Technical university of Liberec Faculty of mechatronics, informatics and interdisciplinary studies

Flow123D

Numerical simulation software for flow and solute transport problems in combination of fracture network and continuum

Documentation of file formats and brief user manual

O. Severýn, M. Hokr, J. Královcová, J. Březina, J. Kopal, M. Tauchman

Liberec, 20.11.2008

Flow123D

Flow123D is simulating software based on Borland C++ Builder 6.0. It enables to solve the task of underground water flow in heterogenous rock, solute transport and their interaction with rock. Considered interaction with rock are non-equilibrium mobile-immobile pore exchange and non-linear adsorption with independent parameters in each zone (mobile/immobile) and each area (fracture/continuum rock).

The flow is based on mixed hybrid FEM. The supported task of flow are steady state flow, unsteady state flow and variable density flow. Calculation is supported on compatible or incompatible multidimenzional meshes.

Solute transport is solved with the operator splitting. Convection is solved with the FVM. Mobile-immobile pore exchange is solved with using analytic solution and non-linear adsorption is solved numerically.

Principle for calculation are files of mesh - *msh*, material - *mtr*, neighbours - *ngh*, boundary conditions of flow - *bcd*, eventually are needed files of boundary conditions of transport - *tbc*, initial conditions of transport - *tic* or initial condition of flow - *fic*. Number and type of required input files are depended on the type of the problem.

File of mesh is generated by using software GMSH, which is distributed under the terms of the GNU GPL (www.geuz.org). File of neighbours is generated with using program NGH. Structure of all input files are defined in the files description in detail.

Figure 1: Scheme of calculation

Output of the program generates *pos* files supported by the *GMSH*. Eventualy, it is possible using text output files for whole area, specified area or elements.

Flow123D ini file format

Flow123D version: 03.10.08

Note: All string values have maximal length MAXBUFF - 1 (=1023).

Section: [Global]			
KEY	TYPE	DEFAULT	DESCRIPTION
Problem_type	int	NULL	Type of solved problem. Currently supported: 1 = steady saturated flow 3 = variable-density saturated flow
Description	\mathbf{string}	undefined	Short description of solved problem - any text.
Stop_time	double	1.0	Time interval of the whole problem.[time units]
Save_step	double	1.0	The output with transport is written every Save_step. [time units]
Density_step	double	1.0	Time interval of one density iteration in the varial-density calculation (type=3) [time units]
Section: [Input]			
KEY	TYPE	DEFAULT	DESCRIPTION
File_type	int	-1	Type of the input files. Now only the value 1 (GMSH-like files) is accepted.
Mesh	string	NULL	Name of file containing definition of the mesh for the problem.
Material	string	NULL	Name of file with hydraulical properties of the elements.
Boundary	string	NULL	Name of file with boundary condition data.
Neighbouring	string	NULL	Name of file describing topology of the mesh.
Sources	string	NULL	Name of file with definition of fluid sources. This is optional file, if this key is not defined, calculation goes on without sources.

KEY	TYPE	DEFAULT	DESCRIPTION
Transport_on	YES/NO	NO	If set "YES" program compute transport too.
Sorption	YES/NO	NO	If set "YES" program include sorption too.
Dual_porosity	YES/NO	NO	If set "YES" program include dual porosity too.
Reactions	YES/NO	NO	If set "YES" program include reactions too.
Concentration	\mathbf{string}	NULL	Name of file with initial concentration.
Transport_BCD	\mathbf{string}	NULL	Name of file with boundary condition for transport.
Transport_out	\mathbf{string}	NULL	Name of transport output file.
$\texttt{Transport}_\texttt{out}_\texttt{im}$	\mathbf{string}	NULL	Name of transport immobile output file.
Transport_out_sorp	\mathbf{string}	NULL	Name of transport sorbed output file.
Transport_out_im_sorp	string	NULL	Name of transport sorbed immobile output file.
N_substances	int	-1	Number of substances.
Subst_names	\mathbf{string}	undefined	Names of the substances separated by commas.
Substances_density_scales	list of doubles	1.0	Scales of substances for the density flow calculation.

Section: [Transport]

Section: [Constants]

	-	-	
KEY	TYPE	DEFAULT	DESCRIPTION
g	double	1.0	Gravity acceleration.
rho	double	1.0	Density of fluid.

