
Technical university of Liberec Faculty of
mechatronics, informatics

and interdisciplinary studies

Flow123D
Numerical simulation software

for flow and solute transport problems
in combination of fracture network and continuum

Documentation of file formats and brief user manual

O. Severýn, M. Hokr, J. Královcová,
J. Březina, J. Kopal, M. Tauchman

Liberec, 20.11.2008

Flow123D

Flow123D is simulating software based on Borland C++ Builder 6.0. It enables to solve
the task of underground water flow in heterogenous rock, solute transport and their inter-
action with rock. Considered interaction with rock are non-equilibrium mobile-immobile
pore exchange and non-linear adsorption with independent parameters in each zone (mo-
bile/immobile) and each area (fracture/continuum rock).

The flow is based on mixed hybrid FEM. The supported task of flow are steady state
flow, unsteady state flow and variable density flow. Calculation is supported on compatible
or incompatible multidimenzional meshes.

Solute transport is solved with the operator splitting. Convection is solved with the
FVM. Mobile-immobile pore exchange is solved with using analytic solution and non-linear
adsorption is solved numerically.

Principle for calculation are files of mesh - msh, material - mtr, neighbours - ngh, boundary
conditions of flow - bcd, eventually are needed files of boundary conditions of transport - tbc,
initial conditions of transport - tic or initial condition of flow - fic. Number and type of
required input files are depended on the type of the problem.

File of mesh is generated by using software GMSH, which is distributed under the terms
of the GNU GPL (www.geuz.org). File of neigbours is generated with using program NGH.
Structure of all input files are defined in the files description in detail.

Figure 1: Scheme of calculation

Output of the program generates pos files supported by the GMSH. Eventualy, it is possible
using text output files for whole area, specified area or elements.

2

Flow123D ini file format

Flow123D version: 03.10.08

Note: All string values have maximal length MAXBUFF - 1 (=1023).

Section: [Global]

KEY TYPE DEFAULT DESCRIPTION

Problem type int NULL Type of solved problem. Currently supported:
1 = steady saturated flow
3 = variable-density saturated flow

Description string undefined Short description of solved problem - any text.

Stop time double 1.0 Time interval of the whole problem.[time units]

Save step double 1.0 The output with transport is written every
Save step. [time units]

Density step double 1.0 Time interval of one density iteration in the
varible-density calculation (type=3) [time units]

Section: [Input]

KEY TYPE DEFAULT DESCRIPTION

File type int -1 Type of the input files. Now only the value 1
(GMSH-like files) is accepted.

Mesh string NULL Name of file containig definition of the mesh for
the problem.

Material string NULL Name of file with hydraulical properties of the
elements.

Boundary string NULL Name of file with boundary condition data.

Neighbouring string NULL Name of file describing topology of the mesh.

Sources string NULL Name of file with definition of fluid sources. This
is optional file, if this key is not defined,
calculation goes on without sources.

3

Section: [Transport]

KEY TYPE DEFAULT DESCRIPTION

Transport on YES/NO NO If set ”YES” program compute
transport too.

Sorption YES/NO NO If set ”YES” program include
sorption too.

Dual porosity YES/NO NO If set ”YES” program include dual
porosity too.

Reactions YES/NO NO If set ”YES” program include
reactions too.

Concentration string NULL Name of file with initial
concentration.

Transport BCD string NULL Name of file with boundary
condition for transport.

Transport out string NULL Name of transport output file.

Transport out im string NULL Name of transport immobile
output file.

Transport out sorp string NULL Name of transport sorbed output
file.

Transport out im sorp string NULL Name of transport sorbed
immobile output file.

N substances int -1 Number of substances.

Subst names string undefined Names of the substances separated
by commas.

Substances density scales list of
doubles

1.0 Scales of substances for the density
flow calculation.

Section: [Constants]

KEY TYPE DEFAULT DESCRIPTION

g double 1.0 Gravity acceleration.

rho double 1.0 Density of fluid.

Section: [Run]

4

KEY TYPE DEFAULT DESCRIPTION

Log file string mixhyb.log Name of log file.

Screen verbosity int 8 Amount of messages printed on the screen. (0
= no messages, ..., 7 = all messages)

Log verbosity int 8 Amount of messages printed to the log file. (0
= no messages, ..., 7 = all messages)

Pause after run YES/NO NO If set to ”YES”, the program waits for a key
press before it finishes.

