United States Patent

US007490314B2

(12) (10) Patent No.: US 7,490,314 B2
Yuknewicz et al. 45) Date of Patent: Feb. 10, 2009
(54) SYSTEM AND METHOD FOR EXPOSING (56) References Cited
TASKS IN A DEVELOPMENT U.S. PATENT DOCUMENTS
ENVIRONMENT
75) 1 . Paul Yuknewicz. Redmond. WA (US): 4,674,065 A 6/1987 Langeetal.c.c..... 364/900
nventors: N?'uh “l HeW‘lch’K 'ekl 051 WA (s .)’ 5,267,155 A 11/1993 Buchanan et al. 364/419.14
S,lc aeC larst g 10 aril WA %Js) 539238 A 2/1995 Chalas .ooveooovveereeveen... 395/155
ton talvert, issaquall, (US); 5,557,730 A * 9/1996 Frid-Nielsen 715/839
Donna Wallace, Woodinville, WA (US);
. 5,736,974 A * 4/1998 Selkerc.cccceeveveunnnne 715/862
Antoine Cote, Redmond, WA (US);
. . 5,815,830 A 9/1998 Anthony
Fred Balsiger, Carnation, WA (US); .
o . . 5,859,636 A 1/1999 Pandit ...ccoeeeenrinenneneens 345/335
Nikhil Kothari, Sammamish, WA (US); 5.046,647 A §/1999 Miller et al 704/9
Brian Pepin, Seattle, WA (US); Jeffrey e Lo
Chrisope, Kirkland, WA (US); Graeme
Mott, Redmond, WA (US); Christopher
Dias, Kirkland, WA (US); Bulusu (Continued)
Krishna Mohan, Redmond, WA (US);
Andrew Cheng-min Lin, Seattle, WA OTHER PUBLICATIONS
(US); Joseph F. Kubiniec, Seattle, WA Abiteboul, S. et al., “A Logical View of Structured Files”, The VLDB
(US); James Schmelzer, Seattle, WA Journal, 1998, 7, 96-114.
(US); Corrina Barber, Snohomish, WA Continued
(US); Anson M. Horton, Sammamish, (Continued)
WA (US); Meghan Rae Perez, Primary Examiner—WeiY. Zhen
Redmond, WA (US) Assistant Examiner—Matthew] Brophy
. (74) Attorney, Agent, or Firm—Woodcock Washburn LLP
(73) Assignee: Microsoft Corporation, Redmond, WA
(Us) (57) ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 terface ded th . 1 as devel
U.S.C. 154(b) by 833 days. A user interface is provided that eXposes 1tems such as devel-
oper tasks, commands, property settings, and other related
(21) Appl. No.: 10/768,522 information to a user. The user interface may be invoked in a
(22) Filed: Jan. 30. 2004 number of development interfaces such as, for example, a
) T designer or an editor. The user interface may be either an
(65) Prior Publication Data object bound interface or an action triggered interface. An
object bound interface exposes a set of items that are associ-
US 2005/0171967 Al Aug. 4, 2005 ated with a corresponding object. An action triggered inter-
(51) Int.ClL face exposes a set of items that are associated with a corre-
GO6F 9/44 (2006.01) sponding triggering action. In addition to enumerating
(52) USeCl oo 717/105; 715/810 developer tasks, the user interface may provide a direct link to
(58) Field of Classification Search 717/100-113, other interfaces that facilitate task execution.

717/120; 715/810
See application file for complete search history.

31 Claims, 13 Drawing Sheets

Designer 210a

Form 320

¢
Panel 410a
Control 322
Auto Format

310a

Edit Columns

Add Column
[AEnable Adding
OEnable Editing
DOEnable Deleting

US 7,490,314 B2
Page 2

U.S. PATENT DOCUMENTS

6,085,201 A 7/2000 TSO weveeeeeeiiiiiirieieeenen 707/505
6,122,647 A 9/2000 Horowitz et al. 707/513
6,182,279 B1* 1/2001 Buxton 717/100
6,305,008 Bl 10/2001 Vaidyanathan et al. ... 717/4
6,311,323 B1 10/2001 Shulman et al. 717/111
6,367,068 Bl 4/2002 Vaidyanathan et al. .

6,405,364 B1* 6/2002 Bowman-Amuah

6,502,233 Bl 12/2002 Vaidyanathanet al. 717/101
7,017,143 B1* 3/2006 Andrew etal. 717/100

7,055,136 B2* 5/2006 Dzobaetal.
7,139,999 B2* 11/2006 Bowman-Amuah ..
7,299,419 B2* 11/2007 Evans
2004/0221262 Al* 11/2004 Hampapuram et al. 717/113

OTHER PUBLICATIONS

Anderson, K. M. et al., “Chimera: Hypertext for Heterogeneous Soft-
ware Environments”, ECHT Proceedings, Sep. 1994, 94-107.
Breidenbach, G., “Programmable Keyboard Controller”, Electronic
Praxis, 2001, 6, 68-70 (English Language Abstract).

Hayes, P.J. et al., “A Logical View of Types”, Association for Com-
puting Machinery, 1980, 128-130.

Henninger, S. et al., “A Tool For Managing Software Development
Knowledge”, PROFES, 2001, LNCS 2188, 182-195.

Holmes, N., “Seven Great Blunders of the Computing World”, Com-
puter, 2002, 110-112.

Hughes, G. et al., “Microsoft Smart Tags: Support, ignore or con-
demn them?”, HT, 2002, 80-81.

Jewell, D. “Windows Shell Secrets”, EXFE, 1999, 13(9), 35-45.
Kramer, B. “3D LISP Tools”, Cadence, 1989, 4(5), 130-134.
Kucza, T. et al., “Improving Knowledge Management in Software
Reuse Process”, PROFES, 2001, LNCS 2188, 141-152.

Lewis, P.H. et al., “Media-based Navigation with Generic Links”,
Hypertext, 1996, 215-223.

Lin, C.F. et al., “Chinese Text Distinction and Font Identification by
Recognizing most Frequently Used Characters”, Image and Vision
Computing, 2001, 19, 329-338.

Middel, C.D., “Software Configuration and Change Management”,
Proceedings 5% Conference On Quality Engineering in Software
Technology, 2001, 239-245 (English Language Abstract).

Zagler, W.L., “Text Generation for Disabled Persons Using Word
Prediction”, OEGAI-Journal, 2001, 20(2), 21-22 (English Language
Abstract).

IBM Research/Eclipse,
Home page ,2 pages.
JetBrains IntelliJ IDEA- the best Java IDE around, http://www.intel-
lij.com, 1 page.

Slickedit;Code Editor, C++ Editor, Java Editor, HTML Editor, XML
Editor, Unicode Editor, http://www.slickedit.com, 1 page.

http://www.research.ibm.com/eclipse,

Source Insight Program Editor and Analyzer, http://www.sourcedyn.
com/index html, 2 pages.

