
Jalapeno – Decentralized Grid Computing
using Peer-to-Peer Technology

NIKLAS THERNING

M aster's Thesis
Com puter Science and Engineering Program
CHA LM ERS U NIVERSITY O F TECHN OLOGY
Departm ent of Com puter Engineering
G öteborg 2003

All rights reserved. This publication is protected by law in accordance with
“Lagen om Upphovsrätt, 1960:729”. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of the authors.

c© Niklas Therning, Göteborg 2003.

Abstract

This report presents the Jalapeno grid computing system. Jalapeno is imple-
mented using the Java programming language and uses peer-to-peer technology
provided by the Project JXTA protocols. Project JXTA defines a set of com-
munication protocols allowing any network connected device to communicate in
a peer-to-peer manner.

The system consists of manager, worker and task submitter hosts. The task
submitter submits a collection of tasks, called a task bundle, to be processed by
the system to a randomly chosen manager. The manager splits the bundle into
a set of new, smaller bundles which are forwarded to equally many, randomly
chosen, other managers which repeat the process. Each manager have a small
(<100) number of connected workers. During task bundle splitting the manager
will, depending on its current load, reserve a number of tasks to be processed
by its workers. Workers return the results to their managers which will send
them to the task submitter.

The system is self configuring: hosts volunteering their computing power
will at first become workers only but will eventually become managers if they
can not find and connect to another manager within a certain time. The system
offers a framework for the development of applications solving embarrassingly
parallel type of problems but can also be used for other kinds of problems. The
framework automatically splits the problem into smaller sub-problems to be
distributed to workers. Furthermore, the system makes it extremely easy for
users to participate and volunteer their computing power through the use of
Sun’s Java Web Start technology.

Keywords: JXTA, P2P, peer-to-peer, grid computing, distributed computing,
distributed systems.

Sammanfattning

I denna rapport presenteras resultatet av detta examensarbete, grid-systemet
Jalapeno. Jalapeno har implementerats i Java och utnyttjar peer-to-peer-teknologi
utvecklad av Project JXTA. De kommunikationsprotokoll som definierats av
Project JXTA till̊ater i princip alla typer av datorliknande maskiner med en
Internet-uppkoppling att delta i ett peer-to-peer-nätverk.

Jalapeno-systemet best̊ar av hanterare, arbetare och beräkningsbeställare.
Beställaren skickar en samling beräkningar, som skall utföras av systemet till
en slumpvis utvald hanterare. Hanteraren delar upp samlingen i ett antal nya,
mindre samlingar vilka vidarebefordras till ett antal andra, ocks̊a de slumpvis
utvalda, hanterare. Varje hanterare hanterar ett litet antal (<100) arbetare. Un-
der uppdelningen av en samling av beräkningar i mindre delar kan hanteraren,
beroende p̊a hur pass belastad den är, reservera ett antal beräkningar åt sina
arbetare. Arbetaren skickar resultatet av en beräkning till sin hanterare som
vidarebefordrar resultatet till beställaren.

Systemet är självkonfigurerande: nya värdar som deltar i systemet blir till
en början arbetare men kan, efter en viss tid, komma att bli hanterare om ingen
annan hanterare finns tillgänglig. Vidare erbjuder systemet ett programmerings-
gränssnitt som förenklar utvecklandet av applikationer som löser problem vilka
kan delas upp i mindre, oberoende delproblem. Med hjälp av detta programmer-
ingsgränssnitt kan problemet automatiskt delas upp i delproblem. Systemet kan
även användas för att lösa andra typer av problem. Slutligen utnyttjar Jalapeno
Suns Java Web Start-teknologi vilket gör det extremt enkelt för datoranvändare
att delta i systemet.

Nyckelord: JXTA, P2P, peer-to-peer, grid computing, distribuerade beräkningar,
distribuerade system.

Preface

The work presented in this report is the result of a Master of Science thesis
project in Computer Science and Engineering at the department of Computer
Engineering, Chalmers University of Technology, Gothenburg, Sweden. This
report as well as system implementation documentation, binaries and all the
source code will be made available at http://jalapeno.therning.org.

First of all I would like to thank my supervisor Lars Bengtsson for valuable
help and feedback and the people at the Computer Engineering department for
providing office space and other facilities.

I would also like to express my deepest gratitude to the open-source com-
munity. Without their work on projects such as Linux, the NetBeans Java IDE,
JXTA, LYX, LATEX and of course all the extremely useful Java projects available
from http://jakarta.apache.org this project would never have been possible.

I hope the ideas presented herein will inspire further development.

— Niklas Therning

Gothenburg, Sweden

December, 2003

i

http://jalapeno.therning.org
http://jakarta.apache.org

ii

Contents

Preface i

1 Introduction 1

1.1 Background . 1
1.2 Goals and Limitations . 2

2 Related Work 4

2.1 Programming Models for Parallel Algorithms 4
2.2 Distributed Computing Systems in Research 5
2.3 Distributed Computing Systems in Production Use 7
2.4 Summary of Related Work . 8

3 The Jalapeno Grid Computing System 9

3.1 A Brief Introduction to JXTA . 9
3.2 System Overview . 11
3.3 Implementation . 12

3.3.1 Core Classes . 12
3.3.2 Framework for Embarrassingly Parallel Problems 15
3.3.3 Java Web Start . 17
3.3.4 The User Interface . 17
3.3.5 Protocols . 17

4 Experimental Results 19

4.1 Scalability . 19

5 Conclusions and Discussion 23

5.1 Meeting the Requirements . 23
5.2 Major Contributions . 24
5.3 Problems . 24
5.4 Jalapeno vs. JNGI . 25

5.4.1 Introduction to JNGI . 25
5.4.2 Comparison . 26

6 Future Work 28

6.1 Possible System Enhancements 28
6.2 Further Evaluation . 30
6.3 Porting to J2ME . 30

References 31

iii

Glossary 35

A User’s Manual 36

A.1 General Information . 36
A.2 Launching Jalapeno from the Command Line 36

A.2.1 Installation . 36
A.2.2 Starting the Host Application 37

A.3 Launching Jalapeno using Java Web Start 38
A.4 The User Interface . 39

B Jalapeno Example Application 40

B.1 RC5 – The Main Class . 40
B.2 RC5BundleFactory . 44
B.3 RC5TaskBundle . 45
B.4 RC5Task . 47
B.5 RC5Result . 49

C Used Software 52

iv

Chapter 1

Introduction

This chapter gives a brief introduction to distributed computing. Furthermore
the goals of this project as well as the necessary limitations are presented.

1.1 Background

Computers, whether they are office workstations, home PCs or PDAs, are be-
coming more and more powerful but are still mainly used for tasks requiring
very little computation, such as word processing, leaving their CPUs idle most
of the time. By connecting these computers in a network it is possible to uti-
lize the otherwise wasted CPU time to solve problems in a distributed manner.
The result is a distributed computing system. The definition of a distributed
computing system will in this thesis be: a system providing computing power by
the distribution of work.

Figure 1.1 shows a high-level view of a general distributed computing system
and defines the terminology used throughout this thesis. First, the problem has
to be split into a set of more or less independent tasks which can be run in
parallel. Each worker host receives a task, either directly from the task submitter
or from a manager host acting as task distributor. The worker host executes
the task and finally returns the result of the computation, again either directly
to the task submitter or by use of the manager. The execution of a task may
require direct communication with tasks running on other worker hosts as well
as communication with the task submitter host or manager host.

The lower the computation to communication ratio is the more fine-grained
the problem. Problems requiring no communication at all between tasks (the
computation to communication ratio is infinite) are very coarse-grained and are
also known as embarrassingly parallel problems.

Previous and existing distributed computing systems can be divided into a
number of classes:

• In a NOW (Network of Workstations) the idle time of the workstations
of a small office or university LAN provides computing power. Being on
the same LAN enables the participating hosts to communicate directly
without having to deal with NAT devices and firewalls. Authentication
can be based on the normal login mechanisms used in the network. In
most cases the network consists of a homogeneous set of hosts (all are

1

Manager

Task submitter

Worker 1

Worker 2
Worker 3

Worker n

Figure 1.1: High-level view of a distributed computing system. The task submit-
ter either connects to the workers directly or indirectly through a manager. All
arrows are double-sided to signify that information may flow in both directions.

of the same architecture and run the same operating system) and can be
considered trusted in that they will not try to sabotage the computations
or disclose data to non authorized parties.

• Clusters consist of a large number of low-cost PCs connected by a very
high-speed network. The PCs are used exclusively to provide computing
power and are all of the same architecture and run the same operating
system. This kind of system is a cheap alternative to more expensive
supercomputers. Clusters are more suitable than NOWs for problems
requiring a lot of communication.

• Grids, or grid computing systems, enable the integration of high-speed
computer systems such as super-computers and clusters, networks, databases
and other resources owned and managed by multiple organizations. Grids
often span multiple networks and have to provide secure resource sharing
across organizational boundaries. The vision is a global computing power
grid where computing power is as accessible as the electricity provided by
the electric power grid. In this thesis grid computing refers to systems
sharing mainly raw computing power.

1.2 Goals and Limitations

The goal of this project is to develop a grid computing system based on peer-to-
peer technology. The term peer-to-peer (or P2P) refers to networks not having
a fixed number of clients and servers, but a number of peer hosts that function
as both clients and servers to the other hosts on the network.

A small application run at every host of the system, the host application,
utilizes the idle time of that host’s CPU and provides the computing power. An

2

API provides developers with the facilities needed to develop and deploy general
applications (not limited to embarrassingly parallel problems) for the system.
On top of this API a small framework for embarrassingly parallel problems
should be provided facilitating the development and deployment of this kind of
applications.

Furthermore the system should provide:

Heterogeneity. The network will most likely consist of machines of different
platforms and architectures.

Scalability. The system should be scalable from the size of a small LAN (101

hosts) up to the size of the Internet (106 hosts and more).

Fault-tolerance. Hosts are expected to be joining and leaving the system at
any time thus the system has to be able to deal with host failures.

Security. Tasks should be run in a sand-box environment at the host protecting
the host’s private data and resources.

Anonymity. The task submitter should not need to have login access to indi-
vidual hosts. However, it should be possible to require a user to authen-
ticate to connect to the network.

Being a limited-time project some limitations had to be introduced:

• No measures will be taken to prevent sabotage or cheating.

• No sophisticated load balancing will be implemented which considers the
performance of workers to schedule tasks.

• Economical aspects in assigning tasks to different workers will not be con-
sidered.

• The system will only run on Java-enabled platforms and will require Java
J2SE version 1.4 or higher.

• All communication between hosts will be unencrypted.

• Compiled task code downloaded to workers will be saved on the host’s file
system without being encrypted or protected in any other way.

3

Chapter 2

Related Work

This chapter begins with a short introduction to a number of programming mod-
els for the development of parallel algorithms. The following sections describe
previous and present distributed computing systems related to the work done
in this thesis project.

2.1 Programming Models for Parallel Algorithms

Parallel architectures, whether they are supercomputers, computer clusters,
NOWs or grids, are complicated systems raising the need for abstraction lay-
ers, either hardware based or software based, to ease the software development.
Parallel multiprocessor computers usually have either a MIMD (Multiple In-
struction Multiple Data) or SIMD (Single Instruction Multiple Data) hardware
architecture. MIMD means that each processor can execute a separate stream
of instructions on its own local data. MIMD systems have either a shared mem-
ory common to all processors or a distributed memory where the memory is
distributed among the processors. Distributed memory may be private to each
node or shared, also called DSM (Distributed Shared Memory). SIMD is a spe-
cial case of MIMD in which all processors execute the same instruction stream
on different pieces of data.

