A Hierarchy of Authentication Specifications

Gavin Lowe

Department of Mathematics and Computer Science
University of Leicester, University Road
Leicester, LE1 7RH, UK

E-mail:gavin.lowe@mcs.le.ac.uk

Abstract he was running the protocol witd (as opposed to some
third party,C). And maybe the two agents agree upon who
Many security protocols have the aim of authenticating initiated the exchange, and who responded. Further, they
one agent to another. Yet there is no clear consensus in thenay agree upon the values of some or all of the data items
academic literature about precisely what “authentication” (such as nonces and keys) used in the run. &assume
means. In this paper we suggest that the appropriate au-that there was a one-one relationship between his runs and
thentication requirement will depend upon the use to which B’s runs, or might it be the case thathas completed more
the protocol is put, and identify several possible definitions runs thanB? And can4 deduce that he anBl agreed upon
of “authentication”. We formalize each definition using the the contents of all messages sent from one to the other?
process algebra CSP, use this formalism to study their rel- It is my experience that different researchers will give
ative strengths, and show how the model checker FDR candifferent answers to the above questions. In order to reason
be used to test whether a system running the protocol meetand argue about authentication protocols, we must first of
such a specification. all define what we mean by “authentication”. My own view
is that an authentication protocol is designed to assure an
agent4 as to the identity of the other ageBitwith whom A
1 Introduction is running the protocol; therefore, in most cageshould at
least be assured th&tthought he was running the protocol

Many security protocols have appeared in the academicWith A. However, some researchers take the view that it is
enough forB to be present, and that need not receive any

literature; these protocols often have the aim of achieving
further assurance as #®'s current state. We should recog-

authenticationi.e., one agent should become sure of the '* ; - S - >

identity of the other. The protocols are designed to suc- MZ€ that the different authentication specifications may all

ceed even in the presence of a malicious agent, called arPe valid goals: there are circumstances in which the weaker
i specifications are all that is needed; in other circumstances,

intruder, who has complete control over the communica- e al !
tions network, and so can intercept messages, and introduc@ Stronger specification may be required. However, the de-
signer of any protocol should make it clear which form of

new messages into the system, possibly using information AT)
from messages he has seen. However, it is rarely made cleauthentication is supposed to be achieved.

precisely what is meant by the term “authentication”. This !N this paper we will introduce different terms corres-
may be dangerous, for a user may assume that the protocd?®nding to some of the possible meanings of the word “au-

satisfies a stronger condition than the one that was intendedentication” considered above. We formalize each of these
by the protocol designer, and so may place more relianceM€anings using the process algebra CSP [8]. The use of

upon the protocol than is justified. In order to alleviate this CSP has two advantages:

problem, we study various possible meanings of the woid |t will allow us to compare the strengths of the different
authentication. We formalize these meanings using the pro-aythentication specifications;

cess algebra CSP [8]. o It will open up the possibility of automatically checking

Suppose an agedtcompletes a run of an authentication . .
. whether a system running the protocol achieves the goals
protocol, apparently witlB; then what cam deduce about . .
the state ofB? CanA deduce thaiB has recently been stated for it, using a model checker such as FDR [19, 6].

alive? CanA deduce thaBB has recently been running the We should stress, though, that most of our results are in-
same protocol ad? MaybeA can deduce thaB thought dependent of CSP: CSP just provides a convenient tool for

formalizing and reasoning about the specifications. to discuss the setting in which the definitions will apply.
Most of the possible meanings of authentication refer We will consider protocols that aim to authenticatea
to the recentstate of an agenB when another agend sponderB to aninitiator A, possibly with the help of a third
completes a run of the protocol, apparently wih For party, aserver We use the word “role” to refer to the part
example, a typical authentication specification (which we an agent is taking in the protocol run (i.e. initiator, respon-
will call recent aliveneselow) is that whemd completesa der or server). It should be obvious how to generalize these
run of the protocol, apparently witB, thenB hasrecently ideas to include extra agents playing additional roles, or to
been running the same protocol. It turns out that the recent-reverse the direction of authentication.
ness is the hardest part of the specification to formalize in We do not restrict ourselves to the case where a particu-
CSP: it normally requires modelling the passage of time. To |ar agent may only ever adopt a single role; on the contrary,
simplify our presentation, we begin by considering authen- an agent may act as an initiator in some runs, and as a re-
tication specifications in the case where recentness is nosponder in other runs, and possibly even as a server in others
required; for example, we consider a specification (called (although this latter case would be unusual).
alivenesselow) that states that whehcompletes a run of It is worth drawing a distinction between the free vari-
the protocol, apparently witB, thenB has previously (not ables appearing in a description of a protocol, and the ac-
necessarily recently) been running the same protocol. Latertyal values with which those free variables are instantiated.
we lift our specifications to include recentness. For example, in a protocol description, the free varialle
It is my experience that most attacks upon protocols js often used to represent the initiator; in actual runs, this
break the weaker specifications where recentness is not revariable will be instantiated with the identities of actual
quired; thus from a pragmatic point of view, when using agents, often different identities in different runs. We will
a tool such as FDR to look for attacks upon a protocol, it denote free variables representing agents by single letters
is sensible to begin by looking for attacks on these weaker(4, B, etc.) and will denote actual agents’ identities by
specifications, since these tests are faster than in the casgsroper namesAlice, Bob, etc.); for other data items, we
including recentness. will use small letters for free variablead, kab, etc.), and
Note that we will not directly consider questions of names beginning with a capital letter for actual valu¥s.{
secrecy in this paper. It is not difficult to formalize secrecy Kab, etc.).
W|th|n CSP, using techniques Similar to those discussed As exp|ained in the introduction' we begin by Consider_

here. Secrecy and authentication specifications are oftenng the cases without recentness, and then extend the defin-
broken in the same way: there are a number of attacks upontions to include recentness.

protocols that lead to an ageAthinking he has established
a key with another ager®, when in fact he has been run-
ning the protocol with an intruder imitating, and the in-
truder ends up knowing the key; this is a failure of authen- o]
tication, becaus® has been incorrectly authenticated, and ~ The following is what we consider to be the weakest
a failure of secrecy, because the intruder has learnt the keyeasonable definition of authentication.

