
��������	
����������	
����������	
����������	
��
���	������� �
����
���	������� �
����
���	������� �
����
���	������� �
��������

� ������ ����� ������

CompactLink IC Library Manager Contents

Copyright  2007 B&K Precision Inc i

CONTENTS
1. Preface ...1

1.1. How to use this manual ..1
1.2. Precautions...1

1.2.1. Host PC ...1
1.2.2. Data storage ..1

1.3. Maintenance ...1
1.3.1. Software ..1

1.4. Contacting B&K Precision Corporation...2
1.5. Copyright and disclaimers ..2

2. Introduction...3
2.1. What is CompactLink?..3

3. Getting started ..4
3.1. Checklist ...4
3.2. System requirements..4
3.3. Installing the security dongle ..4
3.4. Installing CompactLink ...5
3.5. Running CompactLink ..5
3.6. IC library data structure ..6
3.7. Theory of CompactLink operation...6
3.8. Reviewing the IC library..6
3.9. Adding an IC to the USER library ...7
3.10. Viewing an IC..7
3.11. Copying/editing an IC ...7
3.12. Specifying a functional test for the IC ...8
3.13. Developing a functional test..10
3.14. Deleting an IC from the USER library ...10
3.15. Printing or exporting a device ...11
3.16. Generating library files..11

4. Writing your own test programs..12
4.1. Introduction to PLIP ..12
4.2. Opening the test development and debugging window13
4.3. Entering and compiling a program..14
4.4. Fixing the errors and warnings ...15
4.5. Getting help ..15
4.6. Documenting your program ..15
4.7. Connecting to hardware..16

4.7.1. Connecting to B&K 570A/575A products...............................16
4.8. Debugging your program ..17
4.9. Setting breakpoints ...18
4.10. Debugging techniques..19

4.10.1. Compiler errors..19
4.10.2. Run time errors..19
4.10.3. Logical errors...19

5. Some common programming concepts..22

CompactLink IC Library Manager Contents

Copyright  2007 B&K Precision Inc ii

5.1. Digital test programming...22
5.1.1. Combinational devices – gates, buffers, multiplexers23
5.1.2. Sequential devices – counters, registers, latches23
5.1.3. Tri-state devices – buffers, bus drivers..................................24
5.1.4. LSI and complex devices...24

5.2. Analog test programming..25
5.2.1. Using the DRIVE commands ...25
5.2.2. Using parameters ..26

6. 7400 digital IC test program for the B&K 575A.......................................27
6.1. Defining the IC inputs ...27
6.2. Simple test for a logic NAND gate ..27
6.3. Improved logic NAND gate test with looping28
6.4. Complete program for logic NAND gate29

7. Operational amplifier analog test program for the B&K570A..................32
8. PLIP command and function reference ..37

8.1. Introduction...37
9. Troubleshooting and support..39
10. Appendices ..40

10.1. Library parameter reference ...40
10.2. CompactLink error/warning messages ...41
10.3. PLIP error messages ..44
10.4. PLIP warning messages ...49
10.5. PLIP run time error messages ..49

11. Index ..51

CompactLink IC Library Manager Preface

Copyright  2007 B&K Precision Inc Page 1

1. Preface
Thank you for purchasing the B&K CompactLink IC Library Development
Manager software. Please refer to this manual before attempting to install or
use the software.

1.1. How to use this manual
This manual is divided into sections describing all aspects of CompactLink
operation. There is a getting started guide, designed to get you up and
working quickly, followed by more detailed instructions on the various
functions. We recommend you read at least sections 1 to 3 before using
CompactLink for the first time.

This manual is written on the assumption that you are already familiar with the
B&K model 570A and/or B&K model 575A products. Please refer to the
manuals for those products if you require further information.

This symbol is used where the information given is important to
prevent damage to your system or board under test.

1.2. Precautions

1.2.1. Host PC
The CompactLink software is designed for use on a PC running Microsoft
Windows XP™ software. Operation on any other type of PC or with any other
operating system is not supported and may cause problems in use.

1.2.2. Data storage
The CompactLink software uses a local database for storing IC details and
test programs. Any new ICs you add to the system are stored in the file
“B&KCompactLinkICLibrary.dat” in a fixed location – you can open the folder
containing the complete IC library database by clicking Start/Program/B&K
CompactLink/Database. It is important that this file is backed up regularly to
ensure that user devices and test programs are not lost in the event of a hard
drive failure.

1.3. Maintenance

1.3.1. Software
The CompactLink software is not warranted as being fit for any particular
purpose, although B&K will make every effort to ensure that it is suitable for

CompactLink IC Library Manager Preface

Copyright  2007 B&K Precision Inc Page 2

use in conjunction with the B&K model 570A and B&K model 575A products
for developing new IC tests.

1.4. Contacting B&K Precision Corporation
B&K Precision Corporation
22820 Savi Ranch Parkway
Yorba Linda
CA 92887-4604

Website: www.bkprecision.com
Telephone: 714- 921-9095
Fax: 714-921-6422

1.5. Copyright and disclaimers
This manual copyright © 2007 B&K Precision Corp. All rights reserved. First
published October 2007.

You may make electronic or paper copies of this manual solely for use in
conjunction with operating the software as a bona fide customer, but not for
any other purpose.

Windows® and Microsoft® are registered trademarks of Microsoft
Corporation.

B&K Precision Corp reserves the right to make product improvements and/or
changes at any time without prior notice, including changes to the software
specifications. This manual may therefore not necessarily reflect current
software specifications.

Whilst B&K Precision Corp makes every effort to ensure the accuracy of this
manual, we will not accept liability for damages incurred directly or indirectly
from errors, omissions in this manual, or discrepancies between the manual
and the CompactLink software itself.

CompactLink IC Library Manager Introduction

Copyright  2007 B&K Precision Inc Page 3

2. Introduction
Congratulations on your decision to purchase the CompactLink IC Library
Manager software.

2.1. What is CompactLink?
CompactLink IC Library Development Manager is designed to allow you to
add functional tests for new ICs to the library of your B&K model 570A or
575A IC tester.

The heart of CompactLink is PLIP, which is a high-level descriptive test
programming language optimized for generation of both analog and digital IC
test programs. Programs are compiled into machine code, making them fast
and compact, and can be freely added to the model 570A and 575A libraries.
CompactLink contains a sophisticated test program debugger which allows
you to check that your program executes correctly before including it in your
library.

It is very important to understand that there are two separate functions
involved in adding an IC to the user library. Firstly, the IC number, size, pin-
out, power supply pins and other information must be defined which will be
described in detail later. After this process is complete, you can then write a
functional test program, which is the second main function of CompactLink.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 4

3. Getting started
This section is intended to get CompactLink up and running quickly. Please
read carefully before using for the first time. Detailed descriptions of the
meaning of the various parameters and device entries will be given later on in
the manual

3.1. Checklist
The following items are included in the CompactLink package: -

• CompactLink CD
• CompactLink USB security dongle
• USB to RS-232 converter
• Serial connection cable
• Operator’s manual

The package may also include FLASH IC(s) for updating of older B&K model
570A or B&K model 575A products.

3.2. System requirements
The CompactLink software should be installed on a PC with the following
minimum specification: -

• Intel CPU 1GHz or equivalent
• 128M RAM
• 500MB hard drive space
• CD/DVD drive
• Free USB port
• Microsoft Windows XP™ operating system (service pack 2

recommended)

For debugging and library updating, your PC requires a connection to the
model 570A or 575A IC tester, to allow test programs to be developed and
added to the library. This uses a serial (COM) port (or USB to serial
converter).

3.3. Installing the security dongle
Before the CompactLink software can be used, the USB security dongle
must be installed. The drivers are included on the CompactLink installation
CD and must be installed as follows:

• Ensure you are running Windows XP on an account with Administrator
privileges.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 5

• Insert the CompactLink CD in the CD or DVD drive.
• Click “Start, Run, Browse” on your PC and navigate to your CD ROM

drive (usually drive D) with the CompactLink CD inserted.
• Select the file “CBUSetup.exe” and click “Open”, then click “OK” to start

the installation.
• Follow the instructions on the screen.

Once the installation has completed, the USB security token can be inserted
into any available USB socket on your computer.

3.4. Installing CompactLink
To install the CompactLink software, follow this step by step procedure: -

• Insert the CompactLink CD in your CD or DVD drive.
• Click “Start, Run, Browse” on your PC and navigate to your CD ROM

drive (usually drive D) with the CompactLink CD inserted.
• Select the file “setup.exe” and click “Open”, then click “OK” to start the

installation.
• Follow the installation instructions on the screen. We recommend that all

options are left at their default values.

3.5. Running CompactLink
To launch the software, click Start/Programs/CompactLink/CompactLink
on your PC. You can also create a desktop shortcut if you wish to make
starting easier. The opening screen (example below) shows the Review
Library screen displaying a list of devices in your USER library and provides
a menu to access all software functions.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 6

3.6. IC library data structure
The data for each IC in the library is organized into Device Information and
Target Information. Each device can have one or two targets, each containing
target specific information for both products supported by CompactLink (B&K
model 570A and B&K model 575A).

The devices in the internal library provided with the product are not included in
the CompactLink database but can still be accessed by entering their
numbers in the usual way on the unit keypad. See the product manual(s) for
a full device listing.

