

Brian Kinsella

Embedded Image Segmentation on an FPGA

B.E. Electronic & Computer Engineering

Supervisor: Dr. Fearghal Morgan

April 2008

ii

Declaration of Originality

I declare that this thesis is my original work except where stated.

Signed

…………………………

Date

…………….

iii

Acknowledgements

I, Brian Kinsella would like to thank my project supervisor Dr. Fearghal Morgan for

his constant help and advice throughout the year. His enthusiasm towards the project

was a strong driving factor for me, and encouraged me to give my best effort.

I would also like to thank the technical staff, Mr. Myles Meehan and Mr. Martin

Burke for their great help throughout the year when needed.

iv

Abstract

Field Programmable Gate Arrays are very capable devices in the area of

Digital Signal Processing. They are semiconductor devices that contain a number of

logic blocks, which can be programmed to perform anything from basic digital gate

level techniques, to complex image processing algorithms. The use of an FPGA is

advantageous over other methods in a number of ways.

Although usually slower than an Application Specific Integrated Circuit, it

gives the programmer flexibility in the design. With an FPGA the programmer can

make changes to the program as desired, whereas the user must make critical

decisions in the early design stages with an ASIC. As system requirements often

change over time, systems often need to be completely redeveloped in order to meet

demands. The cost associated with reprogramming an FPGA in the later stages of

design is negligible when compared with ASICs, which can’t be reprogrammed.

FPGAs can also be programmed very quickly, greatly reducing the time to market.

This project explores the use of FPGAs in the area of Image Processing. The

user can open a GUI and display an image, which is stored on the PC. The GUI can

then be navigated in order to modify the image by selecting from a number of image

processing functions. The processing algorithms used are selected with the idea of

recognising objects of interest in an image. The end product of this will serve to

highlight the benefits and advantages of including FPGAs in the future of Digital

Signal Processing.

v

Table of Contents

Declaration of Originality ..ii

Acknowledgements.. iii

Abstract ...iv

Table of Contents...v

List of Figures ..vii

List of Tables ... viii

Chapter 1 – Introduction ..1

1.1 Project Background..1

1.2 Aim of Project..1

1.3 Project Specification ..4

1.4 Chapter Layout...4

1.5 Summary..5

Chapter 2 – Related Work and Methodology ..6

2.1 Introduction..6

2.2 AppliedVHDL..6

2.3 AppliedVHDLUSBSimple ..7

2.4 Methodology..7

2.4.1 Hardware...7

2.4.2 Software ..9

2.4.3 Tools ...10

2.5 Summary..11

Chapter 3 – Image Processing..12

3.1 Introduction..12

3.2 Processing Algorithms [4] ...12

3.2.1Grey-Scale Histogram..12

3.2.2 Contrast Stretching..13

3.2.3 Histogram Equalised Stretch...13

3.2.4 Thresholding ...14

vi

3.2.5 Bimodal Distribution ..15

3.3 Implementation of Processing Algorithms ..15

3.3.1 Histogram..15

3.3.2 Differential Histogram..16

3.3.3 Thresholding ...16

3.4 VHDL Implementation ..16

3.4.1 Histogram..16

3.4.2 Differential Histogram..18

3.4.3 Calculate Threshold Value..18

3.4.4 Thresholding the Image ..19

3.4.5 Other Algorithms ..20

3.5 Issues..21

3.6 Summary..21

Chapter 4 – System Development..22

4.1 Introduction..22

4.2 Testing..22

4.2.1 Simulations ...23

4.2.2 Final Simulation..24

4.3 AppliedVHDLThresholding ..25

4.3.1 Design ...25

4.3.2 Analysis...28

4.3.3 VB Coding ..29

4.3.4 Comparisons with AppliedVHDL ..30

4.4 appliedVHDLUSBThresholding..30

4.4.1 Design ...30

4.4.2 Analysis...32

4.4.3 VB Coding ..33

4.5 Overview..33

Chapter 5 – Conclusions ..33

5.1 Summary..33

5.2 Future Work ...34

References..36

Appendix..37

vii

List of Figures

Figure 1.1 ImageThresholder Overview..3

Figure 2.1 Spartan 3 Starter Board [1]...8

Figure 2.2 Digilent USB 2.0 Peripheral Communications Module[2]9

Figure 3.1 Example of an image with its histogram [3] ..12

Figure 3.2 Histogram Equalisation ..13

Figure 3.3 Image before and after equalisation ...14

Figure 3.4 Thresholding Application...15

Figure 3.5 Histogram Flowchart ..17

Figure 3.6 Differential Graph Flowchart ...18

Figure 3.7 Threshold Calculation Flowchart ...19

Figure 3.8 Thresholding Flowchart..20

Figure 4.1 Histogram Simulation...23

Figure 4.2 Differential Graph of Histogram Simulation..24

Figure 4.3 Final Simulation of appliedVHDLThresholding..25

Figure 4.4 AppliedVHDLThreshold with GUI..28

Figure 4.5 Graphed Histogram Output from appliedVHDLThresholding29

Figure 4.6 appliedVHDLUSBThresholding with GUI..32

viii

List of Tables

Table 3.1 Boundary levels of histogram bins ..17

Table 4.1 AppliedVHDL SRAM allocation ..26

Table 4.2 AppliedVHDLThresholding SRAM allocation ...27

Table 4.3 Sample histogram text values ..29

Embedded Image Segmentation on an FPGA

 April 2008

1

Chapter 1 – Introduction

1.1 Project Background

Digital image processing is the processing and display of images. Emphasis is

placed on the modification of the image. There are three main categories of image

processing: Image enhancement, image restoration, and image classification.

