WP3 TRANSFORM Decision Support Environment

"Enabling cities to become Smart Energy Cities"

Deliverable **3.1**

Finalized prototype quantitative decision support model ready for replication in other cities

About the Structure of the Deliverables D3.1 and D3.2

The two TRANSFORM WP3 deliverables

D3.1 Finalised prototype quantitative decision support model ready for replication in other cities and D3.2 Guidance for the replicable use of the model and/or methodology developed in this work package and recommendations for further development aim at different audiences and have to be seen as separate documents. Where D3.1 describes the tool itself, D3.2 is giving advice to cities which want to adopt the DSE in order to be able to use it in the future, so some content of the deliverables has been duplicated in order to serve the different audiences and should not confuse the readers of the two documents. Since these are public documents the WP3 team tried to make the deliverables as consumable as possible for future external readers.

DTU

Table of Contents

1.	Introduction 5					
2.	Glossary	6				
3.	Process within TRANSFORM	7				
	3.1 Why a decision Support Environment?	8-9				
	3.2 Analysis of existing tools	10-11				
	3.3 Decision Support Environment embedded in TRANSFORM as WP3	12				
	3.4 The DSE development process – Involving the stakeholders	13				
	3.5 Design focus: from key city energy themes to key energy measures	14				
	3.6 Defining the energy measures using an integrated 4-step approach	15				
4.	<u>User manual</u>	16-51				
5.	Technical Documentation	52-80				
6.	Appendix: Deployment Guide (Word .doc)	81				

(The headlines are clickable hyperlinks!)

1. Introduction

WP3 Objectives in TRANSFORM

To develop a prototype Decision Support Environment (DSE), which enables decision makers to evaluate the impacts of different transformation plans, under varying scenarios, based on open energy data. In addition to the prototype DSE, documentation materials are developed for dissemination of the DSE to other cities.

The Deliverable 3.1 contains all the developed documentation material, describing the process and methodology of the DSE development and all relevant technical components, including step by step guidance through the DSE functionalities.

2. Glossary

Smart Energy City The Transform program has set a definition for the Smart Energy City which places the energy targets within the social, economical and ecological context.	 The Smart Energy City is highly energy and resource efficient, and is increasingly powered by renewable energy sources; it relies on integrated and resilient resource systems, as well as insight-driven and innovative approaches to strategic planning. The application of information, communication and technology are commonly a means to meet, these objectives. The Smart Energy City, as a core to the concept of the Smart City, provides its users with a livable, affordable, climate-friendly and engaging environment that supports the needs and interests of its users and is based on a sustainable economy.
City Theme	A specific subject that a city has chosen to focus on for the duration of the Transform project, e.g. district heating, urban refurbishment, renewables, smart grids etc.
Measure	A specified intervention applied in a district or on the city level by a stakeholder or a group of stakeholders.
Scenario	A potential future state of a district and/or city described through a set of factors , e.g. population, gas price, electricity price, economic conditions
City Data	City specific information that describes the state of the city in accordance with the specified Key Performance Indicators (KPI's)

The quantitative decision support environment enables informed decision making. It simulates outcomes of energy measures and supports fact-based and sustainable planning for city transformations and contains following five benefits.

Reliable & effective analyses to increase sustainability	Decision making based on reliable analyses, taking all relevant city factors and KPIs into account. Future scenarios and expected impact on KPIs are visualized in a clear overview (maps, statistics, etc.).	
Long term cooperation between stakeholders	The model is accessible online and serves as an online platform. Stakeholders can add data, analyze data and cooperatively propose investments and develop business plans.	
Open data support	The model serves as a growing, dynamic database. data is stored and added online on a continuous basis. For every data set access levels can be managed, from fully accessible to completely secured.	
City expertise exchange	Measure definitions can be exchanged between cities to share knowledge. Exchanged measures can then be applied to specific local city data to ensure local applicability.	
Cost savings	The model gives direct access to the right data, measures, scenarios and tools. This prevents the city from starting every project with new data gathering and analysis, which saves project costs and time.	

3.1 Why a Decision Support Environment? 2/2

DSE helps in identifying opportunities, allocating measures, determining potential impacts, and gaining stakeholder commitment

Decision making process

accen

Analyze the city context

Set scenarios and targets

Define measures

Allocate measures

Determine impact

Analyze results

Commit to implement

Implement

Measure effects

Support for the transformation of the city's strategic agenda

- Focusing on city data and insights from these data required for decision making
- Viewing city and district data in a spatial form for assessing the opportunities to improve
- Model for developing and allocating measures and viewing their impact on energy indicators
- Analysis of the effects of measures under multiple future demand and pricing scenarios

Support for implementation plans

- Opportunities and impacts of measures can be viewed and analyzed at district or building levels
- An overview of additional and more detailed models to support planners in decision making

3.2 Analysis of existing tools – 1/2

Categories by which existing tools were screened

Energy demand		Calculation of the energy demand of the target location in terms of electric and thermal energy. Basic breakdown of the calculated energy demand.					
Energy supply		Energy conversion technologies used, consideration of energy conversion input and output types, energy distribution networks					
Trans	sport	Consideration of the energy that is used in the transport sector					
СС)2	Consideration of the CO2 emissions due to energy use, production or distribution processes					
Wa	ter	Water use/management, used water lifecycle,					
Waste		Waste production/supply/collection, different uses of wastes in energy production					
Society		Quality of life, comfort standards					
Costs		Associated cost to energy production or energy efficiency measures implementation. E.g. fuel prices, investment cost for energy installations					
Enviro	nment	assessment of the impact on the environment caused by the energy systems or different energy systems scenarios					
Scenario Time frame		The duration of the scenario that the tool could allow the user to develop					
development	Time step	The time step of the calculations to determine energy demand and production					
Urban	design	The morphology of the city and the impact of different urban structures on the energy systems					
Geographical scope		The geographical scale under which the tool could be used					