Borland, CodeWright The Programmer’s Editing System, http://
www.premia.com, 1 page.

Chalmers-Physical Resource Theory, “The Complex Adaptive Sys-
tems Programmer of year 20007, http://www.fit.fy.chalmers.se/
kristian/software.html, 1 page.

Emacs/W3 v 4.0, http://www.cs.indiana.edu/elisp/w3/docs html, 1
page.

Vi: A Unix text editor, http://www.indiana.edu/~ucspubs/b104/ztoc.
html, 8 pages.

MacroMedia, Inc., Director MX, Using Director, Copyright © 2004,
Macromedia, Inc., 496 pages.

Willisson, Pace, et al., ISPELL: UNIX Man Pages, Aug. 23, 2003, 73
pages.

SED(1), BSD Reference Manual, sedMan.txt, 6 pages.

McMahon, L.E., “SED-A Non-Interactive Text Editor”, Bell Labo-
ratories, Aug. 15, 1978, 10 pages.

The Complete Red Hat® Linux™ Operating System 5.2 Deluxe,
Macmillan Digital Publishing, U.S.A., 385 pages.

CoStar User’s Manual, “For AddressMate and AddressMate Plus”,
CoStar Corp., 1994-1995, pp. 1-1 thru Index-210.

Beitner, N.D. et al., “Multimedia Support and Authoring in Micro-
cosm: An Extended Model”, Department of Electronics and Com-
puter Science, University of Southampton, 12 pages.

IBM Research Disclosure #368, “Multimedia Hyperlinks Automati-
cally Created for Reference Documents”, Jun. 1993, 5 pages.
Microsoft® Office 97 User’s Manual, “Getting Results with
Microsoft® Office 97—Real World Solutions for the Work You Do”,
1997, 1-703.

Corel® Corporation Limited, Corel® InfoCentral User’s Manual,
1996, vol. 1, Version 7.0, 1996, 1 thru 86.

Corel® Office Professional 7 Quick Results, 7-531.

Novell® GroupWise™ User’s Guide for Windows 16-Bit, Version
5.2,1993-1997, 1-231.

Novell® Group Wise™ User’s Guide for Windows 32-Bit, 1998,
Novell, Inc., 1-318.

Claris for Macintosh, Claris Emailer Getting Started, 1995-1997,
Claris Corporation, 61 pages.

Developer’s Guide to Apple Data Detectors—For Version 1.0.2,
©Apple Computer, Inc., 1997, 1-34.

Apple Data Detectors User’s Manual, © 1997 Apple Computer, Inc.,
1-16.

Nardi, B.A., et al.,, “Collaborative, Programmable Intelligent
Agents”, Mar. 1998, Apple Computer advanced Technology Group,
1-11.

U.S. Appl. No. 10/178,680, filed Jun. 24, 2002, Jeffrey Reynar.
U.S. Appl. No. 10/779,298, filed Feb. 13, 2004, Svetlana, L.

* cited by examiner

US 7,490,314 B2

Sheet 1 of 13

Feb. 10, 2009

U.S. Patent

| "Bid
— oo o [[|-~
v Kiowspy asnop | | ebesoss | | ebeioss | | — —
6vl k 8¢l el
> (s)dwog ort F—————— / _ Viva 'O0dd | $90¥d dv
sjowsy Pakey _ I€T S90¥d —r
ﬁ || Ol eAuQ 8¢1 snuQ ¥3HILO stl SO
Gl [eando Addoj4 —
— _ 721 onIQ pJeH
CGLNYM _| WepoW | | 1] _ A A
181 _ 4 y v wm|v
N €61 4/1 8AUQ aAlQ YsIa 4/1 aauq L€l SO0Hd
/1 MOMISN HOod [elsS [eando oljsube 3siq pieH H3H1O
_ 7Y A ocl
ol ﬁ SO0¥d ‘dY
| tcl sng wajshg SE1 SO
I —
_ & @ F GCl NVY
Z9T1 991N DU R So| Jeidepy 8¥1 Jeydepy ma nn 921 soig
abeio)) 4 so 09pIA uISS320.1d p—
S | sng 1508 5oH _Ycl WO
| Zcl fowsy
_ wajsAs
|
vt !
I |
JOJIUON <€ |
| 021 J8aindwo)

U.S. Patent Feb. 10, 2009 Sheet 2 of 13 US 7,490,314 B2

Fig. 2

Development
Interface 210

Object | | Object
212a 212n

Notification
Service
214

I

Task Provider 220

]

Task Service 230

N
o
o

U.S. Patent Feb. 10, 2009 Sheet 3 of 13 US 7,490,314 B2

Fig. 3a

Designer 210a

Form 320

310a

Control 322

U.S. Patent

Feb. 10, 2009 Sheet 4 of 13

Fig. 3b

US 7,490,314 B2

Designer 210a

Form 320

Control 322

310b

U.S. Patent

Feb. 10, 2009 Sheet 5 of 13

US 7,490,314 B2

Fig. 3c
Designer 210a
Form 320
310a
J
Control 322
|~
\

310b

U.S. Patent Feb. 10, 2009 Sheet 6 of 13 US 7,490,314 B2

Fig. 4a

Designer 210a

Form 320

310a

Panel 410a

Control 322
Auto Format
Edit Columns
Add Column
[4 Enable Adding
[JEnable Editing
O Enable Deleting