A full list of all device information entries with their meanings is given in
appendix 10.1

3.7. Theory of CompactLink operation
The following steps are required to add an IC to the library for use on the B&K
model 570A or B&K model 575A products. This is a summary – full details
are given later in the manual: -

• Add a new device to your USER library using CompactLink
• Fill in the device information from the device data sheet
• Enable the target product with which you wish to test the device
• Fill in the target information for the device/target combination
• Enable the functional test for the chosen target product
• Choose a test for the device, or develop a new test if no suitable test is

available
• Generate the USER library files and download them to the product
• The added device is now available in your product device list

3.8. Reviewing the IC library
After installation the library will be empty, but as you add ICs they will be
displayed in the Library Review table. By default the entire list is shown, but
you can restrict the display to a particular Target by using the combo box. If
you want to find a particular device, enter its number in the Find Device box.
You can also filter the list by entering text in the Function box – the list will be
filtered to show only those entries containing the entered text.

You can also sort the list of devices by clicking on any of the column headings
in the Library Review display. If you sort on the Device column, by default
the full device name is used to sort the entries. However, if you click
Tools/Options you can turn on Intelligent Sort, which uses the numeric part
of the device name only to produce a more logical list of devices.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 7

3.9. Adding an IC to the USER library
To add a new IC to the library, choose Device/Add from the menu. You will
see the usual Edit Device Definition screen but this time with blank or default
entries. On the Device Information tab, fill in the Name and Function boxes
and enter suitable values for the other options. The new device defaults to 14
pins, so you may wish to Add or Delete pins with the buttons if the device you
are adding has a different number of pins. To change the pin name, click on
the pin and enter the new name (maximum 8 characters)

Now you need to choose the product(s) with which the new device is to be
tested. For example, if you intend to add this device to the B&K model 575A
library, open the B&K 575A Test tab and click Include device in B&K 575A
library. You can then set the other entries as you wish. You must enable the
functional test checkbox.

3.10. Viewing an IC
There are several ways to select a device for viewing: -

• Click on a device in the list and click Device/Edit on the menu
• Right click on a device in the list and choose Edit from the popup menu
• Double click on a device in the list
• Enter all or part of the device name in the Find Device box, then press

the Enter key

In this Edit Device Definition screen you can see the name and function of
the device, along with 3 tabs for further device information.

In the Device Information tab you can see the pin out and device specific
information such as the package, thresholds and output types. The other tabs
contain product specific information.

3.11. Copying/editing an IC
You can copy an existing device into your USER library, which is then
available for you to edit. As an example of this, carry out the following steps: -

• Return to the Library Review screen by clicking Cancel if you are still
looking at a device

• Click on a device in the list
• Choose Device/Copy from the menu or right click and select Copy
• Enter a new name for the New Device Name and click OK

The new device will then be added to your USER library. Locate it in the
library list and double click on it to edit. You can now change the various
entries for the device without affecting the original device in the library.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 8

On both products there is only a numeric keypad available for entering device
numbers. Therefore, on the edit tabs there is a field (Use Number) provided
for a numeric part number. For example, if the full part number for a new
device is LM339N, you may wish to enter the number 339 in the Use Number
field. The B&K 575A and B&K 570A products contain an internal library of IC
tests which is not visible in the CompactLink software. When deciding which
test to execute, the product software will give priority to the user library if a
device with the same number exists. In the above example the 339 new user
test for the LM339N will be executed rather than the built-in LM339 test – if
you wish to have both tests available use a different number (e.g. 3390) for
the user test.

3.12. Specifying a functional test for the IC
If you have enabled Functional testing for your newly added device, you have
to specify which functional test to use. The actual functional tests are stored
separately from the devices since several devices with comparable functions
and pin-outs will usually share one test. When you enable Functional testing,
you will see in the Functional Test Configuration area that the Current Test
entry is blank, showing that as yet no test has been selected for the device.

To select a test, click the Select Test button to show the Select Test window
as shown below: -

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 9

The Select Test window displays a list of all PLIP tests present in the system.
PLIP is the CompactLink built in test programming language and allows you
to develop and debug a test using the integrated debugger, which will be
described in detail later in the manual.

If your new device is pin and functional compatible with an existing device it
can probably make use of a test already in the list. For example, many op
amps are pin compatible and have only slight functional differences, so they
can share the same test program. If you want to specify an existing test, find
the test (you can use the Find box to quickly locate a test) and click Select to
associate this test with your new device.

Often you will want to add a new test for a new device. To do this, there are 2
alternatives: -

• If there is a PLIP test in the library that is similar to the one you want, you
can use Copy Test to make a copy of it with a new name. To do this click
Copy Test, select the copied test and click Rename to give the test your
desired name.

• If you want a complete new test, click Add New to add a new test, select
it then click Rename to change the name.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 10

In all cases, the preview window displays the source code for the selected test
to help you choose a suitable test for your device.

To delete a test, select the test and click Delete, but note that you cannot
delete a test that is allocated to a device.

3.13. Developing a functional test
Test programming and debugging is a complex subject, which we will discuss
in detail later. However, to see the required steps, follow the procedure
below: -

• If you have not already done so, add a new device to your USER library
as described above

• Define the pin names for the new device, since they are required for the
functional test

• Enable the device for the chosen target product as described above
• Enable the functional test for the device/target combination
• Click Select Test and add a new functional test for the device
• Click Develop Test to enter the functional test development and

debugging window
• In the Source Program window, enter the PLIP code for the test (full

details later)
• Use the toolbar Build Test button to compile the test and fix any

compilation errors
• Connect up your chosen hardware (B&K model 575 or 570 tester)
• Choose Tools/Configure Hardware and specify the type of hardware

interface to be used
• Use the toolbar Send Test button to download the compiled test to the

target hardware
• Use the debugging commands and windows to step though the test and

confirm that it executes correctly
• Once complete, save the test and close the debugging window
• Generate a new set of USER library files containing the new test

3.14. Deleting an IC from the USER library
There are two ways to delete a device from your USER library: -

• Select the device to be deleted in the Library Review screen by clicking
on it or by entering all or part of its name in the Find box

• Right click on the device and choose Delete, or
• Choose Device/Delete from the menu

Once you have deleted a device, there is no way to restore it except by re-
entering all its information. You should make regular backups of the database

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 11

file (B&KCompactLinkICLibrary.dat) to ensure you do not lose wanted data.
You can open the folder containing the complete IC library database by
clicking Start/Program/B&K CompactLink/Database.

3.15. Printing or exporting a device
If you wish to have a hard copy record of a device you can create a report and
then either print the report or save it to a text file. To do this, select the device
in the Library Review screen and select Device/Print/Export from the menu,
or alternatively right click on the device and choose Print/Export. In the
report window which appears, you then have the choice between Export,
which saves the device details as a text file, and Print, which sends the
details to your printer.

3.16. Generating library files
Once you have completed adding devices and/or tests, you will probably want
to generate a set of library files to include the new device in the library of your
product. There are 2 options which can be selected from the Library menu: -

• Update B&K 575A User Library. This produces a B&K 575A user library
file (BK575ALIB.CML file) which can be downloaded and programmed
into your B&K 575A over the serial cable.

• Update B&K 570A User Library. This produces a B&K 570A user library
file (BK570ALIB.LML file) which can be downloaded and programmed
into your B&K 570A over the serial cable.

As an example, assume we are going to generate a user library file for the
B&K 570A. Choose Library/Update B&K 570A User Library from the menu
and the Update Library window appears as follows (assuming the B&K 570A
is actually connected to the COM1 port as shown): -

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 12

The process has 4 stages enabled by the 4 check boxes as follows: -

• Firstly, you must compile all your user tests. The integrated debugger
uses a different format for compiled tests to allow easy debugging, so all
tests need to be recompiled at this stage. Select the Recompile Tests
check box to enable the compiler to compile all B&K 570A tests.

• Enable the Build library file check box to generate the library file for the
selected product. In this case the file BK570ALIB.LML will be generated
in the folder specified by the Tools/Options menu function.

• If you want to create a backup of any existing user library files, enable the
Backup existing files check box. A backup folder will be created and
the existing library file(s) will be copied to it before being overwritten with
the new file(s).

• If you have a product connected enable the Download library file on
success check box. This will cause the generated file(s) to be
automatically downloaded to the product provided the compilation and file
generation processes executed correctly.

• If you have previously generated a library file using the above procedure,
you can enable the Update from existing file check box to skip the
compilation and building stages and just download the previously
generated file.

Once you have done this you can disconnect the product from CompactLink
and the ICs will then be available in the user library.

4. Writing your own test programs

4.1. Introduction to PLIP
Once you have added a device to the library you can also add a functional
test to the device to perform a truth table or analog (depending on the target
product and the device type) test on the device. Functional tests for both
target products are written in a high-level programming language called PLIP.

The PLIP test programming language is a high-level language designed
specifically for test programming. The syntax is highly descriptive, so that
programs are to a large extent self-commenting, but of course comments can
be inserted if required. IC pins are referred to by their names (as defined by
the IC device information) to avoid continual reference to the pin-out during
programming, and to make the programs more readable. In addition, related
sets of pins can be defined as a pin group, which can then be referred to by
its group name. This again greatly improves the readability and
understanding of a test program. See the SET command for further details of
this facility.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 13

The compiler generates binary data which can be executed in stand alone
form by the integral debugger, or combined into library files for use with your
B&K 570A or B&K 575A products. The product software contains advanced
run time error checking traps to ensure that execution errors (e.g. divide by
zero, stack overflow, out of range voltages etc) do not cause system crashes.

Any PLIP program contains a combination of COMMANDS, FUNCTIONS and
VARIABLES, the meaning of which will become clear if you work through the
development example for the 7400 IC given below.

4.2. Opening the test development and debugging
window

The first step in writing any test program is to add a new IC to the library and
add a new test for it, as follows: -

• Refer to section 3.9 and add a new device to the library. Enter the name
“TESTDEV” in the name field.