3.2 Analysis of existing tools – 2/2

Categories by which existing tools were screened

										F	eatu	res								
Tool type Availability		/	Energy demand		Energy supply								ţ	Scenario			Ę			
ace	imic	J			ť		ty		sport	02	ater	iste	Waste Society	sts	nmer				desig	Geogra
Interf	i-dyna	ynami	Organisation (link)	Access	ectrici	Heat	ectrici	Heat	Tran	Ŭ	Ň	Ň		ပိ	Enviro	Time	Time st	ae	Irban	scope
GIS	Sem	Ó			Ē		Ele									frame				
Geographical Scope			Number		Criteria							N	umb	er of	Tools					
City				3		CO2						29 of 59								
City/neighborhood			6		Urban Design						11 of 59									
Glob	al			1																
Glob	al and	regiona	al second se	1		GIS Interface 14 of 59														
Inter	nation	al		5																
Islan	d			1		Existing tool analysis has exposed the need for														
Loca	l/comn	nunity		2		a better spatial integration of energy related														
National/state/regional 22			22		measures and linking of city wide assessment of															
National/state/regional/city 2				interventions with the actions on the scale of																
Single-project investigation 4			4		interventions with the actions on the scale of															
User-defined			1		ne	eighb	orho	ods	/ur	ban	qua	rter	s.							

3.3 Decision Support Environment embedded in TRANSFORM as WP3

The objective of WP3 is to enable informed decision making by analyzing and integrating available data and providing quantitative information in a specific spatial context of a city.

 ✓ Guidance for the replicable use of the model and/or methodology developed in this work package and recommendations for further development

3.4 The DSE development process – Involving the stakeholders

The DSE development process had many touch points with the city representatives. One of the most important design components was to incorporate city energy themes and translate them into energy measures in the DSE. The table below contains the key phases of this process.

WP3 Project Month Planning	1 - 3	4 -6	7 - 9	10 - 12	13 - 15	16 - 18	19 - 21	22 - 24
Methods Exploration								
Conclusions & 1 st Sketch								
First feedback from cities								
From SULs, Other WP's								
Visiting Cities & Interviews								
Requirement Gathering								
Design & Development								
Data Collection (AMS, HAM)								
Draft Prototype								
Feedback from Cities/WP's								
Fully working Prototype								
Further Data collection & Measure Development								

3.5 Design focus: from key city energy themes to key energy measures

Each transform city went through the process of the down selection from 80 to 3-5 themes during intake workshops. The themes were deepened into measures, modelled into the DSE.

Selection of themes long lin	on from st	Selection of key themes to be modelled	Tra	Inslation	n of ener me	gy them easures	es into e	energy	Embedded in decision making process
n = 80	n = 10	n = 3 - 5	Furthe measu timefra	r refiner res givei ames	ment on n the da	# measures per city			
		Measure/ theme			City ov	verview			
			AMS	LYS	СРН	GOA	HAM	VIE	
		Thermal heat grid implementation	•	•			*		
		Solar cell roll out	•	•					
		Wind turbine roll out							
		Energy distribution systems	1		•				
		Retrofitting	•					•	
		Large consumers	•						
		Connect residual heat to THG		•					
		Mobility				•		•	
		Implement cold-heat recevoir							
		Coordinated Building			•				
		New Build						•	
		Public/ private buildings	1		*	*			
		Integrated planning				•			
		Infrastructure				*			
		Renewable energy				•			
		New entrepreneurship	J			*			
		District development					•		

3.6 Defining the energy measures using an integrated 4-step approach

The measure modelling process enabled the translation of an energy theme into a detailed measure.

4. DSE Full User Manual

Link to the tool:

http://sbc1.ait.ac.at/web/mfumarola/dst

Content:

Instructions for using the DSE through the user interface, including a case study.

Audience: Users of the Decision Support Environment.

Contents of the User Manual

 Analyze City Context Set Scenarios Allocate Measures Determine Impacts
Measure LibraryFactor Library
Case study
Glossary

Contents of the User Manual

How to Start	Log In	
How to get your City Smart	 Analyze City Context Set Scenarios Allocate Measures Determine Impacts 	
How to Add & Adapt	Measure LibraryFactor Library	
How to Use	Case study	
How to Understand	Glossary	
iccenture 🚆 🕂 🖓	N INSTITUTE NOLOGY	

How to Start: Log In

The Decision Support Environment can be accessed through the internet, and test accounts are available for new users that want to explore the options and get familiar with the DSE.

NSFORM :	ANSFORMATION AGENDA R LOW CARBON CITIES	/IT ,
Login		
Username *	Your username	
Password*		
Select City		
	Amsterdam Copenhagen	
	Hamburg Lyon	
	Vienna	

- 1. Access the Decision Support Environment
 - Go to <u>sbc1.ait.ac.at/web/mfumarola/dst</u> via Google Chrome
- 2. Type Username and Password
- Click on the field, enter your details. If no login details are provided, login with username 'test' and password 'test'.
- 3. Select the City
 - City for which the scenario planning will be made
- 4. Click 'OK'
 - Opens the Decision Support Environment

Contents of the User Manual

How to Start	Log In
How to get your City Smart	 Analyze City Context Set Scenarios Allocate Measures Determine Impacts
How to Add & Adapt	Measure LibraryFactor Library
How to Use	Case study
How to Understand	Glossary

How to get your city smart: Outline

The Decision Support Environment consist of four main steps. A user can (1) analyse the current energy performance of a city based on the available data, (2) set scenarios containing assumptions about the future state of a city, (3) mimic the transformation of an area by allocating measures, and (4) test the local or city-wide impact of such a transformation under the various future assumptions (scenarios).