U.S. Patent Feb. 10, 2009 Sheet 7 of 13 US 7,490,314 B2

Fig. 4b

Designer 210a

Form 320

Control 322

!v/ 310b
[Panel 410b

@ Dock in Parent Container
(O Undock in Parent Container

U.S. Patent Feb. 10, 2009 Sheet 8 of 13

Fig. 5a

US 7,490,314 B2

510

DETECT OBJECT OR ACTION |
{ 512

GENERATE MARKER |
¢ 514

DETECT INDIRECT HOVER |
J, 516

GENERATE INDIRECT ICON |
i 518

DETECT DIRECT HOVER B
J, 520

-/

GENERATE DIRECT ICON

é@

U.S. Patent Feb. 10, 2009 Sheet 9 of 13 US 7,490,314 B2

Fig. 5b
éi) 522
DETECT PANEL REQUEST |

i 524

DETERMINE AVAILABLE DEVELOPER |

TASKS
l 526
GENERATE PANEL B

l 528

DETECT SELECTION OF DEVELOPER |
TASK

l 550

EXECUTE DEVELOPER TASK -

U.S. Patent Feb. 10, 2009 Sheet 10 of 13 US 7,490,314 B2

Fig. 6a

Editor 210b

This is exemplary text with
an exemplary g/lgj\e/\g\t/ for providing an

~ 610a
example for the editor

620

A

U.S. Patent Feb. 10, 2009 Sheet 11 of 13 US 7,490,314 B2

Fig. 6b

Editor 210b

This is exemplary text with

— 620
an exemplary ob'ec’fgr providing an
B s10
example for the editor

U.S. Patent Feb. 10, 2009 Sheet 12 of 13 US 7,490,314 B2

Fig. 6¢

Editor 210b

This is exemplary text with

620
an exemplary obj /Wfor providing an
B~ s10c

example for the editor

U.S. Patent Feb. 10, 2009 Sheet 13 of 13 US 7,490,314 B2

Fig. 7

Editor 210b

This is exemplary text with

620
an exemplary M providing an

“[<Z 610c
Panel 710
Reorder Parameter
Add Parameter
Delete Parameter

examp

US 7,490,314 B2

1

SYSTEM AND METHOD FOR EXPOSING
TASKS IN A DEVELOPMENT
ENVIRONMENT

REFERENCE TO RELATED APPLICATIONS

This application is related by subject matter to U.S. patent
application Ser. No. 10/769,637 entitled “System and Method
for Providing a Logical View of a Data Source” filed on Jan.
30,2004, U.S. patent application Ser. No. 10/768,525 entitled
“System and Method for Generating a Parameterized Query”
filed on Jan. 30, 2004, and U.S. patent application Ser. No.
10/768,526 entitled “System and Method for Exposing a
Child List” filed on Jan. 30, 2004, the contents of which are
hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates to the field of software devel-
opment and, more specifically, to providing a user interface
that enables a user to efficiently view and select developer
tasks in a development environment.

BACKGROUND OF THE INVENTION

A development tool such as, for example, VISUAL STU-
DIO™ from Microsoft Corp. of Redmond, Wash., enables
development of a wide range of computing applications. Such
applications may include, for example, web applications,
extensible markup language (XML) applications, and tradi-
tional client applications. As part of the development process,
auser may view, manage, and manipulate a number of objects
within the development environment. Such objects may
include, for example, forms, controls, components, text
strings, and other like elements associated with the develop-
ment process. The development tool may employ a number of
development interfaces that enable the user to interact with
such objects.

One such development interface is the designer. Generally,
the designer enables the user to add, align, position, view,
manage, and manipulate forms and controls. A form is an
object that enables the presentation of information to the user
and the acceptance of input information from the user. A form
may expose properties and methods which define its appear-
ance and behavior, and events which define its interaction
with the user. By setting its properties and writing code to
respond to its events, a user may customize a form to meet the
requirements of an application. A simple way to define a user
interface for a form is to place controls on the form’s surface.

A control is an object that is contained within a form. A
control may be an object such as, for example, a data grid
view, a drop down list, a combo-box, a button, or a check-box.
Each type of control has its own set of properties, methods,
and events that make it suitable for a particular purpose. The
designer enables a user to add controls to a form. For example,
the designer may enable a control to be added to a form by
dragging and dropping the control from a server management
console or a logical data source interface such as described in
the aforementioned U.S. patent application Ser. No. 10/769,
637 entitled “System and Method for Providing a Logical
View of a Data Source”. Once a control is added to a form, the
designer enables the control to be aligned and positioned
within the form.

Another development interface that the enables the user to
interact with objects is the development tool code and text
editor. Generally, the editor provides a word processing inter-
face that enables a user to efficiently generate, edit, and save

—

0

20

25

30

35

40

45

50

55

60

65

2

source code and text related to application development. The
editor may include a language specific service that checks for
syntax and usage errors within source code. The editor may be
opened directly from a control by, for example, right clicking
on the control and selecting a view code option. The source
code or text within the editor may include a number of
objects.

To better enable the user’s interaction with such objects, it
is desirable for the development tool to expose and execute an
increasing number of developer tasks. The term developer
task, as used herein, refers to any task executed in connection
with an object or a triggering action performed by the user
within a development interface. Such developer tasks may be,
for example, data configuration and builder tasks performed
in connection with an object. Such developer tasks may also
be, for example, tasks which modify a user action with a user
specified result. Some exemplary developer tasks are
described in the aforementioned U.S. patent application Ser.
No. 10,768,525 entitled “System and Method for Generating
a Parameterized Query” and U.S. patent application Ser. No.
10/768,526 entitled “System and Method for Exposing a
Child List™.

Conventional development tools may employ a combina-
tion of user interfaces such as traditional menus, shortcut
menus, status bars, and toolbars to expose tasks and com-
mands to the user and alert the user to important information
within an application. Traditional menus hold commands,
grouped by a common theme. Toolbars use buttons to expose
frequently used commands. Context menus “pop up” in
response to a right-click of the mouse and hold commonly
used commands for a particular area of an application. Often,
context menus are assigned to controls, and provide particular
commands that relate to the control to which they are
assigned. Status bars indicate an application state or provide
information about a corresponding entity in the application
that has a focus, such as a menu command.

While the user interfaces set forth above serve many pur-
poses, their implementation involves several drawbacks. For
example, traditional menus, toolbars, and status bars are gen-
erally located around the perimeter of a development inter-
face and, therefore, are not local to an object or screen area in
which a triggering action occurs. Thus, to invoke such inter-
faces in connection with an object, the user is required to, for
example, move a screen pointer from an object to the perim-
eter of a development interface, thereby interrupting the
user’s actions and thought process.

A context menu may alleviate some of the positioning
drawbacks set forth above because the context menu may be
displayed adjacent to an object. However, a drawback of the
context menu is that its discoverability is limited. Specifi-
cally, before being displayed, it must first be requested by the
user. Thus, the user may not be aware or may forget that the
context menu is available. Additionally, the user must inter-
rupt her action and thought process to request the context
menu. Also, because the context menu does not persist with a
corresponding object, the user must repeatedly request the
context menu every time she wishes to use it. Another draw-
back of the context menu is that it is limited to text items and
does not include, for example, user input fields such as radio
buttons, check boxes, and drop down menus which may
enable the user to input object properties. Furthermore, the
context menu and traditional menus require the user to either
select a menu option or close the menu before the user may
return to the development interface in which she is working.
Thus, even if the user does not wish to immediately invoke a
menu item, the user’s actions and thought process must be
interrupted to close the menu.

US 7,490,314 B2

3

Accordingly, there is a need in the art for a “smart” user
interface for exposing items including developer tasks and
commands, view and modify properties, and ascertain other
related information in connection with a corresponding
object or triggering action. The user interface may also
expose items that are relevant to child objects that are asso-
ciated with the corresponding object and tool defined tasks
that are related to the corresponding object. It is desired that
the user interface be functional in a number of development
interfaces such as, for example, the designer and the editor. It
is further desired that the user interface provide a “rich”
display that includes, for example, user input fields such as
text edit boxes, check boxes, radio buttons, and drop down
menus. It is further desired that the user interface enable
direct execution of developer tasks or, alternatively, provide a
direct link to other interfaces that facilitate task execution. It
is further desired that the user interface provide strong visual
attractors in proximity to an object, thereby alerting the user
to its availability. It is further desired the user interface expose
tasks and information in a non-obtrusive manner without
interrupting the actions or the thought process of the user. It is
further desired that the user interface function in a manner
that is consistent with other interfaces in other computing
environments such as, for example, in personal productivity
systems, thereby providing a familiar and intuitive experience
for the user. It is further desired that the user interface option-
ally persist with a corresponding object as long as the object
is present or the action is applicable in a development inter-
face so that the user need not repeatedly request the user
interface. It is further desired that the user interface enable the
selection of customized tasks, commands, and information.
Other features and advantages of the invention may become
apparent from the following detailed description of the inven-
tion and accompanying drawings.