Section: [Run]

KEY	TYPE	DEFAULT	DESCRIPTION
Log_file	string	mixhyb.log	Name of log file.
Screen_verbosity	int	8	Amount of messages printed on the screen. $(0 = no messages,, 7 = all messages)$
Log_verbosity	int	8	Amount of messages printed to the log file. $(0 = no messages,, 7 = all messages)$
Pause_after_run	YES/NO	NO	If set to "YES", the program waits for a key press before it finishes.
Section: [Solver]			
KEY	TYPE	DEFAULT	DESCRIPTION
Use_last_solution	YES/NO	NO	If set to "YES", uses last known solution for chosen solver.
Solver_name	string	matlab	Command for calling external solver. Supported solvers are: petsc, isol, and matlab.
Solver_params	string	NULL	Optional parameters for the external solver passed on the command line or PETSc options if the PETSC solver is chosen (see doc/petsc_help).
Keep_solver_files	YES/NO	NO	If set to "YES", files for solver are not deleted after the run of the solver.
Manual_solver_run	YES/NO	NO	If set to "YES", programm stops after writing input files for solver and lets user to run it.
Use_control_file	YES/NO	NO	If set to "YES", programm do not create control file for solver, it uses given file.
Control_file	string	NULL	Name of control file for situation, when $Use_control_file \ \bar{Y}ES$.
NSchurs	int	2	Number of Schur complements to use. Valid values are 0,1,2. The last one should be the fastest.

Section:	[Solver	parameters]	
----------	---------	-------------	--

KEY	TYPE	DEFAULT	DESCRIPTION
Solver_accuracy	double	1e-6	When to stop solver run - value of residum of matrix. Useful values from 1e-4 to 1e-10. Bigger number = faster run, less accuracy.

Note: For a ditional documentation see manual of the solver, (i) - isol manual

Section: [Output]

KEY	TYPE	DEFAULT	DESCRIPTION
Write_output_file	YES/NO	NO	If set to "YES", writes output file.
Output_file	string	NULL	Name of the output file (type 1).
Output_file_2	string	NULL	Name of the output file (type 2).
Output_digits	int	6	Number of digits used for floating point numbers in output file.
Output_file_type	int	1	Type of output file 1 - GMSH like format 2 - Flow data file 3 - both files (two separate names)
POS_set_view	YES/NO	NO	Write a header setting the view in GMSH to POS.
POS_view_params	double[8]	$\begin{array}{c} 0 0 0 \\ 1 1 1 \\ 0 0 \end{array}$	[x y z] angle of rotation "RotationX" [x y z] scaling "ScaleX" [x y] screen position shift "TranslationX"
Write_ftrans_out	YES/NO	NO	If set to "YES", writes output file for ftrans.
Cross_section	YES/NO	NO	If set to "YES", uses cross section output.
Cs_params	double[7]	zero	Params for cross section, [x0 y0 z0] initial point [xe ye ze] end point [delta] cylinder radius.
Specify_elm_type	YES/NO	NO	If set to "YES", next param. specify type of prefered elements. If set to "NO", each element is included.
Output_elm_type	\mathbf{int}	-1	Spefify type of element dimension 1 - 1D (line), 2 - 2D (triangle), 3 - 3D (tetrahedron).
BTC_elms	list of ints	undefined	List of the breakthrough curve elements, ints this concentrations are written to seperate file with extension *.btc.
FCs_params	double[4]	zero	Params of flow cross section [x y z 1] plane of cut (general equation), output values are written by coordinate of axis: x - [0], y - [1], z - [2]
Pos_format	string	ASCII	Format of the POS output file [ASCII / BIN] (opening a binary file in the GMSH is much faster).

Description: Options controling output file of the programm

Section: [Density]			
KEY	TYPE	DEFAULT	DESCRIPTION
Density_implicit	YES/NO	NO	NO = explicit iteration (simple flow update) YES = implicit iteration (more accurate flow update)
Density_max_iter	int	20	Maximum number of iterations for implicit density calcultation.
Eps_iter	double	1e-5	Stopping criterium for iterations (maximum norm of pressure difference).
Write_iterations	YES/NO	NO	Write conc values during iterations to POS file.

