Spectral domain grid filters tool (GridFFT) (T40)

This chapter refers to the current Spectral Domain Grid Filters tool (GridFFT).¹

You can use the INTREPID GridFFT to enhance a grid dataset by:

- Enhancing features so that you can analyse them to better effect,
- Correcting the measured position of features,
- Removing irrelevant features, patterns or 'noise' in the grid.
- Transform the signal using the principles of physics.

The INTREPID GridFFT process has three basic steps:

- **1** Prepare and transform your grid dataset from the spatial domain to the spectral domain, using a Fast Fourier Transform (FFT).
- **2** Apply a range of geophysical, directional, noise removal and wavenumber dependent filters. It can apply filters singly or combine as many as you wish.
- **3** Transform your grid dataset back to the spatial domain, using a Reverse Fast Fourier Transform (ReverseFFT).

In this chapter:

- How to use this chapter
- Using the GridFFT tool (interactive only)
- The GridFFT window
- Specifying Input and Output (Filtered) Datasets
- Frequency, wavelength and distance unit multiples
- Fundamental and Nyquist Frequencies of the Input Grid
- Pre FFT Grid Conditioning
- Post-filter transformation options
- GridFFT filters overview
- Combinable filters
- Compound derivative filters
- Tensor compatible filters (FTG and FALCON)
- Apply the filters (interactive only)
- Exit from GridFFT (interactive only)
- Help (interactive only)
- Task specification (job) files in GridFFT

^{1.}We also support the previous tool, Old GridFFT. See Old spectral domain grid filters (OldGridFFT) (T38) for details.

How to use this chapter

Parent topic:	In this section:
Spectral domain grid	Chapter overview
filters tool (GridFFT)	Finding out more about spectral domain operations
(T40)	The GridFFT Wizard

Chapter overview

chapter

This chapter describes the operation of the GridFFT tool. You can use the GridFFT **Parent topic:** How to use this both interactively and in INTREPID batch processing mode, using INTREPID task specification (.job) files.

> Where needed in this chapter, there are separate Interactive and Task files sections. Some sections are marked Interactive only or Task files only.

> You can find out how to use the tool and also get background information as follows:

- For instructions on using the tool interactively see Using the GridFFT tool (interactive only).
- For details about task specification (.job) files, see Task specification (job) files in GridFFT
- For instructions on using the tool in batch mode, see Using task specification files.
- For relevant information in other chapters, see Finding out more about spectral domain operations and The GridFFT Wizard.

Finding out more about spectral domain operations

Parent topic: How to use this chapter

This chapter briefly describes the GridFFT tool's operations.

INTREPID has a number of tools that perform spectral domain operations and use spectral domain filters. We have created a common reference chapter, which has detailed explanation of INTREPID spectral domain operations. It includes an explanation of pre-processing and post-processing, as well as details of the available filters.

NOTE: this tool now supports Full Tensor Gradient (FTG) and FALCON Partial Tensor Gradient grid operations (Curvature Gradients).

This takes the form of some Low, Band & High pass operations and Tensor Integration.

A Full Tensor Complex grid is created to support the FFT operations in this case.

See INTREPID spectral domain operations reference (R14) for full details.

The GridFFT Wizard

The GridFFT Wizard uses your answers to a set of questions to automatically **Parent topic:** How to use this generate a GridFFT task file. After generating the file, the GridFFT Wizard executes chapter it in batch processing mode.

See Spectral domain grid filters (GridFFT) wizard (T39) for further information.

I Back I

Using the GridFFT tool (interactive only)

Parent topic: Spectral domain grid filters tool (GridFFT) (T40)

Interactive

>> To use GridFFT with the INTREPID graphic user interface

1 Choose GridFFT from the Filter menu of the Project Manager or use the command **gfilt.exe**. INTREPID displays the GridFFT window.

🗖 Intrepid Grid Filter - E:\output\pello_kth_suhde.ers 📃 🗖 🔀		
File Help		
🖶 📲 🦵 🕅 🖈	x1000	Nyquist = 0.01 cy / m Fundamental = 0.0000135 cy / m
Available FFT Fikers	Filtering Process Input Grid Dataset Pre FFT Grid Conditioning Filter 1. Low Pass Post FFT Grid Restoration Output Grid Dataset	0.005 cy / m 0.001 cy / m Reset default rolloff
Spatial View Spectral Image View Radial Power S	Spectrum	
Before	After	
		Apply

- 2 If you have a task specification file, load it using Load Options from the File menu. (See Specifying Input and Output (Filtered) Datasets below for detailed instructions.) If all of the specifications are correct in this file, go to step 8. If you wish to modify any settings, carry out the following steps as required.
- **3** Specify the input grid dataset to be filtered. Use one of the methods in Specifying Input and Output (Filtered) Datasets.
- 4 If the input data is in the spatial domain (not already FFT-transformed):
 - If you want to save a copy of the FFT-transformed grid for future use to save processing time, specify this and the dataset name for this grid. See Saving FFT of input grid dataset below for detailed instructions.
 - Use Pre FFT Grid Conditioning properties to specify the parameters for the transformation (See Pre FFT Grid Conditioning for detailed instructions.)
- **5** Select the filters to be used in the process from the Available filters list. For each filter, set its parameters. See GridFFT filters overview and INTREPID spectral domain operations reference (R14).

- **6** Use Post-FFT Grid Restoration properties to set parameters for the post-filter reverse FFT transformation (See Post-filter transformation options below for detailed instructions.)
- 7 Specify the output grid dataset for the results of the filtering. Use one of the methods in Specifying Input and Output (Filtered) Datasets.
- **8** Choose Apply. INTREPID performs the filter process, saves the output dataset and displays the results graphically in the Data display tabs.

🛃 Intrepid Grid Filter - C:\Intrepid\tutorials\mlevel_grid.PD.ers				
File Help				
Image: Weight of the second				
Available FFT Filters	Filtering Process	Input Grid Dataset		
Low Pass High Pass Horzontal Derivative Reduction Continuation Analytic Signal Total Horzontal Derivative Band Pass	Input Grid Dataset Pre FFT Orid Conditioning Filter 1-Verical Derivative Post FFT Orid Restoration Output Grid Dataset	Input Grid C'Intrepidtutorialstmievel_grid.PD ers Input Band No.: Input Grid P		
	1	. [t]		
Spatial View Spectral Map View Radial Powe Before	Spectrum After			
		Apply		

- **9** Examine the graphical display of the filter process and results in the Data display tabs. (See Data display tabs below for information).
- **10** If you wish to record the specifications for this process in a **.job** file, so that you can perform a similar task later, use Save Options from the File menu. (See Specifying Input and Output (Filtered) Datasets below for detailed instructions.)
- **11** If you wish to repeat the process, repeat steps 2–10, varying the parameters and data files as required.
- **12** To exit from GridFFT, choose Quit from the File menu.

After using GridFFT you can carry out a more detailed inspection of the filtered grid using an INTREPID visualisation tool. See Visualisation (T26)

You can choose options from the Help menu (See Help (interactive only) below).

You can execute GridFFT as a batch task using a task specification (.job) file that you have previously prepared. See Using task specification files below for details.

Back |

Library | Help | Top

chapter

The GridFFT window

Parent topic:	In	this section:
Spectral domain grid	•	Elements of the GridFFT window
filters tool (GridFFT)	•	Changing the display panel size
(T40)	•	Data display tabs

Elements of the GridFFT window

Here is a diagram of the GridFFT window. **Parent topic:** How to use this

Title bar	Process step prope	-	quist frequencies or wave	engths
Menu bar	Intrepid Grid Filter - C:\Intrepid\tu File Help Image: State of the state	utorials\mlevel_grid.PD.ers		■□× Nyquist = 0.16 km amental = 12.0 km
Toolbar	Available FFT Filters Low Pass High Pass	Filtering Process	Input Grid Dataset Input Grid C.\Intrepid\tutorials\mlevel_grid.PD.ers	
Available filters list	Horizontal Derivative Reduction Continuation	Filter 1. Vertical Derivative Post FFT Grid Restoration Output Grid Dataset	Grid File distance units	
Add & Remove buttons -	Analytic Signal Total Herizontal Derivative Band Pass	<	Save FFT of Input Grid ?	
Panel size adjustment				
Data display tabs ———	Spatial View Spectral Map View Ra Before	adial Power Spectrum		
				Apply
	Data display area	a /	Apply button	

The following table describes the screen elements.

Element	Purpose
Title bar	Shows the name of the tool and the input grid dataset.
Menu bar	Enables you to specify input datasets, output datesets, job files and to view on-line help.
Toolbar	Buttons for specifying input and output datasets as well as units and multiples for the filter parameters.
Fundamental and Nyquist frequencies or wavelengths	Fundamental and Nyquist frequencies for the input dataset. This also shows the units and multiples you have selected and whether you have selected frequency or wavelength mode

6

Back

Library | Help | Top

Element	Purpose
Available filters list	A list of filters available. You can select filters from this list.
Filtering process list	Sequence of steps in the filtering process. When you click an item in the list, INTREPID displays the step's properties in the Process step properties area.
Add & Remove buttons	Use these buttons to add and remove filters from the Filtering process list
Process step properties	Properties of the currently selected Filtering process step
Apply button	Click this button to run the filtering process
Data display tabs	Use these to select the data display you require. See Data display tabs.
Data display area	Graphic display of data from the filtering process
Panel size adjustment	Use this to change the relative size of the data display area and the

Changing the display panel size

Parent topic: How to use this chapter Use the panel size control to change the relative size of the data display area and the task control area.