SUMMARY OF THE INVENTION

A user interface is provided that exposes items such as
developer tasks, commands, property settings, and other
related information to a user. The user interface may be imple-
mented in and invoked from a number of development inter-
faces such as, for example, a designer or an editor. The user
interface may be either an object bound interface or an action
triggered interface. An object bound interface exposes items
that are associated with a corresponding object and possibly
other associated child objects in a development interface. An
action triggered interface exposes items that are associated
with a corresponding user action performed in a development
interface.

According an aspect of the invention, a task provider moni-
tors the development interface to detect objects and their
corresponding states. The task provider determines, based on
the state of the detected objects, which developer tasks are
available in connection with detected objects. The task pro-
vider also detects user actions occurring within the develop-
ment interface and determines which developer tasks are
available in connection with the detected actions. A task
service functions in connection with the task provider to
manage developer tasks.

According to another aspect of the invention, the user
interface may include a panel that is displayed adjacent to a
corresponding object. The panel may be instantaneously dis-
played when a corresponding object is dropped into a devel-
opment interface. The panel may also be requested using
short cut key stroke mechanisms. Alternatively, an icon may
first be displayed to indicate to the user, in a non-obtrusive
manner, that a panel is available. The user may then request

20

25

30

35

40

45

50

55

60

65

4

the panel by, for example, moving a screen pointer over the
icon and clicking on the icon with an attached mouse. In
addition to traditional text items, the panel may also include,
for example, user input fields such as text edit boxes, check
boxes, radio buttons, and drop down menus. Such user input
fields may enable the user to set properties of a corresponding
object. In addition to enumerating developer tasks, the panel
may provide a direct link to other interfaces that facilitate task
execution. A programmatic interface may enable the user to
provide custom content that may be included in a panel.

According to another aspect of the invention, an icon may
be either an object bound icon or an action triggered icon. An
action bound icon may be displayed adjacent to a correspond-
ing object. An action triggered icon may be displayed adja-
cent to an object on which a corresponding triggering action
is performed. Thus, both an object bound icon and an action
triggered icon may be displayed adjacent to a single object.
Various informational symbols may be displayed on the face
of'an icon to indicate to the user whether the icon is an object
bound icon or an action triggered icon and also, possibly, to
indicate a particular type of triggering action with which the
icon is associated. Characteristics of an icon such as, for
example, its shape, size, shading, and informational symbols
may vary depending on the user’s interaction with the icon
and the adjacent object. For example, the characteristics of an
icon may vary depending on whether a screen pointer oper-
ated by the user is hovering away from an icon, hovering
indirectly over an icon, or hovering indirectly over an icon.

Additional features and advantages of the invention will be
made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The illustrative embodiments will be better understood
after reading the following detailed description with refer-
ence to the appended drawings, in which:

FIG. 1 is a block diagram representing a general purpose
computer system in which aspects of the present invention
and/or portions thereof may be incorporated;

FIG. 2 is a block diagram of an exemplary development
environment in accordance with the present invention;

FIG. 3a-3¢ show exemplary user interface icons within the
designer interface in accordance with the present invention;

FIGS. 4a and 4b show exemplary user interface panels in
the designer interface in accordance with the present inven-
tion;

FIGS. 54 and 55 are a flowchart of an exemplary method
for exposing developer tasks in accordance with the present
invention;

FIG. 6a-6¢ show exemplary user interface icons within the
editor interface in accordance with the present invention; and

FIG. 7 shows an exemplary user interface panel in the
editor interface in accordance with the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The subject matter of the present invention is described
with specificity to meet statutory requirements. However, the
description itself is not intended to limit the scope of this
patent. Rather, the inventors have contemplated that the
claimed subject matter might also be embodied in other ways,
to include different steps or elements similar to the ones
described in this document, in conjunction with other present
or future technologies. Moreover, although the term “step”

US 7,490,314 B2

5

may be used herein to connote different aspects of methods
employed, the term should not be interpreted as implying any
particular order among or between various steps herein dis-
closed unless and except when the order of individual steps is
explicitly described.

We will now explain the present invention with reference to
presently preferred, exemplary embodiments. We will first
describe illustrative computing and development environ-
ments in which the invention may be practiced, and then we
will describe presently preferred implementations of the
invention.

Tustrative Computer Environment

FIG. 1 and the following discussion are intended to provide
a brief general description of a suitable computing environ-
ment in which the present invention and/or portions thereof
may be implemented. Although not required, the invention is
described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer, such as a client workstation or an application ser-
vice. Generally, program modules include routines, pro-
grams, objects, components, data structures and the like that
perform particular tasks or implement particular abstract data
types. Moreover, it should be appreciated that the invention
and/or portions thereof may be practiced with other computer
system configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers and the like. The invention may also be
practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote memory storage devices.

As shown in FIG. 1, an exemplary general purpose com-
puting system includes a conventional personal computer 120
or the like, including a processing unit 121, a system memory
122, and a system bus 123 that couples various system com-
ponents including the system memory to the processing unit
121. The system bus 123 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read-only
memory (ROM) 124 and random access memory (RAM)
125. A basic input/output system 126 (BIOS), containing the
basic routines that help to transfer information between ele-
ments within the personal computer 120, such as during start-
up, is stored in ROM 124.

The personal computer 120 may further include a hard disk
drive 127 for reading from and writing to a hard disk (not
shown), a magnetic disk drive 128 for reading from or writing
to a removable magnetic disk 129, and an optical disk drive
130 for reading from or writing to a removable optical disk
131 such as a CD-ROM or other optical media. The hard disk
drive 127, magnetic disk drive 128, and optical disk drive 130
are connected to the system bus 123 by a hard disk drive
interface 132, a magnetic disk drive interface 133, and an
optical drive interface 134, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data structures,
program modules and other data for the personal computer
120.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 129, and a
removable optical disk 131, it should be appreciated that other
types of computer readable media which can store data that is
accessible by a computer may also be used in the exemplary

20

25

30

35

40

45

50

55

60

65

6

operating environment. Such other types of media include a
magnetic cassette, a flash memory card, a digital video disk,
a Bernoulli cartridge, a random access memory (RAM), a
read-only memory (ROM), and the like.