that was supposed to remain secret. o)

In the next section we give precise, although informal, Definition 2.1 (Aliveness). We say that a protocol guar-
definitions of authentication, first in the case where recent- antees to an |r!|t|atov4_ gl_wenessof another agens |if,
ness is not required, and then in the case where recentnes¥Nenever (acting as initiator) completes a run of the pro-
is required. In Section 3 we describe the CSP approach to{0¢0!, apparently with respondét, thenB has previously
modelling security protocols, and set up some of the mech-P&€n running the protocol.

nism for formalizing th thentication properties. In - . .
anism for formajizing the authentication properties Sec Note thatB may not necessarily have believed that he was
tion 4 we formalize the authentication properties without re- : .
running the protocol with4d. Also, B may not have been

centness, and prove a number of results relating them. Then = .
. . . P . running the protocolecently

in Section 5, we lift these specifications to include recent- M tocols fail © hi thi K f ¢
ness. We sum up in Section 6. Because of limitations on any protocols fail fo achieve even this weak torm o

space, we omit all proofs from this paper; the interested Iauthe;tlcatlon_. In stc-tzvelr(al f:asles, t}: IS tl's due to antylntruder
reader is referred to [12]. aunching a mirror attack, simply reflecting an agent’'s mes-

sages back at himself; examples appear in [2]. In other,
L more subtle attacks, an intruder attacks an ageby us-
2 Forms of authentication ing a second run of a protocol with the same agérgo as
to use the second run as an oracle; for example the attack
In this section we identify four different reasonable on the BAN version of the Yahalom protocol [3] in [24].
meanings of the word “authentication”. But first, we need Other attacks are due to more blatant errors; for example,

2.1 Aliveness

the attack on the SPLICE protocol [25] in [9], which ex- the protocol, apparently with respond@r thenB has pre-

ploits the fact that key delivery messages (from a key server)viously been running the protocol, apparently with and

do not include the identity of the agent whose key is being B was acting as responder in his run, and the two agents

delivered. agreed on the data values corresponding to all the variables
Closely related to the notion of aliveness is the casein ds.

where, whend completes a run of the protocol, apparently .]
with B, then B has previously been present, but not ne- Note that this does not guarantee that there is a one-one

cessarily running the protocol in question—it may be that relationship between the runs fand the runs oB (hence

B has been running a completely different protocol. This the adjective “non-injective”):A may believe that he has
raises the question of interaction between protocols, wherecOmpleted two runs, wheR has only been taking partin a

an intruder can learn information in one protocol that he can Single run.

use in an attack on another protocol. In this paper we mainly A few protocols achieve a guarantee of weak agreement,
restrict our attention to systems running a single protocol; Put not non-injective agreement. For example, if the ori-
we briefly discuss how to extend these techniques to coverdinal Andrew protocol [21] is adapted to detect mirror at-
systems running several protocols in Section 4.5. However,tacks, thenit achieves weak agreement, but does not achieve
in general it will be very difficult to prove results about a non-injective agreement on all the data values: an attack
system running several protocols: we need to be sure thai [3] shows how an intruder can geitto accept a key dif-

no protocol acts as an oracle for any other. ferent from the one used by.
2.2 Weak agreement 2.4 Agreement
We strengthen the above definition to insist tBaigreed We use the term, ifijective agreemefit or simply
he was running the protocol with. “agreement when we want to insist that there is a one-one

relationship between the two agents’ runs. This one-one re-
Definition 2.2 (Weak agreement). We say that a pro- |ationship may be important in, for example, financial pro-
tocol guarantees to an initiater weak agreememnith an- tocols.
other agentB if, wheneverA (acting as initiator) com-
pletes a run of the protocol, apparently with responBler ~ Definition 2.4 (Agreement). We say that a protocol guar-
thenB has previously been running the protocol, apparently antees to an initiatod agreementvith a respondeB on a
with 4. set of data itemds if, wheneverA (acting as initiator) com-
pletes a run of the protocol, apparently with responBer
Note thatB may not necessarily have been acting as respon-thenB has previously been running the protocol, apparently
der. with A, and B was acting as responder in his run, and the
Several prOtOCOIS achieve a guarantee Ofliveness, but falltwo agents agreed on the data values Corresponding to all

to guarantee weak agreement. The normal scenario is thathe variables inls, and each such run of corresponds to a
the intruder imitates an ageBt to attackA, by usingB as uniquerun of B.

an oracle in a parallel run in which the intruder adopts his

own identity; thusA4 believes he has been running the pro- We will use the ternfull agreemento refer to agreement on
tocol with B, but B does not believe he has been running all the atomic data items used in the protocol run. For vari-
the protocol withA—B thinks he has been running the pro- ous reasons, we consider this to be the most useful defini-
tocol with the intruder. Examples include my attack on the tion of authentication: it insists that the two agents agree on

Needham-Schroeder Public Key protocol [16] in [10]. all the essential features of the protocol run, while avoiding
specifying features that are hard to achieve and less likely
2.3 Non-injective agreement to be required.

A few protocols achieve non-injective agreement, but not

The following definition adds the condition that the two (INj€ctive) agreement: an agetis tricked into thinking
agents agree as to which roles each was taking, and that the%'atB is trying to establish two sessions with him, whereas

agree upon some of the data items used in the exchange. B Was only trying to establish a single run. For example,
in the Kerberos protocol [15], the freshness of one agent

Definition 2.3 (Non-injective agreement). We say thata is guaranteed only by a timestamp; thus, an intruder can
protocol guarantees to an initiater non-injective agree- replay these messages (within the lifetime of the timestamp)
mentwith a respondeB on a set of data item#s (whereds to complete a second run; note that this attack assumes that
is a set of free variables appearing in the protocol descrip-the agents do not check that the timestamps they receive are
tion) if, wheneverA (acting as initiator) completes a run of distinct from all previous timestamps; Bellovin and Merritt

report [1] that early implementations did not perform this each definition using recentness is stronger than the corres-

check. Similar attacks are described in [13]. ponding definition without recentness. We will prove these
facts later, after we have formalized the authentication spe-
2.5 Recentness cifications.