Image enhancement provides more effective display of data for visual

interpretation. It helps a user to view the image and recognise different segments of an

image. An example of this is to edit the shades in an image. This technique is very

useful for assisting with distinction of different objects in an image. Rectification and

restoration of an image is another important aspect of image processing. It deals

largely with image correction, which may be necessary due to the image being

affected by geometric distortion or noise. It can also remove blurring whereby a poor

quality image may be upgraded to one with better quality and distinguishable features.

Image classification is where images are classified based on colours or shapes present

in the image. This can be useful in order for a computer to differentiate between

different types of images.

There are many useful applications of image processing. It is used as remote

sensing for robot guidance, and target recognition. It is also used for industrial

inspection, and in medial technology such as X-Ray enhancement. A very useful

application of digital image processing is to view the various colour intensities present

in an image and split the image into segments based on the results.

1.2 Aim of Project

 The main objective of this project was to develop a number of image

processing algorithms for implementation on a Spartan 3 FPGA. This would follow

on from work completed in previous years to develop a Spartan-3 based embedded

system design with accompanying software and will be capable of:

Embedded Image Segmentation on an FPGA

 April 2008

2

• Generating image data

• Sending the image data to an FPGA (Field Programmable Gate Array) board

via USB 2.0 using a PC

• Saving the data to the onboard SRAM (Static Random Access Memory) to

allow DSP (Digital Signal Processing) functions to be performed on the image

• Implementing the required algorithms on the image and storing the results

back in the SRAM

• Transmitting the resulting data back to the PC to be viewed by the user

A GUI (Graphical User Interface) will be required to coordinate this activity.

The aim is to produce a system that would allow a user to perform complex digital

signal processing on an image. Faster processing speed and lower costs are, of course,

desired for this system. FPGAs allow us to perform this task at higher speed, cost

efficiency and flexibility than creating a custom ASIC for the task would allow.

A similar project was completed simultaneously using Texas Instruments

architecture. The results of both projects were to be compared on completion. Factors

such as cost, efficiency, ease of use, and of course performance would to be

compared.

In order for any person to implement this project it is strongly recommended

that they first complete the appliedVHDL semester 1 project provided by Dr. Fearghal

Morgan and familiarizes themselves with both Shane Agnew’s FYP (Real-Time

Image Warper using Digilent Spartan-3 FPGA) and Antoin O’hAllmhurain’s FYP

(DSP using Xilinx Spartan-3).

Figure 1 below illustrates an overall picture of the

“appliedVHDLThresholding” design and the various components required. This is the

basic data flow involved in the system. The main components are

• A GUI for controlling the system

• A UART for transmitting data to and from the system and the host PC

• IOCSRBlk to control data flow to and from the UART

• memCtrlr and datCtrlr modules

• dspBlk, where the core functions are contained

Embedded Image Segmentation on an FPGA

 April 2008

3

Figure 1.1 ImageThresholder Overview

The overall function of this system is to produce a fully segmented image

from a noisy image that is input by the user. This image will be separated into two

clearly defined regions. Depending on the image in question, there will be a number

of black and white sections. Black sections correspond to the background and white

sections correspond to the foreground. When trying to locate objects of interest this is

a particularly useful function, especially when dealing with a noisy greyscale image.

This design works on the assumption that the background and foreground will be at

different intensity levels, which will more than likely be the case.

Embedded Image Segmentation on an FPGA

 April 2008

4

1.3 Project Specification

 In this project a set of image processing algorithms will be performed using a

Spartan-3 FPGA. The first step will involve developing a fully functional image

histogram generator. This will consist of generating a basic image file, storing the

image in onboard SRAM and then processing the image as required. The image will

then be uploaded to the host PC, and the results verified.

 After this is completed, the next step will be to load an image and implement

some extra image processing techniques on the image. These techniques will include

a differential graph of the histogram, followed by image segmentation, which splits

the image into two well-defined regions. Finally, the new image is returned the to the

host PC.

 Following on from this, the system could stream an image file, via a web cam

for example, convert the image into digital and store in RAM. Also more complicated

techniques could be implemented. These techniques could include be contrast

stretching, blurring or sharpening the image, or a basic DSP filter function could be

captured from System Generator. This function could be translated to VHDL for

implementation in the system.

 Results of these algorithms will be compared to the results obtained using

Texas Instruments architecture. The project should serve as a useful comparison

between the two techniques, and explore the effectiveness of an FPGA in the field of

image processing.

1.4 Chapter Layout

 The subsequent chapters explore the development of the system. They also

explore previous related projects completed by other students, and talk about

problems and solutions encountered along the way.

Chapter two gives a short insight into these related projects and looks at the

methodology of the system. This includes the hardware, software and tools required

throughout.

Embedded Image Segmentation on an FPGA

 April 2008

5

Chapter three is based solely on image processing. It looks into the

background of image processing, and the techniques used as well as some potential

algorithms that could be used. It also looks at some applications of image processing.

Chapter four covers the core design of the system dealing with the

development of the system, and why certain methods were chosen. It looks into how

the image processing techniques were developed and simulated on the FPGA, and

outlines any issues that arose.

Chapter five is where the conclusions of the project are outlined. This is where

accomplishments as well as future work are discussed. The report concludes with a

list of references to sources of information used throughout the year and an appendix.