A number of program modules may be stored on the hard
disk, magnetic disk 129, optical disk 131, ROM 124 or RAM
125, including an operating system 135, one or more appli-
cation 212 programs 136, other program modules 137 and
program data 138. A user may enter commands and informa-
tion into the personal computer 120 through input devices
such as a keyboard 140 and pointing device 142 such as a
mouse. Other input devices (not shown) may include a micro-
phone, joystick, game pad, satellite disk, scanner, or the like.
These and other input devices are often connected to the
processing unit 121 through a serial port interface 146 that is
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port, or universal
serial bus (USB). A monitor 147 or other type of display
device is also connected to the system bus 123 via an inter-
face, such as a video adapter 148. In addition to the monitor
147, a personal computer typically includes other peripheral
output devices (not shown), such as speakers and printers.
The exemplary system of FIG. 1 also includes a host adapter
155, a Small Computer System Interface (SCSI) bus 156, and
an external storage device 162 connected to the SCSIbus 156.

The personal computer 120 may operate in a networked
environment using logical connections to one or more remote
computers, such as a remote computer 149. The remote com-
puter 149 may be another personal computer, a application
service, a router, a network PC, a peer device or other com-
mon network node, and typically includes many or all of the
elements described above relative to the personal computer
120, although only a memory storage device 150 has been
illustrated in FIG. 1. The logical connections depicted in FIG.
1 include a local area network (LAN) 151 and a wide area
network (WAN) 152. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.

When used in a LAN networking environment, the per-
sonal computer 120 is connected to the LAN 151 through a
network interface or adapter 153. When used in a WAN net-
working environment, the personal computer 120 typically
includes a modem 154 or other means for establishing com-
munications over the wide area network 152, such as the
Internet. The modem 154, which may be internal or external,
is connected to the system bus 123 via the serial port interface
146. In a networked environment, program modules depicted
relative to the personal computer 120, or portions thereof,
may be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

Systems and Methods of the Present Invention

An exemplary development environment 200 in accor-
dance with the present invention is shown in FIG. 2. Devel-
opment environment 200 includes a development interface
210. As should be appreciated, development environment 200
may include any number of development interfaces 210. Gen-
erally, development interface 210 enables the user to view,
manage, and manipulate a number of objects 212a-» within
development environment 200. Such objects 212a-z may
include, for example, forms, controls, components, text
strings, and other like elements associated with the develop-
ment process. Development interface 210 also enables the
user to perform a number of actions. Such actions may be, for

US 7,490,314 B2

7
example, adding and positioning objects 212a-r within
development interface 210 and modifying the properties of
objects 212a-n.

Development interface 210 may be, for example, a
designer or an editor. As set forth above, a designer enables
the user to add, align, position, view, and otherwise manage
objects such as, for example, forms and controls. An editor
provides a word processing interface that enables a user to
generate, edit, and save source code and text related to appli-
cation development. The source code or text within the editor
may include a number of objects.

Development interface 210 includes a notification service
214 that tracks objects 212a-z and their corresponding states
and other related information. For example, notification ser-
vice 214 may track the data sources to which objects 212a-»
are bound. Notification service 214 also tracks user actions
occurring within development interface 210.

Task provider 220 communicates with notification service
214 to detect objects 212a-r within the development interface
210 and their corresponding states. The task provider 220
determines a set of developer tasks that are associated with
each detected object 212. For example, data grid view control
may have a set of associated data configuration and builder
tasks. The availability of the associated tasks may vary based
on the state of the detected object 212. For example, the
availability of the data configuration and builder tasks may
vary depending on the types of data sources to which the data
grid view control is bound.

The task provider 220 also communicates with notification
service 214 to detect actions occurring within the develop-
ment interface 210 and determines a set of developer tasks
associated with a detected action. Such developer tasks gen-
erally modify an action with a user specified result. For
example, when a control is dragged from a toolbox and
dropped into a form in the designer, the control may be
automatically docked in a parent control. An associated
developer task may, for example, enable the user to undock
the control from its parent.

A task may not always be available in connection with an
object or triggering action. The determination of which, if
any, tasks are available in connection in connection with an
object or triggering action may require some time, and, there-
fore, task provider 220 has the ability to delay or delegate the
identification of developer tasks until the application is idle,
thereby not slowing the responsiveness of development inter-
face 210.

To determine the available tasks that are associated with an
object or triggering action, task provider 220 may query task
service 230. Task service 230 effectively maintains an asso-
ciation between an object and a corresponding set of available
tasks that are associated with the object. The task service also
230 provides a programmatic interface that enables a user to
add and remove tasks from an objects corresponding set of
available tasks. The programmatic interface may be invoked
after receiving notifications from notification service 214.
Task service 230 also maintains logic for exposing tasks to the
user.

The developer tasks set forth above may be exposed in a
user interface in accordance with the present invention. In
addition to exposing developer tasks, the user interface may
expose other related items such as, for example, commands,
properties, and information in connection with objects
212a-r and actions performed by a user within development
interface 210. The user interface may be either an object
bound interface or an action triggered interface.

An object bound interface is associated with a correspond-
ing object 212 in development interface 210. The object

20

25

30

35

40

45

50

55

60

65

8

bound interface exposes a set of items associated with the
corresponding object 212. The object bound interface may
also expose tasks that are related to child objects that are
associated with the corresponding object. As set forth above
with respect to developer tasks, the availability of items may
vary depending on the state of the object 212. The object
bound interface preferably persists with the corresponding
object 212 as long as the object 212 is present in development
interface 210. Thus, the object bound interface enables the
execution of developer tasks in iterative scenarios which may
include executing several tasks in an arbitrary order. The
object bound interface also enables the performance of tasks
in a “re-entrant” fashion. The term ‘“re-entrant”, as used
herein, refers to performing a task successively without delet-
ing the intermediate states. Thus, the task may be re-entered
with the initial state being initialized using the previous state.

An action triggered interface is triggered by a correspond-
ing user action performed in development interface 210. The
action triggered interface exposes a set of items associated
with the corresponding action. The action triggered interface
preferably expires after the occurrence of an expiration event.
Such an expiration event may be, for example, the expiration
of a time interval after the performance of the triggering
action. An expiration event may also be, for example, the
performance of another user action after the performance of
the triggering action.

The items exposed in the user interface may be displayed to
the user in a user interface panel. Such a panel is described in
detail below with reference to FIGS. 4a and 45. Development
interface 210 may enable a user to select an “auto-pop”
option, in which the panel is displayed instantaneously when
a corresponding object 212 is added to development interface
210. The panel may also be requested using short cut key
stroke mechanisms.

Alternatively, prior to displaying the panel, a user interface
icon may be displayed to the user. Such an icon indicates, in
a non-obtrusive manner, that a panel is available. Unlike a
prior art context menu, an icon preferably does not require a
response form the user. An icon may be an object bound icon
or an action triggered icon, depending on whether it is dis-
played in connection with an object bound or an action trig-
gered interface, respectively. An object bound icon may be
displayed adjacent to a corresponding object. An action may
be displayed adjacent to an object on which a corresponding
triggering action is performed. Thus, both an object bound
and an action triggered icon may be displayed adjacent to a
single object.

