code or microarchitectural implementation

changes should be employed.

The following methods can be used for this purpose.

a) Logic duplication to generate independent paths

b) Balancing of logic between flip-flops

c) Priority decoding versus multiplex decoding

Logic duplication to generate independent paths

Consider the figure 4A.c Assuming a critical path exists from A to Q2, logic optimization

on combinational logic X, Y, and Z would be difficult because X is shared with Y and Z.

We can duplicate the logic X as shown in figure 4A.d. In this case Q1 and Q2 have

independent paths and the path for Q2 can be optimized in a better fashion by the tool to

ensure better performance.

Figure 4A.c : Logic with Q2 critical path

Figure 4A.d: Logic duplication allowing Q2 to be an independent path.

Logic duplication can also be used in cases where a module has one signal arriving late

compared to other signals. The logic can be duplicated in front of the fast -arriving

signals such that timing of all the signals is balanced. Figure 4A.e & 4A.f illustrate this

fact quite well. The signal Q might generate a setup violation as it might be delayed due

San Francisco State University Nano-Electronics & Computing Research Lab 74

to the late-arriving select signal of the multiplexer. The combinational logic present at the

output could be put in front of the inputs (fast arriving). This would cause the delay due

the combinational logic to be used appropriately to balance the timing of the inputs of

the multiplexer and thus avoiding the setup violation for Q.

Figure 4A.e: Multiplexer with late arriving sel signal

Figure 4A.f: Logic Duplication for balancing the timing between signals

Balancing of logic between flip-flops

This concept is similar to the balance_registers command we have come across in the

Tool optimization section. The difference is that the designer does this at the code level.

To fix setup violations in designs using pipeline stages the logic between each stage

should be balanced. Consider a pipeline stage consisting of three flip-flops and two

combinational logic modules in between each flip-flop. If the delay of the first logic

module is such that it violates the setup time of the second flip-flop by a large margin and

the delay of the second logic module is so less that the data on the third flip-flop is

comfortably meeting the setup requirement. We can move part of the first logic module

to the second logic module so that the setup time requirement of both the flip-flops is met.

This would ensure better performance without any violations taking place. Figure 4.A.g

illustrates the example.

Figure 4.A.g : Logic with pipeline stages

San Francisco State University Nano-Electronics & Computing Research Lab 75

Priority encoding versus multiplex encoding

When a designer knows for sure that a particular input signal is arriving late then priority

encoding would be a good bet. The signals arriving earlier could be given more priority

and thus can be encoded before the late arriving signals.

Consider the boolean equation:

Q = A.B.C.D.E.F

It can be designed using five and gates with A, B at the first gate. The output of first gate

is anded with C and output of the second gate with D and so on. This would ensure

proper performance if signal F is most late arriving and A is the earliest to arrive. If

propagation delay of each and gate were 1 ns this would ensure the output signal Q would

be valid only 5 ns after A is valid or only 1 ns after signal H is valid. Multiplex decoding

is useful if all the input signals arrive at the same time. This would ensure that the output

would be valid at a faster rate. Thus multiplex decoding is faster than priority decoding if

all input signals arrive at the same time. In this case for the boolean equation above the

each of the two inputs would be anded parallely in the form of A.B, C.D and E.F each

these outputs would then be anded again to get the final output. This would ensure Q to

be valid in about 2 ns after A is valid.

Fixing Hold time violations

Hold time violations occur when signals arrive to fast causing them to change before they

are read in by the devices. The best method to fix paths with hold time violations is to

add buffers in those paths. The buffers generate additional delay slowing the path

considerably. One has to careful while fixing hold time violations. Too many buffers

would slow down the signal a lot and might result in setup violations which are a problem

again.

4A.4 Verilog Synthesizable Constructs

Since it is very difficult fot the synthesis tool to find hardware with exact delays, all

absolute and relative timing declarations are ignored by the tools. Also, all signals are

assumed to be of maximum strength (strength 7). Boolean operations on x and z are not

permitted. The constructs are classified as

San Francisco State University Nano-Electronics & Computing Research Lab 76

 Fully supported constructs- Constructs that are supported as defined in the

Verilog Language Reference Manual.

 Partially supported constructs- Constructs supported with restrictions on them

 Ignore constructs - constructs which are ignored by the synthesis tool

 Unsupported constructs- constructs which if used, may cause the synthesis tool to

not accept the Verilog input or may cause different results between synthesis and

simulation.

 Fully supported constructs:
 <module instantiation, with named and positional notations>

<integer data types, with all bases>

<identifiers>

<subranges and slices on right hand side of assignment>

<continuous assignment>

>>,<<,?:,{}

assign (procedural and declarative), begin, end, case, casex, casez, endcase

default

disable

function, endfunction

if, else, else if

input, output, inout

wire, wand, wor, tri

integer, reg

macromodule, module

parameter

supply0, supply1

task, endtask

 Partially Supported Constructs

Construct Constraints

*,/,%

when both operands

constants or second

operand

is a power of 2

Always
only edge triggered

events

For

bounded by static

variables: only ise +

or - to index

San Francisco State University Nano-Electronics & Computing Research Lab 77

posedge, negedge only with always @

primitive, endprimitive, table, endtable

Combinational and

edge sensitive user

defined

primitives are often

supported.

<=

limitations on usage

with blocking

statement

and,nand,or,nor,xor,xnor,buf,not,,bufif0,bufif1,not

if0,notif1

Gate types

supported without X

or Z constructs

!, &&, ||, ~, &, |, ^, ^~, ~^, ~&, ~|, +, -, <, >, <=,

>=, ++, !=

Operators supported

without X or Z

constructs

 Ignored Constructs

<intra assignment timing controls>

<delay specifications>

scalared, vectored

small medium large

specify

time (some tools treat these as integers)

weak1, weak0, highz0, highz1, pull0, pull1

$keyword (some tools use these to set synthesis constraints)

wait (some tools support wait with a bounded condition).

 Unsupported constructs
 <assignment with variable used as bit select on LHS of assignment>

<global variables>

===, !==

cmos,nmos,rcmos,rnmos,pmos,rpmos

deassign

defparam

event

force

fork,join

forever,while

initial

pullup,pulldown

release

repeat

rtran,tran,tranif0

tranif1

San Francisco State University Nano-Electronics & Computing Research Lab 78

rtranif0,rtranif1

table,endtable,primitive,endprimitive

5.0 DESIGN VISION

5.1 ANALYSIS OF GATE-LEVEL SYNTHESIZED NETLIST USING

DESIGN VISION

Synopsys provides a GUI front-end to Design Compiler called Design Vision which we

will use to analyze the synthesis results. You should avoid using the GUI to actually

perform synthesis since we want to use scripts for this. To launch Design Vision and read

in the synthesized design, move into the /project_dc/synth/ working directory and use the

following commands. The command “design_vision-xg” will open up a GUI.

% design_vision-xg

design_vision-xg> read_file -format ddc output/gray_counter.ddc

You can browse your design with the hierarchical view. Right click on the gray_counter

module and choose the Schematic View option [Figure 8.a], the tool will display a

schematic of the synthesized logic corresponding to that module. Figure 8.b shows the

schematic view for the gray counter module. You can see synthesized flip-flops in the

schematic view.

Figure 5.a: Design Vision GUI

San Francisco State University Nano-Electronics & Computing Research Lab 79

Figure 5.b: Schematic View of Synthesized Gray Counter

San Francisco State University Nano-Electronics & Computing Research Lab 80

You can use Design Vision to examine various timing data. The Schematic ! Add Paths

From/To menu option will bring up a dialog box which you can use to examine a specific

path. The default options will produce a schematic of the critical path. The Timing !

Paths Slack menu option [Figure 8.c] will create a histogram of the worst case timing

paths in your design. You can use this histogram to gain some intuition on how to

approach a design which does not meet timing. If there area large number of paths which

have a very large negative timing slack then a global solution is probably necessary,

while if there are just one or two paths which are not making timing a more local

approach may be sufficient. Figure 8.c and Figure 8.d shows an example of using these

two features.

In the current gray_count design, there are no submodules. If there are submodules in the

design, it is sometimes useful to examine the critical path through a single submodule. To

do this, right click on the module in the hierarchy view and use the Characterize option.

Check the timing, constraints, and connections boxes and click OK. Now choose the

module from the drop down list box on the toolbar (called the Design List). Choosing

Timing ! Report Timing will provide information on the critical path through that

submodule given the constraints of the submodule within the overall design’s context.

For more information on Design Vision consult the Design Vision User Guide

San Francisco State University Nano-Electronics & Computing Research Lab 81

Figure 5.c Display Timing Path

Figure 5.d Histogram of Timing Paths

San Francisco State University Nano-Electronics & Computing Research Lab 82

STATIC TIMING ANALYSIS

6.0 Introduction

Why is timing analysis important when designing a chip?

 Timing is important because just designing the chip is not enough; we need to know

how fast the chip is going to run, how fast the chip is going to interact with the other

chips, how fast the input reaches the output etc…

 Timing Analysis is a method of verifying the timing performance of a design by

checking for all possible timing violations in all possible paths.

Why do we normally do Static Timing Analysis and not Dynamic Timing Analysis?

What is the difference between them?

 Timing Analysis can be done in both ways; static as well as dynamic. Dynamic

Timing analysis requires a comprehensive set of input vectors to check the timing

characteristics of the paths in the design. Basically it determines the full behavior of the

circuit for a given set of input vectors. Dynamic simulation can verify the functionality of

the design as well as timing requirements. For example if we have 100 inputs then we

need to do 2 to the power of 100 simulations to complete the analysis. The amount of

analysis is astronomical compared to static analysis.

