

DE2Bot User’s Manual
Georgia Institute of Technology ECE2031

2

Introduction
This document is intended for the end-user of the DE2Bot: students in ECE2031. It provides an overview of the
hardware, a walkthrough of the built-in self-test program, and a programming guide for use with the version of
SCOMP provided during the final design project.

Table of Contents
Table of Contents ...2
DE2Bot Hardware Overview ...3

Feature Descriptions ..4
Wheels and Encoders ...4
Sonar Distance Sensors ..4
Battery and Charge Port ...5
DE2 Development Board ..5
Wireless Serial Connection (planned) ..5

Self-test Operation ...6
Power-up Tests ...6
Automated Self-test ...6

1) Battery Check ...6
2) Sonar Test ...6
3) Encoder Test ...7
4) Motor Test ..7
Self-test Finish ..7

Manual Tests ..7
Entering Tests ...7
Battery Test (SW0) ..8
Speaker (SW1) ..8
Switches and Pushbuttons (SW2) ...8
Sonars (SW3) ..8
LEDs, 7-segment displays, LCD (SW4) ...8
Wheel Encoders (SW5) ...8
Motors (SW6) ...8

Programming Guide ...9
Quick Reference ...9
Detailed Description of Select Devices .. 10

XIO ... 10
Wheel Position, Velocity, and Velocity Commands... 10
Sonar Sensors .. 10
I2C Controller and Battery Voltage .. 10
Odometry .. 11

Good Practices for Robot Programming.. 11
At Program Start .. 11
Testing Values .. 12

Appendix A: ... 13

3

DE2Bot Hardware Overview
The DE2Bot is comprised of the commercially-available AmigoBot with its electronics removed and replaced
with custom hardware and an Altera DE2 FPGA development board. This configuration allows complete control
of the robot hardware using custom digital circuits created within the FPGA.

Locations of important features are shown below in Figure 1.

Figure 1. Locations of important DE2Bot features.

Charging port
(side of robot)

Power switch
(under robot)

Drive wheels with
high-resolution
encoders

Rear caster

Status LEDs

Interface board
between DE2 and
robot internals

DE2 FPGA
development
board

Sonar sensors
(total of 8)

Sonar sensors
(total of 8)

4

Feature Descriptions

Wheels and Encoders
The DE2Bot has two drive wheels, one on each side, allowing it to use differential steering to move around
smooth or dense-carpeted surfaces. A rear caster wheel helps to support the robot without interfering with
movement. The drive wheels are powered by DC motors through a reduction gearbox.

Each motor is equipped with a high-resolution (2000 ticks/revolution) quadrature encoder which can be used to
keep track of wheel rotation and calculate angular position, velocity, and acceleration. The addition of
specialized hardware can enable dead reckoning estimation of robot position.

The drive circuitry for the motors includes a watchdog timer that disables the motors if no ‘alive’ signal is
received for approximately one second. In the default Quartus project for ECE2031, an additional safety
mechanism disables the motors until SW17 has been toggled (both up and down) at least once after power-up
or reset. This is to ensure that the robot does not move immediately after being programmed, and guarantees
that the robot will stop when PB0 is pressed.

Sonar Distance Sensors
The DE2Bot is equipped with eight sonar transducers that can be used to measure distances to objects. The
sensors are arranged around the robot as shown in Figure 2 and numbered clockwise starting with Sonar 0,
which is facing left (from the robots forward orientation; downwards in the figure).

Figure 2. Sonar sensor numbering, positions, and directions.

The sonar sensors can measure distances from 20cm up to 5m or more depending on the reflectivity of the
object. The resolution of the measurement is dependent on the sampling speed of the interfacing hardware;
the default resolution of the DE2Bot hardware is 17mm.

Each sonar sensor can be enabled independently. The sonar firing rate is 20Hz divided between all enabled
sonars: if only one sonar is enabled, it is refreshed at 20Hz; if all eight sonars are enabled, the overall refresh
rate is 2.5Hz (20Hz/8).

5

Battery and Charge Port
The DE2Bot contains a 5.5Ah rechargeable LiPo battery, enabling approximately an hour of continuous use
between charges. A charge port on the side of the robot provides easy attachment of an external charger.

Note that when the robot’s main power switch is ON, the charging port is physically disconnected from the
battery. In order to charge, the power switch must be in the OFF position.

Care should be taken to never discharge the battery below 11V. Doing so will reduce the life of the battery and
may cause permanent damage.

