
UCRL-CONF-211357

A Contract Based System For
Large Data Visualization

H. R. Childs, E. S. Brugger, K. S. Bonnell, J. S.
Meredith, M. C. Miller, B. J. Whitlock, N. L. Max

April 14, 2005

A Contract Based System For Large Data Visualization
Minneapolis, MN, United States
October 23, 2005 through October 28, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



A Contract Based System For Large Data Visualization ∗

Hank Childs†

University of California, Davis/Lawrence Livermore National Laboratory

Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark Miller, and Brad Whitlock ‡

Lawrence Livermore National Laboratory

Nelson Max§

University of California, Davis

ABSTRACT

VisIt is a richly featured visualization tool that is used to visual-
ize some of the largest simulations ever run. The scale of these
simulations requires that optimizations are incorporated into every
operation VisIt performs. But the set of applicable optimizations
that VisIt can perform is dependent on the types of operations be-
ing done. Complicating the issue, VisIt has a plugin capability that
allows new, unforeseen components to be added, making it even
harder to determine which optimizations can be applied.

We introduce the concept of a contract to the standard data flow
network design. This contract enables each component of the data
flow network to modify the set of optimizations used. In addition,
the contract allows for new components to be accommodated grace-
fully within VisIt’s data flow network system.

Keywords: large data set visualization, data flow networks,
contract-based system

1 INTRODUCTION

VisIt is an end-user visualization and data analysis tool for diverse
data sets, designed to handle data sets from thousands to millions
to billions of elements in a single time step. The tool has a rich
feature set; there are many options to subset, transform, render, and
query data. VisIt has a distributed design. A server utilizes parallel
compute resources for data reduction, while a client runs on a local
desktop machine to maintain interactivity. The rendering primitives
resulting from the data reduction phase are typically transferred to
the client and rendered using graphics hardware. When the number
of primitives overwhelms the client, the geometry is kept on the
server and rendered using a sort-last rendering technique [9]. VisIt’s
rendering phase is outside the scope of this paper. Instead, we will
focus on the data reduction phase and the optimizations necessary
to handle large data sets.

VisIt employs a modified data flow network design [13] [1] [11].
Its base types are data objects and components (sometimes called
process objects). The components can be filters, sources, or sinks.
Filters have an input and an output, both of which are data objects.
Sources have only data object outputs and sinks have only data ob-
ject inputs. A pipeline is a collection of components. It has a source
(typically a file reader) followed by many filters followed by a sink
(typically a rendering engine). Pipeline execution is demand driven,
meaning that data flow starts with a pull operation. This begins
at the sink, which generates an update request that propagates up
the pipeline through the filters, ultimately going to a load balancer
(needed to divide the work on the server) and then to the source.

∗This is LLNL Report UCRL-CONF-211357.
†e-mail: childs3@llnl.gov
‡e-mail: {brugger1,bonnell2,meredith6,miller86,whitlock2}@llnl.gov
§e-mail: max@cs.ucdavis.edu

The source generates the requested data which becomes input to
the first filter. Then execute phases propagate down the pipeline.
Each component takes the data arriving at its input, performs some
operation and creates new data at its output until the sink is reached.
These operations are typical of data flow networks. VisIt’s data flow
network design, is unique, however, in that it also includes a con-
tract which travels up the pipeline along with update requests (see
Figure 1).

Figure 1: An example pipeline.
During the update phase (de-
noted by thin arrows), Contract
Version 0 (V0), comes from the
sink. V0 is then an input to
the contour filter, which modifies
the contract to make Contract
Version 1 (V1). This continues
up the pipeline, until an execu-
tive that contains a load balancer
(denoted by LB) is reached. This
executive decides the details of
the execution phase and passes
those details to the source, which
begins the execute phase (de-
noted by thick arrows).

VisIt is a large and complex system. It contains over 400 differ-
ent types of components and data objects. It has over one million
lines of source code and depends on many third party libraries. In
addition, VisIt has a plugin capability that allows users to extend
the tool with their own sources, sinks, filters, and even data objects.