<u>1. Ana</u>	lyze the city context	2. Set scenarios	3. Allocate measures 4. Determine impact
1	Analyze City Context		View and analyze the current situation of the city and set targets for the future
2	Set Scenarios		Determine the future state of the city by allocating factors of uncertainty that will influence the outcomes over time
3	Allocate Measures		Design transformation plans for the city via measure portfolios in certain areas and for certain time frames
4	Determine Impacts		Analyze the outcomes of the experiment created in the preceding steps, compare different experiments to each other to assess feasibility

1. Analyze City Context

The first step is a representation of the available city data in the Decision Support Environment, that can be viewed in bar charts, and on a map through an interactive geographical interface. This provides a clear insight in the 'as is' situation in the corresponding city, and enables the user to identify areas with opportunities for improvement. Next to exploring the current status of a city, the user can set sustainability targets, referring to the 'to be' situation of the city.

2. Set Scenarios

1.11

TRUNSFORM

In the second step, different futures for the city can be defined, with regard to the uncertain, uncontrollable factors for a city actor. Examples of these factors are energy prices and interest rate.

Scenario Overview Scenario Name Test 1 - As proposed Test 2 bbb hallo test 3 what happens now	 Set Scenarios Create new scenario Select Existing Scenario (follow steps below to validate accuracy) Delete existing scenario (select scenario from list and 'remove')
Create/Edit a scenario Image: Create/Edit a scenario and its description Name New scenario1 Description	 Create New Scenario Name the Scenario, Add a description This makes the scenario traceable and explicable to others
2 Add factors to scenario, and customize them by edit button All factors Select a factor to add it to this scenario Selected factor description Add to Remove fr Create a new factor Edit factor	Scenario Scenar
accenture 🚆	

3. Allocate Measures (1/3)

Step 3 is dedicated to the design of transformation plans, or 'measure portfolios'. These refer to factors that city actors <u>do</u> have control over. Each measure portfolio contains a set of measures, allocated to certain entities in the city (e.g. buildings) and to a specific time frame for implementation.

Measure Portfolio Overview	
Measure Portfolio	
Heat pumps	
Lokale warmtevoorziening	
Portfolio Shower Heat Exchanger	
Thermal Heat Grid	Create
	Remove

Create Measure Portfolio

- Name the new measure portfolio and add a description

Create/Edit a measure portfolio

District Heating	extension				
Description					
Measure portfoli	o descriptio	n			
2 Add mea	sures to t	he portfolio, a	nd custom	ize them I	by the edit but
Add mea	sures to ti	he portfolio, a	nd custom	ize them I	by the edit but

Add measures to the portfolio:

- Select measures from the dropdown list
- Either 'Add to portfolio' or
- Edit/Create a new measure

*Instead of creating a new measure portfolio, an existing measure portfolio can be selected and either edited or applied via the outlined steps.

to portfolio from portfolio

1 Analyze City Context 2 Set Scenarios 3 Allocate Measures 4 Determine Impacts

3. Allocate Measures (2/3)

Step 3 is dedicated to the design of transformation plans, or 'measure portfolios'. These refer to factors that city actors <u>do</u> have control over. Each measure portfolio contains a set of measures, allocated to certain entities in the city (e.g. buildings) and to a specific time frame for implementation.

Measure	1) Time	2) Area
Air source Heat Pump	Allocate Time	Allocate Area
Solar PV panels	Allocate Time	Allocate Area
Facade PV panels	Allocate Time	Allocate Area
Wind turbines	Allocate Time	Allocate Area
Aquifer Thermal Storage op	Allocate Time	Allocate Area

3 Allocate measure in time

Please select the time period (from date - to date) in which the measure has to be implemented for a TOTAL percentage given by the penetration rate. The model will distribute this percentage linearly over the complete period on a monthly basis.

<u> </u>
**

Allocate time and penetration rate

- Select a measure and choose Allocate Time
- Allocate a start and end date for implementation of
 - this measure
- Use slider to set a penetration rate

3. Allocate Measures (3/3)

Step 3 is dedicated to the design of transformation plans, or 'measure portfolios'. These refer to factors that city actors <u>do</u> have control over. Each measure portfolio contains a set of measures, allocated to certain entities in the city (e.g. buildings) and to a specific time frame for implementation.

Allocate area

1 Analyze City Context 2 Set Scenarios

- Choose the appropriate level of detail
 (block / building / network / ...)
- Select an area for implementation of the measure
- End the selection by double-clicking on the map

- Choose a filter criterion to select only certain types of buildings
- Press Select to confirm the selection

4. Determine Impacts

In the last step, the user can determine the impacts of a measure portfolio (defined in step 3), given a certain scenario (step 2). A combination of measure portfolio and scenario is called an experiment. One experiment basically represents a possible future for the city. The user can view and compare the outcomes of different experiments, measured on four city KPIs.

errors

with

errors

finished

accenture

16-01-01

47.04.04

Total City Impact

finished

delete

.....

Impact

1----

DTU

Log

1 ----

Add t

— *****

Selected Area Impact

Create experiment

- Select Scenario
- Select Measure Portfolio
- Select simulation start date and simulation end date
- Click 'Add experiment'

The created experiment is now sent to the simulation engine and the results are being calculated.