DE2 Development Board
The Altera DE2 board provides access to a Cyclone II FPGA as well as various I/O, such as:

 18 slide switches

 four push buttons

 27 LEDs

 a 16x2-character LCD

 eight 7-segment displays

 audio in and out with ADC/DAC

 VGA video output

 an RS-232 serial port

 SD card slot.

The DE2 on the DE2Bot connects to the robot’s internal circuitry through its GPIO ports, allowing direct digital
control of all robot functions.

Note that the DE2’s power button (red button at top left of board) should not be used. Leave the DE2 ON and
use the robot’s main power switch to turn the DE2Bot on and off.

Wireless Serial Connection (planned)
An internally-mounted XBee wireless communication module enables remote communication, either robot-to-
robot or robot-to-PC. The module is connected to the DE2’s RS-232 port and, by default, transparently emulates
a direct connection to a central node.

6

Self-test Operation
On power-up, a self-test program is automatically loaded from non-volatile memory. This program enables the
user to quickly test for proper operation of the DE2Bot hardware.

Note: the self-test program uses PB0 as RESET. Press PB0 to restart the program at any time.

Power-up Tests
As soon as the DE2Bot is turned on (or when the self-test is restarted with PB0):

 The DE2Bot beeps for 0.2s

 The battery voltage is displayed (in hexadecimal) on the HEX5 and HEX4 seven-segment displays
o Voltage is in tenths of volts. ‘A7’, 16.7V, is fully charged and ‘6C’, 10.8V, is dead.

 The battery level is displayed as a bar graph on red LEDs 0-14
o A fully-charged battery will light all LEDs 0-14. A dead battery will light only LED 0.

 Green LEDs 0, 1, and 2 light, mirroring the inactive state of pushbuttons 1, 2, and 3 respectively
o Pressing a PB will turn off the respective green LED.

 The LCD displays a menu prompting the user to choose “Self Test” or “Troubleshoot”

Power-up Errors
If the battery is too low to safely operate the DE2Bot, the user is warned with beeps, flashes, and a written
warning on the LCD. In this case, turn off the DE2Bot immediately and plug it in to a charger.

If nothing happens when the DE2Bot is turned on, there is likely a problem with the battery or power circuitry.
Turn the DE2Bot switch to the OFF position and notify an administrator.

Automated Self-test
At the LCD prompt after power-up, pressing PB1 will begin a mostly-automated self-test routine.

The LCD will provide prompts that allow the user to execute the automated self-test without this document, but
detailed information is provided here for first-time users or in the case of errors.

1) Battery Check
The battery voltage is tested and displayed in decimal on the LCD screen. Battery voltage should be 11-17V for
proper robot operation.

2) Sonar Test
Each of the eight sonar sensors is tested, starting with Sonar0 (left-facing sonar) and proceeding clockwise. Each
sonar is polled until either a valid reading is obtained, or 5 seconds elapse.

If the test pauses on a particular sonar, move an object (such as your hand) in front of that sonar so that a
reading can be obtained. The current sonar is indicated on the red LEDs, or you can listen for the characteristic
‘clicking’ sound.

Once all sonar sensors are tested and working, the message “All sonars are working” is displayed on the LCD,
and the program automatically proceeds to the next test.

Sonar Errors
If a sonar does not return a valid reading within 5 seconds, it is assumed to be defective. At the end of the sonar
test, the green LEDs display which sonar(s) are not working. Note the number(s), and return the DE2Bot to an
administrator.

7

3) Encoder Test
Warning: The test immediately following this test will cause the robot to move under its own power. Ensure
that the DE2Bot is either on the floor in a clear area, or its wheels are raised off of the supporting surface.
Continuing this test with the robot on a table can cause it to fall when the following test begins.

Once the sonar test is complete, the LCD will display “Rotate left wheel 30+ degrees”. At this prompt, rotate the
left wheel in either direction until the LCD changes to “Rotate right wheel 30+ degrees”, then repeat the
rotation with the right wheel.

During this test, the current encoder position value is displayed on HEX3-0.

Encoder Errors
If no wheel motion is detected within 10 seconds, the test fails and an error is displayed on the LCD. Inform an
administrator.

4) Motor Test
Immediately after the encoder test completes, the motor test begins. If the safety switch (SW17) has not been
toggled since reset, the LCD will prompt “Toggle SW17”, at which point you should raise and lower SW17. Once
the safety is disabled, the left wheel will begin turning forwards and the LCD will display “Left wheel turning? 2-
N/1-Y”. If the wheel is turning, press PB1. If not, press PB2. The test will then repeat with the right wheel.