The scale of the data sets processed by VisIt mandates that op-
timizations are incorporated into every pipeline execution. These
optimizations vary from minimizing the data read in off disk to the
treatment of that data to the way that data moves through a pipeline.
The set of applicable optimizations is dependent on the properties
of the pipeline components. This requires a dynamic system that
determines which optimizations can be applied. Further, because
of VisIt’s plugin architecture, this system must be able to handle
the addition of new, unforeseen components. VisIt’s strategy is to
have all of a pipeline’s components modify a contract and have op-
timizations adaptively employed based on the specifications of this
contract.

The heart of VisIt’s contract-based system is an interface that
allows pipeline components to communicate with other filters and
describe their impact on a pipeline. Focusing on the more abstract
notion of impact rather than the specifics of individual components
allows VisIt to be a highly extensible architecture, because new
components simply must be able to describe what impacts they will
have. This abstraction also allows for effective management of the
large number of existing components.

Because the contract is coupled with update requests, the infor-
mation in the contract travels from the bottom of the pipeline to the
top. When visiting each component in the pipeline, the contract



is able to inform that component of the downstream components’
requirements, as well as being able to guarantee that the compo-
nents upstream will receive the current component’s requirements.
Further, the contract-based system enables all components to par-
ticipate in the process of adaptively selecting and employing appro-
priate optimizations. Finally, combining the contract with update
requests has allowed for seamless integration into VisIt.

2 BACKGROUND

2.1 Description of Input Data

Most of the data sets processed by VisIt come from parallelized
simulation codes. In order to run in parallel, these codes decompose
their data into pieces, called domains. The domain decomposition
is chosen so that the total surface area of the boundaries between
domains is minimized, and there is typically one domain for each
processor. Also, when these codes write their data to disk, it is
typically written in its domain decomposed form. Reading in one
domain from these files is usually an atomic operation; the data is
laid out such that either it is not possible or it is not advantageous
to read in a portion of the domain.

Some data sets provide meta-data to VisIt, allowing VisIt to
speed up their processing. We define meta-data to be data about
the data set that is much smaller in size than the whole data set.
Examples of meta-data are spatial extents for each domain of the
simulation or variable extents for each domain for a specific vari-
able of the simulation.

VisIt leverages the domain decomposition of the simulation for
its own parallelization model. The number of processors that VisIt’s
parallel server is run on is typically much less than the number of
domains the simulation code produced. So VisIt must support do-
main overloading, where multiple domains are processed on each
processor of VisIt’s server. Note that it is not sufficient to simply
combine unrelated domains into one larger domain. This is not even
possible for some grid types, like rectilinear grids where two grids
are likely not neighboring and cannot be combined. And for situa-
tions where grids can be combined, like with unstructured grids, ad-
ditional overhead would be incurred to distinguish which domains
the elements in the combined grid originated from, which is impor-
tant for operations where users want to refer to their elements in
their original form (for example, picking elements).

The simulation data VisIt handles is some of the biggest ever
produced. For example, VisIt was recently used to interactively
visualize a data set comprised of 12.7 billion elements per time step
using only eighty processors. In addition, there are typically on the
order of one thousand time steps for each simulation. The grids are
unstructured, structured, or rectilinear. There are also scattered data
and structured Adaptive Mesh Refinement (AMR) grids.

2.2 Related Work

VisIt’s base data flow network system is similar to those im-
plemented in many other systems, for example VTK [11],
OpenDX [1], and AVS [13]. The distinguishing feature of VisIt’s
data flow networks is the contract that enables optimizations to be
applied adaptively. It should be noted that VisIt makes heavy use
of VTK [6] modules to perform certain operations. Many of VisIt’s
data flow network components satisfy their execute phase by of-
floading work to VTK modules. But VisIt’s abstract data flow net-
work components remain distinct from VTK and, moreover, have
no knowledge of VTK.

There are several other richly-featured parallel visualization
tools that perform data reduction in parallel followed by a combined
rendering stage, although these tools frequently do not support op-
erating on the data in its original form (including domain overload-

ing) in conjunction with collective communication. Examples of
these are EnSight [4], ParaView [7], PV3 [5] and FieldView [8].

The concept of reading in only chunks of a larger data set (See
Section 3.1) has been well discussed, for example by Chiang, et
al. [3] and Pascucci et al. [10]. But these approaches typically do
not support operating on the data in its native, domain decomposed
form nor operating at the granularity of its atomic read operations
(i.e. domains).

