
Preliminary User’s Manual

µPD78F0828B

8-bit Single-Chip Microcontroller

Flash Self-Programming Library V 1.0

Document No. U14995EE1V0UM00
Date Published November 2000

 NEC Corporation 2000
Printed in Germany

2 Preliminary User’s Manual U14995EE1V0UM00

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

3Preliminary User’s Manual U14995EE1V0UM00

MS-DOS and MS-Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.
PC/AT and PC DOS are trademarks of IBM Corp.

The related documents in this publication may include preliminary versions. However, preliminary
versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this
product may be prohibited without governmental license, the need for which must be judged by th
customer. The export or re-export of this product from a country other than Japan may also be
prohibited without a license from that country. Please call an NEC sales representative.

M5 2000.03

The information in this document is current as of 02.11.2000. The information is subject to change without
notice. For actual design-in, refer to the latest publications of NEC’s data sheets or data books, etc., for
the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are
available in every country. Please check with an NEC sales representative for availability and additional
information. No part of this document may be copied or reproduced in any form or by any means without
prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this
document. NEC does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC semiconductor products listed in this
document or any other liability arising from the use of such products. No license, express, implied or
otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer’s equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information. While NEC endeavours to enhance
the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that
the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property
or injury (including death) to persons arising from defects in NEC semiconductor products, customers must
incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-
failure features. NEC semiconductor products are classified into the following three quality grades:
“Standard”, “Special” and “Specific”. The “Specific” quality grade applies only to semiconductor products
developed based on a customer-designated “quality assurance program” for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.

"Standard": Computers, office equipment, communications equipment, test and measurement equip-
ment, audio and visual equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-
disaster systems, anti-crime systems, safety equipment and medical equipment (not specifi-
cally designed for life support).

"Specific": Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC semiconductor products is “Standard“ unless otherwise expressly specified in
NEC's data sheets or data books, etc.
If customers wish to use NEC semiconductor products in applications not intended by NEC, they must
contact an NEC sales representative in advance to determine NEC's willingness to support a given
application.

Notes: (1) “NEC” as used in this statement means NEC Corporation and also includes its majority-owned
subsidiaries.

(2) “NEC semiconductor products” means any semiconductor product developed or manufactured
by or for NEC (as defined above).

4 Preliminary User’s Manual U14995EE1V0UM00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

J99.1

Preface

Readers This manual is intended for users who want to understand the functions of the
µPD78F0828B.

Purpose This manual presents the hardware manual of µPD78F0828 .

Organization This system specification describes the following sections:

• Pin function

• CPU function

• Internal peripheral function

• Flash memory

Legend Symbols and notation are used as follows:

Weight in data notation : Left is high-order column, right is low order column

Active low notation : xxx (pin or signal name is over-scored) or
/xxx (slash before signal name)

Memory map address: : High order at high stage and low order at low stage

Note : Explanation of (Note) in the text

Caution : Item deserving extra attention

Remark : Supplementary explanation to the text

Numeric notation : Binary . . . XXXX or XXXB
 Decimal . . . XXXX

 Hexadecimal . . . XXXXH or 0x XXXX

Prefixes representing powers of 2 (address space, memory capacity)

 k (kilo) : 210 = 1024

 M (mega) : 220 = 10242 = 1.048.576

 G (giga) : 230 = 10243 = 1.073.741.824
5Preliminary User’s Manual U14995EE1V0UM00

[MEMO]
6 Preliminary User’s Manual U14995EE1V0UM00

Table of Contents

Chapter 1 Introduction .. 11
1.1 General topics .. 11
1.2 Self-Programming on µPD78F0828B ... 12
1.2.1 Description ... 12
1.2.2 Control of Vpp .. 12
1.2.3 Memory-map in Normal-Mode .. 13
1.2.4 Entering Self-Programming Mode ... 14
1.2.5 The Entry-RAM ... 15
1.2.6 Functions in the Self-Programming library ... 18
1.2.7 Secure Self-Programming .. 18
1.2.8 RTSF-Support .. 19

Chapter 2 Software ... 21
2.1 Memory-demands .. 21
2.1.1 Setup the RAM-mapping ... 21
2.1.2 Linker-configuration .. 21
2.1.3 Resulting memory-layout ... 22
2.2 Prepare Self-Programming ... 22
2.2.1 Pre-conditions ... 22
2.3 Application Programming Interface Functions .. 23
2.3.1 Standardized Input- and Output-parameters .. 23
2.3.2 SP_Init .. 25
2.3.3 SP_Erase .. 26
2.3.4 SP_Write ... 27
2.3.5 SP_AreaVerify .. 28
2.3.6 SP_Swap .. 29

Appendix A Example-programming-sequence ... 31

Appendix B Programming with FLASH-MASTER ... 35

Appendix C Revision History .. 39

Appendix D Related Software ... 41
7Preliminary User’s Manual U14879EE1V0UM00

8 Preliminary User’s Manual U14879EE1V0UM00

List of Figures

Figure 1-1: Hardware-environment of Flash-Master .. 11
Figure 1-2: Layout with Self-Programming .. 11
Figure 1-3: Outline of Programming-Voltage ... 12
Figure 1-4: Normal-mode memory-layout ... 13
Figure 1-5: Memory-configuration after entering SelfProgramming-Mode 14
Figure 1-6: Detailed description of Flash-Programming ... 14
Figure 1-7: Sample time-slices for SP-Routines .. 17
Figure 1-8: Functions of Self-Programming ... 18
Figure 1-9: RESET-execution and boot-signature-recognition .. 18
Figure 1-10: Outline of RealTimeSupportFunction .. 19
Figure 1-11: Complete Self-Programming procedure ... 20