• Note that by default the device has 14 pins which have the default names
PIN1, PIN2 etc.

• Click on the B&K 570A or B&K 575A test tab depending on the product
you wish to connect.

• Enable the Include device in library and Functional Test for the
chosen target product.

• Click Select Test to open the Select Test window.
• Click Add New to insert a new, blank test and change its name to

TESTDEV.
• Click OK to close the Select Test window.
• In the Edit Device window, click Develop Test to open the test

development and debugging window.

The Source Program for TESTDEV window (on the left) is where the test
program code is entered. If you wish you can click the Full Screen button at
the top right of the Source Program window to expand it to simplify entry of
IC test programs. At the top of the window there is a ruler bar showing the tab
stop positions – you can use tabs in your program to make it more readable
and to indent code inside procedures. You can change the tab positions by

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 14

choosing Tools/Options/Formatting from the menu or Options from
the toolbar, and entering a new Tab width value from 2 to 8. While entering

the test program, you can click the Save Test button on the toolbar to
save the current program in the database. You can also write the program to

a text file, or read in a text file, using the Write Test and Load Test
buttons on the debug toolbar. These functions allow you, if you wish, to write
programs in text format using an external text editor before reading them into
the CompactLink debugger.

The debug window also contains menu commands and toolbar buttons for
compiling and downloading the test, executing and stepping programs, setting
breakpoints and watch values. The meaning of these will become clear as
you work through the example 7400 test later on.

4.3. Entering and compiling a program
Before starting to work on a real program, we will first have a look at the
operation of the editing and compilation system used for PLIP programs. In
the Source Program window, type in the following PLIP program: -

A = 0
B = A - D
C = A + E

Compile the program by clicking the Build Test button and observe the
results. At the bottom left in the Info window, you will see that the compilation
failed with 2 errors and 1 warning as follows

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 15

4.4. Fixing the errors and warnings
This is a simple program using variables and expressions. The variables A, B
and C are defined, but the variables D and E have not been defined yet are
used in expressions. This is an error as the compiler shows. CompactLink
allows you to quickly find the errors in your program – click on the error
message in the Errors tab in the Info window and observe that the line in the
Source Program window containing the error is highlighted. You can also

use the Next Problem/Previous Problem buttons to locate the
errors in your program.

The program also has a warning that you have not included an END TEST
command – this is required for every PLIP program because the end of the
program may not necessarily be at the end of the text if procedures are
defined later in your program.

To fix the errors and warnings, amend the program as follows and recompile: -

A = 0
D = 1
E = 2
B = A - D
C = A + E
END TEST

You should now have a result with no errors and no warnings.

4.5. Getting help
CompactLink contains extensive on-line syntax help for PLIP programs. To
access this, right click on the program text in the Source Program window
and select Syntax Help from the popup menu. CompactLink will attempt to
find help for the word you have clicked on and will display the correct syntax
with examples. When the PLIP Syntax Guide is open, you can choose other
commands from the combo boxes at the top to learn about all the PLIP
statements.

Note that if the chosen word in the program has more than one context, you
will be given a list of alternatives to choose from. Help is not available for
comment lines or unrecognized words. You can also press F1 or choose
Help/Syntax from the menu.

4.6. Documenting your program
Although PLIP is a very readable language, it is not always clear what the
intention of the program is. This is especially true for someone who has not

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 16

written the program but has to update or modify it. To help with this you can
add comments to your program to explain, in your own language, what the
program is designed to do. To add a comment, type a * character followed
by a description of the program function. The above simple program could be
commented as follows: -

* Sample program to show variable definition and
expression use
* Define variables A, D, E and initialize
A = 0
D = 1
E = 2
* Define variables B and C and initialize with
expressions
B = A - D
C = A + E
* Tell PLIP this is the end of the test
END TEST

You can also include blank lines to separate out blocks of code to further
improve readability.

4.7. Connecting to hardware
Up to now we have used the CompactLink software alone with no connection
to any form of test hardware. However, to debug programs you need a
hardware connection to the test product of your choice, using a serial cable to
connect to a COM port on your PC. A USB port can be used with the USB to
serial converter supplied.

4.7.1. Connecting to B&K 570A/575A products
Follow these steps to configure your CompactLink software to connect to
your product: -

• If you have not already done so, install the CompactLink software on the
PC which is controlling your product(s).

• Connect your B&K 570A or 575A to a battery eliminator, turn on and
select CmLink mode (See product manual).

• Connect your product to a COM port on your PC, either directly or to a
USB port via the USB-RS232 converter supplied.

• Run the CompactLink software and choose Tools/Configure Hardware
from the main menu or from within the test development and debugging
window.

• Click Add to add a serial hardware interface.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 17

• Select a port for the interface using the Port combo box depending on the
COM port used for the serial connection.

• Select the newly added interface by clicking and click Settings. Confirm
that the serial port settings are Baud rate: 38400, Data bits: 8, Stop bits:
1, Parity: None, Handshaking: Hardware.

• The Status will be automatically updated by CompactLink and will show
Found if the selected interface is present on your system.

• Click Refresh to update the list of attached products. Confirm that the list
is correct for your configuration.

• If you wish you can click Test to run the diagnostics on the attached
product. The result is displayed in the list.

• Click OK to save the hardware configuration.

4.8. Debugging your program
No matter how skilful you are as a programmer, inevitably your program will
have problems (commonly called “bugs”) in it. The purpose of the debugger is
to help you identify these problems and fix them before adding the test to your
library. As an exercise in using the debugger, enter the short program as
described in sections 4.3 to 4.5 above, then carry out the following steps: -

• Compile the program by clicking the Build Test button.

• Send the compiled test program to the hardware by clicking the
Send Test button. You should then see the following display: -

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 18

• The 4 execution buttons Execute, Step In, Step Over
and Reset are now enabled, and the current execution line (A = 0) is
highlighted.

• A further button Stop is displayed but not yet enabled. This enables
a running program to be stopped, and is only enabled during program
execution.

• Note that the 5 variables A to E are listed in the Variables debug tab on
the right, but the values are shown as “---“ since we have not yet
executed the program.

• Click the Step In button to step the program. Notice that the
variable values are now updated and the execution line moves on to the
next line (D = 1). If you hover your mouse pointer over any of the
variables in the Source Program window, the value will be shown.

• Continue stepping the program and observe the variables updating as the
program executes.

4.9. Setting breakpoints
Stepping through the simple program above is easy enough, but for more
complex programs it can take a long time to step through the entire program.
Breakpoints are up to 3 defined locations in your program where execution
can be suspended to allow you to examine variables, check voltages etc. You

can then execute the program and full speed with the Execute button,
and the program will stop at the first breakpoint encountered. To set a
breakpoint, do the following: -
• Click on the line where you want to set the breakpoint, e.g. B = A – D
• Choose Debug/Toggle Breakpoint from the menu, or press F9, or right

click and choose Toggle Breakpoint from the popup menu. The
selected line will be bulleted to indicate the breakpoint and an entry will
be made in the Break debug window on the right

• Click Reset to reset the program back to the start, then click
Execute to run the program. You will see that the program stops at the
selected line.

• You can now examine the variables to confirm that the program has
executed correctly.

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 19

Note that the Break debug window includes two special breakpoints which are
enabled by default but you can turn them off if you wish: -

• Break on first FAIL. This can be useful when writing IC tests since you
can run the program until the test fails, allowing you to quickly “home in”
on problems in your program.

• Break at end of test. This causes execution to stop at the end of the
program. This allows the final state of all program variables to be
examined before the test completes.

To remove a breakpoint, click on the line where the breakpoint has been set
and choose Toggle Breakpoint again to remove it.

4.10. Debugging techniques
Debugging programs is a complex skill that requires practice and experience.
Nevertheless there are some ground rules you can follow to help you avoid
errors in your programs.

There are 3 types of errors that can occur in your program: -

4.10.1. Compiler errors
Compiler errors occur if you mistype text or use incorrect syntax. These are
easily fixed as the PLIP compiler provides error messages and the syntax
guide helps you get the command right.

4.10.2. Run time errors
Run time errors are caused by illegal operations such as divide by zero which
cannot be detected by the compiler as it has no knowledge of the intended
values of variables in your program. For example, if your program includes
the line GAIN = OUTPUT / INPUT you should ensure that the value of
INPUT cannot contain zero. This could be done simply as follows: -

IF INPUT <> 0
 GAIN = OUTPUT / INPUT
END IF

If a run time error occurs, program execution will stop and the cause of the
error will be displayed in the Result window at the bottom right.

4.10.3. Logical errors
These are the most common type of errors in the program and also the most
difficult to find. The following techniques will help: -

• Single step your entire program. This can be laborious but it will ensure
your program executes according to plan. Use the Variables window and

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 20

the automatic mouse hover variable display to confirm that the variables
have the correct values.

• Break up your program into PROCEDURES with well-defined input and
output values, which can be tested in isolation. Once you have fully

tested a procedure, you can use Step Over to execute calls to it
without stepping into the procedure itself, which reduces the amount of
stepping you need to do.

• Consider what happens in your test if unusual circumstances are present.
For example, if you are reading a voltage from an IC pin, remember that a
faulty IC may give unusual voltages, which may upset your program.

• Ensure that you thoroughly understand the function of the IC you are
testing. You will be unable to write a functional test program if you do not
know how the IC will react to input signals, so obtain an up to date data
sheet for the device.

• If your program contains complex calculations, split them into several
lines using intermediate variables so you can follow the calculation while
stepping.