Motor Errors
If either wheel does not turn when expected:

If LEDG8 (between HEX4 and HEX3) is flashing, the battery is too low to operate the motors. Turn the DE2Bot
off and plug it in to a charger.

If LEDG8 is not flashing, there is likely a problem with the motors or supporting electronics. Notify an
administrator.

Self-test Finish
Once the motor test is complete, the LCD will display “Self Test Finish PB1 – Main Menu”. If any errors
occurred during the self-test, a red LED will be lit as follows:

 LED0-7 indicate sonar 0-7 errors

 LED8 and LED9 indicate left and right encoder errors

 LED9 and LED10 indicate left and right motor errors

Press PB1 to return to the main menu.

Manual Tests
From the main menu, pressing PB2 will enter manual-test (troubleshooting) mode, where specific hardware can
be tested more thoroughly.

Entering Tests
Once in troubleshooting mode, raising a switch and pressing PB1 will enter the corresponding test - see Table 1
below. While in a test, pressing PB2 and PB3 together will return to the troubleshooting test selection mode.
Use PB0 to return to the main menu.

8

TABLE 1
MANUAL TEST SELECTION

Switch Raised Hardware Tested

SW0 Battery

SW1 Speaker

SW2 Switches and Pushbuttons

SW3 Sonars

SW4 LEDs, 7-segment displays, LCD

SW5 Wheel encoders

SW6 Motors

Battery Test (SW0)
The battery voltage is continuously read and displayed on the LCD (in decimal) and 7-segment display (in hex).

Speaker (SW1)
The robot emits a stream of beeps with 0.15s on and 0.5s off. The LEDs light when the beep should be on.

Switches and Pushbuttons (SW2)
Switches 0-16 are reflected on red LEDs 0-16. The pushbuttons are reflected on the green LEDs 0-2.

Sonars (SW3)
Switches 0-7 will individually enable sonars 0-7. The value returned by sonar is displayed on the 7-segment
display in hexadecimal. If more than one sonar is enabled, only the lowest-indexed one’s value is displayed.

LEDs, 7-segment displays, LCD (SW4)
All LEDs flash at 1Hz. The 7-segment displays alternate between 0x1111 and 0xEEEE (exercising all segments).
The LCD alternates between blank and black.

Wheel Encoders (SW5)
SW0 up/down selects between the left and right wheels. The selected wheel’s current position value is
displayed on HEX3-0 and the immediate velocity on HEX7-4.

Motors (SW6)
Hold PB1 to power the right motor and PB2 to power the left motor. Raise SW0 to reverse the right motor, and
SW1 to reverse the left motor.

9

Programming Guide
At the beginning of the final project in ECE2031, students are provided with a Quartus project containing the
SCOMP processor and many IO devices which interface with the DE2 and DE2Bot hardware. Each of these
devices is assigned an IO address in the SCOMP system, as detailed in Table 2.

Quick Reference
 TABLE 2

SCOMP QUARTUS PROJECT I/O DEVICE DESCRIPTIONS

Name IO Address IN/OUT Description

SWITCHES 0x00 IN Read DE2 switches SW0-S15.

LEDS 0x01 OUT Write to DE2 LEDs LEDR0-LEDR15.

TIMER 0x02 IN/OUT Read 10Hz timer value. Write anything to reset to 0.

XIO 0x03 IN Read PB1-PB3, SW16, SAFETY signal, and some GPIO.

SSEG1 0x04 OUT Write to left 4-digit seven-segment display.

SSEG2 0x05 OUT Write to right 4-digit seven-segment display.

LCD 0x06 OUT Write to LCD (16-bit hexadecimal).

GLEDS 0x07 OUT Write to DE2 LEDs LEDG0-LEDG7.

BEEP 0x0A OUT Write 1-7 for beep frequency (360Hz*N). Write 0 to turn off beep.

LPOS 0x80 IN Read the current position of the left wheel encoder; 1.05mm/tick.

LVEL 0x82 IN Read the current velocity of the left wheel; 1.05mm/s.

LVELCMD 0x83 OUT Write the desired velocity of the left wheel; 1.05mm/s.

RPOS 0x88 IN Read the current position of the right wheel encoder; 1.05mm/tick.

RVEL 0x8A IN Read the current velocity of the right wheel; 1.05mm/s.

RVELCMD 0x8B OUT Write the desired velocity of the right wheel; 1.05mm/s.