One of VisIt’s execution models, called streaming (See Section
3.2), maps well to out-of-core processing. Many out-of-core al-
gorithms are summarized by Silva et al. [12]. In addition, Ahrens
et al. [2] gives an overview of a parallel streaming architecture. It
should be noted that VisIt’s streaming is restricted to domain granu-
larity, while the system described by Ahrens allows for finer granu-
larity. In this paper, the discussion will be limited to deciding when
streaming is a viable technique and how the contract-based system
enables VisIt to automatically choose the best execution model for
a given pipeline.

Ghost elements are typically created by the simulation code and
stored with the rest of the data. The advantages of utilizing ghost
elements to avoid artifacts at domain boundaries (See Section 3.3)
were discussed in [2]. In this paper, we propose that the post-
processing tool (e.g. VisIt) be used to generate ghost data when
ghost data is not available in the input data. Further, we discuss
the factors that require when and what type of ghost data should
be generated, as well as a system that can incorporate these factors
(i.e. contracts).

3 OPTIMIZATIONS

In the following sections, some of the optimizations employed by
VisIt will be described. The potential application of these optimiza-
tions is dependent on the properties of a pipeline’s components.
VisIt’s contract-based system is necessary to facilitate these opti-
mizations being applied adaptively.

After the optimizations are described, a complete description of
VisIt’s contract-based system will be presented.

3.1 Reading the Optimal Subset of Data

I/O is the most expensive portion of a pipeline execution for almost
every operation VisIt performs. VisIt is able to reduce the amount of
time spent in I/O to a minimum by reading only the domains that are
relevant to any given pipeline. This performance gain propagates
through the pipeline, since the domains not read in do not have to
be processed downstream.

Figure 2: Shown is a 36 domain data set. The domains have thick
black lines and are colored red or green. Mesh lines for the elements
are also shown. To create the data set sliced by the transparent
grey plane, only the red domains need to be processed. The green
domains can be eliminated before ever being read in.



Consider the example of slicing a three-dimensional data set by
a plane (see Figure 2). Many of the domains will not intersect the
plane and reading them in will be wasted effort. In fact, the number
of domains (D) that are intersected by the slice is typically O(D2/3).

With the presence of meta-data, it is possible to eliminate do-
mains from processing before ever reading them. For example, if
the slice filter had access to the spatial extents for each domain, it
could calculate the list of domains whose bounding boxes intersects
the slice and only process that list (note that false positives can po-
tentially be generated by considering only the bounding box).

VisIt’s contract methodology enables this. During the update
phase, every filter is given an opportunity to modify the contract,
which contains the list of domains to be processed. A filter can
check to see if some piece of meta-data is available (for example,
spatial extents), and, if so, cross-reference the list of domains to
be processed with the meta-data. The modified contract will then
contain only those domains indicated by the filter.

It is important to note that every filter in the pipeline has a chance
to modify the contract. If a pipeline had a slice filter and a contour
filter (to generate isolines), the slice filter could use a spatial extents
meta-data object to get exactly the set of domains that intersected
the slice, while the contour filter could use a data extents meta-data
object to get exactly the set of domains that could possibly produce
contours. The resulting contract would contain the intersection of
their two domain lists.

Further, since the infrastructure for subsetting the data is encap-
sulated in the contract, plugin filters can leverage this optimization.
For example, a plugin spherical-slice filter can be added afterwards
and it can also make use of the spatial extents meta-data, or a plugin
filter that thresholds the data to produce only the elements that meet
a certain criteria (elements with density between 2 g/cc and 5 g/cc,
for example) can use the data extents meta-data. Also, the types of
meta-data incorporated are not limited to spatial and data extents.
They can take any form and can be arbitrarily added by new plugin
developers.

3.2 Execution Model

VisIt has two techniques to do domain overloading. One approach,
called streaming, will process domains one at a time. In this ap-
proach, there is one pipeline execution for each domain. Another
approach, called grouping, is to execute the pipeline only once and
to have each component process all of the domains before proceed-
ing to the next one.

VisIt can employ either streaming or grouping when doing its
load balancing. With static load balancing, domains are assigned
to the processors at the beginning of the pipeline execution and a
grouping strategy is applied. Because all of the data is available
at every stage of the pipeline, collective communication can take
place, enabling algorithms that cannot be efficiently implemented
in an out-of-core setting. With dynamic load balancing, domains
are assigned dynamically and a streaming strategy is applied. Not
all domains take the same amount of time to process; dynamic load
balancing efficiently (and dynamically) schedules these domains,
creating an evenly distributed load. In addition, this strategy will
process one domain in entirety before moving on to the next one,
increasing cache coherency. However, because the data streams
through the pipeline, it is not all available at one time and collective
communication cannot take place with dynamic load balancing.