 Static Timing analysis checks every path in the design for timing violations without

checking the functionality of the design. This way, one can do timing and functional

analysis same time but separately. This is faster than dynamic timing simulation because

there is no need to generate any kind of test vectors. That’s why STA is the most popular

way of doing timing analysis.

6.1 Timing Paths

 The different kinds of paths when checking the timing of a design are as follows:

1. Input pin/port Sequential Element

2. Sequential Element Sequential Element

3. Sequential Element Output pin/port

4. Input pin/port Output pin/port

The static timing analysis tool performs the timing analysis in the following way:

1. STA Tool breaks the design down into a set of timing paths.

2. Calculates the propagation delay along each path.

3. Checks for timing violations (depending on the constraints e.g. clock) on the

different paths and also at the input/output interface.

San Francisco State University Nano-Electronics & Computing Research Lab 83

6.1.1 Delay Calculation of each timing path:

STA calculates the delay along each timing path by determining the Gate delay and Net

delay.

Gate Delay: Amount of delay from the input to the output of a logic gate. It is calculated

based on 2 parameters

a. Input Transition Time

b. Output Load Capacitance

Net Delay: Amount of delay from the output of a gate to the input of the next gate in a

timing path. It depends on the following parameters

a. Parasitic Capacitance

b. Resistance of net

During STA, the tool calculates timing of the path by calculating:

1. Delay from input to output of the gate (Gate Delay).

2. Output Transition Time (which in turn depends on Input Transition Time and

Output Load Capacitance).

6.2 Timing Exceptions

Timing exceptions are nothing but constraints which don’t follow the default when doing

timing analysis. The different kinds of timing exceptions are:

1. False path: If any path does not affect the output and does not contribute to the

delay of the circuit then that path is called false path.

2. Multicycle Path: Multicycle paths in a design are the paths that require more than

one clock cycle. Therefore they require special Multicycle setup and hold-time

calculations.

3. Min/Max Path: This path must match a delay constraint that matches a specific

value. It is not an integer like the multicycle path. For example:

Delay from one point to another max: 1.67ns; min: 1.87ns

 4. Disabled Timing Arcs: The input to the output arc in a gate is disabled. For e.g.

 3 input and gate (a, b, c) and output (out). If you want you can disable the

 path from input ‘a’ to output ‘out’ using disable timing arc constraint.

6.3 Setting up Constraints to calculate timing:

To perform timing analysis we need to specify constraints. Few of the basic constraints

one need to specify are:

1. Clock Constraint: Define the clock frequency you want your circuit to run at.

This clock input controls all the timing in the chip/design.

2. Setting Input Delay: This delay is defined as the time taken by the signal to

reach the input with respect to the clock.

3. Setting Output Delay: This delay is the 9delay incurred outside the particular

block/pin/port with respect to the clock.

Example: Assume Clock to be: 10ns

If Output Delay is 5.4 ns then Input Delay would be: 10ns -5.4ns = 4.6ns

San Francisco State University Nano-Electronics & Computing Research Lab 84

 4. Interface Timing: It is the timing between different components/chips of a design.

6.4 Basic Timing Definitions:

 Clock Latency: Clock latency means delay between the clock source and the

clock pin. This is called as source latency of the clock. Normally it specifies the

skew between the clock generation point and the Clock pin.

 Rise Time: It is defined as the time it takes for a waveform to rise from 10% to

90% of its steady state value.

 Fall time: It is defined as the time it takes for a waveform to rise from 90% to

10% of its steady state value.

 Clock-Q Delay: It is the delay from rising edge of the clock to when Q (output)

becomes available. It depends on

o Input Clock transition

o Output Load Capacitance

 Clock Skew: It is defined as the time difference between the clock path reference

and the data path reference. The clock path reference is the delay from the main

clock to the clock pin and data path reference is the delay from the main clock to

the data pin of the same block. (Another way of putting it is the delay between the

longest insertion delay and the smallest insertion delay.)

 Metastability: It is a condition caused when the logic level of a signal is in an

indeterminate state.

 Critical Path: The clock speed is normally determined by the slowest path in the

design. This is often called as ‘Critical Path’.

 Clock jitter: It is the variation in clock edge timing between clock cycles. It is

usually caused by noise.

 Set-up Time: It is defined as the time the data/signal has to stable before the

clock edge.

 Hold Time: It is defined as the time the data/signal has to be stable after the clock

edge.

 Interconnect Delay: This is delay caused by wires. Interconnect introduces three

types of parasitic effects – capacitive, resistive, and inductive – all of which

influence signal integrity and degrade the performance of the circuit.

 Negative Setup time: In certain cases, due to the excessive delay (example:

caused by lot of inverters in the clock path) on the clock signal, the clock signal

actually arrives later than the data signal. The actual clock edge you want your

data to latch arrives later than the data signal. This is called negative set up time.

 Negative Hold time: It basically allows the data that was supposed to change in

the next cycle, change before the present clock edge.

 Negative Delay: It is defined as the time taken by the 50% of output crossing to

50% of the input crossing.

 Transition Time: It is the time taken for the signal to go from one logic level to

another logic level

San Francisco State University Nano-Electronics & Computing Research Lab 85

 Delay Time: It is defined as the time taken by the 50% of input crossing to 50%

of the output crossing. (50% of i/p transition level to 50% of output transition

level)

 Insertion Delay: Delay from the clock source to that of the sequential pin.

6.5 Clock Tree Synthesis (CTS):

 Clock Tree Synthesis is a process which makes sure that the clock gets distributed

evenly to all sequential elements in a design. Also, if a net is a high fan out net, then we

need to do load balancing. A high fan out net is a net which drives a large number of

inputs. Load balancing is nothing but Clock tree Synthesis. During this process,

depending on the clock skew, buffers are added to the different clock paths in the design.

For example, let us consider two Flip-Flops; Launch FF and Capture FF. Launch FF is

where the data is launched and Capture FF is the FF where data has to be captured. To

improve setup time or hold time, the following need to be done.

a. More delays (buffers) are added on the launching side to have a better hold time.

b. More delays (buffers) are added to latching side to have a better Set up time.

 The most efficient time to CTS is after Placement.

You can learn about CTS more detail in the Physical Design part of this tutorial.

Clock Network Delay: A set of buffers are added in between the source of the clock to

the actual clock pin of the sequential element. This delay due to the addition of all these

buffers is defined as the Clock Network Delay. [Clock Network Delay is added to clock

period in Primetime]

Path Delay: When calculating path delay, the following has to be considered:

Clock Network Delay+ Clock-Q + (Sum of all the Gate delays and Net delays)

Global Clock skew: It is defined as the delay which is nothing but the difference

between the Smallest and Longest Clock Network Delay.

Zero Skew: When the clock tree is designed such that the skew is zero, it is defined as

zero skew.

Local Skew: It is defined as the skew between the launch and Capture flop. The worst

skew is taken as Local Skew.

Useful Skew: When delays are added only to specific clock paths such that it improves

set up time or hold time, is called useful skew.

What kind of model does the tool use to calculate the delay?

The tool uses a wire load model. It is nothing but a statistical model .It consists of a table

which gives the capacitance and resistance of the net with respect to fan-out.

For more information please refer to the Primetime User Manual in the

packages/synopsys/ directory.

San Francisco State University Nano-Electronics & Computing Research Lab 86

6.6 PRIMETIME TUTORIAL EXAMPLE

6.6.1 Introduction

PrimeTime (PT) is a sign-off quality static timing analysis tool from Synopsys. Static

timing analysis or STA is without a doubt the most important step in the design flow. It

determines whether the design works at the required speed. PT analyzes the timing delays

in the design and flags violation that must be corrected.

PT, similar to DC, provides a GUI interface along with the command-line interface. The

GUI interface contains various windows that help analyze the design graphically.

Although the GUI interface is a good starting point, most users quickly migrate to using

the command-line interface. Therefore, I will focus solely on the command-line interface

of PT.

PT is a stand-alone tool that is not integrated under the DC suite of tools. It is a separate

tool, which works alongside DC. Both PT and DC have consistent commands, generate

similar reports, and support common file formats. In addition PT can also generate timing

assertions that DC can use for synthesis and optimization. PT’s command-line interface is

based on the industry standard language called Tcl. In contrast to DC’s internal STA

engine, PT is faster, takes up less memory, and has additional features.

6.6.2 Pre-Layout

After successful synthesis, the netlist obtained must be statically analyzed to check for

timing violations. The timing violations may consist of either setup and/or hold-time

violations. The design was synthesized with emphasis on maximizing the setup-time,

therefore you may encounter very few setup-time violations, if any. However, the hold-

time violations will generally occur at this stage. This is due to the data arriving too fast

at the input of sequential cells with respect to the clock.

If the design is failing setup-time requirements, then you have no other option but to re-

synthesize the design, targeting the violating path for further optimization. This may

involve grouping the violating paths or over constraining the entire sub-block, which had

violations. However, if the design is failing hold-time requirements, you may either fix

these violations at the pre-layout level, or may postpone this step until after layout. Many

designers prefer the latter approach for minor hold-time violations (also used here), since

the pre-layout synthesis and timing analysis uses the statistical wire-load models and

fixing the hold-time violations at the pre-layout level may result in setup-time violations

for the same path, after layout. However, if the wire-load models truly reflect the post-

routed delays, then it is prudent to fix the hold-time violations at this stage. In any case, it

must be noted that gross hold-time violations should be fixed at the pre-layout level, in

order to minimize the number of hold-time fixes, which may result after the layout.

San Francisco State University Nano-Electronics & Computing Research Lab 87

6.6.2.1 PRE-LAYOUT CLOCK SPECIFICATION

In the pre-layout phase, the clock tree information is absent from the netlist. Therefore, it

is necessary to estimate the post-route clock-tree delays upfront, during the pre-layout

phase in order to perform adequate STA. In addition, the estimated clock transition

should also be defined in order to prevent PT from calculating false delays (usually large)

for the driven gates. The cause of large delays is usually attributed to the high fanout

normally associated with the clock networks. The large fanout leads to slow input

transition times computed for the clock driving the endpoint gates, which in turn results

in PT computing unusually large delay values for the endpoint gates. To prevent this

situation, it is recommended that a fixed clock transition value be specified at the source.