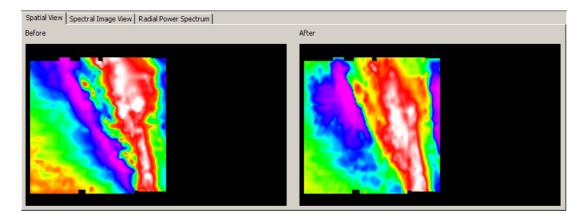
>> To adjust the size of the data display and task specification areas

• Drag the panel size control up or down OR

lists and properties area

• Click the up and down arrow icons **rest** to make the data display or task specification area occupy the whole wondow. Click the icons again to restore the display so that both areas are visible.

After you have applied a filter, you can view the results graphically using the data

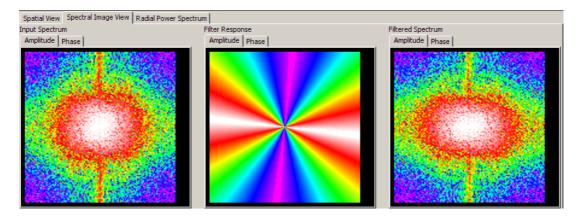

Data display tabs

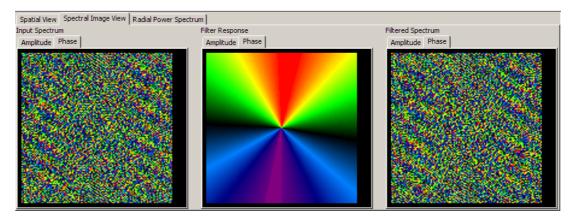
Parent topic: How to use this chapter

Spatial view tab

display tabs.

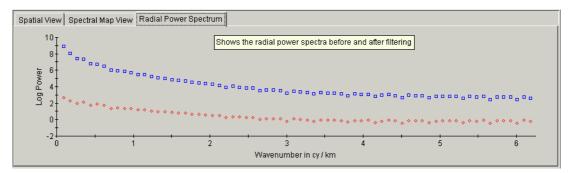
This tab shows the input and output grid in pseudocolour in the spatial domain. The display shows the input grid and the final result.


Spectral domain grid filters tool (GridFFT) (T40) 7


Back |

Spectral Map View tab

This tab shows graphically the spectral amplitude and phase maps of:


- The input dataset
- The filter applied
- The output dataset

Radial Power Spectrum tab

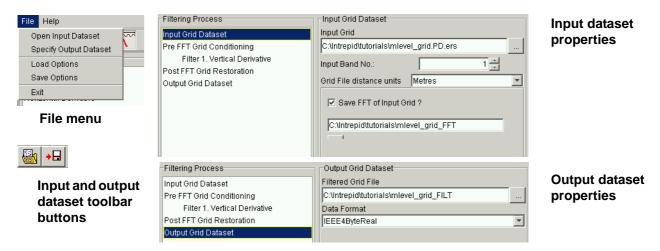
This tab show the radially averaged power spectrum graphs of the input dataset (blue) and the output dataset (red). See "Power spectrum graphs" in INTREPID spectral domain operations reference (R14) for more information about these graphs.

Back |

Specifying Input and Output (Filtered) Datasets

Parent topic: Spectral domain grid filters tool (GridFFT) (T40) In this section:

- Specifying input and output (filtered) datasets overview
- Input grid dataset
- Expanded and filled input grid dataset
- Expanded input grid after edge damping
- Saving FFT of input grid dataset
- Output grid dataset
- Load options
- Save options


Specifying input and output (filtered) datasets overview

<i>Parent topic:</i> Specifying Input and	The GridFFT process involves an input grid dataset, an output grid dataset and a number of intermediate datasets.
Output	When using GridFFT, specify the following:
(Filtered) Datasets	• Input grid dataset (and band number if not band 0)
	(Ortical) Determined and an end of the discuss determined

- (Optional) Detrended, expanded and filled input dataset
- (Optional) Rolled-off input dataset
- (Optional) FFT-tranformed input dataset
- Output dataset (and precision if not IEEE4ByteReal)

Filenames can have paths attached. Paths can be relative or absolute.

The following diagram show the ways of specifying input and output datasets in interactive mode.

If you choose a toolbar button, menu option or browse [...] button, INTREPID displays an Open or Save As dialog box. Use the directory and file selector to locate the file you require. (See "Specifying input and output files" in Introduction to INTREPID (R02) for information about specifying files).

You can also type the path and filename of the dataset in the text boxes in the Properties area.

Input grid dataset

The default band for filtering is 1. If you are filtering a single band grid or want to filter the first band of a multiband grid, you don't have to specify the grid band.

Interactive Input grid dataset—interactive

You can specify the input grid dataset interactively using:

- Open Input Grid Dataset from the File menu
- Input Grid Dataset toolbar button
- Input Grid text box in the Input Grid Dataset Properties area (type in the filename and path).
- Input Grid Dataset browse button [...] in the Input Grid Dataset Properties area

>> To specify the input grid dataset

1 Click Input Grid Dataset in the Filtering Process list. INTREPID displays the Input Grid Dataset properties.

Input Grid Dataset		
Input Grid		_
C:\Intrepid\tutorials\corr_	grid.PD.ers	
Input Band No.:	1 -	
Grid File distance units	Metres	T

- 2 Specify the input grid dataset filename using one of the methods described above.
- **3** Specify the input grid band number for filtering using the Input Band No spin box.
- **4** Specify the distance units for unit labels in the display (See Grid file distance units).

If you load a tensor grid, GridFFT configures itself to show the available filters.

Task files Input grid dataset—task files

In the task file, use the **InputGridName** keyword with the path and name of the input grid header or marker file. For example:

InputGridName = C:\dfa_jobs\input_grids\dargo3061.ers

There is no default value for InputGridName. You must include this statement.

Use the **Band** keyword to specify the band to be filtered. For example:

Band = 3

Grid file distance units

This drop-down list in the Input Dataset Properties specifies unit labels for the display. It does not affect any data or the value of any data display.

For projected grids, the default unit is metres. GridFFT labels distances as m and frequencies as cycles/m. You can also choose feet and 'distance units'

For geodetic grids, the only distance unit available is degrees °. GridFFT labels distances as ° and frequencies as cycles/°.

Expanded and filled input grid dataset

Parent topic: Specifying Input and Output (Filtered) Datasets During the pre-FFT processing, GrifFFT saves a copy of the input grid after it has detrended, expanded and filled the new cells. After use, GridFFT normally deletes this grid. It is sometimes useful to keep this grid. See "Saving pre-FFT and FFT grid processing products for later reference" in INTREPID spectral domain operations reference (R14) for details.

Interactive

Expanded and filled input grid dataset—interactive

>> To specify saving the expanded and filled input grid dataset:

- **1** Click Pre FFT Grid Conditioning in the Filtering Process list. INTREPID displays the Pre FFT Grid Conditioning properties.
- **2** Click Advanced. INTREPID displays the Advanced Pre FFT Grid Conditioning dialog box.

Advanced Pre FFT Grid Conditioning Optic	on 🗙
🗹 Save Expanded Grid File	
C <i>J.J.J.J.J.J</i> mag_SouthDykesEN_EXP	
Save Edge Rolledoff Grid file	
C:/.J.J.J.J./mag_SouthDykesEN_WND	
	ок

- **3** Tick Save Expanded Grid File
- **4** Use the Save Expanded Grid File text box or browse button[...] to specify the name of the expanded input grid dataset.

Task files

les Expanded and filled input grid dataset—task files

To keep the expanded and filled grid, use the **ExpandedGridName** keyword and assign a filename for the grid. Example:

ExpandedGridName = dargo_exp

If you leave out this statement, GridFFT deletes the grid during the post-filtering file clean-up.

Expanded input grid after edge damping

Parent topic:During the pre-FFT processing, GrifFFT saves a copy of the input gSpecifyingcompleted the edge roll-off process. After use, GridFFT normally ofInput andIt is sometimes useful to keep this grid. See "Saving pre-FFT and HOutputprocessing products for later reference" in INTREPID spectral domOutasetsreference (R14) for details.	deletes this grid. FFT grid
---	--------------------------------

Interactive Expanded input grid after edge damping—interactive

>> To specify saving the expanded and edge rolled off input grid dataset:

- **1** Click Pre FFT Grid Conditioning in the Filtering Process list. INTREPID displays the Pre FFT Grid Conditioning properties.
- **2** Click Advanced. INTREPID displays the Advanced Pre FFT Grid Conditioning dialog box.

🛃 Advanced Pre FFT Grid Conditioning Option 💌		
🗹 Save Expanded Grid File		
C <i>J.J.J.J.J.J</i> mag_SouthDykesEN_EXP		
Save Edge Rolledoff Grid file		
C:/.J.J.J.J.Jmag_SouthDykesEN_WND		
	ок	

- **3** Tick Save Edge Rolled Off Grid File.
- **4** Use the Save Edge Rolled Off Grid File text box or browse button[...] to specify the name of the expanded and edge rolled off input grid dataset.

Task files Expanded input grid after edge damping—task files

To keep a copy of the grid after the edge roll-off process, use the **WindowedGridName** keyword and assign a filename for the grid. Example:

WindowedGridName = dargo_wind

If you leave out this statement, GridFFT deletes the grid during the post-filtering file clean-up.