So how does VisIt decide which load balancing method to use?
Dynamic load balancing is more efficient when the amount of work
per domain varies greatly, but the technique does not support all
algorithms. Static load balancing is usually less efficient, but does
support all algorithms. The best solution is to use dynamic load bal-
ancing when possible, but fall back on static load balancing when
an algorithm can not be implemented in a streaming setting. VisIt’s

contract system is again used to solve this problem. When each
pipeline component gets the opportunity to modify the contract, it
can specify whether or not it will use collective communication.
When the load balancer executes, it will consult the contract and
then use that information to adaptively choose between dynamic
and static load balancing.

3.3 Generation of Ghost Data

Although handling the data set as individual domains is a good
strategy, problems can arise along the exterior layer of elements
of a domain that would not occur if the data set was processed as a
single, monolithic domain.

One common operation is to remove a portion of a data set (for
example, clipping a wedge out of a sphere) and then look at only
the external faces of what remains. This can be done by finding the
external faces of each of the data set’s domains. But faces that are
external to a domain can be internal to the whole data set. These
extra faces can have multiple negative impacts. One impact is that
the number of triangles being drawn can go up by an order of mag-
nitude. Another impact occurs when the external faces are rendered
transparently. Then the extra faces are visible and result in an in-
correct image (See Figure 3).

Figure 3: On the left is an opaque picture of the data set. In the
middle, the opacity has been lowered. Faces external to a domain
(yet internal to the data set) are being rendered. On the right, the
faces have been removed. There are 902,134 triangles for the middle
surface and only 277,796 for the right surface.

Now consider the case where interpolation is needed to perform
a visualization operation. For example, consider the case where a
contour is to be calculated on a data set that has an element-centered
scalar quantity defined on it. Since contouring is typically done
with an algorithm that requires node-centered data, the first step of
this process is to interpolate the data to be a node-centered quan-
tity from an element-centered quantity. Along the domain bound-
aries, the interpolation will be incorrect, because the elements from
neighboring domains are not available. Ultimately, this will lead to
a cracked contour surface (See Figure 4).

Figure 4: On the left is a contour plot of an element-centered quan-
tity where ghost elements were not generated. Cracks in the contour
surface occur along domain boundaries. On the right, ghost elements
were generated and the correct picture was generated.

Both of the above problems require ghost data. For the first case,
it is sufficient to mark the exterior faces of a domain that are internal
to the whole data set as ghost faces. Then these ghost faces can be



discarded when an external face list is generated. The second case
requires a redundant layer of ghost elements around the exterior of
each domain. This allows interpolation to be done correctly.

Generation of ghost data is typically possible given some de-
scription of the input data set. This input can take several forms.
One form can be a description of how the domain boundaries of
structured meshes overlap (”faces I=0-5, J=0, K=8-12 of domain
5 are the same as faces I=12-17, J=17, K=10-14 of domain 12”).
Another form utilizes global node identifiers assigned by the simu-
lation code for each node in the problem. The visualization tool can
then use these identifiers to determine which nodes are duplicated
on multiple domains and thus identify shared boundaries between
domains, which is the key step for creating ghost data. A third form
uses the spatial coordinates of each node as a surrogate for global
node identifiers. For each of these forms, the salient issue is that
a module can be written where VisIt can give the module the in-
put data and request it to create ghost faces or ghost elements. The
details of such a module are not important to this paper.

There are costs associated with ghost data. Routines to generate
ghost elements are typically implemented with collective commu-
nication, which precludes dynamic load balancing. In addition,
ghost elements require a separate copy of the data set (see Figure
5), increasing memory costs. Ghost faces are less costly, but still
require arrays of problem size data to track which faces are ghost
and which are not. To this end, it is important to determine the
exact type of ghost data needed, if any.

Figure 5: On the left is a domain without ghost elements. On the
right is the same domain with ghost elements added (drawn in yel-
low). VisIt combines the ghost elements with the domain’s real el-
ements into one large domain for efficiency purposes for the filters
downstream as well as simplicity of coding.