Figure 2-1: Sample-header-file with mem-configuration ... 21
Figure 2-2: Memory-outline using SP-settings .. 22
Figure 2-3: Return-Error-Messages ... 24
Figure 2-4: Header of Function SP_Init ... 25
Figure 2-5: Header-file of Erase-function ... 26
Figure 2-6: API-Header for SP_Write ... 27
Figure 2-7: API-header for the SP_AreaVerify-Function ... 28
Figure 2-8: Header-file of SP_Swap-funciton ... 29
Figure 2-9: Different effects of Swap-routine ... 29

Figure A-1: Example for Linker-file in IAR-workbench .. 31
Figure A-2: Example for Self-Programming MAIN.c-file .. 32
Figure A-3: Sample-Flowchart for complete SP-description ... 34

Figure B-1: Output-sequence of Flash-Master-Software ... 35
Figure B-2: Download of intel-hex-formatted file into the Flash-Master 36
Figure B-3: Device-Properties .. 37
9Preliminary User’s Manual U14879EE1V0UM00

10 Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction

1.1 General topics

This users manual shall serve as a programming-aid for any customer who is using the NEC-K0-family
Secure SelfProgramming-firmware with Realtime-support like it is implemented in the µPD78F0828B
(CANASSP3). Both, Hard- and Software-Environment have to be configured to use Self-Programming.
Two different modes are possible to access the Flash-Memory:

• Using the OnBoard-Programming Mode: An initial program has to be programmed into the device
via a programming-tool like the FLASH-Master. It can be connected to an interface on an applica-
tion-target board. This program is either the full code to be programmed, or should include a so
called BOOT-LOADER located in the lower FLASH-memory-area. The main task of this BOOT-
LOADER is to start basic software-functions after leaving the RESET-mode and to support the
Flash-Self-Programming-functionality for reprogramming from a connected network.

Figure 1-1: Hardware-environment of Flash-Master

• Using the Self-Programming Mode: In self-programming mode data can be programmed to the
flash. Data can be parameters or program code that got into the device by support of the user pro-
gram. Therefore the user program can use all device specific peripherals like CAN, UART and tim-
ers. Once the data is in the device, e.g. buffered in the RAM area, it can be programmed via an
internal programming interface to the upper half flash area. The flash-ROM is divided into two
blocks, an upper (block 1) and a lower block (block 0). Only the upper block can be programmed in
self-programming mode. To write data also into the lower block, the two blocks can be switched with
the swap self-programming function, so that the old lower block will be permanently the upper block.
This new constellation is also valid after RESET. A further call of the swap routine will fail, until the
present upper block is erased.

Figure 1-2: Layout with Self-Programming

Flash
Programming

User Cod

CAN
Timer

Programming
Interface

I/O

10 Vpp Voltage
Generator
11Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
This document explains how self-programming is working and how it can be used under assistance of
an API (Application Programming Interface). This API is realized as a library, written in a higher-level
programming language (ANSI-C). It should facilitate the use of the self-programming functions out of
the user program.
In the second chapter the environment is described how this API can be used in programs to get full
self-programming functionality.
This document is based on the device 78F0828B but can easily be used for other devices with the
same self-programming technology and real time support.

1.2 Self-Programming on µPD78F0828B

The following chapter will describe the main-topics of Self-Programming on the µPD78F0828B and how
the programming is done on the chip.

1.2.1 Description

Starting with a un-programmed chip, the user is responsible to program a boot-loader, supporting the
Self-Programming-functions, in the lower block of the Flash-Area. The Self-Programming support- func-
tions must be included in the final application program, too, if data- or parameter-updates are further
necessary.
By a user-defined communication-channel data must be written to a specified RAM-Area; this data is
later-on programmed to the upper-memory-block.
After programming of upper-ROM-block is done, the ROM-blocks are swapped so the actual code
resides in the old ROM-block1. Now, the new ROM-block0 can be programmed, whereby all Flash-
Memory is Write-accessible.

1.2.2 Control of VPP

- Normal Flash-Programming: The user can program the Flash-Area, but no security and no sup-
port of RAM-based functions are given while running the Firmware-routines

- Secure Flash Self-Programming: The user can program the Flash-Area, but in case of failures, at
least one ROM-block is recognized to contain valid data.

- RTSF-Selfprogramming: The user can run any function without interrupt, but using watchdog, out
of a pre-defined RAM-Area while using the Self-Programming routines. This is called RealTime-
SupportFunction.

Figure 1-3: Outline of Programming-Voltage
12 Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
While RESET release different modes can be selected:
- Flash Mode: Connected 10 V to VPP at rising RESET signal will switch to the flash programming

mode. The used serial communication interface is selected by pulsing the VPP voltage. The princi-
ple is shown in figure 1-3.

- Normal mode: Ground level is attached to Pin 14; the chip will start user program execution at the
address defined by the RESET vector at address 0000h.

- Self-programming mode: Self-programming mode is called out of the normal mode after 10 V sup-
ply to VPP. To achieve a secure programming during all events, like e.g. power fail, the lower flash
block can not be programmed. To program the whole flash, both flash blocks can be exchanged
once. For additional exchanges the upper block has to be erased first.

Real time functions like watch-dog or network communication are also supported during self-program-
ming with the RTSF (Real Time Support Function). RTSF is user code located in RAM and is automati-
cally called within 1ms out of the Self-programming mode.

1.2.3 Memory-map in Normal-Mode

In the normal-Mode, the memory-configuration looks like follows:

Figure 1-4: Normal-mode memory-layout

As described, the ROM is divided into an upper and a lower block; only the upper block is directly
accessible for the Self-Programming routines. Nevertheless, the whole Flash-Area is programmable by
using the Self-Programming Swap-Function.