The following commands may be used to define the clock, during the prelayout phase of

the design.

pt_shell> create_clock –period 20 –waveform [list 0 10] [list CLK]

pt_shell> set_clock_latency 2.5 [get_clocks CLK]

pt_shell> set_clock_transition 0.2 [get_clocks CLK]

pt_shell> set_clock_uncertainty 1.2 –setup [get_clocks CLK]

pt_shell> set_clock_uncertainty 0.5 –hold [get_clocks CLK]

The above commands specify the port CLK as type clock having a period of 20ns, the

clock latency as 2.5ns, and a fixed clock transition value of 0.2ns. The clock latency

value of 2.5ns signifies that the clock delay from the input port CLK to all the endpoints

is fixed at 2.5ns. In addition, the 0.2ns value of the clock transition forces PT to use the

0.2ns value, instead of calculating its own. The clock skew is approximated with 1.2ns

specified for the setup-time, and 0.5ns for the hold-time. Using this approach during pre-

layout yields a realistic approximation to the post-layout clock network results.

6.6.3 STEPS FOR PRE-LAYOUT TIMING VALIDATION

0. The design example for the rest of this tutorial is a FIFO whose verilog code is

available in asic_flow_setup/src/fifo/fifo.v . Please first run the DC synthesis on this file:

[hkommuru@hafez]$ source /packages/synopsys/setup/synopsys_setup.tcl

[hkommuru@hafez.sfsu.edu] $ cd

[hkommuru@hafez.sfsu.edu] $cd asic_flow_setup/synth_fifo

[hkommuru@hafez.sfsu.edu] $cd scripts

[hkommuru@hafez.sfsu.edu] $emacs dc_synth.tcl &

[hkommuru@hafez.sfsu.edu] $cd ..

[hkommuru@hafez.sfsu.edu] $ dc_shell-xg-t

and run the scripts in /asic_flow_setup/synth_fifo/scripts/dc_synth.tcl

1. Please source “synopsys_setup.tcl” which sets all the environment variables

necessary to run the Primetime . Please type csh at the unix prompt before you source the

below script.

San Francisco State University Nano-Electronics & Computing Research Lab 88

Please source the above file from the below location.

[hkommuru@hafez.sfsu.edu] $ csh

[hkommuru@hafez.sfsu.edu] $ cd

[hkommuru@hafez.sfsu.edu] $ cd /asic_flow_setup/pt

[hkommuru@hafez.sfsu.edu] $ source /packages/synopsys/setup/synopsys_setup.tcl

2. PT may be invoked in the command-line mode using the command pt_shell or in the

GUI mode through the command primetime as shown below.

Command-line mode:

> pt_shell

GUI-mode:

> primetime

Before doing the next step , open the pre_layout_pt.tcl script and keep it ready which is at

location /

[hkommuru@hafez.sfsu.edu]$ vi scripts/pre_layout_pt.tcl

3. Just like DC setup, you need to set the path to link_library and search_path

San Francisco State University Nano-Electronics & Computing Research Lab 89

pt_shell > set link_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_typ.db

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max .db/packages/process_kit/gen

eric/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digital_Standard_Cell_Library/

synopsys/models/saed90nm_min.db]

pt_shell > set target_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max.db]

4. Read the synthesized netlist

pt_shell> read_verilog ../synth_fifo/output/fifo.v

5. You need to set the top module name .

pt_shell > current_design FIFO

6. Read in the SDC from the synthesis

pt_shell> source ../synth_fifo/const/fifo.sdc

7. Now we can do the analysis of the design, as discussed in the beginning of this chapter,

general, four types of analysis is performed on the design, as follows:

 From primary inputs to all flops in the design.

 From flop to flop.

 From flop to primary output of the design.

 From primary inputs to primary outputs of the design.

All four types of analysis can be accomplished by using the following commands:

pt_shell> report_timing -from [all_inputs] -max_paths 20 -to [all_registers -data_pins] >

reports/timing.rpt

pt_shell> report_timing -from [all_register -clock_pins] -max_paths 20 -to [all_registers

-data_pins] >> reports/timing.rpt

pt_shell> report_timing -from [all_registers -clock_pins] -max_paths 20 -to [all_outputs]

>> reports/timing.rpt

pt_shell> report_timing -from [all_inputs] -to [all_outputs] -max_paths 20 >>

reports/timing.rpt

San Francisco State University Nano-Electronics & Computing Research Lab 90

Please note that the above command write their reports to the file timing.rpt under the

reports subdirectory. Please open this file to read the reports and check for any errors.

Please notice that -max_paths 20 option above, gives the worst 20 paths in the design.

8. Reporting setup time and hold time. Primetime by default reports the setup time. You

can report the setup or hold time by specifying the –delay_type option as shown in below

figure.

pt_shell> report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] -

delay_type max >> reports/timing.rpt

If you open and read the timing.rpt file, you will notice that the design meets the setup

time.

9. Reporting hold time

pt_shell> report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] -

delay_type min >> reports/timing.rpt

San Francisco State University Nano-Electronics & Computing Research Lab 91

If you open and read the timing.rpt file, you will notice that the design meets the setup

time.

10. Reporting timing with capacitance and transition time at each level in the path

pt_shell > report_timing -transition_time -capacitance -nets -input_pins -from

[all_registers -clock_pins] -to [all_registers -data_pins] > reports/timing.tran.cap.rpt

11. You can save your session and come back later if you chose to.

pt_shell > save_session output/fifo.session

Note: If the timing is not met, you need to go back to synthesis and redo to make sure the

timing is clean before you proceed to the next step of the flow that is Physical

Implementation.

San Francisco State University Nano-Electronics & Computing Research Lab 92

IC COMPILER TUTORIAL

8.0 Basics of Physical Implementation

8.1 Introduction

As you have seen in the beginning of the ASIC tutorial, after getting an optimized gate-

level netlist, the next step is Physical implementation. Before we actually go into details

of ICCompiler, which is the physical implementation tool from Synopsys, this chapter

covers the necessary basic concepts needed to do physical implementation. Also, below

you can see a more detailed flowchart of ASIC flow.

Figure 8.1.a : ASIC FLOW DIAGRAM

San Francisco State University Nano-Electronics & Computing Research Lab 93

The Physical Implementation step in the ASIC flow consists of:

1. Floorplanning

2. Placement

3. Routing

This document will cover each one of the topics mentioned above one by one.

8.2 Floorplanning

 At the floorplanning stage, we have a netlist which describes the design and the various

blocks of the design and the interconnection between the different blocks. The netlist is

the logical description of the ASIC and the floorplan is the physical description of the

ASIC. Therefore, by doing floorplanning, we are mapping the logical description of the

design to the physical description. The main objectives of floorplanning are to minimize

 a. Area

San Francisco State University Nano-Electronics & Computing Research Lab 94

 b. Timing (delay)

During floorplanning, the following are done:

 The size of the chip is estimated.

 The various blocks in the design, are arranged on the chip.

 Pin Assignment is done.

 The I/O and Power Planning are done.

 The type of clock distribution is decided

Figure 8.2.a : Floorplan example

t

x

yRow

Spacing

Row utilization

I/O pins

Floorplanning is a major step in the Physical Implementation process. The final timing,

quality of the chip depends on the floorplan design. The three basic elements of chip are:

1. Standard Cells: The design is made up of standard cells.

2. I/O cells: These cells are used to help signals interact to and from the chip.

3. Macros (Memories): To store information using sequential elements takes up lot

of area. A single flip flop could take up 15 to 20 transistors to store one bit.

Therefore special memory elements are used which store the data efficiently and

also do not occupy much space on the chip comparatively. These memory cells

are called macros. Examples of memory cells include 6T SRAM (Static Dynamic

Access Memory), DRAM (Dynamic Random Access Memory) etc.

 The above figure shows a basic floorplan. The following is the basic floorplanning steps

(and terminology):

1. Aspect ratio (AR): It is defines as the ratio of the width and length of the chip.

From the figure, we can say that aspect ratio is x/y. In essence, it is the shape of

the rectangle used for placement of the cells, blocks. The aspect ratio should take

into account the number of routing resources available. If there are more

San Francisco State University Nano-Electronics & Computing Research Lab 95

horizontal layers, then the rectangle should be long and width should be small and

vice versa if there are more vertical layers in the design.

a. Normally, METAL1 is used up by the standard cells. Usually, odd

numbered layers are horizontal layers and even numbered layers are

vertical. So for a 5 layer design, AR = 2/2 = 1.

b. Example2: For a 6 layer design, AR = 2/3 = 0.66

2. Concept of Rows: The standard cells in the design are placed in rows. All the

rows have equal height and spacing between them. The width of the rows can

vary. The standard cells in the rows get the power and ground connection from

VDD and VSS rails which are placed on either side of the cell rows. Sometimes,

the technology allows the rows to be flipped or abutted, so that they can share the

power and ground rails.

3. Core: Core is defined as the inner block, which contains the standard cells and

macros. There is another outer block which covers the inner block. The I/O pins

are placed on the outer block.

4. Power Planning: Signals flow into and out off the chip, and for the chip to work,

we need to supply power. A power ring is designed around the core. The power

ring contains both the VDD and VSS rings. Once the ring is placed, a power mesh

is designed such that the power reaches all the cells easily. The power mesh is

nothing but horizontal and vertical lines on the chip. One needs to assign the

metal layers through which you want the power to be routed. During power

planning, the VDD and VSS rails also have to be defined.