Saving FFT of input grid dataset

Parent topic: Specifying Input and Output (Filtered) Datasets GridFFT saves the spectral domain-transformed grid in a grid datsaset, to use as input for the filtering operation. After use, GridFFT normally deletes this grid. It is sometimes useful to keep this grid. See "Saving pre-FFT and FFT grid processing products for later reference" in INTREPID spectral domain operations reference (R14) for details.

Interactive

Saving FFT of input grid dataset—interactive

>> To enable saving the FFT of the input grid and specify a filename

1 Display the Input Grid Dataset Properties area (click Input Grid Dataset in the Filtering Process list).

Input Grid		
C:\Intrepid\tutorials\c	orr_grid.PD.ers	
Input Band No.:		1 💌
Grid File distance uni	its Metres	
Save FFT of Inpu	ut Grid ?	
C:\Intrepid\tutorials	lcorr_grid_FFT	

- **2** Tick the Save FFT of Input Grid? checkbox.
- **3** The default filename for the FFT grid is input grid name with **__FFT** appended. *If you want a different name*, specify it using:
 - FFT of Input Grid text box
 - FFT of Input Grid browse button [...]

Task files

Saving FFT of input grid dataset—task files

To keep the spectral domain-transformed grid, use the **FftGridName** keyword and assign a filename for the grid. Example:

FftGridName = dargo_fft

If you leave out this statement, GridFFT deletes the spectral domain input grid during the post-filtering file clean-up.

Output grid	dataset
Parent topic:	GridFFT can directly create filtered output datasets in the following formats:
Specifying Input and	• INTREPID grid datasets (*GRID)
Output (Filtered)	• ERMapper grid files (*.ers)
Datasets	• Geosoft grid files (*.grd)
	The file extension you use (GRID, .ers or .grd) determines the format of the output grid.
	The default output grid precision IEEE4ByteRea1 . If you want a different precision, you need to specify it.
Interactive	Output grid dataset— <i>interactive</i>
	Specify the output grid dataset for the filtered grid data using one of the following:
	Specify Output Grid Dataset from the File menu
	Output Grid Dataset toolbar button
	• Output Grid text box in the Output Grid Dataset Properties area.
	Output Grid Dataset browse button [] in the Output Grid Dataset Properties
	>> To specify output grid dataset and its properties
	1 Click Output Grid Dataset in the Filtering Process list. INTREPID displays the Output Grid Dataset Properties area.
	Output Grid Dataset Filtered Grid File C:\untrepid\tutorials\mlevel_grid_FILT Data Format IEEE4ByteReal
	2 Specify the output grid dataset filename using one of the methods described above. If you do not specify an output grid dataset, GridFFT generates an output dataset name based on the input grid name.
	3 Use the Data Format drop-down list to specify the precision you require. See "Data Types in INTREPID datasets" in INTREPID database, file and data structures (R05) for the available numeric data types.
Task files	Output grid dataset— <i>task files</i>
	Use the FilteredGridName keyword with the path and name of the output grid header or marker file. For example: FilteredGridName = C:\dfa_jobs\gfilt_test\dargo_HorDerivNGRID
	If you leave out this statement, GridFFT generates an output dataset name based on InputGridName and filters applied.

You can specify the data type of the output grid. Use the **OutputPrecision** keyword with the precision you require. See "Data Types in INTREPID datasets" in INTREPID database, file and data structures (R05) for a list of data types available and their notation. Example:

```
OutputPrecision = Signed32BitInteger
```

If you leave out this statement, GridFFT creates the output dataset with the data type **IEEE4ByteReal** (4-byte real)

INTREPID User Manual

Library | Help | Top

Load options

Specifying

Input and

Specifying

Input and

Output (Filtered) **Datasets**

Output (Filtered) **Datasets**

If you wish to use an existing task specification file to specify the GridFFT process, **Parent topic:** use Load Options from the File menu. INTREPID uses the file to set all of the parameters. (See Task specification (job) files in GridFFT for more information).

Save options

If you wish to save the current GridFFT file specifications and parameter settings as **Parent topic:** a task specification file, use Save Options from the File menu to specify the filename and save the file. (See Task specification (job) files in GridFFT

Frequency, wavelength and distance unit multiples

Parent topic:	In this section:
Spectral domain grid	• Frequency, wavelength and distance unit multiples overview
filters tool (GridFFT)	Frequency or wavelength units
(T40)	• Distance unit multiples x 1 and x 1000

Frequency, wavelength and distance unit multiples overview

<i>Parent topic:</i> Specifying Input and Output	GridFFT accepts parameters and displays data in a variety of modes and units depending on the dataset and the options you select. You can select from the the following sets of options:
(Filtered) Datasets	Distance units (seeGrid file distance units in Input grid dataset)
Datasets	• With a projected grid you can work in metres, feet or 'distance units'. GridFFT labels its display with the unit you select.

- GridFFT always uses degrees ^o with geodetic grids.
- Distance multiples (see Distance unit multiples x 1 and x 1000)
 - Using the [x 1] or [x 1000] multiple button with a projected grid you can specify parameters in your selected distance unit singly or in multiples of 1000.

For example, you can specify metres as the distance unit but use the x 1000 multiple. In this case, GridFFT accepts parameters and displays data in kilometres. (Note: It does not change the unit of the output data—this is still in metres)

- Frequency and wavelength modes (see Frequency or wavelength units)
 - Using the Frequency \mathcal{L} and Wavelength $\overline{\mathcal{K}}$ buttons in the spectral domain, you can specify parameters and view results using frequencies or wavelengths

When you switch between multiples and modes, GridFFT automatically converts all parameter settings. If you switch distance units, GridFFT changes labels, but this does not affect values or calculations.

These settings affect the following parameters and displays:

- Fundamental and Nyquist (see Fundamental and Nyquist Frequencies of the Input Grid)
- Pass filter parameters (see Entering parameters for pass filters (interactive only))
- Continuation filter parameters (see Continuation filter (GridFFT))

The following table summarises the results of distance unit, multiple and mode selections for projected and geodetic grids.

		Projection, selected multiple and distance unit						
		Projected [x 1]		Projected [x 1000]		Geodetic		
		m	ft	du	m	ft	du	0
	Spatial	m	ft	du	km	kft	kdu	0
nain mode	Spectral (frequency)	cy/m	cy/ft	cy/du	cy/km	cy/kft	cy/kdu	cy/º
Domain and moo	Spectral (wavelength) 📈	m	ft	du	km	kft	kdu	0

Frequency or wavelength units

Parent topic: Specifying Input and Output (Filtered) Datasets You can specify and view spectral domain values as frequencies or wavelength. Use the Frequency and Wavelength buttons on the Toolbar to select the system you require. See Frequency, wavelength and distance unit multiples for more information about units display and input.

>> To use frequency values in the spectral domain

Click the Frequency $f_{\rm loc}$ button.

>> To use wavelength values in the spectral domain

Click the Wavelength $\overleftarrow{\lambda}$ button.

Distance unit multiples x 1 and x 1000

Parent topic: Specifying Input and Output (Filtered) Datasets You can specify and view distance units as single units (m, ft, distance units dU) or x 1000 multiples (km, kft, kdU). Use the [x 1] and [x 1000] buttons on the Toolbar to select the multiple you require. See Frequency, wavelength and distance unit multiples for more information about units display and input.

x 1 x 1000

These buttons are disabled when your input grid is geodetic.

>> To use single distance units

Click [x 1] to use single distance units (m, ft, dU).

>> To use x 1000 distance units

Click [x 1000] to use x 1000 multiple distance units (km, kft, kdU).

Fundamental and Nyquist Frequencies of the Input Grid

Parent topic: Spectral domain grid filters tool (GridFFT) (T40) GridFFT automatically displays the fundamental and Nyquist frequencies of the input grid dataset at the right end of the Toolbar.

Nyquist = 0.16 km Fundamental = 12.0 km

It displays the values using the units and multiple you have selected. See for Frequency, wavelength and distance unit multiples for instructions.

For information about the fundamental and Nyquist frequencies, see "The spatial and spectral domains" in INTREPID spectral domain operations reference (R14).

Pre FFT Grid Conditioning

Parent topic: Spectral domain grid filters tool (GridFFT) (T40) You can specify how GridFFT prepares the input grid for FFT. This section briefly describes the steps in the process and the parameters. For detailed discussion, see "Preparation of data for spectral transform" in INTREPID spectral domain operations reference (R14).

In this section:

- Pre-FFT Grid Conditioning Overview (Interactive)
- Expanding the grid
- Detrending
- Fill method
- Edge damping rolloff options

Back |

Pre-FFT Grid Conditioning Overview (Interactive)

Parent topic: Frequency, wavelength and distance unit multiples

Interactive

>> To specify Pre FFT Grid Conditioning

1 Click Pre FFT Grid Conditioning in the Filtering Process list. INTREPID displays the The Pre FFT Grid Conditioning properties.