General Register
32 x 8Bit

Special Function Register
256 x 8Bit

Internal high-speed RAM
1024 x 8Bi

Internal Flash ROM
Block 0

Internal Flash ROM
Block 1

User-Area, Expans. RA
1.5 kByte

NOT Useable

LC-Display RAM
28 x 4Bit

NOT Useable

0x0000

0x76F

0xEE00

0xF000

0xF5FF
0xF600

0xFA63
0xFA64

0xFA7F
0xFA80

0xFAFF
0xFB00

0xFF00

0xFFFF

Not useable
0xEDFF

0xF7DF

Application and DCAN-RAM
13Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
1.2.4 Entering Self-Programming Mode

After applying the 10 V to V PP and entering Self-Programming mode, the upper ROM-block will be
switched with the hidden-ROM-Area.

Figure 1-5: Memory-configuration after entering SelfProgramming-Mode

From this Hidden-ROM-area, all Self-Programming-functions calls are executed. After the boot-strap
and the code is written, the upper ROM-block contains the new program, so the ROM-blocks are re-
switched to enable the new code. Now the new block1 can be programmed. The below figure shows
this in detail.

Figure 1-6: Detailed description of Flash-Programming

Normal Mode

Hidden ROM

Self-programming Mode

Hidden ROM
FLSPM0 <- 1

FLSPM0 <- 0

Erase
Write
Verify

Subroutine call

Subroutine call
Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EDFF

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EDFF

Lower Block

Upper Block

entering
Self-prog. Mode

leaving

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EDFF

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb

Boot Strap

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb

Boot Strap

B
lo

ck
 0

 B
lo

ck
 1

B
lo

ck
 1

 B
lo

ck
 0

B
lo

ck
 1

 B
lo

ck
 0

B
lo

ck
 0

 B
lo

ck
 1

C
op

y
/ M

od
ify

B
oo

t S
tr

ap

Flash Memory
29,75K bytes

(erasable area)

Boot Strap
Interrupt
14 Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
1.2.5 The Entry-RAM

The Entry-RAM-Area is a pre-defined area with a length of 32 bytes. These bytes contain all data nec-
essary for the firmware-routines and are initialized by the library-call-function SP_Init.
Normally, pre-defined values are stored here by the Init-Function, so the user shouldn’t change them. If
there is a need to change this values, please follow the information provided in this chapter.

Following picture shows the structure of the EntryRAM-Area.

The start-address of the entry-RAM-Area is defined in the API-header file and respective the linker-file.
The important elements in the Entry-RAM are described as follows:

• FlashMemory Start-Address: Here the address takes place, where the Flash-Writing routine starts to
write

• No. of bytes written in flash-memory: This value has to been set to 0x01allways - description of the
ROM-block number where firmware-routines take effect; only the Write-function is here in use of the
number of bytes which will be written (Maximum of 256 bytes in a row).

• WriteTimeData1: This value is following the formula:

The time the ROM-cells are written is declared in this cell.

Example for frequency of 8 MHz:

• EraseTimeData(1-3): These three values are calculated by the assumption, that in a first try, the
erasing of ROM should take 2 seconds of time; if the first erase wasn’t successful, the erase-time
will be changed to a value about 0.25 seconds and the block will be erased with this time-quanta
again, until the whole ROM is erased.

struct ERAM
{
 unsigned char _Reserved1;
 unsigned char _Reserved2;
 unsigned int _FlashMemStartAdr;
 unsigned int _Reserved3;
 unsigned char _ByteInFlash_BlockNo;
 unsigned char _WriteTimeData1;
 unsigned char _EraseTimeData1;
 unsigned char _EraseTimeData2;
 unsigned char _EraseTimeData3;
 unsigned char _ConvTimeData1;
 unsigned char _ConvTimeData2;
 unsigned char _ConvTimeData3;
 unsigned int _WrDatStorStartAdr;
 unsigned int _RAMRoutStartAdr;
 unsigned int _FlashSwapRetAdr;
 unsigned char _IntervTimeData1;
 unsigned char _Reserved4[11];
};

Operating frequency WriteTimeData1(dec.) Write-Time
8 MHz 200 50 µsec.

WriteTime WriteTimeData1 2×() OperatingFrequency()⁄=
15Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
For two seconds erasing, the three values are defined as 0xF5, 0xB, 0x5 at 8 MHz following the formula

The values for TimeData2 and TimeData3 should be left as they are.
Example for Erase-Times of 2 and 0.25 seconds@8 MHz:

• ConvTimeData(1-3): The ConversionTimeData defines a value in milliseconds, how long a Flash-
cell has to be re-written after an over-Erase has occured.This time the over-erased cells are written-
back. A normal time quanta for this matter is about 10ms. This is created by ConvTimeData2 =
0x08, ConvTimeData3 = 0x03 or 0x01 and for 8MHz with ConvTimeData1 = 0x9D following the
equation

The conversion-Time results in 10 msec.
Example for Conversion-Times of 50 and 10 msec with OP-frequency of 8 MHz:

• WriteData StoragBuffer StartAddress: These two bytes define the starting-address, of a RAM
buffer. The RAM buffer is used to stocks data for writing into the upper Flash-block and for verifying.

• RAM-routine StartAddress: These two bytes contain the address where the user-program is
located. It is called while the RTSF-function in ROM-programming is enabled.

• FlashSwap ReturnAddress: These cells contain the address, where after the FlashSwap the new
start-Vector of the new program-area is located.

• ReturnInterval TimeData1: This value adjusts the interval the RTSF-support function is called
depending on the external connected frequency. The ReturnIntervalTime is calculated by the for-
mula:

Example for 512 µsec that secures a RTSF-call of less than 1.024 msec.

Return-Interval Time:

OP-Freq. EraseTimeD1 (dec.) EraseTimeD2 (dec.) EraseTimeD3 (dec.) Erase-Time
8 MHz 245 11 5 2.007 sec.

244 8 5 0.250 sec.