5. I/O Placement: There are two types of I/O‘s.

a. Chip I/O: The chip contains I/O pins. The chip consists of the core, which

contains all the standard cells, blocks. The chip I/O placement consists of

the placement of I/O pins and also the I/O pads. The placement of these

I/O pads depends on the type of packaging also. (Refer document :

Packaging)

b. Block I/O: The core contains several blocks. Each block contains the

Block I/O pins which communicate with other blocks, cells in the chip.

This placement of pins can be optimized.

6. Pin Placement: Pin Placement is an important step in floorplanning. You may not

know where to place the pins initially, but later on when you get a better idea, the

pin placement can be done based on timing, congestion and utilization of the chip.

a. Pin Placement in Macros: It uses up m3 layers most of the time, so the

macro needs to be placed logically. The logical way is to put the macros

near the boundary. If there is no connectivity between the macro pins and

the boundary, then move it to another location.

7. Concept of Utilization: Utilization is defined as the percentage of the area that

has been utilized in the chip. In the initial stages of the floorplan design, if the size

of the chip is unknown, then the starting point of the floorplan design is utilization.

There are three different kinds of utilizations.

a. Chip Level utilization: It is the ratio of the area of standard cells, macros

and the pad cells with respect to area of chip.

 Area (Standard Cells) + Area (Macros) + Area (Pad Cells)

 Area (chip)

San Francisco State University Nano-Electronics & Computing Research Lab 96

b. Floorplan Utilization: It is defined as the ratio of the area of standard

cells, macros, and the pad cells to the area of the chip minus the area of the

sub floorplan.

 Area (Standard Cells) + Area (Macros) + Area (Pad Cells)

 Area (Chip) – Area (sub floorplan)

c. Cell Row Utilization: It is defined as the ratio of the area of the standard

cells to the area of the chip minus the area of the macros and area of

blockages.

 Area (Standard Cells)

 Area (Chip) - Area (Macro) – Area (Region Blockages)

8. Macro Placement: As a part of floorplanning, initial placement of the macros in

the core is performed. Depending on how the macros are placed, the tool places

the standard cells in the core. If two macros are close together, it is advisable to

put placement blockages in that area. This is done to prevent the tool from putting

the standard cells in the small spaces between the macros, to avoid congestion.

Few of the different kinds of placement blockages are:

a. Standard Cell Blockage: The tool does not put any standard cells in the

area specified by the standard cell blockage.

b. Non Buffer Blockage: The tool can place only buffers in the area

specified by the Non Buffer Blockage.

c. Blockages below power lines: It is advisable to create blockages under

power lines, so that they do not cause congestion problems later. After

routing, if you see an area in the design with a lot of DRC violations, place

small chunks of placement blockages to ease congestion.

After Floorplanning is complete, check for DRC (Design Rule check) violations. Most

of the pre-route violations are not removed by the tool. They have to be fixed manually.

I/O Cells in the Floorplan: The I/O cells are nothing but the cells which interact in

between the blocks outside of the chip and to the internal blocks of the chip. In a

floorplan these I/O cells are placed in between the inner ring (core) and the outer ring

(chip boundary). These I/O cells are responsible for providing voltage to the cells in the

core. For example: the voltage inside the chip for 90nm technology is about 1.2 Volts.

The regulator supplies the voltage to the chip (Normally around 5.5V, 3.3V etc).

The next question which comes to mind is that why is the voltage higher than the voltage

inside the chip?

The regulator is basically placed on the board. It supplies voltage to different other chips

on board. There is lot of resistances and capacitances present on the board. Due to this,

the voltage needs to be higher. If the voltage outside is what actually the chip need inside,

then the standard cells inside of the chip get less voltage than they actually need and the

chip may not run at all.

So now the next question is how the chips can communicate between different voltages?

The answer lies in the I/O cells. These I/O cells are nothing but Level Shifters. Level

Shifters are nothing but which convert the voltage from one level to another The Input

I/O cells reduce the voltage coming form the outside to that of the voltage needed inside

San Francisco State University Nano-Electronics & Computing Research Lab 97

the chip and output I/O cells increase the voltage which is needed outside of the chip. The

I/O cells acts like a buffer as well as a level shifter.

8.3 Concept of Flattened Verilog Netlist

Most of the time, the verilog netlist is in the hierarchical form. By hierarchical I mean

that the design is modeled on basis of hierarchy. The design is broken down into different

sub modules. The sub modules could be divided further. This makes it easier for the logic

designer to design the system. It is good to have a hierarchical netlist only until Physical

Implementation. During placement and routing, it is better to have a flattened netlist.

Flattening of the netlist implies that the various sub blocks of the model have basically

opened up and there are no more sub blocks. There is just one top block. After you flatten

the netlist you cannot differentiate between the various sub block, but the logical

hierarchy of the whole design is maintained. The reason to do this is:

 In a flat design flow, the placement and routing resources are always visible and

available.

Physical Design Engineers can perform routing optimization and can avoid congestion

to achieve a good quality design optimization. If the conventional hierarchical flow is

used, then it can lead to sub-optimal timing for critical paths traveling through the blocks

and for critical nets routed around the blocks.

The following gives and example of a netlist in the hierarchical mode as well as the

flattened netlist mode:

8.3.a Hierarchical Model:

module top (a , out1)

input a;

output out1;

wire n1;

SUB1 U1 (.in (a), .out (n1))

SUB1 U2 (.in (n1), .out (out1))

endmodule

module SUB1 (b , outb)

input b;

output outb;

wire n1, n2;

INVX1 V1 (.in (b), .out (n1))

INVX1 V2 (.in (n1), .out (n2))

San Francisco State University Nano-Electronics & Computing Research Lab 98

INVX1 V3 (.in (n2), .out (outb))

endmodule

In verilog, the instance name of each module is unique. In the flattened netlist, the

instance name would be the top level instance name/lower level instance name etc…

Also the input and output ports of the sub modules also get lost. In the above example the

input and output ports; a, out1, b and outb get lost.

The above hierarchical model, when converted to the flattened netlist, will look like this:

8.3.b Flattened Model:

module top (in1, out1)

input in1;

output out1;

wire topn1;

INVX1 U1/V1 (.in (in1), .out (V1/n1)

INVX1 U1/V2 (.in (V1/n1), .out (V2/n2)

INVX1 U1/V3 (.in (V2/n2), .out (topn1)

INVX1 U2/V1 (.in (n1), .out (V1/n1)

INVX1 U2/V2 (.in (V1/n1), .out (V2/n2)

INVX1 U2/V3 (.in (V2/n2), .out (out1)

endmodule

The following figure shows the summary of floorplanning:

Figure 8.c Floorplanning Flow Chart

San Francisco State University Nano-Electronics & Computing Research Lab 99

Bind the Physical Library to netlist

Floorplanning Summary

Create the Initial Core

Create the I/O pin placement, pad ring

Place the macros, standard cells

Create Placement Blockages, readjust Macro Placement

Specify Power and Ground nets

Create Power and Macro rings

Create power , ground rails, meshes

Route Power and Ground nets

Check floorplan visually and for any other violations

Placement

Is floorplan

ok?

Yes
No

8.4 Placement

Placement is a step in the Physical Implementation process where the standard cells

location is defined to a particular position in a row. Space is set aside for interconnect to

each logic/standard cell. After placement, we can see the accurate estimates of the

capacitive loads of each standard cell must drive. The tool places these cells based on the

algorithms which it uses internally. It is a process of placing the design cells in the

floorplan in the most optimal way.

What does the Placement Algorithm want to optimize?

The main of the placement algorithm is

1. Making the chip as dense as possible (Area Constraint)

2. Minimize the total wire length (reduce the length for critical nets)

San Francisco State University Nano-Electronics & Computing Research Lab 100

3. The number of horizontal/vertical wire segments crossing a line.

Constraints for doing the above are:

 The placement should be routable (no cell overlaps; no density overflow).

 Timing constraints are met
There are different algorithms to do placement. The most popular ones are as follows:
1. Constructive algorithms: This type of algorithm uses a set of rules to arrive at the

optimized placement. Example: Cluster growth, min cut, etc.

2. Iterative algorithms: Intermediate placements are modified in an attempt to improve

the cost function. It uses an already constructed placement initially and iterates on that to

get a better placement.

Example: Force-directed method, etc

3. Nondeterministic approaches: simulated annealing, genetic algorithm, etc.

Min-Cut Algorithm

This is the most popular algorithm for placement. This method uses successive

application of partitioning the block. It does the following steps:

1. Cuts the placement area into two pieces. This piece is called a bin. It counts the

number of nets crossing the line. It optimizes the cost function. The cost function

here would be number of net crossings. The lesser the cost function, the more

optimal is the solution.

2. Swaps the logic cells between these bins to minimize the cost function.

3. Repeats the process from step 1, cutting smaller pieces until all the logic cells are

placed and it finds the best placement option.

The cost function not only depends on the number of crossings but also a number of

various other factors such as, distance of each net, congestion issues, signal integrity

issues etc. The size of the bin can vary from a bin size equal to the base cell to a bin size

that would hold several logic cells. We can start with a large bin size, to get a rough

placement, and then reduce the bin size to get a final placement.

There are two steps in the Placement process.

1. Global Placement

2. Detail Placement

8.5 Routing

After the floorplanning and placement steps in the design, routing needs to be done.

Routing is nothing but connecting the various blocks in the chip with one an other. Until

now, the blocks were only just placed on the chip. Routing also is spilt into two steps

1. Global routing: It basically plans the overall connections between all the blocks

and the nets. Its main aim is to minimize the total interconnect length, minimize

the critical path delay. It determines the track assignments for each interconnect.