Filtering Process	Pre FFT Grid Conditioning
Input Grid Dataset	Degree of Trend Removal
Pre FFT Grid Conditioning Filter 1. Reduction Post FFT Grid Restoration Output Grid Dataset	Fill Method ARTHUR Grid Edge Rolloff Whole Window
	Expanded Edge COSINE_BELL
	Advanced

- 2 There are no options to select for expanding the grid. See Expanding the grid.
- **3** Specify the Degree of trend removal using the corresponding spin box. See Detrending.
- 4 Specify the Fill method using the corresponding drop-down list. See Fill method.
- 5 Select the edge damping method (Whole window or Expanded edge) using the Grid edge rolloff option buttons. For the method you choose, select the filter type from its drop-down list. See Edge damping rolloff options.
- 6 If you want to save the expanded and filled or expanded and rolled off version of the input grid, use the Advanced button. See Expanded and filled input grid dataset and Expanded input grid after edge damping.

Expanding the grid

Parent topic: Frequency, wavelength and distance unit multiples	GridFFT always expands the grid to dimensions suitable for FFT. There are no parameters attached to this process. See "Expanding the data area" in INTREPID spectral domain operations reference (R14) for an explanation of this stage.
Detrending	
Parent topic: Frequency, wavelength and distance unit multiples	GridFFT always detrends the grid. See "Detrending data values" in INTREPID spectral domain operations reference (R14) for information. The value you select or assign to the keyword corresponds to the degrees in this reference topic.
Interactive	Detrending degree— <i>interactive</i>
	Select the degree required from the Degree of Trend Removal drop-down list.
Task files	Detrending degree—task files
	You can specify the degree of the detrending using the DetrendDegree keyword. Example:
	DetrendDegree = 1

If you leave out this statement, GridFFT detrends the grid with degree 0.

Fill method

Frequency,

wavelength

Library | Help | Top

After expanding the grid, GridFFT assigns values to the new cells in the grid using an **Parent topic:** extrapolation process. You can choose one of two available methods See "Estimating values for data gap cells" in INTREPID spectral domain operations reference (R14) and distance for details. unit multiples

Interactive

Fill method—interactive

Select Arthur or MEM (Maximum Entropy) from the Fill Method drop-down list.

Task files Fill method—task files

To select a fill method, use the **FillType** keyword. The following methods are available:

Fill method	Value to assign
Linear interpolation (Arthur)	ARTHUR
Maximum entropy	MEM
Source fill	SOURCE_GRID

Example:

FillType = ARTHUR

If you leave out this statement, GridFFT uses the linear interpolation (Arthur) method.

Edge damping rolloff options

Parent topic: Frequency, wavelength and distance unit multiples For best results from the FFT, the edges of the grid must be set to zero, but without sudden changes from the data within the grid. The grid data needs to 'roll off' to zero at the edge. See "Damping of dataset edges before spectral transform" in INTREPID spectral domain operations reference (R14) for details of this process.

GridFFT has two main roll-off methods, each of which has a number of filters. It is normal to only use one of the methods.

Method	Description	Filters available
Expanded edge roll-off	Rolloff operation only on the edges of the grid	Cosine Linear
Whole window roll-off	Rolloff operation across the whole grid	Cosine bell Hanning Hamming Blackman Triangle

Expanded edge roll-off

See "Expanded edge rolloff" in INTREPID spectral domain operations reference (R14) for an explanation of this method and its options.

Back

Interactive Expanded edge roll-off—interactive

>> To specify Expanded Edge rolloff

- **1** Select the option button for the method you require
- 2 Select the filter you require from the Expanded Edge drop-down list.

Task files Expanded edge roll-off—task files

To specify an expanded edge roll-off filter, use the **RolloffType** keyword and assign a value to it. If you specify a rolloff method, you normally do not specify a window roll-off (**WindowType**) method as well (See Whole window roll-off below):

Roll-off method	RolloffType value	Required WindowType value
Linear	LINEAR	NONE
Cosine	COSINE	NONE
No roll-off	NONE	as required

Example:

RolloffType = LINEAR WindowType = NONE

If you leave out this statement and specify a window rolloff method, GridFFT uses the window rolloff method.

If you leave out this statement and don't specify a window rolloff method, GridFFT uses a cosine edge rolloff method.

Whole window roll-off

See "Damping of dataset edges before spectral transform" in INTREPID spectral domain operations reference (R14) for an explanation of this method and its options.

Interactive Whole window roll-off—interactive

>> To specify Whole Window rolloff

- **1** Select the option button for the method you require
- 2 Select the filter you require from the Whole Window drop-down list.

Task files

Whole window roll-off—task files

To specify a the whole window roll-off method, use the **WindowType** keyword and assign a value to it. GrifFFT provides five window roll-off methods, as shown in the following table. If you specify a whole window rolloff method, you normally do not specify an expanded edge roll-off (**RolloffType**) method as well (See Expanded edge roll-off above):

Window roll-off method	WindowType value	Required RolloffType value	
Linear	COSINE_BELL	NONE	
Cosine	HANNING	NONE	
Hamming	HAMMING	NONE	
Blackman	BLACKMAN	NONE	
Bartlett or Triangular	TRIANGLE	NONE	
No roll-off	NONE	as required	

Example:

RolloffType = NONE WindowType = BLACKMAN

If you leave out the **WindowType** statement, GridFFT uses an expanded edge rolloff method.

If you leave out this statement and don't specify an expanded edge rolloff method, GridFFT uses a cosine expanded edge rolloff method.

Post-filter transformation options

Parent topic: Spectral domain grid filters tool (GridFFT) (T40) After applying the filters, GridFFT restores the filtered grid to correspond with the input grid.

The post-filter transformation operations are as follows:

- Apply reverse FFT to return the grid to the spatial domain.
- Remove the expanded edge of the grid.
- Reapply the trend (optional).
- Restore *null* to cells that were originally *null* (optional).

See "Post-filter transformation" in INTREPID spectral domain operations reference (R14) for details.

In this section:

- Post-FFT transformation options overview (Interactive)
- Reverse FFT and removing the expanded edge
- Reproducing the trend
- Regenerating the data gaps

Back |

Post-FFT transformation options overview (Interactive)

Parent topic: Post-filter transformation options

Library | Help | Top

Interactive

>> To specify Post-FFT transformation options

1 Click Post-FFT Grid Restoration in the Filtering Process list. INTREPID displays the The Post-FFT Grid Restoration properties.

Filtering Process	Post FFT Grid Restoration
Input Grid Dataset	ReApply Trend on output
Pre FFT Grid Conditioning Filter 1. Vertical Derivative	Apply Mask on output
Post FFT Grid Restoration	
Output Grid Dataset	
-	

- **2** There are no options to select for the reverse FFT process. See Reverse FFT and removing the expanded edge.
- **3** If you want to reapply the trend that you removed before the FFT, tick the Reapply Trend on Output check box. See Reproducing the trend.
- 4 If you want to restore *null*s that existed in the grid before the Pre-FFT process, tick the Apply Mask on Output check box. This refers to *null*s within the grid, not in the expanded edge. See Regenerating the data gaps.

Reverse FFT and removing the expanded edge

Parent topic:
Post-filter
transformation
optionsGridFFT always applies reverse FFT and removes the expanded edge of the dataset
after reverse FFT. See "Reducing the dataset" in INTREPID spectral domain
operations reference (R14) for details.

Reproducing the trend

Parent topic:GridFFT can reapply the trend that it removed when preparing for FFT. SeePost-filter
transformation
options"Reproducing the trend" in INTREPID spectral domain operations reference (R14) for
an explanation.

Interactive Reproducing the trend—interactive

If you want to reapply the trend that you removed before the FFT, tick the Reapply Trend on Output check box.

Task files Reproducing the trend—task files

You can specify whether to reproduce the trend using the **ReApplyTrendAfterReverseFft** keyword. Assign the value **YES** or **NO** (or **1** for yes, **0** for no). Example:

ReApplyTrendAfterReverseFft = YES

If you leave out this statement, GridFFT does not reapply the trend.

Regenerating the data gaps

Parent topic: Post-filter transformation options	GridFFT can restore <i>null</i> values to cells that had this value before FFT. See "Regenerating the data gaps" in INTREPID spectral domain operations reference (R14) for an explanation. This only refers to cells within the grid. INTREPID always removed the expanded edges of the grid during the post-FFT process.
Interactive	Regenerating the data gaps— <i>interactive</i>
	If you want to restore <i>null</i> s that existed in the grid before the Pre-FFT process, tick the Apply Mask on Output check box.
Task files	Regenerating the data gaps— <i>task files</i>
	You can specify whether to restore the <i>null</i> values using the ApplyMaskAfterReverseFft keyword. Assign the value YES or NO (or 1 for yes, 0 for no). Example:

ApplyMaskAfterReverseFft = YES

If you leave out this statement, GridFFT does not restore the *null* values.

GridFFT filters overview

Parent topic: Spectral domain grid filters tool (GridFFT) (T40)

- GridFFT provides:
- Filters that you can combine with other filters in the same task:
 - Continuation (downward and upward)
 - High pass, low pass and band pass
 - Vertical derivative
 - Horizontal derivative
 - Reduction (to inclination and declination, including pole and equator)

In task files these filters are within the **CompositeFilter Begin – End** block.

- Compound derivative filters. You can only apply one of these in any GridFFT operation:
 - Total horizontal derivative
 - Analytic Signal

In task files these use single statements in the **Parameters Begin – End** block outside the **CompositeFilter Begin – End** block.

In interactive mode, if you load a tensor grid, GridFFT configures itself to show the available filters.