OP-Freq. ConvTimeD1 (dec.) ConvTimeD2 (dec.) ConvTimeD3 (dec.) Conv.-Time

8 MHz 195 8 3 50 msec.
157 8 1 10.05 msec

OP-Frequency ReturnIntTime Data1 (dec.) Return Interval-Time

8 MHz 16 0.512 msec.

EraseTime EraseTimeData1 2

EraseTimeData2 EraseTimeData3+()
OperatingFrequency

--
×=

ConversionTime ConvTimeData1 2

ConvTimedata2 ConvTimeData3+
OperatingFrequency

×=

ReturnIntervalTime ReturnIntervalTimeData1 2×() OperatingFrequency()⁄=
16 Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
To write this data by user-program, a pointer has to be defined (e.g. pointer_ERAM), which will be
anchored to an array located at the pre-defined EntryRAM-address (e.g. array_ERAM).
If the erase-time values from the first try to the repeated try should be changed, following syntax will do
this for example:

The pointer is linked to the array-structure, then the needed ER-values are set.

Following drawing will show sample values for the single function-times. These values are still prelimi-
nary and are intended to be changed. Besides, these values will give intentions for typical times,
changes to upper- or lower-bonds will be possible.

Figure 1-7: Sample time-slices for SP-Routines

The functions used in the Flash-Self-Programming-library to interface the Self-Programming firmware
are shown below.

pointer_ERAM = &array_ERAM;
(...)
pointer_ERAM ->_EraseTimeData1 = RepeEraseTimeData1; // sets the erase-time to shorter
 cycle to prevent
pointer_ERAM ->_EraseTimeData2 = RepeEraseTimeData2; // flash-cells from stressing!
pointer_ERAM ->_EraseTimeData3 = RepeEraseTimeData3;
17Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
1.2.6 Functions in the Self-Programming library

This five functions provide all features to do a Secure Self-Programming of the complete Flash-Area.

Figure 1-8: Functions of Self-Programming

Their functionality will be described later on in this user-manual.

1.2.7 Secure Self-Programming

To guarantee secure Flash Self-Programming, independent from e.g. loss of programming-voltage or
loss of device voltage during programming or during switch of the upper- and the lower mem-block, a
special function is designed to get at least one memory-block active after RESET.

Figure 1-9: RESET-execution and boot-signature-recognition

U ser S oftw are

SP_Init SP_Erase

SP_
Area

Verify

SP_
Write

SP_
Swap

S e l f - p r o g r a m m i n g F i r m w a r e

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EDFF

Flash Exchang
 Mode

Code executable
RAM: 1,5Kbytes

Hidden
ROM

Flash Memory
30,00K bytes

Flash Memory
30,00K bytes

(erasable area)

Boot
ROM

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EEFF

7800

Signature

Signature

Destroy
Signature

Write
Signature

RESE

Read
Signature

Select Boot Block

RESET
 Mode

Boot Strap

Boot Strap
Interrupt
18 Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
A signature is located on the upper-side of each Flash-block. This signature is written active or non-
active, depending on the status the block should have.
The block with the written signature is automatically the lower block. In unfavourable circumstances
e.g. voltage drop, the signature of the upper Flash-block might be written and the one of the lower block
might not be destroyed.
After RESET, randomly one of the two blocks may be recognized as valid. In this case, the user must
prepare his software to recognize whether the original or the new programmed block is containing the
actual code

1.2.8 RTSF-Support

The RTSF (so called RealTimeSupportFunction)-support gives the user the possibility to let real time
functions like watchdog timer, network management communications or other run while the Self-Pro-
gramming functions are in use.
To start the RTSF-support by calling the Self-Programming-library-functions, a RTSF-value unequal to
0x0000, equivalent to the start-address of the RTSF-user-function in RAM must be set. This will call the
RTSF-function which will set this start-address of the RTSF-user-support-function into the Entry-RAM-
Area. For RTSF-usage, a dedicated Area form 0xF000 to max. 0xF5FF in RAM is reserved. The user
must define this Area in his.xcl-link-file and has to copy the RTSF-user-function into RAM by himself.
While calling the Self-Programming-routines, in non-equidistant steps lower than 1msec. the support-
function is called without halting the Self-Programming-routines.

Figure 1-10: Outline of RealTimeSupportFunction

Nevertheless, it is not dangerous to call user-support-functions probably running longer than the execu-
tion-interval of the Self-Programming-function. The SP-function is stopped after the execution-interval
is ended without any respect to the RTSF-user-function-duration.
Using this feature, no long-durating user-RTSF-support-function can disturb the running SP-proce-
dures.

The user-function resides in the Area from 0xF000 to max. 0xF5FF, equivalent to 1.5 KByte of RAM.
This Area must be allocated by the user for RTSF-support.

Hidden
ROM

Enter
SP-Mode
FLSPM0<- 1

Erase
Write
Verify

Code executable
RAM: 1,5Kbytes

Flash Memory
29,75K bytes

Boot Strap
Interrupt

Flash Memory
29,75K bytes

(erasable area)

Internal RAM inkl.
SFR: 1,0Kbytes

CAN RAM: 0,5 Kb
F600

F000

7700

EDFF

STOP

Call User Routine

Return

SW
Loop
<1ms
19Preliminary User’s Manual U14879EE1V0UM00

Chapter 1 Introduction
As a general overview, the whole procedure of Self-Programming is shown in the following diagram;
please use this as template for all Self-Programming purposes!

Figure 1-11: Complete Self-Programming procedure

Call Firmware Subroutine

Start of
Self Programming

Start of
Self Programming

Branch to lower
flash block / RAM

Disable Interrupts

Select Self Programming Mode

Enable Vpp Voltage

Prepare Parameters

Vpp = 10V?

Vpp = 0V?