Finally, we lift the above definitions to ensure recentness. 2.7 Comparisons
The meaning of “recent” will depend on the circumstances:
sometimes we will take it to mean within the duration4i$

!) .) ; Roscoe [20] introduces the notion of an intensional spe-
run; sometimes we will take it to mean at meésime units

before A completed his run, for suitable called theau- cification:

thentication timgclearly the value of will be implementa- No node can believe a protocol run has completed
tion dependent); the designer or implementer of the protocol unless a correct series of messages has occurred
should make clear what degree of recentness is guaranteed. (consistent as to all the various parameters) up
We use the termecent alivenessecent weak agreement to and including the last message the given node
recent non-injective agreemerdnd recent agreemento communicates.

refer to the above specifications strengthened to insist that
B’s run was recent, rather than just at some time in the past;That is, if an agent completes a protocol run, then the pro-
we will add the phrase “withim time units” where the pro- tocol must have proceeded essentially as the protocol de-
tocol guarantees a particular authentication time. signer intended: each agent must have seen the expected
Some protocols meet a particular authentication specific- sequence of messages, all agreeing on the values of atomic
ation without recentness, but fail to meet the correspond-data items, and with the correct relative orders of messages.
ing specification with recentness. For example, consider Roscoe shows how to produce a CSP representation of
the following one-step protocol, whekeb is a key shared the above specification; this specification can be checked
betweend andB: using the model checker FDR, in a setting very similar to

our own.
Messagd. A= B : {4 k}eas - This is a strong definition of authentication, stronger than

This protocol givesB a guarantee of non-injective agree- ©0ur definition of full agreement. Itis at least as strong as full
ment onk, but gives no guarantee of recentness, because2dreement, for suppose a protocol satisfies the intensional
the message contains no information tiknows to be Specification, and that an ageibelieves it has completed
fresh. The protocol can be strengthened to achieve recen@ Protocol run withB. Then from the intensional specifica-
non-injective agreement by adding a timestamp to the mes-tion, B's view of the protocol run must agree with's, and
sage. in particular B must have thought he was running the pro-
Also, in a setting where key compromise is possible, tocol with 4, and the two agents agree upon the roles each
there is a well known attack on the Needham-Schroedert@ke, and upon the values of all atomic data items; further,
Secret Key Protocol [16], presented in [4]: once a key has from the way in which intensional specifications are form-
been compromised, the intruder may replay messages fronflized in CSP, there must be a one-one relationship between
an earlier protocol run so as to imitate the initiator; thus A’S runs andB’s runs. Hence full agreement is achieved.
(if we make the reasonable assumption that compromising The intensional specification is strictly stronger than full
keys takes quite a long time) the protocol guarantees non-agreement for two reasons:

injective agreement, but not recent non-injective agreement. .
¢ In some protocols, an agedtreceives an encrypted com-

ponent that he is not supposed to decrypt, but merely for-
ward to another ager®8. In these cases, there is a simple
attack where the intruder replaces this component with an

All of the above definitions used a phrase of the forh * arbitrary component, but then reverses the switch wHen
h reviousl n running the protocol”. We take thisto . . ' .
as previously been ru g the protoco © raxe s 1o tries forwarding the component t8. This would not be

mean thatB has progressed at least as far as the last mes'cons'dered an attack when using the full agreement specific-
sage thatB sends; clearly4 can never be assured th&t ! w using uftag pecf

received any subsequent messages. Note that it is possiblgtion' but is an attack under the intensional specification.
to define weaker specifications, whetdés only assured that e Consider a protocol where a server sends two consecutive
B has at least started the protocol. messages td and toB, respectively. The intensional spe-

It should be obvious that the above forms of authentica- cification would insist tha#l and B receive these messages
tion without recentness are in increasing order of strength,in the same order. However, there is a simple attack where
as are the forms of authentication with recentness. Furtherthe intruder delaysl’s message so that it arrives just after

2.6 Discussion

B receives his message. However, this would not be con-send this message th It is left vague whetheB necessar-
sidered an attack when using the full agreement specifica-ly sent this message recently, and whetdemay receive
tion. two messages for a single message senBbywnd so the

_ above goal can be interpreted in different ways. However,
Itis arguable whether the above two attacks should really i g4 is clearly similar to Roscoe’s intensional specific-
be considered as attacks. However, there are settings Wherﬁtion

the precise contents or the precise orderings of messages
may be important. We would stress again our philosophy Paulson [17, 18] uses the theorem prover Isabelle to ana-

that protocol designers should specify precisely what their [YS€ Security protocols. He proves properties of the form:
protocols are supposed to achieve. if A receives a message of a certain form, which appears

The intensional specification does not, in general, give {0 come fromB, then B indeed sent that message. Thus

any guarantee of recentness. For example, consider the onBiS notion of authentication is similar to our non-injective
step protocol from Section 2.5; this meets the intensional @greement. (The form of authentication he considers is ne-
specification, but does not achieve recent authentication.c€SSarily non-injective, because of a feature of his model
However, in most protocols recentness is guaranteed by théhat allows an agent to respond several times to a single
way in which messages are interleaved: suppose the pronessage; the_re is no real reason why this feature could _not
tocol is such thatl sends a message Band later receives P& changed, in which case he would be able to deal with
a message back frof (possibly via third parties): suppose |nject_|ve agreement, although possibly at additional com-
further thatA is implemented to time out if the run is tak- Putational expense.)

ing too long, so any actions that occurred sintetarted

the run should be considered recent; then if the intensional3 Modelling protocols using CSP

specification is met, then it must be the case that the corres-

ponding actions oBB occurred afterd started this protocol In this section we briefly review the method we use for
run, soB’s actions must indeed have been recent. Roscoemodelling security protocols using CSP. For a fuller de-
discusses other ways in which intensional specifications canscription, the reader is referred to [11]. All the authentica-
be adapted to deal with time. tion specifications we are considering are safety specifica-
tions (as opposed to liveness specifications); we will there-
fore be working in the traces model of CSP, which is ad-
equate for expressing safety properties.