• Ensure you are aware of the order of precedence of operators (see on
line syntax guide). For example, consider the program sequence: -

A = -1
B = 5
CONDITION = A < 0 & B > 3

The & operator is a higher order than the relational operators < and >.
Therefore the expression is evaluated as: -

CONDITION = (A < (0 & B)) > 3 which is probably not what
you expect. To avoid confusion rewrite as: -

CONDITION = (A < 0) & (B > 3) which makes it clear what
you are trying to achieve.

• If your program uses loops (e.g. DO WHILE), ensure that the loop
condition can eventually become false and your program cannot get stuck
in the loop. For example, consider the following loop in a B&K 570A
program: -

DO WHILE VOLTAGE(OUTPUT) < 5
 DRIVE INCREMENTAL INPUT WITH 0.05
END DO

If the output voltage never exceeds 5V (which could happen, for example,
if the IC is faulty) the program will remain in the loop and will get stuck.
To avoid this, try the following: -

* Set an execution limit for the loop

CompactLink IC Library Manager Writing test programs

Copyright  2007 B&K Precision Inc Page 21

LOOP_LIMIT = 1000
* Adjust input voltage until output goes above 5V
DO WHILE (VOLTAGE(OUTPUT) < 5) & (LOOP_LIMIT > 0)
 DRIVE INCREMENTAL INPUT WITH 0.05
 * Count number of times we go round the loop
 LOOP_LIMIT = LOOP_LIMIT - 1
END DO

This is far more complex but ensures your program cannot get stuck in a
loop. If the loop executes 1000 times the LOOP_LIMIT variable will
become zero and the loop will exit. Once you are sure your program is
working correctly, you can remove such error trapping code. Note that
this uses the & logical operator to combine 2 test conditions for the loop
condition – ensure you use the brackets as shown to ensure the

expression is evaluated as you intend. You can use the Stop button
to force a breakpoint in a loop which is executing indefinitely.

• Use the DISPLAY command to show debugging information in the
Display Output window at the bottom right. For example in the above
program, DISPLAY VOLTAGE(OUTPUT), VOLTAGE(INPUT) will
show the voltages at the input and output pins so you can see if they are
as expected before using them in subsequent calculations, and
DISPLAY 1000 - LOOP_LIMIT will show how many times your
loop executed before exiting.

• When you have tested parts of your program to your satisfaction, use
breakpoints to stop your program execution after the tested parts so you
can then use stepping to test the remainder of the program.

Further examples of common program errors are given in the online syntax
help.

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 22

5. Some common programming concepts
Although PLIP is a reasonably simple language to use, some of the concepts
involved in IC test programming can be quite complex. The basic principle
behind any IC test program is quite simple: -

• Stimulate the inputs of the device under test with the correct logic levels
or analog voltages.

• Check that the outputs of the device under test respond as expected to
the input signals.

• Ensure that the chosen sequence of input signals covers all aspects of
device operation.

However, this is not always as simple as it may seem. To make your program
as successful as possible, always try to meet these two objectives before you
start: -

• Obtain a sample device of the type you wish to test.
• Obtain an up to date data sheet for the device.

We will discuss some of these issues in this section.

5.1. Digital test programming
Digital test programming is easier than analog test programming. The
operation of the devices is better defined and there is less mathematics
involved in testing.

Remember the basic operations in a digital IC test program, stimulate the
inputs and check the outputs. The following commands are provided in PLIP
for digital test programming. For full syntax and examples see the on-line
help: -

Stimulus Commands Use
DRIVE Drive a logic level onto the input of

the IC under test
PULSE Pulse the input (L->H->L or H>L->H)

of the IC under test
Response Commands/Functions
CHECK THAT Check that the output of the IC under

test is in a specified logic state
COMPARE Compare a group of IC outputs with a

specified value
RESPONSE() Return a value by reading the logic

states on a group of IC outputs
Other Commands
SET PULL STATE Set the 10k pull up/down voltage high

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 23

or low
INPUTS Define the inputs of the IC under test

5.1.1. Combinational devices – gates, buffers, multiplexers
Combinational logic devices are the simplest type of logic devices – the output
logic levels depend purely on the input logic levels, so your program will
probably proceed as follows: -

• Specify the inputs of the IC under test with the INPUTS command
• Apply the desired logic levels to the inputs with the DRIVE command
• Check that the outputs respond correctly with the CHECK THAT

command

When writing a test for a combinational logic device, ensure that you cover all
possible states to get the best test possible. For example, if you are testing a
4 input gate you will need 16 states to cover all combinations of the 4 inputs.
This is best achieved with a loop using the DO … WHILE construction to
repeat the test with different input states.

5.1.2. Sequential devices – counters, registers, latches
Sequential devices are far more complex, and in fact the vast majority of
digital devices are sequential. The device normally has one or more clock
inputs, and the outputs depend on both the current inputs and on the history
of the inputs, so you cannot just apply inputs and check the output response.
For example, a 4 bit counter can count from 0 to 15 before starting again at 0.
If you just apply a pulse to the clock input using the PULSE command, this will
advance the outputs by 1 state, but unless your program knows the initial
state you cannot check whether the new state after the clock pulse is correct.

To deal with this problem, there are a number of techniques depending on the
type of device: -

• If the device has a clear or reset function, test that first, as then the
device will be in a known state.

• If there is no clear or reset function, read the current state of the device
outputs using the RESPONSE() function and use that in your program to
calculate the next state.

• Some device outputs may not be available externally (e.g. a counter may
only have a carry output and the actual counter outputs may not appear
externally). In this case you may have to clock the device many times
until the carry appears, so that you then know what state the device is in.

In accordance with the above, a typical sequence for a sequential device
would be: -

• Specify the inputs of the IC under test with the INPUTS command

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 24

• Get the device into a known state using a clear or reset input, or issue
clock pulses until a known state is reached

• Apply the desired logic levels to the inputs with the DRIVE command
• Apply one or more clock pulses depending on the nature of the device
• Check that the outputs respond correctly with the CHECK THAT

command

5.1.3. Tri-state devices – buffers, bus drivers
Both combinational and sequential devices may have tri-state outputs – these
outputs can be turned off or made high impedance by an enable input, so that
other devices on a board can drive the pins in a bus structured system. A
typical combinational tri-state device test sequence would be as follows: -

• Specify the inputs of the IC under test with the INPUTS command
• Drive the enable or chip select input to turn off the tri-state outputs
• Check using the SET PULL STATE command that the outputs are

properly turned off
• Enable the outputs and apply the desired logic levels to the inputs with

the DRIVE command
• Check that the outputs respond correctly with the CHECK THAT

command

For sequential devices with tri-state outputs similar principles apply.

5.1.4. LSI and complex devices
Testing complex high pin count devices such as CPUs and CPU peripherals is
difficult. In many cases, the device data sheet does not specify exactly how
the device responds to the inputs, and there may be minor differences in
operation between the same devices from different manufacturers. Some
devices may require minimum clock speeds to operate, which means single
stepping is impossible. In addition to all this, many devices are so complex
that testing every conceivable aspect of device operation may not be feasible
because the test would take too long.

Despite this, it is still possible to write tests for complex devices if a few
general principles are observed: -

• ICs usually fail because of voltage spikes, static pulses etc on the device
pins, so your test should try to ensure every pin is tested in both logic
states even if the entire device function cannot be tested

• Many devices need the same sequence of signals repeating many times
during a test (for example internal registers that need to be read or written
to configure the device operating mode). Use the PROCEDURE … END
PROCEDURE construction to write data to registers, so that it can be
called from several places in your program

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 25

• If you cannot determine the exact response of the device outputs from the
data sheet, use the following technique: -
• Use DRIVE and/or PULSE commands to apply logic levels and

clock pulses to the inputs
• Use the DISPLAY command with the RESPONSE() function to

read the output response and display in the text output window in the
debugger

• Once you have determined how the IC responds, include CHECK
THAT commands to test for the expected response

• If the device will not operate at slow speeds, use the debugger breakpoint
system in conjunction with the DISPLAY command to get debugging
information about the test

5.2. Analog test programming
Analog ICs, by their very nature, are more difficult to test than digital ICs.
Consequently analog IC tests are often quite complex, even for very simple
components such as transistors and diodes.

The following commands are provided for analog test programming: -

Stimulus Commands Use
DRIVE ABSOLUTE Drive a defined voltage onto the input

pin of the IC under test
DRIVE INCREMENTAL Change the voltage on the input pin

by the defined voltage
Response Commands/Functions
COMPARE Compare the voltage/current with a

specified value using a given
tolerance

VOLTAGE() Return the voltage at a pin
Other Commands
INPUTS Define the inputs of the IC under test
SET FEEDBACK TO Configure the B&K 570A feedback

network

5.2.1. Using the DRIVE commands

The DRIVE ABSOLUTE command is the most common command for analog
component stimulus, and it applies the specified voltage to the input pin. The
DRIVE INCREMENTAL command is slightly different - this command
measures the voltage at the pin before changing it by the specified amount,
so you do not need to know the original voltage. For example, when checking
the gain of a circuit the actual voltages used are not that important as it is the
ratio of them that will give you the gain.

Note that the following 2 program segments will give the same result: -

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 26

DRIVE ABSOLUTE INPUT TO VOLTAGE(INPUT) + 0.1
DRIVE INCREMENTAL INPUT BY 0.1

The first command measures the input voltage and then increases it by 0.1V.
The second command does this internally without first measuring the voltage.

5.2.2. Using parameters
Parameters are constants used only in B&K 570A tests. They are initialized
with values in the Device Information window. This allows many devices
with different specifications to share the same test – for example, in a voltage
regulator test parameters could be used for the output voltage, tolerance,
minimum and maximum currents. This allows the same test to be used for
voltage regulators with different output voltages.

