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Abstract

Many security protocols have the aim of authenticating
one agent to another. Yet there is no clear consensus in the
academic literature about precisely what “authentication”
means. In this paper we suggest that the appropriate au-
thentication requirement will depend upon the use to which
the protocol is put, and identify several possible definitions
of “authentication”. We formalize each definition using the
process algebra CSP, use this formalism to study their rel-
ative strengths, and show how the model checker FDR can
be used to test whether a system running the protocol meets
such a specification.

1 Introduction

Many security protocols have appeared in the academic
literature; these protocols often have the aim of achieving
authentication, i.e., one agent should become sure of the
identity of the other. The protocols are designed to suc-
ceed even in the presence of a malicious agent, called an
intruder, who has complete control over the communica-
tions network, and so can intercept messages, and introduce
new messages into the system, possibly using information
from messages he has seen. However, it is rarely made clear
precisely what is meant by the term “authentication”. This
may be dangerous, for a user may assume that the protocol
satisfies a stronger condition than the one that was intended
by the protocol designer, and so may place more reliance
upon the protocol than is justified. In order to alleviate this
problem, we study various possible meanings of the word
authentication. We formalize these meanings using the pro-
cess algebra CSP [8].

Suppose an agentA completes a run of an authentication
protocol, apparently withB; then what canA deduce about
the state ofB? CanA deduce thatB has recently been
alive? CanA deduce thatB has recently been running the
same protocol asA? MaybeA can deduce thatB thought

he was running the protocol withA (as opposed to some
third party,C). And maybe the two agents agree upon who
initiated the exchange, and who responded. Further, they
may agree upon the values of some or all of the data items
(such as nonces and keys) used in the run. CanA assume
that there was a one-one relationship between his runs andB’s runs, or might it be the case thatA has completed more
runs thanB? And canA deduce that he andB agreed upon
the contents of all messages sent from one to the other?

It is my experience that different researchers will give
different answers to the above questions. In order to reason
and argue about authentication protocols, we must first of
all define what we mean by “authentication”. My own view
is that an authentication protocol is designed to assure an
agentA as to the identity of the other agentB with whomA
is running the protocol; therefore, in most casesA should at
least be assured thatB thought he was running the protocol
with A. However, some researchers take the view that it is
enough forB to be present, and thatA need not receive any
further assurance as toB’s current state. We should recog-
nize that the different authentication specifications may all
be valid goals: there are circumstances in which the weaker
specifications are all that is needed; in other circumstances,
a stronger specification may be required. However, the de-
signer of any protocol should make it clear which form of
authentication is supposed to be achieved.

In this paper we will introduce different terms corres-
ponding to some of the possible meanings of the word “au-
thentication” considered above. We formalize each of these
meanings using the process algebra CSP [8]. The use of
CSP has two advantages:� It will allow us to compare the strengths of the different
authentication specifications;� It will open up the possibility of automatically checking
whether a system running the protocol achieves the goals
stated for it, using a model checker such as FDR [19, 6].

We should stress, though, that most of our results are in-
dependent of CSP: CSP just provides a convenient tool for
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formalizing and reasoning about the specifications.
Most of the possible meanings of authentication refer

to the recentstate of an agentB when another agentA
completes a run of the protocol, apparently withB. For
example, a typical authentication specification (which we
will call recent alivenessbelow) is that whenA completes a
run of the protocol, apparently withB, thenB hasrecently
been running the same protocol. It turns out that the recent-
ness is the hardest part of the specification to formalize in
CSP: it normally requires modelling the passage of time. To
simplify our presentation, we begin by considering authen-
tication specifications in the case where recentness is not
required; for example, we consider a specification (called
alivenessbelow) that states that whenA completes a run of
the protocol, apparently withB, thenB has previously (not
necessarily recently) been running the same protocol. Later
we lift our specifications to include recentness.

It is my experience that most attacks upon protocols
break the weaker specifications where recentness is not re-
quired; thus from a pragmatic point of view, when using
a tool such as FDR to look for attacks upon a protocol, it
is sensible to begin by looking for attacks on these weaker
specifications, since these tests are faster than in the cases
including recentness.

Note that we will not directly consider questions of
secrecy in this paper. It is not difficult to formalize secrecy
within CSP, using techniques similar to those discussed
here. Secrecy and authentication specifications are often
broken in the same way: there are a number of attacks upon
protocols that lead to an agentA thinking he has established
a key with another agentB, when in fact he has been run-
ning the protocol with an intruder imitatingB, and the in-
truder ends up knowing the key; this is a failure of authen-
tication, becauseB has been incorrectly authenticated, and
a failure of secrecy, because the intruder has learnt the key
that was supposed to remain secret.

In the next section we give precise, although informal,
definitions of authentication, first in the case where recent-
ness is not required, and then in the case where recentness
is required. In Section 3 we describe the CSP approach to
modelling security protocols, and set up some of the mech-
anism for formalizing the authentication properties. In Sec-
tion 4 we formalize the authentication properties without re-
centness, and prove a number of results relating them. Then
in Section 5, we lift these specifications to include recent-
ness. We sum up in Section 6. Because of limitations on
space, we omit all proofs from this paper; the interested
reader is referred to [12].

2 Forms of authentication

In this section we identify four different reasonable
meanings of the word “authentication”. But first, we need

to discuss the setting in which the definitions will apply.
We will consider protocols that aim to authenticate are-

sponderB to aninitiator A, possibly with the help of a third
party, aserver. We use the word “role” to refer to the part
an agent is taking in the protocol run (i.e. initiator, respon-
der or server). It should be obvious how to generalize these
ideas to include extra agents playing additional roles, or to
reverse the direction of authentication.