1.5 Summary

A brief overview of the system and the specifications of the system are

explored here. The main components of the system are discussed. The structure of

both the project and the report were also documented in this chapter.

Embedded Image Segmentation on an FPGA

 April 2008

6

Chapter 2 – Related Work and Methodology

2.1 Introduction

 This chapter takes a brief look at the previous projects on which this project

was based. There are two main projects of interest involved. One named

“appliedVHDL” that was completed by the 4
th

 year class as part of the module Digital

Design and VHDL, taught by Dr. Fearghal Morgan. The second is a project named

“appliedVHDLUSBSimple” and was completed by Shane Agnew.

There are two sides to the project being developed here. One aims to build the

system using the serial port and parallel ports on the Spartan 3 board as done in

“appliedVHDL”. The second is based on using a USB interface, as is used in

“appliedVHDLUSBSimple”.

The methodology used throughout the project is also analysed here. This

includes a description of the hardware, software and other tools that were used.

2.2 AppliedVHDL

This is the original assignment given to the 4

th
 year class by Dr. Fearghal

Morgan for the Digital Systems Design & VHDL course. The main modules and

functions of the system are as follows.

The UART module passes control signals from the host PC to the IOCSRBlk,

and is responsible for communication with the GUI. A datCtrlr module is used to

bundle and unbundled byte wide data and 32-bit word data respectively as required.

The IOCSRBlk decodes values received from the UART, saving values into the

Control/Status registers and starting up processes as instructed. memCtrlr and

memCtrlrUnit modules are required to read from and write to RAM for both the DSP

and IO modules. A displayCtrlr module is also used to display data as it is being

transferred.

Embedded Image Segmentation on an FPGA

 April 2008

7

All of the above modules are also used in this project. These modules remain

unchanged. The main focus of this project is on the dspBlk module. This is where the

functionality of the system is produced. The original appliedVHDL project consisted

of a delta subtraction of two images. One image was subtracted from the other on a

pixel-by-pixel basis.

2.3 AppliedVHDLUSBSimple

 This is the project completed by Shane Agnew. This project was based on

appliedVHDL. The main difference in the two projects is that the latter uses a USB

2.0 interface. There are also a number of new DSP functions implemented in the

dspBlk module.

 The system uses basically the same modules as appliedVHDL. However there

are also changes in the way the system interacts with RAM. The new DSP functions

in the dspBlk module are image rotation, colour inversion, colour change and image

morphing.

2.4 Methodology

2.4.1 Hardware

 There are two main hardware components in use in this project. The FPGA

board itself, and the USB to Peripheral Communications Module

2.4.1.1 Digilent Spartan 3 FPGA Board

 This is the main hardware component used in the system. This board satisfies

the need for fast processing at a low cost while providing a powerful, self-contained

development platform for designs. It features a 200K gate Spartan-3, on-board I/O

devices, and 1MB fast asynchronous SRAM. The main components of the board are:

• 200,000 gate Spartan-3 FPGA

• 2Mbit PROM (Programmable Read Only Memory)

• 1MB asynchronous SRAM

Embedded Image Segmentation on an FPGA

 April 2008

8

• VGA (Video Graphics Adapter)

• RS232 serial port

• PS/2 port

• 4 character LCD display, 8 switches, 8 LEDs 4 Buttons

• 50 MHz oscillator clock source

• FPGA reconfiguration switch

• JTAG port

• Three 40-pin expansion connectors

Figure 2.1 Spartan 3 Starter Board [1]

2.4.1.2 Digilent USB 2 Peripheral Communications Module

 The Digilent PmodUSB2 Module Board (the USB2) is used to create a USB

2.0 connection to the board. It used to exchange data with the PC. A feature of the

USB2 Peripheral Communications Module is that it can also access the JTAG

boundary scan chain. The JTAG scan chain can be used to program all on-board

devices, in this case the FPGA and the PROM. This allows the device to be

programmed much quicker, and reduces the number of cables required between the

PC and the board to just one.

Embedded Image Segmentation on an FPGA

 April 2008

9

Figure 2.2 Digilent USB 2.0 Peripheral Communications Module[2]

2.4.2 Software

2.4.2.1 Digilent Adept Suite [5]

 The Adept Suite provides a set of software that allows for JTAG configuration

of Xilinx logic devices and data transfer with Xilinx FPGAs via Digilent

communications modules. The Suite contains 4 pieces of software: ExPort (a JTAG

programming application), TransPort (a data transfer application), Ethernet

Administrator (an application that configures the Net1 firmware), and USB

Administrator (an application that configures the USB2 and JTAG-USB firmware).

Adept allows to configure the FPGA device, program the FPGA and to keep track of

configuration files. It can also transfer data to and from the onboard FPGA on your

system board. Read from and write to specify registers. Load a stream of data to a

register or read a stream of data from a register.

2.4.2.2 Xilinx Integrated Software Environment

 Xilinx Integrated Software Environment (ISE) is a powerful, flexible

integrated design environment that allows you to design Xilinx FPGA devices from

Embedded Image Segmentation on an FPGA

 April 2008

10

start to finish. ISE allows synthesis and implementation tools delivering fast place and

route times as well as high performance.

Project Navigator is the user interface that manages the entire design process

including design entry, simulation, synthesis, implementation, and finally download

the configuration of the FPGA device. Code is created and synthesised. The user can

then view an RTL schematic of the resulting circuit. PACE is responsible for placing

and routing the code for optimisation. IMPACT then generates the programming files

and downloads the code to hardware. These tools together make up Xilinx ISE, which

can be used to design and test complex digital systems.