I2C_CMD 0x90 OUT Write configuration information to the I2C controller.

I2C_DATA 0x91 IN/OUT Read or write data from/to the I2C controller.

I2C_RDY 0x92 IN/OUT Begin I2C transaction or check transaction status.

DIST0 - DIST7 0xA8 - 0xAF IN Read the measured distance from Sonar0 - Sonar7.

SONAREN 0xB2 OUT Write bits 0-7 to enable Sonar0 - Sonar7.

XPOS 0xC0 IN Read dead-reckoning X position estimation.

YPOS 0xC1 IN Read dead-reckoning Y position estimation.

THETA 0xC2 IN Read dead-reckoning angle estimation.

RESETODO 0xC3 OUT Reset dead-reckoning odometer: X,Y,θ=>0,0,0.

10

Detailed Description of Select Devices

XIO
The value read from XIO contains the following signals:

 XIO[15..5] : GPIO pins on the DE2 header

 XIO[4] : SAFETY signal, which indicates whether or not SW17 has been toggled

 XIO[3] : SW16

 XIO[2..0] : Pushbuttons PB3– PB1 (PB0 is global reset and cannot be read)

Note that the pushbuttons are active-low: an un-pressed pushbutton will appear as a ‘1’ in XIO.

Wheel Position, Velocity, and Velocity Commands
The values read from LPOS and RPOS provide the wheel encoder counts since reset. The encoders provide 304
ticks/revolution, which corresponds to linear movement of approximately 1.05mm/count for LPOS and RPOS.

LVEL and RVEL provide approximations of wheel velocity by sampling the position every 0.1s and calculating the
difference*10. The units are thus approximately 1.05mm/s.

LVELCMD and RVELCMD accept values in the same units as LVEL and RVEL, and attempt to control the wheel
velocities to match that value. Be aware that very low speeds (usually <100mm/s) may not be able to overcome
the static friction of the motors, gearboxes, axles, and wheels, and so may not result in any movement.
However, once moving, the lower bits of LVELCMD and RVELCMD do provide additional resolution to the speed.

The values sent to LVELCMD and RVELCMD should not exceed ±511. If a value outside that range is provided,
the motor controller will interpret it as 0 (stopped).

Sonar Sensors
Each sonar can be independently enabled through the SONAREN register. Bits 0-7 of this register correspond to
sonars 0-7; e.g. writing 0b00000001 will enable only Sonar0 and writing 0b11111111 will enable all sonars.

Each enabled sonar makes its measurements available at the corresponding DIST register DIST0-DIST7. This
value is in mm, but only has a resolution of 17mm. So, for example, all distances in the range (255mm, 272mm]
will be reported as 272mm. Additionally, if no ping is returned, the value is set to -1 (0xFFFF).

Sonars update in a round-robin fashion at 20Hz, skipping any that are not enabled. If all sonars are enabled,
each measurement will update at 2.5Hz (20Hz/8). If only one sonar is enabled, it will update at the full 20Hz.

I2C Controller and Battery Voltage
The DE2Bot contains an I2C bus, which is currently used to communicate with the A/D converter that measures
the battery voltage. SCOMP interfaces with the I2C bus through a controller with three I/O registers:

 I2C_CMD: write-only; contains configuration information for the controller.
o bits 15-12: number of bytes to write (0, 1, or 2)
o bits 11-9: number of bytes to read (0, 1, or 2)
o bits 8-1: 7-bit I2C address of device to communicate with; excludes RnW bit
o bit 0: ignored; the RnW bit is set on the fly according to the current operation

 I2C_DATA: read/write; data to send and data received.
o If transmitting or receiving one byte, bits 7-0 are used
o If transmitting or receiving two bytes, bits 15-9 are the first byte, then bits 7-0

 I2C_RDY: read/write; status indicator
o Writing to I2C_RDY begins an I2C transaction
o Reading I2C_RDY will return zero if the controller is idle, or non-zero if a communication is in

progress. Do not modify I2C_CMD or I2C_DATA while I2C_RDY reads as non-zero.

11

Odometry
The Quartus DE2Bot project contains a device that performs dead-reckoning odometry: continuously integrating
the movement of the wheels to maintain an estimate of the robot’s position and heading. This estimation can
be read from IO registers XPOS, YPOS, and THETA.

At power-up or reset, the position of the robot defaults to X,Y,θ=0,0,0. The coordinate system is shown in
Figure 3: the reset orientation is defined as facing the positive X direction, with positive Y to the left, and theta
following the normal right-handed convention (with Z upwards). Writing to IO location RESETODO will also reset
the odometry to this position.