KEY	TYPE	DEFAULT	DESCRIPTION
Compute_reactions	Yes/No	"No"	NO = transport without chemical reactions YES = transport influenced by chemical reactions
Output_precission	int	1	Number of decimal places written to output file created by Semchem_module.
Number_of_further_species	int	0	Concentrations of these species are not computed, because they are ment to be unexphaustible.
Temperature	double	0.0	Temperature, one of state variables of the system.
Temperature_Gf	double	0.0	Temperature at which Free Gibbs Energy is specified.
Param_Afi	double	0.0	Parameter of the Debuy-Hückel equation for activity coefficients computation.
Param_b	double	0.0	Parameter of the Debuy-Hückel equation for activity coeficients computation.
Epsilon	double	0.0	Epsilon specifies relative norm of residuum estimate to stop numerical algorithms used by Semchem_module.
Time_steps	int	1	Number of transport step subdivisions for Semchem_module.
Slow_kinetics_substeps	int	0	Number of substeps performed by Runge-Kutta method used for slow kinetics simulation.
Error_norm_type	\mathbf{string}	"Absolute"	Through wich kind of norm the error is measured.
Scalling	boolean	"No"	Type of the problem preconditioning for better convergence of numerical method.

Section: [Semchem_module]

KEY	TYPE	DEFAULT	DESCRIPTION
El_charge	int	0	Electric charge of an Aqueous_specie particle under consideration.
dGf	double	0.0	Free Gibbs Energy valid for TemperatureGf.
dHf	double	0.0	Enthalpy
Molar_mass	double	0.0	Molar mass of Aqueous_species.

Section: [Aqueous_species]

Section: [Further_species]

KEY	TYPE	DEFAULT	DESCRIPTION
Specie_name	string	»» »»	Name belonging to Further_specie under consideration.
dGf	double	0.0	Free Gibbs Energy valid for TemperatureGf.
dHf	double	0.0	Enthalpy
Molar_mass	double	0.0	Molar mass of Further_species.
Activity	double	0.0	Activity of Further_species.

Section: $[Reaction_i]$

KEY	TYPE	DEFAULT	DESCRIPTION
Reaction_type	string	"unknown"	Type of considered reaction (Equilibrium, Kinetics, Slow_kinetics).
Stoichiometry	int	0	Stoichiometric coeficients of species taking part in i-th reaction.
Kinetic_constant	double	0.0	Kinetic constant for determination of reaction rate.
$Order_of_reaction$	int	0	Order of kinetic reaction for participating species.
$Equilibrium_constant$	double	0.0	Equilibrium constant defining i-th reaction.

Mesh file format version 2.0

The mesh file format comes from the GMSH system. Following text is copied from the GMSH documentation.

Version 2.0 of the .MSH file format is Gmsh's new native mesh file format. It is very similar to the old one (Version 1.0), but is more general: it contains information about itself and allows to associate an arbitrary number of integer tags with each element.

The .MSH file format, version 2.0, is divided in three sections, defining the file format (\$MeshFormat-\$EndMeshFormat), the nodes (\$Nodes-\$EndNodes) and the elements (\$Elements-\$EndElements) in the mesh:

\$MeshFormat
2.0 file-type data-size
\$EndMeshFormat
\$Nodes
number-of-nodes
node-number x-coord y-coord z-coord
...
\$EndNodes
\$Elements
number-of-elements

elm-number elm-type number-of-tags <tags> node-number-list

\$EndElements

where:

. . .

file-type is an integer equal to 0 in the ASCII file format.