Message passing provided by MPI (Message Passing Interface) [38] and PVM
(Parallel Virtual Machine) [39] is widely used in systems like clusters and NOWs.
MPI and PVM provide mechanisms for executing tasks remotely and passing
messages between hosts to coordinate and exchange data. There is a number of
commercial and free MPI and PVM implementations for different architectures
and programming languages available at present.

The BSP (Bulk Synchronous Parallel) [34] model is an abstract model of a
parallel computer aiming at hiding the physical details of the underlying hard-
ware from programs to make them more portable than programs using MPI or
PVM. The BSP model consists of a number of processor-memory pairs. The
pairs are connected in a network. Execution of a BSP application proceeds in
phases called supersteps and all communication between processors takes place
between supersteps. A superstep consists of a number of threads running in
parallel on the processors. The threads only access the local memory until they
reach a synchronization point, or barrier, which ends the superstep. At a bar-

4

rier threads must temporarily pause their execution until all other threads have
reached the barrier. Before the next superstep begins all accesses to the mem-
ory of remote processors take place. BSPlib [29] is a standard C library for
BSP programming available for a variety of architectures. BSPlib has also been
ported to Java [27].

The tuple-space model of Linda [24] is a higher level abstraction of a dis-
tributed shared memory. The tuple-space is a distributed object repository
where running processes may store and retrieve objects. In Linda, processes do
not communicate directly by exchanging messages or sharing variables; instead
they create new data objects (called tuples) and put them in the tuple-space
where they may be accessed by other processes. Sun’s JavaSpaces and IBM’s
TSpaces, both discussed in [18], are Java incarnations of the tuple-space model
found in Linda.

Software based abstractions also include extensions which add new language
elements to popular programming languages, like HPF (High Performance For-
tran) and Cilk [16] (a parallel multi-threaded extension of the C language).

Sun’s RMI (Remote Method Invocation) and OMG’s CORBA (Common Ob-
ject Request Broker Architecture) are more general technologies for distributed
objects and remote method invocation.

2.2 Distributed Computing Systems in Research

The Pirhana system [25] is an example of an early distributed computing sys-
tem utilizing idle cycles of workstations in a LAN. Pirhana uses the tuple-space
model of Linda to achieve interprocess communication. In Pirhana pending
applications are stored in a system tuple-space. Whenever a node becomes
available it selects an application by random from the system tuple-space and
executes it. The most notable problem with the Pirhana implementation de-
scribed in [25] is that it was unable to span multiple networks incorporating
heterogeneous machines.

Cilk-NOW [17] is a runtime system for Cilk applications. All Cilk runtime
systems, including Cilk-NOW, use a provably efficient scheduling algorithm,
called work stealing, which also provides fault tolerance. Whenever a worker in
a system using a work stealing scheduling algorithm runs out of tasks it will,
through some mechanism, steal tasks from other workers. By having faster
workers stealing tasks from slower workers load balancing is achieved. Fault
tolerance is a consequence of the work stealing process because a dysfunctional
worker is nothing but an infinitely slow worker. Work stealing has been used
extensively in other distributed computing systems and is also used in Jalapeno’s
framework for embarrassingly parallel type of problems. This framework will
be further discussed in Chapter 3.

Being a NOW system Cilk-NOW utilized the idle time of workstations in a
LAN and could not provide parallel computing on a global scale. The ATLAS
system was derived from Cilk-NOW and provided global computing through a
combination of Cilk and Java. Scalability was achieved by having a tree-like
hierarchy of managers managing a set of workers and using hierarchical work
stealing which allowed work stealing from workers in different sub-trees. The
ATLAS project seems to have been discontinued.

Like ATLAS Charlotte [15] was one of the first systems to target WANs.

5

Based on the Java platform the system was able to meet some of the added
requirements, such as heterogeneity and security, which a system targeting LANs
does not have to meet. Charlotte used an eager scheduling technique very
similar to the work stealing scheduling used in ATLAS but unlike ATLAS the
Charlotte system used Java applets running in Java-capable web browsers to
execute parallel tasks. Charlotte provided a distributed shared memory type of
programming model similar to the BSP model.

SuperWeb [14], Javelin [22], Bayanihan [37] and Popcorn [21] are all other
examples of distributed computing systems based on Java applets running in
Java-capable web browsers. The SuperWeb and Popcorn projects focused on
the economics of trading computing resources while the focus of the Javelin
project was on supporting various programming models including the Linda
tuple-space model and message passing. The authors of the Bayanihan system
designed mechanisms for preventing sabotage in distributed computing systems
[36] and showed how the BSP programming model could easily be implemented
on top of a system for embarrassingly parallel type of problems.

Because of their use of Java applets these systems are essentially ubiquitous:
the only requirement on the participants is a Java-capable web browser. No soft-
ware installation is necessary and participating is as easy as visiting a web site.
However, being applet based has its drawbacks. Applets run in a very restrictive
runtime environment: they may only open outbound TCP connections to the
web server hosting the applet. This limitation severely limits the scalability of
the system since all communication between workers must be routed through
the web server. This one server may become the single point of failure for the
entire system. Applet based systems also require participants to actively start
the worker applet every time they login to their workstations. In a corporate
network an administrator might want to install workers on a large number of
workstations and have them running even if nobody is using the workstation.
This is not possible with the applet based approach.

Javelin++ [31] and Javelin 2.0 [32] extend the work originated in Javelin by
moving from Java applets to Java applications. These projects examined issues
related to scheduling and scalability. The system architecture of Javelin++ and
Javelin 2.0 was similar to that of Javelin but included a hierarchy of managers
instead of a single manager (the web server) to improve scalability. Some of the
people behind the Javelin projects started the CX [23] project, which seems to
be in active development. In CX the hierarchy of managers is strictly maintained
in a so-called sibling-connected height-balanced fat tree which provides a very
robust network topology tolerating a large number of host failures.

JNGI [41, 7] is a more recent system based on peer-to-peer technology. JNGI
uses software developed by Project JXTA [9, 13] to communicate in a peer-to-
peer fashion. JXTA is also used by Jalapeno and will be further described in
Chapter 3. Since JNGI and Jalapeno are similar in many ways JNGI will be
further discussed in Chapter 5.

Other projects such as ParaWeb [19] and Manta [40] rely either on extensions
to the Java language, modifications of the Java virtual machine or native code
to provide seamless migration of threads and objects to other hosts in a network.
Requiring such extensions and modifications is undesirable because it may have
implications on the platform independence of Java and thus the capability to
cope with the heterogeneity of a global computing environment.

6

2.3 Distributed Computing Systems in Produc-

tion Use

SETI@home [10] and distributed.net [1] are perhaps the two most famous exist-
ing projects which utilize idle Internet-connected computers to solve problems
too hard for any desktop computer to solve on its own. The SETI@home project
analyzes astronomic measurements collected from radio-telescopes in the search
for extra terrestrial intelligent life while the distributed.net project is currently
working on the RSA labs 72-bit secret-key challenge (the 56-bit and 64-bit chal-
lenges were solved in 1997 and in 2002 respectively). Both of these problems
are examples of embarrassingly parallel or very coarse-grained parallel problems
having a very high computation to communication ratio. E.g., a client partici-
pating in the distributed.net project would get an interval of cryptographic keys
to investigate, only a few integers of data, from the server which it would then
need hours or days to work on before sending a negative or positive answer back
to the server. Similar projects have followed, e.g. Folding@home [4] which ana-
lyzes the 3d-structure of proteins to find the cause and cure of different diseases.
All of these projects have a centralized server architecture (though not neces-
sarily a single server), are limited to a single very coarse-grained problem and
rely on the good-will of participants volunteering their computers’ idle cycles.

The Grid MP Global system [5] is a system developed by United Devices
[12] mainly working for non-profit on problems such as finding anti-smallpox
drugs. It is similar to SETI@home and distributed.net sharing their client-server
architecture and reliance on volunteers but it is not limited to a single problem.
Volunteers download and install an application which in turn downloads the
problem to run and the data. The application seems to be available for the
MS Windows operating systems only and the problem code is probably some
kind of compiled Windows binary but this has not been confirmed. Because
of its client-server architecture the Grid MP Global system is still not suitable
for fine-grained parallel problems. United Devices also has systems for building
corporate clusters and NOWs.

Software developed by Entropia [2] powered the first phase of the fight-
AIDS@home [3] research project, a project similar to SETI@home. Entropia
also develops software for building NOWs consisting of PCs running MS Win-
dows.

Globus [11] and Legion [8] are research systems in production use. They are
more general than most of the previously mentioned systems not only focusing
on providing raw computing power. Globus provides a toolkit which is a set of
services for resource allocation and process creation, authentication, monitoring
and discovery, secondary storage access, etc which can be used to develop useful
applications for grids. Legion is an object based virtual computer designed for
millions of hosts connected by high-speed links. Users working on their home
machines see the illusion of a single computer, with access to all kinds of data
and physical resources. Groups of users can construct shared virtual work spaces
to exchange information.

7

2.4 Summary of Related Work

The following list tries to summarize the most important points to be made
from the related work presented above:

• The centralized client-server type of system works well for very coarse-
grained problems like those solved by the SETI@home and distributed.net
systems. For more fine-grained problems, however, some kind of hierar-
chical, decentralized system is needed to achieve scalability on a global
scale. By decentralizing the system it becomes more robust.

• Java has been used extensively in research systems to provide heterogene-
ity but has not yet been put to the test in global projects like SETI@home
or distributed.net.

• Global systems relying on volunteers have to be user friendly. Applets
provide ease of installation but put to big restrictions on the applications
running on the system and inhibit scalability.

8

Chapter 3

The Jalapeno Grid

Computing System

This chapter describes the design of the Jalapeno grid computing system which
is the result of this project. The chapter begins with a short introduction to
Project JXTA which was used to provide Jalapeno with peer-to-peer communi-
cation abilities. The following sections describe how JXTA is used in Jalapeno
and the implementation of the system.

Refer to Appendix A for a detailed user’s manual describing how to run the
Jalapeno host application. Application programmers will find an example of an
application developed for the Jalapeno platform in Appendix B.

3.1 A Brief Introduction to JXTA

Project JXTA [9], pronounced juxtapose or juxta, defines a set of XML-based
protocols allowing any network connected device, ranging from cellphones to
servers, to communicate in a peer-to-peer manner. JXTA hosts create a vir-
tual network where any host may communicate directly with any other host
regardless of firewalls and NAT devices as shown in Figure 3.1.

The basic building blocks of a JXTA network are peers and peer groups.
Peers are the individual hosts comprising the network and are grouped into
peer groups. Peer groups may have a membership policy disallowing peers with
insufficient credentials to join the group. By default all peers automatically
become members of the Net Peer Group.

Peers use pipes, which may be of unicast, bi-directional or broadcast type, to
communicate with each other. By having many peers in a peer group listening
on the same pipe redundancy may be achieved.

The JXTA protocols define how peers discover other peers or network re-
sources, how network resources are advertised and how messages, used by peers
to communicate, are routed. When a peer joins a peer group it automatically
seeks a rendezvous peer for that group or dynamically becomes one if none is
found. A rendezvous peer is like any other peer but also forwards discovery
requests to help other peers discover resources.