Select experiment(s) to view results

- Select the experiment you want to view the results for
- Click 'Total City Impact', 'Selected Area Impact' or 'Impact' to view the actual results on KPIs / changes in KPIs
- View results in 'Transform Dashboard' or as 'Geographical Data'

Contents of the User Manual

How to Start How to get your City Smart	 Log In Analyze City Context Set Scenarios Allocate Measures Determine Impacts
How to Add & Adapt	Measure LibraryFactor Library
How to Use	Case study
How to Understand	Glossary

How to Add & Adapt: Measure Library – KPI Definition

In case a user wants to go more in-depth and review the assumptions behind the calculations of the four KPIs, or change the values of city parameters, the user is referred to the KPI Definition tab of the Measure Library. A mindmaplike structure gives an easy insight in the relations between variables, and the mathematical relations behind can be reviewed by double-clicking nodes in the mindmap.

How to Add & Adapt: Measure Library – Measure Editor

In case a user wants to go more in-depth and review the assumptions behind the measure impact calculations, the user is referred to the Measure Editor tab of the Measure Library. A mindmap-like structure gives an easy insight in the relations between variables, and the mathematical relations behind can be reviewed and modified by double-clicking nodes in the mindmap. A user can also create new measures by itself, using the Measure Editor interface.

KPI Definition Measure Editor Measure List Facade PV panels Insulation Insulation LED lighting and sensors Create Micro CHP Remove Shower Heat Exchanger Visualize Solar PV panels Visualize Window replacement V	 Create a measure Name the measure and add a description
Not Definition Measure data Wind years and sensary Course Select Pactor Mediation Renove Vanishing Wind years and sensary Course Course Multiple Course Periode Wind years and sensary Course Course Periode Periode Wind years Course Course Periode Periode <t< td=""><td> Review / Edit a measure Visualize an existing measure Double-click on existing nodes* to view and change the equations Add new nodes* by clicking on one of the colored buttons in the top menu *See glossary for the meanings of the different types of nodes, or variables </td></t<>	 Review / Edit a measure Visualize an existing measure Double-click on existing nodes* to view and change the equations Add new nodes* by clicking on one of the colored buttons in the top menu *See glossary for the meanings of the different types of nodes, or variables

How to Add & Adapt: Factor Library

In the factor library, the user can review and modify the assumptions about different futures of a city. These assumptions are stored in factors: different evolutions of variables with a high uncertainty. Next to reviewing and customizing these factors, a user can also create new factors itself.

Review / Edit a factor

- Select an existing factor
- Add values and corresponding dates

Contents of the User Manual

accenture	AN INSTITUTE INOLOGY		
How to Understand		Glossary	
How to Use		Case study	
How to Add & Adapt		Measure LibraryFactor Library	
How to get your City Smart	1 2 3 4	Analyze City Context Set Scenarios Allocate Measures Determine Impacts	
How to Start		Log In	

Case study: Instructions

In the following slides, background information is provided about an area of Amsterdam which will serve as a case study area. This background information is interspersed with specific instructions on how to move through the Decision Support Environment successfully, in order to generate insightful results.

Case study: Amsterdam Zuid Oost

Background

Amsterdam Zuid Oost is a mixed-used area with low prices and little restrictions, which makes it suitable for urban innovation and experiments.

Challenge

Current and target CO2 emissions

Ambition

Become a self-sufficient neighborhood where energy is produced locally, from renewable sources, and where energy losses are minimized.

Go to step 1.1

1.1 Analyze city data

Case study: Question

accenture

Challenge

Current and target CO2 emissions

Question

What is the most cost-effective way for reducing CO2 emissions in this area of the city (taking into consideration the local characteristics of the area)?

Go to step 1.2

Current and target CO₂ emissions:

Set reduction targets for the area

The municipality considers three scenarios

Scenario 1: Baseline						
Factor name	Change					
Constant electricity price	0%					
Constant gas price	0%					
Scenario 2: Increasing prices						
Factor name	Change					
Increasing electricity price	+ 2% / year					
Increasing gas price	+ 2% / year					
Scenario 3: Decreasing prices						
Factor name	Change					
Decreasing electricity price	+ 2% / year					
Decreasing gas price	+ 2% / year					

No one knows what the future brings, and different futures can mean different outcomes for plans that we make now. We can test the plans we make, under different future scenarios.

The aim is to find the most costeffective way for reducing emissions, and this cost-effectiveness is highly dependent on energy prices. Therefore, the uncertainty in energy prices is where the municipality is most interested in. We create three scenarios that together represent a range of possible future energy prices.

2. Set Scenarios

accenture

- Start creating a scenario by clicking on "Create"
- Give the scenario a name (e.g. "Baseline") and start adding factors to the scenario
- If the factor list is empty, create factors in the factor library (see next slide)
- When you're finished with the Baseline scenario, continue with the "Increasing prices" and "Decreasing prices" scenarios and add the corresponding factors to these scenarios.