Figure 3. Coordinate system used for DE2Bot odometry.

The units for the X and Y positions are 2.1mm/count – exactly half the resolution of LPOS and RPOS.

For theta, one full rotation of the robot is divided in to 702 segments (a product of the specific robot geometry),
giving an approximate resolution of 0.51°/count. The theta value will always be [0,701]; rotating
counterclockwise past 701 will rollover to 0, and rotating clockwise past 0 will rollover to 701.

Dead-reckoning is highly susceptible to accumulated error from wheel slippage, wheel-size and wheel-base
errors, mathematical rounding, and other sources. The odometry values will likely contain significant error after
as little as a few meters of travel or one rotation of the robot.

Good Practices for Robot Programming
This section details some recommended practices for safe and effective use and control of the DE2Bot.

At Program Start
As soon as the program starts or is reset, the following should be done:

 Immediately stop the robot by writing 0 to LVELCMD and RVELCMD

 Check the battery voltage, and prevent execution if it is below 11V

 Wait for the safety switch (SW17) to be toggled

 Wait for some form of user input (e.g. pressing a PB)

An example of this initialization procedure can be found in Appendix A, and should be provided in the initial
DE2Bot project.

12

Testing Values
Two points must be kept in mind when making decisions based on values obtained from LPOS/RPOS, odometry,
sonars, or any other real-world measurement:

 Never test for exact values, as there is no guarantee that a particular value will occur. Instead, always
test for a range.

o Example1: polling LPOS while the robot is moving might return 0xFE at one sample and 0x100 at
the next sample, so testing for 0xFF will never pass.

 Testing for ≥0xFF would correctly trigger even if 0xFF itself never occurs.
o Example2: Many values are impossible to obtain from the sonar measurements because of the

resolution and minimum and maximum distances.

 Be aware of edge conditions, which can erroneously cause tests to pass or fail.
o Example 1: after reset, theta should be 0, but a test for theta>100 (intended to check if the

robot has turned some amount CCW) will immediately pass if the robot turns even slightly CW,
because theta will rollover to 701.

o Example 2: checking for a sonar distance by subtracting a constant and testing for a negative
result will erroneously pass if the sonar could not make a measurement at all (returns -1).

 Before using a sonar value, test for and handle 0xFFFF.

13

Appendix A:
Example starting point for ASM code.

14

; Simple Robot Program

; Created by Kevin Johnson

; (no copyright applied; edit freely, no attribution necessary)

; This program:

; 1) performs basic robot initialization

; 2) waits for the user to enable the motors and press KEY3

 ORG &H000 ; Begin program at x000

Init:

 ; Always a good idea to make sure the robot

 ; stops in the event of a reset.

 LOAD Zero

 OUT LVELCMD ; Stop motors

 OUT RVELCMD

 OUT SONAREN ; Disable sonar (not required)

 CALL SetupI2C ; Configure the I2C

 CALL BattCheck ; Get battery voltage (and end if too low)

 OUT SSEG2 ; Display batt voltage on SS2

 LOAD Zero

 ADDI &H17 ; arbitrary reminder to toggle SW17

 OUT SSEG1

WaitForUser:

 IN XIO ; XIO contains KEYs and SAFETY

 AND StartMask ; mask with 0x10100: KEY3 and SAFETY

 XOR Mask4 ; KEY3 is active low; invert SAFETY to ease testing

 JPOS WaitForUser ; either KEY3 or SAFETY failed, so try again

 OUT RESETODO ; reset odometry in case wheels have moved

Main:

 ;-- program goes here --;

CALL BattCheck ; Continue checking for low battery

 JUMP Main

; Subroutine to wait (block) for 1 second

Wait1:

 OUT TIMER

Wloop:

 IN TIMER

 ADDI -10

 JNEG Wloop

 RETURN

; This subroutine will get the battery voltage,

; and stop program execution if it is too low.

BattCheck:

 CALL GetBattLvl

 SUB MinBatt

 JNEG DeadBatt

 ADD MinBatt ; get original value back

 RETURN

; If the battery is too low, we want to make

; sure that the user realizes it...