We do not restrict ourselves to the case where a particu-
lar agent may only ever adopt a single role; on the contrary,
an agent may act as an initiator in some runs, and as a re-
sponder in other runs, and possibly even as a server in others
(although this latter case would be unusual).

It is worth drawing a distinction between the free vari-
ables appearing in a description of a protocol, and the ac-
tual values with which those free variables are instantiated.
For example, in a protocol description, the free variableA
is often used to represent the initiator; in actual runs, this
variable will be instantiated with the identities of actual
agents, often different identities in different runs. We will
denote free variables representing agents by single letters
(A, B, etc.) and will denote actual agents’ identities by
proper names (Alice, Bob, etc.); for other data items, we
will use small letters for free variables (na, kab, etc.), and
names beginning with a capital letter for actual values (Na,Kab, etc.).

As explained in the introduction, we begin by consider-
ing the cases without recentness, and then extend the defin-
itions to include recentness.

2.1 Aliveness

The following is what we consider to be the weakest
reasonable definition of authentication.

Definition 2.1 (Aliveness). We say that a protocol guar-
antees to an initiatorA alivenessof another agentB if,
wheneverA (acting as initiator) completes a run of the pro-
tocol, apparently with responderB, thenB has previously
been running the protocol.

Note thatB may not necessarily have believed that he was
running the protocol withA. Also, B may not have been
running the protocolrecently.

Many protocols fail to achieve even this weak form of
authentication. In several cases, this is due to an intruder
launching a mirror attack, simply reflecting an agent’s mes-
sages back at himself; examples appear in [2]. In other,
more subtle attacks, an intruder attacks an agentA by us-
ing a second run of a protocol with the same agentA, so as
to use the second run as an oracle; for example the attack
on the BAN version of the Yahalom protocol [3] in [24].
Other attacks are due to more blatant errors; for example,



the attack on the SPLICE protocol [25] in [9], which ex-
ploits the fact that key delivery messages (from a key server)
do not include the identity of the agent whose key is being
delivered.

Closely related to the notion of aliveness is the case
where, whenA completes a run of the protocol, apparently
with B, thenB has previously been present, but not ne-
cessarily running the protocol in question—it may be thatB has been running a completely different protocol. This
raises the question of interaction between protocols, where
an intruder can learn information in one protocol that he can
use in an attack on another protocol. In this paper we mainly
restrict our attention to systems running a single protocol;
we briefly discuss how to extend these techniques to cover
systems running several protocols in Section 4.5. However,
in general it will be very difficult to prove results about a
system running several protocols: we need to be sure that
no protocol acts as an oracle for any other.

2.2 Weak agreement

We strengthen the above definition to insist thatB agreed
he was running the protocol withA.

Definition 2.2 (Weak agreement). We say that a pro-
tocol guarantees to an initiatorA weak agreementwith an-
other agentB if, wheneverA (acting as initiator) com-
pletes a run of the protocol, apparently with responderB,
thenB has previously been running the protocol, apparently
with A.

Note thatB may not necessarily have been acting as respon-
der.

Several protocols achieve a guarantee of liveness, but fail
to guarantee weak agreement. The normal scenario is that
the intruder imitates an agentB to attackA, by usingB as
an oracle in a parallel run in which the intruder adopts his
own identity; thusA believes he has been running the pro-
tocol withB, butB does not believe he has been running
the protocol withA—B thinks he has been running the pro-
tocol with the intruder. Examples include my attack on the
Needham-Schroeder Public Key protocol [16] in [10].

2.3 Non-injective agreement

The following definition adds the condition that the two
agents agree as to which roles each was taking, and that they
agree upon some of the data items used in the exchange.

Definition 2.3 (Non-injective agreement). We say that a
protocol guarantees to an initiatorA non-injective agree-
mentwith a responderB on a set of data itemsds (whereds
is a set of free variables appearing in the protocol descrip-
tion) if, wheneverA (acting as initiator) completes a run of

the protocol, apparently with responderB, thenB has pre-
viously been running the protocol, apparently withA, andB was acting as responder in his run, and the two agents
agreed on the data values corresponding to all the variables
in ds.
Note that this does not guarantee that there is a one-one
relationship between the runs ofA and the runs ofB (hence
the adjective “non-injective”):A may believe that he has
completed two runs, whenB has only been taking part in a
single run.

A few protocols achieve a guarantee of weak agreement,
but not non-injective agreement. For example, if the ori-
ginal Andrew protocol [21] is adapted to detect mirror at-
tacks, then it achieves weak agreement, but does not achieve
non-injective agreement on all the data values: an attack
in [3] shows how an intruder can getA to accept a key dif-
ferent from the one used byB.

2.4 Agreement

We use the term, “injective agreement”, or simply
“agreement”, when we want to insist that there is a one-one
relationship between the two agents’ runs. This one-one re-
lationship may be important in, for example, financial pro-
tocols.

Definition 2.4 (Agreement). We say that a protocol guar-
antees to an initiatorA agreementwith a responderB on a
set of data itemsds if, wheneverA (acting as initiator) com-
pletes a run of the protocol, apparently with responderB,
thenB has previously been running the protocol, apparently
with A, andB was acting as responder in his run, and the
two agents agreed on the data values corresponding to all
the variables inds, and each such run ofA corresponds to a
uniquerun ofB.