The chip is divided into small blocks. These small blocks are called routing

bins. The size of the routing bin depends on the algorithm the tool uses. Each

routing bin is also called a gcell. The size of this gcell depends on the tool.

San Francisco State University Nano-Electronics & Computing Research Lab 101

Each gcell has a finite number of horizontal and vertical tracks. Global routing

assigns nets to specific gcells but it does not define the specific tracks for each

of them. The global router connects two different gcells from the centre point

of each gcell.

 Track Assignment: The Global router keeps track of how many

interconnections are going in each of direction. This is nothing but the routing

demand. The number of routing layers that are available depend on the design

and also, if the die size is more, the greater the routing tracks. Each routing

layer has a minimum width spacing rule, and its own routing capacity.

For Example: For a 5 metal layer design, if Metal 1, 4, 5 are partially up for

inter-cell connections, pin, VDD, VSS connections, the only layers which are

routable 100% are Metal2 and Metal3. So if the routing demand goes over the

routing supply, it causes Congestion. Congestion leads to DRC errors and

slow runtime.

2. Detailed Routing: In this step, the actual connection between all the nets takes

place. It creates the actual via and metal connections. The main objective of

detailed routing is to minimize the total area, wire length, delay in the critical

paths.

 It specifies the specific tracks for the interconnection; each layer has its

own routing grid, rules. During the final routing, the width, layer, and exact

location of the interconnection are decided.

 Figure 8.5.a : Routing grid

Gcell

Routing grid

After detailed routing is complete, the exact length and the position of each interconnect

for every net in the design is known. The parasitic capacitance, resistance can now is

extracted to determine the actual delays in the design. The parasitic extraction is done by

extraction tools. This information is back annotated and the timing of the design is now

calculated using the actual delays by the Static Timing Analysis Tool.

After timing is met and all other verification is performed such as LVS, etc, the design is

sent to the foundry to manufacture the chip.

San Francisco State University Nano-Electronics & Computing Research Lab 102

8.6 Packaging

Depending on the type of packaging of the chip, the I/O cells, pad cells are designed

differently during the Physical Implementation. There are two types of Packaging style:

a. Wire-bond: The connections in this technique are real wires. The underside of the

die is first fixed in the package cavity. A mixture of epoxy and a metal (aluminum,

sliver or gold) is used to ensure a low electrical and thermal resistance between the

die and the package. The wires are then bonded one at a time to the die and the

package. Below is a illustration of Wire Bond packaging.

Figure 8.6.a : Wire Bond Example

b. Flip-Chip: Flip Chip describes the method of electrically connecting the die to the

package carrier. This is a direct chip-attach technology, which accommodates dies that

have several bond pads placed anywhere on the surfaces at the top. Solder balls are

deposited on the die bond pads usually when they are still on the wafer, and at

corresponding locations on the board substrate. The upside-down die (Flip-chip) is then

aligned to the substrate. The advantage of this type of packaging is very short

connections (low inductance) and high package density. The picture below is an

illustration of flip-chip type of packaging.

San Francisco State University Nano-Electronics & Computing Research Lab 103

Figure 8.6.b : Flip Chip Example

8.7 IC TUTORIAL EXAMPLE

8.7.1 Introduction

The physical design stage of the ASIC design flow is also known as the “place and route”

stage. This is based upon the idea of physically placing the circuits, which form logic

gates and represent a particular design, in such a way that the circuits can be fabricated.

This is a generic, high level description of the physical design (place/route) stage. Within

the physical design stage, a complete flow is implemented as well. This flow will be

described more specifically, and as stated before, several EDA companies provide

software or CAD tools for this flow. Synopsys® software for the physical design process

is called IC Compiler. The overall goal of this tool/software is to combine the inputs of a

gate-level netlist, standard cell library, along with timing constraints to create and placed

and routed layout. This layout can then be fabricated, tested, and implemented into the

overall system that the chip was designed for.

The first of the main inputs into ICC are :

 1. Gate-level netlist, which can be in the form of Verilog or VHDL. This netlist is

produced during logical synthesis, which takes place prior to the physical design

stage(discussed in chapter 3).

2. The second of the main inputs into ICC is a standard cell library. This is a collection

of logic functions such as OR, AND, XOR, etc. The representation in the library is that of

the physical shapes that will be fabricated.

San Francisco State University Nano-Electronics & Computing Research Lab 104

This layout view or depiction of the logical function contains the drawn mask layers

required to fabricate the design properly. However, the place and route tool does not

require such level of detail during physical design. Only key information such as the

location of metal and input/output pins for a particular logic function is needed. This

representation used by ICC is considered to be the abstract version of the layout. Every

desired logic function in the standard cell library will have both a layout and abstract

view. Most standard cell libraries will also contain timing information about the function

such as cell delay and input pin capacitance which is used to calculated output loads. This

timing information comes from detailed parasitic analysis of the physical layout of each

function at different process, voltage, and temperature points (PVT). This data is

contained within the standard cell library and is in a format that is usable by ICC. This

allows ICC to be able to perform static timing analysis during portions of the physical

design process. It should be noted that the physical design engineer may or may not be

involved in the creating of the standard cell library, including the layout, abstract, and

timing information. However, the physical design engineer is required to understand what

common information is contained within the libraries and how that information is used

during physical design. Other common information about standard cell libraries is the

fact that the height of each cell is constant among the different functions. This common

height will aid in the placement process since they can now be linked together in rows

across the design. This concept will be explained in detail during the placement stage of

physical design.

3. The third of the main inputs into ICC are the design constraints. These constraints are

identical to those which were used during the front-end logic synthesis stage prior to

physical design. These constraints are derived from the system specifications and

implementation of the design being created. Common constraints among most designs

include clock speeds for each clock in the design as well as any input or output delays

associated with the input/output signals of the chip. These same constraints using during

logic synthesis are used byICC so that timing will be considered during each stage of

place and route. The constraints are specific for the given system specification of the

design being implemented.

In the below IC compiler tutorial example, we will place & route the fifo design

synthesized.

STEPS

1. As soon as you log into your engr account, at the command prompt, please type “csh

“as shown below. This changes the type of shell from bash to c-shell. All the commands

work ONLY in c-shell.

[hkommuru@hafez]$csh

2. Please copy the whole directory from the below location

[hkommuru@hafez]$ cp –rf /packages/synopsys/setup/asic_flow_setup ./

San Francisco State University Nano-Electronics & Computing Research Lab 105

This ccreate directory structure as shown below. It will create a directory called

“asic_flow_setup ”, under which it creates the following directories namely

asic_flow_setup

src/ : for verilog code/source code

vcs/ : for vcs simulation for counter example

synth_graycounter/ : for synthesis of graycounter example

synth_fifo/ : for fifo synthesis

pnr_fifo/ : for Physical design of fifo design example

extraction/: for extraction

pt/: for primetime

verification/: final signoff check

The “asic_flow_setup” directory will contain all generated content including, VCS

simulation, synthesized gate-level Verilog, and final layout. In this course we will always

try to keep generated content from the tools separate from our source RTL. This keeps

our project directories well organized, and helps prevent us from unintentionally

modifying the source RTL. There are subdirectories in the project directory for each

major step in the ASIC Flow tutorial. These subdirectories contain scripts and

configuration files for running the tools required for that step in the tool flow. For this

tutorial we will work exclusively in the vcs directory.

3. Please source “synopsys_setup.tcl” which sets all the environment variables necessary

to run the VCS tool.

Please source them at unix prompt as shown below

[hkommuru@hafez]$ source /packages/synopsys/setup/synopsys_setup.tcl

Please Note : You have to do steps 1 and 3 above everytime you log in.

4. Go to the pnr directory .

[hkommuru@hafez.sfsu.edu] $cd asic_flow_setup/pnr_fifo
[hkommuru@hafez.sfsu.edu] $cd scripts
[hkommuru@hafez.sfsu.edu] $emacs init_design_icc.tcl &
[hkommuru@hafez.sfsu.edu] $cd ..

At the unix prompt type “icc_shell “, it will open up the icc window.

[hkommuru@hafez.sfsu.edu] $icc_shell

Next, to open the gui, type “gui_start”, it opens up gui window as shown in the next page .

icc_shell > gui_start

San Francisco State University Nano-Electronics & Computing Research Lab 106

Before a design can be placed and routed within ICC, the environment for the design

needs to be created. The goal of the design setup stage in the physical design flow is to

prepare the design for floorplanning. The first step is to create a design library. Without a

design library, the physical design process using will not work. This library contains all

of the logical and physical data that will need. Therefore the design library is also

referenced as the design container during physical design. One of the inputs to the design

library which will make the library technology specific is the technology file.

CREATING DESIGN LIBRARY

4.a Setting up the logical libraries. The below commands will set the logical libraries and

define VDD and VSS

icc_shell > lappend search_path
“/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/synopsys/models”

icc_shell > set link_library “ * saed90nm_max.db saed90nm_min.db
saed90nm_typ.db”

San Francisco State University Nano-Electronics & Computing Research Lab 107

icc_shell > set target_library “ saed90nm_max.db”

icc_shell > set mw_logic0_net VSS
icc_shell > set mw_logic1_net VDD

icc_shell> set_tlu_plus_files -max_tluplus
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/star_rcxt/tluplus/saed90nm_1p9m_1t_
Cmax.tluplus -min_tluplus
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/star_rcxt/tluplus/saed90nm_1p9m_1t_
Cmin.tluplus -tech2itf_map
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/astro/tech/tech2itf.map

4.b Creating Milkway database

icc_shell> create_mw_lib -technology
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/astro/tech/astroTechFile.tf -
mw_reference_library
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/astro/fram/saed90nm_fr/
FIFO_design.mw

notice the space between saed90nm_fr/ and FIFO_design.mw, which is the design

name. You can choose your own design name.