DeadBatt:

 OUT BEEPON ; start beep sound

 CALL GetBattLvl ; get the battery level

15

 OUT SSEG1 ; display it everywhere

 OUT SSEG2

 OUT LCD

 LOAD Zero

 ADDI -1 ; 0xFFFF

 OUT LEDS ; all LEDs on

 OUT GLEDS

 CALL Wait1 ; wait 1 second

 OUT BEEPOFF ; stop beeping

 LOAD Zero

 OUT LEDS ; LEDs off

 OUT GLEDS

 CALL Wait1 ; wait 1 second

 JUMP DeadBatt ; repeat forever

; Subroutine to read the A/D (battery voltage)

; Assumes that SetupI2C has already been run

GetBattLvl:

 LOAD I2CRCmd ; 0x0190 (write 0B, read 1B, addr 0x90)

 OUT I2C_CMD ; to I2C_CMD

 OUT I2C_RDY ; start the communication

 CALL BlockI2C ; wait for it to finish

 IN I2C_DATA ; get the returned data

 RETURN

; Subroutine to configure the I2C for reading batt voltage

; Only needs to be done once after each reset.

SetupI2C:

 LOAD I2CWCmd ; 0x1190 (write 1B, read 1B, addr 0x90)

 OUT I2C_CMD ; to I2C_CMD register

 LOAD Zero ; 0x0000 (A/D port 0, no increment)

 OUT I2C_DATA ; to I2C_DATA register

 OUT I2C_RDY ; start the communication

 CALL BlockI2C ; wait for it to finish

 RETURN

; Subroutine to block until I2C device is idle

BlockI2C:

 IN I2C_RDY; ; Read busy signal

 JPOS BlockI2C ; If not 0, try again

 RETURN ; Else return

; Having some constants can be very useful

Zero: DW 0

One: DW 1

Two: DW 2

Three: DW 3

Four: DW 4

Five: DW 5

Six: DW 6

Seven: DW 7

Eight: DW 8

Nine: DW 9

Ten: DW 10

Mask0: DW &B00000001

Mask1: DW &B00000010

Mask2: DW &B00000100

Mask3: DW &B00001000

Mask4: DW &B00010000

16

Mask5: DW &B00100000

Mask6: DW &B01000000

Mask7: DW &B10000000

StartMask: DW &B10100

EnSonars: DW &B11111111

OneMeter: DW 476 ; one meter in 2.1mm units

HalfMeter: DW 238 ; half meter in 2.1mm units

MinBatt: DW 110 ; 11V - minimum safe battery voltage

I2CWCmd: DW &H1190 ; write one byte, read one byte, addr 0x90

I2CRCmd: DW &H0190 ; write nothing, read one byte, addr 0x90

; IO address space map

SWITCHES: EQU &H00 ; slide switches

LEDS: EQU &H01 ; red LEDs

TIMER: EQU &H02 ; timer, usually running at 10 Hz

XIO: EQU &H03 ; pushbuttons and some misc. inputs

SSEG1: EQU &H04 ; seven-segment display (4-digits only)

SSEG2: EQU &H05 ; seven-segment display (4-digits only)

LCD: EQU &H06 ; primitive 4-digit LCD display

GLEDS: EQU &H07 ; Green LEDs (and Red LED16+17)

BEEPON: EQU &H0A ; Turn the beep on

BEEPOFF: EQU &H0B ; Turn the beep off

LPOS: EQU &H80 ; left wheel encoder position (read only)

LVEL: EQU &H82 ; current left wheel velocity (read only)

LVELCMD: EQU &H83 ; left wheel velocity command (write only)

RPOS: EQU &H88 ; same values for right wheel...

RVEL: EQU &H8A ; ...

RVELCMD: EQU &H8B ; ...

I2C_CMD: EQU &H90 ; I2C module's CMD register,

I2C_DATA: EQU &H91 ; ... DATA register,

I2C_RDY: EQU &H92 ; ... and BUSY register

SONAR: EQU &HA0 ; base address for more than 16 registers....

DIST0: EQU &HA8 ; the eight sonar distance readings

DIST1: EQU &HA9 ; ...

DIST2: EQU &HAA ; ...

DIST3: EQU &HAB ; ...

DIST4: EQU &HAC ; ...

DIST5: EQU &HAD ; ...

DIST6: EQU &HAE ; ...

DIST7: EQU &HAF ; ...

SONAREN: EQU &HB2 ; register to control which sonars are enabled

XPOS: EQU &HC0 ; Current X-position (read only)

YPOS: EQU &HC1 ; Y-position

THETA: EQU &HC2 ; Current rotational position of robot (0-701)

RESETODO: EQU &HC3 ; reset odometry to 0