Section: [Solver]

KEY TYPE DEFAULT DESCRIPTION

Use last solution YES/NO NO If set to ”YES”, uses last known solution for
chosen solver.

Solver name string matlab Command for calling external solver.
Supported solvers are: petsc, isol, and
matlab.

Solver params string NULL Optional parameters for the external solver
passed on the command line or PETSc
options if the PETSC solver is chosen (see
doc/petsc help).

Keep solver files YES/NO NO If set to ”YES”, files for solver are not
deleted after the run of the solver.

Manual solver run YES/NO NO If set to ”YES”, programm stops after
writing input files for solver and lets user to
run it.

Use control file YES/NO NO If set to ”YES”, programm do not create
control file for solver, it uses given file.

Control file string NULL Name of control file for situation, when
Use control file ȲES.

NSchurs int 2 Number of Schur complements to use. Valid
values are 0,1,2. The last one should be the
fastest.

Section: [Solver parameters]

KEY TYPE DEFAULT DESCRIPTION

Solver accuracy double 1e-6 When to stop solver run - value of residum of
matrix. Useful values from 1e-4 to 1e-10.
Bigger number = faster run, less accuracy.

Note: For aditional documentation see manual of the solver, (i) - isol manual

5

Section: [Output]

KEY TYPE DEFAULT DESCRIPTION

Write output file YES/NO NO If set to ”YES”, writes output file.

Output file string NULL Name of the output file (type 1).

Output file 2 string NULL Name of the output file (type 2).

Output digits int 6 Number of digits used for floating point
numbers in output file.

Output file type int 1 Type of output file
1 - GMSH like format
2 - Flow data file
3 - both files (two separate names)

POS set view YES/NO NO Write a header setting the view in GMSH to
POS.

POS view params double[8] 0 0 0
1 1 1
0 0

[x y z] angle of rotation ”RotationX”
[x y z] scaling ”ScaleX”
[x y] screen position shift ”TranslationX”

Write ftrans out YES/NO NO If set to ”YES”, writes output file for ftrans.

Cross section YES/NO NO If set to ”YES”, uses cross section output.

Cs params double[7] zero Params for cross section,
[x0 y0 z0] initial point
[xe ye ze] end point
[delta] cylinder radius.

Specify elm type YES/NO NO If set to ”YES”, next param. specify type of
prefered elements. If set to ”NO”, each
element is included.

Output elm type int -1 Spefify type of element dimension
1 - 1D (line), 2 - 2D (triangle),
3 - 3D (tetrahedron).

BTC elms list of ints undefined List of the breakthrough curve elements, ints
this concentrations are written to seperate
file with extension *.btc.

FCs params double[4] zero Params of flow cross section
[x y z 1] plane of cut (general equation),
output values are written by coordinate
of axis: x - [0], y - [1], z - [2]

Pos format string ASCII Format of the POS output file [ASCII /
BIN] (opening a binary file in the GMSH is
much faster).

Description: Options controling output file of the programm

6

Section: [Density]

KEY TYPE DEFAULT DESCRIPTION

Density implicit YES/NO NO NO = explicit iteration (simple flow update)
YES = implicit iteration (more accurate flow
update)

Density max iter int 20 Maximum number of iterations for implicit
density calcultation.

Eps iter double 1e-5 Stopping criterium for iterations (maximum
norm of pressure difference).

Write iterations YES/NO NO Write conc values during iterations to POS
file.

7

Section: [Semchem module]

KEY TYPE DEFAULT DESCRIPTION

Compute reactions Yes/No ”No” NO = transport without chemical
reactions
YES = transport influenced by
chemical reactions

Output precission int 1 Number of decimal places written
to output file created by
Semchem module.

Number of further species int 0 Concentrations of these species are
not computed, because they are
ment to be unexghaustible.

Temperature double 0.0 Temperature, one of state variables
of the system.

Temperature Gf double 0.0 Temperature at which Free Gibbs
Energy is specified.

Param Afi double 0.0 Parameter of the Debuy-Hückel
equation for activity coeficients
computation.

Param b double 0.0 Parameter of the Debuy-Hückel
equation for activity coeficients
computation.

Epsilon double 0.0 Epsilon specifies relative norm of
residuum estimate to stop
numerical algorithms used by
Semchem module.

Time steps int 1 Number of transport step
subdivisions for Semchem module.

Slow kinetics substeps int 0 Number of substeps performed by
Runge-Kutta method used for slow
kinetics simulation.