- data-size is an integer equal to the size of the floating point numbers used in the file (usually, data-size = sizeof(double)).
- number-of-nodes is the number of nodes in the mesh.
- *node-number* is the number (index) of the *n*-th node in the mesh. Note that the *node-numbers* do not have to be given in a consecutive (or even an ordered) way.
- x-coord y-coord z-coord are the floating point values giving the X, Y and Z coordinates of the n-th node.
- number-of-elements is the number of elements in the mesh.
- *elm-number* is the number (index) of the *n*-th element in the mesh. Note that the *elm-numbers* do not have to be given in a consecutive (or even an ordered) way.

elm-type defines the geometrical type of the *n*-th element:

- 1 Line (2 nodes)
- 2 Triangle (3 nodes)
- 3 Quadrangle (4 nodes)
- 4 Tetrahedron (4 nodes)
- 5 Hexahedron (8 nodes)
- 6 Prism (6 nodes)
- 7 Pyramid (5 nodes)
- 8 Second order line (3 nodes)
- 9 Second order triangle (6 nodes)
- 11 Second order tetrahedron (10 nodes)
- 15 Point (1 node)
- number-of-tags gives the number of tags for the *n*-th element. By default, Gmsh generates meshes with two tags and reads files with an arbitrary number of tags: see below.
- tag is an integer tag associated with the *n*-th element. By default, the first tag is the number of the physical entity to which the element belongs; the second is the number of the elementary geometrical entity to which the element belongs; the third is the number of a mesh partition to which the element belongs.
- node-number-list is the list of the node numbers of the *n*-th element (separated by white space, without commas). The ordering of the nodes is given in Gmsh node ordering; for second order elements, the first order nodes are given first, followed by the nodes associated with the edges, followed by the nodes associated with the faces (if any). The ordering of these additional nodes follows the ordering of the edges/faces given in Gmsh node ordering.

========= END OF INSERTED TEXT ==============

More information about GMSH can be found at its homepage: http://www.geuz.org/gmsh/

Comments concerning 1-2-3-FLOW:

- Every inconsistency of the file stops the calculation. These are:
 - Existence of nodes with the same *node-number*.
 - Existence of elements with the same *elm-number*.
 - Reference to non-existing node.
 - Reference to non-existing material (see below).
 - Difference between *number-of-nodes* and actual number of lines in nodes' section.
 - Difference between *number-of-elements* and actual number of lines in elements' section.
- By default 1-2-3-FLOW uses meshes with *number-of-tags* = 2.

tag1 is number of region in which the element lies.

tag2 is number of material (reference to .MTR file) in the element.

- Currently, line (type = 1), triangle (type = 2) and tetrahedron (type = 4) are the only supported types of elements. Existence of an element of different type stops the calculation.
- \bullet Wherever possible, we use the file extension .MSH. It is not required, but highly recommended.

Material properties file format, version 1.0

The file is divided in two sections, header and data. The extension .MTR is highly recomended for files of this type.

\$MaterialFormat 1.0 file-type data-size \$EndMaterialFormat \$Materials number-of-materials material-number material-type <material-type-specific-data> [text] . . . \$EndMaterials \$Storativity material-number <storativity-coefficient> [text] . . . \$EndStorativity \$Geometry material-number geometry-type < geometry-type-specific-coefficient> [text] . . . \$EndGeometry \$Sorption material-number substance-id sorption-type <sorption-type-specific-data> [text] . . . \$EndSorption \$SorptionFraction material-number <sorption-fraction-coefficient> [text] . . . \$EndSorptionFraction \$DualPorosity material-number < mobile-porosity-coefficient> < immobile-porosity-coefficient> < nonequilibrium-coefficient-substance(0)> ... < nonequilibrium-coefficient-substance(n-1)> [text] . . . \$EndDualPorosity \$Reactions reaction-type <reaction-type-specific-coefficient> [text] . . . \$EndReactions where: *file-type* int — is equal 0 for the ASCII file format. data-size int — the size of the floating point numbers used in the file. Usually data-size = sizeof(double).

number-of-materials int — Number of materials defined in the file.

material-number int — is the number (index) of the n-th material. These numbers do not have to be given in a consecutive (or even an ordered) way. Each number has to be

given only onece, multiple definition are treated as inconsistency of the file and cause stopping the calculation (exception \$Sorption section).

