
HPDI32
High Performance 32-bit Digital I/O

PCI-HPDI32A
PCI64-HPDI32
PMC-HPDI32A
PMC64-HPDI32

Software Development Kit

SDK 5.0.0 Reference Manual

Manual Revision: August 18, 2005

General Standards Corporation
8302A Whitesburg Drive

Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788
URL: http://www.generalstandards.com/

E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

HPDI32, Software Development Kit, Reference Manual

2
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Preface
Copyright ©2005, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Drive
Huntsville, Alabama 35802
Phone: (256) 880-8787
FAX: (256) 880-8788
URL: http://www.generalstandards.com/
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

3
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Table of Contents
1. Introduction... 9

1.1. Purpose ..9
1.2. Acronyms...9
1.3. Definitions..9
1.4. Installation...9
1.5. Application Programming Interface ...10
1.6. Software Overview..10

1.6.1. Software Architecture...11
1.7. Hardware Overview..11
1.8. Code Samples ..11
1.9. Performance Factors ..11
1.10. Reference Material..12

2. Operation ... 13
2.1. Transmitter Operation ...13

2.1.1. Data Organization...14
2.1.2. Cable Signals - continuous unstructured data stream ...14

2.1.2.1. Tx Clock ..15
2.1.2.2. Tx Data ..15
2.1.2.3. Tx Enabled...16
2.1.2.4. Tx Ready..16
2.1.2.5. Frame Valid ...17
2.1.2.6. Line Valid ..17
2.1.2.7. Status Valid..18
2.1.2.8. Rx Ready..18

2.1.3. Control Options - continuous unstructured data stream ...19
2.1.3.1. Enable ..19
2.1.3.2. Auto Start ...19
2.1.3.3. Auto Stop ...19
2.1.3.4. Flow Control ..20
2.1.3.5. Remote Throttle ...20
2.1.3.6. Tx Overrun...20
2.1.3.7. Tx/Rx Enabled Tri-State ..20

2.2. Transmitter Setup...21
2.3. Transmitter Configuration...21
2.4. Receiver Operation ...22

2.4.1. Data Organization...22
2.4.2. Cable Signals - continuous unstructured data stream ...23

2.4.2.1. Rx Clock ..23
2.4.2.2. Rx Data ..23
2.4.2.3. Rx Enabled...24
2.4.2.4. Frame Valid ...24
2.4.2.5. Line Valid ..25
2.4.2.6. Status Valid..25
2.4.2.7. Rx Ready..26

4
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2.4.3. Control Options - continuous unstructured data stream ...26
2.4.3.1. Enable ..26
2.4.3.2. Rx Overrun ..27
2.4.3.3. Rx Under Run ..27
2.4.3.4. Tx/Rx Enabled Tri-State ..27

2.5. Receiver Setup...27
2.6. Receiver Configuration...28
2.7. Data Transfer Issues ...28

2.7.1. Tx vs. Rx Defaults ..28
2.7.2. I/O Abort Requests ...28
2.7.3. I/O Data Buffers ...28
2.7.4. General DMA Parameters ..29
2.7.5. DMA Based I/O Requests ..30
2.7.6. PIO Threshold ..30
2.7.7. I/O Timeout ..30
2.7.8. I/O Data Transfer Modes..31

2.7.8.1. DMA (Manual) ..31
2.7.8.2. Demand Mode DMA ...32

2.7.9. FIFO Almost Levels ...32
2.7.10. Flow Control...33
2.7.11. Direct Register Access..33

2.8. Event Notification ...33
2.8.1. Event Callback..33

2.8.1.1. Interrupt Notification Callback ..34
2.8.1.2. I/O Completion Notification Callback ...34

2.8.2. Event Waiting...34

3. Macros.. 35
3.1. API Version Number ..35
3.2. Common Parameter Assignment Values ..35
3.3. Discrete Data Type Options ...36
3.4. I/O Status Fields..37
3.5. Maximum Number of Open Handles ..38
3.6. Parameter Access “Which” Bits ..38
3.7. Registers...39

3.7.1. GSC Registers ..40
3.7.2. PLX PCI9080 PCI Configuration Registers ...40
3.7.3. PLX PCI9080 Feature Set Registers...41
3.7.4. PLX PCI9656 PCI Configuration Registers ...43
3.7.5. PLX PCI9656 Feature Set Registers...44

3.8. Version Data Selectors..46

4. Data Types ... 47
4.1. Discrete Data Types ..47
4.2. hpdi32_callback_func_t..47
4.3. Status Values ...47

5
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

5. Functions.. 49
5.1. hpdi32_api_status()...49
5.2. hpdi32_board_count() ..50
5.3. hpdi32_close()..51
5.4. hpdi32_config()..51
5.5. hpdi32_gpio_mod() ...53
5.6. hpdi32_gpio_read() ...54
5.7. hpdi32_gpio_write() ..55
5.8. hpdi32_init() ..55
5.9. hpdi32_io_wait()..56
5.10. hpdi32_irq_wait()..57
5.11. hpdi32_open()..59
5.12. hpdi32_read() ..60
5.13. hpdi32_reg_mod() ...61
5.14. hpdi32_reg_read()...62
5.15. hpdi32_reg_write()..63
5.16. hpdi32_reset()..64
5.17. hpdi32_status_text()..65
5.18. hpdi32_version_get()...66
5.19. hpdi32_write() ...67

6. Configuration Parameters.. 70
6.1. Parameter Macros ..70

6.1.1. Parameter Definitions ...70
6.1.2. Value Definitions..70
6.1.3. Service Definitions ...70

6.1.3.1. Device Handle: h..70
6.1.3.2. Which Bits: w ..71
6.1.3.3. Set Value: s ..71
6.1.3.4. Get Value: g ...71

6.2. Cable Parameters..71
6.2.1. Cable Parameter: Clock State ...71
6.2.2. Cable Parameter: Command Mode...72
6.2.3. Cable Parameter: Command State ..72

6.3. FIFO Parameters ..73
6.3.1. FIFO Parameter: Almost Level ..73
6.3.2. FIFO Parameter: Reset ...74
6.3.3. FIFO Parameter: Size ...74
6.3.4. FIFO Parameter: Status ..75
6.3.5. FIFO Parameter: Transfer Size...75

6.4. I/O Parameters ..76
6.4.1. I/O Parameter: Abort ..77
6.4.2. I/O Parameter: Aborted ..77

6
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.4.3. I/O Parameter: Buffer Pointer...78
6.4.4. I/O Parameter: Buffer Size ...78
6.4.5. I/O Parameter: Callback Argument ..79
6.4.6. I/O Parameter: Callback Function ..79
6.4.7. I/O Parameter: Data Size ..80
6.4.8. I/O Parameter: DMA Channel Select ...80
6.4.9. I/O Parameter: DMA Control Mode...81
6.4.10. I/O Parameter: DMA Priority ...82
6.4.11. I/O Parameter: Mode ..82
6.4.12. I/O Parameter: Overlap Enable...83
6.4.13. I/O Parameter: PIO Threshold ..83
6.4.14. I/O Parameter: Single Cycle ...84
6.4.15. I/O Parameter: Status..85
6.4.16. I/O Parameter: Timeout ..85

6.5. Interrupt Parameters..86
6.5.1. Interrupt Parameter: Callback Argument..86
6.5.2. Interrupt Parameter: Callback Function..87
6.5.3. Interrupt Parameter: Enable..87
6.5.4. Interrupt Parameter: State...88
6.5.5. Interrupt Parameter: Trigger Configuration..88

6.6. Miscellaneous Parameters..89
6.6.1. Miscellaneous Parameter: Board Jumpers..90
6.6.2. Miscellaneous Parameter: Favor Tx ...90
6.6.3. Miscellaneous Parameter: Features ..90
6.6.4. Miscellaneous Parameter: GSC Register Mapping...91
6.6.5. Miscellaneous Parameter: GSC Register Mapping Pointer ..92
6.6.6. Miscellaneous Parameter: PLX Register Mapping...92
6.6.7. Miscellaneous Parameter: PCI Bus Width..93
6.6.8. Miscellaneous Parameter: Strict Arguments...93
6.6.9. Miscellaneous Parameter: Strict Configuration..93
6.6.10. Miscellaneous Parameter: Tx/Rx Tri-State...94

6.7. Receiver Parameters...94
6.7.1. Receiver Parameter: Rx Enable ..95
6.7.2. Receiver Parameter: Rx Overrun..95
6.7.3. Receiver Parameter: Row Count ..95
6.7.4. Receiver Parameter: State...96
6.7.5. Receiver Parameter: Status Count ..96
6.7.6. Receiver Parameter: Rx Under Run ...96

6.8. Transmitter Parameters ...97
6.8.1. Transmitter Parameter: Auto Start..97
6.8.2. Transmitter Parameter: Auto Stop ..98
6.8.3. Transmitter Parameter: Tx Clock Divider ..98
6.8.4. Transmitter Parameter: Tx Enable..99
6.8.5. Transmitter Parameter: Flow Control ...99
6.8.6. Transmitter Parameter: Line Valid Off Count ..100
6.8.7. Transmitter Parameter: Line Valid On Count...100
6.8.8. Transmitter Parameter: Tx Overrun..101
6.8.9. Transmitter Parameter: Remote Throttle ..101
6.8.10. Transmitter Parameter: Remote Throttle State ...102
6.8.11. Transmitter Parameter: Tx State...102
6.8.12. Transmitter Parameter: Status Valid Count ..102
6.8.13. Transmitter Parameter: Status Valid Mirror ...103

Document History ... 104

7
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Table of Figures
Figure 1 A depiction of the HPDI32 Transmitter. ...14
Figure 2 A simple continuous unstructured data stream cable configuration. ...15
Figure 3 Tx Data is synchronized with Tx Clock. ...16
Figure 4 The Tx Enabled signal reflects the transmitter enable state (default configuration).16
Figure 5 The Tx Ready signal reflects the Tx FIFO empty state...17
Figure 6 The Frame Valid signal reflects the data transmission process. ..17
Figure 7 The Line Valid signal reflects valid transmit data being presented at the cable interface.............................18
Figure 8 The Status Valid signal reflects valid status data being presented at the cable interface.18
Figure 9 The receiving device can drive the Rx Ready signal to control data flow. ...19
Figure 10 A depiction of the HPDI32 Receiver...22
Figure 11 A simple continuous unstructured data stream cable configuration. ...23
Figure 12 Rx Data is synchronized with Rx Clock..24
Figure 13 The Rx Enabled signal reflects the receiver enable state (default configuration).24
Figure 14 The Frame Valid signal reflects the data reception process. ...25
Figure 15 The Line Valid signal reflects valid transmit data being presented at the cable interface...........................25
Figure 16 The Status Valid signal reflects valid status data being presented at the cable interface.26
Figure 17 The receiver drives the Tx Ready signal to control data flow. ..26

8
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

1. Introduction
This reference manual applies to SDK release version 5.0.0.

1.1. Purpose

The purpose of this document is to describe the Application Programming Interface to the HPDI32 Software
Development Kit. This software provides the interface between “Application Software” and the HPDI32 board. The
interface provided by the SDK is based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description
API Application Programming Interface (This is sometimes used synonymously with SDK or API

Library.)
DMA Direct Memory Access
DMDMA Demand Mode DMA
GPIO General Purpose Input/Output
GSC General Standards Corporation
PCI Peripheral Component Interconnect
PIO Programmed I/O
PMC PCI Mezzanine Card
SDK Software Development Kit (This is sometimes used synonymously with API or API Library.)

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition
API Buffer A physically contiguous block of memory allocated via the API.
API Library This refers to the library implementing the application level HPDI32 interface. (This is

sometimes used synonymously with SDK or API.)
Application This refers to user mode processes.
Application
Buffers

These are memory buffers allocated and maintained entirely by the application, and which are
used for reading data from and writing data to the HPDI32’s FIFOs.

Device Driver This refers to the driver executable component of the HPDI32 driver package.
Driver This refers to the device driver, which runs under control of the operating system.
PLX This refers to the company PLX Technology, Inc., who is the supplier of the PCI bridge chip

used on the HPDI32.
Rx This is a general reference to the receiver portion of the board. This includes reception of data

over the cable, either to the FIFOs or from GPIO, data I/O read operations from the receive
FIFO, and any and all associated settings.

Tx This is a general reference to the transmitter portion of the board. This includes transmission of
data over the cable, either from the FIFOs or from GPIO, data I/O write operations to the
transmit FIFO, and any and all associated settings.

1.4. Installation

Installation instructions for the SDK are provided in separate, operating system specific setup guides.

9
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

1.5. Application Programming Interface

The SDK API is defined in the four header files listed below. These C language headers are C++ compatible. The
only header that need be included by HPDI32 applications is hpdi32_api.h. The API consists of macros, data
types, function calls and parameter definitions. These are described in other sections of this document. The headers
define numerous items in addition to those described in this document. These additional items are provided without
documentation. All software components of the API begin with a prefix of HPDI32 or GSC (both appear with upper
and lower case letters). The table below indicates where to look for any particular item’s definition.

File Name Description
hpdi32_api.h This header contains the bulk of the API, including function calls, data types and numerous

macros. All items defined here include the prefix “HPDI32” or “hpdi32”.
gsc_common.h This header contains status definitions, a few data type definitions and a variety of macros.

All items defined here have a prefix of “GSC” or “gsc”.
gsc_pci9080.h This header contains register definitions for the PCI9080, which is the PCI interface chip

used on HPDI32s with 32-bit PCI interfaces. All items defined here have a prefix of “GSC”
or “gsc” and include “9080”.

gsc_pci9656.h This header contains register definitions for the PCI9656, which is the PCI interface chip
used on HPDI32s with 64-bit PCI interfaces. All items defined here have a prefix of “GSC”
or “gsc” and include “9656”.

1.6. Software Overview

The software interface to the HPDI32 consists of a Device Driver and an API Library; the primary components of
the SDK. The Device Driver operates under control of the operating system and must be loaded and running in order
to access any installed HPDI32 devices. The interface provided by the API Library is based on the board’s
functionality and is organized around the HPDI32’s set of main hardware features. The general categories are as
follows and permit access to and manipulation of virtually every feature available on the board.

• General Access Services (API Status, Version Numbers, Board Count, Open, Close, …)

• Cable Interface Configuration

• FIFO Configuration

• Data Input and Output Configuration

• General Purpose Input and Output Configuration

• Interrupt Configuration

• Other Miscellaneous Configuration

• Register read and write operations

• Receiver Configuration

• Transmitter Configuration

All HPDI32 features are individually accessible via a generalized configuration service. For each parameter, as
appropriate, the API includes a set of support macros. These include setting options (i.e. defaults and acceptable
values), quick access retrieval macros, and quick access manipulation macros. All are described later in this
document.

10
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

1.6.1. Software Architecture

An application communicates with an HPDI32 using the driver and library described briefly above. Any number of
applications may make simultaneous use of the library and each use is totally independent, unless specifically
designed to do otherwise. Each instance provides access to at most 32 different HPDI32 devices. The diagram below
describes the components and how they fit together.

Application This is any application written to communicate with one or more HPDI32 devices using the
driver and library provided in the SDK.

API Library This library presents an HPDI32 feature based interface to applications wishing to
communicate with HPDI32 devices.

Device Driver The driver provides access to HPDI32 devices.

HPDI32 This refers to any number of installed HPDI32 devices.

NOTE: While multiple applications can gain access to the same device, this is discouraged since
the driver maintains resources and settings per device rather than per application or device handle.

1.7. Hardware Overview

The HPDI32 is a high-performance 32-bit parallel digital I/O interface board. The host side connection is PCI based
and is either 32-bit or 64-bit according to the model ordered. The external I/O interface varies per model ordered.
The board is capable of transmitting or receiving data at up to 200 Mbytes per second over an external I/O interface,
depending on the model ordered. Onboard transmit and receive FIFOs of up to 128k data values each, buffer transfer
data between the PCI bus and the cable interface. This allows the HPDI32 to maintain maximum bursts on the cable
interface (at least up to the depth of the FIFOs) independent of the PCI bus interface. The onboard FIFOs can also be
used to buffer data between the cable interface and the PCI bus to maintain a sustained data throughput for real-time
applications.

The HPDI32 offers a half-duplex external I/O interface. The board can either transmit or receive data, but it cannot
do both simultaneously. In addition to the 32 synchronous data I/O lines, the external interface includes a set of
configurable flow control signals. Some of these can also be configured as discrete I/O. The board accommodates a
wide range of applications. This range extends from sending or receiving relatively small blocks of data on demand,
to sending or receiving large continuous streams of data for an extended period. Once a data link is established, the
data is transferred to/from host memory by simply writing to or reading from the onboard FIFOs. The board has an
advanced PCI interface engine, which provides for increased data throughput via DMA.

NOTE: PCI form factor boards with a 32-bit PCI interface can be used interchangeably in 64-bit
PCI slots, and vise-versa. However, the performance improvements associated with the 64-bit PCI
interface can be achieved only when a 64-bit board is used in a 64-bit slot.

1.8. Code Samples

All of the code samples in this manual are included in the hpdi32_dsl library along with their C source files. The
examples given are notably simplistic, but are provided to illustrate use rather than accomplishment of broader tasks.

1.9. Performance Factors

The HPDI32 is designed for high performance data transfer. In many instances the form factor, the cable clock rate
and the external interface transceivers are dictated by the application. The performance variables that remain are the
PCI Bus width and the FIFO sizes. If the application doesn’t mandate the PCI bus width, then going with an
HPDI32 with a 64-bit bus has the potential for better performance and/or higher bus utilization efficiency. The peak

11
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

transfer rates across the PCI bus are 528MB/S for the 64-bit PCI bus and 132MB/S for the 32-bit bus (64-bits @
66MHz vs. 32-bits @ 33MHz). Actual performance can be drastically different for many reasons. Otherwise, the
remaining performance variable is the FIFO size. As FIFO sizes increase, so do throughput rates. In many cases a
32-bit board with larger FIFOs outperforms 64-bit boards with smaller FIFOs. The processor board the HPDI32 is
plugged into, and its supporting chip set, also have significant affects on performance.

1.10. Reference Material

The following reference material may be of particular benefit in using the HPDI32 and this SDK. The specifications
provide the information necessary for an in-depth understanding of the specialized features implemented on this
board.

• The applicable HPDI32 User Manual from General Standards Corporation.

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. (for 32-bit
PCI interface boards) *

• The PCI9656 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. (for 64-bit
PCI interface boards) *

* PLX data books are available from PLX at the following location.

PLX Technology Inc.
870 Maude Avenue
Sunnyvale, California 94085 USA
Phone: 1-800-759-3735
WEB: http://www.plxtech.com/

12
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2. Operation
The purpose of this section is to provide information on the operation of the HPDI32 and the API. This is not
intended to be comprehensive. It is intended to give a basic understanding of the board and the software while
addressing some issues relating to their use.

2.1. Transmitter Operation

The transmitter is that portion of the HPDI32 responsible for sending data out over the cable interface. The
transmitter consists of numerous hardware features that operate under control of the SDK and the application. The
hardware portion includes a clock, data FIFOs, firmware registers, control logic, and cable signal transceivers. The
SDK portion consists of function calls, parameter identifiers, and parameter values. Together these components
permit applications to feed data to the transmitter, and give applications control over how the transmitter controls
data flow out the cable interface. An overall depiction is given in Figure 1. Some general guidelines for using the
transmitter are as follows. Each of these steps is further explained in subsequent paragraphs.

1. Identify the basic nature of the data’s organization; continuous stream or a sequence of frames.

2. Identify the cable signals needed, how each will be used, and how each will operate.

3. Configure the cable signals according to how each will be used.

4. Configure the cable signal parameters so that each signal has the desired operating characteristics.

5. Identify how overall data flow will be started and stopped; remote, local (automatic and/or manual).

6. Configure the device according to how overall data flow will be started and stopped.

7. Configure the I/O write parameters.

8. Enable the transmitter.

9. Write data to the device.

10. As appropriate, perform any manual steps to start or stop data flow.

13
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Tx/Rx Enabled Tri-State

Cable CommandsTx Overrun

Remote Throttle

Flow Control

Auto Stop

Auto Start

Enable

Data
hpdi32_write()

Oscillator Tx Clock Divider

Tx FIFO

Control Logic

Rx Ready
(Remote Throttle Input)

Status Valid

Line Valid

Frame Valid

Tx Ready
(Tx FIFO Empty Status)

Tx Enabled

Tx Data

Tx Clock

C5

C4

C1

C2

C3

C0

On Count/Valid Data Out

Flow

Pause

Enabled

Disabled
Tx FIFO is Empty

Tx FIFO Has Data
Transmitting

Not Transmitting

Off Count/No Data Out

On Count/Valid Status Out

Mirror

Data is clocked out on the rising edge.

No Status Out

Figure 1 A depiction of the HPDI32 Transmitter.

2.1.1. Data Organization

The HPDI32 transmitter supports two basic data organization schemes; a structured st of frames divided into
es the ove ll data stream into a series

 may be preceded by a fixed time
ata is transmitted. In the unstructured format, data appears on the cable when it is available for
 delay. By far, most HPDI32 applications have employed an unstructured data stream. For this

gnal can be ignored

smitter. The easiest way to do this is to configure the unused signals as general
nal configuration is described below.

ream
ralines, and an unstructured continuous data stream. The structured format divid

of data frames, with each frame further divided into a series of data lines. Each line
delay in which no d
transmission without
reason the cable signal descriptions that follow assume the use of an unstructured data stream.

2.1.2. Cable Signals - continuous unstructured data stream

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for
GPIO. The Tx Clock and Tx Data signals are always required. The Frame Valid signal is needed while the Line
Valid and Status valid signals can be ignored or used for GPIO. If the remote device will be controlling data flow,
then the Rx Ready signal must be used as the Remote Throttle input. Otherwise the Rx Ready si
or used as GPIO. The Tx Enabled signal can be used to indicate when the transmitter is enabled, if desired, or it can
be ignored or used as GPIO. Also, the Tx Ready signal can be used to indicate when the transmitter has data, if
desired, or it too can be ignored or used as GPIO.

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 2. This
configuration uses the Tx Clock, Tx Data and Frame Valid signals, while all of the other transmitter signals are
unused. Even in this simplest configuration the unused signals must be configured, though they are configured so
that they are unused by the tran
purpose inputs. Sig

14
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 2 A simple continuous unstructured data stream cable configuration.

2.1.2.1. Tx Clock

The Tx Clock output signal is the clock that synchronizes the transmitter logic and which clocks data out the cable
interface. This clock is derived from the on-board oscillator, which is fed through the Tx Clock Divider. If the
divider is zero, then the Tx Clock frequency equals the on-board oscillator frequency. Otherwise the Tx Clock
frequency is governed by the formula FTxC = FOsc / (Div * 2). In the formula, FTxC is the Tx Clock
frequency, FOsc is the on-board oscillator frequency, and Div is the Tx Clock vider value. The Tx Clock signal is

isabled the signal is not
driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19.

The Tx Clock
Divider” on page 98. The divider can most easily be set using the utility macro

signals are synchronized with the Tx Clock to transmit 32-bits of parallel data. The transmitter
on Tx Clock’s rising edge. See Figure 3. The transmitter hardware has a 32-bit data path,

 Di
driven on the cable interface only when the transmitter is enabled. When the transmitter is d

Clock Divider is configurable. For details on setting the divider refer to “Transmitter Parameter: Tx

HPDI32_TX_CLOCK_DIVIDER__SET(h,s). In the macro, h is the device handle obtained from
hpdi32_open() (page 59). Also, s is the divider value to apply and is limited to the range zero to 0xFFFF. A
return value of GSC_SUCCESS indicates that the operation was successful. Using the above formula with a 20MHz
on-board oscillator, a divider value of two will produce a Tx Clock frequency of 5MHz. Likewise, a divider of ten
will result in a 1MHz Tx Clock.

2.1.2.2. Tx Data

The Tx Data output
clocks out the data
including the FIFOs and the cable transceivers. When the source data is less than 32-bits wide, it is aligned with the
D0 bit and passed through the transmitter as full 32-bit data words. When the source data is 8-bits wide it appears on
cable signals D0 through D7. The upper 24 data signals can be ignored, though they are driven by the transmitter.
When the source data is 16-bits wide it appears on cable signals D0 through D15. The upper 16 data signals can be
ignored, though they are driven by the transmitter. The Tx Data signals are driven on the cable interface only when
the transmitter is enabled. When the transmitter is disabled the signals are not driven by the HPDI32. For enabling
and disabling the transmitter, refer to “Enable” on page 19.

15
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 3 Tx Data is synchronized with Tx Clock.

The cable data size is configurable. For details refer to “I/O Parameter: Data Size” on page 80. The data size can
most easily be set via the utility macros HPDI32_IO_DATA_SIZE__TX_32/16/8(h) to specify the data size
as 32, 16 or eight bits, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page
59). A return value of GSC_SUCCESS indicates that the operation was successful.

2.1.2.3. Tx Enabled

The Tx Enabled output signal reflects the enabled state of the transmitter. This signal is not required for Flow
Control of continuous unstructured data streams so applications may instead configure it as GPIO so that it is
ignored by the transmitter. As a Flow Control signal, Tx Enabled is driven high when the transmitter is enabled and
is driven low when disabled (see the note below for alternation operation). The signal changes state as the
transmitter is enabled or disabled and is not synchronized with Tx Clock. Refer to Figure 4. For enabling and
disabling the transmitter, refer to “Enable” on page 19.

Figure 4 The Tx Enabled signal reflects the transmitter enable state (default configuration).

NOTE: An alternative option configures Tx Enabled so that it is tri-stated when the transmitter is
disabled. Refer to “Tx/Rx Enabled Tri-State” on page 20.

The Tx Enabled signal refers to the Cable Command 5 signal when configured to operate in its Flow Control mode.

2.1.2.4. Tx Ready

required for Flow

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__TE_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Tx Enabled), a general purpose input, a general purpose output driven low, or a general purpose
output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59).
A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can
be ignored altogether, configure it as a general purpose input.

The Tx Ready output signal reflects the availability of data from the transmitter. This signal is not
Control of continuous unstructured data streams so applications may instead configure it as GPIO so that it is
ignored by the transmitter. As a Flow Control signal, Tx Ready is driven high when the Tx FIFO is empty and is
driven low when the Tx FIFO has data. Refer to Figure 5. The signal state changes are not synchronized with Tx
Clock. The Tx Ready signal is driven on the cable interface only when the transmitter is enabled. When the
transmitter is disabled the signal is not driven by the HPDI32. For enabling and disabling the transmitter, refer to
“Enable” on page 19.

16
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 5 The Tx Ready signal reflects the Tx FIFO empty state.

The Tx Ready signal refers to the Cable Command 4 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__TR_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Tx Ready), a general purpose input, a general purpose output driven low, or a general purpose output
driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59). A
return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be
ignored altogether, configure it as a general purpose input.

2.1.2.5. Frame Valid

ne Valid and Status The Frame Valid output signal reflects the activity of the data transmission process. When the Li
Valid signals are not used for Flow Control, then Frame Valid effectively reflects valid transmit data being
presented at the cable interface. The Frame Valid signal is required for Flow Control of continuous unstructured data
streams so applications must not configure it as GPIO. As a Flow Control signal, Frame Valid is driven high when
the transmission process is active and is driven low when the transmission process is idle. Refer to Figure 6. The
signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Frame Valid signal is driven
on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not driven
by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19.

Figure 6 The Frame Valid signal reflects the data transmission process.

The Frame Valid signal refers to the Cable Command 0 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__FV_FC/IN/LOW/ to set the mode to
Flow Control (Frame Valid), a general purpose input, a general purpose output driven

HI(h)
 low, or a general purpose

o put driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59).
onfigure the signal so that it can

ut
A return value of GSC_SUCCESS indicates that the operation was successful. To c
be ignored altogether, configure it as a general purpose input.

2.1.2.6. Line Valid

The Line Valid signal output reflects valid transmit data being presented at the cable interface. This signal is not
required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so
that it is ignored by the transmitter. As a Flow Control signal, Line Valid is driven high when valid transmit data is
presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure
7. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Line Valid signal is
driven on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not
driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19.

17
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 7 The Line Valid signal reflects valid transmit data being presented at the cable interface.

The Line Valid signal refers to the Cable Command 1 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily

macros HPDI32_CABLE_COMMAND_MODE__LV_FC/IN/LOW/HI(h) to set the mode to
alid), a general purpose input, a general purpose output driven low, or a general purpose output

not
required for Flow Control of continuous unstructured data streams so applications should

be set via the utility
Flow Control (Line V
driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59). A
return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be
ignored altogether, configure it as a general purpose input. When configured for Flow Control, the Line Valid timing
must be configured. For details refer to “Transmitter Parameter: Line Valid On Count” (page 100) and “Transmitter
Parameter: Line Valid Off Count” (page 100). The operation of Line Valid is also affected by the configuration of
the Status Valid signal (see the next subsection).

2.1.2.7. Status Valid

The Status Valid output signal reflects valid status data being presented at the cable interface. This signal is
 configure it as GPIO so

he transmitter. As a Flow Control signal, Status Valid is driven high when valid status data is
presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure
that it is ignored by t

8. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Status Valid signal is
driven on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not
driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19.

Figure 8 The Status Valid signal reflects valid status data being presented at the cable interface.

The Status Valid signal refers to the Cable Command 2 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__SV_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Status Valid), a general purpose input, a general purpose output driven low, or a general purpose
output dr age 59).
A return
be ignor hen configured for Flow Control, the Status Valid

. For details refer to “Transmitter Parameter: Status Valid Count” (page 102) and
tus Valid Mirror” (page 103). The configuration of the Status Valid signal has an affect

iven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (p
 value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can
ed altogether, configure it as a general purpose input. W

signal must be configured
“Transmitter Parameter: Sta
on the Line Valid signal (see the previous subsection).

2.1.2.8. Rx Ready

The Rx Ready input signal may be used by receiving devices to pause the flow of data from the HPDI32 transmitter.
This signal is optional for Flow Control of continuous unstructured data streams so applications may instead
configure it as GPIO so that it is ignored by the transmitter. As a Flow Control signal, Rx Ready is driven high to
permit data flow and is driven low to pause data flow (see below for additional information). Refer to Figure 9. The

18
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

signal is synchronized with Tx Clock such that state changes are clocked in on the clock’s rising edge. The Rx
Ready input driven by the e HPDI32 transm signal is receiving device, and not by th itter.

Figure 9 The receiving device can drive the Rx Ready signal to control data flow.

ptions are discussed from the perspective of sending data via a continuous,

sily be enabled and disabled via the utility macros
HPDI32_TX_ENABLE__YES(h) and HPDI32_TX_ENABLE__NO(h), respectively (see “Transmitter
Paramet (page
59). A re f GSC_SUCCESS indicates that the operation was successful.

atically initiate data transmission as data is being written (see hpdi32_write()on page 67).
The Auto Start feature uses the “Flow Control” enable option (page 20) to initiate data transmission. If Auto Start is
disa
the “Rem tion (page 20). Auto Start can most easily be enabled and disabled via the utility macros
HPDI32_TX_AUTO_START__YES(h) and HPDI32_TX_AUTO_START__NO(h), respectively (see
“Transm the device handle obtained from
hpdi32_open() (page 59). A return value of indicates that the operation was successful.

2.1.3.3. Auto Stop

This control option is available on current firmware versions, and should always be disabled

The Rx Ready signal refers to the Cable Command 3 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RR_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Rx Ready), a general purpose input, a general purpose output driven low, or a general purpose output
driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59). A
return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be
ignored altogether, configure it as a general purpose input. When configured for Flow Control, the transmitter must
be configured to utilize Rx Ready. Otherwise, the transmitter will ignore the Rx Ready input. For additional details
refer to “Remote Throttle” on page 20.