For a peer behind a NAT device to be reachable by peers outside the private
LAN it has to register with a relay peer. The relay peer temporarily stores

9

Relay
peer

JXTA virtual network

Physical network

firewall only allowing
HTTP traffic

Public LAN behind Private LAN
behind NAT

device

Firewall

Peer

Peer Peer

PeerPeer
PeerPeer

Figure 3.1: The JXTA virtual network. Double-sided arrows are used when di-
rect connections can be initiated by both sides. One-sided arrows are used when
only one side may setup a connection. Dashed lines are used when connections
must use HTTP to traverse firewalls. The virtual network creates the illusion
that all peers are able to communicate directly with any other peer.

messages destined for the peer which, periodically, connects to the relay peer
and downloads any new messages.

Firewalls which only allow HTTP traffic may be traversed by configuring
JXTA to use HTTP instead of raw TCP/IP connections.

There are currently six JXTA protocols [13]:

• The Peer Discovery Protocol is used by peers to advertise and discover
resources such as peer groups, pipes, etc. Resources are described using
XML-based advertisements.

• The Peer Information Protocol is used by peers to retrieve status infor-
mation, such as uptime, from other peers.

• The Peer Resolver Protocol enables peers to send generic queries to other
peers within a peer group and receive responses.

• The Pipe Binding Protocol is used to establish pipes between one or more
peers.

• The Endpoint Routing Protocol is used by peers to find routes to desti-
nation ports on other peers.

• The Rendezvous Protocol is used by peers to register with a rendezvous
peer. This protocol is used by the Peer Resolver Protocol and the Pipe
Binding Protocol to propagate messages throughout the network.

For more detailed information about JXTA see [13, 33, 42].
The project JXTA web site [9] provides Java (J2SE and J2ME) implemen-

tations of the protocols as well as C, Perl and PocketPC implementations. The
Jalapeno system uses the Java J2SE implementation.

10

3.2 System Overview

The Jalapeno system design follows the general description of a distributed
computing system as described in Section 1.1, comprising manager peers, worker
peers and task submitter peers. Each host may have one or more of these roles.
Figure 3.2 shows the structure of a Jalapeno network. To achieve high scalability
the system consists of many managers, each managing a small set of workers
(<100). Each manager form a peer group which its workers have to join. Within
this worker peer group workers may communicate directly with other workers
or the manager.

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker
Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Workers may
communicate

directlyWorker groups

The Jalapeno base group

Figure 3.2: The Jalapeno grid computing system.

Initially every host starts a worker peer only. The worker starts to search for
available manager peers. When a manager is found the worker tries to connect
to it. Managers may only have a limited number of connected workers and will
reject any new workers when this limit has been reached. Accepted workers will
join the worker group created by the manager and start executing tasks.

If a worker is unable to connect to a manager within a certain time it will
start a new manager peer on the local host and connect to it. This makes
the system self-configuring and self-healing and provides reliability. The first
host will automatically become a manager after some time and start to accept
worker peers. New groups of workers will appear spontaneously as new hosts
join the network. When a manager becomes unavailable its workers will either
find other managers to connect to or become managers themselves and start
accepting workers.

To use Jalapeno to solve a problem the task submitter submits a task bun-
dle, a collection of tasks, to a randomly chosen manager as in Figure 3.3. The
manager splits the received bundle into a number of smaller bundles. Managers
keep a limited set of bundles from which tasks are extracted and handed to the
connected workers. If the set of current bundles is not full the manager will
reserve one bundle during the splitting process to be executed by its connected
workers. The rest of the bundles will be forwarded to a number of other, ran-
domly chosen, managers which repeat the process. Bundles which could not be
executed nor forwarded are returned to the task submitter. All bundles sub-

11

mitted to the system include a unique id which the managers use to identify
all previously received bundles. Already processed bundles will be rejected to
prevent loops during the forwarding process.

When a worker finishes a task it will return the result to its manager which
in turn will forward the result to the task submitter.

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker
Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Task submitter

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker
Manager

Worker
Worker Worker

Worker

WorkerWorker

Worker

A

B C

GFED

[1...1000]
[201...262]

[263...325]

[551...1000]

[326...550]

[101...550]

[826...1000][651...825][101...325]

Figure 3.3: The task submission process illustrating how 1000 tasks (the bun-
dle [1...1000]) are distributed throughout a system consisting of seven worker
groups. Managers A, C and D reserve 100 tasks to be processed by their work-
ers. Manager B is unable to reserve any tasks while manager E, F and G have
enough capacity to process all tasks in the bundles sent to them. Manager D can
not find any manager to forward the split off bundles to. Instead, the bundles
are returned to the task submitter.

3.3 Implementation

Jalapeno is implemented using the Java programming language. By using Java
many of the system requirements presented in Section 1.2 are met. The platform
independence of Java makes it ideal for heterogeneous systems. Furthermore,
Java has built-in support for preventing executing code to access private data
and resources on the host system. The built-in support for object serialization
makes it easy to transfer code and data between hosts in a network.

Java applications have a reputation of lagging in performance compared to
applications written in languages such as C/C++ and Fortran and compiled for
the target machine architecture. This has certainly been true in the past but
recent advances in just-in-time (JIT) and adaptive compilation techniques in
Java virtual machines make Java increasingly competitive [30, 26].

3.3.1 Core Classes

The implementation is centered around a number of core classes which will be
described in the following subsections. The documentation of all classes and
interfaces are available online at http://jalapeno.therning.org.

12

http://jalapeno.therning.org

org.therning.jalapeno.Jalapeno

The org.therning.jalapeno.Jalapeno class is used to configure the system
and launch worker and manager peers and start the web based user interface.
User-defined configuration options are loaded from the file system. Furthermore
it initializes JXTA and joins the default peer group which is the base group of
worker, manager and task submitter peers.

The Jalapeno class is also the entry point of the Jalapeno host applica-
tion. When the host application starts it will create and launch a new org.

therning.jalapeno.worker.Worker instance. Appendix A contains a user’s
manual which further describes how the host application is invoked and config-
ured.

org.therning.jalapeno.worker.Worker

The org.therning.jalapeno.worker.Worker class implements the worker func-
tionality. When the host application is started a new Worker instance will be
created and executed in a separate thread.

As described above the worker begins by searching for an available man-
ager peer. When connected to a manager the worker queries the manager
periodically for a new task. The tasks are Java objects implementing the
org.therning.jalapeno.task.Task interface. Task objects are created by the
manager, serialized and then transmitted as streams of bytes to the workers.
The worker recreates the task object from the byte-stream and executes it in a
separate thread by invoking the task’s run method. While the task is running
the main worker thread periodically sends a heartbeat message to the manager
to let it know it is still alive. It also periodically checks if the result of the task
being executed already has been returned to the manager by another worker. If
it has the worker will try to interrupt the currently running task.

On completion the run method of the task returns an arbitrary object (the
return-type is java.lang.Object, the base-class of all Java objects). The result
is serialized and returned to the manager.

When there are no tasks available the worker will, every now and then, run
a benchmarking task which measures the worker’s current performance. The
result of the benchmarking task is sent to the manager.

The task object byte-stream transmitted to workers only include the object’s
fields (data), not its methods (code). To be able to recreate the task objects
the corresponding Java class files have to be present on the worker peer. The
task submitter, as part of the submission process, uploads a set of Java archive
(JAR) files to the manager, containing all necessary class files. The manager
forwards the JAR files to its workers as needed.

All classes which are transferred to the worker and needed to execute a
task are loaded using the org.therning.jalapeno.JalapenoClassLoader class
loader. By using a custom class loader a sand-box environment is created pre-
venting tasks to access the local computer’s private resources. The Jalapeno
class loader maintains a repository of JAR files. The repository may contain
different versions of the same archive allowing different versions of a distributed
application to coexist in the system. The repository also acts as a local JAR
file cache. JAR files already in the worker’s repository will never be transferred
since they are already available to the worker.

13

org.therning.jalapeno.manager.Manager

The manager functionality is implemented by the org.therning.jalapeno.

manager.Manager class. Whenever a worker is unable to find an available man-
ager within a certain time it will create and execute a new org.therning.

jalapeno.manager.Manager instance in a separate thread.

On startup the manager advertises two pipes: the first pipe is used by workers
to establish a connection to the manager and the second one is used by task
submitters when submitting tasks.

New workers trying to connect will only be accepted if the number of cur-
rently connected workers has not yet met the maximum number of workers the
manager can handle. As described above workers periodically query the man-
ager for tasks when idle or send a heartbeat while executing tasks. If a worker
is inactive, i.e. does not send any data, for a certain amount of time the worker
will be disconnected.

Task submitters submit a bundle object implementing the org.therning.

jalapeno.task.TaskBundle interface by serializing it and transmitting it as a
stream of bytes. The manager recreates the original bundle object and splits
it using the bundle’s split method. If the manager’s maximum number of
current bundles has not yet been reached a part of the bundle will be reserved
for the manager’s workers. The rest of the original bundle is split into a number
of new bundles (the number is configurable by the user running the manager)
and each forwarded to another, randomly chosen, manager. In the current
implementation managers are chosen with equal probability regardless of how
“close” (in terms of geographical location, communication bandwidth, etc) they
are to the forwarding manager. The managers receiving the bundles then repeat
the process. If there is no manager to forward a bundle to it will be returned
to the original task submitter by connecting to the pipe indicated in the bundle
object.

Idle workers will receive tasks from the manager’s current bundles which
may originate from a number of different applications. To be fair bundles will
be chosen in a round-robin fashion when idle workers request tasks.

The JalapenoClassLoader class loader, used by instances of Worker, is once
again used to load the classes needed to recreate the bundle object and provides
a sand-box environment.

org.therning.jalapeno.submitter.Submitter

To submit tasks to the system the developer uses an instance of the task sub-
mitter class, org.therning.jalapeno.submitter.Submitter. Bundles which
are to be submitted are put in a queue along with a set of org.therning.

jalapeno.task.JarDescriptor instances, each describing a JAR file needed
by the application. The task submitter constantly searches for manager peers
and as soon as a manager has been found the first bundle will be removed from
the queue and submitted to the newly discovered manager.

The developer may register listener objects with the task submitter. The
listeners will be notified whenever a result is returned from a task or a bundle
could not be submitted. Bundles still in the queue after a certain time will
timeout and any listeners will be notified of the failure to submit the bundle.

14

org.therning.jalapeno.monitor.Monitor

The Monitor class, org.therning.jalapeno.monitor.Monitor, is used to pro-
vide network and system status information. The Jalapeno host application will
automatically start a monitor instance on startup. If a manager has been started
the local monitor will query the manager periodically for its current status and
send that information to all other monitors in the system using a propagate
pipe.

The monitor also maintains a (partial) list of all managers in the system
along with the accumulated performance (the sum of all worker benchmarks)
and load of each manager. Since there could potentially be a very large number
of managers in the system only the most recent information is kept in the list
to use less memory.

3.3.2 Framework for Embarrassingly Parallel Problems

On top of the basic task submitter classes a framework for embarrassingly par-
allel type of problems has been built. It features automatic task bundle splitting
and task distribution among workers, resubmission of bundles which could not
be handled by any manager and load balancing through work stealing schedul-
ing.

One restriction is that the total number of entities (e.g. keys in a brute-force
encryption key search problem or sub-images in the rendering of an image by
a raytracer) to process can not be infinite. The automatic bundle splitting is
based on this restriction. The developer describes the solution space using an
org.therning.jalapeno.ep.Space instance, which holds the dimensionality of
the solution space, each dimension’s limits and the size in each dimension of a
work unit given to workers. A brute-force search for the correct key to decrypt
an encrypted message would have a one-dimensional space with the total range
of keys as limits. A raytracing application could use a two-dimensional space
with the upper left and the lower right corners as limits when rendering images.
When rendering movies a third dimension, signifying the frame number, could
be added. The framework keeps track of which pieces of the space have been
completed.