We will use the termfull agreementto refer to agreement on
all the atomic data items used in the protocol run. For vari-
ous reasons, we consider this to be the most useful defini-
tion of authentication: it insists that the two agents agree on
all the essential features of the protocol run, while avoiding
specifying features that are hard to achieve and less likely
to be required.

A few protocols achieve non-injective agreement, but not
(injective) agreement: an agentA is tricked into thinking
thatB is trying to establish two sessions with him, whereasB was only trying to establish a single run. For example,
in the Kerberos protocol [15], the freshness of one agent
is guaranteed only by a timestamp; thus, an intruder can
replay these messages (within the lifetime of the timestamp)
to complete a second run; note that this attack assumes that
the agents do not check that the timestamps they receive are
distinct from all previous timestamps; Bellovin and Merritt



report [1] that early implementations did not perform this
check. Similar attacks are described in [13].

2.5 Recentness

Finally, we lift the above definitions to ensure recentness.
The meaning of “recent” will depend on the circumstances:
sometimes we will take it to mean within the duration ofA’s
run; sometimes we will take it to mean at mostt time units
beforeA completed his run, for suitablet, called theau-
thentication time(clearly the value oft will be implementa-
tion dependent); the designer or implementer of the protocol
should make clear what degree of recentness is guaranteed.
We use the termsrecent aliveness, recent weak agreement,
recent non-injective agreement, and recent agreementto
refer to the above specifications strengthened to insist thatB’s run was recent, rather than just at some time in the past;
we will add the phrase “withint time units” where the pro-
tocol guarantees a particular authentication time.

Some protocols meet a particular authentication specific-
ation without recentness, but fail to meet the correspond-
ing specification with recentness. For example, consider
the following one-step protocol, wherekab is a key shared
betweenA andB:

Message1: A! B : fA; kgkab :
This protocol givesB a guarantee of non-injective agree-
ment onk, but gives no guarantee of recentness, because
the message contains no information thatB knows to be
fresh. The protocol can be strengthened to achieve recent
non-injective agreement by adding a timestamp to the mes-
sage.

Also, in a setting where key compromise is possible,
there is a well known attack on the Needham-Schroeder
Secret Key Protocol [16], presented in [4]: once a key has
been compromised, the intruder may replay messages from
an earlier protocol run so as to imitate the initiator; thus
(if we make the reasonable assumption that compromising
keys takes quite a long time) the protocol guarantees non-
injective agreement, but not recent non-injective agreement.

2.6 Discussion

All of the above definitions used a phrase of the form “B
has previously been running the protocol”. We take this to
mean thatB has progressed at least as far as the last mes-
sage thatB sends; clearlyA can never be assured thatB
received any subsequent messages. Note that it is possible
to define weaker specifications, whereA is only assured thatB has at least started the protocol.

It should be obvious that the above forms of authentica-
tion without recentness are in increasing order of strength,
as are the forms of authentication with recentness. Further,

each definition using recentness is stronger than the corres-
ponding definition without recentness. We will prove these
facts later, after we have formalized the authentication spe-
cifications.

2.7 Comparisons

Roscoe [20] introduces the notion of an intensional spe-
cification:

No node can believe a protocol run has completed
unless a correct series of messages has occurred
(consistent as to all the various parameters) up
to and including the last message the given node
communicates.

That is, if an agent completes a protocol run, then the pro-
tocol must have proceeded essentially as the protocol de-
signer intended: each agent must have seen the expected
sequence of messages, all agreeing on the values of atomic
data items, and with the correct relative orders of messages.

Roscoe shows how to produce a CSP representation of
the above specification; this specification can be checked
using the model checker FDR, in a setting very similar to
our own.

This is a strong definition of authentication, stronger than
our definition of full agreement. It is at least as strong as full
agreement, for suppose a protocol satisfies the intensional
specification, and that an agentA believes it has completed
a protocol run withB. Then from the intensional specifica-
tion,B’s view of the protocol run must agree withA’s, and
in particularB must have thought he was running the pro-
tocol withA, and the two agents agree upon the roles each
take, and upon the values of all atomic data items; further,
from the way in which intensional specifications are form-
alized in CSP, there must be a one-one relationship betweenA’s runs andB’s runs. Hence full agreement is achieved.

The intensional specification is strictly stronger than full
agreement for two reasons:� In some protocols, an agentA receives an encrypted com-
ponent that he is not supposed to decrypt, but merely for-
ward to another agentB. In these cases, there is a simple
attack where the intruder replaces this component with an
arbitrary component, but then reverses the switch whenA
tries forwarding the component toB. This would not be
considered an attack when using the full agreement specific-
ation, but is an attack under the intensional specification.� Consider a protocol where a server sends two consecutive
messages toA and toB, respectively. The intensional spe-
cification would insist thatA andB receive these messages
in the same order. However, there is a simple attack where
the intruder delaysA’s message so that it arrives just after



B receives his message. However, this would not be con-
sidered an attack when using the full agreement specifica-
tion.

It is arguable whether the above two attacks should really
be considered as attacks. However, there are settings where
the precise contents or the precise orderings of messages
may be important. We would stress again our philosophy
that protocol designers should specify precisely what their
protocols are supposed to achieve.