- material-type int is type of the material, see table.
- < material-type-specific-data > format of this list depends on the material type.
- <storativity-coefficient> double coefficient of storativity
- geometry-type int type of complement dimension parameter (only for 1D and 2D material), for 1D element is supported type 1 - cross-section area, for 2D element is supported type 2 - thickness.
- <geometry-type-specific-coefficient> double cross-section for 1D element or thickness for 2D element.
- substance-id int refers to number of transported substance, numbering starts on θ .
- sorption-type int type 1 linear sorption isotherm, type 2 Freundlich sorption isotherm, type 3 Langmuir sorption isotherm.
- <sorption-type-specific-data > format of this list depends on the sorption type, see table. Note: Section \$Sorption is needed for calculation only if Sorption is turned on in the ini file.
- <sorption-fraction-coefficient> double ratio of the "mobile" solid surface in the contact
 with "mobile" water to the total solid surface (this parameter (section) is needed for
 calculation only if Dual_porosity and Sorption is together turned on in the ini file).
- <mobile-porosity-coefficient> double ratio of the mobile pore volume to the total volume (this parameter is needed only if *Transport_on* is turned on in the ini file).
- <immobile-porosity-coefficient> double ratio of the immobile pore volu-me to the total pore volume (this parameter is needed only if *Dual_porosity* is turned on in the ini file).
- <nonequilibrium-coefficient-substance(i)> double nonequilibrium coefficient for substance i, $\forall i \in \langle 0, n-1 \rangle$ where n is number of transported substances (this parameter is needed only if *Dual_porosity* is turned on in the ini file).

reaction-type int — type 0 - zero order reaction

<reaction-type-specific-data > — format of this list depends on the reaction - type, see table.

material-type	material-type-specific-data	Description
11	k	$\mathbf{K} = (k)$
-11	a	$\mathbf{A} = \mathbf{K}^{-1} = (a)$
21	k	$\mathbf{K} = \left(\begin{array}{cc} k & 0\\ 0 & k \end{array}\right)$
22	$k_x k_y$	$\mathbf{K} = \left(\begin{array}{cc} k_x & 0\\ 0 & k_y \end{array}\right)$
23	$k_x k_y k_{xy}$	$\mathbf{K} = \left(\begin{array}{cc} k_x & k_{xy} \\ k_{xy} & k_y \end{array}\right)$
-21	a	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{cc} a & 0\\ 0 & a \end{array}\right)$
-22	$a_x a_y$	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{cc} a_x & 0\\ 0 & a_y \end{array}\right)$
-23	$a_x a_y a_{xy}$	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{cc} a_x & a_{xy} \\ a_{xy} & a_y \end{array}\right)$
31	k	$\mathbf{K} = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}$
33	$k_x k_y k_z$	$\mathbf{K} = \begin{pmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & k_z \end{pmatrix}$
36	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{ccc} \mathbf{K} = \begin{pmatrix} k_x & k_{xy} & k_{xz} \\ k_{xy} & k_y & k_{yz} \\ k_{xz} & k_{yz} & k_z \end{pmatrix} \right $
-31	a	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{rrr} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right)$
-33	$a_x a_y a_z$	$\mathbf{A} = \mathbf{K}^{-1} = \begin{pmatrix} a_x & 0 & 0\\ 0 & a_y & 0\\ 0 & 0 & a_z \end{pmatrix}$
-36	$a_x a_y a_z a_{xy} a_{xz} a_{yz}$	$\mathbf{A} = \mathbf{K}^{-1} = \begin{pmatrix} a_x & a_{xy} & a_{xz} \\ a_{xy} & a_y & a_{yz} \\ a_{xz} & a_{yz} & a_z \end{pmatrix}$

Note: all variables (k, k_x , k_y , k_z , k_{xy} , k_{xz} , k_{yz} , a, a_x , a_y , a_z , a_{xy} , a_{xz} , a_{yz}) are of the double type.

sorption-type	sorption-type-specific-data	Description
1	$k_D[1]$	$s = k_D c$
2	$k_F[(L^{-3} \cdot M^1)^{(1-\alpha)}] \alpha[1]$	$s = k_F c^{\alpha}$
3	$K_L[L^3 \cdot M^{-1}] s^{max}[L^{-3} \cdot M^1]$	$s = \frac{K_L s^{max} c}{1 + K_L c}$

Note: all variables ($k_D, k_F, \alpha, K_L, s^{max}$) are of the double type.

reaction-type	reaction-type-specific-data		Description
0	substance-id[1]	$k[M\cdot L^{-3}\cdot T^{-1}]$	$rac{\partial c_m^{[substance-id]}}{\partial t} = k$

Where $c_m^{[substance-id]}$ is mobile concentration of substance with id substance-id and Δt is the internal transport time step defined by CFL condition.

text char[] — is a text description of the material, up to 256 chars. This parameter is

optional.