4.c Open the newly created Milkyway database

icc_shell > open_mw_lib FIFO_design.mw

4.d Read in the gate level synthesized verilog netlist. It opens up a layout window , which

contains the layout information as shown below. You can see all the cells in the design at

the bottom, since we have not initialized the floorplan yet or done any placement.

icc_shell > read_verilog ../synth_fifo/output/fifo.v

San Francisco State University Nano-Electronics & Computing Research Lab 108

4.e Uniquify the design by using the uniquify_fp_mw_cel command. The Milkyway

format does not support multiply instantiated designs. Before saving the design in

Milkyway format, you must uniquify the design to remove multiple instances.

icc_shell> uniquify_fp_mw_cel

4.f Link the design by using the link command (or by choosing File > Import > Link

Design in the GUI).

icc_shell> link

4.g Read the timing constraints for the design by using the read_sdc command (or by

choosing File > Import > Read SDC in the GUI).

icc_shell > read_sdc ../synth_fifo/const/fifo.sdc

San Francisco State University Nano-Electronics & Computing Research Lab 109

4.h Save the design.

icc_shell > save_mw_cel –as fifo_inital

FLOORPLANNING

Open file /scripts/floorplan_icc.tcl

5. Initalize the floorplan with below command

icc_shell > initialize_floorplan -core_utilization 0.6 -start_first_row -
left_io2core 5.0 -bottom_io2core 5.0 -right_io2core 5.0 -top_io2core 5.0 -
pin_snap

You can see in the layout window, the floorplan size and shape. Since we are still in the

floorplan stage all the cells in the design are outside of the floorplan . You can change the

above options to play around with the floorplan size.

San Francisco State University Nano-Electronics & Computing Research Lab 110

6. Connect Power and Ground pins with below command

icc_shell > derive_pg_connection -power_net VDD –ground_net VSS
icc_shell > derive_pg_connection -power_net VDD –ground_net VSS -tie

7. ICC automatically places the pins around the boundary of the floorplan evenly, if there

are no pin constraints given. You can constrain the pins around the boundary [the blue

color pins in the above figure] , using a TDF file. You can look at the file /const/fifo.tdf

You need to create the TDF file in the following format

pin PINNAME layer width height pinside [pin Order]

pin PINNAME layer width height pinside [pin Offset]

Example with pin Order

pin Clk M3 0.36 0.4 right 1

In this tutorial example, the tool is placing the pins automatically. Hence, you do not have

to run this step.

8. Power Planning: First we need to create rectangular power ring around the floorplan.

San Francisco State University Nano-Electronics & Computing Research Lab 111

##Create VSS ring

icc_shell>create_rectangular_rings -nets {VSS} -left_offset 0.5 -
left_segment_layer M6 -left_segment_width 1.0 -extend_ll -extend_lh -
right_offset 0.5 -right_segment_layer M6 -right_segment_width 1.0 -
extend_rl -extend_rh -bottom_offset 0.5 -bottom_segment_layer M7 -
bottom_segment_width 1.0 -extend_bl -extend_bh -top_offset 0.5 -
top_segment_layer M7 -top_segment_width 1.0 -extend_tl -extend_th

Create VDD Ring

icc_shell>create_rectangular_rings -nets {VDD} -left_offset 1.8 -
left_segment_layer M6 -left_segment_width 1.0 -extend_ll -extend_lh -
right_offset 1.8 -right_segment_layer M6 -right_segment_width 1.0 -
extend_rl -extend_rh -bottom_offset 1.8 -bottom_segment_layer M7 -
bottom_segment_width 1.0 -extend_bl -extend_bh -top_offset 1.8 -
top_segment_layer M7 -top_segment_width 1.0 -extend_tl -extend_th

Creates Power Strap

icc_shell>create_power_strap -nets { VDD } -layer M6 -direction vertical -
width 3

icc_shell>create_power_strap -nets { VSS } -layer M6 -direction vertical -
width 3

See in the figure below.

San Francisco State University Nano-Electronics & Computing Research Lab 112

10. Save the design .

icc_shell> save_mw_cel –as fifo_fp

PLACEMENT

open /scripts/place_icc.tcl

During the optimization step, the place_opt command introduces buffers and inverters

tofix timing and DRC violations. However, this buffering strategy is local to some critical

paths.The buffers and inverters that are inserted become excess later because critical

paths change during the course of optimization. You can reduce the excess buffer and

inverter counts after place_opt by using the set_buffer_opt_strategy command, as shown

icc_shell> set_buffer_opt_strategy -effort low

This buffering strategy will not degrade the quality of results (QoR).

Also, by default, IC Compiler performs automatic high-fanout synthesis on nets with a

fanout greater than or equal to 100 and does not remove existing buffer or inverter trees.

San Francisco State University Nano-Electronics & Computing Research Lab 113

You can control the medium- and high-fanout thresholds by using the -hf_thresh and -

mf_thresh options, respectively. You can control the effort used to remove existing buffer

and inverter trees by using the -remove_effort option.

Setting TLUplus files:

TLUPlus models are a set of models containing advanced process effects that can be used

by the parasitic extractors in Synopsys place-and-route tools for modeling. These files

need to be set using the set_tlu_plus_files command as shown below:

icc_shell> set_tlu_plus_files -max_tluplus
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/star_rcxt/tluplus/saed90nm_1p9m_1t_
Cmax.tluplus -min_tluplus
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/star_rcxt/tluplus/saed90nm_1p9m_1t_
Cmin.tluplus -tech2itf_map
/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90n
m/Digital_Standard_Cell_Library/process/astro/tech/tech2itf.map

11. Goto Layout Window , Placement Core Placement and Optimization . A new

window opens up as shown below . There are various options, you can click on what ever

option you want and say ok. The tool will do the placement. Alternatively you can also

run at the command at icc_shell . Below is example with congestion option.

icc_shell > place_opt –congestion

When you want to add area recovery, execute :

place_opt -area_recovery -effort low

San Francisco State University Nano-Electronics & Computing Research Lab 114

When the design has congestion issues, you have following choices :

place_opt -congestion -area_recovery -effort low # for medium effort congestion

removal

place_opt -effort high -congestion -area_recovery # for high eff cong removal

What commands do you need when you want to optimize SCAN ?

read_def < def file >

check_scan_chain > $REPORTS_DIR/scan_chain_pre_ordering.rpt

report_scan_chain >> $REPORTS_DIR/scan_chain_pre_ordering.rpt

place_opt -effort low -optimize_dft

What commands do you need when you want to reduce leakage power ?

set_power_options -leakage true

place_opt -effort low -area_recovery -power

What commands do you need when you want to reduce dynamic power ?

set_power_options -dynamic true -low_power_placement true

read_saif –input < saif file >

place_opt -effort low -area_recovery –power

Note : option -low_power_placement enables the register clumping algorithm in

place_opt, whereas the option -dynamic enables the

Gate Level Power Optimization (GLPO)

When you want to do scan opto, leakage opto, dynamic opto, and you have congestion

issues,

use all options together :

read_def < scan def file >

set_power_options -leakage true -dynamic true -low_power_placement true

place_opt -effort low -congestion -area_recovery -optimize_dft -power -num_cpus

12. After the placement is done, all the cells would be placed in the design and it would

the below window.

San Francisco State University Nano-Electronics & Computing Research Lab 115

13. You can report the following information after the placement stage.

icc_shell> save_mw_cel –as fifo_place

Reports

 icc_shell>report_placement_utilization > output/fifo_place_util.rpt
 icc_shell>report_qor_snapshot > output/fifo_place_qor_snapshot.rpt
 icc_shell>report_qor > output/fifo_place_qor.rpt

Timing Report

icc_shell>report_timing -delay max -max_paths 20 > output/fifo_place.setup.rpt
icc_shell>report_timing -delay min -max_paths 20 > output/fifo_place.hold.rpt

After placement, if you look at the fifo_cts.setup.rpt and fifo_cts.hold.rpt, in the reports

directory, they meet timing.

CLOCK TREE SYNTHESIS

San Francisco State University Nano-Electronics & Computing Research Lab 116

open scripts/ cts_icc.tcl

Before doing the actual cts, you can set various optimization steps. In the Layout window,

click on “Clock “, you will see various options, you can set any of the options to run CTS.

If you click on Clock Core CTS and Optimization .

14. Save the Cell and report timing

icc_shell>save_mw_cel -as fifo_cts
icc_shell> report_placement_utilization > reports/fifo_cts_util.rpt
icc_shell> report_qor_snapshot > reports/fifo_cts_qor_snapshot.rpt
icc_shell> report_qor > reports/fifo_cts_qor.rpt
icc_shell> report_timing –max_paths 20 –delay max > reports/fifo_cts.setup.rpt
icc_shell> report_timing –max_paths 20 –delay min > reports/fifo_cts.hold.rpt

CTS POST OPTIMIZATION STEPS

##Check for hold time and setup time and do incremental if there are any violations

setup time fix

clock_opt -only_psyn

San Francisco State University Nano-Electronics & Computing Research Lab 117

clock_opt -sizing

hold_time fix

clock_opt -only_hold_time

Save cel again and report paths

save_mw_cel -as fifo_cts_opt

Timing Report

report_timing -delay max -max_paths 20 > reports/fifo_cts_opt.setup.rpt

report_timing -delay min -max_paths 20 > reports/fifo_cts_opt.hold.rpt

ROUTING

open scripts/route_icc.tcl

14 . In the layout window, click on Route Core Routing and Optimization, a new

window will open up as shown below

San Francisco State University Nano-Electronics & Computing Research Lab 118

You can select various options, if you want all the routing steps in one go, or do global

routing first, and then detail, and then optimization steps. It is up to you.

icc_shell> route_opt

Above command does not have optimizations. You can although do an incremental

optimization by clicking on the incremental mode in the above window after route_opt is

completed. View the shell window after routing is complete. You can see that there are

no DRC violations reported, indicating that the routing is clean:

San Francisco State University Nano-Electronics & Computing Research Lab 119

15. Save the cel and report timing

icc_shell > save_mw_cel –as fifo_route
icc_shell> report_placement_utilization > reports/fifo_route_util.rpt
icc_shell> report_qor_snapshot > reports/fifo_route_qor_snapshot.rpt
icc_shell> report_qor > reports/fifo_route_qor.rpt
icc_shell> report_timing –max_paths 20 –delay max >
reports/fifo_route.setup.rpt
icc_shell> report_timing –max_paths 20 –delay min > reports/fifo_route.hold.rpt

POST ROUTE OPTIMIZATION STEPS

16. Goto Layout Window, Route Verify Route, it opens up a new window as shown

below, click ok.