As an example, we consider the 3 message version of
e Needham-Schroeder Public Key protocol [16, 10]. The
rotocol can be defined by:

Diffie, van Oorschot and Wiener [5] have a similar defin-
ition of authentication. They specify that when an agént
completes a run of the protocol, apparently wighthen B
has been running the protocol, and the two agents’ recordsth
of the runsmatch that is, the messages each sees are the
same in all fields relevant to authentication, and the agentsp

agree upon which messages were incoming and which out- Messagd. A — B : A,B,{na,A}pk(n
going. However, the definition of matching is such tiiat Message. B — A : B, A,{na,nb}pg(a)
may not necessarily think that he was running the protocol Messag8. A — B : A,B,{nb}pk(p) -

with A. Thus this definition is weaker than our weak agree-

s Each agent is represented by a CSP process that sends
ment specification.

and receives the appropriate protocol messages, augmented
Gollmann [7] defines four goals of authentication proto- with extra events that signal the beliefs of the agent. For

cols. We consider here two of these goals, which concernexample:

whether a protoco! authenticatf&to A. Goal G3 states INITIATOR,(A, na, pka) =

that a cryptographic key associated withhas to be used

during the protocol run. (The term “cryptographic key” is B: Agent €0-A-(Env0, B) —

intended to be interpreted fairly broadly, so as to include, comm.A.B.(Msgl, Encrypt.(PK(B), (na, 4))) —

for example, shared secrets used for authentication; in the b N omee

case where a key is shared between two agents, the word comm.B.A.(Msg2, Encrypt.(pka, (na,nb))) —

“associated” is supposed to be interpreted as referringtothe signal. Running.INIT-role.A.B.na.nb —

agent who actually used the key in question.) The reason- comm.A.B.(Msg3, Encrypt.(PK (B), (nb))) —

ing behind G3 is thaB should be authenticated only if an signal.Commit. INIT-role.A.B.na.nb —

action has occurred that must have been performe® by SKIP

Hence this is similar to our recent aliveness specification.
Goal G4 states that the origin of all messages in the pro-

tocol has to be authenticated. In other words ifeceives

a message, apparently froB\, then B previously tried to comm.A.B.(Msgl, Encrypt.(PK(B), (na, A)))

The way in which protocol messages are represented by
CSP events should be obvious; for example, the event

represents the message: Formally: P° = STOP andP™*! = P ||| P*. We will
takeaP? = oP.

We now formalize the different authentication specifica-
tions; we consider the specifications in the reverse order to
that in the introduction. We will consider a pair of agents,
A andB, taking the rolesA-role and B-role, respectively,
and consider the question of whether the protocol correctly
authenticate® to A.

Messagd. A — B : {na,A}pg(s) -

The channelsignal is used to express properties of
the beliefs of the agent. An event of the forsiynal.
Running.role.A.B.na.nb represents that the ageAtbe-
lieves that he is taking the rot@le in a run of the protocol
with B, using noncega andnb; such an eventis performed
immediately before the last message thatsends. An
event of the formsignal.Commit.role. A.B.na.nb repres-
ents that the agemt thinks he has successfully completed 4.1 Agreement
a run of the protocol, taking roleole, with B, using the
noncesia andnb; such an event is performed aftdis last
event in the protocol. Thesggnal events will be used in We begin with theagreemenspecification. Suppose the
formalizing our authentication specifications. The commit Protocol uses two data itends andds, and we want to test
and running signals include (in some standard order) all theWhether the protocol guarantees to an arbitrary agetak-
data items that the agents are supposed to agree on. ing the roleA-role, agreement with an age#, taking the

In order to represent the fact that the intruder may in- role B-role, on both the data itemé; andd,. This will
terfere with the normal operation of the protocol, a CSP- be the case if, whenever completes a run of the protocol
renaming is applied to the above processes, with the effec@pparently withB, thenB has previously been running the
that outputs may be intercepted by the intruder (and so fail Protocol, apparently witi, using the same values for the
to reach their intended destination), and inputs may be fakeddata items, and there is a one-one relationship betwesn
(that is, produced by the intruder). runs andB’s runs. Now,B running the protocol, taking the

The parameters of these processes are instantiated wittiole B-role, apparently with4, using particular values;
appropriate actual values; this allows us, for example, andd, for the data itemsl; andds, is represented by the
to define several NITIATOR processes with the iden- event signal. Running.B-role. B.A.d.d3; similarly, A
tity Alice, representing that the agedfice may run the ~ completing the protocol, taking the rokerole, apparently
protocol several times. with B, using the same values for the data items, is rep-

The processes are then combined together in parallelresented by the evenignal.Commit.A-role.A.B.d; .d5.
with a process representing the most generai intruder WhoThUS we will want to ensure that the abstraction of the Sys-
can interact with the protocol. This intruder may: oversee tem to the appropriate alphabet satisfies the following spe-
messages passing in the system, and so learn new messagédfication:
intercept messages; decrypt messages he has seen, if he has
the appropriate key, and so learn new (sub-)messages; en- Agreement(B-role, A-role,{d,d>})(B) =
crypt messages he has seen with keys that he knows so as signal. Running.B-role. BT A?d} ?d}, —
to create new messages; and use the knowledge he has ac- signal.Commit.A-role.A.B.dy.dy — STOP .
cumulated to send fake messages.

FDR can be used to check whether the resulting systemrhg specification says that whenewvéiperforms an event
correctly acr_neves the: goals of the protqcol. Formalizing of the form signal.Commit.A-role.A.B.d,.d,, then B
these goals is the subject of the rest of this paper. has previously performed a corresponding eveiginal.

o o o Running.B-role.B.A.d.d}. That is, wheneved signals

4 Formalizing authentication specifications that he thinks he has completed the protocol, taking the
without recentness role A-role, with B, using the data value# andd, then

B has previously been running the protocol, taking the role

As explained in the introduction, we begin by formal- B-role, with A, using the same data values. (Remember
izing authentication specifications that ignore issues of re-that we are working in the traces model of CSP, so the above
centness. In the next section we adapt these specificationspecification does not insist thatségnal.Commit event
to include recentness. must occur.)