VisIt’s contract system ensures that the minimum calculation is
performed. If a filter, such as the contour filter, needs to do interpo-
lation, it will mark the contract with this information on the update
phase. As a result, ghost elements will be created at the top of the
pipeline, allowing correct interpolation to occur. If the filter be-
lieves it will have to calculate external face lists, the case with the
external face list filter, then it will mark the contract with this infor-
mation on the update phase, and ghost faces will be created. Most
importantly, in cases that do not require ghost data, such as the case
when a data set is being sliced or volume rendered, no ghost data
will be created.

3.4 Subgrid Generation

Before discussing subgrid generation, first consider VisIt’s Clip and
Threshold filters. Clipping allows a user to remove portions of a
data set based on standard geometric primitives, such as planes or
spheres. Thresholding allows the user to generate a data set where
every element meets a certain criteria – the elements where density
is greater than 2 g/cc and the temperature is between six hundred
and eight hundred degrees Celsius. Both of these filters produce
unstructured grid outputs even if the input grid is structured.

Our experience has been that most simulations with the largest
number of elements are performed on rectilinear grids. Rectilin-
ear grids have an implicit representation that minimizes the mem-

ory footprint of a data set. Many filters in VisIt, such as Clip and
Threshold, take in rectilinear grid inputs and create unstructured
grid outputs. One issue with the unstructured grid outputs is that
many components have optimized routines for dealing with recti-
linear grids. A bigger issue is that of memory footprint. The rep-
resentation of an unstructured grid is explicit, and the additional
memory required to store them can be more than what is available
on the machine.

To further motivate this problem, consider the following exam-
ple of a ten billion element rectilinear grid with a scalar, floating-
point precision variable. The variable will occupy forty gigabytes
(40GB) of memory. The representation of the grid itself takes only
a few thousand bytes. But representing the same data set as an
unstructured grid is much more costly. Again, the scalar variable
will take forty gigabytes. Each element of the grid will now take
eight integers to store the indices of the element’s points in a point
list, and each point in the point list will now take three floating-
point precision numbers, leading the total memory footprint to be
approximately four hundred eighty gigabytes (480GB). Of course,
some operations dramatically reduce the total element count – a
threshold filter applied to a ten billion element rectilinear grid may
result in an unstructured grid consisting of just a few elements. In
this case, the storage cost for an unstructured grid representation of
the filter’s output is insignificant when compared to the cost of the
filter’s input. However, the opposite can also happen: a threshold
filter might remove only a few elements, creating an unstructured
grid that is too large to store in memory.

VisIt addresses this problem by identifying complete rectilinear
grids in the filter’s output. These grids are then separated from the
remainder of the output and remain as rectilinear grids. Accom-
panying this grid is one unstructured grid that contains all of the
elements that could not be placed in the output rectilinear grids. Of
course, proper ghost data is put in place to prevent artificial bound-
ary artifacts from appearing (which type of ghost data is created
is determined in the same way as described in Section 3.3). This
process is referred to as subgrid generation (See Figure 6).

Figure 6: On the left, there is rectilinear grid with portions removed.
In the middle, we see a covering with a large minimum grid size,
which results in four grids. On the right, we see a covering with a
smaller minimum grid size, which results in nine grids. The elements
not covered in the output grids are placed in an unstructured grid.

There are many different configurations where rectilinear grids
can be overlaid onto the ”surviving elements” in the unstructured
grid. The best configuration would maximize the number of ele-
ments covered by the rectilinear grids and minimize the total num-
ber of rectilinear grids. These are often opposing goals. Each
element could be covered by simply devoting its own rectilinear
grid to it. Since each grid has overhead, that would actually have a
higher memory footprint than storing them in the original unstruc-
tured grid, defeating the purpose.

Although our two goals are opposing, we are typically more in-
terested in one goal than another. For example, if we are trying to
volume render the data set, then the performance of the algorithm is
far superior on rectilinear grids than on unstructured grids. In this
case, we would want to make sure the maximum number of ele-
ments was covered by the rectilinear grids. But the performance of
many operations is indifferent to grid type, making memory foot-



print the only advantage for those operations.
VisIt uses its contract-based system to guide the placement of

the rectilinear grids. Each component can modify the contract to
say which goal it values - solely minimizing memory footprint ver-
sus keeping as many elements as possible in a native rectilinear
representation for further processing.