2.4.2.3 ModelSim: Xilinx Edition

 This tool partners Xilinx ISE and is used for the testing of verification of the

user’s code. The user can design a test bench to provide the stimulus to the system

that is expected when performed on the board. ModelSim then simulates the systems

behaviour due to this stimulus and graphs the behaviour of each signal on a timing

diagram. This is an extremely useful tool for error detection, as the user can see how

each signal reacts in any given circumstance relative to the other signals. This greatly

increases the speed at which a system can be designed.

2.4.3 Tools

2.4.3.1 Very High-Speed Integrated Circuit Hardware Description Language

(VHDL)

Hardware Description Languages (HDLs) enable high level program based

descriptions of hardware logic design. VHDL is one such HDL Language. This is the

language used to program the FPGA. Use of stimulus sequences and checkers (e.g.,

VHDL test benches) facilitate the simulation of VHDL models. Synthesis of VHDL

models to a target IC technology supports hardware implementation. VHDL fits well

within a structured design-documentation-test methodology for complex digital

systems.

Embedded Image Segmentation on an FPGA

 April 2008

11

2.4.3.2 Universal Serial Bus 2.0

This is a serial bus standard for data transfers between interconnected devices.

USB2.0 works at a speed of 480Mb/s, bi-directional. In this project, the GUI

facilitates the transmission of data by calling C programs, which in turn call C++

functions to initiate and control USB transfers.

2.4.3.3 Microsoft Excel

 Microsoft Excel is used in this project as a means to display a graph. Textual

results are written to a text file, and opened in Excel to be viewed as a bar chart.

2.5 Summary

 This chapter dealt mainly with the hardware and software components and the

tools used in the system, as well as a brief overview of related projects on which this

project was based.

Embedded Image Segmentation on an FPGA

 April 2008

12

Chapter 3 – Image Processing

3.1 Introduction

Fundamental image processing techniques play a very important role in this

project. There are three algorithms used in this project. Initially a histogram is

computed. Then a differential graph of this histogram is calculated. On analysis of the

differential graph, a thresholding value is chosen. The image is then segmented based

on this thresholding value. This chapter discusses the implementation of these

algorithms, as well as some other algorithms that were considered.

3.2 Processing Algorithms [4]

3.2.1Grey-Scale Histogram

The grey-scale histogram of an image represents the distribution of the pixels

in the image over the grey-level scale. It can be visualised as if each pixel is placed in

a bin corresponding to the colour intensity of that pixel. All of the pixels in each bin

are then added up and displayed on a graph. This graph is the histogram of the image.

Figure 3.1 below illustrates the histogram of a sample image. The frequencies of all

the intensity levels can be seen, and the image can be analysed based on this.

 Figure 3.1 Example of an image with its histogram [3]

Embedded Image Segmentation on an FPGA

 April 2008

13

The histogram is a key tool in image processing. It is one of the most useful

techniques in gathering information about an image. It is especially useful in viewing

the contrast of an image. If the grey-levels are concentrated near a certain level the

image is low contrast. Likewise if they are well spread out, it defines a high contrast

image.

3.2.2 Contrast Stretching

Contrast stretching enables the spacing of some of the output values so that

they are further apart, thereby making them more easily distinguishable. This can be

done manually by choosing the upper and lower bound of the histogram and adjusting

the graph to fit. It can also be done automatically by implementing the histogram-

equalised stretch.

3.2.3 Histogram Equalised Stretch

This stretch assigns more display values to the frequently occurring portions

of the histogram. In this way, the detail in these areas will be better enhanced relative

to those areas of the original histogram where values occur less frequently. The aim is

to maximise the overall contrast: as shown below, a nearly uniform (i.e. flat)

distribution is produced.

Figure 3.2 Histogram Equalisation

Embedded Image Segmentation on an FPGA

 April 2008

14

As can be seen in figure 3.3 below, after an image has been equalised the

features become much more defined and easier to identify for the viewer.

Figure 3.3 Image before and after equalisation

This technique is not implemented in this project. It would be a useful addition

as it makes a clear point for thresholding much more obvious. Instead of selecting a

point out of a mostly grey image, the system can select a value between high

contrasting colours. This means that the system is more likely to select a suitable

threshold value.

3.2.4 Thresholding

A simple segmentation technique that is very useful for scenes with solid

objects resting on a contrasting background. All pixels above a determined (threshold)

grey level are assumed to belong to the object, and all pixels below that level are

assumed to be outside the object. The selection of the threshold level is very

important, as it will affect any measurements of parameters concerning the object (the

exact object boundary is very sensitive to the grey threshold level chosen).

Thresholding is often carried out on images with bimodal distributions. This is

explained below. The best threshold level is normally taken as the lowest point in the

trough between the two peaks (as above) alternatively, the mid-point between the two

peaks may be chosen.

 Figure 3.4 below illustrates the application of a thresholding algorithm on a

sample image. It clearly identifies the objects of interest in the image, and removes

any noise present.

Embedded Image Segmentation on an FPGA

 April 2008

15

Figure 3.4 Thresholding Application

3.2.5 Bimodal Distribution

These are images with one clear peak for the background, and one clear peak

for the foreground. The fact that an image has bimodal distribution means that it is a

suitable image for segmentation. The system will find the two peaks, and average

them. This average value is more likely to be accurate with a good bimodal image.