Error norm type string ”Absolute” Through wich kind of norm the
error is measured.

Scalling boolean ”No” Type of the problem
preconditioning for better
convergence of numerical method.

8

Section: [Aqueous species]

KEY TYPE DEFAULT DESCRIPTION

El charge int 0 Electric charge of an Aqueous specie particleunder
consideration.

dGf double 0.0 Free Gibbs Energy valid for TemperatureGf.

dHf double 0.0 Enthalpy

Molar mass double 0.0 Molar mass of Aqueous species.

Section: [Further species]

KEY TYPE DEFAULT DESCRIPTION

Specie name string ”” Name belonging to Further specie under
consideration.

dGf double 0.0 Free Gibbs Energy valid for TemperatureGf.

dHf double 0.0 Enthalpy

Molar mass double 0.0 Molar mass of Further species.

Activity double 0.0 Activity of Further species.

Section: [Reaction i]

KEY TYPE DEFAULT DESCRIPTION

Reaction type string ”unknown” Type of considered reaction
(Equilibrium, Kinetics, Slow kinetics).

Stoichiometry int 0 Stoichiometric coeficients of species
taking part in i-th reaction.

Kinetic constant double 0.0 Kinetic constant for determination of
reaction rate.

Order of reaction int 0 Order of kinetic reaction for
participating species.

Equilibrium constant double 0.0 Equilibrium constant defining i-th
reaction.

9

Mesh file format version 2.0

The mesh file format comes from the GMSH system. Following text is copied from the GMSH
documentation.

=============== BEGIN OF INSERTED TEXT ===============

Version 2.0 of the .MSH file format is Gmsh’s new native mesh file format. It is very similar to
the old one (Version 1.0), but is more general: it contains information about itself and allows
to associate an arbitrary number of integer tags with each element.
The .MSH file format, version 2.0, is divided in three sections, defining the file format ($MeshFormat-
$EndMeshFormat), the nodes ($Nodes-$EndNodes) and the elements ($Elements-$EndElements)
in the mesh:

$MeshFormat

2.0 file-type data-size
$EndMeshFormat

$Nodes

number-of-nodes
node-number x-coord y-coord z-coord
...

$EndNodes

$Elements

number-of-elements
elm-number elm-type number-of-tags <tags> node-number-list
...

$EndElements

where:

file-type is an integer equal to 0 in the ASCII file format.

data-size is an integer equal to the size of the floating point numbers used in the file (usually,
data-size = sizeof(double)).

number-of-nodes is the number of nodes in the mesh.

node-number is the number (index) of the n-th node in the mesh. Note that the node-numbers
do not have to be given in a consecutive (or even an ordered) way.

x-coord y-coord z-coord are the floating point values giving the X, Y and Z coordinates of the
n-th node.

number-of-elements is the number of elements in the mesh.

elm-number is the number (index) of the n-th element in the mesh. Note that the elm-numbers
do not have to be given in a consecutive (or even an ordered) way.

elm-type defines the geometrical type of the n-th element:

10

1 Line (2 nodes)
2 Triangle (3 nodes)
3 Quadrangle (4 nodes)
4 Tetrahedron (4 nodes)
5 Hexahedron (8 nodes)
6 Prism (6 nodes)
7 Pyramid (5 nodes)
8 Second order line (3 nodes)
9 Second order triangle (6 nodes)
11 Second order tetrahedron (10 nodes)
15 Point (1 node)

number-of-tags gives the number of tags for the n-th element. By default, Gmsh generates
meshes with two tags and reads files with an arbitrary number of tags: see below.

tag is an integer tag associated with the n-th element. By default, the first tag is the number
of the physical entity to which the element belongs; the second is the number of the
elementary geometrical entity to which the element belongs; the third is the number of
a mesh partition to which the element belongs.

node-number-list is the list of the node numbers of the n-th element (separated by white
space, without commas). The ordering of the nodes is given in Gmsh node ordering;
for second order elements, the first order nodes are given first, followed by the nodes
associated with the edges, followed by the nodes associated with the faces (if any). The
ordering of these additional nodes follows the ordering of the edges/faces given in Gmsh
node ordering.

=============== END OF INSERTED TEXT ===============

More information about GMSH can be found at its homepage:
http://www.geuz.org/gmsh/

Comments concerning 1-2-3-FLOW:

• Every inconsistency of the file stops the calculation. These are:

– Existence of nodes with the same node-number.

