
Peer-to-Peer Detection
or

Beyond Naive Traffic Classification

Diploma Thesis

François Deppierraz
francois@ctrlaltdel.ch

Professor: Hervé Dedieu
Mandator: Jaime Nebrera

Date: December 8, 2006
Status: Final

Project Description

Diploma project description

Most current NetFlow probes are usually able to classify traffic using only
transport layer informations, more specifically only the TCP/UDP well-know
port numbers. With the increasing use of P2P applications, VoIP and other
applications using dynamic port numbers, multiples sessions and sometimes
encrypted payload, this kind of basic classification is not reliable anymore.
Therefore other methods have to be used. For example, pattern matching on
the data payload or statistical analysis of the packet flows is necessary.

As the need for higher bandwidth arise, applying pattern matching on data
payload becomes quite resource intensive and cannot be handle by a single
common CPU anymore. Companies like Sensory Networks, which is a Eneo
partner, has developed specific hardware to handle such tasks. An implemen-
tation using this hardware in an open source NetFlow probe called pmacct will
be done.

If time permits, the statistical approach using only transport-layer informa-
tions to classify flows at the collector level could be studied and implemented.
The current research in this domain is going quite fast and many papers are
available.

Requirements: Linux network, C Programming, NetFlow

Support: Besides IICT teachers, the student will get support from Eneo spe-
cialists and partners

Specifications

More reliable IP traffic classification using pattern matching and/or statistical
analysis

1. Reading and understanding of the protocols to detect
2. Discussion of the different methodologies available
3. Implementation of one of those methodologies
4. Benchmarks and measures of the chosen method
5. Writing of a research report

i

Contents François Deppierraz

Contents

Project Description i

Contents ii

Abstract vi

Acknowledgments vii

1 Introduction 1

I State of the Art 2

2 Peer-to-Peer 3
2.1 Definition . 3
2.2 History . 3
2.3 File Sharing Applications . 4
2.4 P2P Telephony . 6
2.5 Future directions . 7

3 Network monitoring 9
3.1 Introduction . 9
3.2 SNMP . 9
3.3 NetFlow . 10
3.4 sFlow . 12
3.5 Intrusion Detection Systems . 12

4 Traffic Analysis 14
4.1 Introduction . 14
4.2 Traffic classification . 14
4.3 Packet Capture . 16

5 Behaviour Identification 18
5.1 Ongoing Research . 18
5.2 Advantages . 19
5.3 Drawbacks . 20
5.4 Future Work . 20

6 Existing Tools 21
6.1 SNMP . 21
6.2 NetFlow . 22
6.3 The Round Robin Database . 23

ii

Contents François Deppierraz

7 nProbe 24
7.1 Features . 24
7.2 Design . 24
7.3 Layer-7 plugin for nProbe . 26

II Technologies 29

8 Regular Expressions 30
8.1 Introduction . 30
8.2 Syntax . 30
8.3 Examples . 31
8.4 Regular Expression Matching 32
8.5 Implementations . 33

9 Hardware Acceleration 35
9.1 Technologies . 36
9.2 Products . 37

10 Concurrent Programming 39
10.1 Introduction . 39
10.2 Processes versus threads . 40
10.3 Synchronization primitives . 41
10.4 POSIX Threads . 42
10.5 GNU Portable Threads . 42
10.6 Problems . 43
10.7 Things to avoid . 44
10.8 Thread-safety and Reentrancy 45
10.9 Design pattern : Thread Pool 46

11 Debugging 47
11.1 C Preprocessor and printf() 47
11.2 GNU gdb . 49
11.3 Custom classifier module . 50

12 Profiling 51
12.1 OProfile . 51
12.2 GNU gprof . 52
12.3 Custom Code . 53

IIIHardware Accelerated Network Probe 56

13 Pmacct 57
13.1 Features . 57
13.2 Plugins . 58
13.3 Traffic classification . 59

14 Sensory Network Hardware 60
14.1 Features . 60
14.2 Hardware specifications . 61

iii

Contents François Deppierraz

14.3 Pattern Matching Engine . 61
14.4 Performances . 61
14.5 Theoretical performances . 62

15 Implementation: Pmacct NodalCore classifier 63
15.1 Limitations . 63
15.2 Pmacct classifier extension . 63
15.3 NodalCore classifier module . 64
15.4 Distribution . 65

16 Implementation: Pmacct multi-threaded core 66
16.1 Single-threaded Design . 66
16.2 Multi-threaded Design . 66
16.3 Shared Data Structures Locking 67
16.4 Build System . 68
16.5 Future Enhancements . 69
16.6 Distribution . 69

17 Benchmarks 70
17.1 Benchmark Methodology . 71
17.2 Libpcap . 74
17.3 NodalCore API and Hardware 74
17.4 Pmacctd . 78
17.5 Profiling . 80
17.6 Conclusion and Future Work 81

18 Conclusion 83

RFC Bibliography 85

Bibliography 86

Index 91

List of Figures 92

List of Tables 93

IVAppendices 94

A NodalCore C-2000 Card 95
A.1 Installation . 95
A.2 NCore ip queue benchmark tool 98
A.3 NCore Packet Scanner . 99

B NodalCore API 100
B.1 Overview . 100
B.2 API Wrapper . 101

C Contributions 104
C.1 Libcprops . 104

iv

Contents François Deppierraz

C.2 libpcap package in Ubuntu . 105
C.3 Pmacct . 106

D gettimeofday() System Call 107
D.1 Resolution . 107
D.2 Program . 107

E Benchmarking Programs 109
E.1 Traffic Capture File . 109
E.2 Libpcap . 110
E.3 NodalCore API and Hardware 112
E.4 Pmacctd . 114

F Measures 120
F.1 Pmacctd . 120

G GNU General Public License 124

H Diary 131

v

Abstract

Most of the traffic classification currently implemented on IP networks is
based on the assumption that the layer 4 (TCP or UDP) port numbers present
in IP packets headers can define the layer 7 protocol of the communication.
Unfortunately this assumption is no longer true because of many protocols
using dynamic ports including many Peer-to-Peer protocols, VoIP and so on.

To solve this issue at least two ways exist, (1) trying to apply better algorithms
to the transport layer information we already have and (2) analyzing more
informations than now, like the whole packets including payload.

This first solution called behavioural analysis is based on ongoing research
which tries to model the way a Peer-to-Peer network is working and infers
some common characteristics of Peer-to-Peer traffic.

The main focus of this diploma has been on the second solution, called Deep
Packet Inspection. It works by using protocol signatures, usually in the
form of regular expressions, which are applied on the payload of IP packets
to determine the protocol used. This feature can be integrated with current
network probes.

Because the pattern matching operation on traffic can quickly become very
complex and resource intensive, some companies have produced hardware ded-
icated to it. Most of the time this hardware is based on a FPGA which imple-
ments a regular expressions matching engine.

During this diploma, in the office of Eneo Tecnoloǵıa in Seville, a network
probe doing traffic classification with hardware accelerated pattern matching
has been developed. This development was based on (a) the free software
pmacct, a multi protocol network probe developed by Paolo Lucente and (b)
the NodalCore C-2000 Serie card as well as the Linux C API from the company
Sensory Networks.

The result of the development is a working but performance-wise suboptimal
implementation which can serve as a proof of concept and has given ideas about
future works on the subject.

vi

Acknowledgments

To Lauren for her support and for bearing with my absence during those
three months far away.

To my family for their lasting support.

To all the nice guys working at Eneo for their hearty welcome and their help
during the project : Angél, Ale, Elio, Jaime, Pablo, José Alberto and Jota.

To Paolo Lucente for his sleep-less nights when replying to my mails and all
the work he did on pmacct.

To Hervé Dedieu for his cheerful support.

A mis queridos compis de piso : Antonio, Dawid, Mariana, Marina, Janin and
Saidjah. Muchas gracias por compartir su buen humor y la limpieza.

To Saitis Network and especially Nicolas Désir for everything including —
more precisely during that project — access to such a wonderful production

networking lab.

To Luca Deri for his help and code (nProbe) during the pre-project.

To Matthew Gream of Sensory Networks for reminding me not to overflow
buffers and for taking the time to write huge interesting mails.

To Grégoire Galland for managing the printing of the report.

To Joao Alves and Léonard Gross for their LATEX tips and tricks.

To Pascal Gloor for his C programming tips.

vii

Chapter

1
Introduction

The diploma project presented in this document has been done during about
three months at the end of 2006 in the office of Eneo Tecnoloǵıa1, a small
network security company located in the beautiful city of Seville in Spain.

Peer-to-peer detection takes place into the framework of general network mon-
itoring and security. The project goal defined by Jaime Nebrera, CEO of Eneo
Tecnoloǵıa, was to design and implement an hardware accelerated network
probe based on the free software project pmacct (see [Luc]) and using the
hardware and development kit provided by the company Sensory Networks.

This document is made up of three parts. The first part I on page 3 named
State of the Art will present some definitions as well as existing tools used
in the network monitoring domain in which this project fits. Research is quite
active in this domain too, and thus some interesting ongoings researches will
be presented.

The second part II on page 30 named Technologies will describe in details the
different technologies which have been studied and extensively used during this
project. Regular expressions as well as hardware acceleration will be presented.
The basis of concurrent programming will be explained and development tech-
niques such as debugging and profiling will be presented.

The last part III on page 57 named Hardware Accelerated Network Probe
will describe the actual development effort which has been done during the
implementation of a hardware accelerated network probe doing traffic clas-
sification using regular expressions. The implementation has been based on
hardware from Sensory Networks. The results of benchmarks will also be pre-
sented.

1http://www.eneotecnologia.com/

1

http://www.eneotecnologia.com/

Part I

State of the Art

2

Chapter

2
Peer-to-Peer

This chapter will give on overview of the so called Peer-to-Peer technologies,
their history and some applications using it. We will try to depict the similari-
ties and differences between the Peer-to-Peer model and the usual Client-Server
model.

2.1 Definition

A peer-to-peer (P2P) network consists of multiple nodes (also called peers)
taking part in it and acting both as clients and servers at the same time.
Whereas P2P looks like new technology, it is basically nothing else than a
specific way to use the old client-server model.

Where the client-server model imposes a great differentiation between each
node function — the server node provides a service which is accessed by one or
many clients — whereas in a P2P network every node will act as both a server
and a client in the same time.

2.2 History

The term P2P appeared in the late nineties with the first applications like
Napster (see section 2.3 on the next page) available to the general public,
this triggered a hype on the technology, thus driving the development of new
applications.

But the underlying paradigms used by P2P applications have been in use at

3

2. Peer-to-Peer François Deppierraz

Protocol Search Data Transfer Authentication
HTTP Search engines

(C)
Single server (C) HTTP Auth (optional)

Napster One website (C) Other clients (D) One central server (C)
Gnutella From an ultra-

peer (D)
Other clients (D) None

eDonkey Multiple servers
(one per net-
work) (C)

Other clients (D) None

Bittorrent Search engines
(C)

Other clients (D) None

Skype Single server
(C)

Other clients as
relays (D)

Single server (C)

Table 2.1: P2P protocols characteristics

least since the beginning of Usenet1 around 1979 under the name of distributed
computing.

The rapid development of P2P applications has been driven by the increasing
popularity of Internet and the availability of always increasing bandwidths.

2.3 File Sharing Applications

The first applications taking advantage of P2P technologies where mostly file
sharing applications using a centralized index of the files and clients available
through the network. The following applications focus primarily on giving their
users to ability to exchange files between them but without the need the store
the file in central location. Instead, the files themselves are directly exchanged
between nodes.

The table 2.1 gives some comparisons points between HTTP (see [rfc2616]) and
the different P2P protocols described in this section. In P2P protocols usually
multiple functions are available such as search, data transfer and sometimes
authentication. Each of those functions can work in a centralized or distributed
way, the letters C and D describe that. Only the features widely available in
current versions are described, for newer features see section 2.5 on page 7.

1A network used the deliver articles in different newsgroups between news servers dis-
tributed on the Internet

4

2. Peer-to-Peer François Deppierraz

Napster

Napster has been the first popular file sharing application implementing P2P
technologies, though in a very basic way. Each node registered itself on a
centralized server and transmitted the list of files he was sharing. Searching
through the available files in the network was done on a web interface but the
data transfers took place directly between nodes.

Napster’s topology was overly centralized, this has led to multiple legal
problems which are outside the scope of this work. The current trends in file
sharing applications is to avoid any centralized element in the network while
trying to keep up with the performances usually experienced with centralized
networks.

The whole history of Napster is available on [Wik06h].

Gnutella

Gnutella was one the first fully distributed P2P protocol made available in
the early 2000 by the company NullSoft which has just been bought by AOL.
Soon after release, AOL decided to stop the project because they feared legal
liability for copyrighted material exchanged on the network. But the software
was already in the wild and compatible open-source clients have been developed
by reverse-engineering2 of the protocol.

More information on the protocol is available on [Wik06f] for general informa-
tion and [gnu] for the protocol development effort.

eDonkey

The eDonkey protocol relies on multiple centralized servers, one for each
community, each connected clients will send a list of files he is sharing. One
of the specificity of eDonkey was the utilization of file chunks which can be
shared even before having the whole file and can be downloaded in parallel
from multiple peers.

This protocol is supported in the following well-known clients : eMule, MLDon-
key, eDonkey2000 and Morpheus. More information is available on [Wik06d].

2Reverse-Engineering means understanding the protocol used by an application by ana-
lyzing it without access to the source code

5

2. Peer-to-Peer François Deppierraz

Bittorrent

The main specialty of the Bittorrent protocol is that it supports only file trans-
fer and does not support any file searching capability. The HTTP protocol is
commonly used to retrieve a torrent file which contains meta data about the
file, the address of the tracker3 and SHA-1 checksums of each file chunk.

One of the main advantage of Bittorrent relying on the publication of torrent
files on websites, email or other means outside of the P2P network itself is that
the authenticity of the file can be better controlled. This allows companies
and open source projects to release their software using Bittorrent without
caring about fakes files.

More information is available on [Wik06a].

2.4 P2P Telephony

Skype

Skype is a Voice over IP (VoIP) application developed by the creators of Kazza.
It has become widely used mostly because of the following features :

• His aptitude to bypass firewalls and NAT routers
• A great voice quality, achieved by using wideband codecs

But Skype is a proprietary product using proprietary protocols which brings
major drawbacks :

• The security and privacy of the software is unknown and difficult to prove
• No interoperability with standard compliant products (such as SIP or

H.323 phones)

Researchers have tried to reverse-engineer the protocol used by Skype [BS04]
or the application itself [BD06].

Media Streaming

The idea of streaming media such as audio or video over the Internet is not new
but the increase in bandwidth available at home has given it a boost during
the last years.

3The tracker serves as a directory of the nodes currently sharing chunks of the file

6

2. Peer-to-Peer François Deppierraz

Technically speaking the use a Multicast4 infrastructure will fit perfectly the
needs of media broadcasting over the Internet but multicast is not, and sadly
has not much chance of being, implemented on Internet in it’s current form
because, besides some technical difficulties which can hopefully be fixed, it can
change radically the economical model of content distribution on the Internet.

Economically speaking, if everyone on the Internet would be able to send a
multicast stream to the entire world using only his own Internet access at home
this would break the business case of many ISP which in addition of providing
Internet access to their customer also provide servers hosting for the content
providers. This idea is quite interesting in term of potential services provided on
the Internet but his realization would require ISP to deploy multicast on their
network and open that from the Internet and thus losing hosting customers
which is not likely to happen.

The is one of the reason why P2P networks for content streaming have been
used as a fall back solution due to the unavailability of multicast.

2.5 Future directions

The implementation of P2P protocols in wide use these days usually require
some kind of centralization to handle available informations lookups. Such a
centralization can threaten the network in case of legal action directed to the
owner of the servers or in case of DoS5 attacks for example.

Moreover, the protocol as well as data are usually transmitted in clear, expect
for Skype and thus can be inspected, for example, by the network probe devel-
oped in this project or filtered by firewalls. Moreover, privacy issues can arise
depending on the data transfered with those means. More and more proto-
cols are beginning to implement data encryption and authentication as well as
anonymity using cryptographic methods.

Distributed Network

Most current applications using P2P protocols require some sort of centralized
server.

• Each eDonkey network require a central server, see the RazorBack2 case
[Far06]

• Bittorrent files are downloaded and searched on websites, see the “May
2006 police raid” section of [Wik06i]

• Skype use a centralized authentication service, see [BS04]

4In a multicast network, a host can send packet which will be received by many hosts
instead of only one when using unicast

5Denial of Service

7

2. Peer-to-Peer François Deppierraz

In a fully distributed network there is no need for a centralized server anymore,
all or some of the nodes creating the network will play this role. The drawbacks
is that fully distributed P2P network is quite more complicated to build and
scale. The Gnutella protocol (see section 2.3 on page 5) is an example of such
protocol.

Other P2P protocols have been extended to support distributed operations,
usually these extensions were developed as a result of some legal action against
known servers. One of the example is the Kademlia algorithm (see [Wik06g])
which has been used to overcome the central server requirement of eDonkey
and Bittorrent.

Cryptography Usage

One of the current trend in P2P protocols is using cryptography in the protocol
for different reasons like avoiding traffic analysis which is used for firewalling
or traffic shaping, to increase the privacy of users or even to give users fully
anonymity when using the protocol.

The first category of cryptography usage in P2P protocol is simple obfuscation
of the protocol data. This is mainly done to bypass layer 7 pattern matching
detection equipments such as routers or firewall of some ISP which decided to
filter or shape P2P traffic. Usually those implementation are quite weak in
term of security because their goal is only obfuscation. This type of encryption
has been implemented in the Bittorrent protocol (see [Wik06b]).

Another type of cryptography usage is done by P2P application such as Waste
(see [was]) which use asymmetrical cryptography to secure all the network
links between clients as well as authenticating clients entering the network. This
application is mostly designed for small groups of users which need services like
instant messaging and file transfer inside the group.

The last category presented is overlay networks taking advantage of P2P-like
protocols and cryptography to create completely anonymous networks running
on top of Internet called overlay networks. The goal of those projects is to
protect freedom of speech by allowing people to access and publish information
without any traceability. Those networks are using multiple layers of encryption
and are routing both the requests and responses through multiple hops in
the network. Only the last hop is able to decrypt the message and all the
intermediaries only know about the node before him and the following.

Multiple projects using that kind of overlay networks exist, widely known ex-
amples are Tor (see [tor]) and Freenet (see [fre]). In the case of Tor which
allows Internet access from within the overlay network, it is even possible to
use usual P2P applications with it. The performances are usually much lower
than with a direct Internet access because of the multi-hop routing.

8

Chapter

3
Network monitoring

This chapter will show different protocols and systems in use today to monitor
networks of different sizes, ranging from the one of a small company to an
international ISP network spanning multiple continents.

3.1 Introduction

Network monitoring plays an important role in today network management.
IP Networks are now being used to access the Web, communicate using emails,
transfer scientific data, carry voice calls, video on demand and so on. This
convergence on a single network, which is best-effort by design, requires careful
monitoring to minimize outages and improve the quality of service experienced
by the users.

3.2 SNMP

The Simple Network Management Protocol has been standardized by the IETF
as a mean of getting status informations about network equipments as well as
modifying the configuration of those. Due to many reliability and security
issues in the initial design of the protocol, it is mostly used theses days in read-
only mode as a mean to query network equipments for informations about
their status such as interfaces counters (ifInOctets and ifOutOctects) or
system informations such as uptime (sysUpTimeInstance) or Operating Sys-
tem version (sysDescr). More information on the protocol itself can be found
in [Wik06k] and [rfc1157].

Many available tools gather statistics using SNMP to give network administra-

9

3. Network monitoring François Deppierraz

tors a view on how their network is currently running. The best known tools
working this way are Mrtg (see section 6.1 on page 21), Cacti (see section 6.1
on page 22) or proprietary tools such as HP OpenView. Usually informations
such as interface counters are polled from a central management station run-
ning one of the aforementioned tool each 5 minutes and displays graphs showing
the derivate of those values while handling the counter overflows1.

One of the drawbacks of monitoring a network by relying only on SNMP is
the coarse granularity of the gathered informations, all you can get is the
total traffic on each interface of your network equipments. There is no way to
differentiate between different protocols, different IP addresses and so on.

3.3 NetFlow

NetFlow is a protocol created by Cisco Systems which allows network equip-
ments such as routers and switches to export statistics about the traffic flowing
through them. Different versions of the protocol exist, but we will focus pri-
marily on NetFlow v5 which is commonly used on network equipment at the
moment and IPFIX (see [rfc3917]) which is the IETF standard based on Net-
Flow v9 (see [rfc3954]) which is used to transport more detailed informations
than NetFlow v5.

Flow Definition

The usual definition of a flow is an unidirectional communication made of IP
packets sharing the following 5-tuple of attributes :

• Source IP address
• Destination IP address
• IP protocol (TCP, UDP, ICMP, etc.)
• Source port
• Destination port

Usage

NetFlow provides a way to get informations about every flow routed through
a network in a simple and efficient manner. Many Internet Service Providers
(ISP) use it to gather statistics about the traffic routed through their network,
to bill their customers, to detect security attacks and so on.

1Those counters are commonly 32 bits long and thus cycles after 232 bits which is 4 GB.
Newer network equipments have to use 64 bits counters to avoid cycling twice during the
same polling interval.

10

3. Network monitoring François Deppierraz

0 16 32

Version Count

SysUpTime

Epoch Seconds

Nanoseconds

Flows Seen

Engine Type Engine ID Sampling Info

(a) Header

0 16 32

Source IPaddr

Destination IPaddr

Next hop router IP address

Inbound snmpIFindex Oubound snmpIFindex

Packet Count

Byte Count

Time at Start of Flow

Time at End of Flow

Source Port Destination Port

TCP flags Layer 4 Proto IP ToS

Source ASN Destination ASN

Source Mask Dest. Mask

(b) Record

Figure 3.1: NetFlow v5 Packet Format

In comparison to dedicated traffic analyzing equipment such as IDS or special-
ized packet sniffers, NetFlow has the main advantage of running on the same
hardware as the one forming the network without requiring adding dedicated
equipment at each interconnection point.

NetFlow v5 packets

NetFlow v5 packets contain a basic set of informations about flows which have
been created according to the definition presented before. The NetFlow v5
protocol is not extensible but has the main advantage of being simple and easy
to implement.

11

3. Network monitoring François Deppierraz

NetFlow v9 packets

The NetFlow v9 protocol has been designed to be fully extensible, it allows
generators and collectors to exchange all the informations they requires by
supporting templates. Of course, both the generator and the collector must
understand the templates to be useful but if a specific template is unknown,
the specific information using this template can be discarded while keeping the
rest.

3.4 sFlow

sFlow is a multi-vendor alternative to NetFlow which has the following advan-
tages :

• Supports other protocols than IP such as Ethernet directly, IPX or Ap-
pletalk

• More extensive support for including BGP4 informations such as Com-
munities and AS-Path (see [vB02])

• Built-in support of sampling to be able to cope with high-speed networks

We are not going in much details because this protocol won’t be used in this
project. More informations are available in [sfl].

3.5 Intrusion Detection Systems

Intrusion Detection Systems (IDS) usually uses traffic analysis methods to warn
system administrators of security attacks on their systems. Most current IDS
are using a set of rules applied to the traffic and are raising alerts in case of
match. Those rules are often created based on security advisories of known
security holes. One of the most well-known open-source IDS software is Snort
(see [sno]).

One the method often used pattern matching on traffic payload is regular ex-
pressions matching (see chapter 8 on page 30) or simple strings matching. That
is why those system have the same performance problems as traffic classifica-
tion and can also take advantage of hardware acceleration (see chapter 9 on
page 35).

12

3. Network monitoring François Deppierraz

(a) Packet structure

0 16 32

Version Count

SysUpTime

UNIX Secs

Sequence Number

Source ID

(b) Header

0 16 32

FlowSet ID = 0 Length

Template ID Field Count

Field Type 1 Field Length 1

Field Type 2 Field Length 2

(c) Template FlowSet

0 16 32

FlowSet ID = Template ID Length

Record 1 - Field Value 1 Record 1 - Field Value 2

Record 1 - Field Value 3 . . .