As previously mentioned, some complete rectilinear grids con-
tain so few elements that leaving them in an implicit form does not
provide a favorable memory tradeoff, because there is overhead as-
sociated with each rectilinear grid. As such, VisIt has a minimum
grid size of 2048 elements when overlaying complete rectilinear
grids on the output. However, if the contract reports that filters
down stream can take advantage of rectilinear representations, then
the minimum grid size drops to 256 elements.

4 DESCRIPTION OF CONTRACT

The contract is simply a data structure. An initial version is cre-
ated at the sink with all default values. As each component of the
pipeline is visited during the update phase, it can modify the con-
tract by changing members of this data structure. Table 1 contains
a description of the members of VisIt’s contract referenced in the
previous sections.

Name Type Default Value
ghostType enum {None None

Face, Element}
optimizedFor- bool false

Rectilinear
canDoDynamic bool true

domains vector<bool> all true

Table 1: The members of VisIt’s contract data structure described
in previous sections.

Each filter in VisIt inherits from a base class, called avtFilter.
This class has a virtual function that allows the filter to modify the
contract. Below is pseudocode for how to modify a contract.

void avtXYZFilter::ModifyContact(avtContract *c)
{

c->SetCanDoDynamic(false);
c->SetGhostType(Element);

}

The contract allows for each component to describe the impact
it will have on the total pipeline execution in a general way that
does not require knowledge of the component itself. By enumerat-
ing the impacts that components can have on a pipeline, VisIt de-
livers a system that can be easily extended with new components.
In addition, by using inheritance, the burden to implement a new
component and utilize the contract-based system is very low.

The ghostType data member is set to None by default, because
ghost data should not be generated when it is not required. The
contour filter modifies the contract to have Element when it is going
to contour element-based data, whereas the external face list filter
modifies the contract to have Face. It should be noted that all of
the components that modify this field do not blindly assign their
desired value to it. If the face list filter were to overwrite a value
of Element with its desired Face, then the filters downstream would
not get the ghost data it needs. In this case, there is an ordering
between the types. If Element was requested, then it should be
obtained, regardless of requests for Face data. Similarly, Face data
should be obtained even if other filters need None. And those that
request None should gracefully accept and pass through ghost data.

Furthermore, those that request Face data should be able to accept
and deal gracefully with Element data in its place. The external
face list filter, then, is able to accommodate Element data, even
when it simply needs Face data. Although it would be possible to
eliminate this complexity (by having separate entries in the contract
for ghost faces and ghost elements), the field is maintained as one
entry because it is more efficient to only calculate one set of ghost
data.

optimizedForRectilinear is set to false by default, since only cer-
tain filters are specialized for operating on rectilinear grids. If the
field is false, then the grids are placed to minimize memory foot-
print, rather than maximizing the number of elements covered by
the rectilinear grids. canDoDynamic is set to true because it as-
sumed that most filters do not require collective communication. If
they do require collective communication, it is their responsibility
to set that canDoDynamic to false when it has a chance to modify
the contract in the update phase. Finally all of the domains are as-
sumed to be used at the beginning of the update. If filters are able to
access meta-data and determine that some domains will not affect
the final picture, then they may modify the Boolean values for those
domains.

5 RESULTS

The contract-based system described in this paper has been fully
implemented in VisIt. This includes of all of VisIt’s components,
which modify the contract as appropriate on update requests.

The results presented in this section demonstrate the benefit of
the example optimizations discussed. We believe that this motivates
the importance of using these optimizations and, by extension, mo-
tivates the importance of a contract-based system that enables these
specialized optimizations to be adaptively employed.

We will present results in the context of a Rayleigh-Taylor
Instability simulation, which models fluid instability between
heavy fluid and light fluid. The simulation was performed on a
1152x1152x1152 rectilinear grid, for a total of more than one and a
half billion elements. The data was decomposed into 729 domains,
with each domain containing more than two million elements.

All timings were taken on Lawrence Livermore National Labo-
ratory’s Thunder machine, which was ranked seventh on the Top
500 list released in June 2005. The machine is comprised of 4096
1.4GHz Intel Itanium2 processors, each with access to two giga-
bytes of memory. The machine is divided into 1024 nodes, where
each node contains four processors. The processor’s memory can
only be shared with other processors in its node.