The developer uses an org.therning.jalapeno.ep.EPSubmitter instance
handling the submission and resubmission of bundles. The developer must
provide the EPSubmitter with an object implementing the org.therning.

jalapeno.ep.BundleFactory interface which handles the creation of new bun-
dles to submit and keeps track of finished tasks and bundles.

The task bundles created by the bundle factory extend the org.therning.

jalapeno.ep.EPTaskBundle class. The first EPTaskBundle being submitted
encapsulates the entire solution space. EPTaskBundle implements automatic
task splitting by invoking the solution space’s split method which divides the
space into a number of sub-spaces. The sub-spaces are used to create equally
many new instances of EPTaskBundle which are forwarded to other managers.
If a manager accepts tasks to be executed by its workers a small number of
tasks, equal to the number of workers, each encapsulating a sub-space will be
reserved by that manager.

Bundles failing forwarding will be returned to the EPSubmitter which will
try to merge as many as possible of the sub-spaces of the returned bundles

15

and then, after some time, submit a new EPTaskBundle containing the merged
spaces. The task submission process implemented by the framework is illus-
trated in Figure 3.4.

EP task submitter
The

Jalapeno
system

Results

Results

Results

EP task submitter
The

Jalapeno
system

a)

EP task submitter
The

Jalapeno
system

b)

c)
[701...900]

[101...300]

[1...1000]

[801...900]
[201...300]

[701...800]
[101...200]

[701...900]

[701...800]
[801...900]

Figure 3.4: The task submission process implemented by the framework. Ini-
tially, the entire space of 1000 entities is submitted as shown in step a. The
system returns four sub-spaces which could not be processed. In step b the
remaining sub-spaces have been merged into two sub-spaces which are submit-
ted. Two sub-spaces are returned by the system. Finally, in step c, the last
sub-space is submitted and processed by the system. All sub-spaces have now
been completed.

The EPTaskBundle class implements a work stealing type of scheduling algo-
rithm to distribute tasks among a manager’s workers. It maintains a list of those
tasks which have been distributed to workers and are currently being worked on.
When no more new tasks are available for distribution to idle workers tasks in
this list will be used instead. For more information on work stealing scheduling
please refer to Section 2.2.

Task results must implement the org.therning.jalapeno.ep.EPResult in-
terface. The getId method of the result should return to the id of the Space

which was processed to obtain the result. This id is used by the BundleFactory
to mark the finished Space instances.

For a detailed description of an embarrassingly parallel application utilizing
the framework please refer to Appendix B.

16

3.3.3 Java Web Start

The Jalapeno host application is available as a Java Web Start [6] application
at http://jalapeno.therning.org. Java Web Start, developed by Sun, pro-
vides a platform-independent, secure, and robust deployment technology. By
making the application available on a standard web server developers are able
to distribute their work to end-users. Using any web browser, end-users can
launch the application. Java Web Start ensures they always have the most
recent version of the application.

In a sense Java Web Start is similar to the Java applet technology. The most
significant difference is that Java Web Start allows the deployment of real Java
applications. By utilizing the Java Web Start technology the Jalapeno system
achieves the same level of availability and ease of installation as the applet based
systems presented in Section 2.2 without suffering from the restrictions put on
such a system.

3.3.4 The User Interface

The Jalapeno host application can be controlled using a web based user interface.
At startup the host application will start a small web server on the local host
(port 9090 by default). Through the user interface the user may start or stop
local worker and manager peers and connect to and disconnect from the JXTA
network. There is also a status page giving some statistics on the currently
running local worker and manager peers as well as status information on the
entire Jalapeno network. By using the configuration page the user may change
the current configuration.

Figure 3.5 shows a screen shot of the main page of the user interface.
By default the user interface is only accessible by clients (web browsers)

running on the same host as the Jalapeno host application.

3.3.5 Protocols

All the communication protocols used in the system are text-based. A number
of more or less well known techniques for remote process communication have
been implemented on top of the JXTA protocols, e.g. RMI, the standard Java
Remote Method Invocation. Since many of these implementations still are beta
software, possibly containing numerous bugs, it was decided that simple text-
based protocols, specifically designed for Jalapeno, would be more suitable. The
use of text-based protocols also facilitates debugging.

The protocols are very simple and similar to well-established protocols like
HTTP and POP3. All non-binary information is encoded using the UTF-8
character set (Unicode). Binary information is sent as raw byte-streams. The
sender must initiate any binary transfer by sending the length of the following
byte-stream.

Commands, sent by the client, consist of a case-insensitive keyword, possi-
bly followed by one or more arguments. All commands are terminated by the
linefeed (UTF-8 code 10) character. Keywords and arguments are each sepa-
rated by a single space character. There are no restrictions on the number of
characters in keywords and arguments. Spaces and backspaces in arguments are
escaped using the backspace character.

17

http://jalapeno.therning.org

Figure 3.5: The main page of the Jalapeno host application’s web interface.

The response to a command consists of a status indicator possibly followed
by one or more arguments each separated by a single space character and termi-
nated by the linefeed character. There are two status indicators: positive, +OK,
and negative, -ERR.

18

Chapter 4

Experimental Results

To determine the performance of the Jalapeno system a number of experiments
have been conducted. A homogeneous collection of 8 workstations were used
to form the group of workers. The workstations were all equipped with Intel
Pentium 4 1.8 GHz processors and 512 Mb of RAM running the FreeBSD 4.8
operating system and Sun’s J2SE 1.4.1 version of Java. Except for the Jalapeno
host application no other user applications were running on the workstations.

A dedicated manager (i.e. not running a worker) was used accepting as many
as 32 workers in total. To show the heterogeneity of the Jalapeno system a Sun
UltraSPARC machine running SunOS 5.8 and Sun’s J2SE 1.4.2 was chosen as
manager while an Intel Pentium III 700 MHz machine running Linux and Sun’s
J2SE 1.4.2 was chosen as task submitter.

4.1 Scalability

To determine the scalability of the system running an embarrassingly parallel
problem a slightly modified version of the RC5 cracking example application
presented in Appendix B was used. The tasks distributed to the workers each
contained a sub-space of 54,000,000 keys from the total key space which would
take 1-2 minutes for a worker to finish. The first key to start the search was
chosen to make the correct key end up in the middle of the 32nd sub-space, i.e.
a single worker would need to search 31.5 sub-spaces before finding the correct
key.

The time Tn (n = 2, 4, 8) needed to find the correct key when using n workers
was measured and compared with the time Tseq needed by the sequential version
of the application. Figure 4.1 shows the measured speedup (Tn/Tseq) for two
different configurations plotted against the ideal situation. Table 4.1 lists the
measured running times.

When using the standard configuration the scalability is poor. In the stan-
dard configuration the manager accepts a maximum of 4 bundles and each of
those bundles will contain as many sub-spaces of keys as there are connected
workers. When a worker requests a task the bundle to deliver the task will
be chosen from the list of current bundles in a round-robin fashion. This is a
fair scheduling technique when multiple applications are running on the system.
However, in this experiment the only running application was the RC5 applica-

19

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of workers

Speedup with standard configuration
Speedup with optimized configuration
Ideal situation

Figure 4.1: Scalability of the system when running the RC5 application using
two different configurations.

tion. The bundle selection technique forced the application to search sub-spaces
in a non-sequential order, possibly searching more than the first 32 sub-spaces
resulting in a poor speedup. The tasks of the first submitted bundle will be
processed sequentially because it will be alone in the manager’s list of bundles.
When the workers finish their first tasks the first bundle will be completed and
up to three new bundles will be in the list. Figure 4.2 shows an example of how
sub-spaces beyond the 32nd were searched before the 32nd sub-space containing
the correct key during a test run using 8 workers and the standard configuration.
The figure enumerates the sub-spaces in the order they were assigned to work-
ers. Indeed, if the sub-space chosen to contain the correct key would have been
different the speedup using the standard configuration could have been much
better, even greater than the ideal, but that would not have been realistic. In
real life the sub-space containing the correct key is of course unknown.

The scalability when using an optimized configuration, as seen in Figure 4.1,
is very close to the ideal situation. In this configuration the manager could only
work on a single bundle at a time. The bundle submitted by the RC5 application
contained all of the 32 first tasks. Using these settings the tasks were assigned to
workers in order and never would more than 32 sub-spaces have to be searched
for the correct key to be found. The obtained speedup was as expected since
the problem solved by the RC5 application is very coarse-grained; it is highly
computationally intensive while having low bandwidth requirements.

The scalability would probably have been slightly better if the task submit-
ter had been on the same LAN as the manager. In the used setup the task

20

Workers Standard Optimized

1 2491.8
2 1300.5 1275.0
4 723.9 649.1
8 485.6 342.7

Table 4.1: The running times in seconds, Tseq (1 worker) and Tn (n = 2, 4, 8),
needed to find the correct key using the two different configurations.

submitter needed approximately one minute to discover the manager and con-
nect to it to submit the initial bundle. Having the two peers on the same LAN
would have significantly lowered the discovery time decreasing its contribution
to the measured speedup. Also, if the number of keys to search before find-
ing the correct one would have been larger the experiments would have needed
more time to finish giving more correct speedup figures. However, this was not
possible because of time constraints.

21

The task
containing
the correct
key

9 16

17 24

25 32

33 40

3 5 7 8

10

13

1 2 4 6

9 11

12 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

5

1

2

3

4

Bundle # 1 8

The order in which tasks are assigned to workers

Task (sub−space) #

Figure 4.2: An example of how sub-spaces beyond the 32nd will be searched
before the correct key can be found. The 32nd sub-space will be the 39th
searched by the system.

22

Chapter 5

Conclusions and Discussion

The result of this thesis project is the Jalapeno grid computing system. By
using peer-to-peer technology Jalapeno is completely decentralized.

The system consists of manager, worker and task submitter hosts. The
task submitter submits a bundle of tasks to be processed by the system to
a randomly chosen manager. The manager splits the bundle into a number of
new, smaller bundles which will be forwarded to equally many, randomly chosen,
other managers which repeat the process.

Each manager have a small (<100) number of connected workers. During
task bundle splitting the manager will (depending on its current load) reserve a
number of tasks to be processed by its workers. Workers will return the results of
tasks to their managers which will forward them to the original task submitter.

The system is self configuring: hosts volunteering their computing power
will at first become workers only but will eventually become managers if they
can not find and connect to another manager within a certain time.

5.1 Meeting the Requirements

All the requirements presented in Section 1.2 are fulfilled by the system:

Heterogeneity. Heterogeneity is a side-effect of the choice of implementing the
system using pure Java. Java is designed to be platform independent and
there are Java virtual machines available for the most of today’s popular
computer hardware and operating systems.

Scalability. The system scales well for a small number of hosts. The scalability
when using a large number of hosts on a global scale is yet to be investi-
gated. However, such tests could prove difficult to carry out in practice
due to the large number of hosts needed.

Fault-tolerance. The system provides robustness and fault-tolerance through
its self-configurability. Workers leaving the system will be replaced by new
workers. The framework for embarrassingly parallel problems ensures that
tasks will be reassigned to other workers when a worker abruptly leaves
the system without finishing its current task. Managers abruptly leaving
the system will in time be replaced by new ones which will start managing
workers.

23

Security. Security is another side-effect of the choice of implementing the sys-
tem using Java. Java supports mechanisms to prevent parts of the exe-
cuting code from accessing the local host’s file system, network interfaces,
etc.

Anonymity. JXTA provides the required anonymity. Peers may join the sys-
tem regardless of their identity and may submit tasks even if they do not
have user accounts on the machines running the worker peers. Jalapeno
also provides the ability to create private networks only allowing access
by authorized peers (this should work in theory but has not been tested
due to time constraints).