The intensional specification does not, in general, give
any guarantee of recentness. For example, consider the one
step protocol from Section 2.5; this meets the intensional
specification, but does not achieve recent authentication.
However, in most protocols recentness is guaranteed by the
way in which messages are interleaved: suppose the pro-
tocol is such thatA sends a message toB and later receives
a message back fromB (possibly via third parties); suppose
further thatA is implemented to time out if the run is tak-
ing too long, so any actions that occurred sinceA started
the run should be considered recent; then if the intensional
specification is met, then it must be the case that the corres-
ponding actions ofB occurred afterA started this protocol
run, soB’s actions must indeed have been recent. Roscoe
discusses other ways in which intensional specifications can
be adapted to deal with time.

Diffie, van Oorschot and Wiener [5] have a similar defin-
ition of authentication. They specify that when an agentA
completes a run of the protocol, apparently withB, thenB
has been running the protocol, and the two agents’ records
of the runsmatch: that is, the messages each sees are the
same in all fields relevant to authentication, and the agents
agree upon which messages were incoming and which out-
going. However, the definition of matching is such thatB
may not necessarily think that he was running the protocol
with A. Thus this definition is weaker than our weak agree-
ment specification.

Gollmann [7] defines four goals of authentication proto-
cols. We consider here two of these goals, which concern
whether a protocol authenticatesB to A. Goal G3 states
that a cryptographic key associated withB has to be used
during the protocol run. (The term “cryptographic key” is
intended to be interpreted fairly broadly, so as to include,
for example, shared secrets used for authentication; in the
case where a key is shared between two agents, the word
“associated” is supposed to be interpreted as referring to the
agent who actually used the key in question.) The reason-
ing behind G3 is thatB should be authenticated only if an
action has occurred that must have been performed byB.
Hence this is similar to our recent aliveness specification.

Goal G4 states that the origin of all messages in the pro-
tocol has to be authenticated. In other words, ifA receives
a message, apparently fromB, thenB previously tried to

send this message toA. It is left vague whetherB necessar-
ily sent this message recently, and whetherA may receive
two messages for a single message sent byB, and so the
above goal can be interpreted in different ways. However,
this goal is clearly similar to Roscoe’s intensional specific-
ation.

Paulson [17, 18] uses the theorem prover Isabelle to ana-
lyse security protocols. He proves properties of the form:
if A receives a message of a certain form, which appears
to come fromB, thenB indeed sent that message. Thus
his notion of authentication is similar to our non-injective
agreement. (The form of authentication he considers is ne-
cessarily non-injective, because of a feature of his model
that allows an agent to respond several times to a single
message; there is no real reason why this feature could not
be changed, in which case he would be able to deal with
injective agreement, although possibly at additional com-
putational expense.)

3 Modelling protocols using CSP

In this section we briefly review the method we use for
modelling security protocols using CSP. For a fuller de-
scription, the reader is referred to [11]. All the authentica-
tion specifications we are considering are safety specifica-
tions (as opposed to liveness specifications); we will there-
fore be working in the traces model of CSP, which is ad-
equate for expressing safety properties.

As an example, we consider the 3 message version of
the Needham-Schroeder Public Key protocol [16, 10]. The
protocol can be defined by:

Message1: A! B : A;B; fna;AgPK(B)
Message2: B ! A : B;A; fna; nbgPK(A)
Message3: A! B : A;B; fnbgPK(B) :

Each agent is represented by a CSP process that sends
and receives the appropriate protocol messages, augmented
with extra events that signal the beliefs of the agent. For
example:INITIATOR0(A; na; pka) b=2B:Agent env:A:(Env0; B) !comm:A:B:(Msg1; Encrypt:(PK(B); hna;Ai)) !2nb:Noncecomm:B:A:(Msg2; Encrypt:(pka; hna; nbi))!signal:Running:INIT -role:A:B:na:nb!comm:A:B:(Msg3; Encrypt:(PK(B); hnbi))!signal:Commit:INIT -role:A:B:na:nb!SKIP

The way in which protocol messages are represented by
CSP events should be obvious; for example, the eventcomm:A:B:(Msg1; Encrypt:(PK(B); hna;Ai))



represents the message:

Message1: A! B : fna;AgPK(B) :
The channelsignal is used to express properties of

the beliefs of the agent. An event of the formsignal:Running:role:A:B:na:nb represents that the agentA be-
lieves that he is taking the rolerole in a run of the protocol
withB, using noncesna andnb; such an event is performed
immediately before the last message thatA sends. An
event of the formsignal:Commit:role:A:B:na:nb repres-
ents that the agentA thinks he has successfully completed
a run of the protocol, taking rolerole, with B, using the
noncesna andnb; such an event is performed afterA’s last
event in the protocol. Thesesignal events will be used in
formalizing our authentication specifications. The commit
and running signals include (in some standard order) all the
data items that the agents are supposed to agree on.

In order to represent the fact that the intruder may in-
terfere with the normal operation of the protocol, a CSP-
renaming is applied to the above processes, with the effect
that outputs may be intercepted by the intruder (and so fail
to reach their intended destination), and inputs may be faked
(that is, produced by the intruder).

The parameters of these processes are instantiated with
appropriate actual values; this allows us, for example,
to define severalINITIATOR processes with the iden-
tity Alice, representing that the agentAlice may run the
protocol several times.

The processes are then combined together in parallel
with a process representing the most general intruder who
can interact with the protocol. This intruder may: oversee
messages passing in the system, and so learn new messages;
intercept messages; decrypt messages he has seen, if he has
the appropriate key, and so learn new (sub-)messages; en-
crypt messages he has seen with keys that he knows so as
to create new messages; and use the knowledge he has ac-
cumulated to send fake messages.