Figure 3.1 shows an image with its histogram. This is a good example of bimodal

distribution.

3.3 Implementation of Processing Algorithms

3.3.1 Histogram

There are two main components used in the implementation of a histogram.

These are comparators and counters. This histogram consists of 8 different intensity

levels or ‘bins’. For each bin there is one set of two comparators and a counter. If the

intensity level of the first pixel is, for example, between 0 and 32 then the counter for

the first bin will increment by 1. The pixels are read 1 at a time until the entire image

has been processed. The result of this algorithm is the value that each counter has

reached after processing.

Embedded Image Segmentation on an FPGA

 April 2008

16

3.3.2 Differential Histogram

This algorithm uses the results from the original histogram algorithm to help

find the threshold point in the image. The original histogram is scanned. Each value in

the differential histogram is the subtraction of that value in the histogram from the

previous value in the histogram. This gives each peak in the histogram a negative

value in the differential curve.

3.3.3 Thresholding

The threshold value is calculated using the differential histogram. The

negative values of the curve are stored. The highest and lowest intensity values with a

peak are stored. The threshold value is calculated as the average of these points. This

is a fairly basic method of thresholding, but is effective with the majority of images. It

is particularly effective with bimodal images.

3.4 VHDL Implementation

3.4.1 Histogram

 The histogram is the first algorithm to be implemented. This is done by first

comparing the pixel intensity to known values, and then incrementing the associated

histogram value. This counter is known as a histogram bin. In this project there are

eight bins used to represent the histogram of an image. Table 3.1 below illustrates the

boundaries of each bin.

Embedded Image Segmentation on an FPGA

 April 2008

17

Bin Number Lower Limit Upper Limit

1 0 31

2 32 63

3 64 95

4 96 127

5 128 159

6 160 191

7 192 223

8 224 255

Table 3.1 Boundary levels of histogram bins

 The results received on simulation of the histogram are shown in figure 3.6

below.

Comparison State

Intensity within

boundries

Increment Associated Counter

Check next boundary level

N

Y

Histogram

Take Next Pixel
Image Read

Finished

Finished

N

Y

Figure 3.5 Histogram Flowchart

Embedded Image Segmentation on an FPGA

 April 2008

18

3.4.2 Differential Histogram

 The differential graph of the histogram is calculated by looping through the

histogram outputs. Each value in the differential output is set to that histogram value

minus the previous histogram value.

Differential level 0 =

Histogram level 0

Differential level i =

Histogram level i –

Histogram level i-1

Differential Curve

Increment i
Histogram

Read Done

Finished

Y

N

Figure 3.6 Differential Graph Flowchart

3.4.3 Calculate Threshold Value

 The threshold value is calculated by initially finding the first peak and the

final peak in the differential graph. Averaging the peaks gives the value that shall be

chosen for thresholding.

Embedded Image Segmentation on an FPGA

 April 2008

19

Calculate Threshold Value

Differential

Read Done?

Threshold =

(Peak 1 + Peak 2) / 2

N

Peak 2 = (i x 32) + 16Peak 1 = (i x 32) + 16

Zero

Crossing at

Differential

Value(i)

Peak 1 = 0?

Y

Y

Increment i

N

Finished

N

Y

Figure 3.7 Threshold Calculation Flowchart

3.4.4 Thresholding the Image

 In order to threshold the image, the entire image is read and scanned pixel by

pixel. If the intensity of the scanned pixel is above the threshold value it is set to

black, otherwise it is set to white. The resulting image is the final output.

Embedded Image Segmentation on an FPGA

 April 2008

20

Thresholding

Image Read

Done

Finished

Pixel Intensity

< Threshold

Set pixel to Black Set pixel to White

N

Y

NY

Figure 3.8 Thresholding Flowchart

3.4.5 Other Algorithms

3.4.5.1 Histogram Equalisation

 This is another algorithm that was considered for the project. This basically

consists of equalising the histogram to spread the values out towards an ideal

histogram. It is most effective on low contrast images with most of their values

concentrated in the mid grey regions.

3.4.5.2 Blurring

 Blurring an image consists of reading the image in, in a 3x3 pixel window.

This system is designed to read 32-bits at a time from SRAM. While it is possible to

store the entire image in the DSP block and read in 3x3 blocks from there, it is not

Embedded Image Segmentation on an FPGA

 April 2008

21

necessary for the other algorithms and was not seen as worthwhile. However it is an

algorithm that is worth considering for future projects.

3.5 Issues

 Processing techniques such as blurring and sharpening were considered but

not chosen. This was because of the change in structure that would be involved. In

order to accomplish these algorithms the image would have had to be stored in the

DSP block. This is a realisable solution, and is certainly to be considered in the future.

3.6 Summary

 This chapter explores the various algorithms that were used in the project as

well as algorithms that were considered. Research into image processing gave

numerous processing techniques that could be implemented. Some of these techniques

were not achievable in this project without a change in the structure of the project,

which was not deemed worthwhile

.

Embedded Image Segmentation on an FPGA

 April 2008

22

Chapter 4 – System Development

4.1 Introduction

 This chapter looks into the development of the system from beginning to end.

It starts by exploring the DSP functionality that would extend the “appliedVHDL”

project.