In this section:

- Specifying a filter (interactive)
- Specifying a combinable filter (task files)
- Specifying a compound derivative filter (task files)
- Filter parameter tables

Specifying a filter (interactive)

Parent topic: GridFFT filters overview

Library | Help | Top

Interactive

>> To specify a filter

1 Select a filter from the list of Available FFT Filters, and use the [>] button to add the selected filter to the Filtering Process. You may add further filters to create a composite filter.

Available FFT Filters		Filtering Process	
Low Pass		Input Grid Dataset	
High Pass		Pre FFT Grid Conditioning	
Band Pass		Filter 1. Reduction	
Horizontal Derivative		Post FFT Grid Restoration	
Vertical Derivative		Output Grid Dataset	
Continuation			
Analytic Signal	<		
Total Horizontal Derivative			

2 In the Filtering Process list, select the Filter. INTREPID displays the Properties for the filter.

Filtering Process	Continuation Properties		
Input Grid Dataset Pre FFT Grid Conditioning	Direction	Upward 💌	
Filter 1. Reduction	Distance	100	m
Filter 2. Continuation			
Post FFT Grid Restoration			
Output Grid Dataset			
	🔲 Use Damping ?		
	Damping Frequency	5	cy/m

3 Specify the parameters for the filter. There is no OK button. When finished, continue to the next operation.

Specifying a combinable filter (task files)

Parent topic: GridFFT filters overview

Task files

The **CompositeFilter Begin** – **End** block contains one or more filter definition **Begin** – **End** blocks.

You can only have one CompositeFilter Begin - End block in a task file.

If there are no filters in the **CompositeFilter Begin – End** block, you can leave it out.

The order of filters within the CompositeFilter block is generally unimportant. GridFFT combines the filters in a set order and then applies them to the spectral domain-transformed data. Downward continuation has an exception to this rule about order of filters. See Continuation filter (GridFFT) below.

Only use a particular filter definition **Begin** – **End** block once in a **CompositeFilter Begin** – **End** block. If you repeat a particular filter, GridFFT ignores the second occurrence. If you need to apply a filter twice, use two separate GridFFT tasks.

Back |

Library | Help | Top

Specifying a compound derivative filter (task files)

Parent topic: GridFFT filters overview

Task files

You can only use one of the compound derivative filters at a time. To specify one, include its statement set to **YES** in the **Parameters Begin – End** block outside the **CompositeFilter Begin – End** block.

Example

CalculateHorizontalDerivative = YES

Filter parameter tables

Parent topic: GridFFT filters overview The parameters tables in this manual show the parameters for each filter. They include parameters for both interactive mode and task files. These usually correspond and footnotes explain any differences. The following table explains the parts of the parameters table:

Heading	Purpose
Parameter	The INTREPID term for the parameter. This appears in the properties area in the interactive tool.
Mode	I = Interactive, T = Task files
Keyword	(Task files only) Keyword for specifying the parameter in a task file
Unit	Unit of the parameter value (for example, metres). This may depend on the grid data and on settings in GridFFT
Range	Acceptable range for parameter value
Default	(<i>Task files only</i>) INTREPID assigns this value if you leave out the statement
	In interactive mode, GridFFT shows the default value on the screen

Combinable filters

Parent topic: Spectral domain grid filters tool (GridFFT) (T40) This section describes the combinable filters available in GridFFT.

In this section:

- Vertical derivative filter (GridFFT)
- Horizontal derivative filter (GridFFT)
- Reduction filter (GridFFT)
- Continuation filter (GridFFT)
- Entering parameters for pass filters (interactive only)
- Low pass filter (GridFFT)
- High pass filter (GridFFT)
- Band pass filter (GridFFT)

Vertical derivative filter (GridFFT)

Parent topic: Combinable filters This is a generalised vertical derivative filter. It calculates a vertical derivative with the degree that you specify. For example, degree 1 is the first vertical derivative. You can specify a fractional degree for the derivative. See "Single derivative filters" in INTREPID spectral domain operations reference (R14) and, specifically, "Vertical derivative filter (including fractional vertical derivative) (reference)" in INTREPID spectral domain operations reference (R14) for details.

Vertical derivative filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
Order of differentiation	IT	Degree		13	1

Interactive

Vertical derivative filter—interactive

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

Vertical Derivative Properties					
Derivative degree	1 -				

 Task files
 Vertical derivative filter—task files

Here is an example **Begin** – **End** block:

VerticalDerivative2D Begin Degree = 1 VerticalDerivative2D End

Horizontal derivative filter (GridFFT)

Parent topic: Combinable filters This is a generalised horizontal derivative filter. It calculates a horizontal gradient in any specified azimuth direction. See "Single derivative filters" in INTREPID spectral domain operations reference (R14) and, specifically, "Generalised horizontal derivative filter (reference)" in INTREPID spectral domain operations reference (R14) for details.

Horizontal derivative filter-parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
Direction	IT	Azimuth	0	0360	0
Order of differentiation	IT	Degree		13	1

Interactive

Horizontal derivative filter—interactive

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

Horizontal Derivative Properties				
Direction:	0.0			
Derivative degree	1.0			

Task files

Horizontal derivative filter—task files

Here is an example **Begin** – **End** block:

```
HorizontalDerivative2D Begin
Azimuth = 0.0
Degree = 1.0
HorizontalDerivative2D End
```

Reduction filter (GridFFT)

Parent topic: Combinable filters The Reduction filter is a generalised reduction filter that can perform reduction to any orientation of the Earth's magnetic field. The most common reductions are to the Pole and to the Equator. You need to specify the target magnetic field orientation you can input this manually or allow GridFFT to calculate it for you. If you are reducing to a low latitude, you can specify the IGRF field inclination limit for the amplitude calculation. There is also a special low latitude switch which uses a directional filter to suppress declination parallel striping. See "Reduction filters (reference)" in INTREPID spectral domain operations reference (R14) for further details.

GridFFT uses the International Geomagnetic Reference Field (IGRF) model to calculate the Earth's magnetic field for the mean position of the input grid. See The geomagnetic reference field in INTREPID (R15) for information about the IGRF.

For Reduction to the Equator, we recommend that the Declination angle should be set to that of your survey to minimise any horizontal offsets in the East/West direction

Back

Library | Help | Top

that may be caused during the calculation of this correction.

Reduction filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
Inclination for input dat^3	IT	FromInclination	0	090	(1)
Declination for input data ³	IT	FromDeclination	0	0360	(1)
Date of input data ²	Т	Date (task file and IGRF block)		dd/mm/yyyy	today's date
Elevation of input data 2	Т	Elevation	m	0	0
Target inclination ⁴	IT	ToInclination	0	090	90
Target declination ⁴	IT	ToDeclination	0	0360	0
Taylor Expansion Order	IT	TaylorExpansionOrder		13	1
Inclination limit	IT	AmplitudeLimit	0	0+/-90	+/-20

¹ INTREPID calculates default values from middling latitude and longitude, using the IGRF model. *In task files* it calculates the default values if you leave the statements out.

 2 (Task files only) If you specify a date and elevation, INTREPID uses them with the IGRF model for better (1) values

³ (*Interactive only*) INTREPID calculates and displays default input values from middling latitude and longitude, using the IGRF model. Click IGRF to adjust these using the IGRF calculator.

⁴ *In interactive mode* you can also select the Reduction to Pole, Reduction to Equator, Variable RTP and Low Latitude options. These have preset inclination and declination values.

Interactive Reduction filter—interactive

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

Reduction Filter Pro	perties		
From	Inclination -7.71	Declination -20	0.07° IGRF
Specified	Inclination 90.00	Declination 0	• 00.
Equator (RTE)			
Pole (RTP)	Average RTP		
	Variable RTP	Taylor Expansion Order	Å
	Low Inclination	Inclination Limit -2	• 0.0
Add Dir Cos	Rolloff Degree 0.5	Azimuthal Half Width 2	0.0 •

By default INTREPID calculates the IGRF inclination and declination at the input data centroid at 0 altitude using today's date and the latest epoch. To change this, do

one of the following:

- · Enter your own values for Inclination and Declination
- Use the IGRF Calculator (See IGRF Calculator).
- · Choose type of Reduction Equator or Pole.
- For RTPole, the normal option is the average correction for the middle of your grid.
- For large grids (100km extents), the approximation of using the inclination and declination at the grid centroid becomes inaccurate. In this case choose the Variable RTP option and the RTP calculation will be made using a Taylor series approximation for the gradient of the inclination and declination. In this case the IGRF field is used and inclination and declination values cannot be entered manually.

The user can choose the order of the Taylor series expansion (1, 2, 3). The higher the order the more accurate the calculation

For geomagnetic surveys near the equator (at low magnetic field inclinations <abs[20°]), the RTP tends to become numerically unstable particularly in the presence of noise. The problem usually presents as declination parallel striping in the transformed grid. Experience has found that this instability can be partially compensated for by using a pseudo field inclination ie (20°) when computing the amplitude component of the RTP transform while still preserving the phase. The user can choose the inclination limit at which the transform stabilises.

The reduction filter also provides an option to apply a directional cosine roll-off to reduce the declination parallel striping in the output. This is considered a last resort solution and is untenable if there are real magnetic features with trends close to the IGRF declination direction.

The directional cosine filter is always applied in the declination direction but the user can choose the Rolloff Degree and the Azimuthal Half Width Directional cosine filter—parameters so as to restrict the filter to a narrow corridor in the declination direction.