Comments concerning 1-2-3-FLOW:

• If *number-of-materials* differs from actual number of material lines in the file, it stops the calculation.

Boundary conditions file format, version 1.0

The file is divided in two sections, header and data.

\$BoundaryFormat
1.0 file-type data-size
\$EndBoundaryFormat
\$BoundaryConditions
number-of-conditions
condition-number type <type-specific-data> where <where-data> number-of-tags <tags>
[text]
...

\$EndBoundaryConditions

where

file-type int — is equal 0 for the ASCII file format.

- data-size int— the size of the floating point numbers used in the file. Usually data-size = sizeof(double).
- number-of-conditions int Number of boundary conditions defined in the file.
- condition-number int is the number (index) of the n-th boundary condition. These numbers do not have to be given in a consecutive (or even an ordered) way. Each number has to be given only onece, multiple definition are treated as inconsistency of the file and cause stopping the calculation.
- type int is type of the boundary condition. See below for definitions of the types.
- <type-specific-data> format of this list depends on the type. See below for specification of the type-specific-data for particular types of the boundary conditions.
- where int defines the way, how the place for the contidion is prescribed. See below for details.
- *where-data>* format of this list depends on *where* and actually defines the place for the condition. See below for details.
- number-of-tags int number of integer tags of the boundary condition. It can be zero.
- < tags > number-of-tags*int list of tags of the boundary condition. Values are separated by spaces or tabs. By default we set number-of-tags=1, where tag1 defines group of boundary conditions, "type of water" in our jargon.
- [text] char[] arbitrary text, description of the fracture, notes, etc., up to 256 chars. This is an optional parameter.

Types of boundary conditions and their data

type = 1 — Boundary condition of the Dirichlet's type

type = 2 — Boundary condition of the Neumann's type

type = 3 — Boundary condition of the Newton's type

type	type- $specific$ - $data$	Description
1	scalar	Prescribed value of pressure or piez. head
2	flux	Prescribed value of flux through the boundary
3	scalar sigma	Scalar value and the σ coefficient
· •	a 1.4	

scalar, flux and sigma are of the double type.

Ways of defining the place for the boundary condition

where = 1 — Condition on a node

where = 2 — Condition on a (generalized) side

where = 3 — Condition on side for element with only one external side.

where	< where-data >	Description
1	node-id	Node id number, according to .MSH file
2	elm-id sid-id	Elm. id number, local number of side
3	elm-id	Elm. id number
There		and id and of the internet

The variables *node-id*, *elm-id*, *sid-id* are of the *int* type.

Comments concerning 1-2-3-FLOW:

- We assume homegemous Neumman's condition as the default one. Therefore we do not need to prescribe conditions on the whole boundary.
- If the condition is given on the inner edge, it is treated as an error and stops calculation.
- Any inconsistence in the file stops calculation. (Bad number of conditions, multiple definition of condition, reference to non-existing node, etc.)
- At least one of the conditions has to be of the Dirichlet's or Newton's type. This is well-known fact from the theory of the PDE's.
- Local numbers of sides for where = 2 must be lower than the number of sides of the particular element and greater then or equal to zero.
- The element specified for where = 3 must have only one external side, otherwise the program stops.

Neighbouring file format, version 1.0

The file is divided in two sections, header and data. The extension $.\tt NGH$ is highly recomended for files of this type.

\$NeighbourFormat
1.0 file-type data-size
\$EndNeighbourFormat
\$Neighbours
number-of-neighbours
neighbour-number type <type-specific-data>
...

\$EndNeighbours

where

file-type int — is equal 0 for the ASCII file format.

- data-size int— the size of the floating point numbers used in the file. Usually data-size = sizeof(double).
- number-of-neighbours int Number of neighbouring defined in the file.
- neighbour-number int is the number (index) of the n-th neighbouring. These numbers do not have to be given in a consecutive (or even an ordered) way. Each number has to be given only onece, multiple definition are treated as inconsistency of the file and cause stopping the calculation.

type int — is type of the neighbouring.