1. Analyze the city context	2. Set scenario	s <u>3. Allocate measures</u>	4. Determine impact	Measure library	Factor library
In this step one or more city sce	narios can be created b	y setting factors for (future) city character	ristics.		View Glossary 💽 View Tutorial
Scenario Overview		Create/Edit a scenario			
Scenario Name		Name the scenario and its description	1		
Fossil fuel favoured		Name			
Fossil fuel opposed	~				
Baseline New scenario	1 Oresite Remove	Description Scenario Description			
		2 Add factors to scenario, and customiz	ze them by edit button		
↓		All factors		Scenario	
			3	Factors in this scenario	
		Increasing electricity price		Constant electricity price	
		Decreasing electricity price	Add to Scenario (5		
		Lacrossing ast pice			
		Decreasing gas price			
		Constant das price	J		
		Interest rate			
		Energy Savings heat Exchanger			
		Increasing heat price			
		Decreasing heat price 1-10/15		Goto	Factor library
	DTU	ЛІТ			***

Factor library These steps show how the factor "Increasing electricity price" is created

2. Set Scenarios

Make sure all three scenarios are created and filled out

1. Analyze the city context 2. Set scenar	ios <u>3. Allocate measures</u>	4. Determine impact	Scenario 1: Baseline		
In this step one or more city scenarios can be created Scenario Overview	by setting factors for (future) city characteristic: Create/Edit a scenario	S.	Factor name	Change	
Scenario Name Fossil fuel favoured	1 Name the scenario and its description		Constant electricity price	0%	
Fossil fuel opposed Baseline New scenario Create	New scenario Description Scenario Description		Constant gas price	0%	
Remove			Scenario 2: Increasing price	S	
٠	Add factors to scenario, and customize the All factors	m by edit button	Factor name	Change	
	Increasing electricity price Decreasing electricity price	Add to Scenario	Increasing electricity price	+ 2% / year	
	Constant electricity price Increasing gas price Decreasing gas price		Increasing gas price	+ 2% / year	
	Constant gas price Interest rate Energy Savings heat Exchanger	J	Scenario 3: Decreasing prices		
	Increasing heat price Decreasing heat price		Factor name	Change	
	1-10/15		Decreasing elec. price	+ 2% / year	
			Decreasing gas price	+ 2% / vear	

The municipality considers four major alternatives for 'transforming' the area

INSTITUTE

accenture

Measure	Start date	End date	Pen. rate	Filter criterion
Solar PV panels	1 July 2015	1 January 2016	70%	elec_kwh > 1000
Air source Heat Pump	1 January 2016	1 July 2016	80%	use_of_building <> office
Façade PV panels	1 July 2016	1 January 2017	100%	use_of_building = office
Aquifer Thermal Storage open system	1 January 2017	1 July 2017	70%	use_of_building = office
Wind turbines	1 July 2017	1 January 2018	100%	$C_{0} t_{0} stops 2 1 - 2 2$
Wind turbines	1 July 2017	1 January 2018	100%	Go to steps 3.1 – 3.3

3.1 – 3.3 Allocate measures

Create the "All electric" measure portfolio and start adding measures to it (repeat step 3 - 5 for each measure). Allocate the corresponding timeframes to each measure (step 6 - 9).

1. Analyze the city context	2. Set scenarios	3. Allocate measures	4. Determine imp	act Me	asure library	Factor library
In this step a measure portfolio can be	created containing	one or more measures that are allocated	l to a specific city area a	and implementation pe	eriod	Uiew Glossary
In this step a measure portfolio can be de Measure Portfolio Overview	Create Remove	one or more measures that are allocated Create/Edit a measure portfolio Name the new measure portfolio and it Name New measure portfolio Description There is no description of this measure portfolio Add measures to the portfolio, and cu All measures Shower Heat Exchanger ED lighting and sensors Aquifer Thermal Storage open system Aquifer Thermal Storage open system Solar PV panels	ts description	buttons	eriod	View Tutoriel View Glossary View Tutoriel View Tutoriel
		Mind turbines District Cold Grid Vilcro CHP Facade PV panels District Heating Grid Vindow replacement 1-10/12 Allocate measure in time Please select the time period (from date - to date) Reasure so be implemented for a TOTAL per the penetration rate. The model will distribute this inearly over the complete period on a monthly bas From 07/15) in which the centage given by percentage sis.	Measure: Solar PV panel From 07/01/2015	Is To 01/01/2016	Penetration rate 70.0
		To D1/16 Total penetration rate	G G January	2016 🗿 🕄		Go to step 3.4

3.4 Allocate measures to area

Measure portfolio Find the Zuid Oost area (south east), and select the (1) Time (2) Area Measure Allocate Time Allocate Are corresponding area and filter criterion for each measure Solar PV panels Facade PV panels Allocate Time Allocate Area Aquifer Thermal Stor Allocate Time Allocate Area Allocate measure to area Allocate Area Wind turbines Allocate Time Measure: LED lighting and sensors Map Control: Navigate erect (Info) Choose number of maps: 1 2 3 4 🕜 Help Please select... Select ▼) (> ▼) (83 Choose level of detail. ease select. Reset Save selection! Saved selections.. Choose level of detail. WKO-OPEN WASTEHEAT Choose map type: Geofabrik BLOCK INCA-WINE AREA-SUN Bullewijk Valburgdre **Please continue** Ouderkerk aan de Amstel 200 m 1000 ft OpenStreetMap contributors

3.4 Allocate measures to area

You have now defined the following scenarios and measure portfolio

Scenarios		Measure portfolio
Scenario 1: Baseline		All Flectric
Factor name	Change	
Constant electricity price	0%	Solar PV panels
Constant gas price	0%	roof / façade
Scenario 2: Increasing price	S	THE NEW
Factor name	Change	Wind turbines
Increasing electricity price	+ 2% / year	
Increasing gas price	+ 2% / year	Air source Heat Pump
Scenario 3: Decreasing price	es	
Factor name	Change	Aguifer thermal
Decreasing elec. price	+ 2% / year	storage (open system)
Decreasing gas price	+ 2% / year	© 2014
Continue with initiati	ng simulation	runs and obtaining results Go to step 4
accenture 🚆	AUSTRI	

4. Determine Impact

Continue with the other measure portfolios, or create your custom experiment!