As described in Section 3.3.2 a framework for embarrassingly parallel problems
have been developed as required.

5.2 Major Contributions

The Jalapeno system has a number of unique features. The most important
contributions are:

Automatic solution space partitioning. The automatic task bundle split-
ting, implemented by the framework for embarrassingly parallel problems,
frees the developer from the complicated task of partitioning the solution
space, distributing the sub-spaces and keeping track of finished sub-spaces.

Implicit hierarchy. To achieve higher scalability, robustness and fault-tolerance
many of the other projects presented in Chapter 2 introduce some kind
of hierarchy of managers. However, maintaining the hierarchy is, in most
cases, complicated to implement. Jalapeno has an implicit hierarchy of
managers which only exists during task submission and changes randomly
over time with every task submission. Nothing is required by the system
to maintain this hierarchy.

Ease of use by using Java Web Start. By utilizing the Java Web Start tech-
nology participating in the network is as easy as visiting a web site. This
technology has never been used for this purpose before (at least not to the
author’s knowledge). The Jalapeno host application is of course available
as an ordinary application as well.

5.3 Problems

The current Jalapeno implementation suffers from a number of problems:

• The current monitor implementation uses the JXTA propagate pipe to
send status information to all other monitors in the network. In a large
network with thousands of managers this could potentially flood the net-
work. Some other technique to maintain status information on as many
other managers as possible but still keeping the network traffic low should
be used instead. One possibility would be to group managers into smaller
manager groups (<100 managers) and have the monitors send status infor-
mation within those groups only. Some of the peers in each such manager

24

group would then have to forward the group’s accumulated status infor-
mation to neighboring manager groups on a regular basis.

• In the current implementation results are sent by managers directly to
the original task submitter. This could present a bottleneck if a lot of
managers try to return results at the same time and could possibly bring
down the task submitter. One possible solution would be to distribute the
returning of results much in the same way as task bundles are distributed
throughout the network. A submitted bundle is forwarded by zero or
more managers before it ends up being handled by an available manager.
Instead of having managers return results directly to the task submitter
they could be returned along the same path of managers used during the
submission.

• Jalapeno is self-configuring in that managers are created dynamically as
needed. However, in the current implementation managers are never de-
stroyed. This could lead to an excessive number of managers in the system
compared to the number of workers. This problem could be overcome by
including the number of workers connected to each manager in the status
information sent by monitors. If the worker-manager ratio becomes too
low the probability that a manager self-destructs will increase.

• The framework for embarrassingly parallel problems can only handle sub-
spaces of equal size. This restriction was made to make the automatic task
bundle splitting less complicated but makes it impossible to adjust the size
of sub-spaces to suit the processing power or bandwidth of a particular
worker.

5.4 Jalapeno vs. JNGI

5.4.1 Introduction to JNGI

JNGI [41, 7] is another distributed computing system utilizing the JXTA pro-
tocols. Peer groups are used as a fundamental building block of the system.
Figure 5.1 illustrates the architecture of the JNGI network. The system con-
sists of monitor groups, worker groups and task dispatcher groups. The monitor
group handles peers joining the system and redirects them to worker groups if
they are to become workers. During task submission the task submitter queries
the monitor group for an available worker group which will accept its tasks. The
worker group consists of workers performing the computations, while the task
dispatcher group distributes individual tasks to workers.

Figure 5.1 also illustrates the hierarchy of monitor groups. If only one mon-
itor group would have been used the communication bandwidth within that
group could have become a bottleneck. A task submitter always starts the task
submission process by contacting a peer in the root monitor group which decides
which sub-group the request should be forwarded to. When the request has fi-
nally reached a worker group a task dispatcher in the task dispatcher group of
that worker group will send a reply to the task submitter. The task submitter
may then start to submit tasks to the assigned task dispatcher.

The task dispatcher group consists of a number of task dispatchers each
serving a number of the worker group’s workers. If a task dispatcher disappears

25

Child

group
monitor

Child

group
monitor

Worker
group

Worker
group

Worker
group

Worker
group

Worker
group

Child

group
monitor

Task dispatcher

Task dispatcher

Task dispatcher

Worker

Worker

Worker

Worker Worker

Worker

Worker

Worker
group

Child

group
monitor

Root
monitor
group

Task submitter

Worker group

Task dispatcher group

worker group

Request for

Figure 5.1: Overview of the JNGI system architecture.

the other task dispatchers will invite a worker to become task dispatcher and join
the task dispatcher group. Having many task dispatchers provides redundancy.
Task dispatchers within a group periodically exchange their latest results; if a
task dispatcher becomes unavailable its results will not be lost. Not until all
tasks of a task submission have been processed will the results be available for
retrieval by the task submitter. The task submitter polls the task dispatcher
inquiring whether the tasks previously submitted have been completed.

To develop applications for JNGI developers use the JNGI RemoteThread

class in much the same way as the standard Java Thread class is used. The
developer has to create an array of tasks to be executed. The tasks should
implement the Runnable interface. The array of tasks is used to create the
RemoteThread instance. By running the start method of the RemoteThread

instance the tasks will be submitted to the system and executed.
JNGI is restricted to embarrassingly parallel type of problems.

5.4.2 Comparison

JNGI and Jalapeno share many similarities. Of course they are both based
on the peer-to-peer technology provided by the JXTA protocols. The man-
agers of Jalapeno are almost identical to the task dispatchers of JNGI but do
not provide the redundancy provided by the JNGI task dispatcher groups. In
the early designs of the Jalapeno system managers were grouped into manager
groups identical to the task dispatcher groups of JNGI and exchanged results

26

periodically. However, this idea was abandoned at an early stage because such a
mechanism would not be suitable for all types of applications. E.g. in a raytrac-
ing application the partial results exchanged between managers could be very
large in size requiring a substantial amount of communication bandwidth.

The most fundamental difference between the two systems is the task sub-
mission process. In Jalapeno a collection of tasks is submitted. The tasks are
then spread throughout the system without requiring any action from the task
submitter. In JNGI the task submitter first has to request access to a worker
group and then send the collection of tasks to a task dispatcher in the worker
group. JNGI does not provide the ability to distribute a large number of tasks
to many worker groups at once. Of course, both approaches have their benefits.

Jalapeno’s framework for embarrassingly parallel type of problems provides
automatic solution space partitioning. Developers need only to define the di-
mensionality of the solution space and how large sub-spaces finally processed by
workers should be. JNGI is restricted to solving embarrassingly parallel type of
problems but still does not provide developers with this kind of facility. How-
ever, the kind of solution space splitting implemented by Jalapeno could easily
be implemented on top of the JNGI API.

Jalapeno is not restricted to embarrassingly parallel type of problems and
could, for instance, easily be extended to support message passing between
workers within worker groups.

JNGI offers a less complicated API than the one provided by Jalapeno
through the use of the RemoteThread class which could make it more attrac-
tive to developers. However, Jalapeno is far less complicated to install and use
in all other aspects. Jalapeno also provides the option of participating in the
system and volunteering one’s computer through the use of the Java Web Start
technology. This possibility is not provided by JNGI.

27

Chapter 6

Future Work

This chapter discusses possible directions for future work to enhance the Jala-
peno system. Of course, as discussed in Section 5.3 there are some, more or less,
severe problems which have to be resolved. Further possible future activities will
be covered below.

6.1 Possible System Enhancements

There are a number of possible enhancements that would improve the current
system. They are summarized in the following sub-sections.

Load balancing

In the current system there is no way of adapting the size of tasks to suit in-
dividual workers’ current performance and communication bandwidth. Indeed,
the framework for embarrassingly parallel problems implements a work stealing
kind of scheduler but the work units distributed to workers still are of equal
sizes. The size of the work units has to be specified by the developer.

Also, during task submission, managers “closer” to the task submitter (in
terms of geographical location, communication bandwidth, etc) should be pre-
ferred over managers farther away. By using JXTA managers on the same LAN
as the task submitter are more likely to be used than more remote managers
but this is not guaranteed.

Economical Aspects

Introducing a market-based mechanism for trading computing power would let
users buy and sell computing power like any other commodity. The fact that
the owner of a PC could earn money just by leaving the PC on would probably
motivate even more people to join the system. Of course, care must be taken,
through the use of strong encryption and other techniques, to prevent fraud in
such a system. The economics would be yet another factor to consider when
distributing tasks throughout the system and when assigning tasks to workers.
The Compute Power Market [20] implements a market-based grid computing
system.

28

Security

Information sent between hosts in the system might be considered sensitive and
should be encrypted using standards such as SSL and TLS. This improvement
is easily implemented since JXTA already supports TLS encrypted pipes.

Another aspect of security is the protection of proprietary application code.
Java class files needed by an application must be downloaded to workers when
running the application on the system. However, it is often extremely easy to
retrieve the original source code from Java class files by using Java byte-code
decompilers. Companies could be discouraged from using a Jalapeno system
consisting of untrusted hosts since their private code would be accessible to
unauthorized people. In [37] a number of techniques for protecting private Java
classes in systems like Jalapeno are discussed.

Another aspect of security is the verification of results returned by workers.
Volunteers could try to sabotage the system or cheat by sending false results
before the actual results have been finished. This is known to occur in systems
like SETI@home, which provides a ranking list of the volunteers contributing
the most. By cheating a user could end up higher in the ranking. The most
obvious solution would be to duplicate all tasks and assign the identical tasks
to different workers. If the results are different one of the workers is probably
cheating. Another solution would be to test workers’ reliability every now and
then by assigning them tasks having known results. If the result sent back
by the worker is incorrect the worker could be cheating. A more sophisticated
sabotage prevention technique which tries to minimize the number of extra tasks
processed while still providing a high degree of sabotage-tolerance is described
in [36].

Manager Redundancy

As discussed in Section 5.4.2 the kind of manager (task dispatcher) redundancy
implemented by JNGI was considered in the early designs of the Jalapeno system
but was later abandoned. The feature could still be added to Jalapeno but there
must be a mechanism for developers to specify if a particular application would
benefit from it. Managers would then be able to decide if results should be
exchanged or not within the manager group. Managers should also decide not
to exchange results if the amount of data to transmit is too large.

Message Passing

The Jalapeno system has been designed to allow direct message passing between
workers connected to a manager but message passing has not yet been imple-
mented in the prototype system. By adding message passing Jalapeno would
be suitable for solving more, less coarse-grained, problems.

API Improvements

The current API is complicated compared to the APIs of other systems and
needs to be improved. A JNGI-style RemoteThread class could easily be imple-
mented to further simplify the development of Jalapeno applications.

29

6.2 Further Evaluation

More experiments have to be conducted to further evaluate the performance of
the system. One problem with systems like Jalapeno, designed to be used on a
global scale, is that it is hard or even impossible to measure their performance
in a realistic environment because of the large amount of computers needed.
Indeed, the performance on a global scale could be measured by simulation of
the system using a carefully designed simulator. However, developing such a
simulator during this project was not possible due to time constraints.

The following list presents a collection of questions further experiments
would have to answer. These experiments could not be conducted during this
thesis project because of time constraints.

• What impact does the worker-manager ratio have on the scalability?

• What is the impact on the performance of applications using the frame-
work for embarrassingly parallel type of problems when the sub-space size
is decreased and the computation to communication ratio becomes lower?

• What is the performance of the task submission process when using a large
number of managers?