Record 2 - Field Value 1 Record 2 - Field Value 2

Record 2 - Field Value 3 . . .

Record 3 - Field Value 1 . . .

. . . Padding

(d) Data FlowSet

0 16 32

FlowSet ID = 1 Length

Template ID Option Scope Length

Option Length Scope 1 Field Type

Scope 1 Field Length . . .

Scope N Field Length Option 1 Field Type

Option 1 Field Length . . .

Option M Field Length Padding

(e) Options Template FlowSet

Figure 3.2: NetFlow v9 Packet Format
13

Chapter

4
Traffic Analysis

4.1 Introduction

Traffic analysis requires access to the traffic flowing through a network, that
is why it has usually to been done on network equipment such as routers or
switches or even directly on the links using passive probes.

Various traffic analysis methods exist, some give access to the full packet pay-
load or others only give statistical informations about packets. Traffic analy-
sis can be embedded in network equipment (NetFlow for example see 3.3 on
page 10) or on dedicated equipments such as packet sniffers, tcpdump running
a machine connected to the mirroring port of a switch.

4.2 Traffic classification

Well known ports

One of the easiest traffic classification method is transport layer analysis based
on port numbers. Originally, in a plain client-server IP architecture, each
server uses a specific TCP or UDP port number which has been allocated for
the service by IANA1. These well known ports are defined in the range 1 to
1023.

Let S1 be a TCP session between two hosts.

1Internet Assigned Numbers Authority

14

4. Traffic Analysis François Deppierraz

Figure 4.1: Traffic classification using well known ports

S1 = (ip1, port1) ⇔ (ip2, port2)

The session is defined by two parameters for each host, the IP address ipx and
the port number portx. Now to able to determine the protocol which is running
and the function of each host (client or server) it is sufficient to find which of
the two port numbers is less than 1024, this will define the server and a simple
lookup with this port in the IANA registered port list or /etc/protocols
under Unix will give us the protocol used.

On figure 4.1 is an example of a well known ports based traffic classification
done on a small ISP network2. The traffic categorized as Other is the one
using non-standards ports, in that example it is 27.8% in output and 59.1%
in input. This is only example a simple example but shows well why better
techniques are required.

Deep Packet Inspection

Deep Packet Inspection (DPI) consists in using all the informations available
on packet from layer 2 to layer 7 to do traffic classification. These methods use
protocol signature which are usually either fixed strings or regular expressions
(see chapter 8 on page 30). Both are matched on the packet payload and
can sometimes be associated with other layers specifications such as layer 3
protocol, port numbers or even specific IP addresses (known centralized servers
for example).

2Saitis Network, AS6893

15

4. Traffic Analysis François Deppierraz

This method was used during the development part of the project which is
described in part III on page 57.

4.3 Packet Capture

This section will give an overview of different packet capture mechanisms avail-
able under Linux. The job of a packet capture is to get packet from a network
interface, possibly using promiscuous mode3 and transmit it to an application
which will care of the traffic analysis itself.

Libpcap

Libpcap is a widely used packet capture library available under Unix which has
been developed for the tcpdump packet sniffing utility but which is now used
by many other projects.

Under Linux, Libpcap uses the Linux Packet Filter (see [Ins01]) feature of the
kernel because, when using sockets, only the packet payload is transmitted to
user space applications by the kernel which has already handled the layers 3
and 4 protocols decoding. This feature allows applications to receive the whole
packet include layer 2 headers.

Libpcap-mmap

A patch is available on [libb] to add support in libpcap for the shared ring
buffers available in the Linux kernel (using the kernel option CONFIG_PACKET_MMAP
since kernel 2.4). It is more efficient because it avoids data copy between user
and kernel space, the user space processes can thus directly access the ring
buffer using the mmap system call.

Streamline

Streamline is a networking subsystem working in the Linux kernel. It works at
high-speed because all the filtering and data manipulation is done directly in
the kernel instead of being pulled up to user space before manipulation. In prac-
tice, that means that a user space application gives a command like filter tcp
traffic to port 80 -> reassemble tcp session -> apply regular expres-
sions -> send the result to user space. This feature allows applications
requiring very specific operations on traffic to perform quite faster.

3A special network interface mode which will give access to all packets coming to the
interface without, in the case of Ethernet interfaces, filtering on the destination MAC address.

16

4. Traffic Analysis François Deppierraz

Hardware acceleration is also usable by Streamline which can take advantage
of network processor such as Intel IXP1200 (see section 9.1 on page 37). The
architecture of Streamline allows applications to create specific code destined
to the kernel or the network processor which will apply specific functions to
the traffic.

nCap

nCap is a packet capture and transmission system developed by Luca Deri
(the author of nProbe too, see chapter 7 on page 24) which is compatible with
libpcap and was designed to work with commodity hardware. In capture mode,
the idea is to shorten at maximum the path between the network interface and
the applications handling the captured traffic. To do that nCap is implemented
directly in the Ethernet interface driver4 and will feed a shared buffer with the
monitoring applications, thus bypassing completely the kernel itself.

4At the moment only Intel 1Gbps and 10Gbps interfaces are supported

17

Chapter

5
Behaviour Identification

This chapter will present an overview on current traffic identification methods
relying only on transport layer informations — which are already available
on monitoring systems based on NetFlow v.5 (see section 3.3 on page 10)
for example — to do traffic classification. Most methods are using statistical
analysis of the flow informations to be able to determine at which class of traffic
a flow belongs.

No development has been done on this type of traffic identification during this
project but those techniques are nonetheless quite interesting and usually easier
and cheaper to deploy because they do not require access to the packet payload
and can leverage an existing NetFlow infrastructure.

5.1 Ongoing Research

This section will give an overview of some research papers which have been
published on the subject of traffic classification using transport layer informa-
tions.

Transport layer identification of P2P traffic

The paper entitled“Transport layer identification of P2P traffic”(see [KBFc04])
by Karagiannis et al. presents a method which focus is P2P detection and is
based on two main behaviours :

1. Utilization of both TCP and UDP within a defined time frame between
the same pair of source and destination IP addresses

2. Connections to as many different ports than different IP addresses

18

5. Behaviour Identification François Deppierraz

Some mechanisms based on known port numbers of non-P2P traffic were added
to decrease the number of false positives.

BLINC : Multilevel Traffic Classification in the Dark

A second paper of Karagiannis et al. (see [KPF05]) presents a more general
traffic identification method which does not specifically focuses on P2P traffic
and, this time, without using any a priori information such as well known port
numbers.

This classification is based on an approach taking into account three different
levels. The social level made of the interactions between hosts, the network
level analyzes the role (provider, consumer of both) of the hosts and the ap-
plication level analyzes the interactions between hosts on specific ports trying
to identify applications.

Identifying Known and Unknown P2P Traffic

Another paper, entitled “Identifying Known and Unknown P2P Traffic” (see
[CM]) which followed the two previous papers is only using the two following
intrinsic characteristics of P2P networks :

1. A large network diameter
2. Many nodes acting both as clients and servers

5.2 Advantages

In situations where techniques based on packet payload analysis are not avail-
able due to legal, privacy or technical concerns, behaviour identification can be
of great interest.

Data processing can be delayed because the flow informations can easily be
stored in databases and the classification algorithm can be run at any time.
With payload identification this is usually not possible because there is too
much data to store and therefore the payload analysis has to be done in real-
time.

Behaviour identification can also work with informations coming from multi-
ple monitoring points on a network whereas payload analysis cannot use such
information aggregation.

New P2P protocols can be detected using such a method where payload iden-
tification requires prior reverse-engineering of the protocol, what is usually not
trivial.

19

5. Behaviour Identification François Deppierraz

5.3 Drawbacks

Implementing an infrastructure able to handle payload analysis can provide
some groundwork for implementing more services taking advantage of the clas-
sification such as service dependent traffic shaping, anti-virus or anti-worms
firewalling and so on.

Usually behaviour identification results are much less specifics than with pay-
load identification. For example, P2P detection based on behaviour identifica-
tion will only tell if a specific flow was generated by some P2P applications, in
which situations, payload identification can tell the name of the P2P applica-
tion which generated the flow.

5.4 Future Work

One interesting future project would be to integrate a NetFlow collector and
viewer such as NfDump/NfSen (see sections 6.2 on page 22 and 6.2 on page 23)
using the algorithms of the research papers presented in section 5.1 on page 18.
This could allow network managers to have clearer view of the traffic flowing
through their network than with port-based analysis.

20

Chapter

6
Existing Tools

This chapter will describe a bunch of tools, all available under free software
licenses, which are using the different protocols and techniques presented in the
chapter 3 on page 9.

6.1 SNMP

Mrtg

The Multi Router Traffic Grapher (MRTG) is a software developed by Tobias
Oetiker while working at the ETHZ1. It can generate graphics like the one on
figure 6.1 from SNMP interface counters.

The project homepage is available on [Oeta].

1Swiss Federal Institute of Technology Zürich

Figure 6.1: Example of MRTG graph generated from data retrieved with SNMP

21

6. Existing Tools François Deppierraz

Figure 6.2: Screenshot of Cacti web interface

Cacti

The Cacti project is network graphing solution composed of a poller which will
record data fetched with SNMP in RRD files (see section 6.3 on the following
page) and a web interface allowing his configuration and the visualization of
the generated graphs.

The figure 6.2 shows an example of the web interface. The project homepage
is available on [cac].

6.2 NetFlow

nProbe

nProbe is a network probe using libpcap and exporting flows informations
using the NetFlow protocol. This software will be dissected in great details in
chapter 7 on page 24.

NfDump

NfDump is a NetFlow collector developed by Peter Haag who is working in the
security team of Switch2. It was designed to receive NetFlow packets sent by
network equipments, store them in optimized binary files and give access to
this information in an efficient manner.

2The Swiss Education & Research Network

22

6. Existing Tools François Deppierraz

The key features of NfDump are :

• Supports all current version of the NetFlow protocol : v5, v7 and v9
• Supports the application of tcpdump-like filters on stored flows
• Can generate “Top N” statistics for IP addresses, ports, AS numbers and

router interfaces

The project homepage is available on [Haaa].

NfSen

NfSen is a web frontend for NfDump also developed by Peter Haag. It allows
easy access to the data stored by NfDump, network managers can use it to
have a global view of their network and can create profiles when dealing with
a specific problems (e.g. one computer has been cracked, what was his traffic
before the incident ?).

The followings are the key features of this software :

• Graphs generation using the RRD library (see section 6.3)
• Profile support allows to create specific profiles based on a filter which

can create graphs. This can even be done using already stored data.
• Supports plugins which need access to the stored NetFlow data

The project homepage is available on [Haab].

6.3 The Round Robin Database

The Round Robin Database (RRD) is a logging and graphing library associated
with utilities (RRDTools) developed by Tobias Oetiker. It was developed to
generalize the file format used in Mrtg (see section 6.1 on page 21).

The file format used by RRD allows to keep samples in fixed sized database
which handles the time aggregation of the data itself. For example, you
can create a RRD file which contains 228 5-minutes records (one day), 336
30-minutes records (one week) and 365 1-day records. With this file all you
need is to update the data each 5 minutes and the weekly and yearly records
will be automatically calculated.

This concept is quite interesting for network related data because the precision
required for recent events is usually greater than the one of a yearly average
and with RRD all this data housekeeping is handled automatically.

The project homepage is available on [Oetb].

23

Chapter

7
nProbe

This chapter will present nProbe v4, an extensible NetFlow probe released
under the GPL (see appendix G on page 124) by Luca Deri.

7.1 Features

The version 4 of nProbe which was analyzed possess the following features :

• Flows export using the following protocols : NetFlow v5, NetFlow v9 and
IPFIX (see section 3.3 on page 10

• Gigabit speeds support
• Multi-threaded design
• Plugin architecture for classification purposes

7.2 Design

This section describes the design analysis of nProbe which has been done by
reading the source code. The goal was to be able to understand correctly the
way taken by an incoming packet in the probe and how it was handled by the
multiple threads.

24

7. nProbe François Deppierraz

S
oc

ke
t o

r
ci

rc
ul

ar
bu

ffe
r

(ie
. P

F
_R

IN
G

)
C

or
e

P
ro

ce
ss

fe
tc

hP
ac

ke
ts

ha
sh

W
al

ke
r

de
qu

eu
eB

uc
ke

tT
oE

xp
or

t
pc

ap
_n

ex
t_

ex
()

A
P

I:
lib

pc
ap

,
m

m
ap

’e
d

lib
pc

ap

pr
oc

es
sP

ac
ke

t(
)

ad
dP

kt
T

oH
as

h(
)

w
al

kH
as

h(
)

qu
eu

eB
uc

ke
tT

oE
xp

or
t(

)

nt
op

_s
le

ep
()

H
as

hB
uc

ke
t

**
th

eH
as

h

ge
tL

is
tH

ea
d(

)

H
as

hB
uc

ke
t

*e
xp

or
tQ

ue
ue

ex
po

rt
B

uc
ke

t(
)

pl
ug

in
C

al
lb

ac
k(

)

D
E

LE
T

E
_F

LO
W

_C
A

LL
B

A
C

K
P

A
C

K
E

T
_C

A
LL

B
A

C
K

N
E

W
_F

LO
W

_C
A

LL
B

A
C

K

or

nP
ro

be

F
ig

ur
e

7.
1:

nP
ro

be
m

ul
ti
-t

hr
ea

de
d

de
si

gn

25

7. nProbe François Deppierraz

Event Function name
Plugin initialization xxxPlugin_init
New packet received xxxPlugin_packet
A flow has been emitted xxxPlugin_delete
A flow need to be exported xxxPlugin_export
Return if the given NetFlow v.9
template is supported

xxxPlugin_get_template

Return the NetFlow v.9 tem-
plates supported

xxxPlugin_conf

Table 7.1: nProbe plugin API, with xxx substitued by the plugin name

The core process of nProbe is using three different types of threads, presented
on figure 7.1 on the previous page and named according to their main function.
At the moment, only the packet capture thread (fetchPackets) can be used
as a thread pool (see section 10.9 on page 46) with multiple threads.

• fetchPackets()
This thread group captures network packets using the libpcap function
pcap_next_ex(), processes them by analyzing headers, buffers packet
fragments, etc. and finally adds it to the shared flow hash table theHash.

• hashWalker()
This thread parses the HashBucket to detect expired flows and adds them
to the shared queue exportQueue.

• dequeueBucketToExport()
This thread processes the exportQueue and converts the flows to NetFlow
data.

7.3 Implementation : Layer-7 plugin for nProbe

The implementation of a layer-7 plugin in nProbe project (see [Der]) has been
done during the pre-project phase of this work. It is presented here because the
layer-7 filter patterns description can also be of interest when using pmacctd
which supports for those patterns too.

nProbe plugin API

The plugin API in nProbe is described in the file README.plugins included
in nProbe 4.0 tarball. Basically nProbe has several hooks which calls plugins
methods when the events described in table 7.1 occurs.

26

7. nProbe François Deppierraz

Layer-7 patterns

The l7-filter project [l7fa] has developed more than 100 patterns for matching
standards protocols (like HTTP, SMTP, POP3, etc.), reverse-engineered pro-
tocols (P2P protocols for example) and even traffic generated by worms such
as CodeRed or Nimda.

File Format

The file format of L7-filter patterns is fully described in the “L7-filter Pat-
tern Writing HOWTO”, see [l7fb]. Only the important informations will be
presented here.

An example pattern to match HTTP traffic is showed in figure 7.2 on the
following page. Every line beginning with an hash sign is a comment. On our
example the name of the pattern is defined on line 19 and the regular expression
on line 23.

The first part is metadata about the pattern, on line 1 is the protocol name,
on line 2 some tags about the pattern quality (such as undermatch, great,
overmatch) and speed (veryfast, notsofast, slow), on line 3 the groups in which
the protocol belongs can be listed. And finally line 4 a link to a wiki page
about the protocol.

27

7. nProbe François Deppierraz

1 # HTTP − HyperText Trans fe r Protoco l − RFC 2616
2 # Pattern a t t r i b u t e s : great no t s o f a s t supe r s e t
3 # Protoco l groups : document r e t r i e v a l i e t f d r a f t standard
4 # Wiki : http : // p r o t o c o l i n f o . org / w ik i /HTTP
5 #
6 # Usual ly runs on port 80
7 #
8 # This pattern has been t e s t ed and i s b e l i e v ed to work we l l .
9 #

10 # t h i s i n t e n t i o n a l l y catches the re sponse from the s e r v e r
ra the r than

11 # the r eque s t so that other p r o t o c o l s which use http (l i k e
kazaa) can be

12 # caught based on s p e c i f i c http r eque s t s r e g a r d l e s s of the
orde r ing of

13 # f i l t e r s . . . a l s o matches pos t s
14

15 # S i t e s that s e rve r e a l l y long cook i e s may break t h i s by
pushing the

16 # s e r v e r re sponse too f a r away from the beg inning of the
connect ion . To

17 # f i x th i s , i n c r e a s e the kerne l ’ s data bu f f e r l ength .
18

19 http
20 # Status−Line = HTTP−Vers ion SP Status−Code SP Reason−Phrase

CRLF (r f c 2616)
21 # As s p e c i f i e d in r f c 2616 a s t a tu s code i s preceeded and

fo l l owed by a
22 # space .
23 http /(0\ . 9 | 1\ . 0 | 1\ . 1) [1−5] [0−9] [0−9] [\x09−\x0d −˜] ∗(

connect ion : | content−type : | content−l ength : | date :) | post [\
x09−\x0d −˜] ∗ http / [01] \ . [019]

24 # A s l i g h t l y f a s t e r v e r s i on that might be good enough :
25 #http /(0\ . 9 | 1\ . 0 | 1\ . 1) [1−5] [0−9] [0−9] | post [\x09−\x0d −˜] ∗

http / [01] \ . [019]
26 # old pattern (s) :
27 #(http [\x09−\x0d −˜] ∗(200 ok | 302 | 304) [\x09−\x0d −˜] ∗(

connect ion : | content−type : | content−l ength :)) | ˆ(post [\x09
−\x0d −˜] ∗ http /)

Figure 7.2: Layer-7 filter project pattern file format

28

Part II

Technologies

29

Chapter

8
Regular Expressions

8.1 Introduction

A Regular expression, also called pattern, is a string which describes a set of
strings. It does so in a much more compact way than listing all the possibil-
ities thanks to its great expressive power. The mathematic basics of regular
expressions have been described by the mathematician Stephen Kleene in the
1950s under the name regular sets. Since around 1966, they appeared in the
Unix world in quite a few utilities, from text editors to programming languages
and finally were in other environments as well. More details are available in
[Wik06j] and [Fri06].

In the context of network security and monitoring, regular expressions have
found many purposes like traffic analysis (see chapter 4 on page 14) and intru-
sion detection (see section 3.5 on page 12).

8.2 Syntax

A regular expression is composed of two types of characters, literals and
metacharacters. Literals are matched directly while metacharacters are spe-
cials characters which are interpreted in the regular expression. Those metachar-
acters are what makes regular expressions so powerful1.

1As well as, sometimes, difficult to understand

30

8. Regular Expressions François Deppierraz

Meaning Character

Line Start of line ^
End of line $

Class

Character class []
Negation !

Any character .
Alternation |

Quantifiers

Optional item ?
Repetition (1 to n) +
Repetition (0 to n) *

Intervals {min, max}
Backreferences \x

Table 8.1: Metacharacters used in regular expressions

8.3 Examples

For the sake of showing the way a regular expression is used to match a known
protocol, we will use expressions taken from the l7-filter project. Note that
those patterns are using two features specific to the l7-filter project. First,
they are case insensitive and secondly, hexadecimal characters can be written
as \x where x is their hexadecimal value.

Matching POP3 traffic

Let’s begin with a simple pattern which matches the POP3 protocol used to
retrieve mails from a server. The regular expression is the following :

^(\+ok |-err)

It is made of 2 parts separated by the alternation character | and will match
when any of the parts match at the beginning of a line. In fact this expression
is equivalent to matching the following expressions :

• ^\+ok
will match the string "+ok " at the beginning of a line

• ^\-err
will match the string "-err " at the beginning of a line

Matching Bittorrent traffic

The following regular expression is used to match Bittorrent traffic (see sec-
tion 2.3 on page 5).

31

8. Regular Expressions François Deppierraz

(a) NFA (b) DFA

Figure 8.1: Example of regular expression compilation for a*b|b*a

\x13bittorrent protocol|d1:ad2:id20:|\x08’7P\)[RP]|^azver\x01$|
^get /scrape?info_hash=

This pattern makes use of the alternation character | and is thus composed of
5 different parts which each can generate a match of the entire expression :

• \x13bittorrent protocol
will match the character whose value equals to 0x13 followed by the string
"bittorrent protocol"

• d1:ad2:id20:
will match the string "d1:ad2:id20:"

• \x08’7P\)[RP]
will match the character whose value equals 0x8 followed by the string
"’7P)" and followed by the character ’R’ or the character ’P’

• ^azver\x01$
will match the string "azver" followed by the character whose value is
0x1. The whole being alone on a single line

• "^get /scrape?info_hash="
will match the string "get /scrape?info_hash=" at the beginning of a
line

8.4 Regular Expression Matching

The regular expression compilation is done by converting the regular expres-
sion into a nondeterministic finite automaton (NFA) or a deterministic finite
automaton (DFA) depending on the implementation used. The matching is

32

8. Regular Expressions François Deppierraz

Regular expression of length n
Processing complexity Storage cost

NFA O(n2) O(n)
DFA O(1) O(Σn)

Table 8.2: Worst case comparison of DFA and NFA for a single regular expres-
sion

done using the compiled expression , the input data is fed into the automaton
which will generate matches when the input data reaches an accepting state
(double circles on the figures). The examples on figures 8.1(a) on the preceding
page and 8.1(b) on the previous page should makes that clearer.

Efficiency Considerations

The number of states generated by a regular expression depends on the number
and type of metacharacters used, the type of matching automaton used (NFA
or DFA) and the total size of the expression.

The table 8.2 taken from [YCD+] shows the worst processing complexity and
storage cost depending on the type of automaton used, Σ represents the set
of input symbols, which in network monitoring applications is the extended
ASCII set which is composed of 256 characters.

The constant O(1) processing time taken by DFA pattern matching engines
makes them quite attractive for hardware implementation. This is the type
used in NodalCore Pattern Matching Engine (see section 8.5 on the next page).
But care has to be taken because the memory available on hardware pattern
matching engine is limited and thus the exponentials O(Σn) storage cost can
quickly get us in troubles.

8.5 Implementations

This section presents two implementations of regular expressions matching en-
gines used during this project. The first one, Henry Spencer C implementation,
is used in the nProbe layer 7 classification (see section 7.3 on page 26) as well
as in pmacct layer 7 classification (see section 13.3 on page 59). The second
one is a hardware implementation presents in NodalCore hardware.

33

8. Regular Expressions François Deppierraz

Henry Spencer C Implementation

This implementation is based on a NFA and was primarily chosen by the layer7-
filter project (see [l7fa]) because it was easier to port in kernel space than the
GNU Regular Expression library (see [RSH]). The same implementation has
been used in all the applications using patterns coming from the layer7-filter
project to avoid having to convert the patterns because of differences between
implementations.

NRPL — NodalCore Regular Pattern Language

The implementation of the Pattern Matching Engine (PME) in NodalCore
hardware is based on a DFA and is described in [Senb]. This implementation
contains a number of important characteristics which needs to be taken into
account when writing patterns :

• All patterns have to be grouped in a single one using action tags
• The start of line operator ^ means the beginning of a stream and not a

new line, to match a word at the beginning of a line this syntax should
be used : ^WORD|\nWORD

• A new operator @ is added to the syntax which is similar to the dot
operator . but has limitations making it more efficient than the dot

Action Tags

Because the NodalCore hardware usually works with a single pattern, it uses
action tags to raise the correct events depending on the part of the pattern
which matched. These action tags are included in the pattern using the !
metacharacters following by the event ID.

In the following example the first part of the pattern will match the string HTTP
and raise event number 1 and the second part will match the string Bittorrent
and raise event number 2.