Contents of the User Manual

accenture 🚆	AN INSTITUTE INOLOGY	
How to Understand	Glossary	
How to Use	Case study	
How to Add & Adapt	Measure LibraryFactor Library	
How to get your City Smart	 Analyze City Context Set Scenarios Allocate Measures Determine Impacts 	
How to Start	Log In	

How to Understand: Glossary

DSE Step	Title		Terminology	Description		
1	Analyze Cit	ty Data	City Data	Viewing of the city specific data that describes the state of the city on the specified KPI's.		
				Viewing of the city specific data in a maps functionality with the option to select (via 'freehand polygon') specific areas.		
2	Set Scenarios Scenario			A potential future state of a city described through a set of factors, e.g. population, gas price, electricity price, economic conditions.		
			Factor	An independent (market) that provides the context for any future city transformation plans (e.g. gas price, oil price, population growth).		
3	Allocate M	easures	Measure	Specified interventions that are applied by stakeholders to a city.		
			Enabler	Technique of method that supports the implementation/effectiveness of a measure.		
	Portfolio		Portfolio	A set of measures each allocated to a certain geographic area in time, forming a transformation plan for a city.		
4	4 Determine Impact Experiment		Experiment	The combination of a scenario plus its measures (measure portfolio) on a city or city area resulting in outcomes on the predetermined KPI's.		
Measure Li	brary			Area where all measures are stored, made visible and are adaptable.		
		Measure Ed	itor	Area for adapting measure, in structure, in values or both.		
		Affected Va	riable	Future / to-be value of a building attribute		
		Variable		Current value of a building attribute		
	Input Variable		ble	A constant value that represents an assumption/parameter		
Auxiliary Variable			riable	A node that serves as intermediate step in an equation, used to simplify equations. A node that connects a group of nodes to be used in another node.		
Factor Libra	Factor Library Area where all factors are stored, made visible and are adaptable.					

5. Technical Documentation

Content:

Technical details regarding the development of the DSE software.

Audience:

Technicians/IT specialists interested in the software architecture of the DSE.

5.1 General architecture

5.2 User interface

- 5.2.1 Database structure
 - Step 1 Analyse city context tables
 - Step 2 Set scenarios tables
 - **Step 3 Allocate measures tables**
 - **Step 4 Determine impact tables**
- 5.2.2 Measure library tables
- 5.2.3 Factor library tables
- 5.3 Package Diagram
- **5.4 Simulation model**
 - 5.4.1 Conceptual model TRANSFORM
 - 5.4.2 Package overview
 - 5.4.3 Internal data structure
 - 5.4.4 Simulation scheduler

5.1 General Architecture

This part of the documentation provides an overview of the database tables and classes used to create the web user interface.

5.2.1 Database structure Step 1 Analyse city context tables 1/3

- public.trnsfrm_meta_startingconditions
 p city: varchar(75)
 p kpiname: varchar(75)
 p fuel: varchar(75)
 value: double precision
- unit: varchar(75)
- p trnsfrm_meta_startingconditions_pkey

This table holds the information which is shown in the high charts in step 1 of the tool (*"Transform Dashboard"*. It is manually filled based on the information that resides in the city provided data.

One option to avoid manually filling in the information is to create a view in the database based on the city provided data.

Costs in Amsterdam City

5.2.1 Database structure Step 1 Analyse city context tables 2/3

This table holds the information which is shown in the high charts in step 1 of the tool (*"Extended Dashboard"*. It is manually filled based on the information that comes from the ARUP data.

5.2.1 Database structure Step 1 Analyse city context tables 3/3

52.0 -----

55.0 -----

public.trnsfrm_meta_scenariotarget

- 🖉 username: varchar(75)
- ø city: varchar(75)
- targetname: varchar(75)
- 📒 value: double precision

Carbon dioxide emission reduction

Final energy consumption reduction

Energy consumption cost reduction

Increase in % renewable energy sources

p trnsfrm_meta_scenariotarget_pkey

Set targets (% of current city data)

This table stores the targets (*per user and city*).*Targets are defined to check if a certain measure portfolio has the desired impact (this could be seen in step 4).*

5.2.1 Database structure Step 3 Allocate measures tables 1/2

When allocating a measure to time the information is stored in the sequence planning table. The f_measure attribute is by default set to false and it is not currently used. This attribute might become handy when desiring to achieve certain conditions in the city data (*because the city has not provided that data*) before applying a measure. For instance, the city of Vienna wanted to test two different scenarios (*normal scenario and efficiency*) scenario. However, the initial situation data (which was a kind of improvement of the normal scenario) for the efficiency scenario was not provided. In this case you can create a measure and set the *f_measure* (*fictitious measure*) to true. The simulation will then apply this fictitious measure first to transform the initial data and later the rest of the measures.

Note: A check box should be added to the measure portfolio table if it is desired to activate the functionality of the f_measure attribute from the GUI

5.2.1 Database structure Step 4 Determine impact tables 1/3

The impact of a measure portfolio on either a city or in the area(s) in which this measure portfolio has been applied is outputted by the simulation to the mainkpioutput table.

5.2.1 Database structure Step 4 Determine impact tables 2/3

The individual impact of measures, within a measure is outputted by the simulation to the measureimpactoutput table.