6.3 Porting to J2ME

Today all sorts of home appliances have CPUs and are connected to the Internet,
e.g. gaming consoles, digital TV set-top boxes, DVD-players, etc. Many of
which are idle most of the time. Porting Jalapeno to these platforms would
greatly increase the number of potential volunteers. Many such appliances are
able to run Java applications written for the J2ME version of Java and there
is an ongoing effort to implement JXTA for J2ME enabled devices. A J2ME
version of, at least, the Jalapeno worker functionality should be developed to
enable compatible appliances to participate in the Jalapeno system.

30

References

[1] distributed.net: Project RC5. http://www.distributed.net/rc5/.

[2] EntropiaTM, Inc. http://www.entropia.com.

[3] fightAIDS@home. http://fightaidsathome.scripps.edu.

[4] Folding@home. http://www.stanford.edu/group/pandegroup/folding/.

[5] grid.org. http://www.grid.org.

[6] Java Web Start Technology. http://java.sun.com/products/javawebstart/.

[7] JNGI Project Home Page. http://jngi.jxta.org.

[8] Legion: A Worldwide Virtual Computer. http://legion.virginia.edu.

[9] Project JXTA. http://www.jxta.org.

[10] SETI@home. http://setiathome.ssl.berkeley.edu.

[11] The Globus Alliance. http://www.globus.org.

[12] United Devices, Inc.TM. http://www.ud.com.

[13] Project JXTA v2.0: JavaTM Programmer’s Guide, May 2003.
http://www.jxta.org/docs/JxtaProgGuide_v2.pdf.

[14] Albert D. Alexandrov, Max Ibel, Klaus E. Schauser, and Chris J.
Scheiman. SuperWeb: Towards a Global Web-Based Parallel Com-
puting Infrastructure. In 11th International Parallel Processing Sym-
posium (IPPS’97), pages 100–106. Geneva, Switzerland, April 1997.
http://citeseer.nj.nec.com/article/alexandrov97superweb.html.

[15] Arash Baratloo, Mehmet Karaul, Zvi M. Kedem, and Peter Wyck-
off. Charlotte: Metacomputing on the Web. In Proc. of the
9th International Conference on Parallel and Distributed Computing
Systems (PDCS-96), pages 181–188. Dijon, France, September 1996.
http://citeseer.nj.nec.com/baratloo96charlotte.html.

[16] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
An Efficient Multithreaded Runtime System. The Journal of
Parallel and Distributed Computing, 37(1):55–69, August 1996.
http://www.cs.utexas.edu/users/rdb/papers/JPDC96.ps.gz.

31

http://www.distributed.net/rc5/
http://www.entropia.com
http://fightaidsathome.scripps.edu
http://www.stanford.edu/group/pandegroup/folding/
http://www.grid.org
http://java.sun.com/products/javawebstart/
http://jngi.jxta.org
http://legion.virginia.edu
http://www.jxta.org
http://setiathome.ssl.berkeley.edu
http://www.globus.org
http://www.ud.com
http://www.jxta.org/docs/JxtaProgGuide_v2.pdf
http://citeseer.nj.nec.com/article/alexandrov97superweb.html
http://citeseer.nj.nec.com/baratloo96charlotte.html
http://www.cs.utexas.edu/users/rdb/papers/JPDC96.ps.gz

[17] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and Reliable Parallel
Computing on Networks of Workstations. In Proceedings of the USENIX
1997 Annual Technical Symposium, pages 133–147. Anaheim, CA, USA,
January 1997. http://citeseer.nj.nec.com/blumofe97adaptive.html.

[18] Marko Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. John Wiley & Sons, 2001. ISBN 0-471-49838-6.

[19] Tim Brecht, Harjinder Sandhu, Meijuan Shan, and Jimmy Talbot.
ParaWeb: Towards World-Wide Supercomputing. In Proceedings of the
Seventh ACM SIGOPS European Workshop on System Support for World-
wide Applications, pages 181–188. Connemara, Ireland, September 1996.
http://citeseer.nj.nec.com/brecht96paraweb.html.

[20] Rajkumar Buyya and Sudharshan Vazhkudai. Compute Power
Market: Towards a Market-Oriented Grid. In Proceedings
of the first IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID2001, pages 574–581, 2001.
http://citeseer.nj.nec.com/buyya01compute.html.

[21] Noam Camiel, Shmulik London, Noam Nisan, and Ori Regev. The
POPCORN Project: Distributed Computation over the Internet in
Java. In 6th International World Wide Web Conference, April 1997.
http://www.cs.huji.ac.il/~noam/popcorn.doc.

[22] Peter Cappello, Bernd O. Christiansen, Mihai F. Ionescu, Michal O. Neary,
Klaus E. Schauser, and Daniel. Wu. Javelin: Internet-Based Parallel Com-
puting Using Java. Concurrency: Practice and Experience, 9(11):1139–
1160, November 1997. http://javelin.cs.ucsb.edu/docs.html.

[23] Peter Cappello and Dimitrios Mourloukos. A Scalable, Ro-
bust Network for Parallel Computing. In Proceedings of the
ACM Java Grande/ISCOPE Conference, pages 78–86, June 2001.
http://www.cs.ucsb.edu/projects/cx/CX_publications.html.

[24] Nicholas Carriero and David Gelernter. Linda in context. Communications
of the ACM, 32(4):444–458, April 1989.

[25] David Gelernter and David Kaminsky. Supercomputing
out of recycled garbage: Preliminary experience with Pi-
ranha. In 6th ACM International Conference on Super-
computing, pages 417–427. Washington, D.C., USA, 1992.
http://citeseer.nj.nec.com/gelernter92supercomputing.html.

[26] Wee Jin Goh. Java vs C Benchmarks, November 2002.
http://members.lycos.co.uk/wjgoh/JavavsC.html.

[27] Yan Gu, Bu-Sung Lee, and Wentong Cai. JBSP: A BSP Programming
Library in Java. Journal of Parallel and Distributed Computing, 61(8):
1126–1142, 2001. http://citeseer.nj.nec.com/499169.html.

[28] Greg Hewgill. RC5 and Java toys. http://www.hewgill.com/rc5/.

32

http://citeseer.nj.nec.com/blumofe97adaptive.html
http://citeseer.nj.nec.com/brecht96paraweb.html
http://citeseer.nj.nec.com/buyya01compute.html
http://www.cs.huji.ac.il/~noam/popcorn.doc
http://javelin.cs.ucsb.edu/docs.html
http://www.cs.ucsb.edu/projects/cx/CX_publications.html
http://citeseer.nj.nec.com/gelernter92supercomputing.html
http://members.lycos.co.uk/wjgoh/JavavsC.html
http://citeseer.nj.nec.com/499169.html
http://www.hewgill.com/rc5/

[29] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, Thana-
sis Tsantilas, and Rob H. Bisseling. BSPlib: The BSP pro-
gramming library. Parallel Computing, 24(14):1947–1980, 1998.
http://citeseer.nj.nec.com/hill98bsplib.html.

[30] Scott R. Ladd. Market-Based Massively Parallel Internet Computing, Jan-
uary 2003. http://www.coyotegulch.com/reviews/almabench.html.

[31] Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, and
Peter Cappello. Javelin++: Scalability Issues in Global Comput-
ing. Concurrency: Practice and Experience, 12(8):727–753, 2000.
http://citeseer.nj.nec.com/article/neary99javelin.html.

[32] Michael O. Neary, Alan Phipps, Steven Richman, and Peter Cappello.
Javelin 2.0: Java-Based Parallel Computing on the Internet. In Proceed-
ings of Euro-Par 2000, pages 1231–1238. Munich, Germany, August 2000.
http://javelin.cs.ucsb.edu/docs.html.

[33] Scott Oaks, Bernard Traversat, and Li Gong. JXTA in a Nutshell. O’Reilly,
2002. ISBN 0-596-00236-X.

[34] Dick Pountain. Parallel Processing in Bulk. Byte Magazine, pages 71–72,
November 1996. http://www.byte.com/art/9611/sec5/art5.htm.

[35] Ronald L. Rivest. The RC5 Encryption Algorithm. In Proceedings of the
1994 Leuven Workshop on Fast Software Encryption, pages 86–96, 1995.
http://theory.lcs.mit.edu/~rivest/publications.html.

[36] Luis F. G. Sarmenta. Sabotage-Tolerance Mechanisms for Volunteer Com-
puting Systems. In Proceedings of the first IEEE/ACM International
Symposium on Cluster Computing and the Grid, pages 337–346, 2001.
http://bayanihancomputing.net.

[37] Luis F. G. Sarmenta. Volunteer Computing. PhD thesis, MIT, March 2001.
http://bayanihancomputing.net.

[38] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Reference. MIT Press, 1996. ISBN 95-
80471. http://www.netlib.org/utk/papers/mpi-book/mpi-book.html.

[39] Vaidy S. Sunderam. PVM: a framework for parallel distributed com-
puting. Concurrency, Practice and Experience, 2(4):315–340, 1990.
http://citeseer.nj.nec.com/sunderam90pvm.html.

[40] Rob van Nieuwpoort, Jason Maassen, Henri E. Bal, Thilo Kielmann, and
Ronald Veldema. Wide-area parallel computing in Java. In ACM 1999
Java Grande Conference, pages 8–14. San Francisco, CA, USA, June 1999.
http://citeseer.nj.nec.com/article/vannieuwpoort99widearea.html.

[41] Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch, and Ilya Sharapov.
Framework for Peer-to-Peer Distributed Computing in a Heterogeneous,
Decentralized Environment. In Proceedings of the Third International
Workshop on Grid Computing (GRID 2002), pages 1–12. Baltimore, MD,
USA, January 2002. http://jngi.jxta.org/jngi-paper.pdf.

33

http://citeseer.nj.nec.com/hill98bsplib.html
http://www.coyotegulch.com/reviews/almabench.html
http://citeseer.nj.nec.com/article/neary99javelin.html
http://javelin.cs.ucsb.edu/docs.html
http://www.byte.com/art/9611/sec5/art5.htm
http://theory.lcs.mit.edu/~rivest/publications.html
http://bayanihancomputing.net
http://bayanihancomputing.net
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://citeseer.nj.nec.com/sunderam90pvm.html
http://citeseer.nj.nec.com/article/vannieuwpoort99widearea.html
http://jngi.jxta.org/jngi-paper.pdf

[42] Brendon J. Wilson. JXTA. New Riders, 2002. ISBN 0-7357-1234-4.
http://www.brendonwilson.com/projects/jxta/.

34

http://www.brendonwilson.com/projects/jxta/

Glossary

API, Application Programming Interface. A set of definitions of the ways in
which one piece of computer software communicates with another.

HTML, HyperText Markup Language. The standard language for creating
web pages.

HTTP, HyperText Transfer Protocol. A TCP based protocol mainly used by
web clients to communicate with web servers.

J2ME, Java 2 Platform, Micro Edition. A collection of Java APIs used by
developers to develop applications for embedded consumer products such
as PDAs, cell phones and other consumer appliances.

J2SE, Java 2 Platform, Standard Edition. A collection of Java APIs used by
developers to develop applications for workstations.

Java applet, A Java applet is a small program written in the Java program-
ming language that can be included in a web page.

LAN, Local Area Network. A computer network covering a local area, such as
an office or a home.

NAT, Network Address Translation. A technique used in computer network-
ing, which relies on rewriting IP addresses of network packets passing
through a router or firewall. By using NAT a LAN connected to the
Internet may use more IP addresses than it has been assigned.

P2P, Peer-to-peer. Any network that does not have fixed clients and servers,
but a number of peer hosts that function as both clients and servers to
the other hosts on the network.

SSL, Secure Socket Layer. A protocol designed to provide encrypted commu-
nications on the Internet.