San Francisco State University Nano-Electronics & Computing Research Lab 120

The results are clean , as you can see in the window below:

If results are not clean, you might have to do post route optimization steps, like

incremental route. Verify, clean, etc.

San Francisco State University Nano-Electronics & Computing Research Lab 121

EXTRACTION

9.0 Introduction

In general, almost all layout tools are capable of extracting the layout database using

various algorithms. These algorithms define the granularity and the accuracy of the

extracted values. Depending upon the chosen algorithm and the desired accuracy, the

following types of information may be extracted:

Detailed parasitics in DSPF or SPEF format.

Reduced parasitics in RSPF or SPEF format.

Net and cell delays in SDF format.

Net delay in SDF format + lumped parasitic capacitances.

The DSPF (Detailed Standard Parasitic Format) contains RC information of each

segment (multiple R’s and C’s) of the routed netlist. This is the most accurate form of

extraction. However, due to long extraction times on a full design, this method is not

practical. This type of extraction is usually limited to critical nets and clock trees of the

design.

The RSPF (Reduced Standard Parasitic Format) represents RC delays in terms of a pi

model (2 C’s and 1 R). The accuracy of this model is less than that of DSPF, since it does

not account for multiple R’s and C’s associated with each segment of the net. Again, the

extraction time may be significant, thus limiting the usage of this type of information.

Target applications are critical nets and small blocks of the design. Both detailed and

reduced parasitics can be represented by OVI’s (Open Verilog International) Standard

Parasitic Exchange Format (SPEF). The last two (number 3 and 4) are the most common

types of extraction used by the designers. Both utilize the SDF format. However, there is

major difference between the two. Number 3 uses the SDF to represent both the cell and

net delays, whereas number 4 uses the SDF to represent only the net delays. The lumped

parasitic capacitances are generated separately. Some layout tools generate the lumped

parasitic capacitances in the Synopsys set_load format, thus facilitating direct back

annotation to DC or PT.

Extraction steps for the tutorial example:

open scripts/extract_icc.tcl

17. Go to Layout Window, Route Extract RC, it opens up a new window as shown

below, click ok.

San Francisco State University Nano-Electronics & Computing Research Lab 122

Alternatively, you can run this script on the ICC shell:

icc_shell > extract_rc -coupling_cap -routed_nets_only -incremental

##write parasitic to a file for delay calculations tools (e.g PrimeTime).

icc_shell > write_parasitics -output ./output/fifo_extracted.spef -format SPEF

The above script will produce the min and max files, which can be used for delay

estimation using PrimeTime tool.

##Write Standard Delay Format (SDF) back-annotation file

icc_shell > write_sdf ./output/fifo_extracted.sdf

##Write out a script in Synopsys Design Constraints format

icc_shell > write_sdc ./output/fifo_extracted.sdc

##Write out a hierarchical Verilog file for the current design, extracted from layout

icc_shell > write_verilog ./output/fifo_extracted.v

The extracted verilog netlist can be used to double-check the netlist by running a

simulation on it using VCS

18. Report timing

icc_shell> report_timing –max_paths 20 –delay max >
reports/fifo_extracted.setup.rpt
icc_shell> report_timing –max_paths 20 –delay min >
reports/fifo_extracted.hold.rpt

San Francisco State University Nano-Electronics & Computing Research Lab 123

19. Report power

icc_shell> report_power > reports/fifo_power.rpt

If you open the generated fifo_power.rpt, you will notice both total dynamic power
(active mode) and cell leakage power (standby mode) being reported.

20. Save the design

icc_shell> save_mw_cel -as fifo_extracted

Post-Layout Timing Verification Using PrimeTime

After extraction of RC parasitics (.spef file) and the enlist (.V) from layout, we can run

primetime to perform timing verification on the extracted netlist. The steps will be similar

to the step we used to run prime time on the verilog netlist obtained after DC synthesis,

except that we need to use the post layout netlist as well as the parasitic information.

1. Please source “synopsys_setup.tcl” which sets all the environment variables

necessary to run the Primetime . Please type csh at the unix prompt before you source the

below script. Please source the above file from the below location.

[hkommuru@hafez.sfsu.edu] $ csh

[hkommuru@hafez.sfsu.edu] $ cd

[hkommuru@hafez.sfsu.edu] $ cd /asic_flow_setup/pt_post

[hkommuru@hafez.sfsu.edu] $ source /packages/synopsys/setup/synopsys_setup.tcl

2. PT may be invoked in the command-line mode using the command pt_shell or in the

GUI mode through the command primetime as shown below.

Command-line mode:

> pt_shell

GUI-mode:

> primetime

Before doing the next step, open the post_layout_pt.tcl script and keep it ready which is

at location /scripts/post_layout_pt.tcl

[hkommuru@hafez.sfsu.edu]$ vi scripts/post_layout_pt.tcl

3. Just like DC setup, you need to set the path to link_library and search_path

pt_shell > set link_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_typ.db

San Francisco State University Nano-Electronics & Computing Research Lab 124

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max .db/packages/process_kit/gen

eric/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digital_Standard_Cell_Library/

synopsys/models/saed90nm_min.db]

pt_shell > set target_library [list

/packages/process_kit/generic/generic_90nm/updated_Oct2008/SAED_EDK90nm/Digita

l_Standard_Cell_Library/synopsys/models/saed90nm_max.db]

4. Read the extracted netlist

pt_shell> read_verilog ../pnr_fifo/output/fifo_extracted.v

5. You need to set the top module name.

pt_shell > current_design FIFO

6. Read extracted parasitics

pt_shell> read_parasitics -format SPEF ../pnr_fifo/output/fifo_extracted.spef.max

7. Read in the SDC from the ICC

pt_shell> read_sdc ../pnr_fifo/output/fifo_extracted.sdc

8. Now we can do the analysis of the design. Generally, four types of analysis is

performed on the design, as follows:

 From primary inputs to all flops in the design.

 From flop to flop.

 From flop to primary output of the design.

 From primary inputs to primary outputs of the design.

All four types of analysis can be accomplished by using the following commands:

pt_shell> report_timing -from [all_inputs] -max_paths 20 -to [all_registers -data_pins] >

reports/timing.rpt

pt_shell> report_timing -from [all_register -clock_pins] -max_paths 20 -to [all_registers

-data_pins] >> reports/timing.rpt

pt_shell> report_timing -from [all_registers -clock_pins] -max_paths 20 -to [all_outputs]

>> reports/timing.rpt

pt_shell> report_timing -from [all_inputs] -to [all_outputs] -max_paths 20 >>

reports/timing.rpt

San Francisco State University Nano-Electronics & Computing Research Lab 125

The results are reported to the timing.rpt file under the reports subdirectory. Please open

the file to see if the design meets the timing or if there are any errors.

9. Reporting setup time and hold time. Primetime by default reports the setup time. You

can report the setup or hold time by specifying the –delay_type option as shown in below

figure.

pt_shell> report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] -

delay_type max >> reports/timing.rpt

The report is added to the timing.rpt file. Please read the file.

10. Reporting hold time

pt_shell> read_parasitics -format SPEF ../pnr_fifo/output/fifo_extracted.spef.min

pt_shell> report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] -

delay_type min >> reports/timing.rpt

The report is added to the timing.rpt file. Please read the file.

11. Reporting timing with capacitance and transition time at each level in the path

pt_shell > report_timing -transition_time –capacitance –nets -input_pins –from

[all_registers –clock_pins] –to [all_registers –data_pins] > reports/timing.tran.cap.rpt

The report is added to the timing.tran.cap.rpt file. Please read the file for results.

12. You can save your session and come back later if you chose to.

pt_shell > save_session output/fifo.session

San Francisco State University Nano-Electronics & Computing Research Lab 126

APPENDIX A: Design for Test

A.0 Introduction

What do we do to test the chip after it is manufactured? Why do we need DFT?

Consider a scenario where a million chips are produced. It is time consuming and an

extremely costly process of trying to test each of these million chips. The design being

correct does not guarantee that the manufactured chip is operational. It could have a lot of

manufacturing defects. For example for 0.13nm technology, the percentage of chips that

are good is about 60%. Also it is very difficult to ascertain that the chip manufactured

will function correctly for all possible inputs and various other conditions. Moreover

even we do test the chip; we can only see the inputs and the output pins. A designer will

not be able to see what is happening at the intermediate steps before the signal reaches

the output pins. To overcome this problem DFT was started. This is the second best thing

we can do. It increases the probability of the chip working in a real system. To perform

Design for Test, very small changes in the design are needed.

 In CMOS technology, the transistor consists of both NMOS and PMOS transistors. If

we take an example of and inverter, we see that PMOS is connected to VDD and NMOS

is connected to VSS. Inverter inverts the given input. PMOS transistor is on when the

input to the gate is zero. It charges up the capacitor to the VDD value and the opposite e

happened for NMOS. So basically NMOS acts alike a pull down device and PMOS acts

like a pull up device. SO sometimes what happens is that these pull up and pull down

devices don’t work properly in some transistors and a fault occurs. This fault is called as

‘Stuck at Fault’. The logic could be stuck at zero permanently or at ‘1’ permanently

without depending on the input values. The next topic covers Test techniques.