HTTP!1|Bittorrent!2

Patterns Optimization

The optimization of layer7-filter patterns to work efficiently with the Nodal-
Core PME is another project which is done by another student, Elio, for Eneo
Tecnoloǵıa.

34

Chapter

9
Hardware Acceleration

This chapter will explain why hardware acceleration has become necessary with
today’s network equipments, the way it is usually used, the different technolo-
gies available and the some products as well as research projects.

Hardware acceleration has been seen as necessary primarily due to two factors :

1. The increasing bandwidth of network links.
2. The willingness to do much more operations, like packet filtering, QoS1,

Intrusion Detection (see section 3.5 on page 12) on IP packets in addition
to basic IP routing.

Doing a naive comparison between the increase in common network interfaces
speed versus processors speed we can see that network interfaces speed have
been increasing faster than processor speeds. Taking for example which hard-
ware was available in the beginning of the nineties : Intel 486 processors clocked
at 25 MHz and Ethernet 10-BaseT at 10 Mbps. When compared to actual stan-
dards in 2006 : Intel Pentium 4 at 3 GHz and Ethernet 10Gbe at 10 Gbps. We
have a ratio of 120 between processor speeds2 and of 1000 between network
interface speeds.

1Quality of Service
2Yes, Pentium IV have more instructions than 486, that’s why the comparison was called

naive.

35

9. Hardware Acceleration François Deppierraz

9.1 Technologies

FPGA

Field Programmable Gate Array (FPGA) is a type of semiconductor device
containing logic gates (AND, OR, XOR or NOT) associated with other com-
ponents such as memory, clock and even standard processors in some models.
FPGAs have been invented around 1984 by one of the founder of Xilinx, Ross
Freeman.

The connexions between logic gates as well as other components can be easily
reprogrammed. That is the main difference of FPGA compared to ASIC3

which, once built, cannot be reprogrammed. FPGA are usually slower than
their ASIC counterparts but cheaper for small series.

Programming a FPGA is normally done with a high-level language such as
VHDL4 (see [Wik06n]) or Verilog5 (see [Wik06m]), which is then compiled to
generate a netlist describing the interconnection of the components. Using a
place-and-route tools (usually proprietary and hardware specific) this netlist
can be converted to a binary configuration file which can be uploaded to the
FPGA.

According to [Mac06] the higher clock speed of actual FPGA chips is between
200 MHz and 400 MHz which is between ten or fifteen times slower than actual
processors speeds. But the main advantage of FPGA is parallelization, a
single FPGA chip can be configured as multiple application-specific pro-
cessors working in parallel.

More informations about FPGA are available in [Wik06e].

Applications

Network acceleration cards such as COMBO6 from the Liberouter project and
the NodalCore C-2000 by Sensory Networks both are built around a FPGA.

Another interesting application of FPGAs is a massively parallel cryptography
cracking technique using a cluster of FPGAs presented in [HM06] to be able to
crack WPA6 used on wireless access points quite faster than previous software
based methods.

3Application Specific Integrated Circuit
4VHSIC Hardware Description Language, developed by the US Department of Defense

inspired by the ADA programming language
5A hardware description language inspired by the C programming language syntax
6Wi-Fi Protected Access, a wireless encryption standard

36

9. Hardware Acceleration François Deppierraz

Network Processors

Network processors are special purpose processors which are optimized to han-
dle common operations on packets such as routing table lookup and routing,
checksumming, payload inspection and so on. The advantage is that multiple
network processors can be used in parallel, for example one for each network in-
terface or group of interfaces depending on the power of the network processor.
That way, the main processor of the router should mainly be used to configure
the network processors and handle high-level management of the router.

There are many different products available under the name network processor.
Sometimes multiple specific purpose processors are grouped on the same PCI
board which can be used with a commodity PC, network processors directly
connected with network interfaces are available too. Networks processors can
be used to replace ASIC usually used in high-end routers, they can then provide
much better extensibility by reprogramming.

One widely known model of network processor is the Intel IXP1200 which is
based around a StrongARM host processor with six independent processors
called microengines which are optimized for network operation.

9.2 Products

Liberouter

Liberouter (see [liba]) is a project of Cesnet (see [ces]), an association which
runs the academic network of the universities of the Czech Republic. The goal
of the project was to develop a multi-gigabit IPv4 and IPv6 router based a
common PC using hardware acceleration. This development lead to the release
of the COMBO6 card based on a Xilinx FPGA (see 9.1 on the previous page).

One of the very interesting point of the project is that both the software and
the hardware design are released under an open-source license. After the de-
velopment of the COMBO6 card, many different research projects have been
launched on topics such as high-speed NetFlow probe (see 3.3 on page 10), IDS
(see 3.5 on page 12), Packet Capture and so on.

Endace DAG Serie

The company Endace (see [end]) is selling hardware acceleration cards dedi-
cated to packet capture and monitoring for multiple interface types ranging
from E17 to SDH8, to 10 Gbps Ethernet. All those cards are containing the

7European telephony standard interface at 2 Mbps
8Synchronous Digital Hierarchy, optical interfaces define by an ITU standard

37

9. Hardware Acceleration François Deppierraz

network interface itself and are working in a fully passive mode.

An interesting point is that the DAG serie cards are natively supported by the
upstream version of libpcap.

Sensory Networks NodalCore

The hardware acceleration product line of the company Sensory Networks con-
sists of the NodalCore C-2000 Serie of PCI cards which are dedicated to oper-
ations such as pattern matching, data decompression or message digest gener-
ation.

Applications like SAA Proxy which are taking advantage of the hardware are
also sold be the company as well as a complete C API under Linux in user
space or in kernel space (see appendix B on page 100).

38

Chapter

10
Concurrent Programming

This chapter will try to explain the broad concept of concurrent program-
ming, its advantages as well as the drawbacks brought by that technique. This
topic has been quite important during the software development process of this
project.

10.1 Introduction

Concurrent programming allows different tasks of a single application to run
in a concurrent manner. The tasks could be running on the same processor,
different processors in the same computer or even multiple computers inter-
connected by a network. This technique is used quite often these days, like for
example, on desktop computers to allow the user to execute multiple applica-
tions at the same time, on servers to reply multiple clients at the same time,
on embedded systems to handle different types of asynchronous events at the
same time.

Because, usually, computers have a number of processors much smaller than the
number of applications running at the same time, the Operating System (OS)
has to juggle between all the running applications. This is done by running a
single process on the processor during a certain time slice, saving the process
state, loading the state of another process and running it from the exactly where
it was left before. This whole procedure is handled by the OS and the operation
of giving the processor to the next process is called a context switch.

Depending on the application, multiple concurrent tasks can offer a perfor-
mance gain for the whole application and/or a simpler design than when
using single task.

39

10. Concurrent Programming François Deppierraz

Figure 10.1: (a) Multiple processes each with a single thread (b) Multiple
threads in the same process

The performance gain is mostly due to the application executing code while
waiting for an I/O operation to finish. Because I/O operations are usually
handled by others devices than the CPU, a hard disk or a network interface for
example, the CPU can do better than stupidly waiting for the I/O operation
to finish.

The design of an application using multiple concurrent tasks can be more logical
for applications which are intrinsically composed of multiple operations which
are running in parallel. Graphical User Interfaces (GUI) are a good examples
because many operations could be running while the interface must respond
quickly when the user uses his mouse to click somewhere. Applications which
depend on multiple external events, a data acquisition applications for example,
could use on task for each type of events it acquires and a task to process the
received events. That way we can easily avoid missing events while processing
is done.

10.2 Processes versus threads

The basic execution unit in concurrent programming is the task but most mod-
erns Operating Systems provides two different types of tasks. The processes
and the threads. By default, each process is running in his own address space
(in which the global variables are located) whose access is carefully protected
by the OS to avoid different processes interfering with each other. Each process
contains, by default, a single execution thread. When using multiple threads
in the same process they share the same address space and thus can easily in-
terfere with each other. The figure 10.1 taken from [Tan01] shows (a) multiple
processes each with a single thread and (b) one process with multiple threads.

40

10. Concurrent Programming François Deppierraz

User space and kernel space threads

Multi-threading can be implemented inside the kernel (kernel space), outside
(user space) or even sometimes in an hybrid way. The main difference between
user and kernel threads appears when calling a blocking function (such as
read() system call), the user thread calling this function will block the
whole process and thus all the other threads too, but the kernel thread will
be the only one to block and the other threads of the process will continue
to run. That is why user threads are usually using only non blocking system
calls.

10.3 Synchronization primitives

Semaphores

A semaphore is one of the most basic synchronization primitive invented by
Edsger Dijkstra, it can be considered as a counter associated with a processes
waiting queue. It supports two operations whose names vary quite a bit in
the literature, V() and P() in the original Dijkstra’s theory, sometimes up()
and down() and in the standard C library used under Linux : sem_post() and
sem_wait().

If the value of the counter is 0, the sem_wait() operation will block the calling
task by putting it in the waiting queue until the counter value increase. Each
task waiting in the queue will usually be freed in a FIFO1 order.

In practice, semaphore are used in one of the following situations :

• A fixed number n of shared resources can be accessed at the same time,
the semaphore will be initialized with n and each task will do a sem_wait()
before accessing the shared resource and a sem_post() after to release
the resource.

• A piece of code (called critical region) has to be accessed by only one
task at the same time. A semaphore is initialized with 1 (in that special
case is called mutex), every task entering the critical region has to do a
sem_wait() and a sem_post() when leaving it.

Condition Variables

Condition variables allow tasks to wait for specific condition to become true
before continuing to run, another task can then send a signal after having
modified the condition and one of the waiting tasks will be run. It is also
possible for a signal to be broadcasted to all waiting tasks.

1First In, First Out

41

10. Concurrent Programming François Deppierraz

The use of condition variables is a clean and efficient way to avoid using busy
waiting (see section 10.7 on page 44 for a specific condition to become true.

10.4 POSIX Threads

The POSIX Threads library, also called pthread, is the most popular thread
library available under Linux and many other Unix systems. It provides an
abstraction layer for each different multi-threading environments. Under Linux,
the interface of this library is defined in /usr/include/pthread.h

It supports the different synchronization methods explained before such as
mutexes, semaphores and condition variables. This is the library which has
been used during the implementation described in chapter 16 on page 66.

By using kernel threads it can take advantage of multi-processors systems
but therefore requires thread-safe but also reentrant code (see section 10.8
on page 45).

Programming with POSIX Threads is explained in great details in [pth] and
also in [BNF96].

Linux Kernel Implementation

The implementation of kernel threads in recent versions of the Linux Kernel
(2.6 serie) is greatly described in [BC05]. They use the so-called lightweight
processes (LWP), which are different processes sharing resources like the ad-
dress space. The system call clone() is used to create them but most of the
time only an abstraction library like pthread is using these system call.

10.5 GNU Portable Threads

GNU Portable Threads (or GNU Pth) is a user space thread library with which
focuses on being portable across Operating Systems without too much effort.
With user space thread libraries like this one, the thread scheduling — which is
handled by the library — is cooperative, meaning that thread have to implicitly
or explicitly hand out the CPU to the scheduler.

POSIX Threads Emulation

The GNU Pth library supports a POSIX Thread emulation mode which allows
programs compiled with the POSIX Thread library to be run using GNU Pth

42

10. Concurrent Programming François Deppierraz

without any recompilation. To do that, a shared library called libpthread.so
is provided when GNU Pth is compiled with the --enable-pthread --enable-shared
configure flags. Afterwards the LD_PRELOAD environment variable can be set
like that to make use of the emulation layer :

export LD_PRELOAD=~/tmp/pth-2.0.7/.libs/libpthread.so

But don’t forget that GNU Pth is library using user space threads while pthread
is usually using kernel space threads and that blocking I/O cannot be handled
the same way.

10.6 Problems

This section presents two of the most common problems encountered when
dealing with concurrent programming, namely race conditions and deadlocks.

Race conditions

To show the problem of race conditions, let’s take a simple example like the
incrementation of a shared variable which, in C for example, looks like that :

1 value += 1;

The problem is that such a simple statement will be translated to three instruc-
tions — this depends on the architecture — by the compiler. Now we have two
threads running this code at the same time, we can be lucky if the scheduler
runs them like on figure2 10.2(a) on the next page. But like Murphy’s Law3

says it can too run them like on figure 10.2(b) on the following page resulting
in an incorrect result.

To avoid race conditions all shared variables have to be locked with one of the
synchronization primitives available (see section 10.3 on page 41).

Deadlocks

A deadlock happens when two or more tasks are each waiting for another task
to release a resource (unlocking a mutex for example). Nothing can happen
because the task are all blocked and the program is frozen.

The following quote taken from [Wik06c] explains the problem in a nice way.

2R1 is any register and MEM represents the main memory
3If anything can go wrong, it will

43

10. Concurrent Programming François Deppierraz

(a) Good luck (b) Bad luck

Figure 10.2: Two tasks incrementing the same global variable

This situation may be likened to two people who are drawing di-
agrams, with only one pencil and one ruler between them. If one
person takes the pencil and the other takes the ruler, a deadlock
occurs when the person with the pencil needs the ruler and the per-
son with the ruler needs the pencil, before he can give up the ruler.
Both requests can’t be satisfied, so a deadlock occurs.

To avoid deadlocks, many complex algorithm exists and are listed in [Wik06c].
But for simple cases, they can be avoided by designing the locking mechanism
correctly and in coherent manner between different threads.

10.7 Things to avoid

This section will present problems which were encountered during the develop-
ment of this project as well as the ways to avoid them.

Busy Waiting

When a thread or process has to wait for a external event, which is usually
triggered by another thread or process, do not try to use a loop such as the one
in the following example instead of using a condition variable or a semaphore.

Let’s take the example of two threads, the first one has a specific work to do
and when it finishes it will set the global flag finished to true. Meanwhile, the
second thread has nothing to do and will only wait for the first one to finish.
Now, imagine that the second thread use the following while loop to wait for
the first one.

1 while (!finished) ;

44

10. Concurrent Programming François Deppierraz

Now, what can happen is that when the scheduler runs the second thread, it
will loop in a useless way until the end of his time quantum before the first
thread, which has some real work to do, can use the CPU. Then the global
work which the program has to do will take longer.

As a side note, trying to use a syscall which gives back the control to the
scheduler — such as sched_yield() — at each iteration of a waiting loop in
a multi-threaded program usually won’t schedule another thread of the same
program but another process running on the system and thus can penalize the
performance of the multi-threaded application.

10.8 Thread-safety and Reentrancy

Definition

A function is

• Thread-safe only if

1. it uses locking for all the external data it uses

• Reentrant only if

1. it does not hold static data between calls
2. it does not return a pointer to static data
3. it uses only the data provided by the caller
4. it does not call non-reentrant functions

More information and examples is available in [aix99].

Usage

Thread-safety is mandatory when a function can be called by multiple threads
(but not necessarily run at the same time) because without it the shared data
structure will usually become corrupted and the behaviour of the program will
usually become unpredictable which is always nice to avoid. Thread-safety
applies to every threads libraries presented here.

Reentrancy is required when a function can be run at the same time or can
be preempted during a call, usually on multi-processors systems. That mean
that the system will be executing multiple instances of the function at the same
moment with different data. Reentrancy applies only to thread libraries which
are actually running code really in parallel, on multiple processors. For the
different thread libraries presented before, it applies to POSIX Threads because
they are using kernel threads but not to GNU Portable Threads because it use
user space threads only and cannot take advantage of multi-processors systems.

45

10. Concurrent Programming François Deppierraz

10.9 Design pattern : Thread Pool

A thread pool is a design pattern often used in concurrent programming because
it has the following two advantages :

• The overhead of thread creation and destruction is avoided because the
threads are usually created only once at initialization, or when the size
of pool is increased

• It allows to keep the number of concurrent threads running under control,
thus avoiding taking the whole system down by loosing too much time in
context switches instead of doing some real work

The interface of a thread pool can look like that :

1 /∗ Allocate the thread pool and create count threads ∗/
2 thread pool t ∗allocate thread pool(int count);
3
4 /∗ Wait for threads to finish , destroy them and free memory ∗/
5 void desallocate thread pool(thread pool t ∗pool);
6
7 /∗ Ask the thread pool to execute function, this function may block if
8 ∗ no threads are currently available ∗/
9 void send to pool(thread pool t ∗pool, void ∗function, void ∗data);

46

Chapter

11
Debugging

This chapter will present an overview of the tools which were used during this
project to help with the debugging task during the software development which
took place for this project. All the tools used are coming from free software
projects and are running under Linux, the OS on which the whole development
took place.

11.1 C Preprocessor and printf()

One of the simplest way to debug a program is to add calls to the printf()
function in order to display informations about the current state of the program.
Because it is quite easy to generate quite a bit of output using that techniques,
it is usually used in conjunction with the #if C preprocessor command which
allows those calls to be compiled in the program only when necessary, during
the debugging phase for example.

Example

This example shows — in quite naive way — how to watch the effect of a
function call on our variable data.

1 #include <stdio.h>
2
3 void myfunction(int ∗data)
4 {
5 ∗data += 1;
6 }
7

47

11. Debugging François Deppierraz

8 int main(int argc, char ∗∗argv)
9 {

10 int data = 0;
11
12 #if DEBUG
13 printf (”DEBUG Before: %d\n”, data);
14 #endif
15
16 myfunction(&data);
17
18 #if DEBUG
19 printf (”DEBUG: After: %d\n”, data);
20 #endif
21
22 printf (”data = %d\n”, data);
23 }

The result of this program will be different depending of the compilation flags
given to the compiler.

francois@gordo:/tmp$ gcc -o test -DDEBUG test.c
francois@gordo:/tmp$./test
DEBUG Before: 0
DEBUG: After: 1
data = 1
francois@gordo:/tmp$ gcc -o test test.c
francois@gordo:/tmp$./test
data = 1
francois@gordo:/tmp$

Advantages and Drawbacks

This technique has the following advantages :

• No overhead at all when compiled without the DEBUG defined.
• No special software required, no special kernel support.

As well as some drawbacks like :

• It is quite easy to generate too much debug information and it is then
quite difficult to bring out the relevant informations.

• The debug informations will only contain what was explicitly printed and
it is quite frequent to miss the interesting information because it was not
logged.

48

11. Debugging François Deppierraz

11.2 GNU gdb

The GNU Debugger (gdb) is part of the GNU system and was primarily devel-
oped by Richard Stallman. It is the most widely used debugger under Linux
as well as many other Unix systems. It allows developers to execute programs
in it while tracing his behavior, stopping it at specific points in the program
(called breakpoints), examine and modify variable as well as calling functions.

It contains support for POSIX Threads (see 10.4 on page 42) and thus al-
lows to watch the current state and stacktrace of each thread running in the
application. The manual of gdb is available online, see [gdb].

Example

1 #include <stdio.h>
2
3 int main (int argc, char ∗∗argv)
4 {
5 int ∗ptr = 0;
6 ∗ptr = 1;
7 }

francois@gordo:/tmp/debug$ gdb ./test
GNU gdb 6.4.90-debian
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i486-linux-gnu"...

(gdb) run
Starting program: /tmp/debug/test

Program received signal SIGSEGV, Segmentation fault.
0x0804833f in main () at test.c:6
6 *ptr = 1;
(gdb) bt
#0 0x0804833f in main () at test.c:6
(gdb) quit
The program is running. Exit anyway? (y or n) y
francois@gordo:/tmp/debug$

49

11. Debugging François Deppierraz

11.3 Custom classifier module

A custom pmacctd classifier module has been developed during this project in
order to catch some difficult to reproduce bugs (Hint: remember what was said
in section 10.6 on page 43 ?) which caused memory corruption in the pmacctd
core process.

The idea was to generate IP packets with a known payload (bytes values in-
crementing from 0 to 254), send them from the traffic generator host and use
a simple classifier which will trigger a segfault exception — using the abort()
syscall — when it received a packet which payload has changed.

The advantage of raising a segfault is that it can be catched directly in the
debugger (gdb for example, see 11.2 on the preceding page) to find which
packet made the corruption happen and thus have better chances to spot the
place where the corruption happens.

50

Chapter

12
Profiling

This chapter will present methods and tools which can help during the profiling
phase of a software development. Profiling is a way to get timing informa-
tions about a program to be able to spot inefficiencies and find where the
bottlenecks are located.

Usually the profiling process has to be the lighter possible to avoid interfere with
the usual workflow of the program. Three different methods will be presented
each working at a different level.

The first one, OProfile is using a kernel module as well as a users pace daemon
that gathers the profiling informations from the kernel module. It is able
to profile the whole system including the kernel, the libraries and user space
applications.

The second category is user space debuggers like GNU gprof or qprof.

12.1 OProfile

OProfile is a system profiler which uses a kernel module making use of per-
formance counters found in common processors to be able to profile the whole
system while keeping the impact on performances minimal.

An interesting tool called opgprof is available in the OProfile package and is
able to generate gmon.out files compatibles with GNU gprof but without the
need to include profiling instrumentation during the compilation of the program
to profile (see section 12.2 on the next page).

The documentation and usage examples are available on [opr].

51

12. Profiling François Deppierraz

12.2 GNU gprof

The GNU Profiler (gprof) is a profiler working with special instrumentation
compiled into the program. This instrumentation will add some code the each
function calls and react to the ITIMER_PROF timer signal sent by the kernel, it
will then dump useful informations to a gprof specific file called gmon.out.

Because gprof requires this instrumentation to be compiled in the program,
during the compilation a special flag (-pg) has to be given to GCC1. After-
wards each time the program is run, it will dump profiling informations to the
gmon.out file which can be decoded using the gprof command.

Multi-threading

By default gprof under Linux is only able to profile the main thread of a multi-
threaded program which is usually not quite interesting, especially in our case
(see implementation on chapter 16 on page 66).

Fortunately a workaround exists on [Hoc]. The instrumentation compiled into
the program dumps informations to the gmon.out file when receiving a spe-
cial timer signal ITIMER_PROF which is sent by the kernel. By default, under
Linux, the signal received by the parent process of multiple threads are not sent
to each threads. This workaround simply use a shared library (loaded using
the LD_PRELOAD environment variable) which redefines the pthread_create()
function to add support for threads to receive this timer signal too.

Example

Here a simple slow and useless program called slow.c.

1 #include <stdio.h>
2
3 void myfunction(void)
4 {
5 usleep(100);
6 return;
7 }
8
9 int main(int argc, char ∗∗argv)

10 {
11 int i ;
12 for (i = 0; i < 10000; i++) myfunction();
13 return 0;
14 }

1The GNU Compiler Collection

52

12. Profiling François Deppierraz

francois@gordo:/tmp$ gcc -o slow slow.c
francois@gordo:/tmp$ time ./slow
real 0m40.104s
user 0m0.000s
sys 0m0.000s
francois@gordo:/tmp$ gcc -o slow -pg slow.c
francois@gordo:/tmp$./slow
francois@gordo:/tmp$ ls -l gmon.out
-rw-r--r-- 1 francois francois 366 2006-12-04 22:49 gmon.out
francois@gordo:/tmp$ gprof --brief slow
Flat profile:

Each sample counts as 0.01 seconds.
no time accumulated

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
0.00 0.00 0.00 10000 0.00 0.00 myfunction

Call graph

granularity: each sample hit covers 2 byte(s) no time propagated

index % time self children called name
0.00 0.00 10000/10000 main [8]

[1] 0.0 0.00 0.00 10000 myfunction [1]

12.3 Custom Code

A simple timing module has been developed in C in order to help with the
fine-grained profiling of specific parts of the pmacctd code. The goal was to
be able to easily measure the execution time of any part of the code we were
interested in.

Usage

The usage is quite simple, the following steps are required in order to know the
time taken by a specific section of a program :

• Define a timer variable using the struct mytimer data structure
• Call start_timer() at the beginning of the interesting section
• Call stop_timer() at the end of the section, this will print the result

with an attached message directly to the standard output (STDERR).

53

12. Profiling François Deppierraz

Integration Example

This module can be integrated the following way in an existing program in
order so as to measure the time taken by a specific section of the code.