2.1.3. Control Options - continuous unstructured data stream

The following transmitter control o
unstructured data stream.

2.1.3.1. Enable

This option is used to enable and disable the transmitter. When enabled, the transmitter is able to send data out over
the cable interface, and will do so according to related control options. That is, the transmitter will send data when
directed to do so. The related control options are discussed below. When disabled, the transmitter is unable to
transmit data over the cable interface. If data is being transmitted at the time the transmitter becomes disabled, then
data transmission will stop. The transmitter can most ea

er: Tx Enable” on page 99). In the macros, h is the device handle obtained from hpdi32_open()
turn value o

2.1.3.2. Auto Start

This control option is used to tell the API to automatically begin data transmission over the cable interface when
data is written to the HPDI32. If this option is enabled and the transmitter is enabled (see “Enable” on page 19), then
the API will autom

bled, then data flow must be controlled either manually via the “Flow Control” option (page 20) or remotely via
ote Throttle” op

itter Parameter: Auto Start” on page 97). In the macros, h is
GSC_SUCCESS

. This option is
presented here for completeness sake only. When the Auto Stop feature is available in firmware, disabling it could
interfere with proper data flow. This option can most easily be enabled and disabled via the utility macros

19
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_TX_AUTO_STOP__YES(h) and HPDI32_TX_AUTO_STOP__NO(h), respectively (see “Transmitter
Parameter: Auto Stop” on page 98). In the macros, h is the device handle obtained from hpdi32_open() (page

2.1.3.4. Flow Control

This opt interface. If the transmitter
is enabled (see “Enable” on page 19) and data is in the Tx FIFO (see hpdi32_write()on page 67), then data
tran
option i ption can most easily be used to start and stop data flow
HPDI32_TX_FLOW_CONTROL__START(h) and HPDI32_TX_FLOW_CONTROL__STOP(h), respectively
(see r
hpdi32 page 59). A return value of GSC_SUCCESS indicates that the

es should generally not be used at the same time.

2.1. .

This opt
enabled, e transmit o either
permit or sible for the receiving device to pause
data
appro i
HPDI32_TX_REMOTE_THROTTLE__ENABLE(h) and HPDI32_TX_REMOTE_THROTTLE__DISABLE(h),
resp v ros, h is the device handle
obtained from hpdi32_open() (page 59). A retu CESS indicates that the operation was

This con here for
com Tx FIFO when it was
alre or when applications
use - ode option (page 81). Otherwise, the API
prev s ort the overflow condition and clear the
con macro
HPDI32_TX_OVERRUN__GET(h,g) e value
retu s occurred. An overflow can most easily
be c In the macros, h is the device handle
obta A return value of
GSC_SUCCESS

2.1.3.7. Tx/Rx Enable

This tion abled” signal (page 16) is driven when the transmitter is disabled. Ordinarily,
the a when the transmitter is disabled. With this control option however, the signal

59). A return value of GSC_SUCCESS indicates that the operation was successful.

ion is used for local, manual control to permit or pause data flow over the cable

smission over the cable interface will begin when this option is enabled. Data transmission will pause when this
s disabled. This o via the utility macros

 “T ansmitter Parameter: Flow Control” on page 99). In the macros, h is the device handle obtained from
_open() (operation was successful.

NOTE: This option operates in parallel with the “Remote Throttle” option (page 20). These two
featur

3.5 Remote Throttle

ion configures the transmitter to use or not use the “Rx Ready” cable signal (page 18). If this option is
 and the “Rx Ready” signal is configured for Flow Control, then th ter will use that signal t

pause data transmission over the cable interface. This makes it pos
 transfer as needed. When properly configured, the receiving device must drive the “Rx Ready” signal

pr ately to affect the flow of data. This option can most easily be enabled and disabled via the utility macros

ecti ely (see “Transmitter Parameter: Remote Throttle” on page 101). In the mac
rn value of GSC_SUC

successful.

NOTE: For the remote throttling feature to function properly this option must be enabled and the
“Rx Ready” signal (page 18) must be configured for Flow Control. Otherwise, the remote
throttling feature will not operate properly.

NOTE: This option operates in parallel with the “Flow Control” option (page 20). These two
features should generally not be used at the same time.

2.1.3.6. Tx Overrun

trol option is available via the API, though it is rarely needed or used. This option is presented
pleteness sake only. This option is used to report cases where data has been written to the
ady full. This circumstance can occur only when applications write directly to the Tx FIFO
non Demand Mode DMA (page 82) with the Manual DMA Control M
ent the Tx FIFO from being overfilled. This option can both rep

dition. This option can most easily be used to query for an overflow via the utility
 (see “Transmitter Parameter: Tx Overrun” on page 101). If th

rned for g equals HPDI32_TX_OVERRUN_YES, then an overflow ha
leared via the utility macro HPDI32_TX_OVERRUN__CLEAR(h).
ined from hpdi32_open() (page 59), and g is the value reported for a query.

 indicates that the operation was successful.

d Tri-State

op controls how the “Tx En
sign l is driven all the time, even

20
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

can be tri-stated when the transmitter is disabled. The signal’s state when the transmitter is disabled can most easily
be tri-stated or driven low via the utility macros HPDI32_MISC_TX_RX_TRI_STATE__YES(h) and
HPDI32_MISC_TX_RX_TRI_STATE__NO(h), respectively (see “Miscellaneous Parameter: Tx/Rx Tri-State”
on page 94). In the macros, h is the device handle obtained from hpdi32_open() (page 59). A return value of
GSC_SUCCESS indicates that the operation was successful.

NOTE: This option affects both the “Tx Enabled” signal (page 16) and the “Rx Enabled” signal
(page 24).

2.2. Transmitter Setup

The below outlines the basic steps needed to setup the HPDI32 for transmission to a receiving device. Follow these
simple steps to help establish communications between the HPDI32 as a transmission device and a remote data
reception device.

1. Configure the HPDI32 for data transmission as outlined in the following subsection. This includes enabling
the transmitter.

or data reception operations.

ould now be ready to receive data.

smitter to

macros (page 89).

5. Configure the I/O Parameters, which can be done using the many macros (page 76).

he Transmitter Parameters, which can be done using the many HPDI32_TX_XXX() macros
nabling the transmitter is generally a very last step.

red data to the device. Refer to hpdi32_write() on page 67.

2. Configure the remote device as needed f

3. The remote device sh

4. Initiate data transmission from the HPDI32 as appropriate.

2.3. Transmitter Configuration

The below guidelines give an overview of the programming steps needed to configure the HPDI32 tran
send data out over the cable interface.

1. Return the API and the device to a known state by calling hpdi32_init() (page 55). This places the
API and the HPDI32 in the same state it was in when first opened.

2. Configure the Miscellaneous Parameters, which can be done using the many HPDI32_MISC_XXX()

3. Configure the Cable Parameters, which can be done using the many HPDI32_CABLE_XXX() macros
(page 71).

4. Configure the FIFO Parameters, which can be done using the many HPDI32_FIFO_XXX() macros (page
73).

HPDI32_IO_XXX()

6. Configure t
(page 97). E

7. Configure the Interrupt Parameters, which can be done using the many HPDI32_IRQ_XXX() macros
(page 86).

8. Write the desi

21
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2.4. Receiver Operation

The receiver is that portion of the HPDI32 responsible for receiving data in from the cable interface. The receiver
consists of numerous hardware features that operate under control of the SDK and the application. The hardware
portion includes data FIFOs, firmware registers, control logic, and cable signal transceivers. The SDK portion
consists of function calls, parameter identifiers, and parameter values. Together these components permit
applications to retrieve data from the receiver as it is captured over the cable interface. An overall depiction is given
in Figure 10. Some general guidelines for using the receiver are as follows. Each of these steps is further explained
in subsequent paragraphs.

1. Identify the basic nature of the data’s organization; continuous stream or a sequence of frames.

2. Identify the cable signals needed, how each will be used, and how each will operate.

3. Configure the cable signals according to how each will be used.

4. Configure the cable signal parameters so that each signal has the desired operating characteristics.

entify if and how overall data flow will be permitted or paused.

 the device.

5. Id

6. Configure the device according to how overall data flow will be permitted or paused.

7. Configure the I/O read parameters.

8. Enable the receiver.

9. Read data from

Figure 10 A depiction of the HPDI32 Receiver.

2.4.1. Data Organization

The HPDI32 receiver supports two basic data organization schemes; a structured stream of frames divided into lines,
and an unstructured continuous data stream. The structured format divides the overall data stream into a series of
data frames, with each frame further divided into a series of data lines. In the unstructured format, data is captured
without regard to such boundaries. By far, most HPDI32 applications have employed an unstructured data stream.
For this reason the cable signal descriptions that follow assume the use of an unstructured data stream.

22
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2.4.2. Cable Signals - continuous unstructured data stream

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for
GPIO. The Rx Clock and Rx Data signals are always required. The Frame Valid signal is needed while the Line
Valid and Status valid signals can be ignored or used for GPIO. If the remote device can be paused, then the Rx
Ready signal may be used as the Remote Throttle output. Otherwise the Rx Ready signal can be ignored or used as
GPIO.

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 11. This
configuration uses the Rx Clock, Rx Data and Frame Valid signals, while all of the other receiver signals are
unused. Even in this simplest configuration the unused signals must be configured, though they are configured so

nfigur the unused signals as general purpose that they are unused by the receiver. The easiest way to do this is to co
inputs. Signal configuration is described below.

e

Figure 11 A simple continuous unstructured data stream cable configuration.

2.4.2.1. Rx Clock

The Rx Clock input signal is the clock that synchronizes the receiver logic and which clocks data in
interface. The Rx Clock must be provided by the remote transmitting device. The input is ignored whe

from the cable
n the receiver

cluding the FIFOs and the cable transceivers. When the
source data is less than 32-bits wide, it is aligned with the D0 bit and passed through the receiver as full 32-bit data

 data is 8-bits wide it appears on cable signals D0 through D7. The upper 24 data signals are
recorded, but can be ignored. When the source data is 16-bits wide it appears on cable signals D0 through D15. The

is disabled and must be driver when the receiver is enabled. For enabling and disabling the receiver, refer to
“Enable” on page 26.

2.4.2.2. Rx Data

The Rx Data input signals are synchronized with the Rx Clock to record 32-bits of parallel data. The receiver clocks
in the data on Rx Clock’s falling edge. The transmitting device clocks out the data on the clock’s rising edge. See
Figure 12. The receiver hardware has a 32-bit data path, in

words. When the source

upper 16 data signals are recorded, but can be ignored. The Rx Data signals are ignored when the receiver is
disabled and must be driver when the receiver is enabled. For enabling and disabling the receiver, refer to “Enable”
on page 26.

23
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 12 Rx Data is synchronized with Rx Clock.

The cable data size is configurable. For details refer to “I/O Parameter: Data Size” on page 80. The data size can
most easily be set via the utility macros HPDI32_IO_DATA_SIZE__RX_32/16/8(h) to specify the data size
as 32, 16 or eight bits, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page
59). A return value of GSC_SUCCESS indicates that the operation was successful.

2.4.2.3. Rx Enabled

The Rx Enabled outp
of continuous unstru

ut signal reflects the enabled state of the receiver. This signal is not required for Flow Control
ctured data streams so applications may instead configure it as GPIO so that it is ignored by the

receiver. As a Flow Control signal, Rx Enabled is driven high when the receiver is enabled and is driven low when
disabled (see the note below for alternation operation). The signal changes state as the receiver is enabled or
disabled and is not synchronized with Rx Clock. Refer to Figure 13. For enabling and disabling the receiver, refer to
“Enable” on page 26.

Figure 13 The Rx Enabled signal reflects the receiver enable state (default configuration).

eneral purpose output driven low, or a general purpose
output driven high, respectively. In the macros, is the device handle obtained from hpdi32_open() (page 59).

ssful. To configure the signal so that it can
be ignored altogether, configure it as a general purpose input.

input signal reflects the activity of the data reception process. When the Line Valid and Status

NOTE: An alternative option configures Rx Enabled so that it is tri-stated when the receiver is
disabled. Refer to “Tx/Rx Enabled Tri-State” on page 27.

The Rx Enabled signal refers to the Cable Command 6 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RE_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Rx Enabled), a general purpose input, a g

h
A return value of GSC_SUCCESS indicates that the operation was succe

2.4.2.4. Frame Valid

The Frame Valid
Valid signals are not used for Flow Control, then Frame Valid effectively reflects valid receive data being available
at the cable interface. The Frame Valid signal is required for Flow Control of continuous unstructured data streams
so applications must not configure it as GPIO. As a Flow Control signal, Frame Valid is driven high when the
reception process is active and is driven low when the reception process is idle. Refer to Figure 14. The signal is
synchronized with Rx Clock. Frame Valid should change state on the clock’s rising edge as it is clocked in on the
clock’s falling edge. The Frame Valid signal is ignored when the receiver is disabled and must be driver when the
receiver is enabled. For enabling and disabling the receiver, refer to “Enable” on page 26.

24
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Figure 14 The Frame Valid signal reflects the data reception process.

The Frame Valid signal refers to the Cable Command 0 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__FV_FC/IN/LOW/HI(h) to set the mode to

id), a general purpose input, a general purpose output driven low, or a general purpose
output driven high, respectively. In the macros, is the device handle obtained from (page 59).
Flow Control (Frame Val

h hpdi32_open()
A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can
be ignored altogether, configure it as a general purpose input.

2.4.2.5. Line Valid

The Line Valid input signal reflects valid receive data being presented at the cable interface. This signal is not
required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so
that it is ignored by the receiver. As a Flow Control signal, Line Valid is driven high when valid transmit data is
presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure
15. The signal is synchronized with Rx Clock. Line Valid should change state on the clock’s rising edge as it is
clocked in on the clock’s falling edge. The Line Valid signal is igno

r is e
red when the receiver is disabled and must be

driver when the receive nabled. For enabling and disabling the receiver, refer to “Enable” on page 26.

Figure 15 The Line Valid signal reflects valid transmit data being presented at the cable interface.

The Line Valid signal refers to the Cable Command 1 signal when configured to operate in its Flow Control mode.
For deta easily
be set vi macros HPDI32_CABLE_COMMAND_MODE__LV_FC/IN/LOW/HI(h) to set the mode to
Flow Control (Line Valid), a general purpose input, a general purpose output driven low, or a general purpose output

 the macros, h is the device handle obtained from hpdi32_open() (page 59). A
return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be

The
required ed data streams so applications should

ils on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most
a the utility

driven high, respectively. In

ignored altogether, configure it as a general purpose input.

2.4.2.6. Status Valid

 Status Valid input signal reflects valid status data being presented at the cable interface. This signal is not
 for Flow Control of continuous unstructur configure it as GPIO so

that it is ignored by the receiver. As a Flow Control signal, Status Valid is driven high when valid status data is
pres
16. The nchronized with Rx Clock and is clocked in on the clock’s falling edge. The Status Valid signal
is ignored when the receiver is disabled and must be driver when the receiver is enabled. For enabling and disabling
the recei

ented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure
signal is sy

ver, refer to “Enable” on page 26.

25
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6 The Status Valid signal reflects valid status data being presented atFigure 1 the cable interface.

The t
For deta refer to “Cable Parameter: Command Mode” on page 72. T
be set via the utility macros to set the mode to
Flow o
output d espectively. In the macros, h is the device handle obtained from hpdi32_open() (page 59).
A return value of indicates that the operation was successful. To configure the signal so that it can
be i

2.4.2.7. Rx Ready

The Rx Ready output signal may be used by the receiver to pause the fl ote transmitting
dev
configur signal, Rx Rea high to
permit data flow and is driven low to pause data flow. Refer to Figure 17. The signal reflects the Rx FIFO Almost
Full t
Ready s n when the receiver is enabled and is tri-stated when the recei ing and
disabling the receiver, refer to “Enable” on page 26.

 Sta us Valid signal refers to the Cable Command 2 signal when configured to operate in its Flow Control mode.
ils on setting the mode he mode can most easily

HPDI32_CABLE_COMMAND_MODE__SV_FC/IN/LOW/HI(h)
 C ntrol (Status Valid), a general purpose input, a general purpose output driven low, or a general purpose

riven high, r
GSC_SUCCESS

gnored altogether, configure it as a general purpose input.

ow of data from the rem
ice. This signal is optional for Flow Control of continuous unstructured data streams so applications may instead

e it as GPIO so that it is ignored by the receiver. As a Flow Control dy is driven

 Sta us. The signal is not synchronized with Rx Clock and changes state as the FIFO fill level changes. The Rx
ignal is drive ver is disabled. For enabl

Figure 17 The receiver drives the Tx Ready signal to control data flow.

t the mode to
Flow Cont general purpose input, a general purp en lo purpose output

he macros, h is the device handle obtained from hpdi32_open() (page 59). A
return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be

The following receiver control options are discussed from the perspective of receiving data via a continuous,

The Rx Ready signal refers to the Cable Command 3 signal when configured to operate in its Flow Control mode.
For details on setting the mode refer to “Cable Parameter: Command Mode” on page 72. The mode can most easily
be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RR_FC/IN/LOW/HI(h) to se

rol (Rx Ready), a ose output driv w, or a general
driven high, respectively. In t

ignored altogether, configure it as a general purpose input.

2.4.3. Control Options - continuous unstructured data stream

unstructured data stream.

2.4.3.1. Enable

This option is used to enable and disable the receiver. When enabled, the receiver is able to capture data from the
cable interface, and will do so according to related control options. That is, the receiver will record data when
directed to do so. The related control options are discussed below. When disabled, the receiver is unable to receive
data over the cable interface. If data is being received at the time the receiver becomes disabled, then data recording
will stop. The receiver can most easily be enabled and disabled via the utility macros
HPDI32_RX_ENABLE__YES(h) and HPDI32_RX_ENABLE__NO(h), respectively (see “Receiver Parameter:

26
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Rx Enable” on page 95). In the macros, h is the device handle obtained from hpdi32_open() (page 59). A return
value of GSC_SUCCESS indicates that the operation was successful.

2.4.3.2. Rx Overrun

This control option is used to capture instances where data is recorded into the Rx FIFO when it is already full. This

g is the value reported for a query. A return

 the Rx FIFO from being read when empty. This option can both report the underflow condition and clear
the con macro
HPDI32 e value
returned n most
easily be os, h is
the devi return
value of

2.4.3.4. Tx/Rx Enabled Tri-State

bled” signal (page 24) is driven when the receiver is disabled. Ordinarily, the

ISC_TX_RX_TRI_STATE__YES(h) and
HPDI32_MISC_TX_RX_TRI_STATE__NO(h), respectively (see “Miscellaneous Parameter: Tx/Rx Tri-State”

can occur only when the receiver is recording data faster than it is being read out by the host. This option can both
report the overflow condition and clear the condition. This option can most easily be used to query for an overflow
via the utility macro HPDI32_RX_OVERRUN__GET(h,g) (see “Receiver Parameter: Rx Overrun” on page 95).
If the value returned for g equals HPDI32_RX_OVERRUN_YES, then an overflow has occurred. An overflow can
most easily be cleared via the utility macro HPDI32_RX_OVERRUN__CLEAR(h) (see page 95). In the macros, h
is the device handle obtained from hpdi32_open() (page 59), and
value of GSC_SUCCESS indicates that the operation was successful.

2.4.3.3. Rx Under Run

This control option is available via the API, though it is rarely needed or used. This option is presented here for
completeness sake only. This option is used to report cases where data has been read from the Rx FIFO when it was
empty. This circumstance can occur only when applications read directly from the Rx FIFO or when applications
use non-Demand Mode DMA (page 82) with the Manual DMA Control Mode option (page 81). Otherwise, the API
prevents

dition. This option can most easily be used to query for an underflow via the utility
_RX_UNDER_RUN__GET(h,g) (see “Receiver Parameter: Rx Under Run” on page 96). If th

 for g equals HPDI32_RX_UNDER_RUN_YES, then an underflow has occurred. An underflow ca
 cleared via the utility macro HPDI32_RX_UNDER_RUN__CLEAR(h) (see page 96). In the macr

ce handle obtained from hpdi32_open() (page 59), and g is the value reported for a query. A
 GSC_SUCCESS indicates that the operation was successful.

This option controls how the “Rx Ena
signal is driven all the time, even when the receiver is disabled. With this control option however, the signal can be
tri-stated when the receiver is disabled. The signal’s state when the receiver is disabled can most easily be tri-stated
or driven low via the utility macros HPDI32_M

on page 94). In the macros, h is the device handle obtained from hpdi32_open() (page 59). A return value of
GSC_SUCCESS indicates that the operation was successful.

NOTE: This option affects both the “Rx Enabled” signal (page 24) and the “Tx Enabled” signal
(page 16).

2.5. Receiver Setup

The below outlines the basic steps needed to setup the HPDI32 for reception from a transmitting device. Follow
these simple steps to help establish communications between the HPDI32 as a reception device and a remote data
transmission device.

1. Configure the remote device as needed for data transmission operations. This includes driving all
appropriate signals that go to the HPDI32.

2. Configure the HPDI32 for data reception as outlined in the following subsection. This includes enabling the
receiver.

27
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

3. The HPDI32 is now ready to receive data, so the HPDI32 application should prepare itself for reception of
data.

erface.

1. ces the

2. XXX()

able Parameters, which can be done using the many HPDI32_CABLE_XXX() macros

e Receiver Parameters, which can be done using the many HPDI32_RX_XXX() macros
abling the transmitter is generally a very last step.

en a device is first opened, all are in their

The API i ped I/O
operation thread.
This mea ster the
abort req

sses and minuses and both can be used by
hpdi32_read() (page 60 i32_write() (page 67) interchangeably. Application Buffers are under
a on control and a ined by malloc() or similar services. This permits an application to have

4. Initiate data transmission from the remote device.

2.6. Receiver Configuration

The below guidelines give an overview of the programming steps needed to configure the HPDI32 receiver to
capture data from the cable int

Return the API and the device to a known state by calling hpdi32_init() (page 55). This pla
API and the HPDI32 in the same state it was in when first opened.

Configure the Miscellaneous Parameters, which can be done using the many HPDI32_MISC_
macros (page 89).

3. Configure the C
(page 71).

4. Configure the FIFO Parameters, which can be done using the many HPDI32_FIFO_XXX() macros (page
73).

5. Configure the I/O Parameters, which can be done using the many HPDI32_IO_XXX() macros (page 76).

6. Configure th
(page 94). En

7. Configure the Interrupt Parameters, which can be done using the many HPDI32_IRQ_XXX() macros
(page 86).

8. Read data from the device. Refer to hpdi32_read() on page 60.

2.7. Data Transfer Issues

2.7.1. Tx vs. Rx Defaults

There are numerous configurable parameters governing data transfer. Wh
default state and permit optimal data transmission, once the transmitter is enabled. While some parameters default to
favor data transmission they are few in number and can easily be configured to favor data reception. These can be
found in hpdi32_api.h by looking for those macros ending in RX_DEFAULT and TX_DEFAULT.

2.7.2. I/O Abort Requests

ncludes the feature of aborting I/O operations. One issue with requesting an abort is that overlap
s occur in the background with threads which may have a priority greater than that of the requesting
ns that the I/O operation, because of its higher priority, may complete before the API is able to regi
uest.

2.7.3. I/O Data Buffers

The API Library supports the use of Application Buffers (application allocated buffers) and API Buffers (the API’s
internally allocated buffers) for I/O operations. Each has plu

) and hpd
re usually obtapplicati

28
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

any number of buffers o
drawback they have thou nly appear to be contiguous, when, in fact, they are actually scattered
throughout physical mem
this is additional overhead when p
because they occupy physically , and therefore don’t require the
overhead during DMA r ugh, is that these may be smaller than desired and the API
s hil
used interchangeably at w
is both readable and writ
be used. DMA based I/O

While use of API Buf ay
dependent. API users are free to u
each I/O direction though, there i e penalty when switching from one type to another. There is
no penalty however when
part of the interface and not the
implement a ping-pong or ring-bu

A ccessed
Size” on page 78 and “I/
(0) and the pointer as NU
request. Since the resourc
size of the allocation ob Buffer Pointer
parameter to get a pointer m
its pointer. Failure to do so is like
buffer.

NOTE: Using Applicati
call because the memory

a
(because the Rx). The amount of overhead imposed
can be reduced u
being processed
are ready for DMA engin

2.7.4. General DMA Parameters

The API Priority
(see “I/O eter: DMA Priority” on page 82,

ndependently and are described below.

e first time it is needed and retain it until directed

s to release it. This parameter should always be set to Static unless
the l
firm e
Miscella
perform

The I/O
either form A Priorities are the same for both I/O directions,

f most any desired size, and they can even exceed the size of physical memory. The
gh is that allocations o
ory. In addition, they can be paged out to the hard disk as needed by the OS. A result of

erforming DMA based I/O. API Buffers, on the other hand, avoid this inefficiency
 contiguous and immovable memory regions

equests. The disadvantage tho
upports only two. (W e each of the two API Buffers is associated with a particular I/O data direction, both can be

ill.) In addition, Application Buffers used for DMA based I/O must reside in memory that
able. This usually means that I/O buffers declared as const or static const cannot
requests will fail if the Application Buffers do not have read/write access.

fers m generally give better performance, overall performance will be application
se whichever type desired and can switch from one to the other as needed. Within
s a small performanc

 switching between the Rx API Buffer and the Tx API Buffer, as the Rx/Tx association is
 implementation. The API Buffers are ideally suited for applications wishing to
ffer type I/O buffering mechanism.

PI Buffers are a via the I/O Buffer Size and I/O Buffer Pointer parameters (see “I/O Parameter: Buffer
O Parameter: Buffer Pointer” on page 78, respectively). Each buffer size starts out at zero
LL. Application must first use the I/O Buffer Size parameter in order to make an allocation
es for these memory regions are much more limited than for malloc() type requests, the
tained may be smaller than asked for. After a size request use the I/O
 to the emory obtained. Each attempt to alter the size demands that the application update

ly to produce a protection fault. When finished, setting the size to zero (0) frees the

on Buffers for DMA based I/O requests imposes system overhead on the
 pages must be prepared for access by the DMA engine. This overhead

may result in d ta transmission pauses (because the Tx FIFO runs empty) or Rx FIFO Overruns
 FIFO fills before data retrieval gets underway
by red cing the size of the I/O requests, which results in fewer memory pages
 at any one time. The overhead can be eliminated by using API Buffers, since they

e use when allocated.

 has two parameters that affect DMA operations. They are I/O DMA Channel Select and I/O DMA
 Parameter: DMA Channel Select” on page 80 and “I/O Param

respectively). Both operate i

DMA channel selection (page 80) is a process the API follows to assign a DMA channel to an I/O operation. (All
HPDI32s have two DMA channels, but both channels don’t always have the same capabilities.) If the selection
parameter is set to Static, then the API will select a channel th
otherwise. This way, the first read (or write) request will take the overhead hit to acquire the channel, and not again
until called for. If set to Dynamic, then the API will select a channel at the beginning of an I/O request and release it
as soon as the request completes. The results is an overhead hit at the beginning of each I/O request to acquire the
channel and an addition overhead hit afterward

app ication will be performing simultaneous* Demand Mode DMA reads and writes on an HPDI32 whose
war supports only a single DMA channel. Otherwise the parameter should be set to Dynamic. If the

neous Features parameter reports that the DMA Channel 1 feature is supported, then the HPDI32 can
bi-directional Demand Mode DMA*.

DMA Priority parameter (page 82) is a factor only when performing simultaneous* reads and writes using
 of DMA. Under these circumstances, if the I/O DM

29
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

eithe
bidirecti
on overa

* Here, s

2.7.5. D

 8,388,606 bytes, or 4,194,303 samples. The API breaks all DMA
requests into smaller requests based on these limits. So, if an application made a request for 8MB using 32-bit
sam
Applicat
particula

pplications in achieving the highest possible efficiencies. The API’s
I/O request size limitation is based on the macro GSC_IO_STATUS_COUNT_MASK, which limits

ly 256MB.

t will be unknown. See “I/O Parameter: Timeout” on page 85.

ve guidelines is with a timeout of zero (0). A timeout of zero tells the API to transfer what
is available right now and return. This is trivial for PIO since it simply returns when no additional data can be

r enabled or disabled, then a rotating priority scheme is adopted. Since the HPDI32 cannot perform
onal data transfer over the cable interface, the setting of this parameter should not have a noticeable affect
ll performance.

imultaneous and bi-directional refer to data transfer over the PCI bus, not the external cable interface.

MA Based I/O Requests

The two DMA engines on the HPDI32 are each limited to transfers of 8,388,607 bytes. That is one byte shy of 8-
megabytes. For 32-bit samples this translates to a transfer limit of 8,388,604 bytes, or 2,097,151 samples. For 16-bit
samples this translates to a transfer limit of

ples, the API would break that into one request for (8M - 4) bytes and another request for four bytes.
ion should therefore consider making DMA requests smaller than, or a multiple of the size limit for the
r sample size in use.

NOTE: The DMA engine limitations do not restrict the size of the I/O requests that applications
may make of the API. These limitations apply only to the API’s processing of such requests and
are noted here only to assist a

requests to approximate

2.7.6. PIO Threshold

Both forms of DMA based I/O require a certain amount of overhead for setup, maintenance and shutdown. For large
requests this is a small price to pay for dramatic performance gains. For smaller requests however DMA could
actually be slower than using the PIO mode. To help maximize performance, particularly in cases when DMA
requests may very in size, the I/O PIO Threshold parameter handles an automatic switchover to PIO. The switchover
has no performance penalty and operates by using PIO mode when I/O requests are at or below the configured level.
See “I/O Parameter: PIO Threshold” on page 83.

2.7.7. I/O Timeout

In general the timeout settings should be made so that they expire only when something has gone wrong (see
exception below). This is not critical with PIO, but it is with DMA. With PIO transfers, a timeout has no
consequence except to cause the API to transfer no additional data. In this case no data is lost and an exact
accounting of the amount of data transferred is accurately maintained. With DMA transfers, a timeout results in the
DMA engine aborting the transfer midstream. For the HPDI32 this means that the amount of data that was
successfully transferred in that request is unknown. With Non-Demand Mode DMA, whether Automatic or Manual,
since they tend to complete very quickly, there is little chance of a timeout. For example, a 128K sample request
should complete in as little as 5µs, making it unlikely that a timeout will occur midstream. With Demand Mode
DMA the chances of a timeout during the transfer are much more likely. This is because transfers can last for very,
very long periods. No matter which DMA form is used, if a timeout is encountered, the amount of data transferred in
that reques

The exception to the abo

transferred. However, DMA transfers occur in the background and individual, smaller transfers occur based upon
the FIFO fill level. This may result in inefficient use of DMA, but it does observe the zero timeout exception.
Otherwise most DMA transfers would always timeout since the timeout check occurs just as the DMA is started.

NOTE: Applications should avoid setting the timeout limit to zero (0) when using any form of
DMA. Doing so may result is inefficient use of DMA and it may be noticeable slower than
expected.

30
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2.7.8. I/O Data Transfer Modes

The API Library offers three data transfer modes. Each has its pros and cons, which are described briefly below. For
additional information refer to “I/O Parameter: Mode” on page 82.

Mode Description
This mode uses repetitive register accesses to perform transfers and is capable of transfer
rates over 20MB/s.
Pros: It is the most reliable mode offered. It is well suited for any size I/O request.

This mode can be used with 8-bit, 16-bit and 32-bit data. This mode should
never return a failure status for valid requests.

PIO

Cons: It is very inefficient.
This mode uses non-Demand Mode DMA, which transfers data without regard to the
FIFO’s content. This mode also has the I/O DMA Control Mode parameter set to
Automatic. While the actual transfers are performed blindly, the API guarantees data
integrity by examining the FIFOs and breaking the request into smaller, appropriately
sized chunks. See “I/O Parameter: DMA Control Mode” on page 81.
Pros: This is the DMA option least likely to encounter an I/O timeout. It is well suited

for any size I/O request. See note below. This mode can be used wi

DMA (Automatic)

th 8-bit, 16-
bit and 32-bit data.