Pictures of the operations described below are located at the end
of this paper.

5.1 Reading the optimal subset of data

We will present two algorithms where the optimal subset of data
was read – slicing, which makes use of spatial meta-data, and con-
touring, which makes use of variable meta-data. It should be noted
that use of spatial meta-data typically yields a consistent perfor-
mance improvement, but performance improvement from variable
meta-data can be highly problem specific. To illustrate this, results
from early in the simulation and late in the simulation are shown
(See Table 2). The processing time includes the time to read in
a data set from disk, perform operations to it, and prepare it for
rendering. Rendering was not included because it can be highly
dependent on screen size.

5.2 Comparison of execution models

Since not all pipelines can successfully execute with dynamic load
balancing, we can only compare execution time for those pipelines



Processing time (sec)
Algorithm Processors Without With

Meta-data Meta-data
Slicing 32 25.3 3.2

Contouring 32 41.1 5.8
(early)

Contouring 32 185.0 97.2
(late)

Table 2: Measuring effectiveness of reading the optimal subset of
data

that can use dynamic load balancing. Again using the Rayleigh-
Taylor Instability simulation, we study the performance of slicing,
contouring, thresholding, and clipping. Note that other optimiza-
tions were used in this study – slicing and contouring were us-
ing spatial and variable meta-data respectively, while thresholding
and clipping used subgrid generation for its outputs (See Table 3).
Again, the processing time includes the time to read in a data set
from disk, perform operations to it, and prepare it for rendering.

Processing time (sec)
Algorithm Processors Static LB Dynamic LB

Slicing 32 3.2 4.0
Contouring 32 97.2 65.1

Thresholding 64 181.3 64.1
Clipping 64 59.0 30.7

Table 3: Measuring performance differences between static and dy-
namic load balancing

Slicing did not receive large performance improvements from
dynamic load balancing, because our use of spatial meta-data elim-
inated those domains not intersecting the slice, and the amount of
work performed per processor was relatively even. We believe that
the higher dynamic load balancing time is due to the overhead in
multiple pipeline executions. Contouring, thresholding, and clip-
ping, on the other hand, did receive substantial speedups, since the
time to execute each of these algorithms was highly dependent on
its input domains.

5.3 Generation of ghost data

This optimization is not a performance optimization; it is necessary
to create the correct picture. Hence, no performance comparisons
are presented here. Refer back to Figures 3 and 4 in Section 3.3 to
see the results.

5.4 Subgrid Generation

VisIt’s volume renderer processes data in three phases. The first
phase samples the data along rays. The input data can be hetero-
geneous, made up of both rectilinear and unstructured grids. The
rectilinear grids will be sampled quickly using specialized algo-
rithms, while the unstructured grids will be sampled slowly using
generalized algorithms. The sampling done on each processor uses
the data assigned to that processor by the load balancer. Once the
sampling has been completed, the second phase, a communication
phase, begins. During this phase, samples are re-distributed among
processors, to prepare for the third phase, a compositing phase. The
compositing is done on a per-pixel basis. Each processor is respon-
sible for compositing some portion of the screen, and the second,

communication phase, brings the samples necessary to perform this
operation.

The volume renderer uses the contract to indicate that it has recti-
linear optimizations. This will cause the subgrid generation module
to create more rectilinear grids, many of them smaller in size than
what is typically generated. This then allows the sampling phase
to use the specialized, efficient algorithms and finish much more
quickly.

In the results below, we list the time to create one volume ren-
dered image. Before volume rendering, we have clipped the data
set or thresholded the data set and used subgrid generation to cre-
ate the output. Table 4 measures the effectiveness of allowing for
control of the minimum grid size (2048 versus 256) with subgrid
generation. When subgrid generation was not used, only unstruc-
tured grids were created, and these algorithms exhausted available
memory, leading to failure with this number of processors.

It should be noted that the rendering time is dominated by sam-
pling the unstructured grids. This data set can be volume rendered
in 0.25 seconds when no operations (such as clipping or threshold-
ing) are applied to it.

Subgrid Generation
No Yes

Minimum Grid Size
Algorithm Processors 2048 256

Clip 64 Out Of 12.0s 9.0s
Memory

Thresholding 64 Out Of 11.4s 10.8s
Memory

Table 4: Measuring effectiveness of grid size control with subgrid
generation

The thresholded volume rendering produces only marginal gains,
since the fluids have become so mixed that even rectilinear grids as
small as 256 elements cannot be placed over much of the mixing
region.