FDR can be used to check whether the resulting system
correctly achieves the goals of the protocol. Formalizing
these goals is the subject of the rest of this paper.

4 Formalizing authentication specifications
without recentness

As explained in the introduction, we begin by formal-
izing authentication specifications that ignore issues of re-
centness. In the next section we adapt these specifications
to include recentness.

We introduce two pieces of notation that we will need. IfP is a process, we define�P to be its alphabet. We writePn for the interleaving ofn copies ofP :Pn b= P jjj : : : jjj P| {z }n

Formally: P 0 b= STOP andPn+1 b= P jjj Pn. We will
take�P 0 = �P .

We now formalize the different authentication specifica-
tions; we consider the specifications in the reverse order to
that in the introduction. We will consider a pair of agents,A andB, taking the rolesA-role andB-role, respectively,
and consider the question of whether the protocol correctly
authenticatesB toA.

4.1 Agreement

We begin with theagreementspecification. Suppose the
protocol uses two data itemsd1 andd2, and we want to test
whether the protocol guarantees to an arbitrary agentA tak-
ing the roleA-role, agreement with an agentB, taking the
role B-role, on both the data itemsd1 andd2. This will
be the case if, wheneverA completes a run of the protocol
apparently withB, thenB has previously been running the
protocol, apparently withA, using the same values for the
data items, and there is a one-one relationship betweenA’s
runs andB’s runs. Now,B running the protocol, taking the
roleB-role, apparently withA, using particular valuesd01
andd02 for the data itemsd1 andd2, is represented by the
event signal:Running:B-role:B:A:d01:d02; similarly, A
completing the protocol, taking the roleA-role, apparently
with B, using the same values for the data items, is rep-
resented by the eventsignal:Commit:A-role:A:B:d01:d02.
Thus we will want to ensure that the abstraction of the sys-
tem to the appropriate alphabet satisfies the following spe-
cification:Agreement(B-role; A-role; fd1; d2g)(B) b=signal:Running:B-role:B?A?d01?d02 !signal:Commit:A-role:A:B:d01:d02 ! STOP :
This specification says that wheneverA performs an event
of the form signal:Commit:A-role:A:B:d01:d02, thenB
has previously performed a corresponding eventsignal:Running:B-role:B:A:d01:d02. That is, wheneverA signals
that he thinks he has completed the protocol, taking the
roleA-role, with B, using the data valuesd01 andd02, thenB has previously been running the protocol, taking the roleB-role, with A, using the same data values. (Remember
that we are working in the traces model of CSP, so the above
specification does not insist that asignal:Commit event
must occur.)

Figure 1 illustrates the meanings of the arguments.

Consider the case where each agent may take part in a
single run of the protocol. We may test whether the pro-
tocol correctly authenticates a particular agentB, taking
role B-role, to an arbitrary agentA, taking roleA-role,



Role of agent being authenticated? Role of agent to whom authentication is made? Data items agreed upon?Identity of agent being authenticated?Agreement(B-role; A-role; ds)(B)
Figure 1. The arguments of Agreement

with agreement on all the data items, by testing:Agreement(B-role; A-role; fd1; d2g)(B) vSY STEM n (��X)
whereX = �Agreement(B-role; A-role; fd1; d2g)(B));

where� is the set of all events. (The fact thatA’s identity is
not included in the parameters of the processAgreement
has the effect of making the above refinement check test
whetherB is correctly authenticated toall agents who
take the roleA-role. The reason why we test whether a
singleagentB is correctly authenticated, rather than testing
whether all agents who take the roleB-role are correctly
authenticated, is purely pragmatic: the latter check would
become very slow for large systems. The reason for the
slightly odd parameterization is to keep consistency with
the toolCasper, which we will discuss in the concluding
section, which automatically produces CSP descriptions of
security protocols, and specifications similar to the above,
from a more abstract definition.)

The above form of refinement check will be very com-
mon in the rest of this paper, so we introduce a shorthand
for it. SY STEM meets SPEC b=SPEC v SY STEM n (�� �SPEC):
So the above test is written:SY STEM meetsAgreement(B-role; A-role; fd1; d2g)(B):

For example, to test whether the Needham-Schroeder
Public Key Protocol guarantees to an arbitrary responderB
agreement with the initiatorAlice on the noncesna andnb,
we should test:SY STEM meetsAgreement(INIT -role; RESP -role; fna; nbg)(Alice):
It turns out that the above specification is not met (the pro-
tocol does not correctly authenticate the initiator), as can be
seen from the attack in [10, 11].

We now generalize the above refinement checks to con-
sider the case where the agent being authenticated can per-
form more than one run of the protocol. In this case, we
want to ensure thateveryCommit event is matched by a
correspondingRunning event. IfB can perform at mostn
runs, then there will be at mostn Running events, so we
want to consider the following refinement check:SY STEM meetsAgreement(B-role; A-role; fd1; d2g)(B)n:
Note that this specification guarantees that only oneCom-mit event may correspond to eachRunning event, thus
ensuring that the initiator commits to only a single session
for each run of the protocol performed by the responder.