1 int function(void)
2 {
3 struct mytimer t0; /∗ Initialize the timer variable ∗/
4
5 start timer(&t0); /∗ Start the timer ∗/
6
7 ... /∗ Code of the interesting section ∗/
8
9 stop timer(&t0, ”name of the interesting session ”) ; /∗ Display the result

∗/
10
11 return 0;
12 }

Example of Results

All the results printed to the standard output have the same format in order to
be easily parsed afterwards to generate statistics. The format is TIMER:%s:time_spent
where %s is a free form string defined when calling stop_timer() and time_spent
is the time in micro-seconds measured between the two function calls.

1 TIMER: f unc t i on : 0x809d1a0 : 12774
2 TIMER: f unc t i on : 0x809d280 : 8
3 TIMER: send to pool : : 80
4 TIMER: f unc t i on : 0x809d0c0 : 12810
5 TIMER: send to pool : : 3
6 TIMER: send to pool : : 3
7 TIMER: f unc t i on : 0x809d520 : 905
8 TIMER: send to pool : : 744
9 TIMER: f unc t i on : 0 x809c fe0 : 13608

10 TIMER: f unc t i on : 0x809d1a0 : 818

This result can easily by parsed by any scripting language to generate more
summarized statistics. This is exactly what has been used to generate the
table 17.10 on page 82.

C Implementation

The following C implementation is based on the gettimeofday() system call
which achieve a resolution of 1 microsecond on our system, the details are
available in appendix section D.1 on page 107.

54

12. Profiling François Deppierraz

1 #include ”sys/time.h”
2 #include ”time.h”
3 #include ”stdio.h”
4 #include ”stdarg.h”
5
6 /∗ Data structure ∗/
7 struct mytimer {
8 struct timeval t0;
9 struct timeval t1;

10 };
11
12 /∗ Prototypes ∗/
13 void start timer(struct mytimer ∗);
14 void stop timer(struct mytimer ∗, const char ∗, ...);
15
16 /∗ Functions ∗/
17 void start timer(struct mytimer ∗t)
18 {
19 gettimeofday(&t−>t0, NULL);
20 }
21
22 void stop timer(struct mytimer ∗t, const char ∗format, ...)
23 {
24 char msg[1024];
25 va list ap;
26
27 gettimeofday(&t−>t1, NULL);
28 va start(ap, format);
29 vsnprintf(msg, 1024, format, ap);
30 va end(ap);
31
32 fprintf (stderr , ”TIMER:%s:%d\n”, msg, (t−>t1.tv sec − t−>t0.tv sec) ∗

1000000 + (t−>t1.tv usec − t−>t0.tv usec));
33 }

55

Part III

Hardware Accelerated Network
Probe

56

Chapter

13
Pmacct

This chapter presents a free software project called pmacct which is developed
by Paolo Lucente and licensed under the GNU Public License (GPL) (see
appendix G on page 124).

The name pmacct stands for Promiscous Mode IP Accounting Package and
has become a set of different tools which can link many different technologies
such as packet capture (using libpcap), flows protocols (NetFlow or sFlow),
databases (MySQL, PostgreSQL, etc.). It can be used to interface multiple
network monitoring protocols in consistent way.

The pmacct project is now composed of the following daemons :

pmacctd
A promiscuous mode network probe based on libpcap

nfacctd
A NetFlow v5 and v9 collector (see 3.3 on page 10)

sfacctd
A sFlow collector (see 3.4 on page 12)

During this project we were especially interested in pmacctd because this is the
only daemon which has access to the full packet payload by its use of libpcap.

13.1 Features

To be able to handle IP accounting on high-speed networks, the following fea-
tures are implemented in the pmacct software suite :

Aggregation

57

13. Pmacct François Deppierraz

Information can be aggregated as flows (see 3.3 on page 10) but also using
specific aggregation methods like subnet aggregation, AS aggregation and
so on.

Filtering
Filters can be applied on informations to be able to select only the relevant
information. Filtering is configurable for input data — for example using
a libpcap filter with pmacctd — or independently for each plugin.

Sampling
Sampling allows to analysis only a fraction of the traffic which will be sta-
tistically relevant so that we can interpolate later to get an approximation
of the full traffic.

13.2 Plugins

Multiple output plugins can be run at the same time in order to export data
to different places — for example to a database for billing purposes and to a
memory table to use it in a graphing application. The following plugins are
available in the pmacct distribution :

imt
In Memory Table plugin : Data is stored in main memory and can be
accessed using the pmacct command-line tool. This plugin can be used
with other softwares like Cacti (see 6.1 on page 22) to generate graphs
for example.

mysql
Export data to a MySQL database which schema is configurable.

pgsql
Export data to a PostgreSQL database which schema is configurable.

print
The results are printed directly on the standard output and can be parsed
by a script for example. This plugin was used during benchmarks by
redirecting its output to /dev/null.

sqlite3
Export data to a Sqlite database which schema is configurable.

nfprobe
A plugin which generates NetFlow data to be sent to another NetFlow
collector.

sfprobe
A plugin which generates sFlow data to be sent to another sFlow collector
for example.

58

13. Pmacct François Deppierraz

13.3 Traffic classification

Since version 0.10.0 pmacctd had classification features relying on packets pay-
load using one of the following ways:

Patterns
Regular expressions patterns fully compatible with those of the l7-filter
project (see section 7.3 on page 27).

Shared libraries
External classification modules which are loaded at runtime using the
shared libraries mechanism. That means than external modules can be
plugged easily without the need for recompilation.

Shared libraries

Shared libraries offer a way to do stateful analysis of the packets in a flow. At
the time of this writing only two classifiers using this technique are distributed,
on for eDonkey traffic and the other for RTP.

The implementation call a specific function (u_int32_t classifier(...))
which must return 1 in case of match and 0 in the other cases. The name of the
protocol which has been matched is defined as a fixed value (char protocol[])
in the library source code.

It is possible to register new traffic classes using the pmct_register() function
and then return a number greater than 1 which will mapped to the correspond-
ing class. This method was used in our NodalCore classifier module described
in chapter 15 on page 63.

59

Chapter

14
Sensory Network Hardware

The goal of this chapter is to describe the NodalCore C-2000 Serie of hard-
ware acceleration cards for network security applications. This hardware card
is already used in some Eneo products such as multi-services network appli-
ances taking advantage of the acceleration the filter HTTP request for known
patterns. The picture of the card we used — NodalCore C-2000 Ultra — is
available on figure 14.1.

14.1 Features

The following features are provided by the current firmware (called bitstream)
but because the product is based on a FPGA (see section 9.1 on page 36)

Figure 14.1: Sensory Networks NodalCore C-2000 Card

60

14. Sensory Network Hardware François Deppierraz

new features can be added with a firmware upgrade. Each current feature is
available as one of those channels :

Pattern Matching Engine (PME)
A pattern engine engine working with regular expressions. This is the
channel which was used during this project.

Massive Memory Architecture (MMA)
A string matching engine more efficient than the Pattern Matching En-
gine but working only with fixed strings.

Content Decoder
This channel principally allows decoding of mails using MIME-compatible
formats such as Base64 and Quoted-Printable.

Decompression
This channel allows decompression of file compressed with different stan-
dards.

Message Digest
Can generated a message digest from a stream of data. This is can be
used in virus detection for example.

14.2 Hardware specifications

This hardware is available as a PCI card which contains the following main
components

• Xilinx Virtex-4 XC4VLX60 FPGA
• 144 MB of RAM (1 Gbit)

14.3 Pattern Matching Engine

The Pattern Matching Engine (PME) understands regular expressions in the
NRPL format (see 8.5 on page 34). The regular expressions have to be compiled
using the ncore-compiler tool available in the SDK1.

14.4 Performances

In this section we will establish a performance baseline of the Sensor Network
hardware which will permit to discuss how well our implementation takes ad-
vantage of the performances offered by the hardware.

1Software Development Kit

61

14. Sensory Network Hardware François Deppierraz

The performance of a pattern matching acceleration card like this on is mainly
related to the bitrate it can handle. This bitrate depends on many factors
such as the size of the data chunks written to the card, the use of the intrinsic
parallelism offered by the hardware and the match rate.

14.5 Theoretical performances

The theoretical pattern matching performances of the NodalCore C-Serie de-
pends on the firmware (called bitstream in Sensory’s documentation) used.
Usually firmwares have names such as CoreX with the X meaning the raw
data scanning bitrate in Mbps. For example, the Core1500 firmware which
was installed by default should allow the scanning of 1.5 Gbps of data. This
performance can also depend of the features used with the cards. In our case
we will focus on the Pattern Matching Engine.

The firmware allows multiple streams of data to be handled in parallel, for the
NodalCore C-2000 Ultra card we used, 12 independent channels are available.

With the NodalCore C-2000 card with the firmware Core1500 we have a theo-
retical throughput of 125 Mbps per channel.

Practical considerations

In the section “Optimizing Performances” of [Sena], the following performance
limiting factors are described :

• The size of data chunks written to the hardware
• The use of multiple streams at the same time
• The match frequency

Some benchmarks have been designed (see section 17.3 on page 74) to get
an idea of the influence of the first two parameters on the throughput of the
card. The match frequency has not been benchmarked but according to our
discussion with Sensory Networks that must not be a problem if the number of
matches per packet doesn’t excess one per packet which will hopefully be the
case with well designed patterns.

62

Chapter

15
Implementation: Pmacct
NodalCore classifier

This chapter will present the implementation of a classifier shared module for
pmacctd which is using hardware acceleration via the NodalCore API. The
goal of this first implementation was to integrate calls to the NodalCore API
in the current codebase of pmacct to be able to let the hardware card handle
the pattern matching which was precedently done by pmacct using a standard
regular expression library, the Henry Spencer’s implementation described in
section 8.5 on page 34.

15.1 Limitations

It has been decided that this first implementation will not take into account the
parallelism offered by the hardware so we are only using a single data stream
at the moment. And we are neither taking advantage of doing other operations
with the host CPU while to card is working, so the CPU will be idle. Both
those restrictions will, for sure, penalize the performance of the system but the
main goal is to understand the inner working of the NodalCore API and the
potentials implications on a third-party application like pmacctd.

15.2 Pmacct classifier extension

The shared library classifier API available in pmacct will be used, thus giving
the advantage of avoiding to modify the core of the software. This shared
library can even be compiled separately and only require the headers available
to pmacct classifiers (common.h in the pmacct-classifiers archive).

63

15. Implementation: Pmacct NodalCore classifier François Deppierraz

Variables prototypes
char protocol[]
char type[]
char version[]

Functions prototypes
int init(void **extra)
u_int32_t classifier(struct pkt_classifier_data *data,
int len, void **context, void **rev_context, void **extra)

Table 15.1: pmacct classifier extension API

The pmacct classifier API requires the following methods to be defined in each
extension :

• init
the initialization method which is called at startup when the extension is
loaded

• classifier
the main method called at each classification tentative by the pmacctd
core

Moreover, three variables have to be defined in each extension :

• protocol
the name of the protocol matched by the extension. In our case this is
a bit useless because we match many different protocols using the same
extension. In the implementation it is defined as ncore but is not really
used by pmacctd.

• type
the type of the extension. At the moment the only type recognized if the
"classifier" type.

• version
the version number of the module for documentation purposes.

The C prototypes of the two functions and three variables which are required
for each extension are given in table 15.1 in addition to the functions exported
by the classifier API to be used in extensions. These exported functions are
mostly related to protocol names management.

15.3 NodalCore classifier module

The implementation of a NodalCore classifier module has been done during
this project using the NodalCore API wrapper described in section B.2 on
page 101 which eased the initialization of the pattern matching engine. The
goal was to keep this classifier simple and program it in a thread-safe way (see
section 10.8 on page 45) because it had to be usable with the multi-threaded

64

15. Implementation: Pmacct NodalCore classifier François Deppierraz

pmacctd described in chapter 16 on the following page.

15.4 Distribution

All the code presented in this chapter is kept internal to Eneo Tecnologá because
it uses the NodalCore API which is covered by a NDA.

65

Chapter

16
Implementation: Pmacct
multi-threaded core

During this second implementation, whose design has been greatly discussed
with Paolo Lucente, author of pmacct ([Luc]), it has been decided that the
easiest way to achieve a well performing integration of the Sensory hardware
as a classifier module of pmacctd was to implement multi-threading the core
process of pmacctd.

16.1 Single-threaded Design

The current official version of pmacctd core process is single-threaded, as seen
on figure 16.1 on the next page, the whole packet processing from the libpcap
callback (pcap_cb()) to the plugins output (exec_plugins()) is done serially
and is synchronized by libpcap. Each received packet will trigger the whole
processing.

16.2 Multi-threaded Design

Because usually hardware acceleration based on FPGA is highly parallel — in
our case the NodalCore hardware card supports 12 pattern matching engines
— we needed to handle multiples packets at the same time in the core process
which would require a major rework. To avoid that the idea was to encap-
sulate each packet in a thread during the phase of aggregation into flows and
classification.

In order to keep the number of threads constant and avoid a system freeze due

66

16. Implementation: Pmacct multi-threaded core François Deppierraz

pcap_cb()

L2/L3/L4 handlers

ip_flow_handler()

evaluate_
classifiers()

exec_plugins()
ip_fragment_
handler()

Socket or circular
buffer (ie. PF_RING)

API: libpcap,
mmap’ed libpcap

circular buffers to
plugins, 1:N

IP fragments
table (struct ipft)

IP flows table
(struct ip_flow_table)

Core Process

A = struct packet_ptrs *
B = struct ip_flow *

A

A

A A

A, B, ...

Figure 16.1: Pmacct single-threaded core design schema

to too much threads running, for example, in case of a too high packet rate,
a thread pool (see section 10.9 on page 46) has been implemented and used.
This is represented on figure 16.2 on the next page by the multiple dashed
boxes. The size of the thread pool is defined by the new configuration variable
flow_handling_threads.

This design requires an extra data copy of the packet and associated informa-
tions (the struct packet_ptrs data structure) before sending a new packet
to one of the thread in the thread pool.

16.3 Shared Data Structures Locking

The following data structures are shared in the thread pool and requires lock-
ing :

• ip_flow_table
The IP flows table.

• channels_list
The communication channels with plugins.

67

16. Implementation: Pmacct multi-threaded core François Deppierraz

pcap_cb()

L2/L3/L4 handlersip_fragment_
handler()

Socket or circular
buffer (ie. PF_RING)

API: libpcap,
mmap’ed libpcap

IP fragments
table (struct ipft)

IP flows table
(struct ip_flow_table)

Core Process

A = struct packet_ptrs *
B = struct ip_flow *

A

A

copy(A)

A, B, ...

A
ip_flow_handler() exec_plugins()

circular buffers to
plugins, 1:N

evaluate_
classifiers()

Figure 16.2: Pmacct multi-threaded core design schema

In both cases the locking is done with a single mutex for the whole data struc-
ture which means to their access is fully serialized, only a single thread can use
them at the same time. This locking policy has been chosen because of the
data structure complexity. For example, the IP flows table is composed of a
double-linked hashed list and a LRU1 cache to optimize it when using recent
flows which is quite difficult to lock finely.

16.4 Build System

The build system used by the pmacct project is based on the GNU Autoconf
and GNU Automake tools which generate almost automatically configure
scripts and Makefile files to compile the software in a portable way across
different Unix systems.

The configure script accepts flags which are used to enable or disable func-
tionalities at compilation time. It was used to add the -enable-threads flag

1Last Recently Used

68

16. Implementation: Pmacct multi-threaded core François Deppierraz

which avoid using the multi-threaded version by default before it was exten-
sively tested and the remaining performances issues fixed (see section 17.6 on
page 81).

The usage of this flag will generate Makefiles to compile the software us-
ing a new compilation flag called USE_THREADS which is recognized by the C
preprocessor and will compile the suitable code by using #ifdef preprocessor
commands.

In depth informations about the GNU Autools utilities is available in [GVVT00].

16.5 Future Enhancements

The performance issues described in section 17.6 on page 81 must be resolved,
possibly by improving the locking mechanism which might require some mod-
ifications of the IP Flows Table data structure.

Some improvements can also be mimicked from the nProbe implementation
described in section 7.2 on page 24. But some care has to be taken because
nProbe uses an aggregation method static, the original flow definition (see
section 3.3 on page 10) whereas pmacctd can do custom aggregation.

16.6 Distribution

All the code presented in this chapter has been included in the pmacct project
CVS repository under the GPL license (see appendix G on page 124) and will
be include in the next official release of pmacct.

69

Chapter

17
Benchmarks

In this chapter we will have a look at the benchmarks which were done to
evaluate the performances of the implementations, described in the chapters 15
on page 63 and 16 on page 66, of an hardware accelerated pattern matching
classification working with the pmacctd network probe.

The figure 17.1 shows the different elements involved in the software, each
element were — when possible — benchmarked separately to get a better un-
derstanding of their interactions and try the spot the potential bottlenecks.
The following parts have been benchmarked independently :

1. Libpcap
2. NodalCore API
3. Pmacctd single-threaded with and without NodalCore acceleration
4. Pmacctd multi-threaded with and without NodalCore acceleration

Figure 17.1: The pmacct with NodalCore classifier big picture

70

17. Benchmarks François Deppierraz

Figure 17.2: Benchmarks testbed schema

17.1 Benchmark Methodology

Testbed Setup

The testbed setup used for benchmarks is described on figure 17.2. It consisted
of two computers, whose specifications are in table 17.1 on the next page, the
generator which generate traffic from previously made real traffic captures
replayed with tcpreplay and the receiver which runs the tested software and
discards the traffic afterwards. Both computer are connected to the LAN and
remotely accessed using SSH.

A set of Python scripts have been developed to be able to easily reproduce the
benchmarks during the code optimization phase. This allows the benchmarks
to run automatically during the night for example. These scripts are also using
SSH to control the testbed. That way, they could be launched even from outside
the office.

Custom Software

Some custom software has been developed for each type of benchmark made.
Specific C programs were used for the low-level benchmarks of Libpcap and

71

17. Benchmarks François Deppierraz

Generator Receiver
Model Nextgate NSAIO46 Dell Poweredge SC1425
CPU 1 Intel P4 3GHz HT 1 Intel Xeon 3GHz HT
RAM 1 GB 1 GB
Harddisk SCSI SCSI
Ethernet 1000 Mbps (sky2) 1000 Mbps (e1000)

Table 17.1: Testbed hardware specifications

the NodalCore API whereas more high-level benchmarks like the one of
pmacctd where remotely controlled by a Python script. All the programs are
presented in appendix E on page 109.

Packet generation

The traffic generation has been done using the free software project tcpreplay,
see [Tur]. The version 3.0.beta7 was used. The maximum throughput of gener-
ated traffic achieved using our testbed setup and the -t (top-speed) was about
120 kpps and 677 Mbps.

Real Traffic Capture File

In order to get the most realistic results possible from these benchmarks, a pcap
capture file has been created using tcpdump on the border router of Swiss ISP1.
The table 17.3(b) on the next page gives the informations about the capture
file used during benchmarks. The graph on figure 17.3(a) on the following page
shows the cumulative packet size distribution of this capture.

These results are quite similar to those found by Caida2 with captures done at
the NASA Ames Internet Exchange in 1999-2000 (see [cai]). Except that we
do not have a peak in the number of packets around 590 bytes. The following
interesting points can be derived from this packet size analysis :

• 50% of the packets are small in the range 40 to 135 bytes;
• 35% of the packets are big in the range 1419 to 1500 bytes;
• The remaining 15% are almost equally distributed between 136 and 1418

bytes.

1Saitis Networks, AS6893, http://www.saitis.net/
2the Cooperative Association for Internet Data Analysis

72

http://www.saitis.net/

17. Benchmarks François Deppierraz

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
u
m

m
u
la

ti
v
e

p
er

ce
n
ta

g
e

Size [Bytes]

Duration 5 minutes 19 secondes
Size 655413743 bytes, about 625 MB
Number of packets 947061
Mean Packet Size 676 bytes
Date Thu Sep 28 11:30:58 CEST 2006

Figure 17.3: (a) Packet Size Distribution (b) Capture File Specifications

Packet Sizes

It is important to define which kind of packet sizes we will be confronted with in
order to take this factor into account while doing optimizations. The figure 17.4
on the next page is summary of the packet sizes which can be found on IP
network based on Ethernet links without taking into account jumbo frames
(see [Dyk99].

Because pattern matching is only done on the data payload of IP packets using
protocols UDP or TCP, we will need to handle payload of sizes between 0 and
1472 bytes (maximum payload size using UDP), as according to the graph on
figure 17.3(a) the most frequent packet sizes will be in the ranges 40-135 bytes
and 1419-1500 bytes, so both extremes of payload sizes will be frequent.

73

17. Benchmarks François Deppierraz

Payload per packet
OSI Layer Protocol Headera Minimum Maximum

2 Ethernet 14 46 1500
3 IP 20-60b 0 1480
4 UDP 8c 0 1472
4 TCP 20-Xd 0 1460

aInclude trailing checksum in the case of Ethernet
bsee [rfc791]
csee [rfc768]
dsee [rfc793]

Figure 17.4: Packets Size Limits by Protocol

17.2 Libpcap

The performance of libpcap — the packet capture library used by pmacctd to
interface with the packet capture mechanism available in the Linux kernel —
has been benchmarked using the program described in section E.2 on page 110.
The result of the benchmark is that no significant packet loss was experienced
for packet rates up to 50’000 pps.

But the packet loss at the libpcap level is highly dependent of the time spent
by the callback function before returning because newer packet cannot be pro-
cessed before that. By the way, it was also a good test to know if the Ethernet
settings — like speed and duplex settings for example — were correct.

17.3 NodalCore API and Hardware

The figure 17.5 on the next page shows the bitrate in function of the block
size when using from 1 to 12 streams in parallel on the card. The maximum
of 12 channels is due to the card specifications and is certainly defined by the
number of gates available on the FPGA divided by the number of gates the
pattern matching engine use. The graphs has been done with the benchmarking
program described in section E.3 on page 112.

Results

The block size after which throughput becomes stable is about 75-80 bytes
per channels. When using between 7 and 12 channels in parallel, our results
are quite noisy. The issue has been investigated in great details with Sensory
Networks but the exact reason was not found at the time of writing.

74

17. Benchmarks François Deppierraz

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400

B
it

ra
te

 [
M

b
p
s]

Block size [Bytes]

NodalCore Userspace API Performances using a C-2000 Card

1 channels
2 channels

3 channels
4 channels

5 channels
6 channels

(a) 1 channels to 6 channels

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

B
it

ra
te

 [
M

b
p
s]

Block size [Bytes]

NodalCore Userspace API Performances using a C-2000 Card

6 channels
7 channels

8 channels
9 channels

10 channels
11 channels

12 channels

(b) 6 channels to 12 channels

Figure 17.5: NodalCore C-2000: Throughput versus block size with multiple
channels

75

17. Benchmarks François Deppierraz

Linux Realtime Priority

While trying to understand the cause of the noisy graph (see 17.5(b) on the
previous page), the use of a Linux kernel scheduling feature has been tried. By
calling the sched_setscheduler() syscall (on line 11 of the following example),
a user space process can ask the kernel to modify the way it will be scheduled.
This feature can easily crash the machine if the process use the CPU all the
time and has the maximum priority because the scheduler will run only this
process and nothing else.

The following code was used to activate this scheduler feature, giving our pro-
cess the higher priority possible.

1 #include <sched.h>
2 int set realtime priority (void)
3 {
4 struct sched param schp;
5 /∗
6 ∗ set the process to realtime privs
7 ∗/
8 memset(&schp, 0, sizeof(schp));
9 schp. sched priority = sched get priority max(SCHED FIFO);

10
11 if (sched setscheduler (0, SCHED FIFO, &schp) != 0) {
12 perror(”sched setscheduler”) ;
13 return −1;
14 }
15 }

Unfortunately the use of this feature triggered a bug somewhere in the kernel
or in the NodalCore kernel driver and thus didn’t gave better results. This bug
has been reported to Sensory Networks.

dmesg
BUG: soft lockup detected on CPU#0!

Pid: 31090, comm: ncore-bench1
[...]

HyperThreading

HyperThreading is an Intel trademark for a technology allowing two threads
to be running on the same core at the same time. The idea is that sometimes
threads have to wait — when loading a word from memory for example — and
this waiting time can be used to run another threads without requiring a real
context switch.