To specify parameters, enter PLIP code in the Parameters box in the Device
Information window for the device under test. For the above example, the
parameters might be entered as follows: -

MIN_CURRENT = 0
MAX_CURRENT = 0.1
SPEC_VOLTAGE = 5
SPEC_TOL = 0.05

When the test is compiled, the given parameters are initialized to the values
entered, which can then be used in your program rather than actual numbers,
allowing your test to be re-used.

Similar parameters can be used for test voltages and currents in most types of
analog tests. For example, the forward voltage drop for a Schottky type diode
will be less than a normal silicon diode. A parameter can be used to set the
expected voltage drop, which can then be used in your test so that the same
diode test can be used for both types of diodes.

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 27

6. 7400 digital IC test program for the B&K 575A
Now we are ready to write a complete IC test program. In this example we will
describe how we would write a PLIP test program for a 7400 QUAD NAND
GATE IC, and in this way introduce you to the concepts involved in test
programming. The program can be executed on the B&K 575A digital IC
tester.

6.1. Defining the IC inputs
The first step in any test program is to define the input pins of the IC under
test, so that the test target product can switch on the drive on these channels.
This is achieved using the INPUTS command. Enter the command line into
the editing window as follows: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B

This command tells CompactLink that the pins listed are all inputs to the IC,
and any pins not listed are assumed to be outputs. Note that for test
programming purposes power supply pins are assumed to be outputs from the
IC under test. You do not need to refer to the pin numbers directly (although
you can do so if you wish by using the syntax PIN 1, PIN 3 etc.) because
the compiler will substitute the correct numbers from the device information
later.

When CompactLink or the target product executes this command line, it will
perform various checks on the given pins prior to continuing with the test
(depending on the target product). For example, it will check that all the given
input pins can be properly driven with valid logic levels. All these checks take
place on the first, and only the first, INPUTS command line in your program,
so the first INPUTS command should define all the inputs.

We can now go on to drive the input pins for the first gate with a suitable test
pattern and check the output, so the program now looks like this: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B

6.2. Simple test for a logic NAND gate
Now we are ready to test the first logic gate in the IC, and to do this we need
to drive both inputs with all four possible states according to the truth table for
a NAND gate, and check that the output responds accordingly. We could do
this with the following program segment: -

DRIVE 1A LOW, 1B LOW
CHECK THAT 1Y IS HIGH

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 28

DRIVE 1A HIGH, 1B LOW
CHECK THAT 1Y IS HIGH
DRIVE 1A LOW, 1B HIGH
CHECK THAT 1Y IS HIGH
DRIVE 1A HIGH, 1B HIGH
CHECK THAT 1Y IS LOW

6.3. Improved logic NAND gate test with looping
Whilst the above program will work, there is a more compact way of achieving
the same result using another programming construction, the DO WHILE
... END DO construction. This is a commonly found construction allowing
blocks of program code to be repeated until a condition is true. Consider the
following program segment: -

DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 IF DATA = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

The above loop actually contains slightly more code than the original simple
program, but can easily be modified for gates with 3 or more inputs to produce
far more compact code. It is of course more complex and introduces several
other programming concepts. Firstly, we have now defined a variable, called
DATA, which is initialized to the value 0 by the first line in the segment.
Variables in PLIP are stored in floating point format and can have values
ranging from -32767e-99 to +32767e+99. The variable name itself can have
up to 30 alphanumeric characters including underscores, but must begin with
a letter.

The second line contains a DO WHILE condition. All the program lines in
between the DO WHILE and END DO commands will be executed
repeatedly until the condition is false. It follows therefore that the program
must contain code to change the condition otherwise the program will stick in
an endless loop! In this case, the condition is that the value of DATA must be
less than or equal to 3 for the following program lines to be executed. Also
here, on line 3 we have introduced a modified form of the DRIVE command,
using square brackets ([]) to group together the two input pins. This form of
the DRIVE command allows a numeric value to be driven in binary form (i.e.

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 29

1 bit at a time) onto the pins contained in the command. In this case, this
means that bit 0 of the variable DATA is driven onto pin 1A, and bit 1 is driven
onto pin 1B.

On line 4 we are using an IF ... ELSE ... END IF construction to
decide on the expected value of the output logic level depending on the input
state. You will see that the above program correctly tests the output pin
according to the truth table for a NAND gate – if the value of DATA is 3 (i.e.
both inputs high) the output is expected to be low, otherwise it should be high.

Finally, after one run through the test program the value of DATA is
incremented by 1, and the END DO command causes execution to return to
the DO WHILE command line and repeat the entire program section. This
will continue until the value of DATA is 4, when execution will continue after
the END DO command line. Notice in both the above two program segments
that we have indented, by 4 spaces (or a tab), the code following an IF or a
DO WHILE statement, but the relevant ELSE, END IF and END DO
commands revert to the original column on the display. This is not necessary
for your program to work, but it improves the readability of your program
particularly when DO WHILE ... END DO or IF ... ELSE ... END IF
blocks are nested inside each other. We suggest you get into the habit of
doing this when you write your programs.

6.4. Complete program for logic NAND gate
The program to test the first gate in the package now looks like this: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 IF DATA = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

It would be a good idea at this stage to test the program with the debugger to
ensure that it functions as expected, before going on to test the other three
gates in the package. In this way, if any mistakes are found they can be
corrected before continuing with the program entry. However, for
completeness, we will now give the complete program for all 4 gates in the

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 30

package. You can use the text editor copy and paste to quickly copy the
above block 3 times, then all you need to do is change the pin names for the
remaining three gates. The complete program is as follows. Note that we
have added comment lines (beginning with *) to make the program more
readable, and we have also introduced the END TEST command to mark the
end of the program: -

* TEST PROGRAM FOR 7400 QUAD NAND GATE IC

* DEFINE ALL INPUT PINS
INPUTS 1A,1B,2A,2B,3A,3B,4A,4B

* DEFINE INPUTS FOR GATE 1
INPUTS 1A,1B

* TEST ALL 4 COMBINATIONS OF INPUTS
DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 * GET EXPECTED OUTPUT ACCORDING TO INPUT
 IF DATA = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 * NEXT VALUE OF DATA INPUTS
 DATA = DATA + 1
END DO

* DEFINE INPUTS FOR GATE 2 AND REPEAT ABOVE
INPUTS 2A,2B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [2A,2B] WITH DATA
 IF DATA = 3
 CHECK THAT 2Y IS LOW
 ELSE
 CHECK THAT 2Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

* REPEAT FOR GATE 3
INPUTS 3A,3B

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 31

DATA = 0
DO WHILE DATA <= 3
 DRIVE [3A,3B] WITH DATA
 IF DATA = 3
 CHECK THAT 3Y IS LOW
 ELSE
 CHECK THAT 3Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

* REPEAT FOR GATE 4
INPUTS 4A,4B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [4A,4B] WITH DATA
 IF DATA = 3
 CHECK THAT 4Y IS LOW
 ELSE
 CHECK THAT 4Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

END TEST

If you have not already keyed in this program we suggest you do it now. The
program is also included in the test 7400BK575 which is included as a sample
user device in the database supplied with the software. After entering the

program, click the Save Test button on the toolbar to save it.

The above is a very simple example of a test program, but it does show some
of the main features of the language.

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 32

7. Operational amplifier analog test program for
the B&K570A

The following program is designed for an LM324 quad operational amplifier
test on the B&K 570A linear IC tester. We suggest you use the sample
program LM324BK570 supplied and use the debugger to establish exactly
how the program works.

The test uses a variety of techniques to get the correct result: -

• The test relies on a mid rail voltage for correct operation. Since the test
program is not aware of the actual supply voltage used for the test, the
mid rail voltage is measured at the start of the test using the B&K 570A
feedback network.

• The test uses PARAMETERS for common mode range, saturation
voltages and tolerances. This allows the same test to be used for
different quad op amp devices.

• The INPUTS command with no arguments is used to turn off all output
drivers.

• Variables are used for pin names so that procedures
TEST_OPEN_LOOP, TEST_BUFFER and TEST_GAIN2 can be used
for all 4 op amps in the package

• In the open loop test, a ground resistor is used to establish a mid rail
voltage on the inverting input. The non-inverting input is then driven by a
small voltage either side of this to make the output respond. The
DISPLAY command is used to show the output saturation voltages
achieved. The outputs are tested against the saturation voltage
parameters, then the COMPARE command is used to force a test fail if the
voltages are incorrect.

• In the buffer test, a feedback resistor is used to configure the op amp to
have unity gain. The non-inverting input is then driven by a gradually
increasing voltage and the output is checked at each stage using the
COMPARE command.

• In the gain2 test, the feedback network is used to configure the op amp to
have a gain of 2. The non-inverting input is then driven by a gradually
increasing voltage and the output is checked at each stage using the
COMPARE command. Note that the difference between the input/output
voltages and mid rail voltage is used in the comparison.