Select Normal Operating Mode

End of self
 programming

����������������������������������
����������������������������������
����������������������������������
����������������������������������

Hidden ROM
- Erase/Blank check

 /Write/Verify

Disable Vpp Voltage

N

Y

N

Y

:User program
 (Boot area)

��������
�������� :Hidden ROM

:User program

Application Program

��������
��������

:User Program
 (RTSF)

�����������������������
�����������������������RTSF

������������������������
������������������������RTSF

������������������������
������������������������

RTSF

���
���
���Copy Code to RAM

(only if RTSF used)
 <1ms
20 Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software

2.1 Memory-demands

2.1.1 Setup the RAM-mapping

As described before in this document, the RAM-usage has to be canalized for using all features of the
Flash-SelfProgramming routines. Some constant memory-layouts are necessary as follows:
An area with a length of 32 Bytes, containing the EntryRAM
The Write Data Storage-Buffer with a defined length of 256 Bytes
The Stack Area, length approximately 40 Byte
The User-Code Area with a max. length of 1.5 KByte, defined from 0xF000 to max. 0xF5FF.

2.1.2 Linker-configuration

In the IAR-workbench the linker-file (xy.xcl) defines the needed areas.
A sample linker-file configuration is shown below:

Figure 2-1: Sample-header-file with mem-configuration

The user-code area is fixed to location F000 to max. F5FF, the Entry-RAM-Area is defined from FE21 to
FE43, resulting in a length of 32 bytes, the Read-Buffer is defined from F6E0 to F7DF, resulting in a
length of 256 Byte.

//---
// -LINK.XCL-
//
// XLINK command file to be used with the 78000 Embedded Workbench
// using procesor option -v1 memory model option -ms or -mS
//
//--
// Archived: $Revision: 1.1 $
// (c) Copyright IAR Systems 199
//--

//--
// changes for Secure SelfProgramming
// (C) NEC Electronics (Germany) GmbH 2000
//--

//--
// Define CPU.
//--
-c78000

//--
// Define all user-specific RAM-areas for Secure SelfProgrammin
//--

-Z(DATA)ucode=F000-F5FF // Area to write user-code in RAM
-Z(DATA)MySegER=FE21-FE43 // RAM-segment for Entry-RAM (32byte)
-Z(DATA)MySegRB=F6E0-F7DF // RAM-Buffer Segment (here 256Byte)

// ! reduces the DCAN t
// ! 12 Receive-Buffers
21Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.1.3 Resulting memory-layout

By allocating the needed segments above, the following Self-Programming memory-layout is gener-
ated:

Figure 2-2: Memory-outline using SP-settings

2.2 Prepare Self-Programming

This chapter will describe the conditions to get a full running system with Self-Programming.

2.2.1 Pre-conditions

To get the Software running, the following should be defined before starting programming.

Is there need of a User-function, that provides the ability of Real-Time Support?
If this function is needed, define the approximate length of the program that will reside in the memory-
Area from 0xF000 to 0xF5FF.

Which protocol should responsible to get the data to program from outside into the chip?
Define the protocol, using e.g. UART, CSI, CAN.

Where should the incoming data be stored?
Make sure, that there is at least one RAM-area defined with a maximum length of 256 bytes, where the
incoming data can be stored, until it will be written by library-calls into the Flash, so that new data can
be acquired.

Where should the Entry-RAM-Area reside?
Make sure that an Area in RAM with a length of 32 bytes is reserved, so the data necessary for the
Self-Programming-mechanism can be stored.

General Register
32 x 8Bit

Special Function Register
256 x 8Bit

Internal high-speed RAM
1024 x 8Bit

Internal Flash ROM
Block 0

Internal Flash ROM
Block 1

NOT Useable

LC-Display RAM
28 x 4Bit

NOT Useable

0x0000

0x76FF

0xEDFF
0xF000

0xF5FF
0xF600

0xFA63
0xFA64

0xFA7F
0xFA80

0xFAFF
0xFB00

0xFF00

0xFFFF

User-Area, Expans. RAM
1.5 kByte

Entry-RAM
Area

Read Buffer Storage Data
0xF7DF
22 Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.3 Application Programming Interface Functions

2.3.1 Standardized Input- and Output-parameters

All functions will use very similar In- and Out-Parameters, which will be described as follows.

Input-Parameters

• RTSF-Parameter
The input-parameter used in every function is the _RTSF-variable.

If this variable is set to 0x0000 while calling the depending SP-library-function, no user-RTSF-
function will be called while making the SelfProgramming-function.

Otherwise, if there is need of the RTSF-Function, the starting-address of this user-function has to be
defined in the function-call; usually, this will define address in the range from 0xF000 to max. 0xF5FF

• SPWriteStartAddress
This variable is used by the Write-function and defines the target-address in the upper Flash-ROM-
block, where writing data from the RAM-buffer is started; any value from 0x7800 onwards to 0xEE00
minus SPNoByte is valid.

• SPNoByte
For the Write-Function, this value defines the number of bytes to be written into the Flash-Memory
starting from SPWriteStartAdr onwards. Valid values are from 1 to 256.

• SPBuffStartAddress
Defines the Start-address of the RAM-buffer. This RAM-buffer contains the data for the write-routine
and is used by the Area_Verify-routine, too.

• SwapRetAdr
This address defines the starting-address of the new program, which will be called after the upper and
the lower block were swapped; please remember that this must not be the address the microcontroller
jumps to after executing the RESET-procedure.
While the Swap is executed, the signature of the upper block is written and the signature of the lower
block is destroyed, so that after a RESET-Function is released, the old upper-block retains his new
lower-position and the new program is executed by taking the new start-vector at address 0000.
23Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
Output-Parameter

Error-Flag
All functions will return the same parameter, but with different values. The different values are worked
within the SP-library, but errors, which are not re-workable will be directed to the calling program. The
error-codes are listed in the following:

Figure 2-3: Return-Error-Messages

Following, a short description of the error-messages follows:

• Parameter-Error: This error is defined, if some of the values, defined in the Entry-RAM-Area, are not
compatible to the function-execution, e.g. Block-No != 1 or write 20 Bytes to 0xEDF0.