76

17. Benchmarks François Deppierraz

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

B
it

ra
te

 [
M

b
p
s]

Block size [Bytes]

NodalCore Userspace API Performances using a C-2000 Card

6 channels with HyperThreading
6 channels without HyperThreading

12 channels with HyperThreading
12 channels without HyperThreading

Figure 17.6: NodalCore C-2000: Comparison with and without HyperThread-
ing activated on the host CPU

During the experiments made to find the reason of the throughput instability
appearing in our results, the same benchmarks were run after the deactivation
of the HyperThreading feature of the host CPU. The results on figure 17.6
shows that the throughput is more stable without HyperThreading but slightly
lower. But it doesn’t solve the instability for medium sized packets.

Conclusion

We can draw the following conclusions from this analysis of the NodalCore
hardware during those benchmarks :

1. The more channels we use the more slowly small packet will be processed,
this might be due to the stream switching overhead.

2. Small packets can easily penalize the system. Grouping the I/O opera-
tions in a single one with multiple packets can help lowering this overhead
but in our case it requires major modifications in the design of pmacctd.

3. On our test setup, the HyperThreading feature does not influence much
the performances.

77

17. Benchmarks François Deppierraz

17.4 Pmacctd

The official3 single-threaded pmacctd version 0.11.0 has been compared to the
multi-threaded version implemented during this project (see chapter 16 on
page 66). Different series of tests have been made with or without the Nodal-
Core classifier module described in section 15.3 on page 64.

The following configuration file has been used for all the benchmarks :

1 debug : f a l s e
2 daemonize : f a l s e
3 !
4 i n t e r f a c e : eth1
5 !
6 c l a s s i f i e r s : /tmp/ c l a s s i f i e r s
7 !
8 pmacctd f low bu f f e r s i z e : 32768000
9 snaplen : 1500

10 !
11 aggregate : s r c host , dst host , c l a s s , f lows , s r c port , dst port
12 !
13 p lug in s : pr in t

The graphs presented in the following sections are using packets per second
on the x axis because in a network application this measure is usually more
important than the bitrate in term of processing power. But using the mean
packet size from figure 17.4 on page 74 which is 676 bytes we can calculate the
throughput.

Our graphs are done between 10’000 pps (about 54 Mbps) to 50’000 pps (about
270 Mbps).

Single-threaded versus Multi-threaded : without NodalCore
classifier

The following conclusions can be drawn from the graph on figure 17.7 on the
following page which compares the performances of both the single-threaded
and the multi-threaded version of pmacctd without using any hardware accel-
eration :

1. The multi-threaded implementation performances are lower than the single-
threaded. This is primarily due to the overhead generated by the thread
handling (one more memory copy is necessary) as well as locking of the
shared data structures.

2. Using only one thread doesn’t gives any benefits and only adds unneces-
sary overhead.

3downloaded from the official website, see [Luc]

78

17. Benchmarks François Deppierraz

 0

 20

 40

 60

 80

 100

 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ac

k
et

s
p
ro

ce
ss

ed
 [

%
]

Packets per second

pmacctd without NodalCore, packet per second analysis

single-threaded
1 threads

12 threads
24 threads

48 threads
96 threads

Figure 17.7: pmacctd comparison without NodalCore classifier

3. Without using the NodalCore classifier, the number of threads does not
impact much the performances of the system.

Single-threaded versus Multi-threaded : with NodalCore classifier

When comparing the single-threaded and multi-threaded version of pmacctd
when using hardware acceleration on figure 17.8 on the next page, the following
points can be drawn :

1. The single-threaded implementation and the multi-threaded one when
running only one thread both are performing pretty bad when using the
hardware acceleration, this is due to the processes waiting uselessly while
the card is processing the data payload.

2. When using a greater number of threads it performs better but trying
to use too many threads can hit some system limits. When using more
than 12 threads (the number of independent channels on the card), the
waiting threads are acting like temporary buffers.

79

17. Benchmarks François Deppierraz

 0

 20

 40

 60

 80

 100

 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ac

k
et

s
p
ro

ce
ss

ed
 [

%
]

Packets per second

pmacctd with NodalCore, packet per second analysis

single-threaded
1 threads

12 threads
24 threads

48 threads
96 threads

Figure 17.8: pmacctd comparison with NodalCore classifier

Pattern Matching Classifier comparison

This time we are comparing the performances of different pattern matching
methods in pmacctd.

1. Using NodalCore acceleration with the single-threaded version is totally
useless

2. The multi-threaded version using NodalCore acceleration works better
but is still slower than software pattern matching. This is certainly be-
cause of too much overhead in the multi-threaded version, more on that
in the following section.

3. Even though the multi-threaded version using NodalCore acceleration is
a bit slower, it keeps some advantage due to the way pattern matching
is handled in hardware : its processing time is fixed independently of the
complexity and number of regular expressions which is not the case in a
software implementation.

17.5 Profiling

The previous results showed that the overhead of the multi-threaded architec-
ture implemented in pmacctd was quite big. That is why we had to do some

80

17. Benchmarks François Deppierraz

 0

 20

 40

 60

 80

 100

 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ac

k
et

s
p
ro

ce
ss

ed
 [

%
]

Packets per second

Comparaison of pmacctd with Pattern Matching, packet per second analysis

single-threaded with regex classifier (113 patterns)
single-threaded with NodalCore

multi-threaded with NodalCore (96 threads)

Figure 17.9: pmacctd Pattern Matching Classifier comparison

profiling of the code to find the bottlenecks and try to fix them. Different tools
have been used during this profiling, most of them described in chapter 12 on
page 51.

The table 17.10 on the next page shows the results of a profiling session done
using the custom timing implementation described in 12.3 on page 53. These
data have been acquired with pmacctd running on replayed traffic, like in sec-
tion 17.4 on page 78 using 48 concurrent threads.

The results from this table shows clearly that the locking of the shared IP flows
table is the culprit for the badly performing multi-threaded version.

17.6 Conclusion and Future Work

First of all, all the benchmarks have only been done with packet rates ranging
from 10’000 pps to 50’000 ppp which, in our case, is about equivalent to 50
Mbps to 250 Mbps even though the Ethernet interfaces used were able to
reach 1 Gbps. This is primarily due to performances limitations of our packet
generator.

From the results of libpcap benchmarks (section 17.2 on page 74), we can say
that on our test hardware, libpcap itself was not a bottleneck even though it
can become one depending of the hardware used as showed by Luca Deri in

81

17. Benchmarks François Deppierraz

Time
Section/Function Calls Total Min Max Mean) %
send to pool 695823 68.85 0 10008849 98 100
ip flow handler 695823 3958.01 7 10048331 5688 100
ip_flow_table
locking

695823 3789.86 0 10048298 5446 95.8

Write to hardware 138336 1.57 4 1857 11 0.03
Match waiting 138336 132.57 32 10008920 958 3.35
Stream index 138336 0.18 0 574 1 0.00
Remaining 0.82

Total in s
Min, Max and Mean in µs

Figure 17.10: pmacctd multi-threaded profiling results

[Der04].

Clearly, there is room for improvement performance-wise in pmacctd to be able
to handle higher throughput. Here is some interesting topics for future work
to optimize the throughput of the system :

• Concurrency improvement of the core process by using a finer-grained
locking mechanism for the ip_flow_table

• Using an optimized libpcap implementation such as libpcap-mmap which
support an in-kernel packet buffer to better handle fluctuation in packet
rate (see section 4.3 on page 16) or nCap (see section 4.3 on page 17)

• Some other optimizations in the core process to decrease the time spent
for each packet can be possible

82

Chapter

18
Conclusion

This document should have given a good overview of the different IP classi-
fication techniques available these days. It has focused primarily on pattern
matching, except for chapter 5 on page 18, and thus working only with proto-
cols which are not fully encrypted. Fortunately, this accounts for most of the
protocols actually in wide use and will certainly last a moment because of the
significant overhead generated by the use of cryptography.

During this project an implementation of an hardware accelerated pattern
matching classifier using NodalCore cards has been made in pmacctd which
cannot be distributed because the NodalCore API is not available under the
GPL. All the multi-threaded development done in the pmacct has been included
in the official distribution covered by the GPL. The network probe pmacctd
supports many features like custom aggregation of packet into flows or multiple
output plugins which makes the packet processing more complex. This can be
pretty interesting for an integrated appliance which could take advantage of
hardware acceleration to free some CPU for other tasks but does not need to
handle packet rates too high.

If the goal is developing a high performance NetFlow probe with hardware
accelerated pattern matching functionality, the CPU budget per packet is quite
small even with today processors (see introduction of chapter 9 on page 35, so
it has to be the most simple possible to be efficient. In that case using a less
generic single purpose NetFlow probe like nProbe can be more efficient because
it has already support for Gigabit speeds and its design is simpler.

During the course of the multiple researches and developments done during
this project, a great panel1 of technologies have been studied and applied.
From NetFlow simplicity at first look and future improvements, to regular
expressions and their dirty secrets, to high performance FPGA dedicated to

1What is proved by the diversified Table of Content of this document

83

18. Conclusion François Deppierraz

enhance network security or weaken it2 and we also have been flying through
the darkness of concurrent programming and locking issues.

This document should contain enough background informations and biblio-
graphic references to help with the continuation of the project in Eneo Tec-
noloǵıa. It has also hopefully opened some new ideas on possible future works.
This domain is pretty far-reaching and we have scratched the surface.

2Do you remember the example given in section 9.1 on page 36 ?

84

RFC Bibliography

[rfc1157] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple Network
Management Protocol (SNMP). RFC 1157 (Historic), May 1990.

[rfc3954] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational), October 2004.

[rfc2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616 (Draft Standard), June 1999. Updated by RFC 2817.

[rfc768] J. Postel. User Datagram Protocol. RFC 768 (Standard), August
1980.

[rfc791] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
Updated by RFC 1349.

[rfc793] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFC 3168.

[rfc3917] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for
IP Flow Information Export (IPFIX). RFC 3917 (Informational),
October 2004.

85

Bibliography

Note: For reliability reasons all references to articles available on Wikipedia
— a free encyclopedia based on wiki technology which is freely editable — are
associated with a web link to the version of the article used during this project
and the facts have been verified with other sources.

[aix99] Writing reentrant and thread-safe code [online]. 1999. Available
from World Wide Web: http://www.unet.univie.ac.at/aix/
aixprggd/genprogc/writing_reentrant_thread_safe_code.
htm.

[BC05] Daniel P. Bovet and Marco Cesati. Understanding the Linux Ker-
nel. O’Reilly, 2005.

[BD06] Philippe BIONDI and Fabrice DESCLAUX. Silver needle in the
skype. 2006.

[BNF96] Dick Buttlar Bradford Nichols and Jacqueline Proulx Farrell.
PThreads Programming — A POSIX Standard for Better Multi-
processing. O’Reilly, 1996.

[BS04] Salman A. Baset and Henning Schulzrinne. An analysis of the skype
peer-to-peer internet telephony protocol. 2004. Available from
World Wide Web: http://www.cs.columbia.edu/~library/
TR-repository/reports/reports-2004/cucs-039-04.pdf.

[cac] Cacti: The complete rrdtool-based graphing solution [online].
Available from World Wide Web: http://cacti.net/.

[cai] Packet length distributions [online, cited 24th November 2006].
Available from World Wide Web: http://www.caida.org/
analysis/AIX/plen_hist/.

[ces] Cesnet [online]. Available from World Wide Web: http://www.
cesnet.cz/.

[CM] Fivos Constantinou and Panayiotis Mavrommatis. Identifying
known and unknown p2p traffic. Available from World Wide Web:
http://theory.lcs.mit.edu/~pmavrom/p2p/.

[Der] Luca Deri. nprobe — an extensible netflow v5/v9/ipfix gpl probe
for ipv4/v6 [online]. Available from World Wide Web: http://
www.ntop.org/nProbe.html.

86

http://www.unet.univie.ac.at/aix/aixprggd/genprogc/writing_reentrant_thread_safe_code.htm
http://www.unet.univie.ac.at/aix/aixprggd/genprogc/writing_reentrant_thread_safe_code.htm
http://www.unet.univie.ac.at/aix/aixprggd/genprogc/writing_reentrant_thread_safe_code.htm
http://www.cs.columbia.edu/~library/TR-repository/reports/reports-2004/cucs-039-04.pdf
http://www.cs.columbia.edu/~library/TR-repository/reports/reports-2004/cucs-039-04.pdf
http://cacti.net/
http://www.caida.org/analysis/AIX/plen_hist/
http://www.caida.org/analysis/AIX/plen_hist/
http://www.cesnet.cz/
http://www.cesnet.cz/
http://theory.lcs.mit.edu/~pmavrom/p2p/
http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html

Bibliography François Deppierraz

[Der04] Luca Deri. Improving passive packet capture: Beyond device
polling [online]. 2004. Available from World Wide Web: http:
//luca.ntop.org/Ring.pdf.

[Dyk99] Phil Dykstra. Gigabit ethernet jumbo frames — and why you
should care [online]. 1999. Available from World Wide Web:
http://sd.wareonearth.com/~phil/jumbo.html.

[end] Endace [online]. Available from World Wide Web: http://www.
endace.com/.

[Far06] Nick Farrell. Razorback2 killed. The Inquirer, 2006. Available
from World Wide Web: http://www.theinquirer.net/default.
aspx?article=29834.

[fre] The freenet network project. Available from World Wide Web:
http://freenetproject.org/.

[Fri06] Jeffrey E. F. Friedl. Mastering Regular Expressions, 3rd Edition.
O’Reilly, 2006.

[gdb] GDB User Manual. The Free Software Fondation. Available from
World Wide Web: http://sources.redhat.com/gdb/current/
onlinedocs/gdb_toc.html.

[gnu] Gnutella protocol development [online]. Available from World Wide
Web: http://www.the-gdf.org/.

[GVVT00] Tom Tromey Gary V. Vaughan, Ben Elliston and Ian Lance Taylor.
GNU AUTOCONF, AUTOMAKE AND LIBTOOL. Sams Pub-
lishing, 2000. Available from World Wide Web: http://sources.
redhat.com/autobook/.

[Haaa] Peter Haag. Nfdump [online]. Available from World Wide Web:
http://nfdump.sourceforge.net.

[Haab] Peter Haag. Nfsen [online]. Available from World Wide Web: http:
//nfsen.sourceforge.net.

[HM06] David Hulton and Dan Moniz. Fast pwning assured, hardware hacks
and cracks with fpgas. Black Hat Briefings 2006, 2006. Available
from World Wide Web: http://blackhat.com/presentations/
bh-usa-06/BH-US-06-Moniz-Hulton.pdf.

[Hoc] Sam Hocevar. Howto: using gprof with multithreaded applications
[online]. Available from World Wide Web: http://sam.zoy.org/
writings/programming/gprof.html.

[Ins01] Gianluca Insolvibile. The linux socket filter: Sniffing bytes over the
network. 2001. Available from World Wide Web: http://www.
linuxjournal.com/article/4659.

87

http://luca.ntop.org/Ring.pdf
http://luca.ntop.org/Ring.pdf
http://sd.wareonearth.com/~phil/jumbo.html
http://www.endace.com/
http://www.endace.com/
http://www.theinquirer.net/default.aspx?article=29834
http://www.theinquirer.net/default.aspx?article=29834
http://freenetproject.org/
http://sources.redhat.com/gdb/current/onlinedocs/gdb_toc.html
http://sources.redhat.com/gdb/current/onlinedocs/gdb_toc.html
http://www.the-gdf.org/
http://sources.redhat.com/autobook/
http://sources.redhat.com/autobook/
http://nfdump.sourceforge.net
http://nfsen.sourceforge.net
http://nfsen.sourceforge.net
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Moniz-Hulton.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Moniz-Hulton.pdf
http://sam.zoy.org/writings/programming/gprof.html
http://sam.zoy.org/writings/programming/gprof.html
http://www.linuxjournal.com/article/4659
http://www.linuxjournal.com/article/4659

Bibliography François Deppierraz

[KBFc04] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and
Kc claffy. Transport layer identification of p2p traffic. In IMC
’04: Proceedings of the 4th ACM SIGCOMM conference on Inter-
net measurement, pages 121–134, New York, NY, USA, 2004. ACM
Press.

[KPF05] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis
Faloutsos. Blinc: multilevel traffic classification in the dark. In SIG-
COMM ’05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions, pages 229–240, New York, NY, USA, 2005. ACM Press.

[l7fa] Application layer packet classifier for linux [online]. Available from
World Wide Web: http://l7-filter.sourceforge.net/.

[l7fb] L7-filter pattern writing howto. Available from World Wide Web:
http://l7-filter.sourceforge.net/Pattern-HOWTO.

[liba] Liberouter [online]. Available from World Wide Web: http://www.
liberouter.org/.

[libb] A libpcap version which supports mmap mode on linux kernels
2.[46].x [online]. Available from World Wide Web: http://public.
lanl.gov/cpw/.

[Luc] Paolo Lucente. pmacct [online]. Available from World Wide Web:
http://www.pmacct.net/.

[Mac06] Alistair MacArthur. Fpgas — parallel perfection ?, 2006. Avail-
able from World Wide Web: http://www.celoxica.com/techlib/
FPGA.pdf.

[Oeta] Tobias Oetiker. The multi router traffic grapher [online]. Available
from World Wide Web: http://oss.oetiker.ch/mrtg/.

[Oetb] Tobias Oetiker. The round robin database [online]. Available from
World Wide Web: http://oss.oetiker.ch/rrdtool.

[opr] Oprofile [online]. Available from World Wide Web: http://
oprofile.sourceforge.net/news/.

[pth] Posix threads programming [online]. Available from World Wide
Web: http://www.llnl.gov/computing/tutorials/pthreads/.

[Rho00] Alex Rhomberg. gettimeofday resolution, 2000. Available from
World Wide Web: http://lists.suse.com/archive/suse-axp/
2000-Mar/0115.html. Post on the suse-axp mailing-list.

[RSH] Karl Berry Richard Stallman and Kathryn Hargreaves. Regex -
gnu regex library [online]. Available from World Wide Web: http:
//directory.fsf.org/regex.html.

[Sena] NodalCore C Series Programming Guide. Retrieved on September
2006 from https://support.sensorynetworks.com.

88

http://l7-filter.sourceforge.net/
http://l7-filter.sourceforge.net/Pattern-HOWTO
http://www.liberouter.org/
http://www.liberouter.org/
http://public.lanl.gov/cpw/
http://public.lanl.gov/cpw/
http://www.pmacct.net/
http://www.celoxica.com/techlib/FPGA.pdf
http://www.celoxica.com/techlib/FPGA.pdf
http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/rrdtool
http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
http://www.llnl.gov/computing/tutorials/pthreads/
http://lists.suse.com/archive/suse-axp/2000-Mar/0115.html
http://lists.suse.com/archive/suse-axp/2000-Mar/0115.html
http://directory.fsf.org/regex.html
http://directory.fsf.org/regex.html
https://support.sensorynetworks.com

Bibliography François Deppierraz

[Senb] NodalCore Regular Pattern Language. Retrieved on September 2006
from https://support.sensorynetworks.com.

[sfl] sflow forum [online]. Available from World Wide Web: http://
www.sflow.org/.

[sno] Snort [online]. Available from World Wide Web: http://www.
snort.org/.

[Tan01] A.S. Tannenbaum. Modern Operating Systems. Prentice Hall, 2001.

[tor] Tor: anonymity online [online]. Available from World Wide Web:
http://tor.eff.org/.

[Tur] Aaron Turner. Pcap editing & replay for *nix. Available from
World Wide Web: http://tcpreplay.synfin.net/trac/.

[vB02] Iljitsch van Beijnum. Building Reliable Networks with the Border
Gateway Protocol. O’Reilly, 2002.

[was] Waste, anonymous, secure, encrypted sharing. Available from
World Wide Web: http://waste.sourceforge.net/.

[Wik06a] Wikipedia. Bittorrent — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/
w/index.php?title=BitTorrent&oldid=90534592. [Online; ac-
cessed 28-November-2006].

[Wik06b] Wikipedia. Bittorrent protocol encryption — wikipedia, the
free encyclopedia, 2006. Available from World Wide Web:
http://en.wikipedia.org/w/index.php?title=BitTorrent_
protocol_encryption&oldid=88715950. [Online; accessed
22-November-2006].

[Wik06c] Wikipedia. Deadlock — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Deadlock&oldid=91955439. [Online; accessed
5-December-2006].

[Wik06d] Wikipedia. Edonkey network — wikipedia, the free encyclopedia,
2006. Available from World Wide Web: http://en.wikipedia.
org/w/index.php?title=EDonkey_network&oldid=90438894.
[Online; accessed 3-December-2006].

[Wik06e] Wikipedia. Field-programmable gate array — wikipedia,
the free encyclopedia, 2006. Available from World Wide
Web: http://en.wikipedia.org/w/index.php?title=
Field-programmable_gate_array&oldid=90727367. [Online;
accessed 1-December-2006].

[Wik06f] Wikipedia. Gnutella — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Gnutella&oldid=88934837. [Online; accessed
22-November-2006].

89

https://support.sensorynetworks.com
http://www.sflow.org/
http://www.sflow.org/
http://www.snort.org/
http://www.snort.org/
http://tor.eff.org/
http://tcpreplay.synfin.net/trac/
http://waste.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=BitTorrent&oldid=90534592
http://en.wikipedia.org/w/index.php?title=BitTorrent&oldid=90534592
http://en.wikipedia.org/w/index.php?title=BitTorrent_protocol_encryption&oldid=88715950
http://en.wikipedia.org/w/index.php?title=BitTorrent_protocol_encryption&oldid=88715950
http://en.wikipedia.org/w/index.php?title=Deadlock&oldid=91955439
http://en.wikipedia.org/w/index.php?title=Deadlock&oldid=91955439
http://en.wikipedia.org/w/index.php?title=EDonkey_network&oldid=90438894
http://en.wikipedia.org/w/index.php?title=EDonkey_network&oldid=90438894
http://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=90727367
http://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=90727367
http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=88934837
http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=88934837

Bibliography François Deppierraz

[Wik06g] Wikipedia. Kademlia — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Kademlia&oldid=89264091. [Online; accessed
22-November-2006].

[Wik06h] Wikipedia. Napster — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Napster&oldid=91403223. [Online; accessed 3-
December-2006].

[Wik06i] Wikipedia. The pirate bay — wikipedia, the free encyclopedia,
2006. Available from World Wide Web: http://en.wikipedia.
org/w/index.php?title=The_Pirate_Bay&oldid=87039577.
[Online; accessed 22-November-2006].

[Wik06j] Wikipedia. Regular expression — wikipedia, the free
encyclopedia, 2006. Available from World Wide Web:
http://en.wikipedia.org/w/index.php?title=Regular_
expression&oldid=88346331. [Online; accessed 21-November-
2006].

[Wik06k] Wikipedia. Simple network management protocol — wikipedia,
the free encyclopedia, 2006. Available from World Wide
Web: http://en.wikipedia.org/w/index.php?title=Simple_
Network_Management_Protocol&oldid=79589022. [Online; ac-
cessed 5-October-2006].

[Wik06l] Wikipedia. Unix time — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Unix_time&oldid=86516247. [Online; accessed
23-November-2006].

[Wik06m] Wikipedia. Verilog — wikipedia, the free encyclopedia, 2006.
Available from World Wide Web: http://en.wikipedia.org/w/
index.php?title=Verilog&oldid=89642671. [Online; accessed 1-
December-2006].

[Wik06n] Wikipedia. Vhdl — wikipedia, the free encyclopedia, 2006. Avail-
able from World Wide Web: http://en.wikipedia.org/w/index.
php?title=VHDL&oldid=89397552. [Online; accessed 1-December-
2006].

[YCD+] F. Yu, Z. Chen, Y. Diao, TV Lakshman, and R.H. Katz. Fast and
Memory-Efficient Regular Expression Matching for Deep Packet
Inspection.