Task filesReduction filter—task files

Here is an example **Begin** – **End** block:

```
Reduction2D Begin
FromInclination = -7.709789858562574
FromDeclination = -20.067014031276116
ToInclination = 90.0
ToDeclination = 0.0
AmplitudeLimit = -20.0
LowLatitude = No
Variable = No
Variable = No
TaylorExpansionOrder = 1
UseDirCos = No
HalfWidth = 20.0
RolloffDeg = 0.5
Reduction2D End
```

IGRF Calculator

>> To use the IGRF Calculator

1 In Reduction Properties, click IGRF. INTREPID displays the IGRF Calculator.

IGRF	×
International Geo	magnetic Reference Field Calculator
Parameters —	
Day	26 🗸
Month	November 👻
Year	2012 👻
Epoch	IGRF2010
Altitude	0.0 🜩 m
Latitude	-6.44 🔶 °
Longitude	-49.89 🌩 °
Resultant Field	
Magnetic Field	25181.22nT
Declination	-20.07°
Inclination	-7.71°
	OK Cancel

- 2 Set Day, Month, Year, IGRF Epoch, Altitude, Latitude and Longitude of the input data (see table below describing the parameters.
- 3 Note the calculated Field Strength, Declination and Inclination values
- **4** Click OK. INTREPID inserts the new calculated values into the To Declination and To Inclination text boxes.

Parameter	Unit	Description	Default
Day		Day (Date of survey)	Today's Date
Month		Month (Date of survey)	
Year		Year (Date of survey)	
IGRF Epoch		IGRF Epoch [ie IGRF2010] - IGRF Model update year (every 5 years); a list of current & older models http://www.ngdc.noaa.gov/IAGA/vmod/igrf_old_models.html	Most recent epoch for the chosen survey date
Altitude	km	Specify the altitude of the survey	0
Latitude Longitude	0	Specify the latitude and longitude of the input data for the IGRF calculation	Midpoint of grid
Field Strength	nT	Output field strength from the IGRF model	
Declination	o	Output declination and inclination from the IGRF	
Inclination		model	

IGRF Calculator—parameters

Continuation filter (GridFFT)

Parent topic: Combinable filters The continuation filter can calculate an upward or a downward continuation. The filter includes optional damping for controlling the stability of downward continuation. See "Continuation filters (reference)" in INTREPID spectral domain operations reference (R14) for further details.

Continuation filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
Direction	Ι			Upward or Downward	
Level of Continuation ¹	IT	Distance	m or °		
Use Damping? ²	IT	UseDamping		YES NO	NO
Median Frequency of Rolloff ²	IT	DampingFrequency	cyc/m or cyc/°		auto
Degree of Rolloff ²	Т	DampingDegree		015	10

¹ In task files: Positive—upward continuation, Negative—downward continuation Interactive: See Continuation filter—interactive

² *Downward continuation only* If you do not specify Median frequency of rolloff, INTREPID calculates a suitable value. This is based on the rate at which the continuation is increasing high frequencies. See also Suggested values for Degree of Rolloff

| Back | 🕨

Interactive

Library | Help | Top

Continuation filter—interactive

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

vnward 🔻 Distance 🛛 100.0 m

Specify damping cuttoff
 0.016 cycles/°

0.0009 deg

Reset Defaults

roperties

ing ? 5.0

Continuation Properties	-Continuation P
Direction Downward Distance 100.0 m	Direction Dov
✓ Use Damping ?	🔽 Use Damp
Sharpness 5.0	Sharpness
C Automatic Specify damping cuttoff	C Automa
Cutoff 0.016 cycles/m	Cut
Reset Defaults	

Geodetic grid has choice of input in metres or degrees

If your input grid is geodetic, GridFFT displays both a metres and degrees text box for you to specify the Level of continuation. Whatever you enter in one of the text boxes, INTREPID automatically converts and displays the equivalent in the other text box, using Robin's formula. This conversion between metres and degrees is an approximation. INTREPID bases it on the mid-latitude of the grid.

Task files Continuation filter—task files

Projected grid

Note: The sign of the Level of continuation parameter (**Distance** =) determines the direction. If it is positive, the continuation is upward; if negative, the continuation is downward.

Here is an example **Begin** – **End** block:

```
Continuation2D Begin

Distance = -100.0  # +ve upward, -ve downward

UseDamping = Yes

DampingDegree = 5.0

DampingFrequency = 0.016 # cycles/m (wavelength in metres 62.5)

Continuation2D End
```

Units for Level of Continuation

Specify the Level of continuation using the same distance units as the spatial version of the grid. For example, if the grid is in metres, then specify Level of continuation in metres. For geodetic grids, specify it in degrees.

(Interactive only) Remember that you can set GridFFT to display the correct units for the grid. See Frequency, wavelength and distance unit multiples for details. This may help avoid confusion.

📢 Back 🛛 🕨

Level of Continuation—examples

Enter the relative distance for continuation (the distance **by** which you want to change the effective height).

For example, you may have a survey flown at 90 m mean terrain clearance and recorded in metres. If you want to change its effective height to 60 m, specify a downward continuation of 30.

Specify the continuation in the same units as the grid. If you fail to do this, you will get incorrect results. The following examples describe grids with the same cell size, but measured in different units. If we specify a downward continuation of 30:

- For a projected grid in metres with 100 m cell size, the continuation distance will be 30 m.
- For a projected grid in feet with 300 ft cell size, the continuation distance would be 30 ft or 9.4 m.
- For a geodetic grid with 0.001° cell size, the continuation distance would be 30° or 3000 km!

Degree	Effect
2	Gradual
5-10	Moderately sharp
10	Recommended and default degree
30	Sharp
50 or more	Tending to a square cutoff

Suggested values for Degree of Rolloff

I Back I

Library | Help | Top

Entering parameters for pass filters (interactive only)

Parent topic: Combinable filters

Interactive

You have a number of choices for entering spectral domain parameters the pass filters. These include frequency, wavelength and distance unit multiples (see Frequency, wavelength and distance unit multiples) and alternatives for geodetic grids:

- You can enter parameters as frequency or wavelength. See Frequency or wavelength units.
- For projected grids, you can enter distances in single or x 1000 multiple units. See Distance unit multiples x 1 and x 1000.
- For geodetic grids you can enter distances in metres or degrees.

Each time you enter a value, INTREPID checks that it is between the Fundamental and Nyquist value for the dataset (See Fundamental and Nyquist Frequencies of the Input Grid).

The following diagram shows the possible views of the Low Pass properties

Low Pass Properties		Low Pa	ss Properties			Wavelength input
Cutoff:	312.5 m	🖲 deg	C m			
Rolloff:	1612.90322581 m		Cutoff:	0.001	deg	
			Rolloff:	.0003	8 deg	
						λ
	Reset default rolloff			Reset default n	olloff	
Low Pass Properties		Low Pa	ass Properties			Frequency input
		⊙ cy/	deg 🔿 cy/m			
Cutoff:	0.01 cy/m		Cutoff:	22.19464286	cy/deg	
Rolloff:	0.0001 cy/m		Rolloff:	67.4	cy/deg	£
						f
	Reset default rolloff			Design the factor		
				Reset default i	ΟΠΟΠ	
Projected grid	d	Geo	detic gri	d has choic	e of	

input in metres or degrees

If your input grid is geodetic, GridFFT displays option buttons for you to choose metres or degrees. Specify the unit you require, then use that unit to enter the parameter values. If you specify a value then select the other option button, INTREPID automatically converts and displays the value in the new unit, using Robin's formula. This conversion between metres and degrees is an approximation. INTREPID bases it on the mid-latitude of the grid.

Low pass filter (GridFFT)

Parent topic: Combinable filters The low pass filter removes data with frequency above a level that you specify. You can specify the sharpness of rolloff or allow GridFFT to automatically apply rolloff. See "Low pass filter (reference)" in INTREPID spectral domain operations reference (R14) for further details.

You can apply this filter to a full tensor grid.

Low pass filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
$\begin{array}{c} \text{Cutoff frequency OR} \\ \text{Cutoff wavelength}^1 \end{array}$	IT	Cutoff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Size of rolloff zone ^{1 2}	IT	Rolloff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Automatic rolloff zone size ³	Т	AutoRolloff		YES NO	YES
Auto calculate rolloff zone ⁴	Ι				

¹Use the distance unit of your dataset (m shown here as an example)

In interactive mode you can specify wavelength and the x 1000 multiples (such as km).

In task files you can only specify frequency in single units (such as m or ft)

 2 In task files if present, sets AutoRolloff to NO

³ (Task files only) If **YES**, sets Size of rolloff region to 0.5 x Cutoff frequency. If **NO**, **Rolloff** statement is required

 4 (Interactive only) Automatically calculates a suitable rolloff region based on the dataset

Interactive Low pass filter—interactive

Specify the filter as shown in Specifying a filter (interactive).

The properties area is illustrated here. Depending on your tool settings and the grid, the properties area has different labels and options. See Entering parameters for pass filters (interactive only) for details.

Low Pass Properties		
Cutoff:	0.01	cy/m
Rolloff:	0.0001	cy/m
		- 1
	Reset default rol	loff

Task files

Low pass filter—*task files*

Here is an example **Begin** – **End** block:

LowPass2D Begin Cutoff = 0.001 Rolloff = 0.0001 AutoRolloff = 0 or 1 LowPass2D End

High pass filter (GridFFT)

Parent topic: Combinable filters The high pass filter removes data with frequency below a level that you specify. You can specify the sharpness of rolloff or allow GridFFT to automatically apply rolloff. See "High pass filter (reference)" in INTREPID spectral domain operations reference (R14) for further details.