Characteristics of an icon such as, for example, its size,
shape, form, shading, color, and position relative to an object
may vary. Such characteristics may be dependent on factors
such as, for example, the particular development interface
210 in which the icon is displayed, whether the icon is an
object bound icon or an action triggered icon, and user pref-
erences. Development interface 210 may enable the user to
set particular icon characteristics.

Additionally, various informational symbols may be dis-
played on the face of an icon to indicate to the user whether
the icon is an object bound icon or an action triggered icon.
For example, an object bound icon may include a drop down
arrow, while an action triggered icon may include both a drop
down arrow and an informational symbol such as, for
example, a quotation mark. In some cases, the particular
informational symbol displayed on an action triggered icon
may indicate with which type of action the icon is associated.
For example, an icon showing two overlaying, lined pages
may be used to indicate a copy text action.

US 7,490,314 B2

9

Exemplary icons in the designer interface are shown in
FIG. 3a-c. As should be appreciated, similar icons may be
employed in the editor interface with optional variations as
will be described in detail below with reference to FIG. 6a-6¢.
An exemplary object bound icon is shown in FIG. 3a. Object
bound icon 310a is associated with control 322. Control 322
is positioned in a form 320 within designer 210a. Object
bound icon 310q indicates to the user that an object bound
panel is available in connection with control 322. Object
bound icon 310a includes only a drop down arrow. Referring
now to FIG. 3, control 322 has an associated action triggered
icon 3104, which indicates to the user that an action triggered
interface panel is available in connection with an action that
has been performed on control 322. Unlike object bound icon
310a of FIG. 3a, which includes only a drop down arrow,
action triggered icon 3105 includes both a drop down arrow
and a exclamation mark symbol. The addition of the excla-
mation mark symbol indicates to the user that the icon 3104 is
an action triggered icon rather than an object bound icon.
Referring now to FIG. 3¢, control 322 has both an associated
object bound icon 310« and an associated action triggered
icon 3105, which indicate that both an object bound panel
and an action triggered panel are available.

Characteristics of an icon may also vary based on the user’s
interaction with the icon and/or object to which it corre-
sponds. For example, characteristics of the icon may vary
depending on whether control 322 is selected or whether it is
one in a group of selected objects. Furthermore, the charac-
teristics of the icon may vary depending on a location of
screen pointer with respect to the icon. Exemplary icons
displayed in response to various user interactions are
described in detail below with reference to FIGS. 6a-6c.

If a group of objects are multi-selected, then only the
primary selected object may display any icons that are
present. Non-primary objects in a multi-selection may, how-
ever, show their corresponding icons when a screen pointer
hovers over them. Otherwise, non-primary objects may func-
tion as if they are not selected. Additionally, if a number of
objects overlap one another, then only the primary object may
display any icons that are present. Furthermore, if an object is
positioned on a screen such that it has a corresponding object
icon and action triggered icon that overlap one another, then
the action triggered icon may be displayed on top of the object
icon. A floating tool window displayed in the designer inter-
face may partially cover an icon. However, clicking on the
iconmay generate a display of the panel over the tool window.

An icon may be shown continuously during a scroll opera-
tion. If a scroll operation requires an icon to be moved so that
it may be visible to the user, then the moving icon may be
visible as the screen is scrolled. When an object is resized or
moved, its corresponding icon may disappear during the
operation and may reappear when the operation is completed.
Ifan object is first positioned so that its corresponding icon is
not shown and the object is then subsequently resized or
moved such that the icon may be shown, then the icon may be
displayed after the operation is completed.

Once an icon is displayed, a user may request a user inter-
face panel by, for example, moving a screen pointer over the
icon and clicking the icon with an attached mouse. The user
may also be requested is by placing a screen pointer over the
icon for a sufficient duration of time. The panel may also be
requested using short cut key stroke mechanisms.

The panel may than be displayed adjacent to a correspond-
ing icon. The panel may include traditional text items from
which the user may select. Such text items may be developer
tasks and other commands grouped and ordered using exten-
sibility mechanisms made available by development interface

20

25

30

35

40

45

50

55

60

65

10

210. Text items may also be displayed on the panel to provide,
for example, textual information, a textual header, or a label.
In addition to text items, the panel may include user input
fields such as, for example, text edit boxes, check boxes, radio
buttons, and drop down menus. Such user input fields may
enable the user, for example, to set properties of a correspond-
ing object. The panel may also include custom content
selected by a user via a programmatic interface. The proper-
ties may also be associated with type converters for an addi-
tional rich user interface. For example, such association with
type converters may be used with respect to a color picker.

Exemplary panels in the designer interface are shown in
FIGS. 4a and 4b. As should be appreciated, similar panels
may be employed in the editor interface with optional varia-
tions as will be described in detail below with reference to
FIG. 7. An exemplary object bound panel 410a is shown in
FIG. 4a. Object bound panel 4104 is displayed adjacent to
object bound icon 3104a. Object bound panel 4104 includes a
list of exemplary developer tasks available in connection with
control 322. Such tasks include auto format, column edit, and
column addition. The edit column and add column tasks are
grouped according to their likely common use. Object bound
panel 410a also includes three user input fields displayed
below the developer tasks. As should be appreciated,
although user input fields 420 are check boxes, other user
input fields such as, for example, text edit boxes, radio buttons
and drop down menus may be displayed. User input fields 420
correspond to exemplary properties of control 322. The
exemplary properties are enable adding, enable editing, and
enable deleting. As shown, the enable adding property is
selected. The enable editing and enable deleting properties
are not selected.

An exemplary action triggered panel 4106 is shown in FIG.
4b. Action triggered panel 4105 is displayed adjacent to
action triggered icon 4105. Action triggered panel 4105
includes a list of exemplary developer tasks available in con-
nection with the triggering action performed on control 322.
Such exemplary tasks include dock in parent container and
undock in parent container. The dock in parent container task
is selected.

The default positioning of a panel may be to the bottom
right of an object as shown in FIGS. 4a and 45. However, the
positioning of a panel may vary when there is not sufficient
room to display the panel in its default positioning due to the
positioning of the object. For example, when an object is
positioned at the bottom edge of a screen, the panel may be
positioned to the top right of the object rather than to the
bottom right of the object. When an object is positioned at the
right edge of a screen, the panel may be positioned to the top
of'the object and as far right as possible without exceeding the
screen boundary. The panel may partially cover the object.
When an object is positioned at the top right corner of a
screen, the panel may also be positioned at the top right corner
of the screen and may partially or entirely cover the object.

The positioning of the panel with respect to the icon may
also vary. For example, the default positioning is for the panel
to be aligned with a corner of the icon as shown in FIGS. 4a
and 4b. However, if the object is positioned such that there is
not sufficient room to align the panel with a corner of the icon
and display the entire panel, then the panel may slide against
the icon until the panel may be entirely displayed.