– Existence of elements with the same elm-number.

– Reference to non-existing node.

– Reference to non-existing material (see below).

– Difference between number-of-nodes and actual number of lines in nodes’ section.

– Difference between number-of-elements and actual number of lines in elements’
section.

• By default 1-2-3-FLOW uses meshes with number-of-tags = 2.

tag1 is number of region in which the element lies.

tag2 is number of material (reference to .MTR file) in the element.

11

• Currently, line (type = 1), triangle (type = 2) and tetrahedron (type = 4) are the
only supported types of elements. Existence of an element of different type stops the
calculation.

• Wherever possible, we use the file extension .MSH. It is not required, but highly re-
comended.

12

Material properties file format, version 1.0

The file is divided in two sections, header and data. The extension .MTR is highly recomended
for files of this type.

$MaterialFormat

1.0 file-type data-size
$EndMaterialFormat

$Materials

number-of-materials
material-number material-type <material-type-specific-data> [text]
...

$EndMaterials

$Storativity

material-number <storativity-coefficient> [text]
...

$EndStorativity

$Geometry

material-number geometry-type <geometry-type-specific-coefficient> [text]
...

$EndGeometry

$Sorption

material-number substance-id sorption-type <sorption-type-specific-data> [text]
...

$EndSorption

$SorptionFraction

material-number <sorption-fraction-coefficient> [text]
...

$EndSorptionFraction

$DualPorosity

material-number <mobile-porosity-coefficient> <immobile-porosity-coefficient>
<nonequillibrium-coefficient-substance(0)> ...<nonequilibrium-coefficient-substance(n-1)>
[text]
...

$EndDualPorosity

$Reactions

reaction-type <reaction-type-specific-coefficient> [text]
...

$EndReactions

where:

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-materials int — Number of materials defined in the file.

material-number int — is the number (index) of the n-th material. These numbers do not
have to be given in a consecutive (or even an ordered) way. Each number has to be

13

given only onece, multiple definition are treated as inconsistency of the file and cause
stopping the calculation (exception $Sorption section).

material-type int — is type of the material, see table.

<material-type-specific-data > — format of this list depends on the material - type.

<storativity-coefficient> double — coefficient of storativity

geometry-type int — type of complement dimension parameter (only for 1D and 2D mate-
rial), for 1D element is supported type 1 - cross-section area, for 2D element is supported
type 2 - thickness.

<geometry-type-specific-coefficient> double — cross-section for 1D element or thickness for
2D element.

substance-id int — refers to number of transported substance, numbering starts on 0.

sorption-type int — type 1 - linear sorption isotherm, type 2 - Freundlich sorption isotherm,
type 3 - Langmuir sorption isotherm.

<sorption-type-specific-data > — format of this list depends on the sorption - type, see table.

Note: Section $Sorption is needed for calculation only if Sorption is turned on in the
ini file.

<sorption-fraction-coefficient> double — ratio of the ”mobile” solid surface in the contact
with ”mobile” water to the total solid surface (this parameter (section) is needed for
calculation only if Dual porosity and Sorption is together turned on in the ini file).

<mobile-porosity-coefficient> double — ratio of the mobile pore volume to the total volume
(this parameter is needed only if Transport on is turned on in the ini file).

<immobile-porosity-coefficient> double — ratio of the immobile pore volu-me to the total
pore volume (this parameter is needed only if Dual porosity is turned on in the ini file).

<nonequilibrium-coefficient-substance(i)> double — nonequilibrium coefficient for substance
i, ∀i ∈ 〈0, n−1〉 where n is number of transported substances (this parameter is needed
only if Dual porosity is turned on in the ini file).

reaction-type int — type 0 - zero order reaction

<reaction-type-specific-data > — format of this list depends on the reaction - type, see table.