* LM324_570A
* Test for LM324 quad op amp on B&K 570A

* Tested in open loop, unity gain and gain of 2

* Define parameters

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 33

PARAMETER VCMRNEG
PARAMETER VCMRPOS
PARAMETER VSATNEG
PARAMETER VSATPOS
PARAMETER BUFFERTOL
PARAMETER GAIN2TOL

* Define variables
VIN = 0
VMID = 0
VSUPP = 0
VOUT = 0

* First measure mid rail voltage by following procedure
* 1) Turn off all pins
* 2) Enable the 100R pseudo ground resistor on an input
* 3) Measure the voltage at this pin and save

* Turn all pins off
INPUTS
* Enable 100R ground R on INV1 and no feedback R
SET FEEDBACK TO OUTPUT1, INV1, FB_OFF, GND_100R
* Measure the voltage on INV1 to use for rest of test
VMID = VOLTAGE(INV1)
* Measure the supply voltage
VSUPP = VOLTAGE(V+)

* Set up pins for op amp 1
INPUT_INV = INV1
INPUT_NINV = NINV1
OUTPUT = OUTPUT1
INPUTS NINV1
* Test op amp 1 in open loop mode
DO TEST_OPEN_LOOP
* Test op amp 1 in buffer mode (unity gain)
DO TEST_BUFFER
* Test op amp 1 in gain of 2 mode
DO TEST_GAIN2

* Set up pins for op amp 2
INPUT_INV = INV2
INPUT_NINV = NINV2
OUTPUT = OUTPUT2
INPUTS NINV2
* Test op amp 2 in open loop mode
DO TEST_OPEN_LOOP

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 34

* Test op amp 2 in buffer mode (unity gain)
DO TEST_BUFFER
* Test op amp 2 in gain of 2 mode
DO TEST_GAIN2

* Set up pins for op amp 3
INPUT_INV = INV3
INPUT_NINV = NINV3
OUTPUT = OUTPUT3
INPUTS NINV3
* Test op amp 3 in open loop mode
DO TEST_OPEN_LOOP
* Test op amp 3 in buffer mode (unity gain)
DO TEST_BUFFER
* Test op amp 3 in gain of 2 mode
DO TEST_GAIN2

* Set up pins for op amp 4
INPUT_INV = INV4
INPUT_NINV = NINV4
OUTPUT = OUTPUT4
INPUTS NINV4
* Test op amp 4 in open loop mode
DO TEST_OPEN_LOOP
* Test op amp 4 in buffer mode (unity gain)
DO TEST_BUFFER
* Test op amp 4 in gain of 2 mode
DO TEST_GAIN2

END TEST

PROCEDURE TEST_OPEN_LOOP
 * Test op amp in open loop mode as follows
 * 1) Connect ground resistor only to inverting input
 * 2) Apply small +ve voltage (referred to mid rail)
 * 3) Check that the output saturates high
 * 4) Repeat with a small negative voltage
 * 5) Check that the output saturates low

 * Set up the ground resistor on the inverting input
 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_OFF, GND_100R
 * Output a small positive voltage
 DRIVE ABSOLUTE INPUT_NINV TO VMID + 0.1
 * Measure the output voltage
 VOUT = VOLTAGE(OUTPUT)
 DISPLAY "Vsathigh=",VOUT,"V",NEWLINE

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 35

 * Check if Vout is too low
 IF VOUT < VSUPP - VSATPOS
 * Force a voltage too low fail on the output pin
 COMPARE VOLTAGE(OUTPUT) WITH VSUPP TOLERANCE 0
 END IF
 * Output a small negative voltage
 DRIVE ABSOLUTE INPUT_NINV TO VMID - 0.1
 * Measure the output voltage
 VOUT = VOLTAGE(OUTPUT)
 DISPLAY "Vsatlow=",VOUT,"V",NEWLINE
 * Check if Vout is too high
 IF VOUT > VSATNEG
 * Force a voltage too high fail on the output pin
 COMPARE VOLTAGE(OUTPUT) WITH 0 TOLERANCE 0
 END IF
END PROCEDURE

PROCEDURE TEST_BUFFER
 * Test op amp in unity gain mode as follows
 * 1) Connect 1k from output to inverting input
 * 2) Apply minimum voltage
 * 3) Check that the output follows
 * 4) Repeat with stepping voltage up to maximum

 * Set up the feedback resistor on the inverting input
 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_1K, GND_OFF
 * Start testing with Vin at bottom of CM range
 VIN = VCMRNEG
 * Repeat with increasing values of VIN in 1V steps
 DO WHILE VIN < VSUPP - VCMRPOS
 * Drive the input and measure the output
 DRIVE ABSOLUTE INPUT_NINV TO VIN
 VOUT = VOLTAGE(OUTPUT)
 * Display the results for debugging purposes
 DISPLAY "Vin=",VIN,"V"," Vout=",VOUT,"V",NEWLINE
 * Compare output with input voltage
 COMPARE VOUT WITH VIN TOLERANCE 0.3
 VIN = VIN + 1
 END DO
END PROCEDURE

PROCEDURE TEST_GAIN2
 * Test op amp in gain of 2 mode as follows
 * 1) Connect 1k from output to inverting input
 * 2) Connect 1k from inverting input to ground
 * 3) Apply minimum voltage

CompactLink IC Library Manager Examples

Copyright  2007 B&K Precision Inc Page 36

 * 3) Check that the output follows
 * 4) Repeat with stepping voltage up to maximum

 * Set up feedback/ground resistors on inverting input
 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_1K, GND_1K
 * Start testing at -1V (referred to mid rail)
 VIN = VMID - 1
 * Repeat with increasing values of VIN in 0.5V steps
 DO WHILE VIN <= VMID + 1
 * Drive the input and measure the output
 DRIVE ABSOLUTE INPUT_NINV TO VIN
 VOUT = VOLTAGE(OUTPUT)
 * Display the results for debugging purposes
 DISPLAY "Vin=",VIN,"V"," Vout=",VOUT,"V",NEWLINE
 * Compare output with gain * diff input voltage
 COMPARE VOUT WITH VMID+2*(VIN-VMID) TOLERANCE 0.3
 VIN = VIN + 0.5
 END DO
END PROCEDURE

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 37

8. PLIP command and function reference

8.1. Introduction
Full details of all PLIP commands and functions are included in the software
so you can get help on syntax at any time while developing your program. To
access this on line syntax help, do the following: -

• Click in the Source Program window in the word you wish to look up
• Choose Help/Syntax from the menu, or right click and choose Syntax

Help from the popup menu, or press F1
• If the selected word appears in several topics, choose the most

applicable topic from the list displayed
• The PLIP Syntax Guide will now be displayed

The following words/phrases are used throughout the command/function
descriptions: -

expression - a valid expression containing numbers, variables, arithmetic
and/or logical operators and functions

condition - an expression that evaluates to either 0 (FALSE) or 1 (TRUE).
Usually the expression will include a relational operator (e.g. =, <= etc.) but
any expression which gives the result 0 or 1 will work.

pin name - a text string of up to 8 characters giving the name of an IC pin as
defined in the IC definition database. Note that you can use the default
strings PIN 1, PIN 2 etc. if for some reason you do not wish to use the defined
pin names. If the IC pin definition contains several pins with the same name,
only the first one will be used by the compiler in programs. The remaining
pins MUST be referenced by the text PIN 1, PIN 2 etc..

pin name list - a text string containing a list of up to 8 pin names defined as
above. Usually the pin name list will be contained in square brackets [].

pin group - a text string that is used as an identifier to refer to a group of pins
that are logically connected with each other. The pin group is identified by the
use of angular brackets <>. The text string can have a maximum of 30
alphanumeric characters and can contain underscores.

procedure name - a text string which is used as an identifier to refer to a
procedure defined in your program. The text string can have a maximum of
30 alphanumeric characters and can contain underscores.

... - this symbol is used in some of the examples to indicate that other, non-
specified, program lines are present on these lines.

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 38

variable name - a text string that is used as an identifier to refer to a variable
defined in your program. The text string can have a maximum of 30
alphanumeric characters and can contain underscores. It can also refer to the
pre-defined array using the string ARRAY[].

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 39

9. Troubleshooting and support
If you suspect your CompactLink software is not functioning correctly,
contact B&K Precision with full details of the apparent problem. We will
respond as soon as possible with advice.

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 40

10. Appendices

10.1. Library parameter reference
This section contains detailed information about the meaning of the various
information entries for the CompactLink device library. All the device
parameters are listed in alphabetical order with a brief explanation

Entry Explanation Limits
Class Functional classification of the device
Current test The currently selected functional test for

the device

Date Date of last change to device. Not used
by system

External Comps Ticked if the test for this device requires
external components (e.g. monostable
ICs)

Function Brief description of device function 100 characters max
Functional test Ticked if the functional test is enabled for

the device on this target product

High threshold Voltages above this value are defined as
valid HIGH logic levels

-10V to +10V

Include device in
XXX library

Ticked if the device is specified for testing
on this target product

Include in Search Ticked if this device is to be included in
the target search (IC identifier) function. If
the test takes a long time you may want to
exclude it to speed up the search

Input Load Check Ticked if the device inputs should be
checked for excessive loading. This is the
normal case but some good ICs have
excessive loading (e.g. Some ULN series
ICs)

Last Compiled Date of last compilation of the test.
Automatically updated by the system

Last Modified Date of last modification to test.
Automatically updated by the system

Low threshold Voltages below this value are defined as
valid LOW logic levels

-10V to +10V

Name Alphanumeric name for the device 20 characters max
Open collector Ticked if one of more device outputs is

open collector. Ignored for B&K570A.

Open emitter Ticked if one of more device outputs is
open emitter. Ignored for B&K570A.

Package Package type of the device
Parameters When 2 or more devices share the same

test, the tests can be configured by using
parameters to initialize variables in the test
(e.g. to use different voltages for each

Unlimited

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 41

device). This field contains the parameter
initializing code in PLIP format.