Cons: It uses DMA inefficiently due to making multiple smaller transfers. If an I/O
timeout is encountered, the amount of data may be more than the amount
reported. See note below. This mode could return a failure status, depending on
system or HPDI32 resources.

This mode uses non-Demand Mode DMA, which transfers data without regard to the
FIFO’s content. This mode also has the I/O DMA Control Mode parameter set to
Manual. Because the data is transferred blindly, the application is responsible for
maintaining data integrity by making requests that won’t overrun or under run the
respective FIFOs. See “I/O Parameter: DMA Control Mode” on page 81.
Pros: This is less likely to encounter an I/O timeout than Demand Mode DMA. It is

best suited for I/O requests not exceeding the size of the respective FIFO. See
note below. This mode can be used with 8-bit, 16-bit and 32-bit data.

DMA (Manual)

Cons: This requires the most effort on the part of the application. If there is an I/O
timeout, the amount of data transferred is unknown. See note below. This mode
could return a failure status, depending on system or HPDI32 resources.

This uses the DMA engine’s Demand Mode DMA option, which performs the transfer
according to the respective FIFO’s fill level.
Pros: This is the most efficient mode offered, especially for very large transfers.

Demand Mode DMA

Cons: If there is an I/O timeout, the amount of data transferred is unknown. See note
below. This mode could return a failure status, depending on system or HPDI32
resources.

NOTE: If an I/O timeout period expires while the DMA engine is performing a transfer, the
transfer is aborted and the amount of data transferred will be unknown.

2.7.8.1. DMA (Manual)

This refers to the DMA I/O mode with the Manual DMA Control Mode setting. Refer to “I/O Parameter: Mode” on
page 82 and “I/O Parameter: DMA Control Mode” on page 81.

For write operations, maximum efficiency can generally be achieved when the below conditions are met. The
general purpose of these conditions is to make it possible to maintain continuous data transmission over a given time
period in the most efficient manner possible.

31
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

1. Use the transmit FIFO’s Almost Full status as a stimulus to queue additional data for subsequent write
operations. The amount of data that needs to be queued is generally a function of the data transfer rate, the

o make the data available for queuing, and application, driver and
system overhead. Since the Almost Full status doesn’t affect data transfer into the Tx FIFO, the fill level

rict application needs.

ata s ed

ce lm
pplication nee

possible to assi l system efficiency. In contrast however, the status level should be set high
ing empty before the write operation begins, thus preventing a

y FIFO.

e it possible to maintain continuous data reception over a given time
p m icie sible.

eque a

Almost Full st
plic ee t in

overall system efficiency. In contrast however, the status level should be set high enough to prevent the
oming full before the read operation begins, thus preventing loss of data or a halt to data

reception due to a full FIFO.

r millions of data values in a
single call. For write operations, the data transfer rate into the Tx FIFO peaks while the FIFO is not Almost Full.

hile the FIFO is Almost Full the transfer rate slows slightly (to maintain reliability). No data transfer occurs while
the FIFO is Full. For read operations, the data transfer rate out of the Rx FIFO peaks while the FIFO is not Almost
Empty. While the FIFO is Almost Empty the transfer rate slows slightly (to maintain reliability). No data transfer
occurs while the FIFO is Empty. Refer to “I/O Parameter: Mode” on page 82.

2.7.9. FIFO Almost Levels

The FIFO Almost Levels and the FIFO status bits they drive basically have two uses; event notification and data
flow control. For event notification the levels should be configured as close to the empty or full condition being
monitored as possible. In general, with variable or large sized I/O requests, performance increases as the setting
levels are reduced. This is because it affords fewer transfers and larger transfer sizes (things run more efficiently).
This however is highly application dependent. For data flow control, things are less variable. For data transmission
using Demand Mode DMA, data movement into the Tx FIFO slows slightly when the Almost Full level is reached.
This helps insure data integrity near the Tx FIFO Full state. For data reception, data movement out of the Rx FIFO
slows when the fill level hits the Rx FIFO Almost Empty state. This helps insure data integrity near the Rx FIFO
Empty state. In addition, the Rx FIFO Almost Full state drives the cable’s Rx Ready signal. This gives the remote
device time to halt data transfer before an Rx FIFO Overrun occurs. Refer to “FIFO Parameter: Almost Level” on
page 73.

period of time over which the rate is to be maintained, the amount of data to be transmitted in the allotted
period, the amount of time needed t

can be set st ly according to

2. Use t
d

he tran
ubmitt

smit FIFO’s Almost Empty status as a stimulus to perform a write operation. The amount of
in each request should be the size of the transmit FIFO minus the Almost Empty value.

Sin
according to a

 the A ost Empty status doesn’t affect Tx FIFO data transfer, the fill level can be set strictly
ds. It is desirable though to set the Almost Empty status level as low as

st in overal
enough to prevent the FIFO from becom
lapse in data transmission due to an empt

For read operations, maximum efficiency can generally be achieved when the following conditions are met. The
general purpose of these conditions is to mak

eriod in the ost eff nt manner pos

1. Use t
r

he rece
sted in e

ive FIFO’s Almost Full status as a stimulus to perform a read operation. The amount of data
ch request should be the size of the receive FIFO minus the Almost Full value. Since the
atus doesn’t affect Rx FIFO data transfer, the fill level can be set strictly according to
ds. It is desirable though to set the Almost Full status level as low as possible to assisap ation n

FIFO from bec

2.7.8.2. Demand Mode DMA

This mode is intended for data transfers that exceed the size of the respective FIFO and uses the FIFO fill levels to
control data movement during transfers between the host and the HPDI32. While the FIFOs can hold up to 128K
data values, Demand Mode DMA reads and writes may typically entail requests fo

W

32
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

2.7.10. Flow Control

ge 67). If however, the Auto Start parameter is disabled, then
rol parameter (page 20) to forcibly start and stop the flow of data over the cable.
to the I/O Timeout parameter setting and must supply data at a rate sufficient to

 Ready signal to permit or inhibit data transfer. With this setup applications accommodate transmission
b the transmitter th pdi32_write() (page 67). Here to, applications must factor this
c fficient to prevent the Tx FIFO
fr

y the HPDI32. Applications essentially need only
enable the receiver then call (page 60) to retrieve collected data. Application responsibility here

 Full is the halt to data flow since the HPDI32 applies this to the cable’s Rx Ready
signal, thus directing the remote device to stop supplying data. If the application cannot read data fast enough, then
e flow will pa ll be lost.

The not ol of receive data flow. To implement this type
c
manipulate t t or cease data flow. As in the
above scenarios, applications must account for this operation when setting the I/O Timeout parameter.

2.7.11. Direct Register Access

While direct a rmware register can contribute to a performance gain, there is virtually no gain
to an ap urposes, even for Non-Demand Mode DMA under Manual operation.
The reas ister access at all times, when possible. This is done automatically for
perform e application disables the Miscellaneous GSC Register Mapping
paramet ion. Refer to
“Miscell Register
Mapping

2.8. Event Notification

The API nclude Interrupt Notification
and I/O ources includes both a callback
mechani n is driven by interrupts generated
by the H t Control Register (HPDI32_ICR). I/O
Complet ts. This applies to both blocking and overlapped
I/O, and the I/O request (i.e. successful transfer or not).

2.8.1. E k

Using th assigned a callback function. Each source can have a
single ca ny source
and in a acks will
be made ents occur. So, for example, if a single callback is assigned to two different interrupts,

For transmit operations, flow control defaults to fully automatic local control. This is achieved by having the Auto
Start parameter enabled (page 19), the Auto Stop parameter disabled (page 19), and the Remote Throttle parameter
disabled (page 20). With this setup applications can send data out the board essentially by just enabling the
transmitter then calling hpdi32_write() (pa
applications must use the Flow Cont
Applications must also factor this in
prevent the Tx FIFO from running empty.

For remote control of transmission data flow, the Remote Throttle parameter must be enabled (page 20). Also, the
Rx Ready signal (page 18) must be configured for Flow Control, its default. When this is done the remote device
drives the Rx

y enabling
onfigurati

en calling h
eout parameteon into the I/O Tim

om running empty.
r setting and must supply data at a rate su

Local control of receive data flow is handled automatically b
hpdi32_read()

must be to retrieve data at a rate sufficient to prevent the Rx FIFO from running either Full or Almost Full. The
result of the Rx FIFO becoming Full is the probable loss of data due to an Rx FIFO Overrun condition. The result of
the Rx FIFO becoming Almost

ither data use or data wi

HPDI32 does have a cable signal dedicated to local contr
ontrol, an application

hat outpu
 must configure one of the dual function cable signals as GPIO output. Software can then
 as appropriate to command the remote device to commence

ccess to the HPDI32 fi
plication using this feature for I/O p
on is because the API uses direct reg

e reasons and occurs unless thanc
er. If this is done, then direct access is available to neither the API nor the applicat

us Parameter: GSC Register Mapping” on page 91 and “Miscellaneous Parameter: GSCaneo
 Pointer” on page 92.

 Library supports event notification for two sources or types of events. They i
th sCompletion Notification and operate independently. Notification for bo

ificatiosm and a wait mechanism. All are described below. Interrupt Not
e InterrupPDI32 from any of the interrupt sources identified in th

n Notification is associated with completed I/O requesio
occurs no matter the outcome of

vent Callbac

e callback me
back ith

chanism each notification source can be
ll w an application specific value passed as an argument. Callbacks can be assigned to a

n desired. If a given callback is associated with multiple sources, then multiple callbny combinatio
 as the different ev

33
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

then the ion will be called separately for each interrupt, as often as each occurs. Since each source is
associated w ltithreaded operation.
Applicat r a given event must
return be nt callback notification can occur for that same event. The prototype required for all callbacks
is the da c_t (page 47). The three arguments to the callback are each U32 data
types. A cation must cast the values given to their respective types, which are described below. Refer to
“Interrup meter: Callback Function” on page 87 and “Interrupt Parameter: Callback Argument” on page 86.

2.8.1.1. Interru ck

The callbac he following table. The values received during the callback must
be cast a

Argum

callback funct
it ts oh i wn callback context, a thread context, such callbacks must support mu

o reconfigure callbacks during a callback context, but the callback foions are free t
re subsequefo

ta type hpdi32_callback_fun
ppli
t Para

pt Notification Callba

k function arguments are described in t
ccording to the data types specified.

ent Cast Description
arg1 rom hpdi32_open() (page 59). void* This is the device handle received f
arg2 bit for the interrupt that produced the callback. Refer to the

X macros (page 38).
U32 This is the specific “which”

RQ_XXHPDI32_WHICH_I
arg3 tion specific argument. This is the Interrupt Callback Argument U32 This is an applica

parameter.

2.8.1.2. C

The call ceived during the callback must
be cast a

Argum

 I/ ompletion Notification Callback O

back function arguments are described in the following table. The values re
ccording to the data types specified.

ent Cast Description
arg1 void* ce handle received from hpdi32_open() (page 59) This is the devi
arg2 icable I/O status data. Refer to the GSC_IO_STATUS_XXX macros (page

38).
U32 This is the appl

arg3 t. This is the I/O Callback Argument parameter. U32 This is an application specific argumen

2.8.2. E

The wai erates by blocking the calling thread until any one of a number of referenced events
occurs. T s resumed when the first of the referenced events occurs, or when a timeout limit expires,
whichev ber
or comb any
number wait on identical or different events. All are resumed when a referenced event occurs. Refer
to “hpdi “hpdi32_irq_wait()” on page 57.

vent Waiting

ting mechanism op
ead ihe calling thr

 occ s firer ur st. The time limit is passed as an argument to the wait service. Threads can wait on any num
errupts, or either or both I/O directions, but the two sources cannot be combined. Also, inations of int

threads can of
32_io_wait()” on page 56 and

34
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

3. Macros
The HPDI32 API includes the following macros. The headers also contain various other utility type macros, which
are provided without documentation. Parameter support macros are not presented in this subsection. These macros
are described in section 6 beginning on page 70.

3.1. API Version Number

T
number, the API Library version numb
function hpdi32_api_status() (
compatible.

Descrip

his macro defines the version number of the API’s executable interface. It does not refer to the SDK version
er or the Device Driver version number. Applications pass this value to the
page 49), which is used to verify that the application and the library are

Macros tion
HPDI32_API_VERSION This is the API’s overall version number.

3 eter Ass

The below macros define universal valu iven below.

Description

.2. Common Param ignment Values

es understood by all parameters to have special meanings, as g
Any time a parameter assignment request is being carried out, use of these macros as the assignment value will
produce the results given here.

Macros
GSC_DEFAULT Set the para

default mac
meter to its default state/value. This is equivalent to using the explicitly defined
ro for the respective parameter.

GSC_NO_CHANGE Do not cha
model, this

nge the parameter’s state/value. Since parameter access follows a set-then-get
value can be used to achieve a get only operation.

E

h>

{
U32 get;
U32 status;

imeout period to its default.
ig(handle,

 GSC_DEFAULT,

, (long) status);

xample

#include <stdio.

#include "hpdi32_a
#include "hpdi32_d

pi.h"
sl.h"

U32 hpdi32_dsl_io_tx_timeout_reset(void* handle, int verbose)

 // Reset the Tx I/O t

status = hpdi32_conf
 HPDI32_IO_TIMEOUT,

 HPDI32_WHICH_TX,

 &get);

 if (!verbose)
 {
 }

SC_SUCCESS) else if (status == G
 {
 printf("hpdi32_config() failure: %ld\n"
 }
 else

35
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 {
 printf("Tx Timeout: %lu seconds\n", (long) get);
 }

 return(status);
}

Exampl

ve the Tx I/O timeout period without changing it.

I32_IO_TIMEOUT,
HPDI32_WHICH_TX,

 GSC_NO_CHANGE,
 timeout_secs);

if (!verbose)

 else if (status != GSC_SUCCESS)

) status);
 }

else

imeout_secs[0]);

 for the
data typ ns can
disable t

Macro

e

#include <stdio.h>

#include "hpdi32_api.h"
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_io_tx_timeout_get(
 void* handle,
 U32* timeout_secs,
 int verbose)
{
 U32 status;

 // Retrie
 status = hpdi32_config(handle,
 HPD

 {
 }

 {
 printf("hpdi32_config() failure: %ld\n", (long

 {
 printf("Tx Timeout: %lu seconds\n", (long) t
 }

 return(status);
}

3.3. Discrete Data Type Options

The below macros are defined by application code as needed to disable declarations for and size validation
es S8, U8, S16, U16, S32 and U32. The API declares these data types by default, but applicatio
his as needed.

s Description
GSC_DATA_TYPES_CHECK the application defines this macro,

ild
n use

If the API declares the data types and
then the data type sizes will be validated during the application’s bu
process. This macro should only be defined if the compiler i
supports the sizeof() macro during preprocessing.

GSC_DATA_TYPES_NOT_NEEDED
to disable the declarations for these data types.
Applications should define this macro before including hpdi32_api.h

36
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

3.4. I/O Status Fields

T s to the 32- on. The value
r
by looking only at the bits from the I/O status value. All other bits refer to other than the
c

his set of macros applie bit value reported when requesting the status of an I/O operati
eported includes a direction bit, a status field and a count field. The completion status of the operation is obtained

TUS_MASKGSC_IO_STA
ompletion status. The accompanying sample code illustrates how the I/O status could be utilized.

Fields Description
GSC_IO_STATUS_COUNT_MASK This macro applies to the count field, which covers the lower set of status

the number of bytes successfully transferred. This macro also

t. The count is only guaranteed to be accurate when an operation

bits. The count is zero while the operation is in progress and, once ended,
indicates
identifies the maximum number of bytes that can be transferred in a single
I/O reques
completes with all data being successfully transferred.

GSC_IO_STATUS_MASK This macro applies to the I/O completion status field. Apply this mask to

n status values are given in the below table.
the I/O status value (bitwise AND) to get the completion status. Supported
completio

GSC_IO_STATUS_TX If this bit is set then the operation was from a write request to the device. If
not set, then the operation was a read request from the device.

T ple
the overall status with the I/O complet

De

he following defines the I/O com tion status options. These values are obtained by performing a bitwise AND of
ion status mask above.

Macros scription
GSC_IO_STATUS_ABORTED This indicates that the operation ended due to an abort request. This arises

eit
ini The count field may be inaccurate when this status is
rep

her from an application’s explicit abort request, or from a reset or
tialization request.
orted.

GSC_IO_STATUS_ACTIVE Th operation is still in progress. If the status is other than
thi

is indicates that the
s value, then the I/O operation is no longer in progress.

GSC_IO_STATUS_ERROR Th e operation ended due to an error condition, which can
ari
sta

is indicates that th
se for any number of reasons. The count field may be inaccurate when this
tus is reported.

GSC_IO_STATUS_SUCCESS Th
ac s is reported.

is indicates that the operation completed successfully. The count field is
curate when this statu

GSC_IO_STATUS_TIMEOUT Th period lapsed. The
o .

is indicates that the operation ended because the timeout
c unt field may be inaccurate when this status is reported

E

i
sl

o_s

bytes;

// The operation is still active.
bytes = 0;

xample

#include "hpdi32_ap .h"
#include "hpdi32_d .h"

dsl_ilong hpdi32_ tatus_evaluate(U32 io_status)
{
 long
 U32 status = io_status & GSC_IO_STATUS_MASK;

 if (status == GSC_IO_STATUS_ACTIVE)
 {

 }
 else if (status == GSC_IO_STATUS_SUCCESS)
 {

37
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 // No operation has been requested.
 bytes = (long) (io_status & GSC_IO_STATUS_COUNT_MASK);
 }
 else if (status == GSC_IO_STATUS_TIMEOUT)

 // The timeout period lapsed.

 }
else if (status == GSC_IO_STATUS_ERROR)

// There was an error.
// The count may not be accurate.
by

e i TUS_ABORTED)

// The operation was aborted.
// The count may not be accurate.
by

//
by

rn

3

T ned at any one time. All open handles
andles are reused once closed.

 {

 // The count may not be accurate.
 bytes = -1;

 {

 tes = -1;
 }
 els f (status == GSC_IO_STA
 {

 tes = -1;
 }
 else
 {
 Unknown status.
 tes = -1;
 }

 retu (bytes);
}

.5. Maximum Number of Open Handles

his macro defines the maximum number of device handles that can be ope
are unique even if they refer to the same device, though h

Macros Description
GSC_PROCESS_OPEN_MAX This defines the maximum number of open handles.

3.6. Parameter Access “Which” Bits

T t
accessed. T to at they specify the objects which the parameter is to access.
W
For retrieval th last object successfully accessed is retrieved. The bits’ use is explained
a t

p
 m ctionality. These are for reference and usability purposes
er ny particular definition will not
a

_”). This is added to convey to
pec Flow Control and GPIO. The
gn s representing the specific

he table below lists the se
hey are referred

 of selection bits that may be set when a configuration parameter is modified or
 as “which” bits in th

hen appropriate, bits within
 purposes, only

the same category may be bitwise or’d in order to apply the action to multiple objects.
e data for the

long with the parameters tha each is associated with, and appears in subsequent portions of this document.

NOTE: The interru
cable signals which

t related “which” bits include both general and specific definitions for those
ay have dual fun

only and do not ref to different interrupts. In addition, use of a
alter which function lity is active at any particular time.

NOTE: Some of the “which” bit macros end with an underscore (“
users that the res tive cable signals are dual function; data

acrorespective cable si als are also represented by additional m
functionalities.

38
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macros Description
HPDI32_WHICH_AE This specifies the Almost Empty level for the FIFOs. *
HPDI32_WHICH_AF This specifies the Almost Full level for the FIFOs. *
HPDI32_WHICH_COMMAND and 0, which may be either Frame Valid or _0_ This specifies the Cable Comm

GPIO 6. *
HPDI32_WHICH_COMMAND and 1, which may be either Line Valid or _1_ This specifies the Cable Comm

GPIO 0. *
HPDI32_WHICH_COMMAND mmand 2, which may be either Status Valid or _2_ This specifies the Cable Co

GPIO 1. *
HPDI32_WHICH_COMMAND mand 3, which may be either Rx Ready or _3_ This specifies the Cable Com

GPIO 2. *
HPDI32_WHICH_COMMAND ch may be either Tx Ready or _4_ This specifies the Cable Command 4, whi

GPIO 3. *
HPDI32_WHICH_COMMAND_5_ This specifies the Cable Command 5, which may be either Tx Enabled or

GPIO 4. *
HPDI3 led or 2_WHICH_COMMAND_6_ This specifies the Cable Command 6, which may be either Rx Enab

GPIO 5. *
HPDI3 ecifies the Cable Command 0 interrupt that defaults to triggering

when the signal is active. This refers either to the Frame Valid Begin or
 Hig

2_WHICH_IRQ_C0A_ This sp

GPIO 6 h.
HPDI32 if defaults to triggering

 s Frame Valid End or
o

_WHICH_IRQ_C0I_ This spec ies the Cable Command 0 interrupt that
when the ignal is inactive. This refers either to the
GPIO 6 L w.

HPDI32 if er to Line
P

_WHICH_IRQ_C1_ This spec
Valid or G

ies the Cable Command 1 interrupt, whic
IO 0.

h refers eith

HPDI32_WHICH_IRQ_C2_ This specif
Valid or GP

ies the Cable Command 2 interrupt, which refers either to Status
IO 1.

HPDI32_WHICH_IRQ_C3_ This specifies the Cable Command 2 interrupt, wh
Ready or GPIO 2.

ich refers either to Tx

HPDI32_WHICH_IRQ_C4_ This specifies the Cable Command 2 interrupt, which refers either to Rx
Ready or GPIO 3.

HPDI32_WHICH_IRQ_C5_ This specifies the Cable Command 2 interrupt, which refers either to Tx
Enabled or GPIO 4.

HPDI32_WHICH_IRQ_C6_ This specifies the Cable Command 2 interrupt, which refers either to Rx
Enabled or GPIO 5.

HPDI32_WHICH_IRQ_RX_A he Rx FIFO Almost Empty interrupt. E This specifies t
HPDI32_WHICH_IRQ_RX_AF This specifies the Rx FIFO Almost Full interrupt.
HPDI32_WHICH_IRQ_RX_E This specifies the Rx FIFO Empty interrupt.
HPDI32_WHICH_IRQ_RX_F This specifies the Rx FIFO Full interrupt.
HPDI32_WHICH_IRQ_TX_AE This specifies the Tx FIFO Almost Empty interrupt.
HPDI32_WHICH_IRQ_TX_AF This specifies the Tx FIFO Almost Full interrupt.
HPDI32_WHICH_IRQ_TX_E This specifies the Tx FIFO Empty interrupt.
HPDI32_WHICH_IRQ_TX_F This specifies the Tx FIFO Full interrupt.
HPDI32_WHICH_RX This specifies that the receiver is to be accessed, such as the Rx FIFO. *
HPDI32_WHICH_TX This specifies that the transmitter is to be accessed, such as the Tx FIFO. *

* itional
mand 0 is

3

The following tables give the complete set of HPDI32 registers. The tables are divided by register categories. There
are PCI registers which differ slightly between the 32-bit and the 64-bit boards, PLX feature set registers which also

 Other macros are also defined that include other logical combinations or representations of some bits. Add
macros may also be defined u

li
sing alternate representations of the same source. For example, Cable Com

also referred to as Frame Va d and GPIO 6.

.7. Registers

39
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

differ slightly between the 32-bit and the 64-bit boards, and there are GSC firmware based registers. The PCI
registers and the PLX registers are provided by the PCI interface chips used on the HPDI32. Applications have read

T ing table gives the com GSC specific HPDI32 registers. For detailed definitions of these
r HP

tion

access to all registers, but write access only to the GSC firmware registers.

3.7.1. GSC Registers

he follow plete set of
egisters refer to the applicable DI32 User Manual.

Macros Descrip
HPDI32_BCR Board Control Register (BCR)
HPDI32_BSR Board Status Register (BSR)
HPDI32_FDR FIFO Data Register (FDR)
HPDI32_FRR Firmware Revision Register (FRR)
HPDI32_FSR Feature Set Register (FSR)
HPDI32_ICR Interrupt Control Register (ICR)
HPDI32_IELR Interrupt Edge/Level Register (IELR)
HPDI32_IHLR Interrupt High/Low Register (IHLR)
HPDI32_ISR Interrupt Status Register (ISR)
HPDI32_RAR Rx Almost Register (RAR)
HPDI32_RFSR Rx FIFO Size Register (RFSR)
HPDI32_RFWR Rx FIFO Words Register (RFWR)
HPDI32_RLCR ter Register (RLCR) Rx Line Coun
HPDI32_RSCR Rx Status Counter Register (RSCR)
HPDI32_TAR Tx Almost Register (TAR)
HPDI32_TCDR Tx Clock Divider Register (TCDR)
HPDI32_TFSR Tx FIFO Size Register (TFSR)
HPDI32_TFWR Tx FIFO Words Register (TFWR)
HPDI32_TLILCR Tx Line Invalid Length Count Register (TLILCR)
HPDI32_TLVLCR Tx Line Va t Register (TLVLCR) lid Length Coun
HPDI32_TSVLCR Tx Status Valid Length Count Register (TSVLCR)

3 ig

T t hese registers are
p -bit and 64-bit boards.
F

.7.2. PLX PCI9080 PCI Conf uration Registers

he following table gives the se of PCI Configuration Registers available on 32-bit boards. T
resent on 64-bit boards as well and the definitions can be used interchangeably on both 32
or detailed definitions of these registers refer to the PCI9080 Data Book.

Macros Description
GSC_PCI_9080_BAR0 PCI Base Address Register for Memory Accesses to Local, Runtime, and DMA

Registers (PCIBAR0)
GSC_PCI_9080_BAR1 PCI Base Address Register for I/O Accesses to Local, Runtime, and DMA Registers

C(P IBAR1)
GSC_PCI_9080_BAR2 P

(PCIB
CI ses to Local Address Space 0

AR2)
 Base Address Register for Memory Acces

GSC_PCI_9080_BAR3 PCI Base Address Register for Memory Accesses to Local Address Space 1
(PCIBAR3)

GSC_PCI_9080_BAR4 Unused Base Address Register (PCIBAR4)
GSC_PCI_9080_BAR5 Unused Base Address Register (PCIBAR5)
GSC_PCI_9080_BISTR PCI Built-In Self Test Register (PCIBISTR)
GSC_PCI_9080_CCR PCI Class Code Register (PCICCR)
GSC_PCI_9080_CIS P IS Pointer Register (PCICIS) CI Cardbus C
GSC_PCI_9080_CLSR PCI Cache Line Size Register (PCICLSR)
GSC_PCI_9080_CR PCI Command Register (PCICR)

40
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

GSC_PCI_9080_DIDR PCI Device ID Register (PCIDIDR)
GSC_PCI_9080_ERBAR P R) CI Expansion ROM Base Address (PCIERBA
GSC_PCI_9080_HTR PCI Header Type Register (PCIHTR)
GSC_PCI_9080_ILR PCI Interrupt Line Register (PCIILR)
GSC_PCI_9080_IPR PCI Interrupt Pin Register (PCIIPR)
GSC_PCI_9080_LTR PCI Latency Timer Register (PCILTR)
GSC_PCI_9080_MGR PCI Min_Gnt Register (PCIMGR)
GSC_PCI_9080_MLR PCI Max_Lat Register (PCIMLR)
GSC_PCI_9080_REV PCI Revision ID Register (PCIREV)
GSC_PCI_9080_SID PCI Subsystem ID Register (PCISID)
GSC_PCI_9080_SR PCI Status Register (PCISR)
GSC_PCI_9080_SVID P ID) CI Subsystem Vendor ID Register (PCISV
GSC_PCI_9080_VIDR PCI Vendor ID Register (PCIVIDR)

NOTE: The following table gives register identification information for 32-bit HPDI32 boards.
There are some DIO24 variations that identify themselves as members of the HPDI32 product

Register Value Description

family. To distinguish these DIO24 variations from HPDI32s, refer to the Firmware Revision
Registers for the respective DIO24.

GSC_PCI_9080_VIDR 0x10B5 The PCI interface chip as a PLX device.
GSC_PCI_9080_DIDR 0x9080 The PCI interface chip as a PLX PCI9080.
GSC_PCI_9080_S below register value has been assigned by PLX. VID 0x10B5 The
GSC_PCI_9080_SID 0x2400 The device is an HPDI32 family product.

3 r

T s

L e

T ailable on 32-bit boards. These registers
a sed interchangeably on both 32-bit and 64-bit
b on Book.

.7.3. PLX PCI9080 Featu e Set Registers

he following tables give the et of PLX feature set registers available on 32-bit boards.

ocal Configuration Regist rs

he following table gives the
ds

set of PLX Local Configuration Registers av
re present on 64-bit boar as well and the definitions can be u
oards. For detailed definiti s of these registers refer to the PCI9080 Data

Macros Description
GSC_PLX_9080_BIGEND r (BIGEND) Big/Little Endian Descriptor Registe
GSC_PLX_9080_DMCFGA PCI Configuration Address Register for Direct Master to PCI IO/CFG (DMCFGA)
GSC_PLX_9080_DMLBAM Direct Master to PCI Memory (DMLBAM) Local Bus Base Address Register for
GSC_PLX_9080_DMLBAI Direct Master to PCI IO/CFG (DMLBAI) Local Bus Base Address Register for
GSC_PLX_9080_DMPBAM ct Master to PCI Memory (DMPBAM) PCI Base Address Register for Dire
GSC_PLX_9080_DMRR Local Range Register for Direct Master to PCI (DMRR)
GSC_PLX_9080_EROMBA ess Register (EROMBA) Expansion ROM Local Base Addr
GSC_PLX_9080_EROMRR EROMRR) Expansion ROM Range Register (
GSC_PLX_9080_LAS0BA ddress Register (LASOBA) Local Address Space 0 Local Base A
GSC_PLX_9080_LAS0RR r for PCI-to-Local Bus (LASORR) Local Address Space 0 Range Registe
GSC_PLX_9080_LAS1BA l Base Address Register (LAS1BA) Local Address Space 1 Loca
GSC_PLX_9080_LAS1RR to-Local Bus (LAS1RR) Local Address Space 1 Range Register for PCI-
GSC_PLX_9080_LBRD0 Local Address Space 0/Expansion ROM Bus Region Descriptor Register (LBRD0)
GSC_PLX_9080_LBRD1 Local Address Space 1 Bus Region Descriptor Register (LBRD1)
GSC_PLX_9080_MARBR Mode Arbitration Register (MARBR)

41
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Runtime

The follow m ese registers are present
on 64-bit efin be used interchangeably on both 32-bit and 64-bit boards. For

Macros Description

Registers

ing table gives the set of
boards as well and the d

 PLX Runti
itions can

e Registers available on 32-bit boards. Th

detailed definitions of these registers refer to the PCI9080 Data Book.