You can apply this filter to a full tensor grid.

High pass filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
$\begin{array}{c} \text{Cutoff frequency OR} \\ \text{Cutoff wavelength}^1 \end{array}$	IT	Cutoff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Size of rolloff zone ^{1 2}	IT	Rolloff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Automatic rolloff zone size ³	Т	AutoRolloff		YES NO	YES
Auto calculate rolloff zone ⁴	Ι				

¹ Use the distance unit of your dataset (m shown here as an example) In interactive mode you can specify wavelength and the x 1000 multiples (such as km).

In task files you can only specify frequency in single units (such as m or ft)

 2 In task files if present, sets AutoRolloff to NO

 3 (*Task files only*) If **YES**, sets Size of rolloff region to 0.5 x Cutoff frequency. If **NO**, **ROLLOFF** statement is required

 4 (Interactive only) Automatically calculates a suitable rolloff region based on the dataset

Interactive

Library | Help | Top

High pass filter—interactive

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

Depending on your tool settings and the grid, the propoerties area has different labels and options. See Entering parameters for pass filters (interactive only).

High Pass Properties		
Cutoff:	0.01	cy/m
Rolloff:	0.0001	cy/m
	Reset default rol	loff

Task filesHigh pass filter—task files

Here is an example **Begin** – **End** block:

```
HighPass2D Begin
Cutoff = 0.001
Rolloff = 1.0E-4
AutoRolloff = NO
HighPass2D End
```

Band pass filter (GridFFT)

Parent topic: Combinable filters The band pass filter has two cutoff frequencies and removes data with frequency outside the range defined by the two cutoffs. You can specify the sharpness of rolloff or allow GridFFT to automatically apply rolloff at the two cutoff frequencies. See "Band pass filter (reference)" in INTREPID spectral domain operations reference (R14) for further details.

You can apply this filter to a full tensor grid.

Band pass filter—parameters

See Filter parameter tables for an explanation of parameters tables.

Parameter	Mode	Keyword	Unit	Range	Default
Low cutoff frequency OR Low cutoff wavelength 1	IT	Low	cyc/m or cyc/° OR m or ° ⁽¹⁾		
High cutoff frequency OR High cutoff wavelength ¹	IT	High	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Size of rolloff zone (low) 12	IT	LowRolloff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Size of rolloff zone (high) 12	IT	HighRolloff	cyc/m or cyc/° OR m or ° ⁽¹⁾		
Automatic rolloff zone size 3	Т	AutoRolloff		YES NO	YES
Auto calculate rolloff zone ⁴	Ι				

¹ Use the distance unit of your dataset (m shown here as an example)

In interactive mode you can specify wavelength and the x 1000 multiples (such as km).

In task files you can only specify frequency in single units (such as m or ft)

 2 In task files if either rolloff statement is present, sets AutoRolloff to NO

³ (Task files only) If **YES**, sets Size of rolloff region to 0.5 x Cutoff frequency. If **NO**, **Rolloff** statement is required

 4 (Interactive only) Automatically calculates a suitable rolloff region based on the dataset

🛯 Back | 🕨

Interactive

Band pass filter—*interactive*

Specify the filter as shown in Specifying a filter (interactive). The properties area is illustrated here.

Depending on your tool settings and the grid, the propoerties area has different labels and options. See Entering parameters for pass filters (interactive only) for details.

Band Pass Properties		
Low Cutoff	0.01	cy/m
High Cutoff	0.05	cy/m
Low Rolloff	0.0001	cy/m
High Rolloff	0.0001	cy/m
	Reset default r	olloff

Task files

Band pass filter-task files

```
Here is an example Begin - End block:
BandPass2D Begin
Low = 0.0010
High = 0.00276
LowRolloff = 1.0E-4
HighRolloff = 1.0E-4
AutoRolloff = NO
BandPass2D End
```

Compound derivative filters

Parent topic:	This section describes the compound derivative filters.					
Spectral domain grid	In this section:					
filters tool (GridFFT)	• Total horizontal derivative filter (GridFFT)					
(T40)	Analytic signal filter (GridFFT)					

Total horizontal derivative filter (GridFFT)

Parent topic:	See "Total horizontal derivative filter (reference)" in INTREPID spectral domain
Compound derivative filters	operations reference (R14) for details about this filter. You cannot use it with the Analytic signal filter.

Interactive Total horizontal derivative filter—interactive

Specify the filter as shown in Specifying a filter (interactive). Note that there are no parameters for this filter

Task filesTotal horizontal derivative filter—task files

The statement for this filter goes outside the **CompositeFilter Begin – End** block.

To calculate the total horizontal derivative, use the **CalculateHorizontalDerivative** keyord and assign the value **YES** (or **1**). Example total horizontal derivative statement:

CalculateHorizontalDerivative = YES

If you leave out this statement, GridFFT will not calculate the total horizontal derivative.

Back |

Analytic signal filter (GridFFT)

Parent topic:
Compound
derivative
filtersSee "Analytic signal filter (reference)" in INTREPID spectral domain operations
reference (R14) for details for details about this filter. You cannot use it with the
Total horizontal derivative filter.

Interactive Analytic signal filter—interactive

Specify the filter as shown in Specifying a filter (interactive). Note that there are no parameters for this filter.

Task filesAnalytic signal filter—task files

To calculate the analytic signal, use the **CalculateAnalyticSignal** keyord and assign the value **YES** (or 1). Example analytic signal statement:

CalculateAnalyticSignal = YES

If you leave out this statement, GridFFT will not calculate the analytic signal.

Tensor compatible filters (FTG and FALCON)

Parent topic:	Continuation filter (GridFFT)
Spectral domain grid filters tool	Continued tensor grids can suffer from the Gibbs effect and phase busts may degrade results. A fix for this problem is currently being investigated.
(GridFFT) (T40)	• Low pass filter (GridFFT)
(110)	• High pass filter (GridFFT)
	Band pass filter (GridFFT)

- Butterworth filter (reference)
- Directional cosine filter (reference)
- Full Tensor Integration Query (FTG or other full tensor grids)
- FALCON Partial Tensor Transform Query

Butterworth filter for tensors

Apply the filters (interactive only)

 Parent topic:

 Spectral

 domain grid

 filters tool

 (GridFFT)

 (T40)

 Interactive

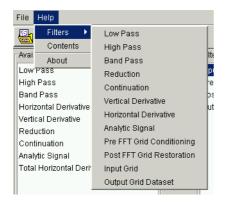
 After you have specified the filtering task, click the Apply button. During execution, a speed-bar shows task progress. When the process is complete, INTREPID creates thumbnail images in the data display tabs.

You can change the task settings and click Apply as many times as you like.

Exit from GridFFT (interactive only)

Parent topic: Spectral domain grid filters tool (GridFFT) (T40)

Interactive To exit from GridFFT, select Exit from the File menu.


Help (interactive only)

Parent topic: Spectral domain grid filters tool (GridFFT) (T40)

Interactive

You can use the Help menu to display help text on the topics shown in the menu illustration below.

Note: the Help system is available only from the CD installation, not the web install version. This is done to keep the web version small for downloading.

Task specification (job) files in GridFFT

Parent topic: Spectral domain grid filters tool (GridFFT) (T40)				
Task files	This section gives an overview, example and describes the syntax of GridFFT task specification files.			
	A GridFFT task specification (. job) file specifies:			
	Input and output grid filenames			
	Pre-filtering and post-filtering requirements			
	The required filters and filter parameters			
	In this section:			
	Finding out more about task files and batch processing mode			
	Main block structure of a GridFFT task file			
	Sample GridFFT task specification (job) file			
	• Syntax table			
	GridFFT Wizard statements for third party products			
	Using task specification files			

Back |

Library | Help | Top

Finding out more about task files and batch processing mode

Use the following references: **Parent topic:** Task specification (job) files in **GridFFT** Introduction to INTREPID auxiliary files, "INTREPID Auxiliary files" in INTREPID database, such as task files file and data structures (R05) Structure, syntax and use of INTREPID task INTREPID task specification (.job) files (R06) files Running INTREPID in batch processing "How to start INTREPID-Overview" in Introduction mode to INTREPID (R02)

Main block structure of a GridFFT task file

Parent topic: Task specification (job) files in GridFFT The following table shows the main block structure of a GridFFT task file. See Syntax table for more details.