• Verify-Error: This error is defined when internal verification of written data is not executed correctly.

• Write-Error: If the data from RAM to Flash-ROM cannot be written correctly, this error will be shown.

• OverErase-Error: This error is returned if any cell is overerased. This could happen in following
cases:
- erasing takes too long
- erased cells are erased again
- cells, programmed with FF, (equals to never programmed), are erased.

The last two cases can be avoided by using the prewrite-function before each erase-function call.
Depending of the over-erase status of the cell, an over-erase error could be corrected by using the
WriteBack-function.

• BlankCheck-Error: If the internal Blank-Check finds non-blank memory-cells, this error-code is gen-
erated.

• No error: No error is encountered.
24 Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.3.2 SP_Init

Figure 2-4: Header of Function SP_Init

Like described in the above picture, the In- and Out-Parameters are as follows:

The function calls several firmware-routines to initialise and check the EntryRAM. If a RealTimeSup-
portFunction is requested by the input-parameter, the RTSF-function is automatically called within the
used firmware-routines.
Default values out of the Firmware-ROM, that are based on an 8MHz clock are written into the Entry-
RAM-Area. These are 50 µsec, 2 sec and 10 msec for the three parameters write-, erase- and conver-
sion-time.
After setting these values and testing if the settings are in a defined range, a return-value is created and
the function is ended.
If the values written by the SP_Init-function doesn’t fit into users need, they must be rewritten manually.
With the given start-address and the offset from chapter “The Entry-RAM” o n page7, all recent values
can be changed.
The Start-Address of Entry-RAM must be defined in the.xcl-file, because all library-functions use this
address to get data out of the Entry-RAM and start the Flash-Programming!

The following table shows an example for an Init-routine.

This can be done, if the standardized values, written into the Entry-RAM by the library-Initilization, don’t
fit into the users special needs.

Input-parameters: _RTSF_Adr: 0x0000 when no RTSF-support is needed

output-parameters: RB3_B: error-code stored in register B of Bank 3

er->_ByteInFlash_BlockNo = BlockNo; // init BlNo / No of Byte in Flash
er->_WriteTimeData1 = WriteTimeData1; // init Time to write Data
er->_EraseTimeData1 = FirstEraseTimeData1; // init Erase Time Data in three
er->_EraseTimeData2 = FirstEraseTimeData2; // vars
er->_EraseTimeData3 = FirstEraseTimeData3;
er->_ConvTimeData1 = FirstConvTimeData1; // init conversion Time data in
er->_ConvTimeData2 = FirstConvTimeData2; // three vars
er->_ConvTimeData3 = FirstConvTimeData3;
25Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.3.3 SP_Erase

Figure 2-5: Header-file of Erase-function

The Erase-function is the most complex function of the library-set. The only input-parameter needed is
the RTSF-usage-value.

The output-parameter will give information about the status of Flash-block-Erasing. Between the calling
and the ending of the erase-function, several options are calculated in the Erase-function itself. A short
overview should give the user an introduction what the Erase-function will do internal:
First of all, a blank-Check is done to determine, whether the ROM-block to be flashed is already empty
or not.
If the Area is blank, the erase-function is finished with no-error. If there are non-blanked cells, the Pre-
Writing of the area is initiated. This Pre-Writing should preserve the ROM-Area from OverErase-Errors
by writing 0x00 to all cells.
After this Pre-Write is done, the full upper ROM-Area will be erased. To get a fast time for erasing and a

minimum stress for the flash-block the erasing is done in an iterative way. Between each step, an
erase-success is checked by a blank-check.

While the first Erase-cycle is not successful, the writing-parameters are changed to the shorter repeti-
tive values to start the next erase-iteration.

Input-parameters: _RTSF_Adr: 0x0000 when no RTSF-support is needed
Output-parameters: RB3_B: error-code stored in register B of Bank 3

Type of Erasing internal SP-lib. Variable-Name Time-quanta
Initial Erasing FirstEraseTimeData(1..3) apr. 2 sec
Repeated Erasing RepeEraseTimeData(1..3) apr. 0.25 sec

Type of Erasing internal SP-lib. Variable-Name Time-quanta
Initial Erasing FirstEraseTimeData(1..3) apr. 2 sec
Repeated Erasing RepeEraseTimeData(1..3) apr. 0.25 sec

Max Erasing - 30 sec
26 Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
In case of OverErasing, the SP_Erase-subroutine will write-Back the FlashROM. This means, that the
write-back-function tries to repair the over-erased cell by kind of special writing.
The SP_Erase-function will be ended either by successful Blank-Check or reaching the maximum
erase- or conversion-time. By reaching the maximum times an error-code is returned.

2.3.4 SP_Write

Figure 2-6: API-Header for SP_Write

As described in the above header-file, this function uses more than just the RTSF-input-parameters:

The SP_Write-function fetches data from pre-defined RAM-area and writes it into the upper Flash-Block
at starting address, defined while the function is called.
If the RTSF-support is requested, the start-address of the RTSF-support-function is written to the
according Entry-RAM-Bytes.
With the input-parameters, the EntryRAM-values Flash Memory Start-Address, No. of bytes written in
flash-memory and WriteData_StoragBuffer_StartAddress are declared.

The write-Time, used for the write-in of data, is calculated as described in the following formula:

With an operating-Frequency of 8 MHz and a Data1 of 200, the basic WriteTime will amount to 50 µsec.