GSC_PLX_9080_CNTRL S Control, CPI Command Codes, User I/O, Init Control Register
(

erial EEPROM
CNTRL)

GSC_PLX_9080_INTCSR I nterrupt Control/Status Register (INTCSR)
GSC_PLX_9080_L2PDBELL Local-to-PCI Doorbell Register (L2PDBELL)
GSC_PLX_9080_MBOX0 Mailbox Register 0 (MBOX0)
GSC_PLX_9080_MBOX1 Mailbox Register 1 (MBOX1)
GSC_PLX_9080_MBOX2 Mailbox Register 2 (MBOX2)
GSC_PLX_9080_MBOX3 Mailbox Register 3 (MBOX3)
GSC_PLX_9080_MBOX4 Mailbox Register 4 (MBOX4)
GSC_PLX_9080_MBOX5 Mailbox Register 5 (MBOX5)
GSC_PLX_9080_MBOX6 Mailbox Register 6 (MBOX6)
GSC_PLX_9080_MBOX7 Mailbox Register 7 (MBOX7)
GSC_PLX_9080_P2LDBELL PCI-to-Local Doorbell Register (P2LDBELL)
GSC_PLX_9080_PCIHIDR P r (PCIHIDR) CI Permanent Configuration ID Registe
GSC_PLX_9080_PCIHREV PCI Permanent Revision ID Register (PCIHREV)

DMA Registers

The following table gives the set of PLX DMA Registers available on 32-bit boards. These registers are present on
64-bit boards as well and the definitions can be used interchangeably on both 32-bit and 64-bit boards. For detailed

to the PCI9080 Data Book. definitions of these registers refer

Macros Description
GSC_PLX_9080_DMAARB DMA Arbitration Register (DMAARB)
GSC_PLX_9080_DMACSR0 DMA Channel 0 Command/Status Register (DMACSR0)
GSC_PLX_9080_DMACSR1 DMA Channel 1 Command/Status Register (DMACSR1)
GSC_PLX_9080_DMADPR0 nnel 0 Descriptor Pointer Register (DMADPR0) DMA Cha
GSC_PLX_9080_DMADPR1 DMA Channel 1 Descriptor Pointer Register (DMADPR1)
GSC_PLX_9080_DMALADR0 DMA Channel 0 Local Address Register (DMALADR0)
GSC_PLX_9080_DMALADR1 DMA Channel 1 Local Address Register (DMALADR1)
GSC_PLX_9080_DMAMODE0 DMA Channel 0 Mode Register (DMAMODE0)
GSC_PLX_9080_DMAMODE1 DMA Channel 1 Mode Register (DMAMODE1)
GSC_PLX_9080_DMAPADR0 DMA Channel 0 PCI Address Register (DMAPADR0)
GSC_PLX_9080_DMAPADR1 DMA Channel 1 PCI Address Register (DMAPADR1)
GSC_PLX_9080_DMASIZ0 DMA Channel 0 Transfer Size Register (DMASIZ0)
GSC_PLX_9080_DMASIZ1 DMA Channel 1 Transfer Size Register (DMASIZ1)
GSC_PLX_9080_DMATHR DMA Threshold Register (DMATHR)

M

T e hese registers are
p el hangeably on both 32-bit and 64-bit boards.
F e registers refer to the PCI9080 Data Book.

essage Queue Registers

he following table gives the s t of PLX Messaging Queue Registers available on 32-bit boards. T
resent on 64-bit boards as w
or detailed definitions of thes

l and the definitions can be used interc

Macros Description
GSC_PLX_9080_IFHPR Inbound Free Head Pointer Register (IFHPR)
GSC_PLX_9080_IFTPR Inbound Free Tail Pointer Register (IFTPR)

42
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

GSC_PLX_9080_IPHPR Inbo Pointer Register (IPHPR) und Post Head
GSC_PLX_9080_IPTPR Inbound Post Tail Pointer Register (IPTPR)
GSC_PLX_9080_IQP Inbound Queue Port Register (IQP)
GSC_PLX_9080_MQCR Messaging Queue Configuration Register (MQCR)
GSC_PLX_9080_OFHPR Outbound Free Head Pointer Register (OFHPR)
GSC_PLX_9080_OFTPR Outbound Free Tail Pointer Register (OFTPR)
GSC_PLX_9080_OPHPR Outbound Post Head Pointer Register (OPHPR)
GSC_PLX_9080_OPLFIM Outbound Post List FIFO Interrupt Mask Register (OPLFIM)
GSC_PLX_9080_OPLFIS Outbound Post List FIFO Interrupt Status Register (OPLFIS)
GSC_PLX_9080_OPTPR Outbound Post Tail Pointer Register (OPTPR)
GSC_PLX_9080_OQP Outbound Queue Port Register (OQP)
GSC_PLX_9080_QBAR Queue Base Address Register (QBAR)
GSC_PLX_9080_QSR Queue Status/Control Register (QSR)

3 nfig

T et n 64-bit boards. These registers are
p n both 32-bit and 64-bit boards.
F g Book.

Des

.7.4. PLX PCI9656 PCI Co uration Registers

he following table gives a subs of the PCI Configuration Registers available o
resent on 32-bit boards as well a

e re
nd the definitions can be used interchangeably o

or detailed definitions of thes isters refer to the PCI9656 Data

Macros cription
GSC_PCI_9656_BAR0 PCI mory Accesses to Local, Runtime, and DMA

Reg
 Base Address Register for Me
isters (PCIBAR0)

GSC_PCI_9656_BAR1 PCI to Local, Runtime, and DMA Registers
(PC

 Base Address Register for I/O Accesses
IBAR1)

GSC_PCI_9656_BAR2 PCI emory Accesses to Local Address Space 0 Base Address Register for M
(PCIBAR2)

GSC_PCI_9656_BAR3 PCI Base Address Register for Memory Accesses to Local Address Space 1
C(P IBAR3)

GSC_PCI_9656_BAR4 Unused Base Address Register (PCIBAR4)
GSC_PCI_9656_BAR5 Unused Base Address Register (PCIBAR5)
GSC_PCI_9656_BISTR PCI Built-In Self Test Register (PCIBISTR)
GSC_PCI_9656_CCR PCI Class Code Register (PCICCR)
GSC_PCI_9656_CIS PCI Cardbus CIS Pointer Register (PCICIS)
GSC_PCI_9656_CLSR PCI Cache Line Size Register (PCICLSR)
GSC_PCI_9656_CR PCI Command Register (PCICR)
GSC_PCI_9656_DIDR PCI gister (PCIDIDR) Device ID Re
GSC_PCI_9656_ERBAR PCI AR) Expansion ROM Base Address (PCIERB
GSC_PCI_9656_HTR PCI Header Type Register (PCIHTR)
GSC_PCI_9656_ILR PCI Interrupt Line Register (PCIILR)
GSC_PCI_9656_IPR PCI Interrupt Pin Register (PCIIPR)
GSC_PCI_9656_LTR PCI Latency Timer Register (PCILTR)
GSC_PCI_9656_MGR PCI Min_Gnt Register (PCIMGR)
GSC_PCI_9656_MLR PCI Max_Lat Register (PCIMLR)
GSC_PCI_9656_REV PCI Revision ID Register (PCIREV)
GSC_PCI_9656_SID PCI Subsystem ID Register (PCISID)
GSC_PCI_9656_SR PCI Status Register (PCISR)
GSC_PCI_9656_SVID PCI Subsystem Vendor ID Register (PCISVID)
GSC_PCI_9656_VIDR PCI Vendor ID Register (PCIVIDR)

NOTE: The following table gives register identification information for 64-bit HPDI32 boards.

Register Value Description
GSC_PCI_9656_VIDR 0x10B5 The PCI interface chip as a PLX device.

43
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

GSC_PCI_9656_DID The PCI interface chip as a PLX PCI9656. R 0x9656
GSC_PCI_9656_SVID 0x10B5 The below register value has been assigned by PLX.
GSC_PCI_9656_SID 0x2705 The device is an HPDI32 family product.

The following table gives the remaining set of the PCI Configuration Registers available on 64-bit boards. These
registers are not present on 32-bit boards. For detailed definitions of these registers refer to the PCI9656 Data Book.

Macros Description
GSC_PCI_9656_CAP_PTR New Capability Pointer Register (CAP_PTR)
GSC_PCI_9656_HS_CNTL Control Registers (HS_CNTL) Hot Swap
GSC_PCI_9656_HS_CSR Hot Swap Control/Status Register (HS_CSR)
GSC_PCI_9656_HS_NEXT ter (HS_NEXT) Hot Swap Next Capability Pointer Regis
GSC_PCI_9656_PMC Power Management Capabilities Register (PMC)
GSC_PCI_9656_PMCAPID (PMCAPID) Power Management Capability ID Register
GSC_PCI_9656_PMCSR tus Register (PMCSR) Power Management Control/Sta
GSC_PCI_9656_PMCSR_BS MCSR_BSE) E PMCSR Bridge Support Expansions Register (P
GSC_PCI_9656_PMDATA Power Management Data Register (PMDATA)
GSC_PCI_9656_PMNEXT Power Management Next Capability Pointer Register (PMNEXT)
GSC_PCI_9656_VPD_NEXT ter Register (PVPD_NEXT) PCI Vital Product Data Next Capability Poin
GSC_PCI_9656_VPDAD PCI Vital Product Data Address Register (PVPDAD)
GSC_PCI_9656_VPDATA PCI VPD Data Register (PVPDATA)
GSC_PCI_9656_VPDCNTL VPDCNTL) PCI Vital Product Data Control Register (P

3 re

The following tables give the set of PLX feature set registers available on 64-bit boards.

.7.5. PLX PCI9656 Featu Set Registers

Local Configuration Registers

The following table gives a subset of the PLX Local Configuration Registers available on 64-bit boards. These
registers are present on 32-bit boards as well and the definitions can be used interchangeably on both 32-bit and 64-
bit boards. For detailed definitions of these registers refer to the PCI9656 Data Book.

Macros Description
GSC_PLX_9656_BIGEND ian Descriptor Register (BIGEND) Big/Little End
GSC_PLX_9656_DMCFGA PCI Configuration Address Register for Direct Master to PCI IO/CFG (DMCFGA)
GSC_PLX_9656_DMLBAM Local Bus Base Address Register for Direct Master to PCI Memory (DMLBAM)
GSC_PLX_9656_DMLBAI Local Bus Base Address Register for Direct Master to PCI IO/CFG (DMLBAI)
GSC_PLX_9656_DMPBAM PCI Base Address R aster to PCI Memory (DMPBAM) egister for Direct M
GSC_PLX_9656_DMRR Local Range Register for Direct Master to PCI (DMRR)
GSC_PLX_9656_EROMBA Expansion ROM Local Base Address Register (EROMBA)
GSC_PLX_9656_EROMRR Expansion ROM Range Register (EROMRR)
GSC_PLX_9656_LAS0BA Local Address Space 0 Local Base Address Register (LASOBA)
GSC_PLX_9656_LAS0RR Local Address Space 0 Range Register for PCI-to-Local Bus (LASORR)
GSC_PLX_9656_LAS1BA Local Address Space 1 Local Base Address Register (LAS1BA)
GSC_PLX_9656_LAS1RR Local Address Space 1 Range Register for PCI-to-Local Bus (LAS1RR)
GSC_PLX_9656_LBRD0 Local Address Space 0/Expansion ROM Bus Region Descriptor Register (LBRD0)
GSC_PLX_9656_LBRD1 Local Address Space 1 Bus Region Descriptor Register (LBRD1)
GSC_PLX_9656_MARBR Mode Arbitration Register (MARBR)

The following table gives the remaining set of the PLX Local Configuration Registers available on 64-bit boards.
These registers are not present on 32-bit boards. For detailed definitions of these registers refer to the PCI9656 Data
Book.

44
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macros Description
GSC_PLX_9656_ARB PCI Arbiter Control Register (PCIARB)
GSC_PLX_9656_ABTADR PCI Abort Address Register (PABTADR)
GSC_PLX_9656_DMDAC Cycle Upper Address Register (DMDAC) Direct Master PCI Dual Address
GSC_PLX_9656_LMISC1 Local Miscellaneous Control 1 Register (LMISC1)
GSC_PLX_9656_LMISC2 Local Miscellaneous Control 2 Register (LMISC2)
GSC_PLX_9656_PROT_AREA Serial EEPROM Write-Protected Address Boundary Register (PROT_AREA)

Runtime Registers

The following table gives the set of PLX Runtime Registers available on 64-bit boards. These register definitions
c t n both 32-bit and 64-bit HPDI32 boards.

os

an be used in erchangeably o

Macr Description
GSC_PLX_9 M Control, CPI Command Codes, User I/O, Init Control Register 656_CNTRL Serial EEPRO

(CNTRL)
GSC_PLX_9 rol/Status Register (INTCSR) 656_INTCSR Interrupt Cont
GSC_PLX_9 Doorbell Register (L2PDBELL) 656_L2PDBELL Local-to-PCI
GSC_PLX_96 ster 0 (MBOX0) 56_MBOX0 Mailbox Regi
GSC_PLX_9656_MBOX1 Mailbox Register 1 (MBOX1)
GSC_PLX_9656_MBOX2 Mailbox Register 2 (MBOX2)
GSC_PLX_9656_MBOX3 Mailbox Register 3 (MBOX3)
GSC_PLX_9656_MBOX4 Mailbox Register 4 (MBOX4)
GSC_PLX_9656_MBOX5 Mailbox Register 5 (MBOX5)
GSC_PLX_9656_MBOX6 Mailbox Register 6 (MBOX6)
GSC_PLX_9656_MBOX7 Mailbox Register 7 (MBOX7)
GSC_PLX_9656_P2LDBELL PCI-to-Local Doorbell Register (P2LDBELL)
GSC_PLX_9656_PCIHIDR PCI Permanent Configuration ID Register (PCIHIDR)
GSC_PL I I Permanent Revision ID Register (PCIHREV) X_9656_PC HREV PC

DMA Reg

The following table give
on 32-bit wel n both 32-bit and 64-bit boards. For
detailed d s of th

Description

isters

s a subset of the PLX DMA Registers available on 64-bit boards. These registers are present
l and the definitionboards as

efinition
s can be used interchangeably o

ese registers refer to the PCI9656 Data Book.

Macros
GSC_PLX_9656_DMAARB DMA Arbitration Register (DMAARB)
GSC_PLX_9656_DMACSR0 DMA Channel 0 Command/Status Register (DMACSR0)
GSC_PLX_9656_DMACSR1 DMA Channel 1 Command/Status Register (DMACSR1)
GSC_PLX_9656_DMADPR0 DMA Channel 0 Descriptor Pointer Register (DMADPR0)
GSC_PLX_9656_DMADPR1 DMA Channel 1 Descriptor Pointer Register (DMADPR1)
GSC_PLX_9656_DMALADR0 DMA Channel 0 Local Address Register (DMALADR0)
GSC_PLX_9656_DMALADR1 DMA Channel 1 Local Address Register (DMALADR1)
GSC_PLX_9656_DMAMODE0 DMA Channel 0 Mode Register (DMAMODE0)
GSC_PLX_9656_DMAMODE1 DMA Channel 1 Mode Register (DMAMODE1)
GSC_PLX_9656_DMAPADR0 DMA Channel 0 PCI Address Register (DMAPADR0)
GSC_PLX_9656_DMAPADR1 DMA Channel 1 PCI Address Register (DMAPADR1)
GSC_PLX_9656_DMASIZ0 DMA Channel 0 Transfer Size Register (DMASIZ0)
GSC_PLX_9656_DMASIZ1 DMA Channel 1 Transfer Size Register (DMASIZ1)
GSC_PLX_9656_DMATHR DMA Threshold THR) Register (DMA

The follow e remaining set of the P
are not present on 32-bit boards. For detailed definiti ers refer to the PCI9656 Data Book.

ing table gives th LX DMA Registers available on 64-bit boards. These registers
ons of these regist

45
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macros Description
GSC_PLX_9656_DMADAC0 DMA Channel 0 PC egister (DMADAC0) I Dual Address Cycle Upper Address R
GSC_PL PCX_9656_DMADAC1 DMA Channel 1 I Dual Address Cycle Upper Address Register (DMADAC1)

Message

The followi n egisters available on 64-bit boards. These register
definition th 32-b

Macros Description

 Queue Registers

ng table gives the set of PLX Messagi g Queue R
s can be used interchangeably on bo it and 64-bit HPDI32 boards.

GSC_PL und Free Head PX_9656_IFHPR Inbo ointer Register (IFHPR)
GSC_PLX_9656_IFTPR Inbound Free Tail Pointer Register (IFTPR)
GSC_PLX_9656_IPHPR Inbound Post Head Pointer Register (IPHPR)
GSC_PLX_9656_IPTPR Inbound Post Tail Pointer Register (IPTPR)
GSC_PLX_9656_IQP rtInbound Queue Po Register (IQP)
GSC_PLX_9656_MQCR Messaging Queue Configuration Register (MQCR)
GSC_PLX_9656_OFHPR Outbound Free Head Pointer Register (OFHPR)
GSC_PLX_9656_OFTPR Outbound Free Tail Pointer Register (OFTPR)
GSC_PL utbound Post HeadX_9656_OPHPR O Pointer Register (OPHPR)
GSC_PL utbound Post List FX_9656_OPLFIM O IFO Interrupt Mask Register (OPLFIM)
GSC_PL nd Post List FX_9656_OPLFIS Outbou IFO Interrupt Status Register (OPLFIS)
GSC_PL nd Post Tail X_9656_OPTPR Outbou Pointer Register (OPTPR)
GSC_PLX_9656_OQP Outbound Queue Port Register (OQP)
GSC_PL essX_9656_QBAR Queue Base Addr Register (QBAR)
GSC_PLX_9656_QSR Queue Status/Control Register (QSR)

3.8. Ve

This set o esting a versio
macros ar t to the hpdi3
below lists utility macros used to retrieve each of the
h refers to the handle used to access the device, th application buffer where the version string is
recorded, and the s is the size of that buffer.

Macros (Values) Description

rsion Data Selectors

f macros is used when requ
e passed as the id argumen

n number and indicates which version number is desired. The
2_version_get() function (see page 66). The second table
 respective version numbers. In the second table, the argument
e b refers to an

GSC_VERSION_LIBRARY This requests the library’s version number.
GSC_VERSION_DRIVER This requests the driver’s version number.

Macro (Services) Description
HPDI32_VERSION_GET_LIBRARY(h,b,s) This requests the version number for the API Library.
HPDI32_VERSION_GET_DRIVER(h,b,s) This requests the version number for the Device Driver.

46
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

4. Data Types

4.1. Discrete Data Types

The following discrete data types are defined and used by the API. If an HPDI32 application includes other headers

The interface includes the following data types.

which also define these types, then the API can be directed to omit these definitions. This is done by defining the
macro GSC_DATA_TYPES_NOT_NEEDED before including the API header. The alternate definitions must
however define these types as listed in the below table.

Data Type Description
S8 This is an 8-bit signed integer.
U8 This is an 8-bit unsigned integer.
S16 This is a 16-bit signed integer.
U16 This is a 16-bit unsigned integer.
S32 This is a 32-bit signed integer.
U32 a ed integer. This is 32-bit unsign

4.2. hpd callb

This is the q
callbacks p

Definition

typedef void (*hpdi32_callback_func_t)(U32 arg1, U32 arg2, U32 arg3);

Arguments Description

i32_ ack_func_t

 data type re
and I/O Com

uired for all event notification callback functions. This applies both to Interrupt Notification
letion callbacks.

arg1 This is the device handle cast to a U32 data type.
arg2 For Interrup

interrupt. For
t Notification this is the HPDI32_WHICH_XXX bit for the respective
 I/O Completion Notification this is the applicable GSC_IO_STATUS_XXX

status components.
arg3 This is any arbitrary application supplied data value.

4.3. St

This un type lists all possible status values returnable from API service calls. The
enumera on definitions used across all of GSC’s PLX based API Libraries and many
values w using the HPDI32 API Library. The table below gives brief descriptions for
many va ould never be seen with the API. The most common value encountered is
GSC_SU ES

Definitio

Description

atus Values

named enumerated data
ted values represent comm
ill never be encountered when

nd omits those that shlues a
CC S and indicates the request was completed successfully.

n

typedef enum
{
 …
};

Values
GSC_ABORTED An I/O operation was aborted due to a user’s explicit or

quest. implicit re

47
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

G _A ESS_DENIED The operation failed because acc
e

SC CC ess to a device, service or
nied. system resource or service was d

GSC_DMA_CHANNEL_UNAVAILABLE An operation failed because a DMA channel was unavailable.
GSC_FAILED An operation failed in a non-specific manner.
GSC_INIT_FAILURE API Library initialization failed.
GSC_INSUFFICIENT_RESOURCES An operation failed because insufficient OS resources were

available.
GSC_INVALID_API_HANDLE An operation failed because the application supplied an

invalid device handle. API device handles are API specific
resources and are of no meaning to the OS.

GSC_INVALID_DATA An operation failed because invalid data was provided.
GSC_INVALID_VERSION_API API Library initialization failed because the API Library

version was incompatible. This refers either to the API’s
number or the GSC revision level. The version data
be retrieved when this status is seen.

version
can still

GSC_INVALID_VERSION_DRIVER API Library initialization failed because the Device Driver
version was incompatible. This refers either to the driver’s

data
can still be retrieved when this status is seen.
version number or the GSC revision level. The version

GSC_NULL_PARA An operation failed because an argument was NULL. M
GSC_SUCCESS An operation completed successfully.
GSC_THREAD_FA iled because a support

thread could not be started.
ILURE An operation (hpdi32_open()) fa

GSC_TOO_MANY_OPEN_HANDLES An operation (hpdi32_open()) failed because the
application attempted too many simultaneous device
accesses.

GSC_UNSUPPORTED_FUNCTION An operation failed because the application requested a
service that is unsupported or unimplemented.

GSC_WAIT_TIMEOUT An operation completed because a timeout period lapsed.
GSC_WAIT_CANCELED An operation waiting for an ev

usually means the application was term
ent ended prematurely. This

inated while waiting
for the event.

48
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

5. Functions
The HPDI32 API includes the following functions. The SDK interface also includes a number of function style
macro definitions. These macros are described in section 6 beginning on page 70.

5.1. hpdi32_api_status()

This fun f the API Library. This must be the very first call into the
API and river Interface Library and the Device Driver. If the initial
status obtai t CCESS, then only a limited portion of the API is functional. If not fully usable,
then both tained might vary if the
API encou la

Prototype

U32 hpdi32_api_status(U32* stat, U32* arg, U32 api_ver);

on

ction is the entry point to determine the status o
 determines the usability of the API Library, the D

ned is other
 values return

han GSC_SU
ed may be useful in resolving the situation. Thereafter, the status ob
r circumstances. nters irregu

Argument Descripti
stat

must not be N
The API records the current API status here, which can change during use. The pointer

ULL.
arg The API records auxiliary status information here, which can change during use. This

d to the above reported status. The pointer must not be NULL. value should be relate
api_ver This must be the version number of the API the application was written for. If this number

. does not match, then the API is unusable by the application

Return Value Description
GSC_SUCCESS The operation succeeded (the status was retrieved).
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

stdio.h>

l_api_status(int verbose)

atus;

_status(&stat, &arg, HPDI32_API_VERSION);

se)

else

us:\n");

e

#include <

"hpdi32_api.h" #include
#include "hpdi32_dsl.h"

U32 hpdi32_ds
{
 U32 arg;

tat; U32 s
U32 st

status = hpdi32_api

 if (!verbo
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("hpdi32_api_status() failure: %ld\n", (long) status);
 }

 {
 status = stat;
 printf("API Stat

49
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 printf(" Status: 0x%lX\n", (long) stat);
ent: 0x%lX\n", (long) arg);

 return(status);
}

5.2. hpdi32_boar

This function i ent
the API. This service ca

Prototype

U32 hpdi32

ent

 printf(" Argum
 }

d_count()

s the ry point to determine the number of HPDI32 boards installed in the system and accessible to
n be called without requiring access to any particular device.

_board_count(U8* count);

Argum Description
count The API records the number of board at this location. This pointer must not be NULL.

Return Value Description
GSC_SUCCESS succeeded. The operation
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

i.h"

nt(U8* count, int verbose)

count(count);

", (long) status);

 Board Count: %d\n", (int) count[0]);

nclude "hpdi32_ap#i

#include "hpdi32_dsl.h"

2 hpdi32_dsl_board_couU3

{
 U32 status;

rd_ status = hpdi32_boa

 if (!verbose)
 {

}
 else if (status != GSC_SUCCESS)
 {

d\n printf("hpdi32_board_count() failure: %l
 }
 else

{
 printf("HPDI32
 }

 return(status);
}

50
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

5.3. hpdi32_clo

This fun try point to close a connection to an open HPDI32 board. The function should only be called
after a s evice via hpdi32_open() and must not be used after being closed.
Before r to the same state produced when originally opened.

se()

ction is the en
uccessful open of the respective d

ning, the API returns the deviceetur

Prototype

U32 hpdi32_close(void* handle);

Argument Description
handle This is an API device handle obtained via hpdi32_open().

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

<

e "
#include "

dsl id* handle, int verbose)
{

 status = hpdi32_close(handle);

 if (!verbose)

C_SUCCESS)

ose() failure: %ld\n", (long) status);

ed: 0x%lX\n", (long) handle);

5.4. hp ig()

This fun eter where all pertinent data is given as separate
arguments. ce via
hpdi32

Prototyp

include stdio.h>

includ hpdi32_api.h"
hpdi32_dsl.h"

U32 hpdi32_

_close(vo

U32 status;

 {
}

 else if (status != GS
 {

 printf("hpdi32_cl
 }

else
 {

ice Clos printf("Dev
}

return(status);

}

di32_conf

ction is the en
T

try point to accessing an individual param
he function should only be called after a successful open of the respective devi

_open().

e

U32 hpdi32_config(
 void* handle,

51
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 U32 parm,

n

 U32 which,
 U32 set,

U32* get);

Argument Descriptio
handle This is an API device handle obtained via hpdi32_open().
parm This specifies the parameter to be accessed.
which This is any number or combination of parameter specific HPDI32_WHICH_XXX bits that

specify object(s) the parameter is applied to. Many parameters ignore this argument. When
it is used, a value of zero is acceptable, and merely specifies to access none of the
corresponding objects.

set This is the value to apply to the parameter being accessed. The universal value
altered and must be used when the

purpose of the access is to get the current setting. Some parameters are read-only, in which
ment is ignored.

GSC_NO_CHANGE specifies that the parameter not be

case this argu
get After applying any changes to the parameter, its current setting is recorded here. When the

“which” argument specifies multiple objects, only the last accessed is recorded here. This
argument may be NULL, in which case the current setting is not retrieved.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "hpdi32_api.h"
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_io_tx_timeout_set(
 void* handle,

s,

 = hpdi32_config(handle,
_TIMEOUT,

 HPDI32_WHICH_TX,

erbose)

 printf("hpdi32_config() failure: %ld\n", (long) status);
}

 {
 printf("Tx Timeout:\n");

 U32 timeout_
int verbose)

{
U32 get;

 U32 status;

 status
 HPDI32_IO

 timeout_s,

 &get);

 if (!v
 {
 }

else if (status != GSC_SUCCESS)
 {

 else

52
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 printf(" Set: 0x%lX\n", (long) timeout_s);
 printf(" Get: 0x%lX\n", (long) get);

io_mod()

This fun able signals configured for General
Purpose I l igured as GPIO are affected. All non-GPIO cable signals are unaffected. The
function s e 32_open().

Prototype

 }

 return(status);
}

5.5. hpdi32_gp

ction is the entry point to performing a read-modify-write on the c
/O. Only cab

b
e signals conf

hould only called after a successful open of the respective device via hpdi

U32 hpdi32_gpio_mod(void* handle, U8 value, U8 mask);

Argument Description
handle This is an API device handle obtained via hpdi32_open().
value This is the desired value to apply. Bits which are outside the GPIO range or which

correspond to non-GPIO cable signals are ignored.
mask This specifies

“value” bit
 the “value” bits to modify. If a bit is set here, then the corresponding
will be applied. The remaining “value” bits are ignored. Bits which are

e or which correspond to non-GPIO cable signals are ignored. outside the GPIO rang

rn Value Description Retu
GSC_SUCCESS The operation succeeded.
Otherwise … A error status reflecting the problem encountered. GSC_XXX

Exampl

hpdi32_api.h"

= 0x1;
s;

}

 printf("hpdi32_gpio_mod() failure: %ld\n", (long) status);

 printf("GPIO Modify:\n");
 printf(" Value: 0x%lX\n", (long) value);
 printf(" Mask: 0x%lX\n", (long) mask);

e

#include <stdio.h>

#include "
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_gpio_0_mod(void* handle, U8 value, int verbose)
{
 U8 mask

tatu U32 s

s = hpdi32_gpio_mod(handle, value, mask); statu

 if (!verbose)

{

 else if (status != GSC_SUCCESS)
 {

 }
 else
 {

53
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 }

5.6. hpd o

This func poi he value from the cable signals configured for General Purpose I/O. Only
cable sign ll non-GPIO cable signals are returned as zero. The function
should on .

(void* handle, U8* value);

 return(status);
}

i32_gpi _read()

tion is the entry nt to reading t
als configured as G

er a
PIO return actual values. A

ly be called aft successful open of the respective device via hpdi32_open()

Prototype

U32 hpdi32_gpio_read

Argument Description
handle This is an API device handle obtained via hpdi32_open().
value The value read is recorded here. Only bits which are inside the GPIO range and which

ll others return zero. correspond to GPIO cable signals return actual values. A

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

l_gpio_read(void* handle, U8* value, int verbose)

o_read(handle, value);

if (!verbose)

return(status);

}

e

#include <stdio.h>

#include "hpdi32_api.h"

"hpdi32_dsl.h" #include

2_dsU32 hpdi3
 {

tatus; U32 s

 status = hpdi32_gpi

 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("hpdi32_gpio_read() failure: %ld\n", (long) status);
 }
 else
 {
 printf("GPIO Read: 0x%lX\n", (long) value[0]);
 }

54
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

5.7. hpdi32_gpio_w

This function is the entry po
configured as GPIO are af are unaffected. The function should only be called
after a suc

Prototype

U32 hpdi32_gpio_write(void* handle, U8 value);

on

rite()

int to writing to the cable signals configured for General Purpose I/O. Only cable signals
fected. All non-GPIO cable signals

cessful open of the respective device via hpdi32_open().

Argument Descripti
handle This is an AP e obtained via hpdi32_open(). I device handl
value This is the value to write. Only bits which are inside the GPIO range and which correspond

bto GPIO ca le signals are affected. All others are unaffected.

rn Value Description Retu
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

.h"

.h"

2

e, value);

atus);

e

#include <stdio.h>

#include "hpdi32_api
nclude "hpdi32_dsl#i

hpdi32_dsl_gpio_write(void* handle, U8 value, int verbose) U3

{
tatus; U32 s

 status = hpdi32_gpio_write(handl

(if !verbose)
 {
 }

if (status != GSC_SUCCESS) else
 {

lure: %ld\n", (long) st printf("hpdi32_gpio_write() fai
 }
 else
 {
 printf("GPIO Write: 0x%lX\n", (long) value);
 }

 return(status);
}

5.8. hpdi32_init()

This function is the entry point to return a device and all parameters to the state produced when the device was first
opened. In doing this, any I/O operations in progress are aborted. This function should only be called after a
successful open of the respective device via hpdi32_open().

55
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Prototype

U32 hpdi32_init(void* handle);

Argument Description
handle This is an API device handle obtained via hpdi32_open().

e Return Valu Description

GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

i32_ap
#include "hpdi32_ds

U t
{

U32 status;

_init(handle);

) failure: %ld\n", (long) status);

ce Initialized: 0x%lX\n", (long) handle);

5.9. hp

This fun int to pause thread execution until an I/O operation completes. The function should only
be called afte hpdi32_open(). When called, the current thread
will bloc tes. The waiting will occur if no I/O operations are
currently active, turn as soon
as the ti est, a failed
I/O request, a t e number of threads that may simultaneously
utilize th ced.

Prototyp

o_wait(void* handle, U32 which, U32 timeout_ms);

include "hpd i.h"
l.h"

32 hpdi32_dsl_ini (void* handle, int verbose)

 status = hpdi32

 if (!verbose)
 {

}
 else if (status != GSC_SUCCESS)
 {
 printf("hpdi32_init(
 }

else
 {

 printf("Devi
 }

 return(status);
}

di32_io_wait()

ction is the entry po
r a successful open of the respective device via

ified I/O read or write operation complek until a spec
or if an I/O operation is active in either blocking or overlapped mode. The call will re

ires, or when the first referenced operation completes, whether by an abort requme period exp
imeout or successful data transfer. There is no limit to th

n the combination of operations that may be referenis service or o

e

U32 hpdi32_i

Arg enum t Description
handle This is an API device handle obtained via hpdi32_open().