14

material-type material-type-specific-data Description

11 k K = (k)
-11 a A = K−1 = (a)

21 k K =

(
k 0
0 k

)
22 kx ky K =

(
kx 0
0 ky

)
23 kx ky kxy K =

(
kx kxy
kxy ky

)
-21 a A = K−1 =

(
a 0
0 a

)
-22 ax ay A = K−1 =

(
ax 0
0 ay

)
-23 ax ay axy A = K−1 =

(
ax axy
axy ay

)
31 k K =

 k 0 0
0 k 0
0 0 k


33 kx ky kz K =

 kx 0 0
0 ky 0
0 0 kz


36 kx ky kz kxy kxz kyz K =

 kx kxy kxz
kxy ky kyz
kxz kyz kz


-31 a A = K−1 =

 a 0 0
0 a 0
0 0 a


-33 ax ay az A = K−1 =

 ax 0 0
0 ay 0
0 0 az


-36 ax ay az axy axz ayz A = K−1 =

 ax axy axz
axy ay ayz
axz ayz az


Note: all variables (k, kx, ky, kz, kxy, kxz, kyz, a, ax, ay, az, axy, axz, ayz) are of the
double type.

sorption-type sorption-type-specific-data Description

1 kD[1] s = kDc

2 kF [(L−3 ·M1)(1−α)] α[1] s = kF c
α

3 KL[L3 ·M−1] smax[L−3 ·M1] s = KLs
max c

1+KLc

Note: all variables (kD, kF , α, KL, smax) are of the double type.

reaction-type reaction-type-specific-data Description

0 substance-id[1] k[M · L−3 · T−1] ∂c
[substance-id]
m

∂t
= k

Where c
[substance-id]
m is mobile concentration of substance with id substance-id and ∆t is

the internal transport time step defined by CFL condition.

text char[] — is a text description of the material, up to 256 chars. This parameter is

15

optional.

Comments concerning 1-2-3-FLOW:

• If number-of-materials differs from actual number of material lines in the file, it stops
the calculation.

16

Boundary conditions file format, version 1.0

The file is divided in two sections, header and data.

$BoundaryFormat

1.0 file-type data-size
$EndBoundaryFormat

$BoundaryConditions

number-of-conditions
condition-number type <type-specific-data> where <where-data> number-of-tags <tags>
[text]
...

$EndBoundaryConditions

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-conditions int — Number of boundary conditions defined in the file.

condition-number int — is the number (index) of the n-th boundary condition. These num-
bers do not have to be given in a consecutive (or even an ordered) way. Each number
has to be given only onece, multiple definition are treated as inconsistency of the file
and cause stopping the calculation.

type int — is type of the boundary condition. See below for definitions of the types.

<type-specific-data> — format of this list depends on the type. See below for specification
of the type-specific-data for particular types of the boundary conditions.

where int — defines the way, how the place for the contidion is prescribed. See below for
details.

<where-data> — format of this list depends on where and actually defines the place for the
condition. See below for details.

number-of-tags int — number of integer tags of the boundary condition. It can be zero.

< tags > number-of-tags*int — list of tags of the boundary condition. Values are separated
by spaces or tabs. By default we set number-of-tags=1, where tag1 defines group of
boundary conditions, ”type of water” in our jargon.

[text] char[] — arbitrary text, description of the fracture, notes, etc., up to 256 chars. This
is an optional parameter.

17

Types of boundary conditions and their data

type = 1 — Boundary condition of the Dirichlet’s type

type = 2 — Boundary condition of the Neumann’s type

type = 3 — Boundary condition of the Newton’s type

type type-specific-data Description

1 scalar Prescribed value of pressure or piez. head
2 flux Prescribed value of flux through the boundary
3 scalar sigma Scalar value and the σ coefficient

scalar, flux and sigma are of the double type.

Ways of defining the place for the boundary condition

where = 1 — Condition on a node

where = 2 — Condition on a (generalized) side

where = 3 — Condition on side for element with only one external side.

where <where-data> Description

1 node-id Node id number, according to .MSH file
2 elm-id sid-id Elm. id number, local number of side
3 elm-id Elm. id number

The variables node-id, elm-id, sid-id are of the int type.

Comments concerning 1-2-3-FLOW:

• We assume homegemous Neumman’s condition as the default one. Therefore we do not
need to prescribe conditions on the whole boundary.

• If the condition is given on the inner edge, it is treated as an error and stops calculation.

• Any inconsistence in the file stops calculation. (Bad number of conditions, multiple
definition of condition, reference to non-existing node, etc.)

• At least one of the conditions has to be of the Dirichlet’s or Newton’s type. This is
well-known fact from the theory of the PDE’s.

• Local numbers of sides for where = 2 must be lower than the number of sides of the
particular element and greater then or equal to zero.

• The element specified for where = 3 must have only one external side, otherwise the
program stops.

18

Neighbouring file format, version 1.0

The file is divided in two sections, header and data. The extension .NGH is highly recomended
for files of this type.