Input-parameters: output-parameters:

SP_WriteStartAddress: Sets address where in
ROM data-writing should be started

RB3_B: error-code stored in register B of Bank 3

Write-error: Writing to at least one bit was not successful.
Parameter Error: WriteStartAdr + SPNoByte exceeds write-
able Flash-Area

SPNoByte: Defines the number of Bytes to write
in ROM

SPBuffStartAdr: Declares the start-address
where data in RAM resides

 _RTSF_Adr: 0x0000 when no RTSF-support is
needed

WriteTime WriteTimeData1 2×() OperatingFrequency()⁄=
27Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.3.5 SP_AreaVerify

Figure 2-7: API-header for the SP_AreaVerify-Function

The Verify-function needs also more than one calling-parameter. The ROM-address, where the temp-
data will be written to, is still defined.

The parameters are listed in the following table:

The verification of the whole Flash-Area is done by this function. The input-parameter SP_BuffStartAdr
is copied into EntryRAM-Area to the WriteDataStorageStartAdr.
The firmware-routine does a byte-to-byte-compare of the whole Flash-block in 256-Byte-steps. There-
fore, the RAM-buffer is used to copy the data out of the Flash into the RAM and do the comparison. If
the check wasn’t successful, an error is generated and the test is ended.
Please take care, that the writing of the data and the AreaVerify shouldn’t go apart to long. A successful
test will guarantee a data-security of 10 years.

Input-parameters: output-parameters:
SP_BuffStartAdr: Sets address of RAM-buffer
where temporarily data is stored

RB3_B: error-code stored in register B of Bank 3

_RTSF_Adr: 0x0000 when no RTSF-support is
needed
28 Preliminary User’s Manual U14879EE1V0UM00

Chapter 2 Software
2.3.6 SP_Swap

Figure 2-8: Header-file of SP_Swap-function

The Swap-function should be called after all needed data is written from RAM to Flash, so a full-fea-
tured program is located in the upper memory-block. This following, the upper- and the lower block must
be switched, so the former lower-block can be erased and written to access the whole Flash-ROM-
Area.

If the Swap is executed, the program counter is set to the SwapReturnAddress at leaving the firmware-
routine. The starting-address of the related program should be located here.
In case of error while executing the Swap-function (e.g. losing the VPP), following figure declares, which
ROM-block will actual be the upper ROM-block:

Figure 2-9: Different effects of Swap-routine

Input-parameters: output-parameters:

SwapRetAdr: Sets address where program coun-
ter after swap has to point to

RB3_B: error-code stored in register B of Bank 3

_RTSF_Adr: 0x0000 when no RTSF-support is
needed

Swap-function execution

old upper Flash-block
is new code-Flash-block

Swap withou
any erro

old block
=

new block

Error occurs whil
executing Swap-
routine

p h y s . b lo c k
1 w i l l b e

b o o t - b lo c k

Error before
changing
the signature

error between
setting new sig-
nature and des-
troing old one
29Preliminary User’s Manual U14879EE1V0UM00

[MEMO]
30 Preliminary User’s Manual U14879EE1V0UM00

Appendix A Example-programming-sequence

To guide the user by programming the Flash-Device with the on-chip Secure Self-Programming, a sam-
ple programming-sequence is shown.
First of all, the linker-file should be configured to specify the used RAM and Flash-Areas.

Figure A-1: Example for Linker-file in IAR-workbench

The used linker-file defines following Areas:

• Ucode: Area, where the User-code used for the RTSF-support-function will reside. Not only in this
example, this Area should be from 0xF000 to max. 0xF5FF.

• MySegER: Area which includes the Entry-RAM-Area; the example defines this from 0xFE21 to
0xFE43

• MySegRB: This Area resides in RAM and stores the data read by a protocol like CAN. The example
sets this value from 0xF6E0 to 0xF7DF.

• USERCODE: By first programming, this area contains the data that will be copied as RTSF-user-
support function into the Ucode-Area.

• SWAPCODE: This area contains code which can be copied to the Flash and be called after both
Flash-blocks have been swapped.

To complete the example, the non-library-version of the MAIN.c-file is given; here certain values are
defined for the CAN-ASSP3, which should be carried by the user to guarantee Self-Programming-func-
tionality:

//---
// -LINK.XCL
//
// XLINK command file to be used with the 78000 Embedded Workbenc
// using procesor option -v1 memory model option -ms or -mS.
//
//---
// Archived: $Revision: 1.1 $
// (c) Copyright IAR Systems 1997
//---

//---
// changes for Secure SelfProgramming
// (C) NEC Electronics (Germany) GmbH 2000
//---

//---
// Define CPU.
//---
-c78000

//---
// Define all user-specific RAM-areas for Secure SelfProgramming
//---

-Z(DATA)ucode=F000-F5FF // Area to write user-code in RAM
-Z(DATA)MySegER=FE21-FE43 // RAM-segment for Entry-RAM (32byte)
-Z(DATA)MySegRB=F6E0-F7DF // RAM-Buffer Segment (here 256Byte)

//---
// Define all other Self-Programming related stuff
//---

-Z(CODE)USERCODE=4000-45FF // Area where user-code in ROM resides
-Z(CODE)SWAPCODE=4600-4BFF // Area where Code for Swap resides
31Preliminary User’s Manual U14879EE1V0UM00

Figure A-2: Example for Self-Programming MAIN.c-file

The SP_lib.h file is part of the library, the SP_API.h-file is delivered with the library; herein are defined
values which can be changed to fit into users needs.
The used registers should be set in a way like shown above to provide the user with the needed RAM,
Flash and system frequency.
Following this, the Self-Programming functions are called in the described way. Please note, that there
are only 128 bytes copied for this example; that wouldn’t be enough to support further Self-Program-
ming-functions!
32 Preliminary User’s Manual U14879EE1V0UM00

In short terms, the following sequence must be applied:

• Define used system-RAM- and -Flash-Areas

• Use SP_Init to initialize the Entry-RAM-Area with valid values

• Use SP_Erase to erase the upper Flash-Memory-block

• Be sure that the data to be programmed in the formerly blanked Flash-block is located in the RAM-
Buffer

• Call SP_Write to write the data from RAM to Flash

• Get the Verification of the written data with SP_Verify

• Do a Swap using SP_Swap to activate the new written program

• Program the now new upper-block with data from RAM-Buffer with steps described above.