Block definition	Contents
Process Begin	Task file outer block
	—Tool name and date stamp
Parameters Begin	—Parameters block
	Filenames
	——Pre- and post-FFT parameters
	Parameters for non-composite filters
CompositeFilter Begin	Composite filter definition
	———Filter parameter blocks
CompositeFilter End	End
Parameters End	—End
Process End	End

Back |

Library | Help | Top

Sample GridFFT task specification (job) file

Here is an example of a GridFFT task. **Parent topic:** Task specification Process Begin (job) files in Name = gfilt **GridFFT** Comments = "Intrepid Audit Stamp v3.5 Cut 110-11/ 5/2001" Parameters Begin InputGridName = C:\...\dargo3061.ers Band = 0FilteredGridName = C:\...\dargo_HorDerivN.ers OutputPrecision = IEEE4ByteReal FftGridName = dargo_fft ExpandedGridName = dargo_exp WindowedGridName = dargo_wind DetrendDegree = YES FillType = ARTHUR RolloffType = COSINE WindowType = NONE ReApplyTrendAfterReverseFft = NO ApplyMaskAfterReverseFft = YES ImagePresentation Begin DataTransformType = none HistogramStretchType = "none" Palette = none ImagePresentation End CompositeFilter Begin HorizontalDerivative2D Begin Azimuth = 0.0Degree = 1.0HorizontalDerivative2D End CompositeFilter End Parameters End Process End

- The CompositeFilter Begin End block ٠
- Compound derivative filters ٠

Pre-FFT process parameters

Post-FFT process parameters

The possible filter description blocks for the CompositeFilter Begin - End block

A complete task specification file outline with all possible statements and blocks,

Statement	Description	Unit	Default
GridFFT task specification (.jo	bb) file		
Process Begin	Task definition		
Name = gfilt	Specifies GridFFT as the application for this task.		
Parameters Begin	Start of parameters block		
	File specifications		
InputGridName = <path></path>	The input grid, with relative or absolute path if necessary. Can be a spatial or an FFT grid.		oblig
Band = <ord></ord>	Band of grid to be filtered		1
FilteredGridName = <path></path>	The filtered output grid, with relative or absolute path if necessary.		calc
OutputPrecision = <datatype></datatype>	Precision of data in filtered output grid.	IEEE4byt	eReal
FftGridName = <path></path>	FFT of the input grid for use in future tasks.		not saved
ExpandedGridName = <path></path>	Expanded and filled intermediate grid. INTREPID normally deletes it. Save it if required for debug check.		not saved
WindowedGridName = <path></path>	Expanded grid with rolloff applied to edges. INTREPID normally deletes it. Save it if required for debug check.		not saved
	Pre-FFT process		
DetrendDegree = <0 1 2>	De-trend the spatial grid using a polynomial of degree n (0 is a constant, 1 is a slope, 2 is curved).		1
FillType = <arthur mem="" =""></arthur>	Fill type for dummy data in new cells of expanded grid		ARTHUR
RolloffType = <cosine LINEAR NONE></cosine 	Roll-off type for the edge of the expanded grid. Use RolloffType OR WindowType, not both. Set RolloffType to NONE if you use WindowType		COSINE
WindowType = <cosine_bell <br="">HANNING HAMMING BLACKMAN TRIANGLE NONE></cosine_bell>	Roll-off method applied across the whole of the grid. Use RolloffType OR WindowType , not both. Set WindowType to NONE if you use RolloffType		NONE
	Post-FFT process		
ReApplyTrendAfterReverseFft = <yes no></yes no>	Restore the trend that was removed in pre-FFT grid conditioning .		NO
ApplyMaskAfterReverseFft = <yes no></yes no>	Use the input grid to restore all nulls in the filtered output grid.		NO
ImagePresentation Begin	GridFFT uses these statements in ArcView, but ignores them here.		
ImagePresentation End			
Composite Filter Desin	Filter definitions		
CompositeFilter Begin	Composite filter definition Do not use with: CalculateHorizonatlDerivative or		
	CalculateAnalyticSignal		
Begin End	Filter definition within composite filter (see 'Filter definitions' below)		
•••	More filter definitions if required		
CompositeFilter End	_		

File specifications

Library | Help | Top

INTREPID User Manual

•

٠

•

٠

including:

Library | Help | Top

Parent topic:

specification

(job) files in **GridFFT**

Task

Back |

	140)	45
4	Back	

Statement	Description	Unit	Default
CalculateHorizontalDerivative	Total horizontal derivative		NO
= <yes no=""></yes>	Do not use with		
	CompositeFilter or		
	CalculateAnalyticSignal		
CalculateAnalyticSignal	Analytic signal		NO
= <yes no=""></yes>	Do not use with:		
	CompositeFilter		
	CalculateHorizonatlDerivative		
Parameters End			
Process End			
Filter definitions within Compos	iteFilter block		
HorizontalDerivative2D Begin	Generalised horizontal derivative definition		
Azimuth = <number></number>	Direction for horizontal derivative.	0	0
	$0 = \operatorname{grid} Y \ 90 = \operatorname{grid} X$		
Degree = <number></number>	The degree of the derivative. $(1 = \text{first derivative})$		1
HorizontalDerivative2D End	T T /• TT • /• T <i>O</i> • • /•	1	
VerticalDerivative2D Begin	Vertical derivative definition		1
Degree = 1 VerticalDerivative2D End	The degree of the derivative. $(1 = \text{first derivative})$		1
Continuation2D Begin	Continuation filter definition		
Distance = <number></number>	Continuation distance	m or °	oblig
UseDamping = <yes no></yes no>	Apply roll-off to higher frequencies?	III OF	NO
	(downward continuation only)		no
<pre>DampingDegree = <015></pre>	Degree of damping roll-off		10
DampingFrequency = <number></number>	Median frequency for damping rolloff	cyc/m	calc
		or cyc/°	
Continuation2D End	T.,	-	
LowPass2D Begin Cutoff = <number></number>	Low pass filter definition Cutoff frequency for low pass filter	arralma	oblig
	Cuton frequency for low pass inter	cyc/m or cyc/°	gildo
Rolloff = <number></number>	Frequency for start of rolloff.	cyc/m	oblig*
	If this statement is present, it sets AutoRolloff = NO	or cyc/°	
AutoRolloff = <yes no=""></yes>	NO Rolloff = statement is required		YES
	YES Automatic rolloff at 0.5 x Cutoff value		
LowPass2D End			
HighPass2D Begin	High pass filter definition		
Cutoff = 0.001	Cutoff frequency for high pass filter	cyc/m or cyc/°	oblig
Rolloff = <number></number>	Frequency for start of rolloff.	cvc/m	oblig*
	If this statement is present, it sets AutoRolloff =	or cyc/°	0.211g
	NO		VEG
AutoRolloff = <yes no=""></yes>	NO Rolloff = statement is required YES Automatic rolloff at 0.5 x Cutoff value		YES
HighDaga 2D End	TED Automatic ronom at 0.5 x CULOII Value	1	
HighPass2D End BandPass2D Begin	Band pass filter definition		+
Low = <number></number>	Cutoff frequency for low pass filter	cvc/m	oblig
	cuton nequency for low pass inter	or cyc/°	oblig
High = <number></number>	Cutoff frequency for high pass filter	cyc/m or cyc/°	oblig
LowRolloff = <number></number>	Frequency for start of low end rolloff. If this statement is present, it sets AutoRolloff =	cyc/m or cyc/°	oblig*
	NO	1	
HighRolloff = <number></number>	Frequency for start of high end rolloff.	cyc/m	oblig*
	If this statement is present, it sets AutoRolloff =	or cyc/°	_
	NO	01 090/	

▲ | Back | ▶

ibrary Help Top			 Back
Statement	Description	Unit	Default
AutoRolloff = <yes no=""></yes>	NO LowRolloff = and HighRolloff = statements are required YES Automatic rolloff at 0.5 x Low and 0.5 x High values respectively		YES
BandPass2D End			
Reduction2D Begin	Reduction filter definition		
FromInclination = <number></number>	Inclination of source data. INTREPID calcluates default from middling latitude and longitude, using IGRF model	0	calc
FromDeclination = <number></number>	Declination of source data. INTREPID calcluates default from middling latitude and longitude, using IGRF model	0	calc
Date	Date of source data in format DD/MM/YYYY		Epoch 2000
Elevation	Elevation of source data	m	0
ToInclination = <number></number>	Inclination of output data	0	90 (pole)
ToDeclination= 0	Declination of output data	0	0
AmplitudeLimit= 20.0	Latitude for amplitude limiting	0	20
LowLatitude = <yes no></yes no>	Turn on/off directional cosine filter		
Reduction2D End			
* If Auto Rolloff = NO , then th	is statement is required and you must assign a value.	•	•

🛯 Back | 🕨

GridFFT Wizard statements for third party products

. . .

Parent topic:
Task
specification
(job) files in
GridFFTThe GridFFT Wizard is mainly for use with third party products. It automatically
inserts statements that allow the third party products to use GridFFT. The
statements may include the following:

ImagePresentation Begin

ImagePresentation End

If you are editing a task file that the GridFFT Wizard has produced, ignore these statements. See Spectral domain grid filters (GridFFT) wizard (T39) for further information about them.

Using task specification files

Parent topic: Task specification (job) files in GridFFT You can store sets of file specifications and parameter settings for GridFFT in task specification (.job) files.

>> To create a task specification file with the GridFFT tool

- **1** Specify all files and parameters.
- 2 If possible, execute the task (choose Apply) to ensure that it will work.
- 3 Choose Save Options from the File menu. Specify a task specification file (INTREPID will add the extension . job) INTREPID will create the file with the settings current at the time of the Save Options operation.

For full instructions on creating and editing task specification files see INTREPID task specification (.job) files (R06).

>> To use a task specification file in an interactive GridFFT session

Load the task specification (.job) file (File menu, Load Options), modify any settings as required, then choose Apply.

>> To use a task specification file for a batch mode GridFFT task

Type the command **gfilt.exe** with the switch **-batch** followed by the name (and path if necessary) of the task specification file.

For example, if you had a task specification file called **surv329.job** in the current directory you would use the command

gfilt.exe -batch surv329.job