An exemplary method for exposing developer tasks in
accordance with the present invention is shown in FIGS. 5a
and 5b. At step 510, task provider 220 detects an object 212 or
atriggering action within development interface 210. At step
512, task provider 220 generates a “marker” icon. The marker
is a small non obtrusive icon which notifies the user that a task

US 7,490,314 B2

11

interface is available in connection with the detected object
212 or triggering action. As should be appreciated, in certain
instances, no developer tasks may be available for the object
or triggering action. Thus, prior to generating the marker at
step 512, task provider 220 may first determine whether a
developer task is available for the detected object 212 or
triggering action. If no such developer task is available, then
task provider 220 may fail to generate the marker.

Step 512 is an optional step. For example, in one embodi-
ment of the present invention, the marker may only be dis-
played when a screen pointer is hovering over the same line as
a corresponding object. The relationship between the object
and task provider 220 is maintained even if the marker is not
displayed.

An exemplary marker in the editor interface 2105 is shown
in FIG. 6a. Editor interface 2104 includes exemplary text
with an exemplary object shown by the word “object”. The
word “object” is underlined with a squiggly line to indicate to
the user that it is an object. Although the squiggly line is
shown in FIG. 6a, the squiggly line need not be displayed
every time a smart tag is available in connection with an
object. The editor 2104 includes a screen pointer 620, which
may be guided by a user input device such as an attached
mouse. In FIG. 6a, pointer 620 is not positioned over the
objectorits corresponding icon 610a. Accordingly, icon 610a
is merely a small, non-obtrusive marker that is a small rect-
angular box. The positioning of marker 610a may optionally
vary depending on whether it is an object bound icon or an
action triggered icon. For example, if marker 610a is an
object bound icon, then it may be positioned to the bottom left
of'the object, as shown in FIG. 6a. If marker 610« is an action
triggered icon, then it may be positioned to the bottom right of
the object. In an alternative embodiment, the user may set
marker 610a to be an enlarged icon that includes an informa-
tional symbol similar to the icon described below with refer-
ence to FIG. 6.

At step 514, task provider 220 detects that screen pointer
620 is indirectly hovering over marker 610a, meaning that
screen pointer 620 is hovering adjacent to the corresponding
object. In response to the detection of the indirect hover, task
provider 220 generates an indirect icon at step 516. An exem-
plary indirect icon 6105 in editor interface 2105 is shown in
FIG. 64. Indirect icon 6105 is larger than marker 610a and
includes an informational symbol. Screen pointer 620 is hov-
ering adjacent to the word “object” while not hovering over
icon 6105.

At step 518, task provider 220 detects that screen pointer
620 is directly hovering over icon 6105. In response to the
detection of the direct hover, task provider 220 generates a
direct icon at step 520. An exemplary direct icon 610¢ in
editor interface 2104 is shown in FIG. 6c¢. Direct icon 610c¢ is
enlarged to include a drop down arrow in addition to an
informational symbol. As set for the above, different infor-
mational symbols may be displayed in direct icon 610c¢ to
indicate various types of triggering actions and tasks with
which the icon is associated such as, for example, error cor-
rection, refactoring, and general tasks. Additionally, although
not shown in FIG. 6c¢, direct icon 610c¢ is preferably shaded.

At step 522, task provider 220 detects a request for a user
interface panel. The user may request the panel by, for
example, clicking on direct icon 610¢ with an attached
mouse. At step 524, task provider 220 determines a set of
developer tasks available in connection with the object or
triggering action detected at step 510. As set forth previously,
to determine the available tasks that are associated with an
object or triggering action, task provider 220 may query task
service 230. Task service 230 effectively maintains an asso-

20

25

30

35

40

45

50

55

60

65

12

ciation between an object and a corresponding set of available
tasks that are associated with the object. The task service also
230 provides a programmatic interface that enables a user to
add and remove tasks from an objects corresponding set of
available tasks. The developer tasks available in connection
with a detected object may vary depending on the state of the
object.

At step 526, task provider 220 generates a panel for the
detected object or triggering action. An exemplary user inter-
face panel in editor interface 2105 is shown in FIG. 7. Panel
710 includes exemplary developer tasks reorder parameter,
add parameter, and delete parameter. If desired and appropri-
ate, panel 710 may also include expandable and collapsible
sections for particular groups of items. Panel 710 may also
include a list of help topics that provide contextual assistance
to the user. Panel 710 may also include an item that enables
the user to set options for the user interface. Panel 710 may
also include a task that enables the user to change existing
code or generate new code.

At step 528, task provider 220 detects a selection of a
developer task from panel 710. The user may select a devel-
oper task, by for example, moving screen pointer 620 over the
task and clicking the task with an attached mouse. As should
be appreciated the user may dismiss the task interface without
selecting a task. The user may dismiss the task interface 710
by, for example, moving screen pointer 620 to a screen area of
development interface 210 that is not occupied by task inter-
face 610 and clicking an attached mouse.

At step 530, the selected task is executed. The selected
developer task may be executed directly from panel 710.
Alternatively, the selection of the developer task may launch
another user interface that facilitates execution of the task.

As should be appreciated, the method of FIG. 5 set forth
above is described with respect to editor interface 2105. How-
ever, the method may be employed in designer interface 210a
with optional variations such as, for example, changing the
characteristics of the icon in response to a selection of a
corresponding control. As should be appreciated, steps 512 to
522 of FIG. 5 are optional steps which may be performed or
skipped individually or in combination. For example, as dis-
cussed previously, a user preference that may be invoked is an
“auto-pop” feature, in which a panel is generated instanta-
neously when a control is added to a development interface.
When the auto-pop feature is invoked for a detected object,
steps 512 to 522 are not performed and the method skips from
step 510 directly to step 524. Furthermore, the icons and
panels described with respect to the method of FIG. 5 may
also be displayed in designer interface 210a with optional
variations as described in detail above with respect to FIGS.
3a-3¢ and 4a-4b, respectively.

Conclusion

Thus, a user interface for exposing developer tasks in con-
nection with a corresponding object or triggering action has
been disclosed. The user interface may also expose items that
are relevant to child objects that are associated with the cor-
responding object and tool defined tasks that are related to the
corresponding object. In addition to exposing developer
tasks, the user interface may expose other commands, prop-
erties, and related information. The user interface functions in
anumber of development interfaces such as, for example, the
designer and the editor. The user interface provides a rich
panel that includes, for example, user input fields such as
check boxes, radio buttons, and drop down menus. The user
interface enables direct execution of developer tasks or, alter-
natively, provides a direct link to other interfaces that facili-
tate execution. The user interface is highly discoverable in

US 7,490,314 B2

13

that it provides a strong visual attractor in proximity to an
object, thereby alerting the user to the availability of the
interface. The user interface exposes tasks and information in
a non-obtrusive manner without interrupting the actions or
the thought process of the user. The user interface functions in
a manner that is consistent with other interfaces in other
computing environments such as, for example, in personal
productivity systems, thereby providing a familiar and intui-
tive experience for the user. The user interface may optionally
persist with a corresponding object as long as the object is
present in a development interface. The user interface may
expose customized tasks, commands, and information
selected by a user.