90

http://en.wikipedia.org/w/index.php?title=Kademlia&oldid=89264091
http://en.wikipedia.org/w/index.php?title=Kademlia&oldid=89264091
http://en.wikipedia.org/w/index.php?title=Napster&oldid=91403223
http://en.wikipedia.org/w/index.php?title=Napster&oldid=91403223
http://en.wikipedia.org/w/index.php?title=The_Pirate_Bay&oldid=87039577
http://en.wikipedia.org/w/index.php?title=The_Pirate_Bay&oldid=87039577
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=88346331
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=88346331
http://en.wikipedia.org/w/index.php?title=Simple_Network_Management_Protocol&oldid=79589022
http://en.wikipedia.org/w/index.php?title=Simple_Network_Management_Protocol&oldid=79589022
http://en.wikipedia.org/w/index.php?title=Unix_time&oldid=86516247
http://en.wikipedia.org/w/index.php?title=Unix_time&oldid=86516247
http://en.wikipedia.org/w/index.php?title=Verilog&oldid=89642671
http://en.wikipedia.org/w/index.php?title=Verilog&oldid=89642671
http://en.wikipedia.org/w/index.php?title=VHDL&oldid=89397552
http://en.wikipedia.org/w/index.php?title=VHDL&oldid=89397552

Index

Bittorrent, 5

Cacti, 22
Concurrent Programming, 39
Condition variable, 41
Context switch, 39

DAG, 37
Deep Packet Inspection, 15

eDonkey, 5
Epoch, 107

FPGA, 36

gettimeofday, 107
Gnutella, 5
GUI, 40

IDS, 12
IPFIX, 10
IXP1200, 37

Kademlia, 7

Liberouter, 37
Libpcap, 16
Locking, 41, 67

mrtg, 21
Mutex, 41

Napster, 4
nCap, 17
NetFlow, 10, 22
Network Processors, 37
nfdump, 22
nfsen, 23
NodalCore, 38, 60
nProbe, 24
nprobe, 22

Operating System, 39

P2P, 3
Packet Capture, 16
processes, 40

Reentrancy, 45

Semaphore, 41
Skype, 6
SNMP, 9, 21
Streamline, 16

Thread-safety, 45
threads, 40

Well known ports, 14
WPA, 36

91

List of Figures

3.1 NetFlow v5 Packet Format . 11
3.2 NetFlow v9 Packet Format . 13

4.1 Traffic classification using well known ports 15

6.1 Example of MRTG graph generated from data retrieved with SNMP 21
6.2 Screenshot of Cacti web interface 22

7.1 nProbe multi-threaded design . 25
7.2 Layer-7 filter project pattern file format 28

8.1 Example of regular expression compilation for a*b|b*a 32

10.1 (a) Multiple processes each with a single thread (b) Multiple threads
in the same process . 40

10.2 Two tasks incrementing the same global variable 44

14.1 Sensory Networks NodalCore C-2000 Card 60

16.1 Pmacct single-threaded core design schema 67
16.2 Pmacct multi-threaded core design schema 68

17.1 The pmacct with NodalCore classifier big picture 70
17.2 Benchmarks testbed schema . 71
17.3 (a) Packet Size Distribution (b) Capture File Specifications 73
17.4 Packets Size Limits by Protocol . 74
17.5 NodalCore C-2000: Throughput versus block size with multiple

channels . 75
17.6 NodalCore C-2000: Comparison with and without HyperThreading

activated on the host CPU . 77
17.7 pmacctd comparison without NodalCore classifier 79
17.8 pmacctd comparison with NodalCore classifier 80
17.9 pmacctd Pattern Matching Classifier comparison 81
17.10pmacctd multi-threaded profiling results 82

B.1 NodalCore System Architecture, Source : [Sena] 101

92

List of Tables

2.1 P2P protocols characteristics . 4

7.1 nProbe plugin API, with xxx substitued by the plugin name 26

8.1 Metacharacters used in regular expressions 31
8.2 Worst case comparison of DFA and NFA for a single regular expression 33

15.1 pmacct classifier extension API . 64

17.1 Testbed hardware specifications . 72

F.1 Pmacct multi-threaded without NodalCore 121
F.2 Pmacct multi-threaded with NodalCore 121
F.3 Pmacct single-threaded without NodalCore 122
F.4 Pmacct single-threaded with NodalCore 122
F.5 Pmacct with l7-filter with 113 patterns 122
F.6 Libpcap . 123
F.7 nProbe . 123

93

Part IV

Appendices

94

Appendix

A
NodalCore C-2000 Card

A.1 Installation

This chapter describes the installation procedure of a security accelerator card
from Sensory Networks, the NodalCore C-2000 Ultra. This was done under
Gentoo Linux – Eneo’s official Linux distribution – even though the drivers
were only distributed for RedHat 9 and SUSE Linux Enterprise Server 9. This
procedure is inspired by the one documented in the “NodalCore R© C-Series
Platform Manual”.

Two different elements are required to be able to use the card, the kernel drivers
and the user space tools. We have used the version 3.3.1.6 of both.

Procedure

The following archives were downloaded from Sensory Networks’s support web-
site at https://secure.sensorynetworks.com/support/.

l s − l ∗ . t a r . gz
−rw−r−−r−− 1 root root 1160436 Sep 22 11 :17 NodalCore

−3.3.1.6−Redhat9 . ta r . gz
−rw−r−−r−− 1 root root 1566222 Sep 22 11 :17

NodalCoreSDK−3.3.1.6−Redhat9 . ta r . gz
−rw−r−−r−− 1 root root 119571 Sep 22 11 :18 ncore−

packet−scan − 0 . 2 . 0 . 3 . ta r . gz

95

https://secure.sensorynetworks.com/support/

A. NodalCore C-2000 Card François Deppierraz

Kernel Driver

The kernel driver needs to be compiled with the source code of the running
kernel.

cd NodalCore−3.3.1.6−Redhat9
rpm2targz ncore−dr iver−source −3.3.1.6−Redhat9 . noarch .

rpm
tar x z f ncore−dr iver−source −3.3.1.6−Redhat9 . noarch . t a r

. gz
cd usr / src /ncore/
make KERNEL SOURCE=/usr / src / l inux −2.6.15− gentoo−r1
make i n s t a l l

Once the compiled driver is installed it can be loaded in the kernel and detects
if supported cards are installed.

l s p c i | grep Sensory
01 : 0 0 . 0 Class f f f f : Sensory Networks Inc . NodalCore C

−2000 Content
C l a s s i f i c a t i o n Acce l e ra to r
modprobe ncore
dmesg | grep ncore
ncore : ncore0 : NodalCore (tm) C−2000.
ncore : 1 NodalCore (tm) C−S e r i e s dev i c e found .

User Space Tools – SDK

cd NodalCoreSDK−3.3.1.6−Redhat9
rpm2targz ncore −3.3.1.6−Redhat9 . i386 . rpm
rpm2targz ncore−deve l −3.3.1.6−Redhat9 . i386 . rpm
tar x z f ncore −3.3.1.6−Redhat9 . i386 . t a r . gz −C /
tar x z f ncore−deve l −3.3.1.6−Redhat9 . i386 . t a r . gz −C /

Because the tools binaries were compiled under RedHat we need to create
different symlinks to OpenSSL libraries to get it works under Gentoo.

ln −s / usr / l i b / l i b s s l . so .0 / usr / l i b / l i b s s l . so .4
ln −s / usr / l i b / l i b c r y p t o . so .0 / usr / l i b / l i b c r y p t o . so .4

The required device specials files must be created in /dev, one for each card in
the machine.

/bin /mknod −m 0666 /dev/ncore0 c 63 0
/ bin /mknod −m 0666 /dev/ncore1 c 63 1

96

A. NodalCore C-2000 Card François Deppierraz

A firmware is required for the FPGA on the card, this firmware is called a
bitstream and depends on the model and version of the card.

VER=C2000−Ultra .003−pr12−31−3.0.14.0−4
rpm2targz ncore−b i t s t r eams−$VER. noarch . rpm
tar x z f ncore−b i t s t reams−$VER. noarch . t a r . gz −C /

Loading the driver and the bitstream.

/ e t c / i n i t . d/ncore s t a r t
Sta r t i ng NodalCore (tm) : Loading dr ive r , b i t s t ream (may

take a few minutes) .
dmesg | grep ncore0
ncore0 : Firmware b i t s t ream con f i gu r a t i on completed

Tests

The tools ncore-hw-info and ncore-diagnostics are available to check if the
card is well configured and working as expected.

ncore−d i a gno s t i c s
NodalCore C−S e r i e s Diagnos t i c Tool (ncore−d i a gno s t i c s)

v e r s i on 3 . 3 . 1 . 6
Copyright Sensory Networks Inc , 2005 . Al l r i g h t s

r e s e rved .
PCI bus check . . . [PASSED]
Checking card 0 . . . [PASSED]
Checking d r i v e r module pre sent . . . [PASSED]
Module a l r eady loaded .
Checking d r i v e r ve r s i on . . . [PASSED]
Bitstream load ing check on card 0 . . . [PASSED]
Bitstream loaded in 0 .383 seconds .
C−2000 dev i c e in fo rmat ion :
Device Name : C−2000 Ultra
S e r i a l Number : XXXXXXXXXXXXXXXX
Bitstream Se r i e s : 31
Bitstream Vers ion : 3 . 0 . 1 4
FPGA: VLX60
FPGA speed code : 1
Bank 1 s i z e : 576Mb
Bank 1 speed code : 1
Bank 2 s i z e : 576Mb
Bank 2 speed code : 1
Card temperature : 38
FPGA temperature : 45
RLDRAM memory check on card 0 . . . [PASSED]
Pattern matching test on card 0 . . . [PASSED]
ncore−hw−i n f o

97

A. NodalCore C-2000 Card François Deppierraz

Product Family : C−2000
Model Name : C−2000 Ultra
Part Number : SNI−C2U−00G
Part Rev i s ion : 003
S e r i a l Number : XXXXXXXXXXXXXXXX
Bitstream Se r i e s : 31
Bitstream Vers ion : 3 . 0 . 1 4
Input Channels : 12
FPGA: VLX60
FPGA speed : 1
Pattern Memory : 1152Mb
Pattern Memory speed : 1
Bank 1 s i z e : 576Mb
Bank 1 speed : 1
Bank 2 s i z e : 576Mb
Bank 2 speed : 1

Software emulation

A software emulation of the NodalCore hardware is available in the SDK, it
can be used to simplify development by not requiring the hardware card on the
development stations. This feature is fully described in the chapter “Software
Pattern Matching” of [Sena].

To use this functionality you have to give a special device number to the ncInit
function. This special number is given by the NC_SOFTWARE_DEVICE(num)
macro. The following example opens an emulated NodalCore card.

1 int main(int argc, char ∗argv[]) {
2 nc dev t device;
3
4 ncInit(NC SOFTWARE DEVICE(0), &device);
5 ...
6 }

A.2 NCore ip queue benchmark tool

Usage

Ncore-ipq is a users pace benchmark tool using the ip queue facility provided
by Netfilter to access packet payload in user space.

98

A. NodalCore C-2000 Card François Deppierraz

Installation

./ con f i gu r e && make && make i n s t a l l
modprobe ip queue
i p t a b l e s −A FORWARD −j QUEUE
#
./ src /ncore−i p q −−nc−pat tern−db /tmp/ t o t o . db
NodalCore i n i t i a l i s e d .

A.3 NCore Packet Scanner

Usage

ncore-packet-scan is a high performance packet scanning kernel module using
the hardware acceleration provided by the NodalCore C-Serie cards.

Installation

tar x z f ncore−packet−scan −0 .2 . 0 . 3 . t a r . gz
cd ncore−packet−scan −0.2 .0 .3
NCSRC=/usr / src /ncore/ncore−dr iver −3.3.1 .6/ src
KSRC=/usr / src / l inux −2.6.15− gentoo−r1
./ con f i gu r e
−−with−ncsource=\$NCSRC
−−with−kerne l−source=\$KSRC

[. . . c on f i g u r a t i on messages . . .]
make
[compi la t ion messages]
make i n s t a l l
depmod −a
modprobe packe t scan

99

Appendix

B
NodalCore API

This chapter will briefly describe the NodalCore API features which have been
used during this project. The whole API is fully explained in [Sena]. In fact,
as shown on figure B.1 on the following page, two different NodalCore API are
available, one in User Mode and the other one in Kernel Mode. The only
one used during this project was the user mode one because pmacctd is a user
space application.

B.1 Overview

The NodalCore C-Serie cards (see 14 on page 60) can be used for multiple
applications such as pattern matching — the feature used in this project —
content decoding, data decompression and data digest generation. To handle
those different needs, a channel specific to the feature needed has to be created.
Once created it can be multiplied in the hardware using channel pools to take
advantage of the parallelism of the hardware.

Our project is only only the pattern matching feature, we will focus on it. Two
kind of pattern matching channels are available : Pattern Matching Engine
(PME) for regular expressions in the NRPL format (see section 8.5 on page 34)
and Massive Memory Architecture (MMA) for simple byte-strings. The only
pattern matching channel used in this project is the PME because the patterns
taken from the Layer-7 Filter Project (see section 7.3 on page 27) are only
regular expressions.

100

B. NodalCore API François Deppierraz

Figure B.1: NodalCore System Architecture, Source : [Sena]

B.2 API Wrapper

A wrapper (made of nodal_core.c) was taken from ncore-ipq (see section A.2
on page 98) to ease the API usage. The headers (taken from nodal_core.h of
this wrapper define the following data structures and functions.

Data Structures

Only one data structure is defined in the wrapper, NcoreContext stores all
informations about the current usage of the hardware card in the application
as well as some statistics.

1 struct NcoreContext
2 {
3 nc dev t device;
4
5 nc transform t pmeTransform;
6 nc transform t captureTransform;
7 nc channel pool t pool;
8

101

B. NodalCore API François Deppierraz

9 nc active db t activeDb;
10
11 nc stream t∗ streams;
12 size t lastUsedStreamIndex;
13 size t streamsLen;
14
15 pthread t eventProcessor;
16
17 pthread t∗ matchers;
18 size t matchersLen;
19
20 u int64 t bytesProcessed;
21 u int64 t bytesScanned;
22 u int64 t packetsScanned;
23 };

API Initialization

The function ncoreInit() takes care of the initialization of the NodalCore
API, the loading of the pattern database to the hardware and the launch of
the event processor which will call a callback function each time an event is
raised by the hardware. The function ncoreDeinit() removes the pattern
database loaded from the hardware and frees allocated memory.

1 void ncoreInit(int deviceNumber, const char∗ dbFileName, int
cacheEvents, struct NcoreContext∗ data);

2 void ncoreDeinit(struct NcoreContext∗ data);

Streams Intialisation

The function ncoreStreamsInit() takes care of the pattern matching channel
pool creation and allocates the number of streams requested which is how data
are transmitted into the channels. Cleaning after usage is handled by the
function ncoreStreamsDeinit() which frees the allocated channel pool and
the allocated memory.

1 void ncoreStreamsInit(size t howMany, struct NcoreContext∗ data);
2 void ncoreStreamsDeinit(struct NcoreContext∗ data);

Feeding the Hardware

The main way to send data to the hardware is the ncoreStreamWrite()
function which writes a data block to the specified stream on the hardware.

102

B. NodalCore API François Deppierraz

Match informations will generate a call to the callback function defined in
nodal_core.c (ncoreEventCallback()) only after ncoreStreamGetState()
has been called.

The other functions are convenient wrappers to group data write and state
request using a single function call as well as requesting a blocking operation.
Blocking operations were used in the first part of the pmacctd classifier module
implementation described in section 15 on page 63).

1 void ncoreStreamWrite(const unsigned char ∗data, size t len, size t
streamIndex, struct NcoreContext∗ context);

2 void ncoreStreamGetState(size t streamIndex, struct NcoreContext∗
context);

3
4 void ncoreStreamWriteWithState(const unsigned char ∗data, size t len,

size t streamIndex, struct NcoreContext∗ context);
5
6 void ncoreStreamWriteWithStateBlocking(const unsigned char ∗data,

size t len, size t streamIndex, struct NcoreContext∗ context);
7 void ncoreStreamGetStateBlocking(size t streamIndex, struct NcoreContext

∗ context);

103

Appendix

C
Contributions

This appendix lists the different contributions, like bug reports or patches,
made to free software projects during this project.

C.1 Libcprops

libcprops is a C prototyping library providing data structures like linked-lists,
hashtables and vectors as well as a thread pool implementation. This library
has been used in the first stages of the development of the multi-threaded
version of pmacctd (see chapter 16 on page 66). At the end it was replaced by
a specifically developed thread pool implementation.

The following bug report has been filed in libcprops bugtracker on Source-
forge.net including a patch to fix it. The patch has been accepted for next
release by the author.

Submission date 2006-10-20
Description Compilation fix under Debian

sarge and MacOS X Tiger.
URL http://sourceforge.net/

tracker/?func=detail&atid=
797946&aid=1581201&group_
id=155979

Status Accepted for next release

104

http://sourceforge.net/tracker/?func=detail&atid=797946&aid=1581201&group_id=155979
http://sourceforge.net/tracker/?func=detail&atid=797946&aid=1581201&group_id=155979
http://sourceforge.net/tracker/?func=detail&atid=797946&aid=1581201&group_id=155979
http://sourceforge.net/tracker/?func=detail&atid=797946&aid=1581201&group_id=155979

C. Contributions François Deppierraz

C.2 libpcap package in Ubuntu

The libpcap package version 0.8_0.9.4-1 available in Ubuntu Dapper Drake
has a bug on some Linux systems which render the capture stats wrongs. The
number of received packets is counted twice.

Here is an example of the bug while using tcpdump, a packet sniffer based on
libpcap.

root@ubuntu : / tmp# tcpdump −n −i e th0 −w t e s t . dump
tcpdump : l i s t e n i n g on eth0 , l ink−type EN10MB (Ethernet) ,

capture s i z e 96
bytes
45 packets captured
90 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
root@ubuntu : / tmp# tcpdump −r t e s t . dump | wc − l
read ing from f i l e test . dump, l ink−type EN10MB (Ethernet)
45
root@ubuntu : / tmp#

Submission date 2006-11-21
Description Packet statistics from libpcap are

wrong, number of packets dou-
bled. The bug has already been
fixed upstream in libpcap version
0.9.5.

URL https://bugz.launchpad.
net/distros/ubuntu/+source/
libpcap/+bug/72752

Status Unconfirmed

Workaround

The problem can be solved by installing the package version 0.9.5-1 coming for
Ubuntu Feisty (next official version).

root@ubuntu : / usr / s r c / l ibpcap / l ibpcap0 .8 −0 .9 .5# apt−ge t
i n s t a l l b u i l d d ep l i b p cap0 .8

[. . .]
root@ubuntu : / usr / s r c / l ibpcap / l ibpcap0 .8 −0 .9 .5# dpkg−

bu i l dpackage
[. . .]
dpkg−deb : bu i l d i ng package ‘ l ibpcap0 .8−dev ’ in ‘ . . /

l ibpcap0 .8−dev 0 .9.5−1 i 386 . deb ’ .
dpkg−deb : bu i l d i ng package ‘ l ibpcap0 . 8 ’ in ‘ . . / l ibpcap0

. 8 0 .9.5−1 i 386 . deb ’ .

105

https://bugz.launchpad.net/distros/ubuntu/+source/libpcap/+bug/72752
https://bugz.launchpad.net/distros/ubuntu/+source/libpcap/+bug/72752
https://bugz.launchpad.net/distros/ubuntu/+source/libpcap/+bug/72752

C. Contributions François Deppierraz

dpkg−genchanges
dpkg−genchanges : i n c l ud ing f u l l source code in upload
dpkg−bui ldpackage : f u l l upload (o r i g i n a l source i s

inc luded)
root@ubuntu : / usr / s r c / l ibpcap / l ibpcap0 .8 −0 .9 .5# dpkg −i

. . / l i b p cap0 .8−dev 0 .9.5−1 i386 . deb
root@ubuntu : / usr / s r c / l ibpcap / l ibpcap0 .8 −0 .9 .5# dpkg −i

. . / l i b p cap0 .8 0 .9.5−1 i386 . deb

C.3 Pmacct

All the code developed during the implementation of multi-threading in pmacctd
core process, described in chapter 16 on page 66, has been integrated in the
CVS version of pmacct and will be included in the official version 0.11.3 which
will be available on the official website of the project (see [Luc]).

106

Appendix

D
gettimeofday() System Call

The gettimeofday() system call gives the current system time with a maxi-
mum resolution of a microsecond because it returns a structure with two ele-
ments, the number of seconds since the Epoch1 and the associated microsec-
onds.

This system call has been widely used as a way to determine the time difference
between two execution points in a program.

D.1 Resolution

The profiling method presented in section 12.3 on page 53 depends on the res-
olution of the gettimeofday() system call under Linux on our test hardware.
The following program taken from [Rho00] gives us this value.

The program was run multiple time with different load of the test computer
and has always been reporting a resolution of 1µs. So we can conclude that
our profiling system has a microsecond resolution.

D.2 Program

This program will repeatedly run gettimeofday() during one second and de-
termine how many times it could. The best case is when it can be run 106

times in a second giving thus the best resolution possible of 1ns.

1January 1st 1970 at midnight UTC, use as a time base in Unix as well as the Java
Programming Language. See [Wik06l]

107

D. gettimeofday() System Call François Deppierraz

1 #include <time.h> // for gettimeofday
2 #include <sys/time.h>
3 #include <stdio.h>
4
5 int main(int argc, char∗∗argv)
6 {
7 struct timeval tv1, tv2;
8
9 gettimeofday(&tv1, NULL);

10 do {
11 gettimeofday(&tv2, NULL);
12 } while (tv1.tv usec == tv2.tv usec);
13
14 printf (”Difference : %d us\n”, tv2.tv usec − tv1.tv usec +
15 1000000 ∗ (tv2.tv sec − tv1.tv sec)) ;
16
17 return 0;
18 }

108

Appendix

E
Benchmarking Programs

This appendix presents interesting parts of the programs developed during this
project which were used to get the benchmarking results described in 17 on
page 70. The goal of those explanations is to give a clear overview of how
the benchmarks have been carried on because many factors can influence the
results.

E.1 Traffic Capture File

The following program sizedistribution.py is used to generate the packet
size distribution of a given pcap capture file. To do so, it use the pcapy libpcap
python module. The packet sizes have been analysed between 0 and 1500 bytes
(lines 6-7)

1 #!/ usr / b in /env python
2

3 import sys
4 import pcapy
5

6 MIN = 0
7 MAX = 1500
8

9 ”””Determine the packet s i z e d i s t r i b u t i o n from a pcap
capture f i l e ”””

10

11 f i l ename = sys . argv [1]
12

13 pcap = pcapy . o p e n o f f l i n e (f i l ename)
14

15 # I n i t i a l i s e d i s t r i b u t i o n l i s t

109

E. Benchmarking Programs François Deppierraz

16 d i s t r i b u t i o n = []
17 for i in range (MIN, MAX+1) :
18 d i s t r i b u t i o n . append (0)
19

20 while 1 :
21 try :
22 (header , data) = pcap . next ()
23 except :
24 break
25 try :
26 d i s t r i b u t i o n [header . g e t l en ()] += 1
27 except :
28 print header . g e t l en ()
29

30 pkts = sum(d i s t r i b u t i o n)
31

32 cum = 0
33 for i in range (MIN, MAX+1) :
34 s i z e = i − 14
35 i f s i z e > 0 :
36 cum += f l o a t (d i s t r i b u t i o n [i]) / f l o a t (pkts)
37 print s i z e , ”\ t ” , cum

E.2 Libpcap

The following program pcapcount.c is based on the code from a libpcap tu-
torial made by Martin Casado. It will run until receiving a SIGTERM signal
(usually sent by the kill command and ctrl-C), and then print the number of
packet it has received.

The callback function (defined between lines 27-29) does only one thing : the
incrementation of a global variable. That is why almost no packets were lost
during our benchmarks (see 17.2 on page 74) because packet loss appears when
this callback function returns after a packet has become ready in the BPF1

kernel buffer used by libpcap.

The configuration of a signal handler (line 49) with the signal allows a specific
function (quit defined on line 31 to be called when the process is killed or
that a CTRL-C is sent by the user.