In some cases it will be the case that we want to ensure
that the agents involved agree on the values of some data
items, but allow them to disagree on other data items. For
example, if we want the agents to agree ond1, but allow
them to disagree ond2, then we may use the specification:Agreement(B-role; A-role; fd1g)(B) b=signal:Running:B-role:B?A?d01?d002 !signal:Commit:A-role:A:B:d01?d02 ! STOP
If we do not insist that they agree on any data items, then
we may use the specification:Agreement(B-role; A-role; fg)(B) b=signal:Running:B-role:B?A?d001?d002 !signal:Commit:A-role:A:B?d01?d02 ! STOP
In general, the third argument of theAgreement macro
should be a subset of the data variables appearing in thesignal:Running andsignal:Commit events.

In the above, we have considered a protocol using a
pair of data values; it should be obvious how to gener-
alize to an arbitrary set of data variablesds. We will
write signal:Running:B-role:B:A:ds0 to indicate agentB thinking that he is running the protocol using valuesds0
for the data variablesds, and similarly for theCommit sig-
nal (strictly speaking,ds is aset, andds0 is an enumeration
of the elements ofds, in some standard order).

It should be obvious that if a protocol guarantees agree-
ment on some setds1 of data values, then it will guarantee



agreement on any smaller setds2. The following lemma
formalizes this.

Lemma 4.1. If ds2 � ds1 andSY STEM meetsAgreement(B-role; A-role; ds1)(B)n;
then SY STEM meetsAgreement(B-role; A-role; ds2)(B)n:
4.2 Non-injective agreement

In the previous subsection, we insisted that there was a
one-one relationship between the runs ofA and those ofB.
In some settings, this injectivity may not be important, and
so we will allowA to commit an arbitrary number of times,
for each run ofB:NonInjectiveAgreement(B-role; A-role; fd1; d2g)(B) b=signal:Running:B-role:B?A?d01?d02 !RUN(fsignal:Commit:A-role:A:B:d01:d02g):
That is,A may think he has completed an arbitrary number
of runs, taking roleA-role, withB, using data valuesd01 andd02 (i.e., perform an arbitrary number ofsignal:Commit:A-role:A:B:d01:d02 events) ifB thinks he has been running
the protocol, taking roleB-role, with A, using the same
data values, at least once (i.e., if he has performed at least
onesignal:Running:B-role:B:A:d01:d02 event).

This can be adapted to insist upon agreement of only
some of the data values; for example:NonInjectiveAgreement(B-role; A-role; fd1g)(B) b=signal:Running:B-role:B?A?d01?d002 !RUN(fsignal:Commit:A-role:A:B:d01:d02 jd02 2 Datag):

Non-injective agreement can then be tested analogously
to agreement:SY STEM meetsNonInjectiveAgreement(B-role; A-role; ds)(B)n:

As with injective agreement, agreement on some set of
data items implies agreement on any smaller set.

Lemma 4.2. If ds2 � ds1 and:SY STEM meetsNonInjectiveAgreement(B-role; A-role; ds1)(B)n;
then: SY STEM meetsNonInjectiveAgreement(B-role; A-role; ds2)(B)n:

Non-injective agreement is a weaker requirement that
agreement; this is formalized by the following lemma.

Lemma 4.3. IfSY STEM meets Agreement(B-role; A-role; ds)(B)n;
thenSY STEM meetsNonInjectiveAgreement(B-role; A-role; ds)(B)n:
4.3 Weak agreement

We can weaken the previous specification, so thatA re-
ceives no guarantee as to which roleB thought he was tak-
ing, and no guarantee regarding agreement on data. We
define the specification:WeakAgreement(A-role)(B) b=signal:Running?B-role!B?A?ds0 !RUN(fsignal:Commit:A-role:A:B:ds jds 2 Data�g):
That is,A may think he has completed an arbitrary number
of runs, taking roleA-role, withB, if B thinks he has been
running the protocol, taking some roleB-role, withA, pos-
sibly using different data values, at least once.

Weak agreement can then be checked using the refine-
ment test:SY STEM meets WeakAgreement(A-role)(B)n:

The following lemma shows that weak agreement is in-
deed a weakening of non-injective agreement.

Lemma 4.4. Suppose the agentB can perform a max-
imum of m runs with roleB-role, andn runs with other
roles. If:SY STEM meetsNonInjectiveAgreement(B-role; A-role; ds)(B)m;
then:SY STEM meets WeakAgreement(A-role)(B)m+n:
4.4 Aliveness

Finally, we weaken the specification still further, so thatA receives no guarantee thatB thought he was running the
protocol withA; A merely receives a guarantee thatB was
previously running the protocol with somebody:Aliveness(A-role)(B) b=signal:Running?B-role!B?C?ds0 !RUN(fsignal:Commit:A-role:A:B:ds jds 2 Data� ^ A 2 Agentg)



That is,A may think he has completed an arbitrary num-
ber of runs, taking roleA-role, with B, if B thinks he has
previously been running the protocol.

Agreement can then be checked using the refinement
test: SY STEM meets Agreement(A-role)(B)n:

The following lemma shows that weak agreement is in-
deed a strengthening of aliveness.

Lemma 4.5. IfSY STEM meetsWeakAgreement(A-role)(B)n;
then SY STEM meets Aliveness(A-role)(B)n:
4.5 Disagreeing over the protocol being run

All of the above discussion has assumed that we are op-
erating in a system with only a single protocol. However,
the above techniques are easily extended to cover the more
general case.