TLS, Transport Layer Security. Another protocol designed to provide en-
crypted communications on the Internet. TLS is based on SSL version
3.0 and extends it with a number of new features.

WAN, Wide Area Network. A computer network covering multiple sites, often
across the world.

35

Appendix A

User’s Manual

This appendix contains a manual for users running the Jalapeno host applica-
tion.

A.1 General Information

The Jalapeno host application is available as a command line application down-
loadable from http://jalapeno.therning.org but can also be launched di-
rectly from within the web browser by the use of Java Web Start. The first time
the application is invoked it will create the directory $HOME/.jalapeno where
$HOME is the current user’s home directory (e.g. /home/john on a UNIX system
and C:\Documents and Settings\John on a Microsoft Windows XP system).
Jalapeno will need this directory to store configuration settings, downloaded
JAR files and various other files.

Configuration settings are stored in files called settings.xml. Jalapeno
normally reads configuration settings from $HOME/.jalapeno/settings.xml

and $HOME/.jalapeno/<instanceid>/settings.xmlwhere instanceid is de-
fault by default but may be changed if many instances are to be run on the
same host. If some settings have different values in the different settings.xml
files those in $HOME/.jalapeno/<instanceid>/settings.xml will take prece-
dence. All settings have default values which will be used if no settings.xml

files have been created.

A.2 Launching Jalapeno from the Command Line

The Jalapeno host application’s installation file is available either as a gzipped
archive, jalapeno-x.y.z.tar.gz, or a zipped archive, jalapeno-x.y.z.zip,
from http://jalapeno.therning.org.

A.2.1 Installation

To install the command line application one of the two archives should be
downloaded and extracted in the desired installation location (e.g. C:\Program
Files on a Microsoft Windows system). A new directory, jalapeno-x.y.z/,
will be created containing a number of files and sub-directories:

36

http://jalapeno.therning.org
http://jalapeno.therning.org

apps/ contains two example applications to be run on the Jalapeno system:
the RC5 application, which tries to decipher an encrypted text by
doing a brute-force search for the correct key, and the raytracer ap-
plication which renders raja (http://raja.sourceforge.net) 3D
scenes. To get help on how to invoke the examples execute the
scripts with the -help option.

docs/ contains the system documentation generated from the source code.
This is useful for developers developing new application for the Jal-
apeno system.

lib/ contains the JAR files required by the application.

jalapeno.bat the script used to launch Jalapeno from the command line when
running a Microsoft Windows operating system.

jalapeno.sh the script used to launch Jalapeno from the command line when
running a UNIX-like operating system.

LICENSE the Jalapeno license agreement.

README a text file detailing the installation and usage of the host application.

A.2.2 Starting the Host Application

The host application is launched by running jalapeno.bat or jalapeno.sh

depending on the type of operating system used. Both scripts require that the
location of the java command is in the path searched by the system (e.g. on
UNIX-like systems it should be listed in the $PATH variable). The scripts have
the following command line options:

-dumpconfig Dumps all default configuration settings to the console and exits.
This is useful when creating a custom settings.xml file.

-help Prints out a help message describing all command line options and
exits.

-instance <id> Specifies the id of the Jalapeno host application instance to
launch. If not set the standard id, default, will be used. The
directory, $HOME/.jalapeno/<instanceid>/, will be used to store
downloaded JAR files and various other files. The instance id is
useful when running many instances on the same host.

-log4j <file> The location of a configuration file used to configure the logging
facilities provided by the log4j library. If not specified a default
configuration file will be used.

-manager Tells the host application to start a manager only (no worker will
be started at all). Using this option a manager will be started im-
mediately.

-notheadless This option should be set if the host application is launched in
a graphical environment, e.g. when running from within Microsoft
Windows or when an X display is available. If set a dialog box will

37

http://raja.sourceforge.net

be shown at startup giving the URL to use when accessing the web
based user interface.

-system <path> The host application normally reads configuration settings
from the files settings.xml and <instanceid>/settings.xml in
the directory $HOME/.jalapeno/. This option lets a user add a third
location of a settings.xml file to be read on startup. The settings
of the standard settings.xml files will take precedence over the
settings in the specified file. This option could be useful for system
administrators to specify site-wide settings.

When launched the application will output the URL to use when accessing the
web based user interface, either by printing it on the console or by showing it
in a dialog box (if -notheadless has been set).

A.3 Launching Jalapeno using Java Web Start

To launch Jalapeno using Java Web Start the user only has to visit the web
site at http://jalapeno.therning.org and click the “Launch Jalapeno” link.
Java Web Start will download all needed JAR files to the local computer and
start the application. Normally, Java Web Start applications run in a very
restrictive environment which prevents the applications from accessing any of
the local computer’s private resources. Since the Jalapeno host application
requires access to the local file system and network interfaces the JAR files of
the application have been signed. By having the developer sign the JAR files
of an application using a private key the application may be granted full access
to the system. The first time the signed application is launched using Java
Web Start the user will have to specify (by using a dialog box like the one in
Figure A.1) if it should be allowed to execute in an unrestricted environment or
not.

The web based user interface will start automatically and a dialog box will
appear showing the URL to use when accessing it.

Figure A.1: The dialog box which will appear when launching the host applica-
tion using Java Web Start for the first time.

38

http://jalapeno.therning.org

A.4 The User Interface

The user interface will by default be available at http://127.0.0.1:9090.
However, the port number is dynamically configured. If port 9090 is unavailable
port 9091 will be tried and so on. The URL will, as described earlier, either be
printed on the console or shown in a dialog box, like the one in Figure A.2, at
startup.

Figure A.2: The dialog box shown when running the host application in none
headless mode or from Java Web Start.

The user interface is used to control the running peers (worker and manager
peers) and retrieve status information on the running host application and on the
entire Jalapeno network. It is also possible to change the current configuration
settings.

The user interface should be self-explanatory and will not be described in
depth here.

39

http://127.0.0.1:9090

Appendix B

Jalapeno Example

Application

This appendix gives a detailed description of the RC5 [35] brute-force key search
application which has been ported to the Jalapeno system. The application tries
to find the correct key given the cipher text message. RC5 is a fast block cipher
using a parameterized algorithm with a variable block size, a variable key size,
and a variable number of rounds. In this example a block size of 32 bits, a key
size of 64 bits and 12 rounds are used.

The Java implementation of the RC5 decryption algorithm, found in the
classes RC5Algorithm and RC5_32_12_8, has been obtained from the Internet
(see [28]). The sources of those classes will not be listed here neither will the
source of the RC5Util class.

B.1 RC5 – The Main Class

The RC5 class is the entry point of the application. It extends the org.therning.
jalapeno.JalapenoApplication class which facilitates the development of Jal-
apeno applications. In the main method the RC5 class calls the start method
of the JalapenoApplication class which initializes the Jalapeno platform and
connects to the Jalapeno network. It also parses the command line arguments
which must include the fully qualified path of the JAR file containing the RC5
application’s classes.

Eventually the start method of the JalapenoApplication class will invoke
the start method of the RC5 class which creates the one dimensional space of
keys to search and starts an EPSubmitter instance. The submitter will start sub-
mitting instances of the RC5TaskBundle class created by the RC5BundleFactory.

The RC5 class registers as ResultListener with the EPSubmitter instance.
When results arrive the resultsReceived method will be called which outputs
some performance statistics and quits the application if the correct key has been
found.

import java.math.BigInteger;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

40

import org.therning.jalapeno.Jalapeno;

import org.therning.jalapeno.JalapenoApplication;

import org.therning.jalapeno.JalapenoException;

import org.therning.jalapeno.ep.EPSubmitter;

import org.therning.jalapeno.ep.Space;

import org.therning.jalapeno.event.ResultEvent;

import org.therning.jalapeno.event.ResultListener;

import org.therning.jalapeno.util.PipeUtil;

/**

* Example application to run on Jalapeno.

* Tries to crack the RSA test pseudo-contest named

* "RSA-32/12/8-test".

*/

public class RC5 extends JalapenoApplication

implements ResultListener {

/**

* The number of bytes in a 64-bit key.

*/

public static final int KEY_LENGTH = 8;

/**

* The number of keys in a work unit.

* 100,000,000 keys should take minutes to search.

* A 700 MHz Intel Pentium III running Sun’s JDK

* v1.4.2 under Linux scans about 400,000 keys/s.

*/

public static final long UNIT_SIZE = 100000000;

/**

* The number of milliseconds between every

* submission by the submitter.

*/

public static final long RESUBMIT_TIME = 20*1000;

/**

* The number of milliseconds after the last

* received result before a

* bundle should be resubmitted.

*/

public static final long BUNDLE_TIMEOUT = 10*60*1000;

private EPSubmitter submitter = null;

private long startTime = 0;

private long keyCount = 0;

/**

* Creates the initial space and starts the

* submitter.

41

*/

public void start() throws JalapenoException {

try {

/*

* Create the pipe used by managers to

* report back results or send back

* bundles which couldn’t be forwarded.

*/

PipeAdvertisement pipeAdv =

PipeUtil.createPipeAdvertisment(

Jalapeno.getInstance().getBasePeerGroup(),

PipeService.UnicastType,

"RC5Pipe");

/*

* The space is one dimensional with limits

* [0x0000000000000000, 0xffffffffffffffff].

*/

byte[] startKey = new byte[] {

(byte)0x00, (byte)0x00, (byte)0x00, (byte)0x00,

(byte)0x00, (byte)0x00, (byte)0x00, (byte)0x00

};

byte[] endKey = new byte[] {

(byte)0xff, (byte)0xff, (byte)0xff, (byte)0xff,

(byte)0xff, (byte)0xff, (byte)0xff, (byte)0xff

};

/*

* Create the space.

*/

Space space = new Space(

new BigInteger[] {new BigInteger(1, startKey)},

new BigInteger[] {new BigInteger(1, endKey)},

new BigInteger[] {BigInteger.valueOf(UNIT_SIZE)});

/*

* Create the bundle factory.

*/

RC5BundleFactory bundleFactory =

new RC5BundleFactory(space, BUNDLE_TIMEOUT);

/*

* Create the submitter.

*/

submitter = new EPSubmitter(

Jalapeno.getInstance().getBasePeerGroup(),

pipeAdv, bundleFactory, "RC5",

getJars(), RESUBMIT_TIME);

submitter.addResultListener(this);

submitter.start();

42

startTime = System.currentTimeMillis();

} catch (Throwable t) {

throw new JalapenoException(t);

}

}

/**

* Returns the name of the application.

*

* @return the name.

*/

protected String getApplicationCommandName() {

return "rc5";

}

/**

* Called whenever results are returned back from

* the system. Prints out some statistics.

*

* @param event the event containing the results.

*/

public void resultsReceived(ResultEvent event) {

Object[] results = event.getResults();

boolean done = false;

BigInteger correctKey = null;

for (int i=0; i<results.length; i++) {

RC5Result r = (RC5Result)results[i];

keyCount += r.getKeyCount();

if (r.isPositive()) {

done = true;

correctKey = r.getCorrectKey();

}

}

long now = System.currentTimeMillis();

long duration = now-startTime;

double secs = (double)duration/1000.0;

double keysPerSec = (double)keyCount/secs;

String message =

"Time elapsed: "+secs+" s.\n"+

"Keys searched: "+keyCount+".\n"+

"Performance: "+keysPerSec+" keys/s.\n";

System.out.print(message);

/*

* Quit if finished.

*/

if (done) {

43

System.out.print("Correct key found: "+

correctKey.toString(16));

Jalapeno.getInstance().quit();

System.exit(0);

}

}

/**

* Application entry point.