1 /∗∗∗
2 ∗ file : pcapcount.c
3 ∗ date: 2001−Mar−14 12:14:19 AM
4 ∗ Author: Martin Casado
5 ∗ Last Modified: Mon Nov 20 13:20:43 CET 2006

1Berkeley Packet Filter, a framework in the kernel able to capture packets on existing
network interfaces

110

E. Benchmarking Programs François Deppierraz

6 ∗ Modified by Francois Deppierraz on Tue Nov 14 10:21:15 CET 2006
7 ∗
8 ∗ Description: Display the number of packets captured on SIGTERM
9 ∗

10 ∗∗/
11
12 #include <pcap.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <errno.h>
16 #include <sys/socket.h>
17 #include <netinet/in.h>
18 #include <arpa/inet.h>
19 #include <netinet/if ether.h>
20 #include <signal.h>
21
22 int count = 0;
23
24 /∗ callback function that is passed to pcap loop (..) and called each time
25 ∗ a packet is recieved ∗/
26
27 void my callback(u char ∗useless,const struct pcap pkthdr∗ pkthdr,const

u char∗ packet) {
28 count++;
29 }
30
31 void quit(int signum)
32 {
33 printf (”%d\n”, count);
34 exit (0) ;
35 }
36
37 int main(int argc,char ∗∗argv)
38 {
39 int i ;
40 char ∗dev;
41 char errbuf[PCAP ERRBUF SIZE];
42 pcap t∗ descr;
43 const u char ∗packet;
44 struct pcap pkthdr hdr; /∗ pcap.h ∗/
45 struct ether header ∗eptr; /∗ net/ethernet.h ∗/
46 bpf u int32 localnet , netmask;
47
48 /∗ Init signals ∗/
49 signal (SIGTERM, quit);
50
51 /∗ open device for reading ∗/
52 descr = pcap open live(argv[1],BUFSIZ,0,−1,errbuf);
53 if (descr == NULL)
54 { printf (”pcap open live(): %s\n”,errbuf); exit (1) ; }

111

E. Benchmarking Programs François Deppierraz

55
56 pcap loop(descr,0,my callback,NULL);
57
58 fprintf (stdout,”\nDone processing packets... wheew!\n”);
59 return 0;
60 }

E.3 NodalCore API and Hardware

The following benchmarking program uses the NodalCore API to write 10 MB
of dummy data (only 1’s) to the NodalCore C-2000 card using different numbers
of streams in parallel and different write sizes. The goal is to be able to have
real numbers for the performance penalty generated by the use a small sized
writes operations described in section 14.5 on page 62.

1 #include <stdio.h>
2
3 #include <sys/types.h>
4 #include <sys/stat.h>
5 #include <fcntl.h>
6 #include <unistd.h>
7 #include <sys/time.h>
8 #include <time.h>
9 #include <math.h>

10 #include <stdlib.h>
11
12 #include ”nodal core.h”
13
14 //#define READ SIZE 1073741824 /∗ 1 GB ∗/
15 //#define READ SIZE 104857600 /∗ 100 MB ∗/
16
17 #define MAX STREAMS 12
18 #define READ SIZE 10485760 /∗ 10 MB ∗/
19 #define MEAN NUM 1
20
21 int verbose = 0;
22 int state events = 0;
23 int writes = 0;
24
25 struct NcoreContext ncoreContext;
26
27 long double doit(int nc streams, int block size)
28 {
29 char buf[block size];
30 unsigned int read size = 0;
31 int idx = 0;
32 long double delta;

112

E. Benchmarking Programs François Deppierraz

33 struct timeval t0, t1;
34
35 memset(buf, 1, block size) ;
36
37 gettimeofday(&t0, NULL);
38
39 if (verbose) printf (”Vamos\n”);
40
41 while (read size < READ SIZE) {
42 ncoreStreamWriteWithState(&buf, block size, idx, &ncoreContext);
43 writes++;
44 read size += block size;
45
46 if (verbose) {
47 if ((read size/block size) % ((READ SIZE/block size)/50) == 0) {
48 printf (”X”);
49 fflush (stdout);
50 }
51 }
52
53 idx = (idx + 1) % nc streams;
54 }
55
56 /∗ Wait for the last event ∗/
57 while (writes > state events) ;
58
59 if (verbose) printf (”\nTerminado\n”);
60
61 gettimeofday(&t1, NULL);
62 delta = (t1.tv sec − t0.tv sec) ∗ 1000000 + (t1.tv usec − t0.tv usec);
63
64 state events = 0;
65 writes = 0;
66
67 return delta;
68 }
69
70 int main(int argc, char ∗∗argv)
71 {
72 long double duration, mbps;
73 int streams, block size ;
74 int i ;
75
76 /∗ Use realtime priority ∗/
77 set realtime priority () ;
78
79 /∗ NodalCore init ∗/
80 ncoreInit (0, ”/root/toto.db”, 0, &ncoreContext);
81 ncoreStreamsInit(NC STREAMS, &ncoreContext);
82

113

E. Benchmarking Programs François Deppierraz

83 /∗ TESTS ∗/
84
85 // Header
86 printf (”# Block size”);
87
88 for (streams = 1; streams < NC STREAMS+1; streams++)
89 printf (”\t%d”, streams);
90 printf (”\n”);
91
92 for (block size = 64; block size < 2000; block size += 1) {
93 printf (”%d”, block size) ;
94 for (streams = 1; streams < MAX STREAMS+1; streams++) {
95 mbps = 0;
96 for (i = 0; i < MEAN NUM; i++) {
97 duration = doit(streams, block size) ;
98 mbps += ((long double) READ SIZE ∗ 8)/(duration);
99 }

100 mbps /= MEAN NUM;
101 printf (”\t%Lf”, mbps);
102 fflush (stdout);
103 }
104 printf (”\n”);
105 }
106
107 /∗ Cleaning ∗/
108 ncoreStreamsDeinit(&ncoreContext);
109
110 exit (0) ;
111 }
112
113
114 void handleMatchEvent(int idx, int action)
115 {
116 /∗ Do nothing ∗/
117 }
118
119 void handleStateEvent(int idx)
120 {
121 state events++;
122 }

E.4 Pmacctd

Here is a stripped-down version of the generate-stats.py which was used
to compare the percentage of dropped packets of the following programs in
function of the packet rate sent by tcpreplay.

114

E. Benchmarking Programs François Deppierraz

• pmacctd original version 0.11.0
• pmacctd multi-threaded with and without NodalCore acceleration
• Libpcap using the program described in section E.2 on page 110
• The ncore-ipq program provided by Sensory Networks

1 #!/ usr / b in /env python2 .4
2

3 import paramiko
4 import thread ing
5 import sys
6 import time
7 import re
8 import t raceback
9

10 NB LOOPS = 1
11 NB PACKETS = 947061 ∗ NB LOOPS
12 CAPTURE FILE = ’ /var / log / f r a n c o i s / r ea l−t r a f f i c −s a i t i s .

r ewr i t ed . dump ’
13

14 class Host :
15 env = {}
16

17 def i n i t (s e l f , hostname , username , password) :
18 s e l f . hostname = hostname
19 s e l f . username = username
20 s e l f . password = password
21

22 def add env (s e l f , key , va lue) :
23 s e l f . env [key] = value
24

25 def get env (s e l f) :
26 r e s = ’ ’
27 for key , va lue in s e l f . env . i tems () :
28 r e s += ’%s=%s ’ % (key , va lue)
29 return r e s
30

31 GENERATOR = Host (’ 192 . 168 . 100 . 211 ’ , ’ root ’ , ’XXX’)
32 RECEIVER = Host (’ 192 . 168 . 100 . 250 ’ , ’ root ’ , ’XXX’)
33

34 def run command (host , cmd) :
35 t = paramiko . Transport (host . hostname)
36 t . connect (username=host . username , password=host .

password)
37 chan = t . open s e s s i on ()
38 chan . exec command (host . get env () + cmd)
39

40 s t a tu s = chan . r e c v e x i t s t a t u s ()
41

42 i f s t a tu s != 0 and s t a tu s != −1:

115

E. Benchmarking Programs François Deppierraz

43 print ”Error : command ’%s ’ f a i l e d with s t a tu s %d” %
(cmd , s t a tu s)

44 e r r o r = chan . mak e f i l e s t d e r r (’ r+’) . read ()
45 print e r r o r
46 sys . e x i t (1)
47

48 r e s = chan . make f i l e (’ r+’) . read ()
49 chan . c l o s e ()
50 t . c l o s e ()
51 return r e s
52

53 class command runner (thread ing . Thread) :
54 def i n i t (s e l f , host , cmd) :
55 s e l f . host = host
56 s e l f . cmd = cmd
57 thread ing . Thread . i n i t (s e l f)
58

59 def run (s e l f) :
60 run command (s e l f . host , s e l f . cmd)
61

62 def run background (host , cmd) :
63 t = command runner (host , cmd)
64 t . s t a r t ()
65

66 def t cprep lay (pps) :
67 r e s = run command (GENERATOR, ’ /var / log / f r a n c o i s /

t cprep lay −d 1 − i eth1 −p %d − l %d %s 2>&1 ’ % (pps ,
NB LOOPS, CAPTURE FILE))

68

69 try :
70 r e a l pp s = re . f i n d a l l (’ , ([\ d \ .]+) pps ’ , r e s) [0]
71 (pkts , bytes , seconds) = re . f i n d a l l (’ Actual : (\d+)

packets \ ((\d+) bytes \) sent in ([\ d \ .]+) seconds
’ , r e s) [0]

72 (bps , mbps , pps) = re . f i n d a l l (’ Rated : ([\ d \ .]+) bps ,
([\ d \ .]+) Mbps/ sec , ([\ d \ .]+) pps ’ , r e s) [0]

73

74 return (pkts , bytes , seconds , bps , mbps , pps)
75 except :
76 print ”Something f a i l e d with tcprep lay : ”
77 print r e s
78 t raceback . p r i n t ex c ()
79

80 def run pmacctd mt (pps , threads =12) :
81 run command (RECEIVER, ’ p e r l −pi −e ”s /ˆ

f l ow hand l ing th r eads : (\d+)$/ f l ow hand l ing th r eads
: %d/” / root /pmacct−ncore /pmacct/pmacct−0.11.0−mt/
examples / te s t− l i v e . conf ’ % threads)

82

116

E. Benchmarking Programs François Deppierraz

83 run background (RECEIVER, ’ u l im i t −c un l imited ; / root /
pmacct−ncore /pmacct/pmacct−0.11.0−mt/bin /pmacctd−mt
−f / root /pmacct−ncore /pmacct/pmacct−0.11.0−mt/

examples / te s t− l i v e . conf > /dev/ nu l l ’)
84

85 time . s l e e p (20)
86 r e a l pp s = tcprep lay (pps) [5]
87 time . s l e e p (5)
88

89 r e s = run command (RECEIVER, ’ k i l l −USR1 $ (cat /tmp/
pmacctd . pid) && s l e ep 1 && egrep ”packets r e c e i v ed
by f i l t e r | dropped by ke rne l ” /var / log / sy s l o g | t a i l
−2 ’)

90

91 r e c e i v ed = re . f i n d a l l (’ (\d+) packets r e c e i v ed by
f i l t e r ’ , r e s) [0]

92 dropped = re . f i n d a l l (’ (\d+) packets dropped by ke rne l
’ , r e s) [0]

93

94 run command (RECEIVER, ’ k i l l $ (cat /tmp/pmacctd . pid) ’)
95 run command (RECEIVER, ’ ; whi l e : ; do i f [−f /tmp/

pmacctd . pid] ; then echo ”Waiting ”; s l e e p 1 ; e l s e
e x i t 0 ; f i ; done ’)

96

97 return (r ea l pps , r ece ived , dropped)
98

99 def test pmacctd mt (threads , pa cke t r a t e s) :
100 print ”# pps ” ,
101 for thread in threads :
102 print ”\ t r e a l pps\ t ” , thread ,
103 print
104

105 for pps in packe t r a t e s :
106 print pps ,
107 for nb threads in threads :
108 while 1 :
109 r e s = run pmacctd mt (pps=pps , threads=nb threads

)
110

111 # Test i f t c p r e p l a y was f a s t enough
112 p r e c i s i o n = f l o a t (r e s [0]) / f l o a t (pps)
113 i f p r e c i s i o n > 0 .97 and p r e c i s i o n < 1 . 0 3 :
114 break ;
115 else :
116 sys . s t d e r r . wr i t e (”t cprep lay i s l agg ing or

going to f a s t , %s in s t ead o f %s \n” % (r e s
[0] , pps))

117 print ”\ t ” , r e s [0] , ”\ t ” , f l o a t (r e s [2]) /NB PACKETS
,

118 sys . s tdout . f l u s h ()

117

E. Benchmarking Programs François Deppierraz

119 print
120 sys . s tdout . f l u s h ()
121

122 try :
123 t e s t s = [’ pmacctd−mt ’]
124

125 threads = [12 , 24 , 48 , 96]
126 packe t r a t e s = range (10000 , 50000+5000 , 5000)
127

128 i f ’ pmacctd−mt ’ in t e s t s :
129 print ”# Pmacct multi−threaded without NodalCore ”
130 run command (RECEIVER, ’rm −f /tmp/ c l a s s i f i e r s / ncore .

so ’)
131 test pmacctd mt (threads , pa cke t r a t e s)
132 print
133 print
134

135 except KeyboardInterrupt :
136 print ”K i l l i n g everything , p l e a s e wait ! ”
137 run command (GENERATOR, ’ k i l l a l l t cp rep lay | | t rue ’)
138 run command (RECEIVER, ’ k i l l $ (cat /tmp/pmacctd . pid) | |

t rue ’)
139 run command (RECEIVER, ’ / root /pmacct−ncore /pmacct/

pmacct−0.11.0−mt/ clean−p ro c e s s e s . sh | | t rue ’)
140 run command (RECEIVER, ’ k i l l a l l −9 pcapcount | | t rue ’)
141 sys . e x i t (1)
142 except :
143 t raceback . p r i n t ex c ()
144 pass

Benchmark Duration

Here is some informations about the time needed for a benchmark run to be
able to evaluate which precision we can get and how many different bench-
marks could be done given certain time frame. When working on the same
development computers as other persons, it is sometimes necessary to be able
to give your coworkers an estimate of the time during which they won’t be able
to use the computers.

A test run of a single receiver program using one pass of the test traffic and
with packet rate between 10’000 and 50’000 by increments of 5’000 takes about
10 minutes to complete.

So with the following constraints :

• Packet rates are tested between 10’000 pps and 50’000 pps by increment
of 5’000 pps

118

E. Benchmarking Programs François Deppierraz

• Results are averaged over 5 runs;
• The following applications have to be benchmarked :

– pmacctd single-threaded with three different configurations (no
pattern matching, software pattern matching or NodalCore pattern
matching);

– pmacctd-mt multi-threaded with 5 numbers of threads and two
different configurations (with or without NodalCore pattern match-
ing);

– pcapcount with a single configuration
– nprobe with a single configuration

We need 5 ∗ (3 + 5 ∗ 2 + 1 + 1) = 75 runs taking each 10 minutes, this is almost
13 hours of benchmarks.

119

Appendix

F
Measures

This appendix presents the results of benchmarks runs commented in chap-
ter 17 on page 70.

F.1 Pmacctd

The column “PPS” means packet per seconds and is the rate at which packet
were generated. After being run the packet generator report the exact rate at
which it sent the packet, this is the “Real PPS” column.

All the other values on the following tables are ratio of packet loss which was
calculated like that :

ratio = 1− npacket received

npacket sent

Those values have been generated using the program described in chapter E
on page 109.

120

F. Measures François Deppierraz

T
ab

le
F
.1

:
P

m
ac

ct
m

ul
ti
-t

hr
ea

de
d

w
it
ho

ut
N

od
al

C
or

e

P
P

S
R

ea
l
P

P
S

1
th

re
ad

R
ea

l
P

P
S

12
th

re
ad

s
R

ea
l
P

P
S

24
th

re
ad

s
R

ea
l
P

P
S

48
th

re
ad

s
R

ea
l
P

P
S

96
th

re
ad

s
10

00
0

99
99

.7
7

0.
00

0
99

99
.6

5
0.

00
0

99
99

.8
2

0.
00

0
99

99
.7

3
0.

00
0

99
99

.7
0

0.
00

0
15

00
0

15
15

0.
57

0.
00

8
15

15
0.

75
0.

00
1

15
15

0.
86

0.
00

1
15

15
0.

70
0.

00
1

15
15

0.
90

0.
00

1
20

00
0

19
99

9.
27

0.
03

7
19

99
8.

98
0.

01
0

19
99

9.
11

0.
01

1
19

99
8.

11
0.

01
1

19
99

8.
70

0.
01

1
25

00
0

24
99

8.
99

0.
07

5
24

99
8.

44
0.

03
1

24
99

9.
06

0.
02

9
24

99
8.

93
0.

03
2

24
99

9.
05

0.
03

0
30

00
0

30
30

2.
12

0.
12

8
30

30
1.

18
0.

07
0

30
30

0.
71

0.
06

7
30

29
9.

96
0.

06
9

30
30

0.
98

0.
06

8
35

00
0

35
71

2.
82

0.
19

5
35

71
2.

39
0.

13
3

35
71

1.
63

0.
13

1
35

71
1.

97
0.

13
3

35
71

1.
71

0.
13

6
40

00
0

39
99

7.
66

0.
25

4
39

99
6.

93
0.

19
1

39
99

7.
00

0.
18

5
39

99
7.

77
0.

18
8

39
99

7.
86

0.
18

9
45

00
0

45
44

9.
62

0.
30

8
45

45
1.

88
0.

25
4

45
45

1.
10

0.
27

0
45

44
9.

69
0.

27
0

45
44

8.
50

0.
26

8
50

00
0

49
99

2.
71

0.
39

2
49

99
0.

36
0.

29
6

49
99

1.
41

0.
28

0
49

98
8.

95
0.

28
0

49
99

3.
44

0.
28

0

T
ab

le
F
.2

:
P

m
ac

ct
m

ul
ti
-t

hr
ea

de
d

w
it
h

N
od

al
C

or
e

P
P

S
R

ea
l
P

P
S

1
th

re
ad

R
ea

l
P

P
S

12
th

re
ad

s
R

ea
l
P

P
S

24
th

re
ad

s
R

ea
l
P

P
S

48
th

re
ad

s
R

ea
l
P

P
S

96
th

re
ad

s
10

00
0

99
99

.8
3

0.
06

1
99

99
.6

7
0.

00
0

99
99

.7
3

0.
00

0
99

99
.7

0
0.

00
0

99
99

.6
3

0.
00

0
15

00
0

15
15

0.
97

0.
32

6
15

15
0.

87
0.

06
9

15
15

1.
03

0.
00

3
15

15
0.

86
0.

00
2

15
15

0.
93

0.
00

1
20

00
0

19
99

8.
78

0.
50

0
19

99
8.

68
0.

02
2

19
99

9.
14

0.
01

7
19

99
9.

33
0.

05
5

19
99

8.
78

0.
01

1
25

00
0

24
99

8.
04

0.
61

8
24

99
9.

29
0.

11
3

24
99

8.
09

0.
04

5
24

99
8.

32
0.

03
7

24
99

8.
78

0.
03

0
30

00
0

30
30

0.
77

0.
66

7
30

29
9.

96
0.

17
8

30
30

1.
54

0.
09

6
30

30
2.

01
0.

08
5

30
30

1.
78

0.
07

5
35

00
0

35
71

2.
22

0.
67

9
35

71
3.

04
0.

18
2

35
71

0.
15

0.
23

2
35

71
1.

36
0.

21
4

35
71

1.
59

0.
14

4
40

00
0

39
99

7.
09

0.
75

4
39

99
6.

36
0.

30
9

39
99

6.
04

0.
29

6
39

99
7.

20
0.

34
4

39
99

6.
18

0.
19

9
45

00
0

45
44

9.
58

0.
78

6
45

44
9.

84
0.

38
4

45
45

0.
83

0.
30

1
45

44
8.

54
0.

28
1

45
45

0.
56

0.
40

8
50

00
0

49
99

1.
44

0.
80

6
49

99
2.

27
0.

45
9

49
99

5.
95

0.
36

2
49

99
5.

01
0.

40
8

49
99

3.
37

0.
33

1

121

F. Measures François Deppierraz

Table F.3: Pmacct single-threaded without NodalCore

PPS Real PPS Packet Loss
10000 9999.65 0.000
15000 15150.90 0.000
20000 19998.78 0.003
25000 24999.12 0.009
30000 30300.90 0.018
35000 35710.53 0.033
40000 39996.48 0.049
45000 45448.42 0.070
50000 49993.28 0.099

Table F.4: Pmacct single-threaded with NodalCore

PPS Real PPS Packet Loss
10000 9999.76 0.027
15000 15150.79 0.194
20000 19999.14 0.354
25000 24998.95 0.495
30000 30301.34 0.551
35000 35711.85 0.553
40000 39997.31 0.612
45000 45450.14 0.679
50000 49992.34 0.729

Table F.5: Pmacct with l7-filter with 113 patterns

PPS Real PPS Packet Loss
10000 9999.71 0.000
15000 15151.20 0.002
20000 19998.62 0.009
25000 24999.02 0.022
30000 30300.92 0.037
35000 35711.85 0.050
40000 39997.05 0.072
45000 45448.61 0.101
50000 49992.73 0.138

122

F. Measures François Deppierraz

Table F.6: Libpcap

PPS Real PPS Packet Loss
10000 9999.72 0.0
15000 15151.12 0.0
20000 19999.01 0.0
25000 24998.33 0.0
30000 30299.94 0.000
35000 35709.92 0.0
40000 39995.84 0.0
45000 45450.04 0.000
50000 49990.23 0.0

Table F.7: nProbe

PPS Real PPS Packet Loss
10000 9999.61 0.0
15000 15150.67 0.0
20000 19998.78 0.0
25000 24997.98 0.0
30000 30301.30 0.0
35000 35710.16 0.0
40000 39997.31 0.0
45000 45450.78 0.0
50000 49992.43 0.0

123

Appendix

G
GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that

124

G. GNU General Public License François Deppierraz

they, too, receive or can get the source code. And you must show them these terms
so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.
Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have
is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

GNU General Public License

Terms and Conditions For Copying, Distribution and
Modification

3. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The “Program”, below, refers
to any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

4. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

5. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

125

G. GNU General Public License François Deppierraz

a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such interac-
tive use in the most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Program, and can
be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

6. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

d) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

e) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

126

G. GNU General Public License François Deppierraz

f) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

7. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

8. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

9. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

10. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free

127

G. GNU General Public License François Deppierraz

redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license prac-
tices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent ap-
plication of that system; it is up to the author/donor to decide if he or she
is willing to distribute software through any other system and a licensee
cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

11. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

12. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and“any later
version”, you have the option of following the terms and conditions either
of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

13. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

No Warranty

14. Because the program is licensed free of charge, there is no
warranty for the program, to the extent permitted by ap-
plicable law. Except when otherwise stated in writing the

128

G. GNU General Public License François Deppierraz

copyright holders and/or other parties provide the program
“as is” without warranty of any kind, either expressed or im-
plied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program
is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

15. In no event unless required by applicable law or agreed to in
writing will any copyright holder, or any other party who
may modify and/or redistribute the program as permitted
above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of
the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such
holder or other party has been advised of the possibility of
such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it
does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

129

G. GNU General Public License François Deppierraz

LAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foun-
dation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) <year> <name of author>
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’.
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show w and show c; they could even be mouse-
clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-
gram
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead
of this License.

130

Appendix

H
Diary

This appendix is a diary of the work done during the whole project. The work
as well as results done each day are presented in chronological order.

18.9.2006

• Meeting with Jaime -> choose one of the 2 projects

– Pattern matching in hardware using Sensory Networks cards
– P2P detection using only transport layer informations

19.9.2006

• Choose the first project to begin with (Hardware accelerated NetFlow
probe)

• Read the Sensory Network SDK documentation

– The C API is available under Linux both in user space and kernel
space.