A.1 Test Techniques

A.1.1 Issues faced during testing

1. Consider a combinatorial circuit which has N inputs. To validate the circuit, we need

to exhaustively apply all possible input test vectors and observe the responses. Therefore

for N inputs we need to generate 2 to the power of N inputs. If the number of inputs is too

high, we still can manage to it, but it would take a long time.

Test vector: A set of input vectors to test the system.

2. Now consider a Sequential circuit, for a sequential circuit, the output of the circuit

depends on the inputs as well as the state value. To test such a circuit, it would take

extremely long long time and is practically impossible to do it.

To overcome the above issue, a Scan-based Methodology was introduced

A.2 Scan-Based Methodology

To begin with, there are two important concepts we need to understand. They are:

2. Controllability: It is the ability to control the nodes in a circuit by a set of inputs.

For a given set of input and output pins, when we give the system a set of input

San Francisco State University Nano-Electronics & Computing Research Lab 127

test vectors, we should be able to control each node we want to test. The higher

the degree of controllability, the better.

3. Observability: It is the ease with which we can observe the changes in the nodes

(gates). Like in the previous case the higher the observability, the better. What I

mean by saying higher is that, we can see the desired state of the gates at the

output in lesser number of cycles.

It is easy to test combinational circuits using the above set of rules. For sequential circuits,

to be able to the above, we need to replace the flip flops (FF) with ‘Scan-FF’. These Scan

Flip Flops are a special type of flip flops; they can control and also check the logic of the

circuits. There are two methodologies:

1. Partial Scan: Only some Flip-Flops are changed to Scan-FF.

2. Full Scan: Entire Flip Flops in the circuit are changed to these special Scan FF.

This does mean that we can test the circuit 100%.

What does the Scan-FF consist of and how does it work?

The Scan-FF is nothing but a Multiplexer added to the Flip-Flop. We can control the

input to the flip-flops by using the select pin of the multiplexer to do it. Therefore using

the select pin, the circuit can run in two modes, functional mode and scan mode. In the

scan mode, the select input is high and the input test vectors are passed to the system. So

now we have controlled the circuit and we can therefore see how the circuit is going to

behave for the specific set of input test vectors which were given. After the input vectors

are in the exact place we want them to be in the circuit, the select pin is changed to low

and the circuit is now in functional mode. We can now turn back the select pin to Scan

Mode and the output vectors can be seen at the output pins and a new set of input test

vectors are flushed into the system. We can check the output vectors to see whether they

are expected results or not.

Some Flip-Flops cannot be made scanable like Reset pins, clock gated Flip Flops

Typical designs might have hundreds of scan chains...

The number of scan chains depends on the clock domains. (Normally within a domain,

it is not preferable to have different clocks in each scan chain)

Example: If there are 10 clock domains, then it means the minimum number of scan

chains would be 10.

Scan chains test logic of combinational gates

Scan chains test sequential Flip-Flops through the vectors which pass through them.

Any mismatch in the value of the vectors can be found.

Manufacturing tests: These include functional test and performance test. Functional

test checks whether the manufactured chip is working according to what is actually

designed and performance test checks the performance of the design (speed).

 After the chip comes back from the foundry, it sits on a load board to be tested. The

equipment which tests these chips is called Automatic Test Equipment (ATE).

The socket is connected to the board. The chip is placed on a socket. A mechanical arm

is used to place the chip on the socket.

San Francisco State University Nano-Electronics & Computing Research Lab 128

 A test program tells the ATE what kind of vectors needs to be loaded. Once the

vectors are loaded, the logic is computed and the output vectors can be observed on the

screen.

The output pattern should match the expected output.

When an error is found, you can exactly figure out which flip-flop output is not right

Through the Automatic Test Pattern Generator, we can point out the erroneous FF.

 Failure Analysis analyzes why the chip failed. This is a whole new different field.

 Fault Coverage: It tells us that for a given set of vectors, how many faults are covered.

 Test Coverage: It is the coverage of the testable logic; meaning how much of the

circuit can be tested.

 The latest upcoming technology tests the chips at the wafer level (called wafer sort

(with probes))

A.3 Formal Verification

Formal Verification verifies the circuit without changing the logic of the circuit. It is the

defacto standard used today in the industry. Some of the tools which use formal

verification today in the industry are CONFORMAL (from cadence), FORMALITY

(from Synopsys). Formal verification is an algorithmic-based approach to logic

verification that exhaustively proves functional properties about a design. The algorithms

formal verification uses are:

 Binary Decision Diagram (BDD): It is a compact data structure of Boolean logic. It

can represent the logic state encoded as a Boolean function.

Symbolic FSM Traversal

Typically, the following are the types of formal verification:

1.Equivalence Checking: Verifies the functional equivalence of two designs that are at

the same or different abstraction levels (e.g., RTL-to-RTL, RTL-to-Gate, or Gate-to-

Gate). It checks combinatorial and sequential elements. (Basically checks if two circuits

are equivalent). For sequential elements, it checks if the specific instance name occurs in

both the circuits or not.

2. Model Checking: Verifies that the implementation satisfies the properties of the

design. Model checking is used early in the design creation phase to uncover functional

bugs.

Compare Point: [Cadence Nomenclature]; it is defined as any input of a sequential

element and any primary output ports.

APPENDIX B: EDA Library Formats

B.1 Introduction

In the EDA industry, library is defined as a collection of cells (gates). These cells are

called standard cells. There are different kinds of libraries which are used at different

steps in the whole ASIC flow. All the libraries used contain standard cells. The libraries

contain the description of these standard cells; like number of inputs, logic functionality,

propagation delay etc. The representation of each standard cell in each library is different.

San Francisco State University Nano-Electronics & Computing Research Lab 129

There is no such library which describes all the forms of standard cells. For example: the

library used for timing analysis contains the timing information of each of the standard

cells; the library used during Physical Implementation contains the geometry rules.

Standard Cell Libraries determine the overall performance of the synthesized logic. The

library usually contains multiple implementations of the same logic-function, differing by

area and speed. For example few of the basic standard cells could be a NOR gate, NAND

gate, AND gate, etc. The standard cell could be a combination of the basic gates etc. Each

library can be designed to meet the specific design constraints. The flowing are some

library formats used in the ASIC flow:

LEF: Library Exchange Format:

LEF is used to define an IC process and a logic cell library. For example, you would use

LEF to describe a gate array: the base cells, the logic macros with their size and

connectivity information, the interconnect layers and other information to set up the

database that the physical design tools need.

DEF: Design Exchange format:

DEF is used to describe all the physical aspects of a particular chip design including the

netlist and physical location of cells on the chip. For example, if you had a complete

placement from a floorplanning tool and wanted to exchange this information with

another tool, you would use DEF.

EDIF: (Electronic Design Interchange Format)

It is used to describe both schematics and layout.

GDSII: Generic Data Structures Library:
This file is used by foundry for fabricating the ASIC.

SPICE: (Simulation Program with Integrated Circuits Emphasis)
SPICE is a circuit simulator. It is used to analyze the behavior of the circuits. It is mostly

used in the design of analog and mixed signal IC design. The input to SPICE is basically

at netlist, and the tool analyzes the netlist information and does what it is asked to do.

PDEF: Physical Design Exchange Format:

It is a proprietary file format used by Synopsys to describe placement information and the

clustering of logic cells.

SPF: Standard Parasitic Format

This file is generated by the Parasitic Extraction Tool. It contains all the parasitic

information of the design such as capacitance, resistance etc. This file is generated after

the layout. It is back annotated and the timing analysis of the design is performed again to

get the exact timing information.

.lib: Liberty Format

This library format is from Synopsys.

San Francisco State University Nano-Electronics & Computing Research Lab 130

.plib: Physical Liberty Format

This library format is from Synopsys. It is mainly used for Very Deep Sub Micron

Technology. This library is an extension of the Liberty format; it contains extensive,

advanced information needed for Physical Synthesis, Floorplanning, Routing and RC

Extraction

SPEF: Standard Parasitic Exchange Format

Standard Parasitic Exchange Format (SPEF) is a standard for representing parasitic

data of wires in a chip in ASCII format. Resistance, capacitance and inductance of wires

in a chip are known as parasitic data. SPEF is used for delay calculation and ensuring

signal integrity of a chip which eventually determines its speed of operation.

SDC: Synopsys Design Constraints File

SDC is a Tcl Based format-constraining file. It provides the timing information,

constraints regarding the design to the tool. The tool uses the SDC file when performing

timing analysis.

SDF: Standard Delay Format
 Primetime writes out SDF for gate level simulation purposes. It describes the gate

delay and also the interconnect delay. SDF can also be used with floorplanning and

synthesis tools to backannotate the interconnect delay. A synthesis tool can us this

information to improve the logic structure.

Fragment of SDF file:

(TIMESCALE 100ps) (INSTANCE B) (DELAY (ABSOLUTE

(NETDELAY net1 (0.6)))

(INSTANCE B) (DELAY (ABSOLUTE

(INTERCONNECT A.INV8.OUT B.DFF1.Q (:0.6:) (:0.6:))))

In this example the rising and falling delay is 60 ps (equal to 0.6 units multiplied by the

time scale of 100 ps per unit specified in a TIMESCALE construct. The delay is specified

between the output port of an inverter with instance name A.INV8 in block A and the Q

input port of a D flip-flop (instance name B.DFF1) in block B

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Electrical_resistance
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Inductance
http://en.wikipedia.org/wiki/Delay_calculation
http://en.wikipedia.org/wiki/Signal_integrity