While the present invention has been described in connec-
tion with the preferred embodiments of the various figures, it
is to be understood that other similar embodiments may be
used or modifications and additions may be made to the
described embodiment for performing the same function of
the present invention without deviating therefrom. For
example, the user interface may be invoked in a development
interface other than a designer or an editor. Therefore, the
present invention should not be limited to any single embodi-
ment, but rather should be construed in breadth and scope in
accordance with the appended claims.

What is claimed:

1. A method for exposing a developer task that is associated
with an object in a development interface, the method com-
prising:

detecting an object in a development interface;

determining that a developer task is associated with the

object;

displaying a first icon in the development interface and

adjacent to the object to indicate that a panel is available
that enables the developer task to be viewed and
selected, the first icon being displayed without first
requiring the object to be selected;

in response to the screen pointer hovering over the object,

displaying a third icon in the development interface and
adjacent to the object, the third icon being larger than the
second icon and including the informational symbol and
an additional symbol;

detecting a selection of the third icon: and

displaying the panel in response to detecting the selection

of the third icon.

2. The method of claim 1, further comprising detecting the
object in a designer.

3. The method of claim 1, further comprising detecting the
object in an editor.

4. The method of claim 1, further comprising: determining
a state of the object; and determining that the developer task
is associated with the object based on the state of the object.

5. The method of claim 1, wherein determining that the
developer task is associated with the object comprises query-
ing a task to service to determine that the developer task is
associated with the object.

6. The method of claim 1, further comprising providing a
programmatic interface that enables a user to associate the
developer task with the object.

7. The method of claim 1, further comprising: displaying a
second the icon adjacent to the object when a screen pointer is
hovering over a screen area adjacent to the object; and dis-
playing a third icon adjacent to the object when the screen
pointer is hovering over the object.

8. The method of claim 1, further comprising displaying
the panel adjacent to the first icon.

20

25

30

35

40

50

55

60

65

14

9. The method of claim 1, further comprising displaying a
marker icon when a screen pointer is hovering over a screen
area that is not adjacent to the object.

10. The method of claim 1, further comprising displaying a
non-shaded icon when a screen pointer is hovering adjacent to
the object.

11. The method of claim 1, further comprising displaying a
shaded icon when a screen pointer is hovering over the first
icon.

12. The method of claim 1, further comprising determining
that the developer task is associated with a child object that is
associated with the object that is detected in the development
interface.

13. The method of claim 1, further comprising providing a
user interface with a user input field that enables the user to set
a property of the object.

14. The method of claim 1, further comprising: detecting a
selection of the developer task; and providing a direct link to
another user interface that facilitates the execution of the
developer task.

15. The method of claim 1, further comprising executing
the developer task in a re-entrant fashion.

16. A computer readable storage medium having com-
puter-executable instructions that, when executed, cause a
computer to perform the steps of:

detecting an object in a development interface;

determining that a developer task is associated with the

object; displaying a first icon in the development inter-
face and adjacent to the object to indicate that a panel is
available that enables the developer task to be viewed
and selected, the first icon being displayed without first
requiring the object to be selected; in response to a
screen pointer hovering over a screen area adjacent to the
object, displaying a second icon in the development
interface and adjacent to the object, the second icon
being larger than the first icon and including an infor-
mational symbol; in response to the screen pointer hov-
ering over the object, displaying a third icon in the devel-
opment interface and adjacent to the object, the third
icon being larger than the second icon and including the
informational symbol and an additional symbol; detect-
ing a selection of the third icon:

and displaying the panel in response to detecting the selec-

tion of the third icon.

17. a method for exposing a developer task that is associ-
ated with an object in a development interface, the method
comprising:

detecting the performance of an action on an object in a

development interface;

determining that a developer task is associated with the

action;

displaying a first icon in the development interface and

adjacent to the object to indicate that a panel is available
that enables the developer task to be viewed and
selected, the first icon being displayed without first
requiring the object to be selected;

in response to a screen pointer hovering over a screen area

adjacent to the object, displaying a second icon in the
development interface and adjacent to the object, the
second icon being larger than the first icon and including
an informational symbol;

in response to the screen pointer hovering over the object,

displaying a third icon in the development interface and
adjacent to the object, the third icon being larger than the
second icon and including the informational symbol and
an additional symbol; detecting a selection of the third

US 7,490,314 B2

15

icon: and displaying the panel in response to detecting
the selection of the third icon.

18. The method of claim 17, further comprising detecting
the performance of the action in a designer.

19. The method of claim 17, further comprising detecting
the performance of the action in an editor.

20. The method of claim 17, wherein determining that the
developer task is associated with the action comprises query-
ing a task to service to determine that the developer task is
associated with the action.

21. The method of claim 17, further comprising providing
a programmatic interface that enables a user to associate the
developer task with the action.

22. The method of claim 17, further comprising: displaying
a second icon adjacent to the object on which the action is
performed when a screen pointer is hovering over a screen
area adjacent to the object; and displaying a third icon adja-
cent to the object when the screen pointer is hovering over the
object.

23. The method of claim 17, further comprising displaying
the panel adjacent to the first icon.

24. The method of claim 17, further comprising displaying
a marker icon when a screen pointer is hovering over a screen
area that is not adjacent to the object on which the action is
performed.

25. The method of claim 17, further comprising displaying
anon-shaded icon when a screen pointer is hovering adjacent
to the object on which the action is performed.

26. The method of claim 17, further comprising displaying
a shaded icon when a screen pointer is hovering over the first
icon.

27.The method of claim 17, further comprising causing the
first icon to expire after a selected time interval.

20

25

30

16

28. The method of claim 17, further comprising causing the
first icon to expire that expires after a performance of another
action by a user.

29. The method of claim 17, further comprising displaying
with the first icon that include an informational symbol cor-
responding to a type of action.

30. The method of claim 17, further comprising: detecting
a selection of the developer task; and providing a direct link to
another user interface that facilitates the execution of the
developer task.

31. A computer readable medium storage having com-
puter-executable instructions that, when executed, cause a
computer to perform the steps of:

detecting the performance of an action on an object in a

development interface;

determining that a developer task is associated with the

action; displaying a first icon in the development inter-
face and adjacent to the object to indicate that a panel is
available that enables the developer task to be viewed
and selected, the first icon being displayed without first
requiring the object to be selected;

in response to a screen pointer hovering over a screen area

adjacent to the object, displaying a second icon in the
development interface and adjacent to the object, the
second icon being larger than the first icon and including
an informational symbol;

in response to the screen pointer hovering over the object,

displaying a third icon in the development interface and
adjacent to the object, the third icon being larger than the
second icon and including the informational symbol and
an additional symbol detecting a selection of the third
icon: and displaying the panel in response to detecting
the selection of the third icon.

#* #* #* #* #*