<type-specific-data> — format of this list depends on the *type*.

Types of neighbouring and their specific data

- type = 10 "Edge with common nodes", i.e. sides of elements with common nodes. (Possible many elements)
- type = 11 "Edge with specified sides", i.e. sides of the edge are explicitly defined. (Possible many elements)
- type = 20 "Compatible", i.e. volume of an element with a side of another element. (Only two elements)
- type = 30 "Non-compatible" i.e. volume of an element with volume of another element. (Only two elements)

type	type-specific-data	Description
10	$n_{-}elm \ eid1 \ eid2 \dots$	number of elements and their ids
11	$n_sid\ eid1\ sid1\ eid2\ sid2\ \ldots$	number of sides, their elements and local ids
20	eid1 eid2 sid2 coef	Elm 1 has to have lower dimension
30	eid1 eid2 coef	Elm 1 has to have lower dimension
<u> </u>		11 .

coef is of the double type, other variables are ints.

Comments concerning 1-2-3-FLOW:

- Every inconsistency or error in the .NGH file causes stopping the calculation. These are especially:
 - Multiple usage of the same *neighbour-number*.
 - Difference between *number-of-neighbours* and actual number of data lines.
 - Reference to nonexisting element.
 - Nonsence number of side.
- The variables *sid?* must be nonegative and lower than the number of sides of the particular element.

Sources file format, version 1.0

The file is divided in two sections, header and data. The extension **.SRC** is highly recomended for files of this type.

\$SourceFormat
1.0 file-type data-size
\$EndSourceFormat
\$Sources
number-of-sources
source-number type eid density
...
\$EndSources

where

file-type int — is equal 0 for the ASCII file format.

data-size int— the size of the floating point numbers used in the file. Usually data-size = sizeof(double).

number-of-sources int — Number of sources defined in the file.

- source-number int is the number (index) of the n-th source. These numbers do not have to be given in a consecutive (or even an ordered) way. Each number has to be given only onece, multiple definition are treated as inconsistency of the file and cause stopping the calculation.
- type int is type of the source. This variable is still unused.
- eid int is id-number of the element, where the source lies.
- *density* double is the density of the source, in volume of fluid per time unit. Possitive values are sources, negative are sinks.

Comments concerning 1-2-3-FLOW:

- Every inconsistency or error in the .SRC file causes stopping the calculation. These are especially:
 - Multiple usage of the same *source-number*.
 - Difference between *number-of-sources* and actual number of data lines.
 - Reference to nonexisting element.

ASCII post-processing file format version 1.2

File format of this file comes from the GMSH system. Following text is copied from the GMSH documentation.

The ASCII post-processing file is divided in several sections: one format section, enclosed between **PostFormat-%EndPostFormat** tags, and one or more post-processing views, enclosed between **\$View-\$EndView** tags:

\$PostFormat 1.2 file-type data-size \$EndPostFormat \$View view-name nb-time-steps nb-scalar-points nb-vector-points nb-tensor-points nb-scalar-lines nb-vector-lines nb-tensor-lines nb-scalar-triangles nb-vector-triangles nb-tensor-triangles nb-scalar-quadrangles nb-vector-quadrangles nb-tensor-quadrangles nb-scalar-tetrahedra nb-vector-tetrahedra nb-tensor-tetrahedra nb-scalar-hexahedra nb-vector-hexahedra nb-tensor-hexahedra nb-scalar-prisms nb-vector-prisms nb-tensor-prisms nb-scalar-pyramids nb-vector-pyramids nb-tensor-pyramids nb-text2d nb-text2d-chars nb-text3d nb-text3d-chars <time-step-values> < scalar-point-values >< vector-point-values ><tensor-point-values> <scalar-line-values> <vector-line-values> <tensor-line-values> <scalar-triangle-values> < vector-triangle-values ><tensor-triangle-values> <scalar-quadrangle-values> <vector-quadrangle-values> < tensor-quadrangle-values ><scalar-tetrahedron-values> < vector-tetrahedron-values ><tensor-tetrahedron-values> <scalar-hexahedron-values> <vector-hexahedron-values> <tensor-hexahedron-values> <scalar-prism-values> <vector-prism-values> < tensor-prism-values ><scalar-pyramid-values>

<vector-pyramid-values> <tensor-pyramid-values> <text2d> <text2d-chars> <text3d> <text3d-chars> \$EndView

where:

file-type is an integer equal to 0 in the ASCII file format.