$NeighbourFormat

1.0 file-type data-size
$EndNeighbourFormat

$Neighbours

number-of-neighbours
neighbour-number type <type-specific-data>
...

$EndNeighbours

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-neighbours int — Number of neighbouring defined in the file.

neighbour-number int — is the number (index) of the n-th neighbouring. These numbers do
not have to be given in a consecutive (or even an ordered) way. Each number has to be
given only onece, multiple definition are treated as inconsistency of the file and cause
stopping the calculation.

type int — is type of the neighbouring.

<type-specific-data> — format of this list depends on the type.

Types of neighbouring and their specific data

type = 10 — “Edge with common nodes”, i.e. sides of elements with common nodes. (Pos-
sible many elements)

type = 11 — “Edge with specified sides”, i.e. sides of the edge are explicitly defined. (Possible
many elements)

type = 20 — “Compatible”, i.e. volume of an element with a side of another element. (Only
two elements)

type = 30 — “Non-compatible” i.e. volume od an element with volume of another element.
(Only two elements)

type type-specific-data Description

10 n elm eid1 eid2 . . . number of elements and their ids
11 n sid eid1 sid1 eid2 sid2 . . . number of sides, their elements and local ids
20 eid1 eid2 sid2 coef Elm 1 has to have lower dimension
30 eid1 eid2 coef Elm 1 has to have lower dimension

coef is of the double type, other variables are ints.

19

Comments concerning 1-2-3-FLOW:

• Every inconsistency or error in the .NGH file causes stopping the calculation. These are
especially:

– Multiple usage of the same neighbour-number.

– Difference between number-of-neighbours and actual number of data lines.

– Reference to nonexisting element.

– Nonsence number of side.

• The variables sid? must be nonegative and lower than the number of sides of the
particular element.

20

Sources file format, version 1.0

The file is divided in two sections, header and data. The extension .SRC is highly recomended
for files of this type.

$SourceFormat

1.0 file-type data-size
$EndSourceFormat

$Sources

number-of-sources
source-number type eid density
...

$EndSources

where

file-type int — is equal 0 for the ASCII file format.

data-size int — the size of the floating point numbers used in the file. Usually data-size =
sizeof(double).

number-of-sources int — Number of sources defined in the file.

source-number int — is the number (index) of the n-th source. These numbers do not have
to be given in a consecutive (or even an ordered) way. Each number has to be given only
onece, multiple definition are treated as inconsistency of the file and cause stopping the
calculation.

type int — is type of the source. This variable is still unused.

eid int — is id-number of the element, where the source lies.

density double — is the density of the source, in volume of fluid per time unit. Possitive
values are sources, negative are sinks.

Comments concerning 1-2-3-FLOW:

• Every inconsistency or error in the .SRC file causes stopping the calculation. These are
especially:

– Multiple usage of the same source-number.

– Difference between number-of-sources and actual number of data lines.

– Reference to nonexisting element.

21

ASCII post-processing file format version 1.2

File format of this file comes from the GMSH system. Following text is copied from the
GMSH documentation.

=============== BEGIN OF INSERTED TEXT ===============

The ASCII post-processing file is divided in several sections: one format section, enclosed
between $PostFormat-$EndPostFormat tags, and one or more post-processing views, enclosed
between $View-$EndView tags:

$PostFormat

1.2 file-type data-size
$EndPostFormat

$View

view-name nb-time-steps
nb-scalar-points nb-vector-points nb-tensor-points
nb-scalar-lines nb-vector-lines nb-tensor-lines
nb-scalar-triangles nb-vector-triangles nb-tensor-triangles
nb-scalar-quadrangles nb-vector-quadrangles nb-tensor-quadrangles
nb-scalar-tetrahedra nb-vector-tetrahedra nb-tensor-tetrahedra
nb-scalar-hexahedra nb-vector-hexahedra nb-tensor-hexahedra
nb-scalar-prisms nb-vector-prisms nb-tensor-prisms
nb-scalar-pyramids nb-vector-pyramids nb-tensor-pyramids
nb-text2d nb-text2d-chars nb-text3d nb-text3d-chars
<time-step-values>
<scalar-point-values>
<vector-point-values>
<tensor-point-values>
<scalar-line-values>
<vector-line-values>
<tensor-line-values>
<scalar-triangle-values>
<vector-triangle-values>
<tensor-triangle-values>
<scalar-quadrangle-values>
<vector-quadrangle-values>
<tensor-quadrangle-values>
<scalar-tetrahedron-values>
<vector-tetrahedron-values>
<tensor-tetrahedron-values>
<scalar-hexahedron-values>
<vector-hexahedron-values>
<tensor-hexahedron-values>
<scalar-prism-values>
<vector-prism-values>
<tensor-prism-values>
<scalar-pyramid-values>