*

* @param args the command line arguments

*/

public static void main(String[] args) {

new RC5().start(args);

}

}

B.2 RC5BundleFactory

The RC5BundleFactory class creates instances of RC5TaskBundle. It extends
the org.therning.jalapeno.ep.AbstractBundleFactory class which imple-
ments the BundleFactory interface. The AbstractBundleFactory class uses
the original Space object created by the RC5 class to keep track of finished sub-
spaces returned by managers. It also creates new instances of RC5TaskBundle
when needed by invoking the getEPTaskBundle method. The space parameter
of the getEPTaskBundle method refers to a sub-space of the total key space.

import net.jxta.protocol.PipeAdvertisement;

import org.therning.jalapeno.ep.AbstractBundleFactory;

import org.therning.jalapeno.ep.EPTaskBundle;

import org.therning.jalapeno.ep.Space;

/**

* Creates RC5TaskBundles to be submitted by

* the submitter.

*/

public class RC5BundleFactory

extends AbstractBundleFactory {

/**

* Creates a new RC5BundleFactory.

*

* @param totalSpace the entire key space to process.

* @param bundleTimeout the time to wait after

* the last received result

* from a bundle before that

* bundle is resubmitted.

*/

public RC5BundleFactory(Space totalSpace,

long bundleTimeout) {

44

super(totalSpace, bundleTimeout);

}

/**

* Returns the RC5TaskBundle for the

* supplied space.

*

* @param appId the application id.

* @param problemId the problem id.

* @param pipeAdv the submitters pipe.

* @param space the space of keys

* which the tasks created

* by the bundle should

* search.

*/

protected EPTaskBundle getEPTaskBundle(

String appId,

String problemId,

PipeAdvertisement pipeAdv,

Space space) {

return new RC5TaskBundle(

appId, problemId, pipeAdv, space);

}

}

B.3 RC5TaskBundle

RC5TaskBundle extends the org.therning.jalapeno.ep.EPTaskBundle class.
Instances of the RC5TaskBundle class are initialized with a sub-space of the total
key space. The EPTaskBundle class already implements the split method re-
quired by all task bundles and provides automatic splitting. This split method
will divide the sub-space further and create new instanes of the RC5TaskBundle

class to be forwarded to other managers.

import java.math.BigInteger;

import net.jxta.protocol.PipeAdvertisement;

import org.therning.jalapeno.ep.EPTaskBundle;

import org.therning.jalapeno.ep.Space;

import org.therning.jalapeno.task.Task;

/**

* The task bundle for the RC5 example application.

*/

public class RC5TaskBundle extends EPTaskBundle {

/**

* Creates a new RC5TaskBundle.

*

* @param appId the application id.

* @param problemId the problem id.

45

* @param pipeAdv the submitters pipe.

* @param space the space of keys

* which the tasks created

* by the bundle should

* search.

*/

public RC5TaskBundle(String appId,

String problemId,

PipeAdvertisement pipeAdv,

Space space) {

super(appId, problemId, pipeAdv, space);

}

/**

* Creates a new RC5TaskBundle by copying the

* fields from an other bundle.

*/

protected RC5TaskBundle(RC5TaskBundle copyFrom,

Space space) {

super(copyFrom, space);

}

/**

* Gets a task which will search the keys of

* the given space.

*

* @param space the space of keys to search.

*/

protected Task getTask(Space space) {

return new RC5Task(space);

}

/**

* Gets a bundle which will create tasks searching

* the keys of the given space.

*

* @param space the space of keys

* which the tasks created

* by the bundle should

* search.

*/

protected EPTaskBundle getTaskBundle(Space space) {

return new RC5TaskBundle(this, space);

}

}

46

B.4 RC5Task

Instances of the RC5Task class will be transmitted to workers and executed. The
RC5Task object is initialized with a sub-space of the total key space to search.

import java.math.BigInteger;

import org.therning.jalapeno.ep.EPTask;

import org.therning.jalapeno.ep.Space;

/**

* The RC5 cracking task.

*

* Adopted from Greg Hewgill’s code found

* at http://www.hewgill.com/rc5/.

*

* The correct key is 0x82e51b9f9cc718f9.

*/

public class RC5Task extends EPTask {

/**

* Cyphertext from the RSA test

* pseudo-contest "RSA-32/12/8-test".

*/

private static final long CYPHER_TEXT = 0x496def29b74be041L;

/**

* iv data from the RSA test

* pseudo-contest "RSA-32/12/8-test".

*/

private static final long IV = 0xc41f78c1f839a5d9L;

/**

* This represents the plain text

* string "The unkn".

*/

private static final long PLAIN_TEXT = 0x6e6b6e7520656854L;

private BigInteger startKey = null;

private long keyCount = 0;

/**

* Creates a new RC5Task.

*

* @param space the space of keys to

* search.

*/

public RC5Task(Space space) {

super(space);

this.startKey = space.getMin(0);

this.keyCount = space.getMax(0).subtract(

space.getMin(0)).longValue();

}

47

public Object run() {

RC5Algorithm rc5 = new RC5_32_12_8();

byte[] key = new byte[rc5.keySize()];

/*

* Copy the start key to key.

*/

RC5Util.bigIntegerToByteArray(startKey, key);

for (long i=0; i<keyCount && !isInterrupted(); i++) {

rc5.setup(key);

long pt = rc5.decrypt(CYPHER_TEXT)^IV;

if (pt == PLAIN_TEXT) {

/*

* The key has been found.

* Stop searching.

*/

return new RC5Result(getSpace(),

RC5Util.byteArrayToBigInteger(key));

}

/*

* Increment the current key.

* The most significant byte of

* the key is the one with index 0.

*/

int j = key.length-1;

while (j>=0 && ++key[j]==0) {

j--;

}

}

/*

* No key found or interrupted.

* Return a negative result.

*/

return new RC5Result(getSpace());

}

/**

* Gets a description of this RC5 task.

*

* @return the description.

*/

public String getDescription() {

String first = getSpace().getMin(0).toString(16);

String last = getSpace().getMax(0).toString(16);

while (first.length()<2*RC5.KEY_LENGTH) {

first = "0"+first;

}

while (last.length()<2*RC5.KEY_LENGTH) {

48

last = "0"+last;

}

return "RC5 cracking test. "+

"This unit searches the key range "+

"["+first+", "+last+"]";

}

}

B.5 RC5Result

The results returned by RC5Task instances are instances of the RC5Result class.
Results are either positive or negative. If the result is positive the correct key
has been found and will be indicated in the result.

import java.math.BigInteger;

import org.therning.jalapeno.ep.EPResult;

import org.therning.jalapeno.ep.Space;

/**

* The result of an RC5 task.

*/

public class RC5Result implements EPResult {

private boolean positive = false;

private BigInteger correctKey = null;

private BigInteger startKey = null;

private BigInteger endKey = null;

private String id = "";

/**

* Creates a new negative RC5Result.

*

* @param space the space searched.

*/

public RC5Result(Space space) {

this.id = space.getId();

this.startKey = space.getMin(0);

this.endKey = space.getMax(0);

this.positive = false;

}

/**

* Creates a new positive RC5Result.

*

* @param space the space searched.

* @param correctKey the correct key.

*/

public RC5Result(Space space, BigInteger correctKey) {

this.id = space.getId();

this.startKey = space.getMin(0);

49

this.endKey = correctKey;

this.positive = true;

this.correctKey = correctKey;

}

/**

* Returns true if the key has been found.

*

* @return true or false.

*/

public boolean isPositive() {

return positive;

}

/**

* Gets the id of the task producing

* this result.

*

* @return the id.

*/

public String getId() {

return id;

}

/**

* Gets the correct key or null if the

* result is negative.

*

* @return the key.

*/

public BigInteger getCorrectKey() {

return correctKey;

}

/**

* Gets the start key.

*

* @return the key.

*/

public BigInteger getStartKey() {

return startKey;

}

/**

* Gets the end key.

*

* @return the key.

*/

public BigInteger getEndKey() {

return endKey;

50

}

/**

* Gets the number of keys

* between start key and end key.

*

* @return the key count.

*/

public long getKeyCount() {

return getEndKey().subtract(

getStartKey()).longValue();

}

}

51

Appendix C

Used Software

The Jalapeno implementation relies on a number of third-party software pack-
ages listed below. All of them are using an open-source type of license.

Jakarta Commons CLI

http://jakarta.apache.org/commons/cli/

License: Apache Software License
Provides a simple and easy to use API for working with the command line
arguments and options.

Jakarta Commons Logging

http://jakarta.apache.org/commons/logging.html

License: Apache Software License
Provides an ultra-thin bridge between different logging libraries (like log4j
used by Jalapeno). Components may use the Logging API to remove
compile-time and run-time dependencies on any particular logging pack-
age.

Jakarta Commons Pool

http://jakarta.apache.org/commons/pool/

License: Apache Software License
Provides an Object-pooling API used by Jalapeno to create pools of threads
for efficient resource usage.

Jakarta Velocity

http://jakarta.apache.org/velocity/

License: Apache Software License
A template engine permitting anyone to use the simple yet powerful tem-
plate language to reference objects defined in Java code.

Jakarta Log4j

http://jakarta.apache.org/log4j/docs/index.html

License: Apache Software License
Provides logging facilities. With log4j it is possible to enable logging at
runtime without modifying the application binary.

JPreferences

http://www.unidata.ucar.edu/staff/caron/prefs/index.html

52

http://jakarta.apache.org/commons/cli/
http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/commons/pool/
http://jakarta.apache.org/velocity/
http://jakarta.apache.org/log4j/docs/index.html
http://www.unidata.ucar.edu/staff/caron/prefs/index.html

License: GNU Lesser General Public License
Provides a preferences API. Preferences are stored in XML-files.

Project JXTA

http://www.jxta.org

License: Sun Project JXTA Software License
Provides technology allowing any network connected device to communi-
cate in a peer-to-peer manner.

Jetty

http://jetty.mortbay.org/jetty/

License: Jetty License
Jetty is a 100% Java HTTP Server used to provide the web based user
interface in Jalapeno.

Raja

http://raja.sourceforge.net/

License: GNU General Public License
The Raja project intends to build a complete modern raytracer using
the Java language. Raja is used in the distributed raytracing example
application develop during this project.

RC5 Java

http://www.hewgill.com/rc5/

License: Unknown
Java implementation of the RC5 algorithm used by the RC5 key cracking
example application.

53

http://www.jxta.org
http://jetty.mortbay.org/jetty/
http://raja.sourceforge.net/
http://www.hewgill.com/rc5/

	Preface
	Introduction
	Background
	Goals and Limitations

	Related Work
	Programming Models for Parallel Algorithms
	Distributed Computing Systems in Research
	Distributed Computing Systems in Production Use
	Summary of Related Work

	The Jalapeno Grid Computing System
	A Brief Introduction to JXTA
	System Overview
	Implementation
	Core Classes
	Framework for Embarrassingly Parallel Problems
	Java Web Start
	The User Interface
	Protocols

	Experimental Results
	Scalability

	Conclusions and Discussion
	Meeting the Requirements
	Major Contributions
	Problems
	Jalapeno vs. JNGI
	Introduction to JNGI
	Comparison

	Future Work
	Possible System Enhancements
	Further Evaluation
	Porting to J2ME

	References
	Glossary
	User's Manual
	General Information
	Launching Jalapeno from the Command Line
	Installation
	Starting the Host Application

	Launching Jalapeno using Java Web Start
	The User Interface

	Jalapeno Example Application
	RC5 -- The Main Class
	RC5BundleFactory
	RC5TaskBundle
	RC5Task
	RC5Result

	Used Software