Pin out List of pin names for device. 8 characters per pin
max)

Power Supply Power supply voltage for the device. B&K575A: 3V to 5V
B&K570A 2.5V to
10V

Switch threshold Voltages below this value and above low
threshold are MID LOW (invalid). Above
this value and below high threshold are
MID HIGH (invalid)

-10V to +10V

Technology When sorting the list of devices in the
library, the default order is alphanumeric.
However, if Intelligent sort is enabled
(Tools/Options/Review) this text field can
be used to separate devices in your user
library from different device technology
groups (e.g. LS, HC, ACT etc). It can be
left blank if not required.

20 characters max

Test Version Version identification string for the device.
Not used by system

10 characters max

Tri state Ticked if one of more device outputs is tri
state. Ignored for B&K570A.

Use Number The device number must be numeric.
This number will be used to recognize the
user test when entered on the product
keypad.

8 characters max

Version Version identification string for the device.
Not used by system

10 characters max

10.2. CompactLink error/warning messages
Message Meaning Action
A folder name cannot
contain any of the following
characters: \ / : * ? "" < > |

You are specifying an
invalid character in a folder
name

Choose a different name

A maximum of three
breakpoints can be set

You cannot set more than
3 breakpoints in your
program

Remove one of the other
breakpoints and set the
new one

Are you sure you want to
delete ‘XXXX’?

You are about to
permanently delete the
given device

Click Yes to delete or No
to abandon the operation

Are you sure you want to
delete the test:: XXXX

You are about to
permanently remove the
specified test

Click Yes to delete, or No
to abandon

Build cancelled by user The USER library generate
operation was cancelled by
the user

Re generate the USER
library files

Build failed The USER library file
generation failed due to an
error

Identify and correct the
error, then re-generate the
USER library files

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 42

Cannot set breakpoint on
this line

The selected line is either
a comment or has no
executable code present
(e.g. SET pin group
command)

Choose another line for
your breakpoint

Error - syntax help for
‘XXXX’ not found

The word under the cursor
has no matching syntax
help topic

Choose another word

Error - syntax help for this
command not found

Missing syntax help for the
selected topic

Choose another topic.
Contact B&K with details of
the problem

Error adding new test There was an error saving
the new test details in the
database

Contact B&K with details

Error copying test There was an error saving
the copied test details in
the database

Contact B&K with details

Error loading device There was an error loading
the device details from the
database

Contact B&K with details

Error loading test There was an error loading
the test details from the
database

Contact B&K with details

Error saving device There was an error saving
the device details in the
database

Contact B&K with details

Error saving test There was an error saving
the test details in the
database

Contact B&K with details

Feature not implemented The selected function is
not present in the software

Contact B&K with details

Memory dump size must
be between 1 and 12k
(3000H) bytes

The size of the displayed
memory block must
between 1 byte and 12k
(12,288) bytes

Change the start and/or
stop addresses for the
memory dump

Must be numeric value
from X to Y

The voltage value being
entered is invalid

Re-enter according to the
limits given

No devices to build There are no devices in
your USER library

Add at least one USER
device before continuing

Please enter a test name You are trying to rename a
test with a blank test name

Enter a valid name for the
test

Program not built or has
errors, cannot set
breakpoint

You cannot set
breakpoints until you have
successfully compiled your
program

Correct and errors and
recompile the program

Search text was not found The text being sought in
the program was not found

Re-enter the text to search
for

Source has been changed,
do you wish to save the
changes?

The program source text
has been changed. If you
exit the debugger now you
will lose your changes

Click Cancel and save the
changed program before
continuing

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 43

Target location does not
exist. Do you want to
create it?

The chosen location for the
generated library files does
not exist

Click Yes to create a new
folder with the given name

The database file is read
only and must have write
permissions to be used in
CompactLink

The main IC library
database cannot be
opened

Check that the file
«Database_Name» is
present in the «Title» folder
and check that it is not
read only. Check that it is
not open within another
running version of «Title»

Click Yes to attempt to fix
the problem

There are devices that use
this test. You must select
alternative tests for these
devices before this test
can be removed

You cannot delete a test if
one or more devices are
using it

Specify alternative tests for
the devices before deleting

There was an error
opening the library
database

The main IC library
database cannot be
opened

Check that the file
B&KCompactLinkICLibrary
.dat is present and not
read only. Check that it is
not open within another
running version of
CompactLink

This will overwrite existing
test, continue?

You are loading a text file
which will overwrite the
existing program

Click Yes if you want to
overwrite the program,
otherwise click No and
save the existing program

Unable to find the library
database

The main IC library
database cannot be
opened

Check that the file
B&KCompactLinkICLibrary
.dat is present

Unable to make database
read-write

The main IC library
database cannot be set to
read/write mode

Check that the file
B&KCompactLinkICLibrary
.dat is present and not
read only. Check that it is
not open within another
running version of
CompactLink

Unable to proceed, press
OK to close CompactLink

The software cannot
continue

Click OK and restart the
software

Undefined discrete
package type

The specified discrete
package is undefined

Contact B&K with details

Undefined package type The specified package is
undefined

Contact B&K with details

XXXX already exists,
please use a different
name

You are trying to rename a
test using a name that
already exists

Choose a different name

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 44

10.3. PLIP error messages
Message Meaning Action
Cannot change parameters Parameters are read only

and cannot be changed in
a program

Remove the code which is
attempting to change the
parameter, or use a
variable instead of a
parameter

Cannot define procedure
inside a 'DO WHILE' loop

Procedures cannot be
defined inside a program
loop

Move the procedure
elsewhere in your program

Cannot define procedure
inside an 'IF ... ELSE ...
END IF' construction

Procedures cannot be
defined inside a program
IF … ELSE … END IF
construction

Move the procedure
elsewhere in your program

Cannot end test inside
procedure

The END TEST command
cannot be inside a
procedure

Specify the END TEST
command before the
procedure definition(s) in
your program

'ELSE' found without
corresponding 'IF'

The ELSE command did
not match up with a
corresponding IF

Add an IF statement at the
correct location, or remove
the ELSE statement

'END DO' without
corresponding 'DO WHILE'

The END DO command
did not match up with a
corresponding DO WHILE

Add a DO WHILE
statement at the correct
location, or remove the
END DO statement

'END IF' without
corresponding 'IF'

The END IF command did
not match up with a
corresponding IF

Add an IF statement at the
correct location, or remove
the END IF statement

'END PROCEDURE'
without corresponding
'PROCEDURE'

The END PROCEDURE
command did not match up
with a corresponding
PROCEDURE

Add a PROCEDURE
statement at the correct
location, or remove the
END PROCEDURE
statement

Expecting ')' after
expression or function

There was a missing
closing bracket in the built-
in function call or
expression

Use correct syntax

Expecting ')' after function There was a missing
closing bracket in the built-
in function call

Use correct syntax

Expecting ')' after round
digits expression

There was a missing
closing bracket after the
round digits expression in
the ROUND() built-in
function

Use correct syntax

Expecting ',' after 2nd pin
in 'SET FEEDBACK TO'
command

There is a missing comma
in the argument list for the
SET FEEDBACK TO
command

Use correct syntax

Expecting ',' after There was a missing Use correct syntax

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 45

expression comma after the given
expression

Expecting ',' in group pin
list

There is a missing comma
in the list of pins given for
the pin group

Correct the syntax of the
pin list

Expecting ',' in input pin list There is a missing comma
in the list of pins given in
the INPUTS command

Correct the syntax of the
pin list

Expecting ',' in pin list There is a missing comma
in the list of pins given

Correct the syntax of the
pin list

Expecting ',' to separate
items for display

There is a missing comma
in the list of arguments for
the DISPLAY command

Use correct syntax

Expecting ']' after array
index expression

There is a missing closing
square bracket in the
ARRAY statement

Use correct syntax

Expecting ‘”’ to terminate
string

The string in the DISPLAY
command has no
terminating double quote
character

Use correct syntax

Expecting ‘X’ after
expression or function

The specified character
(usually a closing bracket)
was not found after the
expression or function

Use correct syntax

Expecting ‘X’ in expression The specified character
(usually an opening
bracket) was not found in
the expression

Use correct syntax

Expecting '=' after array
definition

There is a missing = after
the ARRAY statement

Use correct syntax

Expecting '=' after pin
group name

Invalid syntax in SET pin
group command

Use correct syntax

Expecting '=' after pin list
or group

Invalid SYNTAX in CHECK
THAT command

Use correct syntax

Expecting '=' after variable
name

There is a missing = after
the variable definition

Use correct syntax

Expecting '>' to terminate
pin group

The specified pin group
does not have a closing
angle bracket (>)

User correct syntax

Expecting 'BY' after pin
name or number

Incorrect syntax of DRIVE
INCREMENTAL command

Use correct syntax

Expecting expression The compiler was
expecting an expression,
but none was found

Use correct syntax

Expecting 'LOW' or 'HIGH'
after pin name or number

Logic level missing Enter LOW or HIGH as
appropriate

Expecting pin name or pin
number

Compiler expecting a pin
name or number

Use a valid pin name or
number. Check the Device
Information window for
correct pin out

Expecting pin name or pin The pin number can only For B&K 575A tests, use

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 46

number, pin expression
only valid for B&K 570A
programs

be an expression for B&K
570A programs.