5.2.1 Database structure Step 4 Determine impact tables 3/3

public.trnsfrm_meta_sequencetogeometries

- 🔑 sequencetomeasureid: bigint
- 👂 fk_geometry: bigint
- 🔑 the_geom: bigint
- p trnsfrm_meta_sequencetogeometries_pkey

Simulation results shown in the maps are stored in the sequence togeometries table.

5.2.2 Measure library (KPI definition) tables 1/2

The KPI definition tap shows how predefined KPI's (*CO2 emissions, renewables and consumption costs*) are structured. By double clicking on the nodes two different type of windows can be seen.

- 1) Window that shows the structure of the equations that form a node
- 2) Window that shows a table in which some city specific variables can be adapted.

Note: City specific variables are located in the cityvariable table in the db. Their values in the cityvariablevalue table.

5.2.2 Measure library (KPI definition) tables 2/2

The *formula* table stores all the information needed to create the nodes. Because, KPI's are predefined, the information in this table needs to be manually added. The meaning of the table attributes is as follows:

Indicator: Is the name of the KPI (i.e CO2 emissions)

nodename: the name of the node.

nodetype: The type of node (which is use to handle which type of window is shown)

formulacomponent: Equations linked to a specific node

5.2.2 Measure library (measure editor) tables 1/5

The name of the variables (user friendly names) in the GUI differ from the names that appear in the DB. The names given in the db to these variables is as follows:

Affected Variables-> Measure Node Variable -> Building Attribute Auxiliary Variable-> Purpose Node Input Variable ->Purpose Node The measure editor is integrated by 23 tables which relation is shown in the next slides. However, hereby it is introduced some terminology which is needed to further understand the structure of the measure editor.

Affected Variable: Affected variable (dark green in the GUI) is a variable which informs the simulation about the variables that will change their previous value after a measure is applied at time t.

Variable: A variable (red in the GUI) which represents a building related variable. Its initial value comes from the city provided data. At the time of applying a measure (t) the initial value of this variable is seen by the simulation as (t-1). That is why in the GUI it has a "t_1" suffix.

Input Variable: A variable(orange in the GUI) that serves as input for the calculations. It could be either a table or a constant. Tables are mainly used in the LOOK UP equation types.

Factor: Factor (white in the GUI) are created in the factor library and could be added to measures as a way to include variation of input variables in time.

Auxiliary Variable: Variable used as an auxiliary (intermediate step in calculations). Auxiliary variables are most of time connected to other auxiliary variables or to a measure node. Furthermore, they are mainly dependent on input, factor or building attribute variables.

5.2.2 Measure library (measure editor) tables 2/5

Note: the group node table is not used (it was initially thought as a way to give the same equations to different nodes

5.2.2 Measure library (measure editor) tables 3/5

Note: For future update of the database is the id in the measure table the one that needs to be a PK and not the measure name field.

5.2.2 Measure library (measure editor) tables 4/5

Note: Building attribute value table is currently empty. The values are stored now in the table cityTobuildingattribute. In addition, the buildingattribute table serves as a dictionary for the values in citytobuildingattribute table

5.2.2 Measure library (measure editor) tables 5/5

public.trnsfrm_meta_citytobuildingattribute id: bigint cityname: varchar(75)

attributerealname: varchar(75)

- 📕 unit: varchar(75)
- 📒 buildingattributeid: bigint
- 🛃 tablename: varchar(75)
- function: varchar(75)
- 📒 measurevariable: boolean
- 🖉 trnsfrm_meta_citytobuildingattribute_pkey

Only done for Amsterdam, Lyon and Vienna

The meaning of the fields is as follows:

1.cityname: the name of the city

2.attributerealname: is the name of column found in the table referenced in 5 (*every time the name of this attribute is changed in the db or a different table is used. This field needs to be updated.*

3.unit: units

4.Buildingattributeid: the id in the building attribute table to which the attribute realname is linked to.

5.tablename:The name of a table in the public schema. This table is the one that shall contain the city data (*if a new table is used in the db. This field needs to be updated as well.*

6.function: Sometimes the cities give aggregated information (BLOCKS) or disaggregated (BUILDING). In case this information is aggregated, cities need to give a attributerealname (i.e area/typeofbuilding or function) from which the calculation could be disaggregated by the simulation and aggregated back again for the ouput. In that case the field **measurevariable** needs to be put to FALSE. See example below.

31	32	Amsterdam	gas_consumption_cooking	m3	22	trnsfrm_ams_tmp		TRUE
32	33	Amsterdam	gas_consumption_heating_building	m3	19	trnsfrm_ams_tmp	**	TRUE
33	34	Amsterdam	gas_consumption_heating_tap_water	m3	20	trnsfrm_ams_tmp	• •	TRUE
34	35	Amsterdam	gas_consumption_showering	m3	21	trnsfrm_ams_tmp	• •	TRUE
35	36	Amsterdam	heat_consumption_heating_building	Kwh	23	trnsfrm_ams_tmp		TRUE
36	37	Amsterdam	heat_consumption_heating_tap_water	Kwh	24	trnsfrm_ams_tmp	,,	TRUE
37	38	Amsterdam	heat_consumption_showering	Kwh	25	trnsfrm_ams_tmp	**	TRUE
38	39	Vienna	a_residential	m2	4	trnsfrm_block_vie_	Residential	FALSE
39	40	Vienna	a_office	m2	4	trnsfrm_block_vie_	Office	FALSE
40	41	Vienna	a_commerce	m2	4	trnsfrm_block_vie_	Commerce	FALSE
41	42	Vienna	a_industrialhall	m2	4	trnsfrm_block_vie_	IndustrialHall	FALSE
42	43	Vienna	a_trade_service	m2	4	trnsfrm_block_vie_	Trade/Service	FALSE
43	44	Vienna	a_social	m2	4	trnsfrm_block_vie_	Social	FALSE
44	45	Vienna	a_culture	m2	4	trnsfrm_block_vie_	Culture	FALSE