We introduce two pieces of notation that we will need. If Figure 1 illustrates the meanings of the argumentsl
P is a process, we defineP to be its alphabet. We write

; . . Consider the case where each agent may take part in a
P™ for the interleaving of: copies ofP: ¢ y P

single run of the protocol. We may test whether the pro-
pP* = Pl||...|I| P tocol correctly authenticates a particular agéht taking
—_— role B-role, to an arbitrary agent, taking role A-role,

n

Role of agent being authenticated
Role of agent to whom authentication is made
Data items agreed upon
Identity of agent being authenticated

!

Agreement(B-role, A-role, ds)(B)

Figure 1. The arguments of Agreement

with agreement on all the data items, by testing: We now generalize the above refinement checks to con-
sider the case where the agent being authenticated can per-
Agreement(B-role, A-role, {d1,d>})(B) C form more than one run of the protocol. In this case, we
SYSTEM \ (¥ - X) want to ensure thaveryCommit event is matched by a
where correspondinRunning event. If B can perform at mosi
X = aAgreement(B-role, A-role,{d:,d»})(B)), runs, then there will be at most Running events, so we

. . o want to consider the following refinement check:
whereX is the set of all events. (The fact thdk identity is g

not included in the parameters of the procdggeement SY STEM meets

has the effect of making the above refinement check test Agreement(B-role, A-role, {dy,d2})(B)".
whether B is correctly authenticated tall agents who

take the roled-role. The reason why we test whether a Note that this specification guarantees that only Goen-
singleagentB is correctly authenticated, rather than testing ™t event may correspond to eadtunning event, thus
whether all agents who take the ralerole are correctly ensuring that the initiator commits to only a single session
authenticated, is purely pragmatic: the latter check would for each run of the protocol performed by the responder.
become very slow for large systems. The reason for the In some cases it will be the case that we want to ensure
slightly odd parameterization is to keep consistency with that the agents involved agree on the values of some data
the tool Casper, which we will discuss in the concluding items, but allow them to disagree on other data items. For
section, which automatically produces CSP descriptions ofexample, if we want the agents to agreedn but allow
security protocols, and specifications similar to the above, them to disagree o, then we may use the specification:
from a more abstract definition.)

The above form of refinement check will be very com- Agreement(B-role, A-role, {d;})?(]?l E,,
mon in the rest of this paper, so we introduce a shorthand sfgnal'R"""mg'B'mle‘B'A‘,dl ‘,d2 -
forit. signal.Commit.A-role.A.B.d}?dy — STOP
SYSTEM meets SPEC 2 If we do not insist that they agree on any data items, then
SPEC T SYSTEM *(2 — aSPEC). we may use the specification:

Agreement(B-role, A-role, {})(B) =
signal.Running.B-role. B?A?d{?d} —

SYSTEM meets signal.Commit.A-role.A.B?d?d}, — STOP
Agreement(B-role, A-role,{d,,d>})(B).

So the above test is written:

In general, the third argument of thégreement macro

For example, to test whether the Needham—SchroederShOU|d be a subset of the data variables appearing in the
Public Key Protocol guarantees to an arbitrary respoitler Stgnal-Running andsignal.Commit events.

agreement with the initiatodlice on the nonceaa andnb, _In the above, we _have con3|dered_ a protocol using a
we should test: pair of data values; it should be obvious how to gener-
alize to an arbitrary set of data variablds. We will
SYSTEM meets write signal.Running.B-role.B.A.ds' to indicate agent
Agreement B thinking that he is running the protocol using valuk$
(INIT-role, RESP-role, {na,nb})(Alice). for the data variableds, and similarly for theC'ommit sig-

nal (strictly speakingds is aset andds’ is an enumeration
It turns out that the above specification is not met (the pro- of the elements aods, in some standard order).
tocol does not correctly authenticate the initiator), as can be It should be obvious that if a protocol guarantees agree-
seen from the attack in [10, 11]. ment on some sets; of data values, then it will guarantee

agreement on any smaller s&,. The following lemma
formalizes this.

Lemma4.1. If ds; C ds; and

SYSTEM meets
Agreement(B-role, A-role,ds1)(B)",

then

SYSTEM meets
Agreement(B-role, A-role, dss)(B)™.

4.2 Non-injective agreement

Non-injective agreement is a weaker requirement that
agreement; this is formalized by the following lemma.

Lemma 4.3. If
SY STEM meets Agreement(B-role, A-role,ds)(B)",
then

SY STEM meets
NonInjective Agreement(B-role, A-role,ds)(B)".

4.3 Weak agreement

In the previous subsection, we insisted that there was a \We can weaken the previous specification, so thag-

one-one relationship between the runsdofind those of3.

ceives no guarantee as to which r@ehought he was tak-

In some settings, this injectivity may not be important, and ing, and no guarantee regarding agreement on data. \We

so we will allow A to commit an arbitrary number of times,
for each run ofB:

NonlInjective Agreement
(B-role, A-role,{d;,d>})(B) =
signal.Running.B-role.B?A?d}?dy, —
RUN ({signal.Commit.A-role.A.B.d .d}}).

define the specification:

Weak Agreement(A-role)(B) =
signal.Running?B-role! BT A%ds' —
RUN ({signal.Commit.A-role.A.B.ds |

ds € Data*}).

That is,A may think he has completed an arbitrary number

Thatis,A may think he has completed an arbitrary number of runs, taking roled-role, with B, if B thinks he has been

of runs, taking roled-role, with B, using data value, and
dj (i.e., perform an arbitrary number aignal.Commit.
A-role.A.B.d}.d} events) if B thinks he has been running
the protocol, taking roleB-role, with A, using the same

running the protocol, taking some ra&role, with A, pos-
sibly using different data values, at least once.

Weak agreement can then be checked using the refine-
ment test:

data values, at least once (i.e., if he has performed at least

onesignal.Running.B-role.B.A.d.d}, event).