22

<vector-pyramid-values>
<tensor-pyramid-values>
<text2d> <text2d-chars>
<text3d> <text3d-chars>
$EndView

where:

file-type is an integer equal to 0 in the ASCII file format.

data-size is an integer equal to the size of the floating point numbers used in the file (usually,
data-size = sizeof(double)).

view-name is a string containing the name of the view (max. 256 characters).

nb-time-steps is an integer giving the number of time steps in the view.

nb-scalar-points, nb-vector-points, . . . are integers giving the number of scalar points, vector
points,. . . in the view.

nb-text2d, nb-text3d are integers giving the number of 2D and 3D text strings in the view.

nb-text2d-chars, nb-text3d-chars are integers giving the total number of characters in the 2D
and 3D strings.

time-step-values is a list of nb-time-steps double precision numbers giving the value of the
time (or any other variable) for which an evolution was saved.

scalar-point-value, vector-point-value, . . . are lists of double precision numbers giving the
node coordinates and the values associated with the nodes of the nb-scalar-points scalar
points, nb-vector-points vector points,. . . , for each of the time-step-values.

For example, vector-triangle-value is defined as:

coord1-node1 coord1-node2 coord1-node3
coord2-node1 coord2-node2 coord2-node3
coord3-node1 coord3-node2 coord3-node3
comp1-node1-time1 comp2-node1-time1 comp3-node1-time1
comp1-node2-time1 comp2-node2-time1 comp3-node2-time1
comp1-node3-time1 comp2-node3-time1 comp3-node3-time1
comp1-node1-time2 comp2-node1-time2 comp3-node1-time2
comp1-node2-time2 comp2-node2-time2 comp3-node2-time2
comp1-node3-time2 comp2-node3-time2 comp3-node3-time2
...

text2d is a list of 4 double precision numbers:

coord1 coord2 style index

where coord1 and coord2 give the coordinates of the leftmost element of the 2D string
in screen coordinates, index gives the starting index of the string in text2d-chars and
style is currently unused.

23

text2d-chars is a list of nb-text2d-chars characters. Substrings are separated with the ‘∧’
character (which is a forbidden character in regular strings).

text3d is a list of 5 double precision numbers

coord1 coord2 coord3 style index

where coord1, coord2 and coord3 give the coordinates of the leftmost element of the 3D
string in model (real world) coordinates, index gives the starting index of the string in
text3d-chars and style is currently unused.

text3d-chars is a list of nb-text3d-chars chars. Substrings are separated with the ‘∧’ character.

=============== END OF INSERTED TEXT ===============

More information about GMSH can be found at its homepage:
http://www.geuz.org/gmsh/

Comments concerning FFLOW20:

• FFLOW20 generates .POS file with four views: Elements’ pressure, edges’ pressure, in-
terelement fluxes and complex view. First three views shows ”raw data”, results ob-
tained by the solver without any interpolations, smoothing etc. The fourth view contains
data processed in this way.

Elements’ pressure: Contains only scalar-triangle-values. Triangles are the same as
the elements of the original mesh. We prescribe constant value of the pressure on
the element, as it was calculated by the solver as the unknown p. Therefore, the
three values on every triangle are the same.

Edge pressure: Contains only scalar-line-values. The lines are the same as the edges
of the elements of the original mesh. We prescribe constant value of the pressure
on the edge, as it was calculated by the solver as the unknown λ. Therefore, the
two values on every edge are the same.

Interelement flux: Contains vector-point-values and scalar-triangle-values. The scalar-
triangle-values carry no information, all values are set to 0, these are in the file
only to define a shape of the elements. The points for the vector-point-values are
midpoints of the sides of the elements. The vectors are calculated as un, where
u is value of the flux calculated by the solver and n is normalized vector of outer
normal of the element’s side.

Complex view: Contains scalar-triangle-values and vector-point-values. The scalar-
triangle-values shows the shape of the pressure field. The triangles are the the same
as the elements of the original mesh. Values of pressure in nodes are interpolated
from ps and λs. The vector-point-values shows the velocity of the flow in the centres
of the elements.

24