the pin name directly

Expecting string,
expression, NEWLINE or
CHR() after DISPLAY
command

There is no valid argument
for the DISPLAY command

Add a valid argument

Expecting 'THAT' before
pin name, number, list or
group

Invalid SYNTAX in CHECK
THAT command

Use correct syntax

Expecting 'TO' after pin
name or number

Incorrect syntax in DRIVE
command

Use correct syntax

Expecting 'TOLERANCE'
after target compare
expression

Invalid SYNTAX in
COMPARE command

Use correct syntax

Expecting 'WITH' after
actual compare expression

Invalid SYNTAX in
COMPARE command

Use correct syntax

Expecting 'WITH' after pin
list or group

Incorrect syntax of DRIVE
command

Use correct syntax

Expression has more than
4 bracket levels

The expression is too
complex

Split the expression onto 2
or more lines using
intermediate variables

Extra ')' There was an additional
closing bracket

Use correct syntax

Hexadecimal number
greater than ^FFFF

You are attempting to
specify a hexadecimal
number greater than
^FFFF

Correct the number or
specify in decimal

Input pin ‘X’ already
defined

The given pin number is
already used in the
INPUTS command pin list

Define each pin only once
in the INPUTS command

Invalid character in pin
number

Pin number can only
contain characters 0-9

Use only digits in the pin
number

Invalid pin list Syntax error in pin list Use correct syntax
Invalid procedure name The procedure name

contains invalid characters
Procedure names must
begin with a letter and can
contain only letters,
numbers and underscores

Invalid variable name The variable name
contains invalid characters

Variable names must
begin with a letter and can
contain only letters,
numbers and underscores

Missing 'END DO' The DO WHILE command
did not match up with a
corresponding END DO

Add an END DO statement
at the correct location, or
remove the DO WHILE
statement

Missing 'END IF' The IF command did not
match up with a
corresponding END IF

Add an END IF statement
at the correct location, or
remove the IF statement

Missing 'END
PROCEDURE'

The PROCEDURE
command did not match up

Add an END
PROCEDURE statement

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 47

with a corresponding END
PROCEDURE

at the correct location, or
remove the PROCEDURE
statement

More than ‘X’ pins in pin
list

There are too many pins in
the pin list

Normally a pin list can
have 8 pins but in some
circumstances (e.g.
LINKED() function) this
limit may be less. Use the
correct no of pins for the
command/function

More than 5 nested 'DO
WHILE' loops

The loop construction you
have used is too complex
and/or requires too much
memory

Change the structure of
your program to reduce the
number of nested loops to
5 or less

More than 5 nested 'IF'
constructions

The IF … ELSE … END IF
construction you have
used is too complex and/or
requires too much memory

Change the structure of
your program to reduce the
nesting to 5 levels or less

More than 8 pins in list The pin list in the given
context can have a
maximum of 8 pins

Reduce the number of pins
to 8 or less, or split the
command over two or
more lines

Name ‘XXXX’ already in
use

The procedure name
already exists for a
variable, procedure or
parameter

Use a different name

Number out of range,
exponent must be between
-99 and +99

The number you are
entering is too small or too
large, or is of invalid format

Numbers can range from
-32767e99 to +32767e99.
Check the syntax and use
a number within this range

Parameter ‘XXXX’ already
defined

The specified parameter
already exists

Use a different name

Parameter ‘XXXX’
undefined

The specified parameter
does not exist

Check the spelling of the
parameter name, or define
the parameter

Pin ‘X’ already defined You have used the
specified pin more than
once in the CHECK THAT
command

Use correct syntax

Pin ‘X’ defined more than
once in pin list

The given pin is included
twice or more in the pin list

Include each pin only once

Pin ‘X’ is undefined The specified pin does not
exist in the device pin-out

Check and correct the pin
out and/or the pin name in
your program

Pin defined more than
once in pin group ‘XXXX’

The given pin is defined
more than once in the pin
group definition

Include each pin only once

Pin group ‘XXXX’ already
defined

The given pin group name
already exists

Use a different name

Pin group ‘XXXX’ has more
than 8 pins

A pin group can have a
maximum of 8 pins

Change to 8 pins or less or
use 2 different pin group

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 48

names
Pin group ‘XXXX’
undefined

The specified pin group
does not exist

Check the spelling of the
pin group name, or define
the pin group

Pin group name ‘XXXX’
contains spaces

Spaces are not allowed in
pin group names

Pin group names must
begin with a letter and can
contain only letters,
numbers and underscores

Pin group name ‘XXXX’
has more than 30
characters

The pin group name is too
long

Use a name with up to 30
characters

Pin is undefined A pin does not exist in the
device pin-out

Check and correct the pin
out and/or the pin name
syntax in your program

Pin number ‘X’ greater
than IC size (Y)

The specified pin number if
greater than the number of
pins for the device

Check the device pin-out
and correct the pin number

Procedure ‘XXXX’ already
defined

The procedure name
already exists for another
procedure

Use a different name

Procedure ‘XXXX’
undefined

The given procedure name
does not exist

Check the spelling of the
procedure name, if
present, or enter a valid
procedure.

Procedure must be defined
after main body of program

Procedures cannot be
defined before the compiler
reaches and END TEST
command, otherwise the
procedure could be
executed at the wrong time

Add an END TEST
command before defining
procedures

Procedure name ‘XXXX’
has more than 30
characters

The procedure name is too
long

Use a name with up to 30
characters

Pulse polarity changed The polarity of the pulse
command has changed
within the same command

Ensure all polarity
(LOW/HIGH) statements
are the same within one
PULSE command

String has more than 48
characters

The string in the DISPLAY
command has more than
48 characters

Use a shorter string

Symbol table internal error An internal error occurred Contact B&K with details
Too many pins in input list
for a XX pin IC

There are more pins in the
pin list for the INPUTS
command than the size of
the IC

Check the IC size and
correct the pin list

Unrecognised syntax The compiler does not
recognize the syntax

Use correct syntax

Variable ‘XXXX’ undefined The specified variable
does not exist

Check the spelling of the
variable name, or define
the variable

Variable name ‘XXXX’ has The variable name is too Use a name with up to 30

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 49

more than 30 characters long characters

10.4. PLIP warning messages
Message Meaning Action
Command ‘XXXX’ is only
valid for ‘XXX’ products

The specified command is
not valid for the target
product for this test

Use the correct command
for the target, or change
the target

'ENDDO' is incorrect
syntax, assuming 'END
DO'

Incorrect syntax of END
DO command

Use correct syntax

'ENDIF' is incorrect syntax,
assuming 'END IF'

Incorrect syntax of END IF
command

Use correct syntax

'ENDTEST' is incorrect
syntax, assuming 'END
TEST'

Incorrect syntax of END
TEST command

Use correct syntax

Extra characters ignored There is some additional
unnecessary text in the
program

Use the correct syntax

No ‘END TEST’, one
assumed

There is no END TEST
command in your program

Include an END TEST
command at the correct
location

Test end already defined,
ignored

More than one END TEST
statement in program

Use only 1 END TEST
statement in your program
in the correct position

10.5. PLIP run time error messages
Message Meaning Action
Divide by zero Division by zero is impossible Modify the program so that the

divisor cannot become zero
during execution, or test for this
condition to avoid the division
operation

Bad number value The result of the expression is
not legal for the operation
being performed. For example,
for the ROUND() function the
number of decimals places
must be 0 or positive.

Modify your program to ensure
that this cannot occur

Stack overflow The program has run out of
internal stack memory. This
usually happens when a
procedure is called repeatedly
without returning

Ensure that all procedures
complete before they can be
called again

Bad random seed The seed for the RANDOM()
function must be a non-zero
positive number

Modify your program so that
the argument expression for
the RANDOM() function is
always positive

Bad pin number The pin number expression
evaluates to a number which is

Modify your programs to
ensure that the pin number

CompactLink IC Library Manager Reference

Copyright  2007 B&K Precision Inc Page 50

either zero, negative, or greater
than the IC pin count

expression gives the correct
result

Bad tolerance The TOLERANCE argument
for the B&K 570A COMPARE
command must be zero or
positive

Modify your programs so that
the TOLERANCE expression
evaluates to a positive number

Bad 10 bit DAC
value

The voltage is too high for the
10 bit DAC operation

Modify your program so that
the voltage expression
evaluates to the correct voltage

Bad 8 bit DAC
value

The voltage is too high for the
8 bit DAC operation

Modify your program so that
the voltage expression
evaluates to the correct voltage

Bad array index The index of the ARRAY[] must
be in the range 0 to 127

Modify your program so that
the array index expression
evaluates to a number in the
range 0 to 127

CompactLink IC Library Manager Index

Copyright  2007 B&K Precision Inc Page 51

11. Index

A

Adding an IC · 7
Analog test programming · 25
Appendices · 40

B

Breakpoints · 18

C

Checklist · 4
CompactLink error/warning messages

· 41
CompactLink operation · 6
Compiler errors · 19
Compiling a programme · 14
Copying an IC · 7
Copyright · 2

D

Debugging · 17
Debugging window · 13
Deleting an IC · 10
Developing a functional test · 10
Digital test programming · 22
Disclaimers · 2
Documenting programmes · 15

E

Editing an IC · 7

Entering a programme · 14
Example of a 7400 digital IC test · 27
Exporting a device · 11

F

Fixing programme errors · 15
Fixing programme warnings · 15

G

Generating library files · 11
Getting started · 4

H

Hardware connection · 16
Help · 15

I

IC library data structure · 6
Installing CompactLink · 5
Introduction · 3
Introduction to PLIP · 12

L

Library parameter reference · 40
Logical errors · 19

M

Maintenance · 1

CompactLink IC Library Manager Index

Copyright  2007 B&K Precision Inc Page 52

P

PLIP command and function
reference · 37

PLIP error messages · 44
PLIP run time error messages · 49
PLIP warning messages · 49
Precautions · 1
Printing a device · 11
Programming concepts · 22

R

Reviewing the IC library · 6
Run time errors · 19
Running CompactLink · 5

S

Specifying a functional test · 8

System requirements · 4

T

Test development window · 13
Troubleshooting and support · 39

V

Viewing an IC · 7

W

Writing test programmes · 12