56
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

which This is any bitwise or’d combination of HPDI32_WHICH_TX or
H_RX. Set HPDI32_WHICH_TX to wait on a write operation. Set
H_RX to wait on a read operation. If neither is set the function returns

immediately with GSC_SUCCESS.

HPDI32_WHIC
HPDI32_WHIC

timeout_ms T
th

his is the timeout limit is milliseconds. If an I/O operation does not complete within
is time period, then the call returns at the end of the period. The timeout period will

be at least the amount of time specified, but may be longer depending on the OS.

Return Value Description
GSC_SUCCESS Either no I/O operation was referenced or one of the referenced operations

completed. No indication is given to indicate which event, if any, caused the
call to return.

GSC_WAIT_TIMEOUT The timeout period expired before completion of a referenced I/O operation.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

<

"
"

32 hpdi32 out_ms, int verbose)

 s

 = hpdi32_io_wait(handle, HPDI32_WHICH_TX, timeout_ms);

if (!verbose)
 {

write operation completed.\n");

Wait: timeout after %ld milliseconds\n",
ng) timeout_ms);

_io_wait() failure: %ld\n", (long) status);

5.10. h

This fun interrupt occurs. The function should only be
called after a s ces , the current thread will
block un e time period expires, or
when the d interrupt occurs, whichever occurs first. There is no limit to the number of threads that may
simultan sly utilize this service or on the combination of interrupts that may be referenced.

e

include stdio.h>

include
include

hpdi32_api.h"
hpdi32_dsl.h"

_dsl_io_tx_wait(void* handle, U32 timeU
{

U32 statu ;

status

 }
else if (status == GSC_SUCCESS)

 {
 printf("Tx Wait:

}
 else if (status == GSC_WAIT_TIMEOUT)

{
 printf("Tx

 (lo
 }

else
 {

rintf("hpdi32 p
 }

n(status); retur
}

pdi32_irq_wait()

ction is the entry point to pause thread execution until an
uc sful open of the respective device via hpdi32_open(). When called

til o of a specified set of interrupts occurs. The call will return as soon as th any ne
 first reference
eou

57
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Prototyp

2 hpdi32_irq_wait(void* handle, U32 which, U32 timeout_ms);

Argument Description

e

U3

handle This is an API device handle obtained via hpdi32_open().
which This is any bitwise or’d combination of HPDI32_WHICH_IRQ_XXX bits. Set the bits

according to the interrupt of interest. Unreferenced interrupts will have no impact. If
none are set the function returns immediately with GSC_SUCCESS.

timeout_ms This is the timeout limit is milliseconds. If an interrupt does not occur within this time
period, then the call returns at the end of the period. The timeout period will be at least
the amount of time specified, but may be longer depending on the OS.

Return Value Description
GSC_SUCCESS Either no interrupts were referenced or one of the referenced interrupts

occurred. No indication is given to indicate which interrupt, if any, caused the
call to return.

GSC_WAIT_TIMEOUT The timeout period expired before a referenced interrupt occurred.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

atus = hpdi32_irq_wait(handle,

 timeout_ms);

 else if (status == GSC_SUCCESS)

 else if (status == GSC_WAIT_TIMEOUT)
{
 printf("Tx/Rx FIFO Full Wait: "

 {
 r

e

#include <stdio.h>

#include "hpdi32_api.h"
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_irq_fifo_full_wait(
 void* handle,
 U32 timeout_ms,
 int verbose)
{
 U32 status;

 st
 HPDI32_WHICH_IRQ_TX_F |
 HPDI32_WHICH_IRQ_RX_F,

 if (!verbose)
 {
 }

 {
 printf("Tx/Rx FIFO Full Wait: interrupt occurred.\n");
 }

 "timeout after %ld milliseconds\n",
 (long) timeout_ms);

}
 else

 p intf("hpdi32_irq_wait() failure: %ld\n", (long) status);

58
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 }

 rn
}

5.11. hpdi32_ope

This function is the ent to open a connection to an HPDI32 board. This function must be called before any
other de ccess functions may be called. If successful, the device and all parameters are initialized to default
settings. M s can be m the same device, and each can succeed. However, care must be
taken whe ice acc to interfere with the device state maintained by the
other. Ad hed
by the oth

ndex, void** handle);

retu (status);

n()

ry point
vice a

ultiple request ade to access
n doing this as dev ess via one handle is likely

ditionally, one handle may configure the device in a way that conflicts with the configuration establis
er.

Prototype

U32 hpdi32_open(U8 i

Argument Description
index This is the zero based index of the board to access.
handle If the request succeeds, the API records at this address the handle to be used for subsequent

ective device. This pointer must not be NULL. The pointer returned will
est fails and non-NULL otherwise.

access to the resp
be NULL if the requ

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

nc

"
hpdi32_dsl.h"

l_open(U8 index, void** handle, int verbose)

erbose)

else if (status != GSC_SUCCESS)

di32_open() failure: %ld\n", (long) status);

 printf(" Handle: 0x%lX\n", (long) handle);

 }

e

#i lude <stdio.h>

"hpdi32_api.h#include
#include "

2_dsU32 hpdi3
{
 U32 status;

 status = hpdi32_open(index, handle);

if (!v
 {

}

 {
 printf("hp
 }
 else
 {
 printf("Device Opened:\n");

 printf(" Index: 0x%lX\n", (long) index);

59
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 return(status);
}

5.12. hp ea

This function i ent nly be called after a
successf open of the re device via hpdi32_open(). The n will be carried out according to the
current se I/O If the Overlap Enable option is disabled, then the function will block and
return eith en read or when the timeout period has lapsed, which ever
occurs fir nd the operation will be
carried ou ound Notification or query the

e I/O Status parameters to determine when the operation completes and how much data was read. The
ds up to the requested number of bytes, according to the receive side I/O Data Size parameter (only full

data val gle read operation can be active at a time. If a request is made while a read
operatio overlapped I/O is requested and the function returns an
error sta ot have been initiated. No matter how an I/O operation ends though,
even if i ion event will be triggered if at all possible.

eter is enabled (permitting background read processing),
_read() must remain available until the operation

ely result either in stack corruption or a general protection fault.

ccur during a read request when using DMA (either Demand
pplication Buffers. Such overruns can arise because of the

 the memory for DMA use. To reduce this overhead, reduce the size
ate this overhead, use API Buffers for I/O requests. The likelihood of

ch ns
n a

without the Single Cycle Disable feature (see the Board Control
and Mode DMA based reads may produce an Rx FIFO Under Run. If this does

 will be returned, reflecting that the read
terfaces this can occur only when the

oughly examine the various I/O Parameters to determine the settings required for

st be both readable and
 usually means that buffers cannot be declared as const or static const. I/O

not have read/write access.

TE: Applications may make I/O requests of any size. However, the maximum amount of data
single call is approximately 256MB. This upper limit is based on the
_COUNT_MASK.

U32 hpdi32_read(void* handle, void* buffer, U32 bytes, U32* count);

di32_r d()

s the ry point to reading received data from an HPDI32. The function should o
spective operatioul

t of receive side Parameters.
er when the reque

ap E
sted amount of data has be

st. If the Overl
t in the backgr

nable option is enabled, the function will return immediately a
. In this case the application must either use I/O Completion

receive sid
service rea

ues are retrieved). Only a sin
s in progress, then the new request will fail. If n i

tus, the overlapped operation may n
t could not be started, an I/O complet

WARNING: If the I/O Overlapped param
pdi32then the I/O buffer handed to h

ikcompletes. Failure to do so will l

CAUTION: An Rx Overrun may o
de or Non-Demand Mode) with AMo

overhead required to prepare
 the I/O request. To eliminof

su Rx Overruns can be reduced by using larger Rx FIFOs. The likelihood of such Rx Overru
lso be reduced by reducing the Rx clock rate. ca

CAUTION: For those boards
Register) Dem

curoc , then the failure status GSC_INVALID_DATA
 invalid data. On boards with 32-bit PCI inbuffer contains

ta s isda ize 8-bit or 16-bit. On boards with 64-bit PCI interfaces this can occur with any data size
setting.

NOTE: Thor
each application.

NOTE: r DMA based I/O using Application Buffers, the buffer mu Fo
writable. This
requests will fail if the buffer does

NO
that can be transfer in a
macro GSC_IO_STATUS

Prototype

Argument Description
handle This is an API device handle obtained via hpdi32_open().
buffer This is where the retrieved data is stored. It must be large enough to store all of the data

requested and it must remain accessible by the API until the operation completes. The

60
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

pointer must not be NULL. The buffer can be an application allocated buffer or either of
the API Buffers.

bytes of bytes to retr it this to the value
 it down to an

integral multiple of the I/O Data Size parameter.

This is the desired number ieve. The API will lim
specified by the macro GSC_IO_STATUS_COUNT_MASK and will round

count The A e number of bytes actually transferred here. The value recorded may be
ue to various factors; request limits, timeout, abort or other

PI records th
less t
rror

han the amount requested d
e s.

rn Value Description Retu

GSC_SUCCESS The operation succeeded.
GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was received.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

.h"
nc p

buffer,

us;

erbose)

else
{

O Read Operation:\n");
 printf(" Status: 0x%lX\n", (long) status);

return(status);

5.13. h

This funct t nction should only be called
after a suc n I32 firmware registers (those
defined in 32 read-only.

Prototyp

U32 hpdi32_reg_mod(void* handle, U32 reg, U32 value, U32 mask);

e

#include <stdio.h>

#include "hpdi32_api
#i lude "h di32_dsl.h"

U32 hpdi32_dsl_read(
 void* handle,
 void*
 U32 bytes,
 U32* count,
 int verbose)
{
 U32 stat

 status = hpdi32_read(handle, buffer, bytes, count);

 if (!v
 {
 }

 printf("I/

 printf(" Requested: 0x%lX\n", (long) bytes);
 printf(" Received: 0x%lX\n", (long) count[0]);
 }

}

pdi32_reg_mod()

ion is the e
l ope

n ry point to performing a read-modify-write on a register. The fu
pdi32_open(). Only the HPDcessfu of the respective device via h

side hpdi _api.h) may be modified. All PCI and PLX registers are

e

61
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Argument Description
handle This is an API device handle obtained via hpdi32_open().
reg This is the register to access. PCI and PLX registers are read-only.
value This is the desired value to apply. Bits not referenced by the mask are ignored.
mask This specifies the “value

“value” bit will be ap
” bits to modify. If a bit is set here, then the corresponding

plied. The remaining “value” bits are ignored.

eturn Value Description R
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

value,

status = hpdi32_reg_mod(handle, HPDI32_BCR, value, mask);

 {

 printf("BCR Modify:\n");
 printf(" Value: 0x%lX\n", (long) value);

, (long) mask);

 return(status);
}

5.14. hp ea

This funct y po ould only be called
after a successful open of the respective device via hpdi32_open(). All HPDI32 registers may be read.

Prototype

* handle, U32 reg, U32* value);

e

#include <stdio.h>

#include "hpdi32_api.h"

hpdi32_dsl.h" #include "

_dsl_reg_bcr_mod(U32 hpdi32
 void* handle,
 U32
 U32 mask,

verbose) int
{
 U32 status;

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)

 printf("hpdi32_reg_mod() failure: %ld\n", (long) status);
 }
 else
 {

 printf(" Mask: 0x%lX\n"
 }

di32_reg_r d()

ion is the entr int to reading the value from an HPDI32 register. The function sh

U32 hpdi32_reg_read(void

62
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Argument Description
handle This is an API device handle obtained via hpdi32_open().
reg This is the register to access.
value The value read is recorded here. If this is NULL then no action is taken.

rn Value Description Retu

GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

i32_api.h"
di32_dsl.h"

t verbose)

status = hpdi32_reg_read(handle, HPDI32_BCR, value);

else if (status != GSC_SUCCESS)
{

us);

 }

return(status);
}

5.15. hpdi32_reg_ i

on is the entry point to writing to the register. The function should only be called after a successful open
of the respective device via hpdi32_open(). Only the HPDI32 firmware registers (those defined inside
hpdi32 I and PLX registers are read-only.

Prototyp

lue);

e

#include <stdio.h>

#include "hpd

hp#include "

_dsl_reg_bcr_read(void* handle, U32* value, inU32 hpdi32
{
 U32 status;

 if (!verbose)
 {
 }

 printf("hpdi32_reg_read() failure: %ld\n", (long) stat
 }

else
{
 printf("BCR Read: 0x%lX\n", (long) value[0]);

wr te()

This functi

_api.h) may be modified. All PC

e

U32 hpdi32_reg_write(void* handle, U32 reg, U32 va

Argument Description
handle This is an API device handle obtained via hpdi32_open().
reg This is the register to access.
value The value read from the register is recorded here.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

63
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Exampl

di32_api.h"
i32_dsl.h"

verbose)

status = hpdi32_reg_write(handle, HPDI32_BCR, value);

 {

 printf("hpdi32_reg_write() failure: %ld\n", (long) status);

%
}

5.16. h

This fun rm a device hardware reset. The function should only be called after a
successfu via hpdi32_open(). In doing this, any I/O operations in progress are
aborted.

W ING:
hardware reset
reset b ss or corruption.

Prototyp

U32 hpdi32_reset(void* handle);

esc

e

#include <stdio.h>

#include "hp
#include "hpd

U3 hp 32_dsl_reg_bcr_write(void* handle, U32 value, int 2 di
{
 U32 status;

 if (!verbose)

 }
 else if (status != GSC_SUCCESS)
 {

 }
 else
 {
 printf("BCR Write: 0x lX\n", (long) value);

 return(status);
}

pdi32_reset()

ction is the entry point to perfo
l open of the respective device

ARN The API performs a variety of actions during this call that are in addition to the
. This is necessary for proper API operation. If an application initiates a hardware
g to the Board Control Register y writin the results may be data lo

e

Argument D ription
handle This is an API device handle obtained via hpdi32_open().

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "hpdi32_api.h"
nclude "hpdi32_dsl.h" #i

64
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

U32 hpdi32_dsl_reset(
{

atus;

void* handle, int verbose)

intf("hpdi32_reset() failure: %ld\n", (long) status);

{
 printf("Device Reset: 0x%lX\n", (long) handle);

 U32 st

 status = hpdi32_reset(handle);

 if !verbose) (
 {
 }
 else if (status != GSC_SUCCESS)
 {
 pr
 }
 else

 }

 return(status);
}

5.17. hpdi32_status_text()

This function is the entry point to retrieving a text based description of the status values supported by the SDK.

Prototype

U32 hpdi32_status_text(U32 status, char* text, size_t size);

Argument Description
status This is the status value whose description is desired.
text The descriptive text is recorded here.
size This gives the size of the above buffer.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

status;

 if (!verbose)
 {

e

#include <stdio.h>

#include "hpdi32_api.h"
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_status_text(U32 stat, int verbose)
{
 char buf[128];
 U32

 status = hpdi32_status_text(stat, buf, sizeof(buf));

65
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 }
 else if (status != GSC_SUCCESS)
 {
 printf("hpdi32_status_text() failure: 0x%lX\n", (long) status);

 printf("Status: 0x%lX: %s\n", (long) stat, buf);
}

5.18. h

This fun numbers. Without a valid device handle, only the API Library
version n e Device Driver’s version number requires a valid device handle. The
following a

Macro (

 }
 else
 {

 return(status);
}

pdi32_version_get()

ction is the entry point to retrieving version
umber is acc ssible. Access to the
 table lists m cros associated with this service.

Services) Description
HPDI32_VERSION_GET_DRIVER(h,b,s) This retrieves the driver version string.
HPDI32 N__VERSIO GET_LIBRARY(h,b,s) This retrieves the API Library version string.

Prototype

U i32
 void* le,

U8 id,
 char* version
 size_t ze);

32 hpd _version_get(
hand

,

si

Argument Description
handle This is an AP hpdi32_open() d except when

accessing the Device Driver’s version data.
I device handle obtained via . This is ignore

id This indicates the version number desired. It should be either GSC_VERSION_LIBRARY
ION_DRIVER. or GSC_VERS

version This is a buffer where the version string is recorded.
size This is the size of the above buffer.

rn Value Description Retu

GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Exampl

.h"

_get(void* handle, U8 id, int verbose)

status;

e

#include <stdio.h>

nclude "hpdi32_api#i

#include "hpdi32_dsl.h"

U32 hpdi32_dsl_version
{
 U32
 char ver[32];

66
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 status = hpdi32_version_get(handle, id, ver, sizeof(ver));

erbose)

ng) status);

 %s\n", ver);
}

 return(status);
}

5.19. hpdi32_write()

This function is the entry point to writing transmit data to an HPDI32. The function should only be called after a
successful open of the respective device via hpdi32_open(). The operation will be carried out according to the
current set of transmit side I/O Parameters. If the Overlap Enable option is disabled, then the function will block and
return either when the requested amount of data has been written or when the timeout period has lapsed, which ever
occurs first. If the Overlap Enable option is enabled, the function will return immediately and the operation will be
carried out in the background. In this case the application must either use I/O Completion Notification or query the
transmit side I/O Status parameters to determine when the operation completes and how much data was read. The
service writes up to the requested number of bytes, according to the transmit side I/O Data Size parameter (only full
data values are written). Only a single write operation can be active at a time. If a request is made while a write
operation is in progress, then the new request will fail. If overlapped I/O is requested and the function returns an
error status, the overlapped operation may not have been initiated. No matter how an I/O operation ends though,
even if it could not be started, an I/O completion event will be triggered if at all possible.

WARNING: If the I/O Overlapped parameter is enabled (permitting background write
processing), then the I/O buffer handed to hpdi32_write() must remain available until the
operation completes. Failure to do so will likely result either in stack corruption or a general
protection fault.

CAUTION: The Tx FIFO may run empty during a write request, resulting in a data transfer
pause, when using DMA (either Demand Mode or Non-Demand Mode) with Application Buffers.
Such overruns can arise because of the overhead required to prepare the memory for DMA use. To
reduce this overhead, reduce the size of the I/O request. To eliminate this overhead, use API
Buffers for I/O requests. The likelihood of such Rx Overruns can be reduced by using larger Rx
FIFOs. The likelihood of such Rx Overruns can also be reduced by reducing the Rx clock rate.

CAUTION: For those boards without the Single Cycle Disable feature (see the Board Control
Register) Demand Mode DMA based writes may produce a Tx FIFO Overrun. If this does occur,
then the failure status GSC_INVALID_DATA will be returned, reflecting that the Tx FIFO image
does not reflect the data written to it. On boards with 32-bit PCI interfaces this can occur only
when the data size is 8-bit or 16-bit. On boards with 64-bit PCI interfaces this can occur with any
data size setting.

NOTE: Thoroughly examine the various I/O Parameters to determine the settings required for
each application.

 if (!v
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("hpdi32_version_get() failure: %ld\n", (lo
 }
 else
 {
 printf("Version:

67
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

NOTE: For DMA based I/O using A
writable. This usually means that buffe

pplication Buffers, the buffer must be both readable and
rs cannot be declared as const or static const. I/O

 data
a single call is approximately 256MB. This upper limit is based on the
S_COUNT_MASK.

es

requests will fail if the buffer does not have read/write access.

NOTE: Applications may make I/O requests of any size. However, the maximum amount of
that can be transfer in
macro GSC_IO_STATU

Prototype

U32 hpdi32_write(
 void* handle,
 const void* buffer,
 U32 bytes,
 U32* count);

cription Argument D
handle This is an API device handle obtained via hpdi32_open().
buffer Thi

 be NULL. The buffer can be an application
lo

s is the source for the data to send. It must remain accessible by the API until the
ope
a

ration completes. The pointer must not
cated buffer or either of the API Buffers.l

bytes Thi API will limit this to the value specified
by t SK and will round it down to an integral
mul

s is the desired number of bytes to write. The
he macro GSC_IO_STATUS_COUNT_MA
tiple of the I/O Data Size parameter.

count The API r
less than t

ecords the number of bytes actually transferred here. The value recorded may be
he amount requested due to various factors; request limits, timeout, abort or other

errors.

Return Value Description
GSC_SUCCESS The operation succeeded.
GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was written.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "hpdi32_api.h"
#include "hpdi32_dsl.h"

U32 hpdi32_dsl_write(
 void* handle,

 U32 status;

 status = hpdi32_write(handle, buffer, bytes, count);

 }
 else if (status != GSC_SUCCESS)

 const void* buffer,
 U32 bytes,
 U32* count,
 int verbose)
{

 if (!verbose)
 {

68
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

 {
 printf("hpdi32_write() failure: %ld\n", (long) status);

 printf("I/O Write Operation:\n");
intf(" Status: 0x%lX\n", (long) status);

 }
 else
 {

 pr
 printf(" Requested: 0x%lX\n", (long) bytes);
 printf(" Sent: 0x%lX\n", (long) count[0]);
 }

 return(status);
}

69
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6. Configuration Parameters
ber of configurable features. These features are referred to by the
scribes all of the HPDI32 Configuration Parameters.

 described (in this section) along with the set of utility macros designed to facilitate configuration of and
a parameters. Para fall into three groups, which are described in the following
p their respective parameters. The

The HPDI32 and the API Library include a num
API as Configuration Parameters. This section de

6.1. Parameter Macros

The Configuration Parameters are grouped according to their functional categories. Within each category each
parameter is
ccess to the respective meter macros
aragraphs. All macros are described in
arameter categories are as given in the b

 the following pages in association with
elow table. p

Parameter Categories Description
HPDI32_CABLE_XXX These refer to the Cable Para ble meters. These pertain to configuration of the ca

signals.
HPDI32_FIFO_XXX These refer to the FIFO Parameters.
HPDI32_IO_XXX These refer to the Input/Outpu

host and the HPDI32.
t tween the Parameters. These pertain to data transfer be

HPDI32_IRQ_XXX These refer to the Interrupt Parameters.
HPDI32_MISC_XXX These refer to the Miscellaneous Parameters.
HPDI32_RX_XXX These refer to the Receiver Parameters.
HPDI32_TX_XXX tter These refer to the Transmi Parameters.

6

T T r to be
a llow fying the
p refa These
m n ple
“ c

6

T o
begi flect
t a macro

6.

T
se clude the Parameter Definition followed by a double
underscore (“__”) then upper case letters that reflect the action to perform. For example

T()” retrieves the current setting of the Miscellaneous Strict
Arguments parameter. These macros include arguments, which are described as follows.

andle used to access the respective device. This handle is
obt open(). Th st not be NULL.

.1.1. Parameter Definitions

he first group of macros includes the parameter definitions. hese are used to identify the specific paramete
ccessed. These macros begin with “ ” and are foHPDI32_
arameter category. For example “ ” p

ed immediately by upper case letters identi
HPDI32_MISC_

acros end with upper case letters indicating t
ces all Miscellaneous Parameter identifiers.
ame of the specific parameter. For exahe

” identifies the Mis
m

ellaneous Strict Arguments parameter. HPDI32_MISC_STRICT_ARGUMENTS

.1.2. Value Definitions

he second group of macros identifies predefined values ass ciated with the respective parameters. These macros
e underscon with the Parameter Definition and are followed by a singl

he meaning of the respective v
re (“_”) then upper case letters that re

lues. For example the
“HPDI32_MISC_STRICT_ARGUMENTS_DISABLE” is the value that represents the parameter’s disabled setting.

1.3. Service Definitions

he third group of macros performs operations on parameters. These are utility macros that retrieve parameter
ttings and states or assign parameter values. These macros in

“HPDI32_MISC_STRICT_ARGUMENTS__GE

6.1.3.1. Device Handle: h

In the service macros, the argument h refers to the device h
ained by calling hpdi32_ is argument mu

70
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6 s: w

I y
his argument is unused or is specified inside the macro’s

r those cases the w is not included as a macro

6

pa
on
va

6.1.3.4. Get Value: g

ment g refers to the address of the variable to receive the parameter’s current setting.

nipulate the configuration
e egister access ser able Parameter access services. When accessing the Cable
P none.
T bl

.1.3.2. Which Bit

n the service macros, the argument w refers to an
aragraph 3.6 on page 38. With some parameters t

combination of the HPDI32_WHICH_XXX bits. Refer to
p
eplacement text. In argument.

.1.3.3. Set Value: s

In the service macros, the argument s refers to the value to be applied to the referenced parameter. With some
rameters the value can be arbitrarily assigned by the application. With most parameters this argument should be
e of the predefined value definitions. The s is not included as a macro argument for those cases where either a
lue is not being applied or the value applied is specified inside the macro replacement text.

In the service macros, the argu
In cases where the current setting is not being read, this argument has been omitted from the service macro. In all
cases, this argument can be NULL, in which case the current value is not retrieved.

6.2. Cable Parameters

The purpose of the Cable Parameters is to permit access to and control of the signals available at the HPDI32’s
external interface connecter. All Cable Parameters are put in a default state when the device is opened and are
returned to that state via the hpdi32_init() and hpdi32_reset() services. The configuration of the cable
signals is controlled by HPDI32 firmware based registers. Applications are free to ma
ither via the API’s r vices or the C
arameters any number or combination

izes the Ca
of appropriate HPDI32_WHICH_XXX identifiers may be used, even

he following table summar e Parameters.

Parameter Macros Description
HPDI32_CABLE_CLOCK_STATE This refers to the state of the cable’s clock signal.
HPDI32_CABLE_COMMAND_MODE This refers to the operating mode for various cable control signals.
HPDI32_CABLE_COMMAND_STATE This refers to the state of the various cable control signals.

NOTE: When a Flow Control signal’s mode is set to GPIO, then it defaults to a GPIO input. If the
mode is retrieved without also being set, then the mode is reported as GPIO, but might be
configured as an output.

6.2.1. Cable Parameter: Clock State

The purpose of this read-only parameter is to report the state of the Cable Clock signal. The state is considered
active if the signal is driven by the board itself or is expected to be driven by a remote device. The state is
consider orted as
active. I ce. The
state is o r.

Macro

ed inactive otherwise. If the transmitter is enabled then the board drives the signal and its state is rep
f the receiver is enabled the state is reported as active since it should be driven by the remote devi
therwise reported as inactive. The following tables describe the macros associated with this paramete

 (Parameter) Description
HPDI32_CABLE_CLOCK_STATE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_CABLE_CLOCK_STATE_ACTIVE This value refers to the signal’s active state.
HPDI32_CABLE_CLOCK_STATE_INACTIVE This value refers to the signal’s inactive state.

71
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Services) Description
HPDI32_CABLE_CLOCK_STATE__GET(h,g) This retrieves the signal’s current state.

6.2.2. Cable Parameter: Command Mode

The p Mode for those Cable Command signals
w
the cable interface or as Ge scribe the macros associated with this
p

) Description

urpose of this parameter is to control and report the Cable Command
hich are configurable. In this respect, the signals

neral Purpose I/O. T
operate either in a Flow Control mode to control data flow over
he following tables de

arameter.

Macro (Parameter
HPDI32_CABLE_COMMAND_MODE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_CABLE_COMMAND_MODE_DEFAULT This refers to the signal’s default mode. This is

Flow Control, which is the hardware’s default.
HPDI32_CABLE_COMMAND_MODE_FLOW_CONTROL This refers to the data Flow Control mode.
HPDI32_CABLE_COMMAND_MODE_GPIO_IN This refers to the GPIO Input mode.
HPDI32_CABLE_COMMAND_MODE_GPIO_OUT_HI This refers to the GPIO Output High mode.
HPDI32_CABLE_COMMAND_MODE_GPIO_OUT_LOW This refers to the GPIO Output Low mode.

Macro (Services) Description
HPDI32_CABLE_COMMAND_MODE__FC(h,w) This sets signals to Flow Control mode.
HPDI32_CABLE_COMMAND_MODE__GET(h,w,g) This retrieves a signal’s current mode.
HPDI32_CABLE_COMMAND_MODE__GPIO_HI(h,w) This sets signals to GPIO Output High mode.
HPDI32_CABLE_COMMAND_MODE__GPIO_IN(h,w) This sets signals to GPIO Input mode.
HPDI32_CABLE_COMMAND_MODE__GPIO_LOW(h,w) This sets signals to GPIO Output Low mode.
HPDI32_CABLE_COMMAND_MODE__RESET(h,w) This resets the current mode to the default.
HPDI32_CABLE_COMMAND_MODE__SET(h,w,s) This sets the current mode.
HPDI32_CABLE_COMMAN XX_FC(h) This sets signal XXX to Flow Control mode. * D_MODE__X
HPDI32_CABLE_COMMAND_MODE__XXX_GET(h,g) This retrieves the current mode for signal XXX. *
HPDI32_CABLE_COMMAND_MODE__XXX_IN(h) This sets signal XXX to GPIO Input mode. *
HPDI32_CABLE_COMMAND_MODE__ This sets signal XXX to GPIO Output High mode. * XXX_HI(h)
HPDI32_CABLE_COMMAND_MODE__XXX_LOW(h) This sets signal XXX to GPIO Output Low mode. *
HPDI32_CABLE_COMMAND_MODE__ XXX to the XXX_RESET(h) This resets the current mode for signal

default. *
HPDI32_CABLE_COMMAND_MODE__XXX_SET(h,s) This sets the current mode for signal XXX. *

* vidu for Cable Command signals
O_ _6 for the Cable Command

 nfigured as Flow Control it
lid, R for Transmit

ransm

6.2.3. Cable Parameter: Command State

The purpose of this read-only parameter is to report the state of the Cable Command signals. When the signal is in
s reported as active when the signal is driven, or is expected to be driven. The state

is reported as inactive otherwise. When in the signal’s GPIO mode, the state is reported as active when the signal is

) Description

 The XXX sequence refers to the following indi al options: 0, 1, 2, 3, 4, 5 and 6
zero to six, GPIO_0, GPIO_1, GPIO_2, GPI
signals configured as GPIO lines zero to six, and

3, GPIO_4, GPIO_5 and GPIO
for this Cable Command signals co

includes FV for Frame Valid, LV for Line Va SV for Status Valid, RR for Receive Ready, T
Ready, RE for Receive Enable, and TE for T it Enable.

its Flow Control mode, the state i

read as high, and is reported as inactive when read as low.

Macro (Parameter
HPDI32_CABLE_COMMAND_STATE This is the identifier for this parameter.

72
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Values) Description
HPDI32_CABLE_COMMAND_STATE_ACTIVE This refers to the signal’s active or high state.
HPDI32_CABLE_COMMAND_STATE_INACTIVE This refers to the signal’s inactive or low state.

Macro (Services) Description
HPDI32_CABLE_COMMAND_STATE__GET(ate. h,w,g) This retrieves a signal’s current st
HPDI32_CABLE_COMMAND_STATE__XXX_GET(h,g) This retrieves the current state for signal XXX. *

* The XXX sequence refers to the following individual options: 0 1, 2, 3, 4, 5 and 6 le Command signals
GPIO_2, GPIO_3, GPIO_4, GPIO_5 and GPIO_6 for the Cable Command

signals configured as GPIO lines zero to six, and for this Cable Command signals configured as Flow Control it

6.3. FIFO Parameters

 of the transmit and receive FIFOs. All FIFO
default state when the ned and are returned to that state via the

h se rolled by
H ar s register
a r any number
o X or HPDI be used, even none. The transmit FIFO will
o et and th
n . The fol

 , for Cab
zero to six, GPIO_0, GPIO_1,

includes FV for Frame Valid, LV for Line Valid, SV for Status Valid, RR for Receive Ready, TR for Transmit
Ready, RE for Receive Enable, and TE for Transmit Enable.