We may augment thesignal events with an extra field
representing the identity of the protocol that an agent thinks
he’s running, and can then adapt the authentication spe-
cifications appropriately. For example, the following spe-
cification is an adaptation of theAliveness specification,
which guarantees that when one agent completes a run of
protocolprotId, then the other agent was running the same
protocol:AlivenessSameProtocol(protId; A-role)(B) b=signal:Running:protId?B-role!B?C?ds0 !RUN(fsignal:Commit:protId:A-role:A:B:ds jds 2 Data� ^ A 2 Agentg)
Similarly, the following specification allows the agents to
be running different protocols:AlivenessSameProtocol(protId; A-role)(B) b=signal:Running?protId0?B-role!B?C?ds0 !RUN(fsignal:Commit:protId:A-role:A:B:ds jds 2 Data� ^ A 2 Agentg):
5 Formalizing authentication specifications

with recentness

As described in the introduction, the specifications from
the previous section do not insist that the runs are in any way
contemporaneous: one agent may commit even though the
other has not performed any eventsrecently. In this section

we strengthen the specifications to insist that the runs are
contemporaneous. There are a number of ways of achiev-
ing this: we outline two possible approaches in the follow-
ing two subsections; two other possible approaches are de-
scribed in [12].

Throughout this section we will make an implementation
assumption that no run lasts for too long: if a run lasts for
longer than some allowable maximum, then the agent(s) in
question should time out and abort the run. This will mean
that any two events within the duration of a particular run
should be considered to be recent to one another.

5.1 Recentness through freshness

In some cases, the recentness of an agent’s run can be
guaranteed by agreement on a fresh data value. For ex-
ample, consider the example of the Needham-Schroeder
Public Key Protocol, and suppose we have shown that:SY STEM meetsAgreement(RESP -role; INIT -role; fna; nbg)(Bob)n;
for some agentBob. That is: if any initiatorA completes
a run of the protocol, apparently withBob, using particular
values for the nonces, thenA can be sure that at some time
in the past,Bob believed that he was acting as responder in
a run of the protocol withA, using the same values for the
nonces. However, it is assumed thatA invented the value
of na as a fresh value for this particular run. HenceBob’s
run must have occurred at some time afterA invented this
nonce. Thus, from the implementation assumption aboutA’s runs not lasting too long,Bobmust have performed this
run recently.

This style of argument can be used with both theAgree-ment andNonInjectiveAgreement specifications, and
will guarantee recentness whenever the agents agree on
some data value that is freshly invented by the agent to
whom the authentication is made. However, when there is
no agreement upon a fresh variable, an alternative approach
has to be found.

5.2 Timed authentication

We now consider an alternative method of ensuring re-
centness, namely through introducing a representation of
time into the CSP model of the system. We represent the
passage of one unit of time by an eventtock. We then in-
terpret “recently” to mean within the lastAuthT ime time
units, whereAuthT ime is a parameter provided by the pro-
tocol tester, called theauthentication time. Below, we will
check whether the protocol correctly achieves recent au-
thentication by performing a test of the form: wheneverA



commits to a session, apparently withB, thenB was run-
ning the protocol within the lastAuthT ime tocks (possibly
with other conditions, corresponding to the different forms
of authentication).

In order for the protocol to meet such a specification, we
will assume that each agent will timeout if a particular run
lasts for longer than some timeMaxRunT ime. (Clearly
if such an implementation assumption is not met, we have
little chance of meeting a timed specification.) Below, we
will define a function that takes an untimed definition of an
agent, and gives a timed version, with such a timeout.

First, we define two subsidiary processes:TOCKS(n)
will perform at mostn tocks before terminating;TSKIP
will perform an arbitrary number oftocks before terminat-
ing: TOCKS(n) b=

if n = 0 thenSKIP
else(tock ! TOCKS(n� 1) 2 SKIP );TSKIP b= tock ! TSKIP 2 SKIP:

We now define a functionAddT ime that turns an untimed
representationP of an agent into a timed one. The timed
process initially allows an arbitrary amount of time to pass
before a run begins. Once the run has begun, at mostMaxRunT ime tocks should occur during the run itself: if
an extratock occurs, then the agent should timeout, and just
allow time to pass before terminating. This may be defined
as follows:1AddT ime(P;MaxRunT ime) b=tock ! AddT ime(P;MaxRunT ime)2((P jjj TOCKS(MaxRunT ime))4 tock ! TSKIP ):
(In fact, the above definition allows the agent to non-
deterministically abort the run after fewer thanMaxRun-T ime time units; this corresponds to the agent aborting
for some reason we are not modelling, such as user inter-
vention. However, if more thanMaxRunT ime tocks oc-
cur, then one of thetocks must trigger the timeout. Note,
though, that the trace set of the process is not affected by
this possibility of early timeout.)

We apply theAddT ime function to all the processes rep-
resenting untimed agents, so as to build timed versions; we
then combine these timed agents together to build a timed
system.

We are now ready to produce the timed authentication
specifications. We use theAddT ime function to lift the un-
timed agreement specifications to timed versions. For ex-

1The processQ 4 R represents an interrupt mechanism; it initially
acts likeQ, but may be interrupted by the performance of any event ofR,
and will then continue to act likeR.

ample:T imedAgreement(B-role; A-role; ds; AuthT ime)(B)b=AddT ime(Agreement(B-role; A-role; ds)(B);AuthT ime):
The above process allows at mostAuthT ime tocks during
the execution ofAgreement(B-role; A-role; ds)(B), i.e.,
between thesignal:Running andsignal:Commit events;
thus it specifies that theCommit signal must occur withinAuthT ime tocks of theRunning signal.