6 CONCLUSION

The scale of the data being processed by VisIt requires that as many
optimizations as possible be included in each pipeline execution.
Yet the tool’s large number of components, including the addition
of new plugin components, makes it difficult to determine which
optimizations can be applied. VisIt’s contract-based system solves
this problem, allowing all possible optimizations to be applied to
each pipeline execution. The contract is a data structure that extends
the standard data flow network design. It provides a prescribed in-
terface that every pipeline component can modify. Furthermore, the
system is extensible, allowing for further optimizations to be added
and supported by the contract system.

This system has been fully implemented and deployed to users.
VisIt is used hundreds of times daily and has a user base of hundreds
of people.

7 ACKNOWLEDGEMENTS

VisIt has been developed by B-Division of Lawrence Livermore
National Laboratory and the Advanced Simulation and Computing
Program (ASC). This work was performed under the auspices of the
U.S Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-
48. Lawrence Livermore National Laboratory, P.O. Box 808, L-
159, Livermore, Ca, 94551



REFERENCES

[1] Greg Abram and Lloyd A. Treinish. An extended data-flow architec-
ture for data analysis and visualization. Research report RC 20001
(88338), IBM T. J. Watson Research Center, Yorktown Heights, NY,
USA, February 1995.

[2] James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles
Law, and Michael Papka. Large-scale data visualization using parallel
data streaming. IEEE Comput. Graph. Appl., 21(4):34–41, 2001.

[3] Yi-Jen Chiang and Claudio T. Silva. I/o optimal isosurface extraction
(extended abstract). In VIS ’97: Proceedings of the 8th conference on
Visualization ’97, pages 293–ff. IEEE Computer Society Press, 1997.

[4] Computational Engineering International, Inc. EnSight User Manual,
May 2003.

[5] R. Haimes and D. Edwards. Visualization in a parallel processing
environment, 1997.

[6] Kitware, Inc. The Visualization Toolkit User’s Guide, January 2003.
[7] C. Charles Law, Amy Henderson, and James Ahrens. An application

architecture for large data visualization: a case study. In PVG ’01:
Proceedings of the IEEE 2001 symposium on parallel and large-data
visualization and graphics, pages 125–128. IEEE Press, 2001.

[8] Steve M. Legensky. Interactive investigation of fluid mechanics data
sets. In VIS ’90: Proceedings of the 1st conference on Visualization
’90, pages 435–439. IEEE Computer Society Press, 1990.

[9] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A
sorting classification of parallel rendering. IEEE Comput. Graph.
Appl., 14(4):23–32, 1994.

[10] Valerio Pascucci and Randall J. Frank. Global static indexing for real-
time exploration of very large regular grids. In Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 2–2. ACM Press, 2001.

[11] William J. Schroeder, Kenneth M. Martin, and William E. Lorensen.
The design and implementation of an object-oriented toolkit for 3d
graphics and visualization. In VIS ’96: Proceedings of the 7th confer-
ence on Visualization ’96, pages 93–ff. IEEE Computer Society Press,
1996.

[12] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algo-
rithms for scientific visualization and computer graphics. In Visual-
ization 2002 Course Notes, 2002.

[13] Craig Upson, Thomas Faulhaber Jr., David Kamins, David H. Laid-
law, David Schlegel, Jeffrey Vroom, Robert Gurwitz, and Andries van
Dam. The application visualization system: A computational envi-
ronment for scientific visualization. Computer Graphics and Applica-
tions, 9(4):30–42, July 1989.

Figure 7: This is a slice of the simulation at late time. Light fluid is
colored blue, heavy fluid is colored red.

Figure 8: A contour at early simulation time. This contour separates
the light and dense fluids.

Figure 9: A contour at late simulation time. This contour separates
the light and dense fluids.



Figure 10: Pictured here is the simulation with one portion clipped
away. Light fluid is colored blue, heavy fluid is colored red.

Figure 11: Pictured here is the simulation with the light fluid removed
using the threshold operation.

Figure 12: Pictured here is a volume rendering of the simulation after
being clipped by a plane.

Figure 13: This is a volume rendering of the simulation after thresh-
olding by a distance variable to remove elements outside a cylinder.