T
P

he purpose of the FIFO Parameters is to permit access to and control
arameters are put in a device is ope

rvices. The cpdi32_init() and hpdi32_reset()
PDI32 firmware based registers. Applications

onfiguration of the FIFOs is partly cont
e free to manipulate the configuration either via the API’

ccess services or the FIFO Parameter access se vices. When using the service hpdi32_config(),
r combination of THPDI32_WHICH_
nly be accessed if the transmit bit i

32_WHICH_RX
e receive FIFO w

 may
s s

either is set, then no action will be taken
ill only be accessed if the receive bit is set. If

lowing table lists the FIFO Parameters.

Parameter Macros Description
HPDI32_FIFO_ALMOST_LEVEL This refer ost Empty status levels. s to the FIFO Almost Full and Alm
HPDI32_FIFO_RESET This refers to resetting the FIFOs.
HPDI32_FIFO_SIZE This refers to the size of the FIFOs.
HPDI32_FIFO_STATUS This refers to the FIFO fill level status.
HPDI32_FIFO_TRANSFER_SIZE This refers to the amount of guaranteed space/data available in the FIFOs.

6.3.1. FIFO Parameter: Almost Level

The purpose of this parameter is to control and report the FIFO Almost Full and Almost Empty status levels. When
using the service hpdi32_config(), any number or combination of HPDI32_WHICH_AF or
HPDI32_WHICH_AE may be used, even none (in addition to the transmit and receive bits described above). The
Almost Full level will only be accessed if the Almost Full bit is set and the Almost Empty level will only be
accessed if the Almost Empty bit is set. If neither is set, then no action will be taken. Which ever bits are set, they
will be applied to transmit and receive FIFOs, respectively. The following tables describe the macros associated
with

er Almost Level is set.
e setting takes affect immediately. wever is that any data in the

ng
operation is in progress using the respective FIFO. D in the loss of any data in
the FIFO and will interfere with proper transfer of data through the board.

NOTE: The API will automatically limit the FIFO Almost Level parameter values to the size of
the respective FIFO, when the FIFO size is known.

 this parameter.

WARNING: The API automatically resets the referenced FIFOs when eith
This insures that th
FIFO is lost

 A side affect ho
.

WARNING: Applications should not apply setti s to any FIFO Almost Level while an I/O
oing so will result

73
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Parameter) Description
HPDI32_FIFO_ALMOST_LEVEL This is the identifier for this parameter.

Macro (Values) Description
HPDI32_FIFO_ALMOST_EMPTY_DEFAULT This is the default Almost Empty level, which may differ from

the hardware’s default.
HPDI32_FIFO_ALMOST_FULL_DEFAULT This is the default Almost Full level, which may differ from

the hardware’s default.
HPDI32_FIFO_ALMOST_LEVEL_MAX This is the maximum level permissible.

Macro (Services) Description
HPDI32_FIFO_ALMOST_LEVEL__GET(h,w,g) This retrieves a parameter’s current setting.
HPDI32_FIFO_ALMOST_LEVEL__SET(h,w,s) This sets a parameter’s level.
HPDI32_FIFO_ALMOST_LEVEL__XXX_GET(h,g) This retrieves the respective FIFO Almost setting. *
HPDI32_FIFO_ALMOST_LEVEL__XXX_SET(h,s) This sets the respective FIFO Almost setting. *

* The XXX sequence refers to the following individual options: RX_AE for the Rx FIFO Almost Empty level,
RX_AF for the Rx FIFO Almost Full level, TX_AE for the Tx FIFO Almost Empty level and TX_AF for the Tx
FIFO Almost Full level.

6.3.2. FIFO Parameter: Reset

The purpose of this parameter is to control the resetting of the respective FIFOs. The following tables describe the
macros associated with this parameter.

WARNING: Applications should not reset a FIFO while in use by an I/O operation. Doing so will
result in the loss of any data in the FIFO and will interfere with proper transfer of data through the
board.

Macro (Parameter) Description
HPDI32_FIFO_RESET This is the identifier for this parameter.

Macro (Values) Description
HPDI32_FIFO_RESET_DEFAULT This is the default action, which to do nothing.
HPDI32_FIFO_RESET_NO This means the FIFO is not to be reset or that it was not reset.
HPDI32_FIFO_RESET_YES This means the FIFO is to be reset or that it was reset.

Macro (Services) Description
HPDI32_FIFO_RESET__RESET(h,w) This resets the respective FIFOs.
HPDI32_FIFO_RESET__SET(h,w,s) This applies a FIFO reset option.
HPDI32_FIFO_RESET__XXX_RESET(h,s) This resets the respective FIFO. *
HPDI32_FIFO_RESET__XXX_SET(h,s) This applies a setting to the respective FIFO. *
HPDI32_FIFO_RESET__XXX_YES(h) This resets the respective FIFO. *
HPDI32_FIFO_RESET__YES(h,w) s resets the specified FIFO(s). Thi

* o the followin for the Tx FIFO.

6

The eter is rt the size of the respective FIFOs. The following tables describe
t eter s
r

 The XXX sequence refers t g individual options: RX for the Rx FIFO and TX

.3.3. FIFO Parameter: Size

purpose of this read-only param to repo
he macros associated with this param . If the HPDI32 does not support the FIFO Size Registers then the size i
eported as zero (0).

74
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Parameter) Description
HPDI32_FIFO_SIZE This is the identifier for this parameter.

Macro (Services) Description
HPDI32_FIFO_SIZE__GET(h,w,g) This retrieves a FIFO size.
HPDI32_FIFO_SIZE__XXX_GET(h,g) This retrieves the size of the respective FIFO. *

* o the followin FO. The XXX sequence refers t g individual options: RX for the Rx FIFO and TX for the Tx FI

6.3.4. FIFO Parameter: Status

The purpose of this read-only parameter is to report the fill level status of the respective FIFOs. The following tables
describe the macros associated with this parameter. If the FIFO Almost Levels are set to illogical values
(overlapping or larger that the FIFO size) then the status returned may be incorrect.

Macro (Parameter) Description
HPDI32_FIFO_STATUS This is the identifier for this parameter.

Macro (Values) Description
HPDI32_FIFO_STATUS_ALMOST_EMPTY The FIFO contains Almost Empty or fewer data values.
HPDI32_FIFO_STATUS_ALMOST he FIFO contains Almost Full or fewer data spaces. _FULL T
HPDI32_FIFO_STATUS_EMPTY The FIFO is empty.
HPDI32_FIFO_STATUS_FULL The FIFO is full.
HPDI32_FIFO_STATUS_MEDIAN lmost Empty and Almost Full. The FIFO is between A

Macro (Services) Description
HPDI32_FIFO_STATUS__GET(h,w,g) This retrieves a FIFO fill status.
HPDI32_FIFO_STATUS__XXX_GET(h,g eves the fill status of the respective FIFO. *) This retri

* nd r the Tx FIFO.

6.3.5. FIFO Parameter: Transfer Size

The purpose of this read-only parameter is to report the number of samples the API guarantees can be transferred to
 I/O request (i.e. a read or write request). The number returned is not an exact

number and may be much less than the exact number. Essentially, it is simply the number the API is able to discern

escription

 The XXX sequence refers to the following i ividual options: RX for the Rx FIFO and TX fo

or from the respective FIFO by an

by examining the board’s features and state and is the number the API guarantees can be transferred to or from the
respective FIFO at that moment. The following tables describe the macros associated with this parameter. If the
FIFO Almost Levels are set to illogical values (overlapping or larger that the FIFO size) then the number returned
may be invalid.

Macro (Parameter) D
HPDI32_FIFO_TRANSFER_SIZE This is the identifier for this parameter.

Macro (Services) Description
HPDI32_FIFO_TRANSFER_SI ansfer Size value. ZE__GET(h,w,g) This retrieves a FIFO Tr
HPDI32_FIFO_TRANSFER_SIZE__XXX_GET(h,g) This retrieves the Transfer Size value for the

respective FIFO. *

* iv for the Tx FIFO. The XXX sequence refers to the following ind idual options: RX for the Rx FIFO and TX

75
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.4. I/O Parameters

The purpose of the I/O Parameters is to permit access to and control of transmit and receive I/O operations. All I/O
Parameters are put in a default state when the device is opened and are returned to that state via the
hpdi32_init() service. The configuration of the I/O Parameters is retained entirely within the API and cannot
be altered b ation of
HPDI32 will be
accessed s set. If
neither i

The API ication
Buffers) type
services pplication to be contiguous memory. These
b throughou mory and at times are paged out to the hard disk. The second
b ked in place in memory until
r ignificantly larger than API Buffers.

PI Buffers have the advantage that they require less overhead during I/O operations, potentially producing higher
t r I/O requests, applications can choose type of buffers to use and, if using API
B s a , when switching
b r ffers of suitable
size, then the best results will generally be achieved by using those exclusively. Additionally, if an application is

 by
using the two API Buffers in a ping-pong sequence; one buffer b g used for I/O while th her is being processed,

ng is done.

ed merely by enabling the I/O Overlap Enable parameter. When
this is done I/O requests return immediately, while the operation is carried out in the background. For both methods,
there are ling. By using
the I/O Status parameter an application can query for the status of an I/O operation. This indicates if the operation is
still in p can be
done by cked on
an I/O o a wait
service. t that is
invoked eparate
thread c cks can be made. (The callback receives the device
handle, a ents.) Using the wait service, any number of
threads a wait
request i e I/O
operation sumed the I/O Status parameter must be
queried t

The follo

iption

y any HPDI32 registers. When using the service hpdi32_config(), any number or combin
_WHICH_TX or HPDI32_WHICH_RX may be used, even none. The transmit I/O Parameters
 only if the transmit bit is set and the receive I/O Parameters will be accessed only if the receive bit i
s set, then no action will be taken.

 can perform I/O transfer operations using either of two types of buffers. First, it can use Appl
which are allocated and maintained entirely by the application. These are obtained by malloc(
 and, through the processor’s memory manager, appear to the a

uffers are, in-fact, scattered
uffer type, API Buffe

t physical me
rs, is memory that is physically con

eleased via the API. Application Buffe
tiguous and that is also loc

rs have the advantage that they can be s
A
hroughput rates. Fo at will what
uffers, which API Buffer to use (Tx or Rx). There i slight performance penalty however
etween Application Buffers and API Buffers, and vise-ve sa. If an application can acquire API Bu

interested primarily in transmitting data or in receiving data, then the best performance can generally be gained
ein e ot

then switching over as soon as processi

The API supports blocking and overlapped I/O requests. The default is blocking I/O where the call returns at the
conclusion of the operation. Overlapped I/O is select

 two ways of determining when and how an operation concludes. The first method is by pol

rogress, if it has ended, and how (timeout, abort, error) and how much data was transferred. This
 any thread both for overlapped I/O and blocking I/O (i.e. one thread can check if another is still blo
peration). The second method is by event notification, which is available both as a callback and as
Using the callback service an application can provide a function pointer and an arbitrary argumen
when the I/O completes (Tx and Rx are independently configurable). The callback occurs in a s
ontext and must return before any follow-on callba
n application’s arbitrary value, and the I/O status as argum

can block until an I/O operation ends. Each thread can independently wait on Tx and/or Rx. When
s made the thread will block until the first of the referenced operations ends. This occurs whether th

began before the request was made of began afterwards. Once re
o determine the I/O completion status.

wing table lists the I/O Parameters.

Parameter Macros Descr
HPDI32_IO_ABORT This refers to aborting an I/O request.
HPDI32_IO_ABORTED This refers to the abort status of an I/O request.
HPDI32_IO_BUFFER_POINTER This nter to an API Buffer. refers to the poi
HPDI32_IO_BUFFER_SIZE This refers the size of an API Buffer.
HPDI32_IO_CALLBACK_ARG This refers to an arbitrary, application supplied callback argument

value.
HPDI32_IO_CALLBACK_FUNC This refers to an function. application supplied I/O completion callback
HPDI32_IO_DATA_SIZE This refers to width of the cable data: 8, 16 or 32-bits.
HPDI32_IO_DMA_CHANNEL_SEL This refers to when DMA channels are acquired and released.
HPDI32_IO_DMA_CONTROL_MODE This refers to how non-Demand Mode DMA is handled by the API.

76
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_IO_DMA_PRIORITY This refers to D writes. MA priority for simultaneous reads and
HPDI32_IO_MODE This refers to the data transfer mode: PIO, DMA, DMDMA.
HPDI32_IO_OVERLAP_ENABLE This refers to how I/O requests are processed: foreground, background.
HPDI32_IO_PIO_THRESHOLD This refers to the threshold at which I/O requests are automatical

 mode
ly

performed using PIO data transfers.
HPDI32_IO_SINGLE_CYCLE This refers to a device’s feature support at critical FIFO fill levels.
HPDI32_IO_STATUS This refers to the current status of an I/O request.
HPDI32_IO_TIMEOUT This refers to the overall time limit allowed for I/O requests.

6.4.1. I/O Parameter: Abort

The pur ive I/O
requests fect on
future I/ tions are made using
individual HPDI32_WHICH_XX bits. (Here “XX” is “TX”, “RX” or any of the predefined combinations.) The
followin

Macro (Parameter) Description

pose of this parameter is to abort an ongoing I/O operation. This parameter is applicable to act
only. No action occurs if none are active at the time an abort request is made. There is also no af
O requests. In the hpdi32_config() service the Transmit and Receive selec

g tables describe the macros associated with this parameter.

HPDI32_IO_ABORT This is the this parameter. identifier for

Macro (Values) Description
HPDI32_IO_ABORT_DEFAULT This is the take, which is to do nothing. default action to
HPDI32_IO_ABORT_NO As a “set” an abort. As a “get” option it

means that an abort did not occur.
 option this means do not perform

HPDI32_IO_ABORT_YES As a “set” option n abort. This value is never returned as a
ort request.

this requests a
“get” option as the parameter auto clears after an ab

ptiMacro (Services) Descri on

HPDI32_IO_ABORT__SET(h,w,s) This applies an option to an I/O operation.
HPDI32_IO_ABORT__XXX_SET(h,s) This appli eration. * es an option to an I/O op
HPDI32_IO_ABORT__XXX_YES(h) This aborts an I/O operation. *

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes.

6.4.2. I/O Parameter: Aborted

The purpose of this read-only parameter is to determine if an I/O abort has occurred. This is applied against the I/O
status that exists at the time, and will reference the status from the last operation concluded, if applicable, or an
ongoing operation, if one is active. Only the most recent or current status is available. The status of previous
operatio

Macro (Parameter) Description

ns is not available. The following tables describe the macros associated with this parameter.

HPDI32_IO_ABORTED This is th r this parameter. e identifier fo

on Macro (Values) Descripti
HPDI32_IO_ABORTED_NO This means tha on was not aborted. t an I/O operati
HPDI32_IO_ABORTED_YES This means that an I/O operation was aborted.

Macro (Services) Description
HPDI32_IO_ABORTED__GET(h,w,g) This retrieves the status of an operation.
HPDI32_IO_ABORTED__XXX_GET(h,g) This retr ion. * ieves the status of an I/O operat

* ti ta writes. The XXX sequence refers to the following individual op ons: RX for the data reads and TX for the da

77
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6

as
not configured the size of the respective buffer, then the po returned will be NULL. The following tables

his parameter.

le and
writable. This usually means that buffers cannot be declared as const or static const. I/O

ail if the t have read/write access.

Description

.4.3. I/O Parameter: Buffer Pointer

The purpose of this read-only parameter is to retrieve the pointer to a respective API Buffer. If the application h
inter

describe the macros associated with t

WARNING: Applications must obtain a fresh pointer each time a change is made to the API
Buffer size. Use of a stale pointer may generate a memory protection fault. Refer to the I/O Buffer
Size parameter in the next section.

WARNING: For DMA based I/O using Application Buffers, the buffer must be both readab

requests will f buffer does no

Macro (Parameter)
HPDI32_IO_BUFFER_POINTER This er for this parameter. is the identifi

Macro (Services) Description
HPDI32_IO_BUFFER_POINTER__GET(h,w,g) This retrieves an API Buffer pointer.
HPDI32_IO_BUFFER_POINTER__XXX_GET(h,g) This retrieves an API Buffer pointer. *

* refers to the following individu for the data reads and TX for the data writes.

6

T trie uffer. The following tables
d

d eration.

a nt in response to an
 A f memory requested

ons must therefore examine this parameter after it is
ion faults.

Macro

 The XXX sequence al options: RX

.4.4. I/O Parameter: Buffer Size

he purpose of this parameter is to adjust and re ve the size of the respective API B
escribe the macros associated with this parameter.

NOTE: The Buffer Size cannot be change while the buffer is in use by an I/O op

NOTE: The API has no control over the
API Buffer allocation request. Each of the

mount of memory the OS will gra
PI Buffers is a contiguous block o

of the OS by the Device Driver. The OS manages these types of resources differently than
application memory resources so the size of the API Buffer obtained may be significantly less then
requested by the application. Applicati
adjusted to guard against memory protect

NOTE: A request to increase the API Buffer Size may take several seconds to complete. This is
due entirely to OS and is not controllable by the API or the driver.

NOTE: Each time the application requests an API Buffer size change, the pointer used to access
the buffer is likely to also change. Applications must therefore obtain a fresh pointer following a
size change request. Refer to the I/O Buffer Pointer parameter description in the previous section.

 (Parameter) Description
HPDI3 dentifier for this parameter. 2_IO_BUFFER_SIZE This is the i

Macro (Values) Description
HPDI32_IO_BUFFER_SIZE_DEFAULT This is the default size, which is zero.

Macro (Services) Description
HPDI32_IO_BUFFER_SIZE__GET(h,w,g) This retrieves a current size setting.
HPDI32_IO_BUFFER_SIZE__SET(h,w,s,g) This requests a size change and retrieves the results.
HPDI32_IO_BUFFER_SIZE__XXX_FREE(h) This requests that a buffer be freed.

78
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_IO_BUFFER_SIZE__XXX_GET(h,g) This retrieves a buffer’s current size.
HPDI32_IO_BUFFER_SIZE__XXX_SET(h,s,g) This requests a size change and retrieves the results.

* data writes.

6.4.5. I/O Parameter: Callback Argument

The purpose of this parameter is to modify and report the
for an I/O completion callback event. The following table

e DEFAULT
te fic value

lied for this parameter happens to equal eith lues, then the results will be
her

 d back must
 s

 The XXX sequence refers to the following individual options: RX for the data reads and TX for the

 application provided argument that it receives as “arg2”
s describe the macros associated with this parameter.

macros NOTE: Applications must remember that th
have special meaning when applying parame

GSC_NO_CHANGE and GSC_
r modifications. If the application speci

being supp
according to

er of these va
 than the appli the API’s use of these special values rat cations intent.

NOTE: This parameter can be accessed and altered
return before subsequent callbacks can be made on the

uring the callback, but the call
ame I/O transfer direction.

Macro (Parameter) Description
HPDI32_IO_CALLBACK_ARG This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_CALLBACK_ARG_DEFAULT This is the default, which is zero.

Description Macro (Services)

HPDI32_IO_CALLBACK_ARG__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_CALLBACK_ARG__RESET(h,w) This resets a setting.
HPDI32_IO_CALLBACK_ARG__SET(h,w,s) This requests a setting change.
HPDI32_IO_CALLBACK_ARG__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_CALLBACK_ARG__XXX_RESET(h) This resets a setting. *
HPDI32_IO_CALLBACK_ARG__XXX_SET(h,s) This requests a setting change. *

* op

6.4.6. I/O Parameter: Callback Function

The purpose of this parameter is to modify and report th
events iat

nd a
return before subsequent callbacks can be made

Macro (Parameter) Description

 The XXX sequence refers to the following individual tions: for tRX he data reads and TX for the data writes.

e application provided function pointer for I/O completion
ed with this parameter. . The following tables describe the macros assoc

NOTE: This parameter can be accessed a ltered during the callback, but the callback must
on the same I/O transfer direction.

HPDI32_IO_CALLBACK_FUNC This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_CALLBACK_FUNC_DEFAULT This is the default, which is NULL.

escrMacro (Services) D iption

HPDI32_IO_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer.
HPDI32_IO_CALLBACK_FUNC__RESET(h,w) This resets a function pointer.
HPDI32_IO_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change.
HPDI32_IO_CALLBACK_FUNC__XXX_GET(h,g) This retrieves a current function pointer. *
HPDI32_IO_CALLBACK_FUNC__XXX_RESET(h) This resets a function pointer. *

79
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_IO_CALLBACK_FUNC__XXX_SET(h,s) This r er change. * equests a function point

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes.

6.4.7. I/O Parameter: Data Size

The purpose of this parameter is to modify and report the base Data Size for data transfers on the external cable

NOTE: Whatever Data Size is used, it is always aligned against the lowest cable data byte.

Macro

interface. This parameter specifies the size of each sample transferred across the cable in bytes. The following tables
describe the macros associated with this parameter.

 (Parameter) Description
HPDI3 is the identifier for this parameter. 2_IO_DATA_SIZE This

iption Macro (Values) Descr

HPDI32_IO_DATA_SIZE_8_BITS This sets the data size to 8-bits.
HPDI32_IO_DATA_SIZE_16_BITS This sets the data size to 16-bits.
HPDI32_IO_DATA_SIZE_32_BITS This sets o 32-bits. the data size t
HPDI32_IO_DATA_SIZE_DEFAULT This is the default, which is 32-bits.

Macro (Services) Description
HPDI32_IO_DATA_SIZE__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_DATA_SIZE__RESET(h,w) This resets a setting.
HPDI32_IO_DATA_SIZE__SET(h,w,s) This requests a setting change.
HPDI32_IO_DATA_SIZE__XXX_8(h) This requests a setting of 8-bits. *
HPDI32_IO_DATA_SIZE__XXX_16(h) This re g of 16-bits. * quests a settin
HPDI32_IO_DATA_SIZE__XXX_32(h) This requests a setting of 32-bits. *
HPDI32_IO_DATA_SIZE__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_DATA_SIZE__XXX_RESET(h) This resets a setting. *
HPDI32_IO_DATA_SIZE__XXX_SET(h,s) This requests a setting change. *

* tio nd for the data writes.

6.4.8. I/O Parameter: DMA Channel Select

The purpose of this parameter is to modify and report the API’s processing of DMA channel selection when I/O
 This parameter is applicable only when applications opt to DMA for I/O requests.

The following tables describe the macros associated with this parameter.

wo DMA channels/controllers. If
the HPDI32 supports the Feature Set Register and the DMA Channel 1 bit is set (the

Description

 The XXX sequence refers to the following individual op ns: RX for the data reads a TX

requests are made and completed.

NOTE: The PCI interface chip used on all HPDI32s includes t

HPDI32_FSR_DMA_CH1 bit) then the HPDI32 supports DMA on both channels. Otherwise the
firmware supports DMA on only the first DMA channel, meaning that the board cannot support
simultaneous DMA reads and writes.

Macro (Parameter)
HPDI32_IO_DMA_CHANNEL_SEL This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_DMA_CHANNEL_SEL_DYNAMIC This selects the dynamic option. With this setting the

e I/O request completes. This is applicable

API acquires a DMA channel (a hardware resource)
when needed and releases it when not needed, which is
as soon as th

80
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

when the HPDI32 firmware supports DMA on only a

directions.
single channel and the application transfers data in both

HPDI32_IO_DMA_CHANNEL_SEL_RX_D his is the Rx default, which is dynamic. EFAULT T
HPDI32_IO_DMA_CHANNEL_SEL_STAT tic option. With this setting the API

a DMA channel (a hardware resource) when
t until told to release it (implicitly).

e HPDI32 firmware supports
nels or when the application

le direction. This option is

IC This selects the sta
acquires
needed and keeps i
This is applicable when th
DMA on both DMA chan

a singtransfers data in just
more efficient.

HPDI32_IO_DMA_CHANNEL_SEL_TX_DEFAULT This is the Tx default, which is static.

Macro (Services) Description
HPDI32_IO_DMA_CHANNEL_SEL__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_DMA_CHANNEL_SEL__SET(h,w,s) This requests a setting change.
HPDI32_IO_DMA_CHANNEL_SEL__XXX_DYNAMIC(h) This requests a setting of dynamic. *
HPDI32_IO_DMA_CHANNEL_SEL__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_DMA_CHANNEL_SEL__XXX_RESET(h) This resets a setting. *
HPDI32_IO_DMA_CHANNEL_SEL__XXX_SET(h,s) This requests a setting change. *
HPDI32_IO_DMA_CHANNEL_SEL__XXX_STATIC(h) This requests a setting of static. *

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes.

6

T parameter is to modify and rep dling of I/O requests using Non-Demand Mode
D ss

escrip

.4.9. I/O Parameter: DMA Control Mode

he purpose of this ort the API’s han
MA. The following tables describe the macros a ociated with this parameter.

Macro (Parameter) D tion
HPDI32_IO_DMA_CONTROL_MODE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_DMA_CONTROL_MODE_AUTOMATIC Th automatic option. With this setting the

AP atically on behalf of
the urn indeterminate data
an This is done at the
x

is selects the
I maintains data integrity autom

ill not ret application. Reads w
d writes will not loose data.

e pense of performance.
HPDI32_IO_DMA_CONTROL_MODE_DEFAULT This is the default, which is automatic.
HPDI32_IO_DMA_CONTROL_MODE_MANUAL This selects the manual option. With this setting,

ing data integrity by
e r that the FIFO can

ac t, reads may return
is
ta

transfer mode.

ap
v

plications are responsible for insur
ferifying manually before a trans

commodate the request. If no
indeterminate data and writes may loose data. This
because Non-Demand Mode DMA is a blind da

Macro (Services) Description
HPDI32_IO_DMA_CONTROL_MODE__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_DMA_CONTROL_MODE__RESET(h,w) This resets a setting.
HPDI32_IO_DMA_CONTROL_MODE__SET(h,w,s) This requests a setting change.
HPDI32_IO_DMA_CONTROL_MODE__XXX_AUTO(h) This requests a setting of automatic. *
HPDI32_IO_DMA_CONTROL_MODE__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_DMA_CONTROL_MODE__XXX_MANUAL(h) This requests a setting of manual. *

81
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_IO_DMA_CONTROL_MOD SET(h) This resets a setting. * E__XXX_RE
HPDI32_IO_DMA_CONTROL_MODE__XXX_SET(h,s) This requests a setting change. *

* refers to the following indiv RX for the data reads and TX for the data writes.

6

T rameter is to modify and report the D sfer priority assigned during I/O requests.
T pt to reads and writes. The
f par

have the
ty oth is

 The XXX sequence idual options:

.4.10. I/O Parameter: DMA Priority

he purpose of this pa MA data tran
his parameter is applicable only when applications o use DMA for simultaneous I/O

ollowing tables describe the macros associated with this ameter.

NOTE: If I/O is active in both directions (read and write) at the same time, and both
same priority, then this results in rotating priori . This occurs whether the priority for b
either enabled or disabled.

Macro (Parameter) Description
HPDI32_IO_DMA_PRIORITY This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_DMA_PRIORITY_DISABLE This selects the disable option, which permits the other I/O to

have priority.
HPDI32_IO_DMA_PRIORITY_ENABLE This selects the enable option, which requests that this I/O be

have priority.
HPDI32_IO_DMA_PRIORITY_RX_DEFAULT This is the Rx default, which is disable.
HPDI32_IO_DMA_PRIORITY_TX_DEFAULT This is the Tx default, which is enable.

Macro (Services) Description
HPDI32_IO_DMA_PRIORITY__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_DMA_PRIORITY__SET(h,w,s) This requests a setting change.
HPDI32_IO_DMA_PRIORITY__XXX_DISABLE(h) This requests a setting of disable. *
HPDI32_IO_DMA_PRIORITY__XXX_ENABLE(h) This requests a setting of enable. *
HPDI32_IO_DMA_PRIORITY__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_DMA_PRIORITY__XXX_RESET(h) This resets a setting. *
HPDI3 2_IO_DMA_PRIORITY__XXX_SET(h,s) This requests a setting change. *

* dual options: for the data reads and TX for the data writes.

eter: Mode

T d requests.
T ia

NOTE: For DMA based I/O using Application Buffers, the buffer must be both readable and
 some cases this means that buffers cann as const or static const.

 read

 The XXX sequence refers to the following indivi RX

6.4.11. I/O Param

he purpose of this parameter is to modify an report the data transfer mode used by the API during I/O
he following tables describe the macros assoc ted with this parameter.

writable. In ot be declared
I/O requests will fail if the buffer does not have /write access.

Macro (Parameter) Description
HPDI32_IO_MODE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_MODE_DEFAULT This selects the default, which is Demand Mode DMA.
HPDI32_IO_MODE_DMA This selects the non-Demand Mode DMA, which is a blind transfer option.

er atic or manual via the Non-
 pa

This option is furth configurable as autom
Demand Mode DMA rameter.

82
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_IO_MODE_DMDMA This selects Demand Mode DMA, which is the most efficient mode.
HPDI32_IO_MODE_PIO This selects Programmed I/O, which used repetitive register reads and writes.

Macro (Services) Description
HPDI32_IO_MODE__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_MODE__RESET(h,w) This resets a setting.
HPDI32_IO_MODE__SET(h,w,s) This requests a setting change.
HPDI32_IO_MODE__XXX_DMA(h) This requests a setting of DMA. *
HPDI32_IO_MODE__XX) This requests a setting of DMDMA. * X_DMDMA(h
HPDI32_IO_MODE__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_MODE__XXX_PIO(h) This requests a setting of PIO. *
HPDI32_IO_MODE__XXX_RESET(h) Th ing. * is resets a sett
HPDI32_IO_MODE__XXX_SET(h,s) This requests a setting change. *

* The XXX sequence refers to the following individual options: for the data reads and for the data writes.

6.4.12. I/O Parameter: Overlap Enable

The purpose of this parameter is to modify and report on the API’s foreground or background processing of I/O

meter.

Macro

RX TX

requests. When I/O requests are made the API will use this parameter’s setting to control how the request is
processed. If the option is enabled then processing occurs as overlapped I/O. Otherwise it is performed as blocking
I/O. The following tables describe the macros associated with this para

 (Parameter) Description
HPDI32_IO_OVERLAP_ENABLE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_OVERLAP_ENABLE_DEFAULT This selects the default, which is no.
HPDI3 equest 2_IO_OVERLAP_ENABLE_NO This selects the no option. I/O requests block until the r

completes or times out.
HPDI32_IO_OVERLAP_ENABLE_YES This selects the yes option. I/O requests return immediately

while the data transfer occurs in the background.

ion Macro (Services) Descript
HPDI32_IO_OVERLAP_ENABLE__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_OVERLAP_ENABLE__R This resets a setting. ESET(h,w)
HPDI32_IO_OVERLAP_ENABLE__SET(h,w,s) This requests a setting change.
HPDI32_IO_OVERLAP_ENABLE__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IO_OVERLAP_ENABLE__XXX_NO(h) This requests a setting of no. *
HPDI32_IO_OVERLAP_ENABLE__XXX_RESET(h) This resets a setting. *
HPDI32_IO_OVERLAP_ENABLE__XXX_SET(h,s) This requests a setting change. *
HPDI32_IO_OVERLAP_ENABLE__XXX_YES(h f yes. *) This requests a setting o

* ividu nd TX for the data writes.

6

T ep where the API automatically
r W I will compare the requested
number of samples to this parameter’s value. If the request is at or below this level, then PIO is used rather than the

les
describe the macros associated with this parameter.

 The XXX sequence refers to the following ind al options: for the data reaRX ds a

.4.13. I/O Parameter: PIO Threshold

he purpose of this parameter is to modify and r ort the threshold for I/O requests
hen I/O requests are made the APeverts to PIO mode verses the configured mode.

configured mode. This is because PIO is more efficient with smaller sized I/O requests. The following tab

83
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Parameter) Description
HPDI32_IO_PIO_THRESHOLD This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_PIO_THRESHOLD_DEFAULT This selects the default, which is 16 samples.
HPDI32_IO_PIO_THRESHOLD_NONE This sets the threshold to zero, which disables the feature.