SYSTEM meets WeakAgreement(A-role)(B)".

This can be adapted to insist upon agreement of only The following lemma shows that weak agreement is in-

some of the data values; for example:

NonInjective Agreement(B-role, A-role,{d:})(B) =
signal.Running.B-role.B?A?d\?d) —
RUN ({signal.Commit.A-role.A.B.d} .d} |
dy € Data}).

Non-injective agreement can then be tested analogousl

to agreement:

SYSTEM meets
NonInjective Agreement(B-role, A-role,ds)(B)".

As with injective agreement, agreement on some set of

data items implies agreement on any smaller set.
Lemma4.2. If ds; C ds; and:

SYSTEM meets
NonlInjective Agreement
(B-role, A-role,ds)(B)™,
then:
SYSTEM meets

NonlInjective Agreement
(B-role, A-role,dss)(B)™.

deed a weakening of non-injective agreement.

Lemma 4.4. Suppose the agem® can perform a max-
imum of m runs with role B-role, andn runs with other
roles. If:

YS'YSTEM meets

NonInjective Agreement(B-role, A-role,ds)(B)™,
then:

SYSTEM meets WeakAgreement(A-role)(B)™ ™.

4.4 Aliveness

Finally, we weaken the specification still further, so that
A receives no guarantee thBtthought he was running the
protocol with A; A merely receives a guarantee ttiaivas
previously running the protocol with somebody:

Aliveness(A-role)(B) =
signal.Running? B-role! B?C?ds' —
RUN ({signal.Commit.A-role.A.B.ds |

ds € Data* N A € Agent})

That is, A may think he has completed an arbitrary num-
ber of runs, taking roled-role, with B, if B thinks he has
previously been running the protocol.

we strengthen the specifications to insist that the runs are
contemporaneous. There are a number of ways of achiev-
ing this: we outline two possible approaches in the follow-

Agreement can then be checked using the refinementing two subsections; two other possible approaches are de-

test:
SYSTEM meets Agreement(A-role)(B)™.

The following lemma shows that weak agreement is in-
deed a strengthening of aliveness.

Lemma 4.5. If
SYSTEM meets Weak Agreement(A-role)(B)",
then

SY STEM meets Aliveness(A-role)(B)™.

4.5 Disagreeing over the protocol being run

All of the above discussion has assumed that we are op-

erating in a system with only a single protocol. However,

the above techniques are easily extended to cover the mor

general case.
We may augment theignal events with an extra field

representing the identity of the protocol that an agent thinks
he’s running, and can then adapt the authentication spe

cifications appropriately. For example, the following spe-
cification is an adaptation of thdliveness specification,

which guarantees that when one agent completes a run o

protocolprotId, then the other agent was running the same
protocol:

AlivenessSameProtocol (protld, A-role)(B)
signal. Running.protId? B-role! B?C?ds' —
RUN ({signal.Commit.protld.A-role.A.B.ds |

ds € Data* N A € Agent})

Similarly, the following specification allows the agents to
be running different protocols:

AlivenessSameProtocol (protld, A-role)(B)
signal. Running?protld'?B-role! B?7C?ds' —
RUN ({signal.Commit.protld.A-role.A.B.ds |

ds € Data* N A € Agent}).

5 Formalizing authentication specifications
with recentness

As described in the introduction, the specifications from

scribed in [12].

Throughoutthis section we will make an implementation
assumption that no run lasts for too long: if a run lasts for
longer than some allowable maximum, then the agent(s) in
guestion should time out and abort the run. This will mean
that any two events within the duration of a particular run
should be considered to be recent to one another.

5.1 Recentness through freshness

In some cases, the recentness of an agent’s run can be
guaranteed by agreement on a fresh data value. For ex-
ample, consider the example of the Needham-Schroeder
Public Key Protocol, and suppose we have shown that:

SYSTEM meets
Agreement

(RESP-role,INIT-role,{na,nb})(Bob)",

?or some agenBob. That is: if any initiatorA completes

a run of the protocol, apparently witBiob, using particular
values for the nonces, thehcan be sure that at some time

in the pastBob believed that he was acting as responder in

a run of the protocol withd, using the same values for the
nonces. However, it is assumed thhinvented the value
Pf na as a fresh value for this particular run. HenBeb’s
run must have occurred at some time afteinvented this
nonce. Thus, from the implementation assumption about
A’s runs not lasting too longBob must have performed this
runrecently

This style of argument can be used with both thg-ce-
ment and NonlInjective Agreement specifications, and
will guarantee recentness whenever the agents agree on
some data value that is freshly invented by the agent to
whom the authentication is made. However, when there is
no agreement upon a fresh variable, an alternative approach
has to be found.

5.2 Timed authentication

We now consider an alternative method of ensuring re-
centness, namely through introducing a representation of
time into the CSP model of the system. We represent the
passage of one unit of time by an eventk. We then in-
terpret “recently” to mean within the lagtuthTime time
units, whereduthT'ime is a parameter provided by the pro-

the previous section do not insist that the runs are in any waytocol tester, called thauthentication time Below, we will
contemporaneous: one agent may commit even though theheck whether the protocol correctly achieves recent au-

other has not performed any evergsently In this section

thentication by performing a test of the form: whenever

commits to a session, apparently with then B was run- ample:

ning the protocol within the lastuthTime tocks (possibly

with other conditions, corresponding to the different forms TimedAgTeeme"t(B'TOZB’ A-role, ds, AuthTime)(B)

of authentication). =
In order for the protocol to meet such a specification, we

will assume that each agent will timeout if a particular run

lasts for longer than some timé az RunTime. (Clearly g ghove process allows at magithTime tocks during

if such an implementation assumption is not met, we have o o o tion ofgreement(B-role, A-role, ds)(B), i.e.,

|Ittt|||edcf]1ancef0f m_eetlnhg a “Lned SpeCI-flcag(zjn.]?- ,B_elow'fwe between th@ignal. Running andsignal.Commit events;
will define a function that takes an untimed definition ofan , s i specifies that th€ ommit signal must occur within

agent, and gives a timed version, with such a timeout. AuthTime tocks of the Running signal

First, we define two subsidiary process@¥)C K S(n) We can test whether a system correctly achieves timed
W!" perform at mos_tn tocks before termlnatlncﬂ“SK_IP agreement by testing whether the appropriate abstraction of
WI|| perform an arbitrary number ofocks before terminat- o system (built from timed agents) refinesopies of the

AddTime(Agreement(B-role, A-role,ds)(B),
AuthTime).