This involves the programming and simulation of each individual function

used. The simulation of each function is described here. On completion of this, the

functionality was to be transferred into the “appliedVHDL” project. This new project,

entitled “appliedVHDLThresholding”, allows the user to perform segmentation on

greyscale images. After this project was completed the next step was to implement the

design on the “appliedVHDLUSBSimple” system. The resulting project is entitled

“appliedVHDLUSBThresholding”.

Any information regarding the development of the system, as well as any

problems encountered along the way are investigated here.

4.2 Testing

The functions themselves were all implemented in individual projects.

Testbenches were written for each function and these were tested in modelSim to

ensure they reacted well in certain situations. The code could then quite easily be

transferred into the “appliedVHDLThresholding” project.

A testbench was also available to test the entire system. This testbench is the

exact same as the one used in “appliedVHDL”. A file stimDat.txt contains a list of

commands with which the user can write image data to RAM in order to test the

system without the need for a UART. This testbench allowed for quick debugging of

any issues which arose and made implementing the functions much easier.

Embedded Image Segmentation on an FPGA

 April 2008

23

4.2.1 Simulations

 In order to run the algorithms on the system, the basic algorithms had to be

simulated to prove functionality. This required the creation a number of testbenches.

These testbenches contained stimulus for the important signals in each system. On

simulation each algorithm was proved to perform the required task under the given

stimulus. It was important to complete this task before moving onto the full system, as

any bugs in the algorithms were easily found. Shown in the following figures are the

waveforms simulated using ModelSim.

Figure 4.1 Histogram Simulation

 The various intensities that were applied to stimulate the system are shown in

the signal “intensity”. On every rising edge of the clock a corresponding change in the

histogram bin associated with the input intensity can be seen. This is a simple

example with only eight pixels. The histogram is contained in the signal array

“intBinVal”. The final histogram ranges from black to white and the values are 2, 2,

1, 1, 0, 0, and 1. This was the expected result.

Embedded Image Segmentation on an FPGA

 April 2008

24

Figure 4.2 Differential Graph of Histogram Simulation

 The simulation illustrated above in figure 4.2 was performed with a much

larger stimulus than that of figure 4.1. The differential signal can be seen. Each value

of the differential signal is that value in the histogram minus the previous value in the

histogram.

E.g. Differential (1) = Histogram (1) – Histogram (0)

Differential (1) = 31 – 1

Differential (1) = 0

The final values on observation are all correct.

4.2.2 Final Simulation

 Simulation of the actual thresholding was included as part of the final

simulation. This testbench was based on stimulated input from a file as mentioned

previously. All signals were clearly visible on this testbench, which proved very

useful and helped to debug a number of issues that arose. The problems encountered

were based on signals being asserted too early or too late and were all solved

accordingly. The simulation is shown below in figure 4.3 showing only the relevant

Embedded Image Segmentation on an FPGA

 April 2008

25

signals including the histogram values, the calculated threshold value and some of the

thresholded pixels that were transmitted to RAM.

Figure 4.3 Final Simulation of appliedVHDLThresholding

 As can be seen here, the 32-bit signal datFromRam is split into four

hexadecimal sections. In this example the signal is: 00 00 F9 00. The signal

dspDat2Ram is the thresholded signal. If any section of datFromRam is above the

threshold value 70h, then this pixel is set to FF. Otherwise it is set to 00. The signal

dspDat2Ram is then written to RAM.

4.3 AppliedVHDLThresholding

4.3.1 Design

 This project was designed based on the original “appliedVHDL” project. It

implements the algorithms on the Spartan 3 board, which is connected to the PC via

serial and parallel ports. All DSP functionality was implemented in this project. The

only changes made to the “appliedVHDL” project were in the dspBlk. Originally the

dspBlk module was only used for a simple delta subtraction. This involved reading

Embedded Image Segmentation on an FPGA

 April 2008

26

two images into RAM, subtracting one from the other, and returning the result to

RAM.

 Table 4.1 represents the SRAM that is available on the board. There are four

quadrants available, which can be read from and written to, by the system. Each

quadrant contains 256k addressable memory locations. In the original

“appliedVHDL” system quadrants 0 and 1 contained the images used for subtraction.

The result was written to quadrant 2.

Quadrant 3

-Unused-

Quadrant 2

Contains resulting image

Quadrant 1

Contains Image 1

Quadrant 0

Contains Image 0

Table 4.1 AppliedVHDL SRAM allocation

 The “appliedVHDLThresholding” project differs from “appliedVHDL” as it

only requires one image to be input. However, due to the fact that the GUI wasn’t

edited, it still takes two images in. The dspBlk module of

“appliedVHDLThresholding” only reads image 0 from quadrant 0, so image 1 is

ignored.

The system takes in an image and stores it in RAM quadrant 0. It then

calculates the histogram of the image followed by the differential curve of the

histogram. Both of these textual graphs are sent to RAM quadrant 3 along with the

calculated threshold point. The original image must then be read in again in order to

segment it. After this process the resulting image is stored in RAM. This is illustrated

below in table 4.2.

Embedded Image Segmentation on an FPGA

 April 2008

27

Quadrant 3

Stores the Histogram

Quadrant 2

Contains resulting image

Quadrant 1

Contains Image 1(unused)

Quadrant 0

Contains Image 0

Table 4.2 AppliedVHDLThresholding SRAM allocation

This approach is slightly inefficient in that it reads two images when only one

image is necessary. This is because of the way the original GUI was designed. All that

was changed in “appliedVHDLThresholding” was the dspBlk module. The main

problems with this project are that the histogram values are stored in RAM quadrant

3, where they can be viewed as text rather than displayed as a graph. And as

previously stated the second image is loaded and displayed, but serves no purpose.