Macro (Services) Description
HPDI32_IO_PIO_THRESHOLD__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_PIO_THRESHOLD__RESET(h,w) This resets a setting.
HPDI32_IO_PIO_THRESHOLD__SET(h,w,s) This requests a setting change.
HPDI32_IO_PIO_THRESHOLD__XXX_GET(h,g) This retrieves a current T setting. *
HPDI32_IO_PIO_THRESHOLD__XXX_NONE(h,s) This requests a setting change to zero. *
HPDI32_IO_PIO_THRESHOLD__XXX_RESET(h) This resets a setting. *
HPDI32_IO_PIO_THRESHOLD__XXX_SET(h,s) This requests a setting change. *

* The XXX sequence refers to the following individual options: for the data reads and for the data writes.

 gle Cycle eatu t. This is
e only to HPDI32 boards with either older or custom firmware. On newer boards which include

s this parameter. This parameter is applicable only for Demand
han the board’s PCI bus size, in bits, and then only on those

b nclude the Singl le feature. This parameter can be ignored under all other
c esc

 c
erefore insu .

RX TX

6.4.14. I/O Parameter: Single Cycle

The purpose of this parameter is to modify and report a setting that tells the API how the HPDI32 responds during
Demand Mode DMA transfers when the Tx FIFO becomes Almost Full or the Rx FIFO becomes Almost Empty. In
essence, this parameter tells the API whether the HPDI32 slows or pauses data transfer between the respective FIFO
and the DMA engine at the given fill level. When data transfer slows it is because the board reverts to using single
cycle accesses to transfer data, meaning the Single Cycle firmware feature is Present. When data transfer pauses it is
because the board momentarily halts data transfer, meaning the Sin firmware f re is Absen
generally applicabl
the Single Cycle Disable feature, the API ignore
Mode DMA transfers whose data size, in bits, is less t

oards which do not i e Cycle Disab
ircumstances. The following tables d ribe the macros associated with this parameter.

NOTE: There are no known ases where an HPDI32 has different Tx and Rx characteristics.
Applications must th re that the Tx and Rx parameters are set the same

Macro (Parameter) Description
HPDI32_IO_SINGLE_CYCLE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_SINGLE_CYCLE_ABSENT Data transfer pauses as the Single Cycle feature is absent.
HPDI32_IO_SINGLE_CYCLE_DEFAULT This selects the default, which is the Present option.
HPDI32_IO_SINGLE_CYCLE_PRESENT Data transfer slows as the Single Cycle feature is present.

Macro (Services) Description
HPDI32_IO_SINGLE_CYCLE__ABSENT(h,w) This requests a setting change to Absent.
HPDI32_IO_SINGLE_CYCLE__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_SINGLE_CYCLE__PRESENT(h,w) t. This requests a setting change to Presen
HPDI32_IO_SINGLE_CYCLE__RESET(h,w) This resets a setting.
HPDI32_IO_SINGLE_CYCLE__SET(h,w,s) This requests a setting change.
HPDI32_IO_SINGLE_CYCLE__XXX_ABSENT(h) ing change to Absent. * This requests a sett
HPDI32_IO_SINGLE_CYCLE__X g) This retrieves a current setting. * XX_GET(h,
HPDI32_IO_SINGLE_CYCLE__XXX_PRESENT(h) This requests a setting change to Present. *
HPDI32_IO_SINGLE_CYCLE__XXX_RESET(h) This resets a setting. *
HPDI32_IO_SINGLE_CYCLE__XXX_SET(h,s) This requests a setting change. *

84
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

* refers to the following indiv RX for the data reads and TX for the data writes.

.4.15. I/O Parameter: Status

T ren ed includes the set of
G ced ay have completed or may still be
a ted

 The XXX sequence idual options:

6

he purpose of this parameter is to report the cur t I/O status. The status return
SC_IO_STATUS_XXX fields and bits for the referen I/O request, which m
ctive. The following tables describe the macros associa with this parameter.

Macro (Parameter) Description
HPDI32_IO_STATUS This is the identifier for this parameter.

Macro (Services) Description
HPDI32_IO_STATUS__GET(h,w,g) This retrieves a current status.
HPDI32_IO_STATUS__XXX_GET(h,g) This retrieves a current status. *

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes.

6.4.16. I/O Parameter: Timeout

The pur for I/O requests. When I/O requests
are made the API will terminate the request if it has not completed in the specified number of seconds. The
f the macros as his parameter.

id setting the timeout limit to zero (0) when using any form of
ing so may result is inefficien and it may be noticeable slower than

en using Demand Mode DMA applicat t the timeout period long enough
efo e the
 lap rred

pose of this parameter is to modify and report the API’s timeout limit

ollowing tables describe sociated with t

NOTE: Applications should avo
DMA. Do t use of DMA
expected.

NOTE: Wh ions should se
to guarantee that successful transfers complete b re the timeout limit expires. This is becaus

ta transfetransfer will be aborted when the timeout period ses and because the amount of da
will be unknown.

Macro (Parameter) Description
HPDI32_IO_TIMEOUT This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IO_TIMEOUT_DEFAULT This selects the default, which is 10 seconds
HPDI32_IO_TIMEOUT_MAX This selects the maximum timeout limit, which is one hour.
HPDI32_IO_TIMEOUT_NO_WAIT This sets the timeout to zero (0) seconds. This means the I/O request will

terminate rather than wait for additional data transfer to occur.

Macro (Services) Description
HPDI32_IO_TIMEOUT__GET(h,w,g) This retrieves a current setting.
HPDI32_IO_TIMEOUT__RESET(h,w) This resets a setting.
HPDI32_IO_TIMEOUT__SET(h,w,s) This requests a setting change.
HPDI32_IO_TIMEOUT__XXX_GET(h,g) This retrieves a current setting. *
HPDI3 is requests a setting of do not wait. * 2_IO_TIMEOUT__XXX_NO_WAIT(h) Th
HPDI32_IO_TIMEOUT__XXX_RESET(h) This resets a setting. *
HPDI32_IO_TIMEOUT__XXX_SET(h,s) This requests a setting change. *

* The X llowing individual options: RX for the data reads and TX for the data writes. XX sequence refers to the fo

85
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.5. In

The purp errupts.
All Interrupt Parameters are put in a default state when the device is opened and are returned to that state via the
h vice. based interrupt configuration is returned to its default state via the

meters is retained mostly within the HPDI32
Applications have acc interrupt registers but it is advised that they be accessed

o nterrupt Parameters using the service , any number or
c An interrupt is accessed only if it’s
r e is se

NOTE: The interrupt related “which” bits include both general and specific definitions for those
s which can have dual functio rpose of providing the different forms is to

ode ility purposes only and
cular definition will not alter which

 tim

E b ll variations of these
m . sequence generally refers to the following
i _ for the Empty, Almost Empty,
A C0 active and inactive,
respectively, C1, C2, C3, C4, C5 and C6 for Cable Command Signals one through six, the Flow Control configured

fo eady, RE for Rx Enable and TE for Tx Enable, and the GPIO configured Cable Command
signals , , , GPIO_3, GPIO_4, GPIO_5, as well as GPIO_6H and GPIO_6L for GPIO

Parameter Macros Description

terrupt Parameters

ose of the Interrupt Parameters is to permit access to and control of the HPDI32 hardware based int

pdi32_init() ser The hardware
h
fi
pdi32_reset() service. The configuration of the Interrupt Para
rmware registers.
nly through the I

ess to the HPDI32
services. When hpdi32_config()
XXX bits may be used, even none. ombination of H_IRQ_HPDI32_WHIC

espective “which” bit is set. If non t, then no action will be taken.

cable signal nality. The pu
permit greater clarify in application c . These are for reference and usab
do not refer to different interrupts. In addition, use of any parti
functionality is active at any particular e.

ach of the Interrupt Parameters includes a num er of utility service macros. Rather include a
acros, the table list many using an XXX string In the tables the XXX

ndividual options: TX_E, TX_AE, TX_AF, TX

F, RX_E, RX_AE, RX_AF, RX_F
lmost Full and Full Tx and Rx fill levels, A and C0I for Cable Command Signal 0

Cable Command signals FVB and FVE for Frame Valid Begin and End, LV for Line Valid, SV for Status Valid, RR
r Rx Ready, TR for Tx R

GPIO_0 GPIO_1 GPIO_2
6 High and Low.

The following table lists the Interrupt Parameters.

HPDI32_IRQ_CALLBAC This refers to an arbitrary, application supplied callback argument. K_ARG
HPDI32_IRQ_CALLBACK_FUNC This refers to an application supplied callback function for interrupt

notification.
HPDI32_IRQ_ENABLE This refers to enabling or disabling an interrupt.
HPDI32_IRQ_STATE This refers to the state of an interrupt source.
HPDI32_IRQ_TRIGGER_CONFIG This refers to the trigger configuration for an interrupt source.

6 rameter: Callback Argu

T rgument that is receives as “arg2”
during an interrupt callback event. The following tables describe the macros associated with this parameter.

NOTE: Applications must remember that the macros GSC_NO_CHANGE and GSC_DEFAULT
 modifications. If the application specific value

being supplied for this parameter happens to equal either of these values, then the results will be

NOTE: This parameter can be accessed and altered during the callback, but the callback must

Macro

.5.1. Interrupt Pa ment

he purpose of this parameter is to modify and report the application provided a

have special meaning when applying parameter

according to the API’s use of these special values rather than the applications intent.

return before subsequent callbacks can be made on the same interrupt.

 (Parameter) Description
HPDI32_IRQ_CALLBACK_ARG This is the identifier for this parameter.

86
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Values) Description
HPDI32_IRQ_CALLBACK_ARG_DEFAULT This is the default, which is zero.

Macro (Services) Description
HPDI32_IRQ_CALLBACK_ARG__GE This retrieves a current setting. T(h,w,g)
HPDI32_IRQ_CALLBACK_ARG__RESET(h,w) This resets a setting.
HPDI32_IRQ_CALLBACK_ARG__SET(h,w,s) This requests a setting change.
HPDI32_IRQ_CALLBACK_ARG__XXX_GET(h,g) es a current setting. * This retriev
HPDI32_IRQ_CALLBACK_ARG__XXX_RESET(h) This resets a setting. *
HPDI32_IRQ_CALLBACK_ARG__XXX_SET(h,s) This requests a setting change. *

*

.5.2. Interrupt Parameter: Callback Function

T e appl on pointer for an
i macros rameter.

u
a

 The XXX sequence refers to the service macro options given in paragraph 6.5, page 86.

6

he purpose of this parameter is to modify and report th ication provided callback functi
nterrupt callback event. The following tables describe the associated with this pa

NOTE: This parameter can be accessed and altered d ring the callback, but the callback must
return before subsequent callbacks can be made on the s me interrupt.

Macro (Parameter) Description
HPDI32_IRQ_CALLBACK_FUNC This is the identifier for this parameter.

on Macro (Values) Descripti

HPDI32_IRQ_CALLBACK_FUNC_DEFAULT e default, which is NULL. This is th

acro (Services) M Description
HPDI32_IRQ_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer.
HPDI32_IRQ_CALLBACK_FUNC__RESET(h,w) This resets the function pointer.
HPDI32_IRQ_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change.
HPDI32_IRQ_CALLBACK_FUNC__XXX_GET(h,g) This retrieves a current function pointer. *
HPDI32_IRQ_CALLBACK_FUNC__XXX_RESET(h) This resets a function pointer. *
HPDI32_IRQ_CALLBACK_FUNC__XXX_SET(h,s) This requests a function pointer change. *

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 86.

6.5.3. Interrupt Parameter: Enable

The purpose of this parameter is to modify and report the enabled state of the respective interrupt. The following
t ros associated with thi

most
not be disab Almost Full and Tx FIFO

sed for I/O by applications.
pts ca
en dat

x FIF

ables describe the mac s parameter.

WARNING: The Rx F
read requests so should

IFO Al Empty and Rx FIFO Empty interrupts may be used for I/O
led by applications. The Tx FIFO

Full interrupts may be u write requests so should not be disabled
Disabling any of these interru
reduced I/O performance or ev

n interfere with normal I/O operations. This could result in
a loss.

NOTE: Utility access macros are not provided for the Rx FIFO Almost Empty, Rx FIFO Empty,
Tx FIFO Almost Full and T
disabling these interrupts.

O Full interrupts. This is to discourage applications from

87
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

NOTE: When supplying the G
using any of the below utility serv

SC_
ice single “which” bit. If this is
be

Macro (Parameter) Description

DEFAULT macro as an assignment value for this parameter
 macros, be sure to supply only a

not done, the default assigned will for that interrupt with the lowest value “which” bit specified.

HPDI32_IRQ_ENABLE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_IRQ_ENABLE_DEFAULT This is the default which is disabled.
HPDI32_IRQ_ENABLE_NO This option disables the interrupt.
HPDI32_IRQ_ENABLE_YES This option enables the interrupt.

Macro (Services) Description
HPDI32_IRQ_ENABLE__GET(h,w,g) This retrieves a current setting.
HPDI32_IRQ_ENABLE__RESET(h,w) This r . esets a setting
HPDI32_IRQ_ENABLE__SET(h,w,s) This requests a setting change.
HPDI32_IRQ_ENABLE__XXX_GET(h,g) This retrieves a current setting. *
HPDI32_IRQ_ENABLE__XXX_NO(h) This requests that an interrupt be disabled. *
HPDI32_IRQ_ENABLE__XXX_RESET(h) This resets a setting. *
HPDI32_IRQ_ENABLE__XXX_SET(h,s) This requests a setting change. *
HPDI32_IRQ_ENABLE__XXX_YES(h) This requests that an interrupt be enabled. *

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 86. Refer to the above notes
s.

6

T read-only parameter is to e of the respective interrupt source. The following tables
d

for certain exception

.5.4. Interrupt Parameter: State

he purpose of this report the stat
escribe the macros associated with this parameter.

Macro (Parameter) Description
HPDI32_IRQ_STATE This is the identifier for this parameter.

iMacro (Values) Descr ption

HPDI32_IRQ_STATE_ACTIVE This reflects that the source was active.
HPDI32_IRQ_STATE_INACTIVE This re e. flects that the source was inactiv

Macro (Services) Description
HPDI32_IRQ_STATE__GET(h,w,g) This retrieves a current state.
HPDI32_IRQ_STATE__XXX_GET(h,g) This retrieves a current state. *

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 86.

6.5.5. Interrup meter: Trig ation

T ation of an interrupt. The following tables
escribe the macros associated with this parameter.

ost Empty and
read requests. The Tx FIFO Almost Full and T interrupts may be used for I/O write

n
n reduced I/O performance or even

t Para ger Configur

he purpose of this parameter is to modify and report the Trigger Configur
d

WARNING: The Rx FIFO Alm Rx FIFO Empty interrupts may be used for I/O
x FIFO Full

requests. The Trigger Configuration for these i
can interfere with normal I/O operations. This

terrupts should not be altered by applications as it
could result i

data loss.

88
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

NOTE: Utility access macros are not pr
 FIFO Fu

ovided
ll interr This is to

his param

scription

for the Rx FIFO Almost Empty, Rx FIFO Empty,
Tx FIFO Almost Full and Tx upt Trigger Configuration parameters.
discourage applications from altering t eter for these interrupts.

Macro (Parameter) De
HPDI32_IRQ_TRIGGER_CONFIG This is the ident meter. ifier for this para

DMacro (Values) escription

HPDI32_IRQ_TRIGGER_CONFIG_DEFAULT This option refers to default which is Edge Hi.
HPDI32_IRQ_TRIGGER_CONFIG_EDGE_HI This option refers to triggering on a rising edge.
HPDI32_IRQ_TRIGGER_CONFIG_EDGE_LOW T triggering on a falling edge. his option refers to
HPDI32_IRQ_TRIGGER_CONFIG_LEVEL_HI This option refers to triggering on a high level.
HPDI32_IRQ_TRIGGER_CONFIG_LEVEL_LOW T gering on a low level. his option refers to trig

Macro (Services) Description
HPDI32_IRQ_TRIGGER_CONFIG__GET (h,w,g) This retrieves a current setting.
HPDI32_IRQ_TRIGGER_CONFIG__RESET(h,w) This resets a setting.
HPDI32_IRQ_TRIGGER_CONFIG__SET(h,w,s) This requests a setting change.
HPDI32_IRQ_TRIGGER_CONFIG__XXX_EDG This requests a trigger on a rising edge. * E_HI(h)
HPDI32_IRQ_TRIGGER_CONFIG__XXX_EDG falling edge. * E_LOW(h) This requests a trigger on a
HPDI32_IRQ_TRIGGER_CONFIG__XXX_GET (h,g) This retrieves a current setting. *
HPDI32_IRQ_TRIGGER_CONFIG__XXX_LEV_HI(h) This requests a trigger on a high level. *
HPDI32_IRQ_TRIGGER_CONFIG__XXX_LEV_LOW(h) This requests a trigger on a low level. *
HPDI32_IRQ_TRIGGER_CONFIG__XXX_RESET(h) This resets a setting. *
HPDI32_IRQ_TRIGGER_CONFIG__XXX_SET(h,s) This requests a setting change. *

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 86. Refer to the above notes

The purp not
readily f hen the
device based
Miscella uration
of one o rameters is retained within the HPDI32 firmware registers. Applications have
access to aneous
Paramet d. The
followin

for certain exceptions.

6.6. Miscellaneous Parameters

ose of the Miscellaneous Parameters is to permit access to and control of HPDI32 parameters which do
it into the other parameter categories. All Miscellaneous Parameters are put in a default state w

is opened and are returned to that state via the hpdi32_init() service. The hardware
neous Parameters are returned to their default states via the hpdi32_reset() service. The config
r more Miscellaneous Pa
 these HPDI32 registers but it is advised that these parameters be accessed only through the Miscell

er services. When using the service hpdi32_config(), the “which” bits argument is ignore
g table lists the Miscellaneous Parameters.

Parameter Macros Description
HPDI32_MISC_BOARD_JUMPERS This refers to the board’s user jumpers.
HPDI32_MISC_FAVOR_TX This on of favoring transmit operation over receive

a
refers to opti

oper tions for certain parameters.
HPDI32_MISC_FEATURES This refers to the set of supported features.
HPDI32_MISC_MAP_GSC_REGS This

applic
refers to mapping of the firmware registers into API and
ation memory space.

HPDI32_MISC_MAP_GSC_REGS_PTR This
regi

st

refers to the application accessible pointer to the firmware
ers.

HPDI32_MISC_MAP_PLX_REGS This
memo

refers to mapping of the PLX feature set registers into API
ry space.

HPDI32_MISC_PCI_BUS_WIDTH This refer e board’s PCI interface: 32 or 64-bits. s to width of th
HPDI32_MISC_STRICT_ARGUMENTS This ref

values w
e ized parameter
h
rs to the processing of certain unrecogn
en applying settings.

89
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_MISC_STRICT_CONFIG This refers to the processing of invalid hardware configuration
options when applying settings.

HPDI32_MISC_TX_RX_TRI_STATE This refe
signals wh

r able and Rx Enable cable
en not being driven high.
s to the tri-stating of the Tx En

6.6.1. Miscellaneous Parameter: Board Jumpers

 parameter.

Macro

The purpose of this read-only parameter is to report the state of the User Jumper pins on the board, for those that
support the feature. The jumper state is reported in the lower two bits of the value retrieved. The following tables
describe the macros associated with this

 (Parameter) Description
HPDI32_MISC_BOARD_JUMPERS This is the identifier for this parameter.

Macro Description (Services)
HPDI32_MISC_BOARD_JUMPERS__GET(h,g) This retrieves the current state.

6

T parameter is to control and report th ring of transmit operations over receive
o c ropriately processed,
are configured to favor transmit operations. If disabled, these same parameters, when appropriately processed, are

ibe the macros associated with this parameter.

.6.2. Miscellaneous Parameter: Favor Tx

he purpose of this e API’s favo
perations. When the transmitter is favored a small set of onfigurable parameters, when app

configured to favor receive operations. The following tables descr

Macro (Parameter) Description
HPDI32_MISC_FAVOR_TX This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_FAVOR_TX_DEFAULT This is the default, which is disable.
HPDI32_MISC_FAVOR_TX_DISABLE This option disables the option.
HPDI32_MISC_FAVOR_TX_ENABLE This option enables the option.

Macro Description (Services)
HPDI32_MISC_FAVOR_TX__GET(h,g) This retrieves the current setting.
HPDI32_MISC_FAVOR_TX__NO(h) This requests that the option be disabled.
HPDI3 . 2_MISC_FAVOR_TX__SET(h,s) This requests a setting change
HPDI32_MISC_FAVOR_TX__YES(ests that the option be enabled. h) This requ

6.6.3. Miscellaneous Parameter: Features

T r HPDI32 features. While
t ed
T d

he purpose of this read-only parameter is to repo
his is a read-only parameter the feature being test

t the presence of various firmware based
 must be specified in the respective structure’s “set” argument.
 with this parameter. he following tables describe the macros associate

Macro (Parameter) Description
HPDI32_MISC_FEATURES This is the identifier for this parameter.

Macro (Set Values) iption Descr
HPDI32_MISC_FEATURES_COUNT to the number of features supported by this This refers

parameter.
HPDI32_MISC_FEATURES_1_CYCLE_DISABLE This refers to the Board Contro

Disable bit.
l Register’s Single Cycle

HPDI32_MISC_FEATURES_DMA_CH1 This refers to support for transmitting with
Mode DMA using DMA channel 1

 Demand

90
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_MISC_FEATURES_FIFO_SIZE This refers to the Tx/Rx FIFO Size Registers.
HPDI32_MISC_FEATURES_FSR This refers to the Feature Set Register.
HPDI32_MISC_FEATURES_GPIO_0_5 This refers to the GPIO 0 to 5 signals available on the

external cable interface.
HPDI32_MISC_FEATURES_GPIO_6 This refers to the GPIO 6 signal available on the external

cable interface.
HPDI3 IELR

and IHLR.
2_MISC_FEATURES_ICR This refers to the interrupt configuration registers

HPDI32_MISC_FEATURES_OVR_UNDR_RUN This refers to the Tx/Rx FIFO Over/Under Run bits.
HPDI32_MISC_FEATURES_TX_AUT This refers to the Board Control Register’s Tx Start Auto O_STOP

Clear Disable bit.
HPDI32_MISC_FEATURES_USER_JUMPERS This refers to the presence of the user configurable

mpers on the board. ju

Macro (Get Values) Description
HPDI32_MISC_FEATURES_ABSENT This means the feature is absent from the HPDI32.
HPDI32_MISC_FEATURES_PRESENT This mean s present in the HPDI32. s the feature i

Macro (Services) Description
HPDI32_MISC_FEATURES__GET(h,s,g) This requests support status for a feature.
HPDI32_MISC_FEATURES__XXX(h,g) This requests support status for feature XXX. *

* The XXX sequence refers to the parameter value extensions given in the Set Values table. The extension is that test
that follows the base parameter macro text.

6.6.4. Miscellaneous Parameter: GSC Register Mapping

The purpose of this parameter is to control and report the mapping of GSC registers into application and API
me rameter should always ven if unused by applications. If it is disabled, the API’s
a d efficiency. The following tables describe the macros
a

here are circumstances where this feat abled and utilized. This is usually
sn U
 aries, then API

rameter access utility macros are limi rameter as it should always be
r

mory space. This pa
ccess to HPDI32 firm

 be enabled, e
es with reduceware registers operat

ssociated with this parameter.

NOTE: T ure cannot be en
limited to embedded hosts here the BIOS doe ’t place all PCI memory access regions on CP
Page Size boundaries. If the BIOS cannot be configured to utilize such bound
performance is degraded.

NOTE: Pa ted for this pa
enabled. The parameter should only be disabled fo testing purposes.

Macro (Parameter) Description
HPDI32_MISC_MAP_GSC_REGS This is the identifier for this parameter.

on Macro (Values) Descripti

HPDI32_MISC_MAP_GSC_REGS_DEFAULT This is the default, which is enabled.
HPDI32_MISC_MAP_GSC_REGS_DISABLE This refers to the disabled state. When disabled access to

firmware registers must go through the Device Driver, which
reduces efficiency.

HPDI32_MISC_MAP_GSC_REGS_ENABLE This refers to the enabled state. When enabled access to
firmware registers is done entirely within the API, which
increases efficiency.

Macro (Services) Description
HPDI32_MISC_MAP_GSC_REGS__ENABLE(h) This requests that the option be enabled.

91
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_MISC_MAP_GSC_REGS__G This requests the current setting. ET(h,g)
HPDI32_MISC_MAP_GSC_REGS__RESET(h) This resets the setting.
HPDI32_MISC_MAP_GSC_REGS__SET(h,s) This requests a setting change.

6 te

T ve ect access to HPDI32 firmware
nabled the application can use the pointer to directly access

H gisters. If disabled, the pointer ret The following tables describe the macros
a

fe . This is usually limited to
 CPU Page Size
 t performance is

.6.5. Miscellaneous Parameter: GSC Regis r Mapping Pointer

he purpose of this read-only parameter is to retrie
gisters. If the GSC Register Mapping feature is e

 the pointer the API uses for dir
re

PDI32 firmware re urned is NULL.
ssociated with this parameter.

NOTE: There are circumstances where this ature cannot be utilized
embedded hosts here the BIOS doesn’t place

ed
all PCI memory access regions on

boundaries. If the BIOS cannot be configur
degraded.

o utilize such boundaries, then API

Macro (Parameter) Description
HPDI32_MISC_MAP_GSC_REGS_PTR This is the identifier for this parameter.

Macro (Services) Description
HPDI32_MISC_MAP_GSC_REGS_PTR__GET(h,g) This requests the current pointer.

6 r: PLX pping

and report the mapping of PLX registers into API memory space. This
p lways be enabled, even though it is n le by applications. If it is disabled, the API’s
a c acros associated with
t

ea
e

Page Size boundaries. If the BIOS cannot be
e is degraded.

th
p

.6.6. Miscellaneous Paramete Register Ma

The purpose of this parameter is to control
arameter should a ot directly usab
ccess to PLX registers operates with reduced efficien y. The following tables describe the m
his parameter.

NOTE: There are circumstances where this f
limited to embedded hosts here the BIOS do

ture cannot be enabled and utilized. This is usually
sn’t place all PCI memory access regions on CPU
 configured to utilize such boundaries, then API

performanc

NOTE: Parameter access utility macros are limited for is parameter as it should always be
enabled. The parameter should only be disabled for testing urposes.

Macro (Parameter) Description
HPDI32_MISC_MAP_PLX_REGS This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_MAP_PLX_REGS_DEFAULT This is the default, which is enabled.
HPDI32_MISC_MAP_PLX_REGS_DISABLE This refers to the disabled state. When disabled access to PLX

registers must go through the Device Driver, which reduces
efficiency.

HPDI32_MISC_MAP_PLX_REGS_ENABLE This refers to the enabled state. When enabled access to PLX
registers is done entirely within the API, which increases
efficiency.

Macro (Services) Description
HPDI32_MISC_MAP_PLX_REGS abled. __ENABLE(h) This request that the option be en
HPDI32_MISC_MAP_PLX_REGS__GET(h,g) g. This requests the current settin
HPDI32_MISC_MAP_PLX_REGS__RESET(h) This resets the current setting.
HPDI32_MISC_MAP_PLX_REGS__SET(h,s) This request a change to the current setting.

92
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.6.7. Miscellaneous Parameter

T
p cribe the macros associated with this parameter.

eter identifies the bus width of the board’s PCI interface, this has no
ot the board is plugged into. The API does not have this

n

: PCI Bus Width

he purpose of this read-only para
rovided for informational purposes

meter is to retrieve the HPDI32 board’s PCI bus width. This parameter is
only. The following tables des

NOTE: While this param
bearing on the size of the PCI sl
information.

Macro (Parameter) Descriptio
HPDI32_MISC_PCI_BUS_WIDTH This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_PCI_BUS_WIDTH_32 This reflects that the board has a 32-bit bus.
HPDI32_MISC_PCI_BUS_WIDTH_ lects that the board has a 64-bit bus. 64 This ref

Macro (Services) Description
HPDI32_MISC_PCI_BUS_WIDTH__GET(h,g) This requests the board’s PCI bus width.

6.6.8. Miscellaneous Parameter: Stri ts

T s the API’s handling of certain
u en adjusting this parameter is not listed in the
a ition or infer the application’s intent per
t sing is terminated with an error
s e to parameter

ters. The following tables describe the macros associated with this

ct Argumen

he purpose of this parameter is to control and retrieve the setting that govern
nrecognized values. For example, if the setting supplied wh
ppropriate table below, then the API can

rg
either respond with an error cond

he value that was received. If Strict A
tatus. Otherwise the API is lenient and

ument processing is enabled, then proces
will try to proceed gracefully. This policy is applicabl

processing only, and applies to most parame
parameter.

Macro (Parameter) Description
HPDI32_MISC_STRICT_ARGUMENTS This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_STRICT_ARGUMENTS_DEFAULT This is the default, which is lenient processing.
HPDI32_MISC_STRICT_ARGUMENT This refers to lenient processing. S_DISABLE
HPDI32_MISC_STRICT_ARGUMENT ocessing. S_ENABLE This refers to strict pr

Macro (Services) Description
HPDI32_MISC_STRICT_ARGUMENTS__GET(h,g) This requests the current setting.
HPDI32_MISC_STRICT_ARGU (h) This requests lenient processing. MENTS__NO
HPDI32_MISC_STRICT_ARGU . MENTS__RESET(h) This resets the setting
HPDI32_MISC_STRICT_ARGUMENTS__SET(h,s) This requests a setting change.
HPDI32_MISC_STRICT_ARGUMENTS__YES(h) This requests strict processing.

6

T he API’s handling of certain invalid
h rporated into the API. For example, if

 signal not configured for GPIO, the API can either respond with an
nt per the request. If strict processing is enabled, then processing is

.6.9. Miscellaneous Parameter: Strict Configuration

he purpose of this parameter is to control a
ardware configuration requests. Support f

nd retrieve the setting that gove
or the parameter is not yet inco

rns t

altering a GPIO setting for a Cable Command
error condition or infer the application’s inte
terminated with an error status. Otherwise the API is lenient and will try to proceed gracefully. This policy is
applicable to parameter processing only, and applies to hardware based parameters only. The following tables
describe the macros associated with this parameter.

93
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Parameter) Description
HPDI32_MISC_STRICT_CONFIG This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_STRICT_CONFIG_DEFAU s lenient processing. LT This is the default, which i
HPDI32_MISC_STRICT_CONFIG_DISABLE This refers to lenient processing.
HPDI32_MISC_STRICT_CONFIG_ENABLE This refers to strict processing.

Macro (Services) Description
HPDI32_MISC_STRICT_CONFIG__GET(h,g) This requests the current setting.
HPDI32_MISC_STRICT_CONFIG__NO(h) This requests lenient processing.
HPDI32_MISC_STRIC _RESET(h) This resets the setting. T_CONFIG_
HPDI32_MISC_STRICT_CONFIG__SET(h,s) This requests a setting change.
HPDI32_MISC_STRICT_CONFIG__YES(h) This requests strict processing.

6 r:

he purpose of this parameter is to control and retrieve the HPDI32’s tri-stating of the Tx Enable and Rx Enable
si en high. (In the har nual this is referred to as Test Mode as it was introduced for
c he following tables describe the macros
asso

Macro (Parameter) Description

.6.10. Miscellaneous Paramete Tx/Rx Tri-State

T
gnals when not driv dware user ma
onnected two HPDI32 boards back-to

ciated with this parameter.
-back for testing purposes.) T

HPDI32_MISC_TX_RX_TRI_STATE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_MISC_TX_RX_TRI_STATE_DEFAULT This is the default, which is disabled.
HPDI32_MISC_TX_RX_TRI_STATE_DISABLE This refers to the disabled option, in which the Tx Enable

and Rx Enable signals are always driven.
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE This refers to the enabled option, in which the Tx Enable

and Rx Enable signals are driven only when high.