- data-size is an integer equal to the size of the floating point numbers used in the file (usually, data-size = sizeof(double)).
- view-name is a string containing the name of the view (max. 256 characters).
- *nb-time-steps* is an integer giving the number of time steps in the view.
- *nb-scalar-points, nb-vector-points, ...* are integers giving the number of scalar points, vector points,... in the view.
- nb-text2d, nb-text3d are integers giving the number of 2D and 3D text strings in the view.
- *nb-text2d-chars*, *nb-text3d-chars* are integers giving the total number of characters in the 2D and 3D strings.
- time-step-values is a list of *nb-time-steps* double precision numbers giving the value of the time (or any other variable) for which an evolution was saved.
- scalar-point-value, vector-point-value, ... are lists of double precision numbers giving the node coordinates and the values associated with the nodes of the *nb-scalar-points* scalar points, *nb-vector-points* vector points,..., for each of the *time-step-values*.

For example, *vector-triangle-value* is defined as:

coord1-node1 coord1-node2 coord1-node3
coord2-node1 coord2-node2 coord2-node3
coord3-node1 coord3-node2 coord3-node3
comp1-node1-time1 comp2-node1-time1 comp3-node1-time1
$comp1-node2-time1\ comp2-node2-time1\ comp3-node2-time1$
$comp1-node3-time1\ comp2-node3-time1\ comp3-node3-time1$
$comp1-node1-time2 \ comp2-node1-time2 \ comp3-node1-time2$
$comp1-node2-time2 \ comp2-node2-time2 \ comp3-node2-time2$
$comp1-node3-time2 \ comp2-node3-time2 \ comp3-node3-time2$

text2d is a list of 4 double precision numbers:

coord1 coord2 style index

where *coord1* and *coord2* give the coordinates of the leftmost element of the 2D string in screen coordinates, *index* gives the starting index of the string in *text2d-chars* and *style* is currently unused.

text2d-chars is a list of *nb*-text2d-chars characters. Substrings are separated with the '^' character (which is a forbidden character in regular strings).

text3d is a list of 5 double precision numbers

coord1 coord2 coord3 style index

where *coord1*, *coord2* and *coord3* give the coordinates of the leftmost element of the 3D string in model (real world) coordinates, *index* gives the starting index of the string in *text3d-chars* and *style* is currently unused.

text3d-chars is a list of *nb*-text3d-chars chars. Substrings are separated with the '^' character.

======= END OF INSERTED TEXT ===========

More information about GMSH can be found at its homepage: http://www.geuz.org/gmsh/

Comments concerning FFLOW20:

- FFLOW20 generates .POS file with four views: Elements' pressure, edges' pressure, interelement fluxes and complex view. First three views shows "raw data", results obtained by the solver without any interpolations, smoothing etc. The fourth view contains data processed in this way.
 - **Elements' pressure:** Contains only *scalar-triangle-values*. Triangles are the same as the elements of the original mesh. We prescribe constant value of the pressure on the element, as it was calculated by the solver as the unknown p. Therefore, the three values on every triangle are the same.
 - **Edge pressure:** Contains only *scalar-line-values*. The lines are the same as the edges of the elements of the original mesh. We prescribe constant value of the pressure on the edge, as it was calculated by the solver as the unknown λ . Therefore, the two values on every edge are the same.
 - **Interelement flux:** Contains vector-point-values and scalar-triangle-values. The scalar-triangle-values carry no information, all values are set to 0, these are in the file only to define a shape of the elements. The points for the vector-point-values are midpoints of the sides of the elements. The vectors are calculated as $u\mathbf{n}$, where u is value of the flux calculated by the solver and \mathbf{n} is normalized vector of outer normal of the element's side.
 - **Complex view:** Contains scalar-triangle-values and vector-point-values. The scalartriangle-values shows the shape of the pressure field. The triangles are the the same as the elements of the original mesh. Values of pressure in nodes are interpolated from ps and λs . The vector-point-values shows the velocity of the flow in the centres of the elements.