Problems aside, “appliedVHDLThresholding” shows the functionality of the

system and is useful as a comparison to the USB system to display the differences

between the two approaches.

Figure 4.4 below shows an example image processed in the system. The

original image is a noisy, undefined image. The result is clearly a well defined, noise

free image. This algorithm is not merely a noise removal system. Information is lost

from the image as it doesn’t distinguish between different layers of the image. That is

not the aim of the project. The main aim is to locate objects of interest, and remove

the rest of the irrelevent information.

Embedded Image Segmentation on an FPGA

 April 2008

28

Figure 4.4 AppliedVHDLThreshold with GUI

4.3.2 Analysis

 It is clear, from figure 4.4 above, to see the advantage of using this system on

an image. However, this GUI does not show any information on the histogram of the

image. Using the read from RAM function, the user can display the text values of the

histogram on the GUI. An address is specified by writing to the CSRs. The histogram

text values of the original image in this case are shown in table 4.3 below.

Embedded Image Segmentation on an FPGA

 April 2008

29

Bin No 1 2 3 4 5 6 7 8

Value 40 0 0 0 8 16 0 0

Table 4.3 Sample histogram text values

 The number 40 corresponds to 40 pixels of intensity within the range 0 – 31.

There are 8 pixels of intensity ranging from 128 – 159 and 16 pixels ranging from 160

– 191. The boundary levels of each bin can be reviewed in table 3.1 from chapter 3.

 This data can easily be viewed as a graphical image. In figure 4.5 below, a

graph of the histogram has been generated using the chart function of Microsoft

Excel.

Histogram

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Bin Value

F
re

q
u

e
n

c
y
 o

f
O

c
c
u

ra
n

c
e

Figure 4.5 Graphed Histogram Output from appliedVHDLThresholding

4.3.3 VB Coding

 The next step in this project would be to change the GUI to suit the project.

The main changes involved in creating this GUI would be to only take one image

from the user, and to display the histogram graph on the GUI as well as the segmented

image.

As this project is moving onto the USB system there was no need to update

the GUI to suit. The original GUI serves the purpose of demonstrating the

Embedded Image Segmentation on an FPGA

 April 2008

30

functionality of the system. In future work the GUI could be edited to suit the project

if required.

4.3.4 Comparisons with AppliedVHDL

 The main issues with this project were with the dspBlk module and the VB

programming. A couple of fundamental changes were made to the original

“appliedVHDL”. One such change is that the system only operates on one image.

Also the image must be read twice, once to calculate the histogram and again to

segment the image. Another modification is that the system writes histogram values to

RAM at the end of processing rather than every time a new 32-bit value is read from

RAM. Finally there are two resulting objects of interest rather than one, being the

histogram and the segmented image

The design of the “appliedVHDL” project was to read four pixels from RAM

quadrant 0, read four pixels from RAM quadrant 1, subtract them and write the result

to RAM quadrant 2. this task was then repeated until the images were fully processed.

However, the values of the histogram are of no use until the whole image is

processed. Therefore in “appliedVHDLThresholding” the writing is done after the

image is fully read and processed. This histogram is accessable from the GUI for the

user to see. The values can be read from RAM and graphed in an external program as

a text file.

“appliedVHDL” reads both images prior to processing while

“appliedVHDLThresholding” requires the image to be read once for the histogram,

and then again for the thresholding. This has a major impact on the design of the

dspBlk module. However, there is no way around reading the image twice as the

threshold value is calculated based on the completed histogram.

4.4 appliedVHDLUSBThresholding

4.4.1 Design

 This project was designed based on Shane Agnew’s project

“appliedVHDLUSBSimple”. The aim of the system is much the same as with

“appliedVHDLThresholding”. However there are some differences. With this project

Embedded Image Segmentation on an FPGA

 April 2008

31

a new technique was explored. Rather than calculating a threshold value based on a

differential graph, this project allows input from the user. A histogram is calculated

seperately. The user can observe this graph and select any threshold value. The image

will be segmented based on the selection of this value. There were issues

implementing the histogram in this design. Due to a change in the way the system

operates with RAM, the thresholded image could be transmitted to RAM, but the

histogram values couldn’t. These issues couldn’t be resolved due to time constraints.

 This system is more capable than with the previous project. It can handle

larger images than before. Also, because of the USB interface, the program can be

downloaded much quicker. There are also some extra DSP functions available for the

user.

 Figure 4.6 below illustrates the GUI used to coordinate the system. The slider

in the top right corner is used to assign a threshold value for the image. The centre of

the bar sets the threshold value to 128, half the maximum intensity of a pixel. The

thresholding function replaces the invert image function from the original project.

This system also allows for writing RAM values directly to a file. With a functional

histogram generator, the user could, as before, open this file in a program such as

Microsoft Excel to view the histogram.

Embedded Image Segmentation on an FPGA

 April 2008

32

Figure 4.6 appliedVHDLUSBThresholding with GUI

 The functions used in this project are implemented in the same way as before.

There was no need for extra simulations of the system. It was just a case of inserting

the functions from the “appliedVHDLThresholding” dspBlk module into the dspBlk

module of the new project. The differential graph of the histogram is not computed in

this project as it would serve no purpose to the user.