Macro (Services) Description
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__GET(h,g) This requests the current setting.
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__NO(h) This request that the option be disabled.
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__RESET(h) This resets the setting.
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__SET(h,s) This requests a setting change.
HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__YES(h) This request that the option be enabled.

6 amete

he purpose of the Receiver Parameters is to permit access to and control of those parameters that pertain
e I32’s receiver features. All Receiver Parameters are put in a default state when the device is
o e di32_reset() services. The
c s have access to the
H arameter services.

hpdi32_config(), the “which” bits argument is ignored. The following table lists the
R

.7. Receiver Par rs

T
xclusively to the HPD
pened and are returned to that stat via the hpdi32_init() and hp
onfiguration of these parameters is retained

e
 within the HPDI32 firmware registers. Application

PDI32 registers but it is advised that th
hen using the service

se features be accessed only through the Receiver P
W

eceiver Parameters.

Parameter Macros Description
HPDI32_RX_ENABLE refers to enabling or disabling the receiver. This
HPDI32_RX_OVERRUN This refer FO being overrun with additional data when already s to the Rx FI

full.
HPDI32_RX_ROW_COUNT This refer ived during a frame while the s to the number of data samples rece

94
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Line Valid signal is active.
HPDI32_RX_STATE This refers to active or inactive state of the receiver.
HPDI32_RX_STATUS_COUNT This

Statu
 refers to the number of data samples received during a frame while the
s Valid signal is active.

HPDI32_RX_UNDER_RUN This refers to the Rx FIFO being read when it is already empty.

6.7.1. Receiver Parameter: Rx Enable

The purpose of this parameter is to control and retrieve the enable state of the receiver. The following tables
describe the macros associated with this parameter.

Macro (Parameter) Description
HPDI32_RX_ENABLE This is the identifier for this parameter.

DescriptiMacro (Values) on

HPDI32_RX_ENABLE_DEFAULT This is the s disabled. default, which i
HPDI32_RX_ENABLE_NO This refers to the disabled option, when prevents data transfer.
HPDI32_RX_ENABLE_YES This refer ta transfer. s to the enabled option, which permits da

DescriMacro (Services) ption

HPDI32_RX_ENABLE__GET(h,g) This requests the current setting.
HPDI32_RX_ENABLE__NO(h) This request that the option be disabled.
HPDI32_RX_ENABLE__RESET(h) This reset the setting.
HPDI32_RX_ENABLE__SET(h,s) This requests a setting change.
HPDI32_RX_ENABLE__YES(h) This request that the option be enabled.

6.7.2. Rec

Th re he Rx Overrun condition, when supported in the HPDI32.
T ribe the macros associate

eiver Parameter: Rx Overrun

e purpose of this parameter is to control and trieve t
he following tables desc d with this parameter.

Macro (Parameter) Description
HPDI32_RX_OVERRUN This is the identifier eter. for this param

ption Macro (Set Values) Descri

HPDI32_RX_OVERRUN_CLEAR This refers to clearing the condition.
HPDI32_RX_OVERRUN_DEFAULT This is the default, which is to clear the condition.
HPDI32_RX_OVERRUN_IGNORE This refers to ignoring the condition (do not clear it).

Macro (Get Values) Description
HPDI32_RX_OVERRUN_NO This reflects that the condition does not exist.
HPDI32_RX_OVERRUN_YES This reflects that the condition does exist.

Macro (Services) Description
HPDI3 This requests that the condition be cleared. 2_RX_OVERRUN__CLEAR(h)
HPDI32_RX_OVERRUN__GET(h,g) This requests the current condition.
HPDI32_RX_OVERRUN__SET(h,s) This requests a setting change.

6.7.3. R rameter: Row Count

T mples received over the external cable
ables describe the macros associated with

is parameter.

eceiver Pa

he purpose of this read-only pa
nterface during the last frame’s L

rameter is to retrieve the count of data sa
ine Valid active period. The following ti

th

95
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Parameter) Description
HPDI32_RX_ROW_COUNT This is the identifier for this parameter.

Macro (Services) Description
HPDI32_RX_ROW_COUNT__GET(h,g) This requests the current count.

6

T e receiver. The following tables describe the
m

.7.4. Receiver Parameter: State

he purpose of this parameter is to retrieve th Rx Enabled state of the
acros associated with this parameter.

Macro (Parameter) Description
HPDI32_RX_STATE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_RX_STATE_ACTIVE This means the receiver is active since it is enabled.
HPDI32_RX_STATE_INACTIVE This means the receiver is inactive since it is disabled.

Macro (Services) Description
HPDI32_RX_STATE__GET(h,g) This requests the current state.

6.7.5. Receiver Parameter: Status Count

The pur al cable
interface rameter
is listed service the parameter is accessed only via the parameter identifier.
The following

Macro

pose of this read-only parameter is to retrieve the count of data samples received over the extern
 during the last frame’s Status Valid active period. In the hpdi32_rx_config_t structure the pa
separately. In the hpdi32_config()

tables describe the macros associated with this parameter.

 (Parameter) Description
HPDI32_RX_STATUS_COUN e identifier for this parameter. T This is th

Macro (Services) Description
HPDI32_RX_STATUS_COUNT__GET(h quests the current count. ,g) This re

6

ntrol a Run condition, when supported in the HPDI32.
ribe the macros associated eter.

.7.6. Receiver Parameter: Rx Under Run

T
T

he purpose of this parameter is to co nd retrieve the Rx Under
he following tables desc with this param

Macro (Parameter) Description
HPDI32_RX_UNDER_RUN This is the identifier for this parameter.

eMacro (Set Values) D scription

HPDI32_RX_UNDER_RUN_CLEAR This refers to clearing the condition.
HPDI32_RX_UNDER_RUN_DEFAULT This is the default, which is to clear the condition.
HPDI32_RX_UNDER_RUN_IGNORE This refers to ignoring the condition (do not clear it).

Macro (Get Values) Description
HPDI32_RX_UNDER_RUN_NO This reflects that the condition does not exist.
HPDI32_RX_UNDER_RUN_YES hat the condition does exist. This reflects t

Macro (Services) Description
HPDI32_RX_UNDER_RUN__CLEAR(h) This requests that the condition be cleared.
HPDI32_RX_UNDER_RUN__GET(h,g) This requests the current condition.

96
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

HPDI32_RX_UNDER_RUN__SET(h,s) Th etting change. is requests a s

6

T Transmitter Parameters is to p to and control of those parameters that pertain
e A t in a default state when the
d th he firmware based Transmitter
Parameters are also returned to their initial state via the hpdi32_reset() service. The configuration of some of

firmware registers. Applications have access to the HPDI32 registers
but it is advised that these features be accessed only through the Transmitter Parameter services. When using the

Description

.8. Transmitter Parameters

he purpose of the ermit access
xclusively to the HPDI32’s transmitter features. ll Transmitter Parameters are pu

e hpdi32_init() service. Tevice is opened and are returned to that state via

these parameters is retained within the HPDI32

service hpdi32_config(), the “which” bits argument is ignored. The following table lists the Receiver
Parameters.

Parameter Macros
HPDI32_TX_AUTO_START This refers to automatically starting transmission when a write

request occurs.
HPDI32_TX_AUTO_STOP This refers to automatically stopping the transmitter when the Tx

mentarily. FIFO hits empty, even if mo
HPDI32_TX_CLOCK_DIVIDER e on-board This refers to the divider that goes between th

oscillator and the transmitter.
HPDI32_TX_ENABLE This refers to enabling or disabling the transmitter.
HPDI32_TX_FLOW_CONTROL fers to enabling or disabling data flow out the cable. This re
HPDI32_TX_LINE_VALID_OFF_COUNT This refers to length of the Line Valid off period.
HPDI32_TX_LINE_VALID_ON_COUN alid on period. T This refers to length of the Line V
HPDI32_TX_OVERRUN This refers to Tx FIFO receiving data when it is already full.
HPDI32_TX_REMOTE_THROTTLE This refers to the remote hardware control the flow of transmit

data.
HPDI32_TX_REMOTE_THROTTLE_STATE This refers to state of the remote hardware’s data flow control

put. in
HPDI32_TX_STATE This refers to state of the transmitter.
HPDI32_TX_STATUS_VALID_COUNT This refers to length of the Status Valid on period.
HPDI32_TX_STATUS_VALID_MIRROR This refers to mirroring of the Status Valid pulse on the Line

Valid signal.

6.8.1. Transmitter Parameter: Auto Start

The purpose of this parameter is to control and retrieve the API’s Auto Start feature for the transmitter. If enabled
(the defa initiate
data tran the Tx
Start bit,

ware, the Tx Start bit operates in parallel with the Tx Remote
Throttling feature. If Remote Throttling is enabled and the Tx Start bit is set, then data will be

NOTE: When the Auto Start parameter is enabled, the API will disable the Remote Throttle

De

ult), then the API will automatically set the Tx Start bit in the firmware’s Board Control Register to
sfer during write requests. If the parameter is disabled, then the application is responsible for setting
 when appropriate. The following tables describe the macros associated with this parameter.

WARNING: In the HPDI32 firm

transferred even if the Remote Throttling input from the remote device says to halt data transfer.
This is likely to result in data loss.

parameter. When the Remote Throttle parameter is enabled, the API will disable the Auto Start
parameter.

Macro (Parameter) scription
HPDI32_TX_AUTO_START This is the identifier for this parameter.

97
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Values) Description
HPDI32_TX_AUTO_START_DEFAULT This is the default, which is the disable option.
HPDI32_TX_AUTO_START_NO This disabled the option.
HPDI32_TX_AUTO_START_YES This enables the option.

Macro (Services) Description
HPDI32_TX_AUTO_START__GET(h,g) Th rrent setting. is requests the cu
HPDI32_TX_AUTO_START__NO(h) This request that the option be disabled.
HPDI32_TX_AUTO_START__RESET(h) This resets the setting.
HPDI32_TX_AUTO_START__SET(h,s) This requests a setting change.
HPDI32_TX_AUTO_START__YES(h) This request that the option be enabled.

6.8.2. Transmitter Parameter: Auto Stop

The purpose of this parameter is to control and retrieve the API’s Auto Stop feature for the transmitter. If disabled

t faster than it is
put in. In general, the FIFO can run dry either because the data transmission rate exceeds the PCI bus transfer rate or
b emporarily stalls under s and overhead issues. If enabled, then transmission
b th cribe the macros associated

l
t

oth when abled and
 Flow Control parameter enables transfer.

(the default), then once data transmission from the Tx FIFO begins, data transfer from the FIFO will remain enabled
(permitting subsequent data flow) even if the FIFO becomes empty. The empty situation can occur because
additional data is not being put into the FIFO or because the FIFO runs dry when data is pulled ou

ecause the PCI bus t ystem loading
ecomes disabled the instant the Tx FIFO hits
ith this parameter.

e empty state. The following tables des
w

NOTE: This parameter should remain disabled un ess an application has a specific need to enable
it. If enabled, data transmission can appear to hal
negative impact on overall throughput.

inexplicably on some systems, or it can have a

NOTE: The Tx Auto Stop feature operates b the Tx Auto Start parameter is en
when the Tx

Macro (Parameter) Description
HPDI32_TX_AUTO_STOP This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_AUTO_STOP_DEFAULT This is the default, which is the enable option.
HPDI32_TX_AUTO_STOP_NO This disabled the option.
HPDI32_TX_AUTO_STOP_YES This enables the option.

Macro (Services) Description
HPDI32_TX_AUTO_STOP__GET(h,g) This requests the current setting.
HPDI32_TX_AUTO_STOP__NO(h) hat the option be disabled. This request t
HPDI32_TX_AUTO_STOP__RESET(h) This resets the setting.
HPDI32_TX_AUTO_STOP__SET(h,s) This requests a setting change.
HPDI32_TX_AUTO_STOP__YES(h) This reques n be enabled. t that the optio

6

T ieve t ivider Register. The
this pa

.8.3. Transmitter Parameter: Tx Clock Divider

he purpose of this parameter is to control and retr
llowing tables describe the macros associated with

he value in the HPDI32 Tx Clock D
rameter. fo

Macro (Parameter) Description
HPDI32_TX_CLOCK_DIVIDER This is the identifier for this parameter.

98
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Values) Description
HPDI32_TX_CLOCK_DIVIDER_DEFAULT This is the default, which is zero (0).
HPDI32_TX_CLOCK_DIVIDER_MAX This is the maximum value that can be written to the register.

Macro (Services) Description
HPDI32_TX_CLOCK_DIV (h,g) This requests the current setting. IDER__GET
HPDI32_TX_CLOCK_DIVIDER__SET(h,s) This requests a setting change.

6 arameter: Tx En

T r. The following tables
d p

Descri

.8.4. Transmitter P able

he purpose of this parameter is to control and retrieve the enable state of the transmitte
escribe the macros associated with this arameter.

Macro (Parameter) ption
HPDI32_TX_ENABLE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_ENABLE_DEFAULT This , which is disabled. is the default
HPDI32_TX_ENABLE_NO This refers to the disabled option, when prevents data transfer.
HPDI32_TX_ENABLE_YES This refers to the enabled option, which permits data transfer.

Macro (Services) Description
HPDI32_TX_ENABLE__GET(h,g) This requests the current setting.
HPDI32_TX_ENABLE__NO(h) This request that the option be disabled.
HPDI32_TX_ENABLE__RESET(h) This resets the setting.
HPDI32_TX_ENABLE__SET(h,s) This requests a setting change.
HPDI32_TX_ENABLE__YES(h) This request that the option be enabled.

6.8.5. Transmitter

The purp when
the trans halted.
This par Start bit in the firmware’s Board Control Register, which functions
in parallel on the
Tx Rem e
followin

mote
Throttling feature. If Remote Throttling is enabled and the Tx Start bit is set, then data will be

 if the Remote T t from remote device says to halt data transfer. This
d not be exercised while

 can be
bl w will resume movement as
.

plications applying this parameter to h ust be aware that it could result in

Parameter: Flow Control

ose of this parameter is to control and retrieve the API’s enabling or inhibiting of transmit data flow
mitter is enabled. If enabled, then transmit data is permitted to flow. If disabled, then data flow is
ameter operates by manipulating the Tx

with the Tx Remote Throttling parameter. Manipulating this Flow Control parameter has no affect
ote Throttling parameter and should be used only when the Remote Throttling parameter is disabled. Th
g tables describe the macros associated with this parameter.

WARNING: In the HPDI32 firmware, the Tx Start bit operates in parallel with the Tx Re

transferred even hrottling inpu
is likely to result in data loss.
Remote Throttling is enabled.

 The Tx Flow Control parameter shoul

NOTE: Use of this parameter is applicable mostly when Tx Auto Start is disabled. While it
used as data is flowing out the external ca e interface, halted data flo
the API exercises the Tx Auto Start feature

NOTE: Ap alt data flow m
an I/O timeout.

Macro (Parameter) Description
HPDI32_TX_FLOW_CONTROL This is the identifier for this parameter.

99
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

Macro (Values) Description
HPDI32_TX_FLOW_CONTROL_DEFAULT This is the default, which is to do nothing.
HPDI32_TX_FLOW_CONTROL_DISABLE This disables data flow.
HPDI32_TX_FLOW_CONTROL_ENABLE This enables data flow.
HPDI32_TX_FLOW_CONTROL_IGNORE This option takes no action.

Macro (Services) Description
HPDI32_TX_FLOW_CONTROL__GET(h,g) This requests the current setting.
HPDI32_TX_FLOW_CONTROL__RESET(h) This resets the setting.
HPDI32_TX_FLOW_CONTROL__SET(h,s) This requests a setting change.
HPDI32_TX_FLOW_CONTROL__START(h) This request that the data flow.
HPDI32_TX_FLOW_CONTROL__STOP(h) that the data stop flowing. This request

6.8.6. Transmitter Parameter: Line Valid Of

T is
h r
L ro

Description

f Count

he purpose of this parameter is to control and retrieve the num
eld low before going high, during a frame. This parame

ber of cable clock cycles that the Line Valid signal
operates by accessing the board’s Tx Linte

ength Count Register. The following tables describe the mac
e Invalid

s associated with this parameter.

Macro (Parameter)
HPDI32_TX_LINE_VALID_OFF_COUNT This is the identifier for this parameter.

Description Macro (Values)

HPDI32_TX_LINE_VALID_OFF_COUNT_DEFAULT This is the default, which disables the “off” period.
HPDI32_TX_LINE_VALID_OFF_COUNT_DISABLE This disables the “off” period, which sets the register

to zero (0).
HPDI32_TX_LINE_VALID_OFF_COUNT_MAX This is the maximum period length.

Macro (Services) Description
HPDI32_TX_LINE_VALID_OFF_COUNT__DISABLE(h) This requests that the “off” period be disabled.
HPDI32_TX_LINE_VALID_OFF_COUNT__GET(h,g) This requests the current setting.
HPDI32_TX_LINE_VALID_OFF_C ET(h) This resets the setting. OUNT__RES
HPDI32_TX_LINE_VALID_OFF_C g change. OUNT__SET(h,s) This requests a settin

6.8.7. Transmitter Parameter: Line Valid On Count

T e clock cycles that the Line Valid signal is
h ccessing the board’s Tx Line Valid Length
Count Register. The following tables describe the macros associated with this parameter.

he purpose of this parameter is to contro
eld high after being low, during a fram

l and retrieve the number of cabl
e. This parameter operates by a

Macro (Parameter) Description
HPDI32_TX_LINE_VALID_ON_COUNT This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_LINE_VALID_ON_COUNT_ This is the default, which disables the “on” period. DEFAULT
HPDI32_TX_LINE_VALID_ON_COUNT_DISABLE This disables the “on” peri

zero (0).
od, which sets the register to

HPDI32_TX_LINE_VALID_ON_COUNT_MAX aximum period length. This is the m

Macro (Services) Description
HPDI32_TX_LINE_VALID_ON_COUNT__DISABLE(h) This requests that the “on” period be disabled.
HPDI32_TX_LINE_VALID_ON_COUNT__GET(h,g) is requests the current setting. Th
HPDI32_TX_LINE_VALID_ON_COUNT__RESET(h) This resets the setting.
HPDI32_TX_LINE_VALID_ON_COUNT__SET(h,s) This requests a setting change.

100
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.8.8. Transmitter Parameter: Tx Overrun

T parameter is to control and retrieve the Tx ition, when supported in the HPDI32.
T p

he purpose of this Overrun cond
he following tables describe the macros associated with this arameter.

Macro (Parameter) Description
HPDI32_TX_OVERRUN This is the identifier for this parameter.

Macro (Set Values) Description
HPDI32_TX_OVERRUN_CLEAR This refers to clearing the condition.
HPDI32_TX_OVERRUN_DEFAULT This is the default, which is to clear the condition.
HPDI32_TX_OVERRUN_IGNORE This refers to ignoring the condition (do not clear it).

Macro (Get Values) Description
HPDI32_TX_OVERRUN_NO This reflect ition does not exist. s that the cond
HPDI32_TX_OVERRUN_YES This reflects that the condition does exist.

Macro (Services) Description
HPDI32_TX_OVERRUN__CLEAR(h) This request that the condition be cleared.
HPDI32_TX_OVERRUN__GET(h,g) This requests the current condition.
HPDI32_TX_OVERRUN__SET(h,s) This requests a setting change.

6 Parameter: Remote Throttle

T b led, the
d r receiving device
m r. T cribe the macros associated
w

WARNING: In the HPDI32 firmware, the Tx Remote Throttling feature operates in parallel with
the Tx Start bit. If Remote Throttling is enabled and the Tx Start bit is set, then data will be
transferred even if the Remote Throttling input from the remote device says to halt data transfer.
This is likely to result in data loss.

NOTE: When the Remote Throttle parameter is enabled, the API will disable the Auto Start
parameter. When the Auto Start parameter is enabled, the API will disable the Remote Throttle
parameter. The setting of both parameters must be coordinated when using the
hpdi32_tx_config_t structure, in which the Auto Start parameter appears first.

Macro (Parameter) Description

.8.9. Transmitter

he purpose of this parameter is to control and retrieve the
e

oard’s Remote Throttling feature. If disab
efault, then data flow is controlled locally rather than by th emote device. If enabled, then the
ust drive the cable’s Rx Ready signal to control data transfe he following tables des
ith this parameter.

HPDI32_TX_REMOTE_THROTTLE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_REMOTE_THROTTLE_DEFAULT This is the default, which is the disable option.
HPDI32_TX_REMOTE_THROTTLE_DISABLE This disabled the option.
HPDI32_TX_REMOTE_THROTTLE_ENABLE This enables the option.

Macro (Services) Description
HPDI32_TX_REMOTE_THROTTLE__DISABLE(h) This request that the option be disabled.
HPDI32_TX_REMOTE_THROTTLE__ENABLE(h) This request that the option be enabled.
HPDI32_TX_REMOTE_THROTTLE__GET(h,g) This requests the current setting.
HPDI32_TX_REMOTE_THROTTLE__RESET(h) This resets the setting.
HPDI32_TX_REMOTE_THROTTLE__SET(h,s) This requests a setting change.

101
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

6.8.10. Transmitter Parameter: Remote Throttle State

T e of this r meter is to retrieve the board’s Remote Throttling state. The state is reported as
a si ed for Flow Control, if Remote Throttling is enabled, and the signal is driven

d as inactive. The following tables describe the macros associated with this
arameter.

WARNING: In the HPDI32 firmware, the Tx Remote Throttling feature operates in parallel with
the Tx Start bit. If Remote Throttling is enabled and the Tx Start bit is set, then data will be
transferred even if the Remote Throttling input from the remote device says to halt data transfer.
This is likely to result in data loss.

Macro (Parameter) Description

he purpos ead-only para
ctive if the cable
igh. The state is ot

gnal is configur
herwise reporteh

p

HPDI32_TX_REMOTE_THROTTLE_STATE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_REMOTE_THROTTLE_STATE_ACTIVE Remote Throttling is permitting data flow.
HPDI32_TX_REMOTE_THROTTLE_STATE_INACTIVE Remote Throttling of data is inactive for one or

more of the reasons described above.

Macro (Services) Description
HPDI32_TX_REMOTE_THROTTLE_STATE__GET(h,g) This requests the current state.

6.8.11. Transmitter Parameter: Tx State

The purpose of this read-only parameter is to retrieve the board’s data transmission state. If active, then the data
transmission process is active, either through local or remote control. The state is otherwise reported as inactive. The
following tables describe the macros associated with this parameter.

Macro (Parameter) Description
HPDI32_TX_STATE This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_STATE_ACTIVE The data transmission process is active.
HPDI32_TX_STATE_INACTIVE The data transmission process is inactive.

Macro (Services) Description
HPDI32_TX_STATE__GET(h,g) This requests the current state.

6.8.12. Transmitter Parameter: Status Valid Count

The purpose of this parameter is to control and retrieve the number of cable clock cycles that the Status Valid signal
is initially help high, during a frame. This parameter operates by accessing the board’s Tx Status Valid Length
Count Register. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
HPDI32_TX_STATUS_VALID_COUNT This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_STATUS_VALID_COUNT_DEFAULT This is the default, which disables the “on” period.
HPDI32_TX_STATUS_VALID_COUNT_DISABLE This disables the “on” period, which sets the register to

zero (0).
HPDI32_TX_STATUS_VALID_COUNT_MAX This is the maximum period length. This is actually

slightly less than can be written to the register as the true

102
General Standards Corporation, Phone: (256) 880-8787

HPDI32, Software Development Kit, Reference Manual

103
General Standards Corporation, Phone: (256) 880-8787

maximum conflicts with one of the special API macros.

Macro (Services) Description
HPDI32_TX_STATUS_VALID_COUNT__DISABLE(h) This requests that the “on” period be disabled.
HPDI32_TX_STATUS_VALID_COUNT__GET(h,g) This requests the current setting.
HPDI32_TX_STATUS_VALID_COUNT__RESET(h) This resets the setting.
HPDI32_TX_STATUS_VALID_COUNT__SET(h,s) This requests a setting change.

6.8.13. Transmitter Parameter: Status Valid Mirror

The purpose of this parameter is to control and retrieve the board feature that forces the Line Valid signal high
during the Status Valid high period (the Status Valid high state is mirrored onto the Line Valid signal). The
following tables describe the macros associated with this parameter.

Macro (Parameter) Description
HPDI32_TX_STATUS_VALID_MIRROR This is the identifier for this parameter.

Macro (Values) Description
HPDI32_TX_STATUS_VALID_MIRROR_DEFAULT This is the default, which disables mirroring.
HPDI32_TX_STATUS_VALID_MIRROR_DISABLE This disables mirroring.
HPDI32_TX_STATUS_VALID_MIRROR_ENABLE This enables mirroring.

Macro (Services) Description
HPDI32_TX_STATUS_VALID_MIRROR__DISABLE(h) This requests that mirroring be disabled.
HPDI32_TX_STATUS_VALID_MIRROR__ENABLE(h) This requests that mirroring be enabled.
HPDI32_TX_STATUS_VALID_MIRROR__GET(h,g) This requests the current setting.
HPDI32_TX_STATUS_VALID_MIRROR__reSET(h) This resets the setting.
HPDI32_TX_STATUS_VALID_MIRROR__SET(h,s) This requests a setting change.

HPDI32, Software Development Kit, Reference Manual

104
General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description
August 18, 2005 Initial release.

	PCI-HPDI32A
	PCI64-HPDI32
	PMC-HPDI32A
	PMC64-HPDI32
	Software Development Kit
	SDK 5.0.0 Reference Manual
	Introduction
	Purpose
	Acronyms
	Definitions
	Application Programming Interface
	Software Overview
	Software Architecture

	Hardware Overview
	Code Samples
	Performance Factors
	Reference Material

	Operation
	Transmitter Operation
	Data Organization
	Cable Signals - continuous unstructured data stream
	Tx Clock
	Tx Data
	Tx Enabled
	Tx Ready
	Frame Valid
	Line Valid
	Status Valid
	Rx Ready

	Control Options - continuous unstructured data stream
	Enable
	Auto Start
	Auto Stop
	Flow Control
	Remote Throttle
	Tx Overrun
	Tx/Rx Enabled Tri-State

	Transmitter Setup
	Transmitter Configuration
	Receiver Operation
	Data Organization
	Cable Signals - continuous unstructured data stream
	Rx Clock
	Rx Data
	Rx Enabled
	Frame Valid
	Line Valid
	Status Valid
	Rx Ready

	Control Options - continuous unstructured data stream
	Enable
	Rx Overrun
	Rx Under Run
	Tx/Rx Enabled Tri-State

	Receiver Setup
	Receiver Configuration
	Data Transfer Issues
	Tx vs. Rx Defaults
	I/O Abort Requests
	I/O Data Buffers
	General DMA Parameters
	DMA Based I/O Requests
	PIO Threshold
	I/O Timeout
	I/O Data Transfer Modes
	DMA (Manual)
	Demand Mode DMA

	FIFO Almost Levels
	Flow Control
	Direct Register Access

	Event Notification
	Event Callback
	Interrupt Notification Callback
	I/O Completion Notification Callback

	Event Waiting

	Macros
	API Version Number
	Common Parameter Assignment Values
	Example
	Example

	Discrete Data Type Options
	I/O Status Fields
	Example

	Maximum Number of Open Handles
	Parameter Access “Which” Bits
	Registers
	GSC Registers
	PLX PCI9080 PCI Configuration Registers
	PLX PCI9080 Feature Set Registers
	Local Configuration Registers
	Runtime Registers
	DMA Registers
	Message Queue Registers

	PLX PCI9656 PCI Configuration Registers
	PLX PCI9656 Feature Set Registers
	Local Configuration Registers
	Runtime Registers
	DMA Registers
	Message Queue Registers

	Data Types
	Discrete Data Types
	hpdi32_callback_func_t
	Definition

	Status Values
	Definition

	Functions
	hpdi32_api_status()
	Prototype
	Example

	hpdi32_board_count()
	Prototype
	Example

	hpdi32_close()
	Prototype
	Example

	hpdi32_config()
	Prototype
	Example

	hpdi32_gpio_mod()
	Prototype
	Example

	hpdi32_gpio_read()
	Prototype
	Example

	hpdi32_gpio_write()
	Prototype
	Example

	hpdi32_init()
	Prototype
	Example

	hpdi32_io_wait()
	Prototype
	Example

	hpdi32_irq_wait()
	Prototype
	Example

	hpdi32_open()
	Prototype
	Example

	hpdi32_read()
	Prototype
	Example

	hpdi32_reg_mod()
	Prototype
	Example

	hpdi32_reg_read()
	Prototype
	Example

	hpdi32_reg_write()
	Prototype
	Example

	hpdi32_reset()
	Prototype
	Example

	hpdi32_status_text()
	Prototype
	Example

	hpdi32_version_get()
	Prototype
	Example

	hpdi32_write()
	Prototype
	Example

	Configuration Parameters
	Parameter Macros
	Parameter Definitions
	Value Definitions
	Service Definitions
	Device Handle: h
	Which Bits: w
	Set Value: s
	Get Value: g

	Cable Parameters
	Cable Parameter: Clock State
	Cable Parameter: Command Mode
	Cable Parameter: Command State

	FIFO Parameters
	FIFO Parameter: Almost Level
	FIFO Parameter: Reset
	FIFO Parameter: Size
	FIFO Parameter: Status
	FIFO Parameter: Transfer Size

	I/O Parameters
	I/O Parameter: Abort
	I/O Parameter: Aborted
	I/O Parameter: Buffer Pointer
	I/O Parameter: Buffer Size
	I/O Parameter: Callback Argument
	I/O Parameter: Callback Function
	I/O Parameter: Data Size
	I/O Parameter: DMA Channel Select
	I/O Parameter: DMA Control Mode
	I/O Parameter: DMA Priority
	I/O Parameter: Mode
	I/O Parameter: Overlap Enable
	I/O Parameter: PIO Threshold
	I/O Parameter: Single Cycle
	I/O Parameter: Status
	I/O Parameter: Timeout

	Interrupt Parameters
	Interrupt Parameter: Callback Argument
	Interrupt Parameter: Callback Function
	Interrupt Parameter: Enable
	Interrupt Parameter: State
	Interrupt Parameter: Trigger Configuration

	Miscellaneous Parameters
	Miscellaneous Parameter: Board Jumpers
	Miscellaneous Parameter: Favor Tx
	Miscellaneous Parameter: Features
	Miscellaneous Parameter: GSC Register Mapping
	Miscellaneous Parameter: GSC Register Mapping Pointer
	Miscellaneous Parameter: PLX Register Mapping
	Miscellaneous Parameter: PCI Bus Width
	Miscellaneous Parameter: Strict Arguments
	Miscellaneous Parameter: Strict Configuration
	Miscellaneous Parameter: Tx/Rx Tri-State

	Receiver Parameters
	Receiver Parameter: Rx Enable
	Receiver Parameter: Rx Overrun
	Receiver Parameter: Row Count
	Receiver Parameter: State
	Receiver Parameter: Status Count
	Receiver Parameter: Rx Under Run

	Transmitter Parameters
	Transmitter Parameter: Auto Start
	Transmitter Parameter: Auto Stop
	Transmitter Parameter: Tx Clock Divider
	Transmitter Parameter: Tx Enable
	Transmitter Parameter: Flow Control
	Transmitter Parameter: Line Valid Off Count
	Transmitter Parameter: Line Valid On Count
	Transmitter Parameter: Tx Overrun
	Transmitter Parameter: Remote Throttle
	Transmitter Parameter: Remote Throttle State
	Transmitter Parameter: Tx State
	Transmitter Parameter: Status Valid Count
	Transmitter Parameter: Status Valid Mirror

	Document History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