– Analysis of the ClamAV accelerator which uses another (propri-
etary) daemon based on SAA

20.9.2006

• Internal Eneo svn project: http://192.168.100.151/ncoreflow
• Read the SAA (Security Appliance Architecture) documentation
• POSIX Threads http://www.llnl.gov/computing/tutorials/pthreads/

131

http://192.168.100.151/ncoreflow
http://www.llnl.gov/computing/tutorials/pthreads/

H. Diary François Deppierraz

21.9.2006

• Async programming under Linux: http://pdos.csail.mit.edu/6.824-2001/
lecnotes/l3.txt

• Liberouter traffic scanner: http://www.liberouter.org/ids.php
• Read ncore-ipq-0.1.0.0 source code

ncore-ipq is a small benchmark tool used to test the performances of
NodalCore cards used as pattern matching accelerator for a user-space
application.
It uses the ip queue netfilter API to get packets from the kernel, copy
them on a Sensory Network card for pattern matching, get the resulting
events and reinject the packet in the kernel independently of the result
of the pattern matching.

22.9.2006

• Sensory Networks NodalCore C-2000 Ultra card installation and docu-
mentation

• Everything is installed on Angel’s PC (192.168.100.60) running under
Gentoo

• Got ncore-ipq running and matching a simple pattern
• Found and read ncore-skeleton.c in the SDK

24.9.2006

• Shell and file verbatim environments in LATEX

25.9.2006

• Pmacct classifier shared modules: not usable because protocol name is a
static value for each shared library

• Read pmacct-0.11.0/src/classifier.c
• How to compile multiple patterns per group on the NodalCore card ?

– Pattern pre-processing:
∗ Grouping and actions: (regex1)!1|(regex2)!2|...|(regexi)!i
∗ Fixes: []...] -> [\]...] and specials characters -> \x..

• ncore-compiler takes ages !
• Sent an email to Matthew Gream <matthew.gream@sensorynetworks.com>

26.9.2006

• Reply from Matthew -> Regex theory

132

http://pdos.csail.mit.edu/6.824-2001/lecnotes/l3.txt
http://pdos.csail.mit.edu/6.824-2001/lecnotes/l3.txt
http://www.liberouter.org/ids.php

H. Diary François Deppierraz

– star (*) and plus (+) expand the states space dramatically -> com-
piler performance goes down

– Solution: Use the @ operator cf. NodalCore Regular Expressions
Manual

– By the way, it use useless to uses parenthesizes around each regex

• Meeting with Jaime and Pablo

– Implementation of a prototype using pmacct and the NodalCore
API without any parallelism (single thread, blocking matching)

• Beginning of the merge of pmacct and ncore-skeleton

27.9.2006

• Decided to use ncore-ipq code (nodal core.c) as a basis instead of ncore-
skeleton

• Working prototype (proto1) of pmacctd doing pattern matching using
NodalCore hardware

• No working prototype (proto2) of a shared library ncore classifier for
pmacct

• Installed a test development station using the software emulation feature
of the NodalCore SDK on a Debian and got ncore-skeleton to work on it

• Read about FPGA: http://en.wikipedia.org/wiki/FPGA
• Jota showed me how to use hping as a traffic generator

28.9.2006

• Finished a working prototype of a shared library classifier for pmacct
using NodalCore SDK

• Traffic generators:

– hping3 using random data
– netperf
– tcpreplay using real traffic captured using tcpdump

• Created a 5 minutes traffic dump as a pcap file from Saitis Network’s
Internet access (626 MB in 319 seconds -> 15.7 Mbps average)

29.9.2006

• Traffic generators:

– TCPopera paper: http://www.cs.ucdavis.edu/~wu/ecs236/RAID2005_
TCPopera.pdf

• Testbed installation

– One Dell SC1425 Server (3 GHz Xeon, 1 GB RAM) running Ubuntu
Dapper

133

http://en.wikipedia.org/wiki/FPGA
http://www.cs.ucdavis.edu/~wu/ecs236/RAID2005_TCPopera.pdf
http://www.cs.ucdavis.edu/~wu/ecs236/RAID2005_TCPopera.pdf

H. Diary François Deppierraz

– One ??? (3 GHz Xeon, 1 GB RAM) running Lince
– Both connected in back-to-back using Gigabit Ethernet cards

• Prototype performances are very poor in comparaison to software pat-
tern matching (at 100 Mbps using real traffic):

– Using software-only pattern matching: 0.2 % of packet loss
– Using hardware-accelerated: 42 % of packet loss
– Likely reasons of theses performances:

∗ Blocking IO during the whole treatment by the card (MOST
IMPORTANT factor, found after tests)

∗ Too many little writes to the cards (one packet at a time)
∗ Using only one stream without any parallelism

1.10.2006

• Administrative stuff with Heig-VD

2.10.2006

• Looked at the Ring Buffer implementation in ncore-ipq source code
• How to get the classifiers of pmacct asynchronous ?

– How the flows are handled in pmacct -> Read ip flows.c

• Test C program using the ring buffer implementation

3.10.2006

• Project description
• LATEXformatting
• Read ”pmacct: steps forward interface counters”, a paper of the author

of pmacct Paolo Lucente

– Random thoughts: A libpcap-like packet capture interface which
gives access to the result of the pattern matching done previously
by the hardware. This means work in kernel-space.

– ”a content-based Pre-Tagging scheme” in section ”VII Future works”
looks interesting

• Read INTERNALS from pmacct sources
• Analysis of the classifier architecture

– evalutate classifiers is called only in ip flow.c by find flow() and cre-
ate flow() (and the same for IPv6)

– Calltrace: pcap cb() -> pptrs.l3 handler -> ip handler() -> ip flow handler()
-> find flow() -> evalutate classifiers()

134

H. Diary François Deppierraz

4.10.2006

• Random thoughts: Matthew said that using the @ operator may cause
wrong positives which have to be discarded using a software regex match-
ing. But that it is usually statistically small so doesn’t impact perfor-
mances. This is true for IDS but I’m not so sure about general pattern
matching which, ideally will return a match for each flows !

• Sent an email to Paolo Lucente <paolo@pmacct.net>

– How to hook an async classifier in pmacct ?
– What about content-based pre-tagging ?

• A bit of C pointers refresh :)

5.10.2006

• Discussion with Paolo

– Don’t use threads, because of the added complexity and error-prone
handling of shared data structures due to concurrency :)

– But the NodalCore API is multi-threaded...
– I will dig a bit into containing the API calls in a separate process

• Streams and channel pools differences ?

– Multiple streams can be opened on a channel pool and are dis-
tributed by the API to availables channels

6.10.2006

• Watched Herbert Bos’s presentation at RIPE 53 about ”Network Moni-
toring”

– Talked about the Lobster project (http://www.ist-lobster.org/
), ”Large scale monitoring of Broadband Internet Infrastructures”,
an european pilot projet

– DAG Hardware (http://www.endace.com/)

• How to implement classification as another process in pmacct ?

– Packets buffering needed, probably in the core

• UNIX IPC methods

7.10.2006

• Efficient data structures in the C programming language

– Arrays, Linked lists, Queues

135

http://www.ist-lobster.org/
http://www.ist-lobster.org/
http://www.endace.com/

H. Diary François Deppierraz

9.10.2006

• Read pthread Tutorial at http://www.ecet.vtc.edu/~pchapin/pthreadTutorial.
pdf

• Paolo’s proposition of implementing threads in pmacct core

– Plan A: Encapsulate almost the whole core in multiple threads from
pcap cb() to exec plugins()

– Plan B: Encapsulate ip flow handler() and evaluate classifiers() in
multiple threads (requires data copies)

10.10.2006

• New mail from Paolo

– More modular approach using three different thread groups
∗ The first with only one thread for packet capture, fragment

handling and L[234] handling
∗ A group of N threads handling the flow handler and the classifier
∗ The last with one thread handling the plugins execution

• Next phase: using another capture library (streamline ?)
• Read Multi threaded Design at http://www.latenighthacking.com/
projects/multithreadedDesign.html

• Read http://en.wikipedia.org/ on multithreading, reentrancy, atom-
icity, etc.

• Test programs using POSIX threads

– Concurrency bugs -> same player shoot again
– A simple prototype using three different thread pools synchronized

by a condition variable

11.10.2006

• Read about GNU Threads (GNU Pth)
• Discussion with Pablo:

– Flow handler not in the same threads as hardware pattern matching
because packets whose flow is already classified doesn’t need to wait
for the hardware classification threads to finish

• Continued prototype using three thread pools to get my hands on pthreads
programming

16.10.2006

• Installed a subversion server with a repository specific for this project,
Paolo Lucente has been given access to it

136

http://www.ecet.vtc.edu/~pchapin/pthreadTutorial.pdf
http://www.ecet.vtc.edu/~pchapin/pthreadTutorial.pdf
http://www.latenighthacking.com/projects/multithreadedDesign.html
http://www.latenighthacking.com/projects/multithreadedDesign.html
http://en.wikipedia.org/

H. Diary François Deppierraz

• Reflexion about a single-threaded concept using buffers

– Refactoring of pmacctd needed because as for now the classifiers calls
are nested in the flow handling code -> Solution quite complicated

• Use of a non-preemptible thread library such as GNU Pth can avoid many
issues and fits our problem because we can easily avoid using blocking IO
operations

• Tried to debug deadlock issues in t3.c test threaded program

17.10.2006

• Paolo agrees that using a library such as GNU Pth can avoid some issues,
what about pthread API emulation in GNU Pth ?

– The pthread API emulation seems to work fine under Linux but fails
to compile under OSX

– GNU Pth won’t take advantage of multiprocessor (SMP) architec-
tures

• Thread architecture

– Not really the ”thread pipeline” design pattern because we don’t
want to use queues between threads

• Pablo said that someone will begin to work with me on the project next
week

• Valgrind usage and test program debug

18.10.2006

• Multi-threaded pool test program working
• Generalization of the code to be able to use it easily with multiple thread

pools in other programs
• Automake stuff to compile tpmacctd separately of pmacctd

19.10.2006

• Reported a bug when using ./configure –enable-debug, results from the
print plugins are completely wrong -> Paolo

• Learned about GNU Developpement tools such as autoconf, automake,
etc at http://autotoolset.sourceforge.net/tutorial.html

• Implementation of my thread pool module in tpmacctd
• Bugs:

– There’s still bugs in the flow handling code because tpmacctd and
pmacctd gives a different number of flows for the same pcap file but
the byte count is correct

– Segfault sometimes when using more than 1 thread and miss packets
– Using a sleep() to wait for the plugins processes looks a bit ugly

137

http://autotoolset.sourceforge.net/tutorial.html

H. Diary François Deppierraz

20.10.2006

• Had a look at the thread pool implementation of the cprops project at
http://cprops.sourceforge.net/

• Implemented a test program much like the previous one but using cprops
thread pool implementation instead of mine

• In current pmacctd design the packet payload is a buffer in the pcap cb
function stack which is discarded as soon as pcap cb returns. To avoid
that we have to allocate a new buffer which will be freed only after the
data is sent to the plugins

• Using a correct data copy function (for pptrs), this doesn’t crash anymore
:)

• Tried tpmacctd using the previous ncore.so classifier module which has
been coded as a prototype before:

– Doesn’t crash but no results: Missing data

21.10.2006

• Read about the communication channels between pmacctd and the plu-
gins to understand why it’s missing data

• Fixed it ! In fact the channels list structure was not protected by a mutex

22.10.2006

• The function cp pooled thread get id() can be interesting to handle the
thread private data space

• Response from Paolo:

– Using a double linked list to check more rapidly for thread availabil-
ity

– sched yield() is part of librt under Solaris

23.10.2006

• Profiling using gprof, how to use it with multi-threaded applications
http://sam.zoy.org/writings/programming/gprof.html

• Performances of tpmacctd are equals independently of the number of
threads -> There’s a bug somewhere

– Calls to find flow are serialized by a mutex -> This is not granular
enough !

• in ip flow.c two global variables are used: ip flow table and flow lru list

– ip flow table is hashtable which size is, by default, 16384000 (16
MB). Each record is 32 bytes long, so we use 512000 buckets. This
is too much mutexes !

138

http://cprops.sourceforge.net/
http://sam.zoy.org/writings/programming/gprof.html

H. Diary François Deppierraz

– Did some research about multi-threading safe hashtables
∗ http://www.cs.rug.nl/~wim/mechver/hashtable/
∗ cprops has a thread-safe hashtable implementation

27.10.2006

• Laptop crash -> mainboard failure, que bueno!
• Thought about the ip flow table and flow lru list locking in ip flow.c
• Test scripts to evaluate the performance and reliability of tpmacctd

28.10.2006

• Idea: use a single mutex to serizalize everything except evalutate classifiers().
Quick and dirty be can be interesting

30.10.2006

• Paolo, discussion about how to handle the locking of the ip flow table

– I choose to use a very basic solution, the one of the 28th of october, to
use a single lock to serialized everything except evaluate classifiers().

• Automake stuff to get tpmacctd compile under older Linux (XOPEN SOURCE=600
and GNU SOURCE flags)

– Doesn’t work, maybe some files missing in the upstream, asked Paolo

• Some performance tests using real-traffic-saitis.dump with tpmacctd and
the simple locking mechanism.

• Comparaison of the print plugin output between pmacctd and tpmacctd

– Different because tpmacctd flushs flow faster due to memory con-
straints

31.10.2006

• Fixed the autoconf/automake stuff
• Profiling of tpmacctd

– Using gprof
∗ evaluate classifiers is 98% slower in tpmacctd, but why ?

· Can be due to the coarse locking in ip flow handler worker(),
but the fact that this waiting time is accounted for evalu-
ate classifiers is strange.

• Tried to integrated libcprops in the pmacct build system

139

http://www.cs.rug.nl/~wim/mechver/hashtable/

H. Diary François Deppierraz

1.11.2006

• Fixed some of the compilation issues when using libcprops included in
pmacct

6.11.2006

• Compilation fixes
• NodalCore cards performances bedtest

– Made a custom crossover 1000Base-T ethernet cable
– Used tcpreplay to generate traffic using a pcap dump

• Read about libpcap performances limitations
• Profiling of tpmacctd, time used in evaluate classifiers

– Idea: Could be thread waiting for the lock before context switch ?

7.11.2006

• Testbed setup
• Performances benchmarks

– At 10 kpps (about 50 Mbps), tpmacctd is behaving well at first sight
– Packets mean size: 625 bytes

• Ncore kernel module error:

– ncore0: Error: stream write: unable to copy from buffer at b0b7da4e
(length 1460) for stream 53

– Modified the kernel driver to the number of bytes which were not
copied:
∗ ncore0: Error: stream write: unable to copy from buffer at

b0283a4e (length 1460, failed 8) for stream 4

• Why is the init function of ncore.c called multiple times ? In fact the init
function is called once but there might be some logging bugs

8.11.2006

• Sent a mail to Matthew asking how to handle the buffer full case
• Configure flag –enable-threads -> quite a bit of debug
• I should try to use pthread cond timedwait

9.11.2006

• Used pthread cond timedwait to try to debug the deadlock problem
• Other classifiers modules can not be thread-safe -> Use a flag to express

thread-safeness and serialize if not set ?

140

H. Diary François Deppierraz

10.11.2006

• Trying to fix the bug
• Ethernet frame sizes: min 64 bytes and max 1518 bytes
• Packet size

– Ethernet header: 14 bytes
– Ethernet checksum: 4 bytes
– IP Header: min 20 bytes (RFC 791)
– TCP Header: min 20 bytes (RFC 793)

∗ TCP Payload: max 1460 bytes
– UDP Header: 8 bytes (RFC 768)

∗ UDP Payload: max 1472 bytes

• NodalCore C-Serie raw performances

– block size greater than about 1800 bytes has the same throuhput

• Libpcap mmap: http://public.lanl.gov/cpw/

11.11.2006

• Tried to strip down libcprops but too much complicated !
• Used my thread pool implementation in pmacct

– After hours of debugging, it seems that it works

• Mail with Paolo: How to handle the conditional compilation of thread pool.c
?

– Quick and dirty: use a ifdef ENABLE THREADS in thread pool.c
– Better: define a variable in configure, like the PLUGINS variables
– Implemented the quick and dirty for now

13.11.2006

• How to handle the configuration of classes definitions and the mapping
with action ids ?

• Benchmarks using a python script

– Pmacct multi threaded without NodalCore classifier
– Pmacct multi threaded with NodalCore classifier
– Pmacct single threaded without NodalCore classifier
– Pmacct single threaded with NodalCore classifier

• Packet size distribution in the pcap capture
• Linux pktgen: http://linux-net.osdl.org/index.php/Pktgen
• Run benchmarks during the night, but it failed in the middle :(

141

http://public.lanl.gov/cpw/
http://linux-net.osdl.org/index.php/Pktgen

H. Diary François Deppierraz

14.11.2006

• Libpcap benchmarks, code inspired from http://www.cet.nau.edu/~mc8/
Socket/Tutorials/

– Mostly uninteresting because the libpcap slowdowns comes mostly
from what runs in the callback function

• Pmacct benchmarks

– Multi threaded version is slower without using the NodalCore card
but faster when using it

– Made some automatic data collection to generate graphs

15.11.2006

• Idea: how to debug the NodalCore driver issue which might by caused
by some memory corruption

– Using a generated pcap dump with known payload which will be
sent to a dummy classifier which will check if the data is correct

– It will be easier to generate traffic using libdnet because libpcap
data file format is quite complicated !

– In fact, it’s even simpler to use hping3

• 16 bytes memory corruption in packet payload
• Fixed the build system using a new variable in configure.in
• Should use a caplen of 1514 bytes to get full payload

16.11.2006

• Some NodalCore benchmarks
• Bugfixing in pmacctd
• The payload processing in classifier.c need to be disabled, 2 solutions

– Use a configure flag
– Remove it and migrate the regex matching in a classifier shared

module

17.11.2006

• Performances of the multi-threaded are quite bad...
• Tried some nProbe benchmarks
• Maybe it is better

18.11.2006

• Using sched setscheduler for the NodalCore Benchmark

142

http://www.cet.nau.edu/~mc8/Socket/Tutorials/
http://www.cet.nau.edu/~mc8/Socket/Tutorials/

H. Diary François Deppierraz

19.11.2006

• Tried to run pmacctd-threads using GNU Pth pthread emulation API
with the use of a environment variable

– LD PRELOAD=/tmp/pth-2.0.7/.libs/libpthread.so
– Works with pmacctd, but not with NodalCore classifier because the

NodalCore API uses blocking syscalls

• Discovered dmalloc library to debug memory problems, http://dmalloc.
com/

20.11.2006

• Configure flag to use dmalloc

– Many memory problems...

• Using realtime priority with ncore bench1 trigger a kernel ncore driver
bug: ”BUG: soft lockup detected on CPU0!”

• Some schemas using inkscape and benchmarks documentation
• Implemented some timing debug informations in pmacctd

21.11.2006

• Have to read http://perl.plover.com/Regex/article.html
• Regex theory
• Performance debugging

– Using sched yield is just a quite bad idea ! Because, it cause the
entire *process* to go back to the tail of the scheduler running queue

– Used a condition which is triggered when a worker is freed
∗ Quick and dirty implementation, just to see if works better

22.11.2006

• Cleaner reimplementation of the thread pool
• Some calculations

– 50’000 (200 Mbps) packets per seconds means 20 us per packet
– 20’000 (100 Mbps) packets per seconds means 50 us per packet

• Found the famous bug (when made the ncStreamWrite failed) in the ncore
classifier !

• Writing

143

http://dmalloc.com/
http://dmalloc.com/
http://perl.plover.com/Regex/article.html

H. Diary François Deppierraz

23.11.2006

• Profiling of pmacctd

– ip flow table locking is the culprit
– Require a rework of locking, quite difficult
– Asked Paolo for advice

24.11.2006

• Writing
• Reworked the statistics generation script

– Handle exceptions better
– Redone the whole statistics with an everage of 5 measures each time
– Expect 13 hours of work, hope that it won’t crash !

• New tests with GNU Pth in comparaison with Pthread

– Using GNU PTh Pthread emulation
∗ real 1m35.244s
∗ user 1m2.236s
∗ sys 0m25.990s

– Using native Pthread:
∗ real 0m37.136s
∗ user 0m5.604s
∗ sys 0m6.684s

25.11.2006

• Benchmarks results, took 475 minutes (about 8 hours)
• Replaying the capture file multiple may not be a bright idea to avoid

noise

– Let’s try to run the full tests 5 times and average everything
∗ 98 minutes for each run

26.11.2006

• Report writing
• New complete benchmark run using an average over 5 runs for each results

27.11.2006

• Report writing

144

H. Diary François Deppierraz

• Sent a mail the Matthew asking about the strange NodalCore benchmark
results

• How does nProbe handle the packet capture using libpcap

– For each captured packet, the headers a analyzed and the packet is
added to a hash table

– It can be interesting to get some ideas from nProbe’s code

28.11.2006

• Report writing
• Response from Matthew

– He gets better results, maybe the busy waiting is the culprit
– Sent their test program which use some optimizations

• Sent the patch the Paolo for inclusion in the project

29.11.2006

• Run Sensory’s test program and got similar results -> the culprit is hope-
fully not my test program

• Paolo will include my patch in release 0.11.3 due on 7th of December
• Writing

30.11.2006

• Rerun NodalCore benchmark without HyperThreading -> Cleaner results
but still the same artifacts

• Writing

1.12.2006

• Writing
• Sent the report to Hervé Dedieu for comments
• Sent the report to Matthew for NDA-compliance check

3.12.2006

• Writing

145

H. Diary François Deppierraz

4.12.2006

• Response from Matthew with a few minors changes to avoid problems
with the NDA

• Only one public version of the report will be done, but the CD-ROM
won’t contain any NodalCore code

– Need to remove NodalCore code and docs
– Need to remove the NodalCore pmacct classifier

• Sent the report to Elio for comments

5.12.2006

• Writing FINISHED, let’s proofread that !
• Cleaning of the files and directory structure to prepare the CD-ROM

146

	Project Description
	Contents
	Abstract
	Acknowledgments
	Introduction
	State of the Art
	Peer-to-Peer
	Definition
	History
	File Sharing Applications
	P2P Telephony
	Future directions

	Network monitoring
	Introduction
	SNMP
	NetFlow
	sFlow
	Intrusion Detection Systems

	Traffic Analysis
	Introduction
	Traffic classification
	Packet Capture

	Behaviour Identification
	Ongoing Research
	Advantages
	Drawbacks
	Future Work

	Existing Tools
	SNMP
	NetFlow
	The Round Robin Database

	nProbe
	Features
	Design
	Layer-7 plugin for nProbe

	Technologies
	Regular Expressions
	Introduction
	Syntax
	Examples
	Regular Expression Matching
	Implementations

	Hardware Acceleration
	Technologies
	Products

	Concurrent Programming
	Introduction
	Processes versus threads
	Synchronization primitives
	POSIX Threads
	GNU Portable Threads
	Problems
	Things to avoid
	Thread-safety and Reentrancy
	Design pattern : Thread Pool

	Debugging
	C Preprocessor and printf()
	GNU gdb
	Custom classifier module

	Profiling
	OProfile
	GNU gprof
	Custom Code

	Hardware Accelerated Network Probe
	Pmacct
	Features
	Plugins
	Traffic classification

	Sensory Network Hardware
	Features
	Hardware specifications
	Pattern Matching Engine
	Performances
	Theoretical performances

	Implementation: Pmacct NodalCore classifier
	Limitations
	Pmacct classifier extension
	NodalCore classifier module
	Distribution

	Implementation: Pmacct multi-threaded core
	Single-threaded Design
	Multi-threaded Design
	Shared Data Structures Locking
	Build System
	Future Enhancements
	Distribution

	Benchmarks
	Benchmark Methodology
	Libpcap
	NodalCore API and Hardware
	Pmacctd
	Profiling
	Conclusion and Future Work

	Conclusion
	RFC Bibliography
	Bibliography
	Index
	List of Figures
	List of Tables

	Appendices
	NodalCore C-2000 Card
	Installation
	NCore ip_queue benchmark tool
	NCore Packet Scanner

	NodalCore API
	Overview
	API Wrapper

	Contributions
	Libcprops
	libpcap package in Ubuntu
	Pmacct

	gettimeofday() System Call
	Resolution
	Program

	Benchmarking Programs
	Traffic Capture File
	Libpcap
	NodalCore API and Hardware
	Pmacctd

	Measures
	Pmacctd

	GNU General Public License
	Diary