5.2.3 Factor library tables

Factors are assumptions regarding the values that city specific variables will take in the future (way to take uncertainty into account). Factors can be created linked to a predefined city variable, or as independent ones to be used in the measure library (in this case the user should select the [Input Variable] name from the "Variable to link factor" combo box)

In addition, factors are defined per user and city. However, at this moment, all users from the same city are able to see/edit the factors defined by other users. This is because measures in the measure library are only defined per city, and if a factor needs to be added to specific measure it needs to be defined in the same way. Otherwise, the same measure could have a different behaviour per user.

Note: Instead of the factor name as a FK in the factor entry table the factor.id should be used.

5.3 Package Diagram 1/4

5.3 Package Diagram 2/4

- 1. *Measureporlet_service_impl:* Stores all the custom methods used to make queries to the database by using the liferay service builder.
- 2. Webui_step1: Contains all the classes needed to create the "Analyze city Context" step
- **3.** *Webui_step2:* Contains all the classes needed to create the "Set scenarios" step.
- 4. Webui_step3: Contains all the classes needed to create the "Allocate measures" step.
- 5. Sequenceportlet: It is used by the webui_step3 package and it contains the classes needed to allocate a measure to time
- 6. Webui_step4: Contains all the classes needed to create the "Determine Impact" step.
- 7. *Measurelib:* Contains all the classes needed to create the "*Measure Library*"
- **8. MindMap:** Contains all the classes needed to create the MindMaps which are shown in the Measure Library.
- **9.** *Measurelib_windows:* Contains all the pop up windows which are shown when double clicking in any of the nodes of the mindmaps.
- **10.** *Webui_factorlib:* Contains all the classes need to create the factor library.
- **11.** *Charts_windows:* Contains the classes which to create the windows in which the charts in step 1 and 4 are shown.

5.3 Package Diagram 3/4

Jeval is the library which is used to connect the nodes in the mindmaps from equations.This library is used by the webui_measurelib and mindmap packages respectively.

5.3 Package Diagram 4/4

The TransformFrontend package contains the classes to build the main (parent) layout of the GUI which will eventually contain the taps step 1 till 4 measurelib and factorlib

This part of the documentation provides an overview of the simulation model, its internal data structure and the simulation scheduler.

- 5.4.1 Conceptual model TRANSFORM
- 5.4.2 Package Overview
- 5.4.3 Internal data structure
- **5.4.4 Simulation scheduler**

5.4.1 Conceptual model TRANSFORM

The model distinguishes consumers, network and producers. Consumers and producers are entities in the system that contain attributes (e.g. consumption values). At each event in time (i.e. scenario change or measure application), a recalculation will be done on the attributes of these entities.

The recalculation is done using a calculate that evaluates the formulas that the users input in the measures and assigns the values to the entities.

The calculator will eventually calculate the formulas that are made to determine the KPIs, which are finally outputted to the output database.

5.4.2 Package overview

- Src.nl.macomi.transform.data
 - A data representation of the data loaded from the database
- Src.nl.macomi.transform.database
 - Classes to support database loading and outputting
- Src.nl.macomi.transform.equations
 - Classes to represent an equation and its components
- Src.nl.macomi.transform.measure
 - Classes to represent a measure
- Src.nl.macomi.transform.model
 - Classes built from atomic and coupled models that is the actual representation of the simulation model
- Src.nl.macomi.transform.calculator
 - Classes to evaluate equations
- Src.nl.macomi.transform.model.data
 - The internal data structure of the simulation model
- Src.nl.macomi.transform.model.modelbuilder
 - classes that use automatically generate the simulation model from input data
- Src.nl.macomi.transform.model.utils
 - Various utils functions that we need in other classes

5.4.3 Internal data structure

- Src.nl.macomi.transform.data
 - This package contains the internal representation of the data from the database, it contains the following classes whose name corresponds to the data it contains:
 - AggregatedEntity
 - BuildingAttribute
 - BuildingAttributeValue
 - Carrier
 - CityVariable
 - ConstantValue
 - Entity: this contains data from the city tables
 - Equation
 - Groupnode
 - KeyValuePair
 - KPINode
 - Measure
 - MeasureApplication
 - MeasureNode
 - MeasureUpdatableNode
 - Node
 - NodeValue
 - PurposeNode
 - TableKey
 - TableKeyCombination
 - TablueValue
 - Value

5.4.4 Simulation scheduler

The simulation scheduler is a java application that is **continuously** running and reads the experiments table in the database to check whether there is an experiment that has not been executed yet. As soon as it finds an experiment that has not been executed, it will simply spawn the simulation model with the appropriate sequence and scenario ID.

The simulation scheduler consists of 3 classes:

- Dataservice: to read the database table containing the experiments
- Scheduler: the main class that runs the program that will check the table regularly
- Tunnel: a helper class to start a SSH tunnel programmatically

6. Deployment Guide

Content:

Document about the required hardware for running the DSE.

Audience: Parties interested in installing the DSE on their own servers.

- **1** Introduction
 - 1.1 Intended audience
- 2 Glossary
- **3 Hardware Requirements**
- **4 Software Requirements**
 - **4.1 Specification**
 - 4.2 Installation
 - 4.3 Data
- (see attached Word document: DSE Deployment Guide v1.0.docx)