4.4.2 Analysis

 The fact that this system can handle much larger images makes this system far

superior. The size of the images used in the previous system was not sufficient to be

of any use. It could only handle 64 pixel images. This new system can deal with

images taken from a camera and process them. Also, since the histogram is not

required to calculate the threshold value, the image is only read once, rather than in

“appliedVHDLThresholding” where the image was read twice. This makes the

segmentation faster and more efficient.

Embedded Image Segmentation on an FPGA

 April 2008

33

4.4.3 VB Coding

 The GUI of this project was not edited from the “appliedVHDLUSBSimple”

project. In order to run the thresholding algorithm the user must select the invert

image function. This is an aspect of the project which could be undertaken in future

work. The GUI takes in two images, regardless of whether one or two images are

required. Another potential change is to design the GUI such that it would only

require one image to be input if the selected function doesn’t require two images.

4.5 Overview

 Both systems are capable of segmenting an image into regions of black and

white. The main difference between the two in terms of functionality is that the user

enters the threshold value in the “appliedVHDLUSBThresholding” project. There are

both advantages and disadvantages to this approach. When the threshold value is

calculated internally, it is quick and effective. With the user operated approach,

although it may take a number of attempts, the final, desired result will always be

reached. It will also be more accurate to the needs of the user as they can rerun the

program with varying threshold levels in order to achieve an accurate result.

 As previously mentioned, in terms of the system excluding the DSP functions

the “appliedVHDLUSBThresholding” project is superior. The USB allows for quicker

downloading to the board, and also reduces the amount of cables required to just one.

This along with the fact that much larger images can be coped with suggests that the

“appliedVHDLUSBThresholding” project is favourable over

“appliedVHDLThresholding”.

Chapter 5 – Conclusions

5.1 Summary

Embedded Image Segmentation on an FPGA

 April 2008

34

 The underlying area of this project was image processing and segmentation.

Two techniques were investigated. One performed on a standard Spartan 3 board. The

second, implementing a USB 2.0 interface board. The segmentation techniques also

varied over the projects. Advantages and disasdvantages of these systems were

discussed. In the end it was decided that the second system was clearly favourable.

A number of image processing algorithms were looked at before undertaking

this project. The decision of which algorithms to use was based on suitability to the

project, and how useful these algorithms would be to the user. Segmentation of the

image was, of course, always kept in mind. On selection of these algorithms,

simulation was carried out and the algorithms were inserted into the project as DSP

functions.

The first aim of the project was to develop a histogram generator. This was

accomplished, and results were viewed and verified through the GUI. On completion

of this the image was to be segmented. The segmentation was based on the

assumption that the foreground of an image is a different intensity level to the

background. The image was split into regions of black and white based on pixel

intensity. This was accomplished with two different methods. One was completed

internally, the other required user input, where the user could define the exact

intensity at which to segment the image.

After verification and observation it was seen that both methods produced the

desired segmentation results. However, only “appliedVHDLThresholding” produced

the histogram as desired. The fact that “appliedVHDLUSBThresholding” didn’t

produce a histogram doesn’t affect the segmentation, as that aspect depends on user

input. Overall the project turned out to be successful, and produced a fully functional

project, “appliedVHDLUSBThresholding” for use in image segmentation. It was an

enjoyable, challenging project and gives some more insight into the possible role of

FPGAs in the field of image processing.

5.2 Future Work

There are a large number of possibilities that could be used in addition to this

project. There are many image processing algorithms that could be implemented.

Many alternative algorithms would be implementable if the image was to be stored in

Embedded Image Segmentation on an FPGA

 April 2008

35

the DSP block after reading from RAM. This would allow user-defined sizes of data

to be read for processing. In particular it would allow for sharpening and blurring of

an image.

Correcting the USB interfaced system to allow for histogram generation and

for writing the values to RAM would be a useful tool for the user. A histogram would

give more insight into the image, and assist the user in selecting a suitable threshold

value.

The GUI used in this project remains unchanged. This is another aspect that

could be improved. It is used here purely for functional demonstration purposes. It

would be possible to extend this, along with the entire project in order to host the

project on the Electronic Engineering website. This would allow for a fully

implementable, downloadable project entitled “appliedVHDLUSBThresholding”.

Hosting the project like this would be more than a useful method of supplying the

project to download. It would be a source of recognition for the university and display

even further the resources available when developing systems using FPGAs.

Embedded Image Segmentation on an FPGA

 April 2008

36

References

[1] Spartan 3 board information

http://www.digilentinc.com/Products/Detail.cfm?Prod=S3BOARD

[2] USB 2.0 Peripheral Board

http://www.digilentinc.com/Data/Products/USB2/USB2_RM.pdf

[3] Histogram Information

http://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm

[4] Dr. Sam Redfern’s notes in Graphics and Image Processing

http://www.it.nuigalway.ie/~sredfern/CT404/10.pdf

[5] Digilent Adept User Manual

http://www.digilentinc.com/Data/Software/Adept/Adept Users Manual.pdf

Shane Agnew’s FYP “appliedVHDLUSBSimple”

http://ohm.nuigalway.ie/0506/02agnew/fyp_0506/index.htm

Dr. Fearghal Morgan’s project “appliedVHDL”

Completed as part of the final year course

VHDL coding reference

Dr Fearghal Morgan’s notes on Digital Design and VHDL

Embedded Image Segmentation on an FPGA

 April 2008

37

Appendix

[1] A CD containing the ISE project “appliedVHDLThresholding” as well as the

ISE project “appliedVHDLUSBThresholding” along with a copy of this report in PDF

format can be found on the back cover of the report.