Ing: above specification:
TOCKS(n) = SY STEM meets
if n=0thenSKIP TimedAgreement
else(tock = TOCKS(n — 1) O SKIP), (B-role, A-role, ds, AuthTime)(B)".

TSKIP = tock - TSKIP O SKIP.
But now we must redefine thig)” notation so as to syn-
We now define a functiodddTime that turns an untimed chronize all the individual specifications eésck events:
representatio? of an agent into a timed one. The timed

process initially allows an arbitrary amount of time to pass pr=pP | ... | P.
before a run begins. Once the run has begun, at most {tock} {tock}
MazRunTime tocks should occur during the run itself: if n
an extr_atock occurs, then the agent shoulq timeout, and_just Formally: P9 = RUN ({tock}) andP™1 2 P || pPn.
allow time to pass before terminating. This may be defined {tock}
as follows? The other untimed authentication specifications can sim-
ilarly be lifted to timed specifications by using th&dd-
AddTime(P, MazRunTime) = Time function:
tock — AddTime(P, MazRunTime)
a TimedNonlInjective Agreement
((P ||| TOCKS(MazRunTime)) (B-role, A-role,ds, AuthTime)(B)
A tock - TSKIP). =
AddTime(
(In fact, the above definition allows the agent to non- NonlInjective Agreement(B-role, A-role, ds)(B),
deterministically abort the run after fewer thafiaz Run- AuthTime),

Time time units; this corresponds .to the agent abor_tmg TimedW eak Agreement(A-role, AuthTime)(B)
for some reason we are not modelling, such as user inter- .

vention. However, if more that axz RunTime tocks oc- . :
cur, then one of theocks must trigger the timeout. Note, AddTime(W eak Agreement(A-role)(B), AuthTime),
though, that the trace set of the process is not affected by LimedAliveness(A-role, AuthTime)(B)
this possibility of early timeout.) =

We apply thedddTime function to all the processes rep- ~ AddTime(Aliveness(A-role)(B), AuthTime).
resenting untimed agents, so as to build timed versions; we
then combine these timed agents together to build a timedtio
system.

We are now ready to produce the timed authentication Lemma 5.1.
specifications. We use thiddTime function to lift the un-
timed agreement specifications to timed versions. For ex-

The following lemma is analogous to the lemmas of Sec-
n4.

e If ds' C dsand

1The process) A R represents an interrupt mechanism; it initially SYSTEM meets
acts like@, but may be interrupted by the performance of any everR of TimedAgreement
and will then continue to act lik&. (B-role, A-role, ds, AuthTime)(B)"

then

SYSTEM meets
TimedAgreement
(B-role, A-role, ds', AuthTime)(B)".

e If ds' C dsand

SYSTEM meets
TimedNonlInjective Agreement
(B-role, A-role,ds, AuthTime)(B)"

then
SY STEM meets

TimedNonlInjective Agreement

(B-role, A-role,ds', AuthTime)(B)"

o If
SYSTEM meets
TimedAgreement
(B-role, A-role, ds, AuthTime)(B)"
then

SYSTEM meets
TimedNonlInjective Agreement
(B-role, A-role,ds, AuthTime)(B)"

e Suppose the ageft can perform a maximum of runs
with role B-role, andn runs with other roles. If

SYSTEM meets
TimedNonInjective Agreement

(B-role, A-role,ds, AuthTime)(B)™

then
SY ST EM meets
TimedW eak Agreement
(A-role, AuthTime)(B)™*"
o If

SYSTEM meets
TimedW eak Agreement(A-role, AuthTime)(B)"

then

SYSTEM meets
TimedAliveness(A-role, AuthTime)(B)".

The timed authentication specifications are antimono-
tonic in the time parameter.

Lemma5.2. Let TimedSpec(_) be one of the timed
authentication specifications, with parameter representing
the time (for examplel'imedSpec(t) = TimedAlive-
ness(A-role,t)(B)), and lett < ¢'. Then if

SYSTEM meets TimedSpec(t)”

then
SYSTEM meets TimedSpec(t')".

Finally, the timed specifications imply the corresponding
untimed specifications.

Lemma 5.3. Let Spec be one of the untimed authentic-
ation specifications, and lefimedSpec be the corres-
ponding timed specification, i.eTimedSpec = Add-
Time(Spec, AuthTime). If SYSTEM meets Timed-
SpecthenSY ST EM meets Spec.

6 Conclusions

In this paper we have considered the question of the
meaning of the term “entity authentication”. We argued
that different authentication requirements may be appropri-
ate for different circumstances, and identified a number of
possible authentication specifications.

We formalized each authentication specification using
the process algebra CSP, used this formalism to study their
relative strengths, and showed how to use the model checker
FDR to test whether a system running a protocol achieves
the various authentication requirements.

Our authentication specifications have much in common
with Schneider’'s work [22, 23]. He uses a trace specific-
ationT' authenticates R to mean that events froffi au-
thenticate events frorR: events fromil’ can happen only if
there have been preceding events frBm

T authenticatess R = tr [R=() = tr [T = ().

Note that the above test does not capture our notion of
injectivity: if an event fromR occurs, then there may be
several subsequent events fr@m Nor does it capture our
notion of recentness: the events frdfhmay occur some
time after the corresponding events frafa However, it
is not hard to adapt the specification to as to capture both
injectivity and recentness.