As description, the following flowchart gives an overview how to program the Flash-ROM:
33Preliminary User’s Manual U14879EE1V0UM00

Figure A-3: Sample-Flowchart for complete SP-description

After the declaration is done, the user-program should define a protocol which can carry the data into
the MySegRB-Area in blocks of 256 Byte.
When the area is filled, the Self-Programming mode has to be entered by calling the belonging SP-Rou-
tines.
First, the steps A to E in the above given Flowchart are executed to get a fully programmed upper
Flash-memory-block. With swapping both blocks, the new upper-block can be programmed.
Please remember, that a boot loader, containing the library for Self-Programming, has to be
included in the new-programmed application for future Self-Programming.
34 Preliminary User’s Manual U14879EE1V0UM00

Appendix B Programming with FLASH-MASTER

The following sequence shows the monitor of the flash-master, connected to a PC via any Terminal-pro-
gram:

Figure B-1: Output-sequence of Flash-Master-Software

To run the above shown Flash-Master-sequence, a hex-formatted-file must be generated.
35Preliminary User’s Manual U14879EE1V0UM00

This hexfile is downloaded into the Flash-Master.

Figure B-2: Download of intel-hex-formatted file into the Flash-Master

Than the combined sequence BlankCheck - PreWrite - Erase - (WriteBack) is executed.
After this is finished, a system-RESET has to be done to activate the formerly written program.
36 Preliminary User’s Manual U14879EE1V0UM00

The settings for the device are shown in the last picture:

Figure B-3: Device-Properties

Using this sequence, the device can be programmed with the Flash-Master as easy as with the On-
Chip Secure Self-Programming-functions.
37Preliminary User’s Manual U14879EE1V0UM00

[MEMO]
38 Preliminary User’s Manual U14879EE1V0UM00

Appendix C Revision History

• Documentation

• Self-Programming Library

Version Description
V 1.0 Initial Documentation

Version Description

V 1.0 Initial Library-release
39Preliminary User’s Manual U14879EE1V0UM00

[MEMO]
40 Preliminary User’s Manual U14879EE1V0UM00

Appendix D Related Software

To use the described SelfProgramming-features, the following Software-parts are necessary:

Description Name

Header-file with API-Information SP_API.h
library-file with described library-functions to use with 78F0828b SP_lib.r26
Emulation-library emulator.r26

Device-file for 78F0828b Df0828b.h
Sample Link-file for use with the IAR-workbench SP_Lnk.xc
library with outsourced standard-library-calls SP_l06fit
41Preliminary User’s Manual U14879EE1V0UM00

[MEMO]
42 Preliminary User’s Manual U14879EE1V0UM00

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

	Cover
	Preface
	Table of Contents
	Chapter 1 � Introduction
	1.1 � General topics
	1.2 � Self-Programming on µPD78F0828B
	1.2.1 � Description
	1.2.2 � Control of Vpp
	1.2.3 � Memory-map in Normal-Mode
	1.2.4 � Entering Self-Programming Mode
	1.2.5 � The Entry-RAM
	1.2.6 � Functions in the Self-Programming library
	1.2.7 � Secure Self-Programming
	1.2.8 � RTSF-Support

	Chapter 2 � Software
	2.1 � Memory-demands
	2.1.1 � Setup the RAM-mapping
	2.1.2 � Linker-configuration
	2.1.3 � Resulting memory-layout

	2.2 � Prepare Self-Programming
	2.2.1 � Pre-conditions

	2.3 � Application Programming Interface Functions
	2.3.1 � Standardized Input- and Output-parameters
	2.3.2 � SP_Init
	2.3.3 � SP_Erase
	2.3.4 � SP_Write
	2.3.5 � SP_AreaVerify
	2.3.6 � SP_Swap

	Appendix A � Example-programming-sequence
	Appendix B � Programming with FLASH-MASTER
	Appendix C � Revision History
	Appendix D � Related Software

	List of Figures
	Figure 1-1: � Hardware-environment of Flash-Master
	Figure 1-2: � Layout with Self-Programming
	Figure 1-3: � Outline of Programming-Voltage
	Figure 1-4: � Normal-mode memory-layout
	Figure 1-5: � Memory-configuration after entering SelfProgramming-Mode
	Figure 1-6: � Detailed description of Flash-Programming
	Figure 1-7: � Sample time-slices for SP-Routines
	Figure 1-8: � Functions of Self-Programming
	Figure 1-9: � RESET-execution and boot-signature-recognition
	Figure 1-10: � Outline of RealTimeSupportFunction
	Figure 1-11: � Complete Self-Programming procedure
	Figure 2-1: � Sample-header-file with mem-configuration
	Figure 2-2: � Memory-outline using SP-settings
	Figure 2-3: � Return-Error-Messages
	Figure 2-4: � Header of Function SP_Init
	Figure 2-5: � Header-file of Erase-function
	Figure 2-6: � API-Header for SP_Write
	Figure 2-7: � API-header for the SP_AreaVerify-Function
	Figure 2-8: � Header-file of SP_Swap-funciton
	Figure 2-9: � Different effects of Swap-routine
	Figure A-1: � Example for Linker-file in IAR-workbench
	Figure A-2: � Example for Self-Programming MAIN.c-file
	Figure A-3: � Sample-Flowchart for complete SP-description
	Figure B-1: � Output-sequence of Flash-Master-Software
	Figure B-2: � Download of intel-hex-formatted file into the Flash-Master
	Figure B-3: � Device-Properties