The NonlInjective Agreement, WeakAgreement
and Aliveness tests of this paper may be seen as testing
whether aCommit signal authenticates a corresponding

Running signal. This is made formal as follows:

SY STEM meets
NonlInjective Agreement(B-role, A-role, ds)(B)
if f
VA € Agent ;ds' € Data* -
SY STEM sat {signal.Commit.A-role.A.B.ds'}
authenticates
{signal. Running.B-role.B.A.ds'},

SY STEM meets Weak Agreement(A-role)(B)

if f

VA € Agent »

SYSTEM sat
{signal.Commit.A-role.A.B.ds | ds € Data*}
authenticates
{signal.Running.B-role.B.A.ds
B-role € ROLE A ds' € Data*},

SY STEM meets Aliveness(A-role)(B)
if f
SYSTEM sat
{signal.Commit.A-role.A.B.ds |
ds € Data* N A € Agent}
authenticates
{signal. Running.B-role.B.C.ds' |
B-role € ROLE N
ds' € Data* N C € Agent}.

"

Casper is a program that takes an abstract description

Acknowledgements

I would like to thank Steve Schneider, Bill Roscoe
and Dieter Gollmann for interesting discussions and useful
comments on the work in this paper.

References

(1]

(2]

(3]

(4]

S. M. Bellovin and M. Merritt. Limitations of the Kerbeso
authentication systerACM Computer Communications Re-
view, 20(5):119-132, 1990.

R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten,
R. Mulva, and M. Yung. Systematic design of a family of
attack-resistant authentication protocol&EE Journal on
Selected Areas in Communicatiodd (5):679-693, 1993.

M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication. Proceedings of the Royal Society of London
A, 426:233-271, 1989. A preliminary version appeared as
Digital Equipment Corporation Systems Research Center re-
port No. 39, 1989.

D. E. Denning and G. M. Sacco. Timestamps in key distri-
bution protocols.Communications of the ACN24(8):533—
536, 1981.

[5] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentic-

(6]

(7]

of a security protocol, and produces a corresponding CSP

description, suitable for checking using FDR. Each of the

authentication specifications considered in this paper have [8]

been implemented withiGasper. ThusCasper and FDR

ation and authenticated key exchangessigns, Codes and
Cryptography 2:107-125, 1992.

Formal Systems (Europe) Ltd. Failures-Divergence
Refinement—FDR 2—User Manpall997. Avail-
able via URLftp://ftp.comlab.ox.ac.uk/pub/
Packages/FDR .

D. Gollmann. What do we mean by entity authentication?
In IEEE Symposium on Research in Security and Privacy
1996.

C. A. R. Hoare Communicating Sequential Procesdesen-
tice Hall, 1985.

can be used together to test which, if any, authentication [9] T-Hwangand Y.-H. Chen. On the security of SPLICE/AS—

specifications are met by a particular protocol. A num-
ber of case studies using these techniques are available vi
the Casper World Wide Web page [14]; these case studies

demonstrate the practicality of our methods.

When analyzing protocols using FDR, we make a hum- [11]
ber of implementation assumptions, which are reflected in

t10)

the way we model the intruder and the honest agents. For
example: above we made the assumption that honest agents

would time out if runs are taking too long; we normally as-
sume that the intruder is unable to decrypt messages unles$t?]

he has the appropriate key; and we normally assume that

the encryption method used has no “interesting” algebraic
properties. However, none of these assumptions are really

[13]

necessary: by altering the way we model the system, we can
remove these assumptions. Note, though, that the authentic114]
ation specifications discussed in this paper are independent

of the implementation assumptions, and so would still be

applicable under different assumptions.

the authentication system in WIDE Internetnformation
Processing Letter$3:97-101, 1995.

G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocdlnformation Processing Letters
56:131-133, 1995.

G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. IRroceedings of TACAS
volume 1055 ofLecture Notes in Computer Sciengages
147-166. Springer Verlag, 1996. Also i8oftware—
Concepts and Togl4.7:93-102, 1996.

G. Lowe. A hierarchy of authentication specifications.
Technical Report 1996/33, Department of Mathematics and
Computer Science, University of Leicester, 1996.

G. Lowe. A family of attacks upon authentication prattsc
Technical Report 1997/5, Department of Mathematics and
Computer Science, University of Leicester, 1997.

G. Lowe. Casper: A compiler for the analysis of security
protocols, 1997. In this volume. World Wide Web home
page at URLhttp://www.mcs.le.ac.uk/"glowe/
Security/Casper/index.html

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

S. P. Miller, C. Neumann, J. . Schiller, and J. H. Saltze
Kerberos authentication and authorization system. Pro-
ject Athena Technical Plan Section E.2.1, MIT, 1987.
Available from URLftp://athena-dist.mit.edu/
pub/kerberos/doc/techplan.PS .

R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computer€ommunica-
tions of the ACM21(12):993-999, 1978.

L. Paulson. Proving Properties of Security Protocgldrz
duction. Technical Report 409, University of Cambridge
Computer Laboratory, 1996.

L. Paulson. Mechanized Proofs of Security Protocols:
Needham-Schroeder with Public Keys. Technical Report
413, University of Cambridge Computer Laboratory, 1997.
A. W. Roscoe. Model-checking CSP. MmClassical Mind,
Essays in Honour of C. A. R. Hoarerentice-Hall, 1994.

A. W. Roscoe. Intensional specification of securitytpro
cols. In9th IEEE Computer Security Foundations Work-
shop pages 28-38, 1996.

M. Satyanarayanan. Integrating security in a large dis
tributed system.ACM Transactions on Computer Systems
7(3):247-280, 1989.

S. Schneider. Security properties and CSPIBEE Com-
puter Society Symposium on Security and Priyv&makland,
1996.

S. Schneider. Using CSP for protocol analysis: the
Needham-Schroeder Public Key Protocol. Technical Report
CSD-TR-96-14, Royal Holloway, 1996.

P. Syverson. A taxonomy of replay attacks.Aroceedings

of the 7th IEEE Computer Security Foundations Workshop
pages 131-136, 1994.

S. Yamaguchi, K. Okayama, and H. Miyahara. Design and
implementation of an authentication system in WIDE Inter-
net environment. IiProc. 10th IEEE Region Conf. on Com-
puter and Communication Systeri990.