We can test whether a system correctly achieves timed
agreement by testing whether the appropriate abstraction of
the system (built from timed agents) refinesn copies of the
above specification:SY STEM meetsT imedAgreement(B-role; A-role; ds; AuthT ime)(B)n:
But now we must redefine the( )n notation so as to syn-
chronize all the individual specifications ontock events:Pn b= P kftockg : : : kftockg P| {z }n :
Formally:P 0 b= RUN(ftockg) andPn+1 b= P kftockg Pn.

The other untimed authentication specifications can sim-
ilarly be lifted to timed specifications by using theAdd-T ime function:T imedNonInjectiveAgreement(B-role; A-role; ds; AuthT ime)(B)b=AddT ime(NonInjectiveAgreement(B-role; A-role; ds)(B);AuthT ime);T imedWeakAgreement(A-role; AuthT ime)(B)b=AddT ime(WeakAgreement(A-role)(B); AuthT ime);T imedAliveness(A-role; AuthT ime)(B)b=AddT ime(Aliveness(A-role)(B); AuthT ime):

The following lemma is analogous to the lemmas of Sec-
tion 4.

Lemma 5.1.� If ds0 � ds andSY STEM meetsT imedAgreement(B-role; A-role; ds; AuthT ime)(B)n



then SY STEM meetsT imedAgreement(B-role; A-role; ds0; AuthT ime)(B)n:� If ds0 � ds andSY STEM meetsT imedNonInjectiveAgreement(B-role; A-role; ds; AuthT ime)(B)n
then SY STEM meetsT imedNonInjectiveAgreement(B-role; A-role; ds0; AuthT ime)(B)n� If SY STEM meetsT imedAgreement(B-role; A-role; ds; AuthT ime)(B)n
then SY STEM meetsT imedNonInjectiveAgreement(B-role; A-role; ds; AuthT ime)(B)n� Suppose the agentB can perform a maximum ofm runs
with roleB-role, andn runs with other roles. IfSY STEM meetsT imedNonInjectiveAgreement(B-role; A-role; ds; AuthT ime)(B)m
then SY STEM meetsT imedWeakAgreement(A-role; AuthT ime)(B)m+n� IfSY STEM meetsT imedWeakAgreement(A-role; AuthT ime)(B)n
thenSY STEM meetsT imedAliveness(A-role; AuthT ime)(B)n:

The timed authentication specifications are antimono-
tonic in the time parameter.

Lemma 5.2. Let T imedSpec( ) be one of the timed
authentication specifications, with parameter representing
the time (for example,T imedSpec(t) = T imedAlive-ness(A-role; t)(B)), and lett � t0. Then ifSY STEM meets T imedSpec(t)n
then SY STEM meets T imedSpec(t0)n:

Finally, the timed specifications imply the corresponding
untimed specifications.

Lemma 5.3. Let Spec be one of the untimed authentic-
ation specifications, and letT imedSpec be the corres-
ponding timed specification, i.e.,T imedSpec = Add-T ime(Spec; AuthT ime). If SY STEM meets T imed-Spec thenSY STEM meets Spec.
6 Conclusions

In this paper we have considered the question of the
meaning of the term “entity authentication”. We argued
that different authentication requirements may be appropri-
ate for different circumstances, and identified a number of
possible authentication specifications.

We formalized each authentication specification using
the process algebra CSP, used this formalism to study their
relative strengths, and showed how to use the model checker
FDR to test whether a system running a protocol achieves
the various authentication requirements.

Our authentication specifications have much in common
with Schneider’s work [22, 23]. He uses a trace specific-
ationT authenticates R to mean that events fromT au-
thenticate events fromR: events fromT can happen only if
there have been preceding events fromR:T authenticates R b= tr �j R = hi ) tr �j T = hi:

Note that the above test does not capture our notion of
injectivity: if an event fromR occurs, then there may be
several subsequent events fromT . Nor does it capture our
notion of recentness: the events fromT may occur some
time after the corresponding events fromR. However, it
is not hard to adapt the specification to as to capture both
injectivity and recentness.

The NonInjectiveAgreement, WeakAgreement
andAliveness tests of this paper may be seen as testing
whether aCommit signal authenticates a corresponding



Running signal. This is made formal as follows:SY STEM meetsNonInjectiveAgreement(B-role; A-role; ds)(B)iff8A 2 Agent ; ds0 2 Data� qSY STEM sat fsignal:Commit:A-role:A:B:ds0gauthenticatesfsignal:Running:B-role:B:A:ds0g;SY STEM meetsWeakAgreement(A-role)(B)iff8A 2 Agent qSY STEM satfsignal:Commit:A-role:A:B:ds j ds 2 Data�gauthenticatesfsignal:Running:B-role:B:A:ds0 jB-role 2 ROLE ^ ds0 2 Data�g;SY STEM meets Aliveness(A-role)(B)iffSY STEM satfsignal:Commit:A-role:A:B:ds jds 2 Data� ^ A 2 Agentgauthenticatesfsignal:Running:B-role:B:C:ds0 jB-role 2 ROLE ^ds0 2 Data� ^ C 2 Agentg:
Casper is a program that takes an abstract description

of a security protocol, and produces a corresponding CSP
description, suitable for checking using FDR. Each of the
authentication specifications considered in this paper have
been implemented withinCasper. ThusCasper and FDR
can be used together to test which, if any, authentication
specifications are met by a particular protocol. A num-
ber of case studies using these techniques are available via
theCasper World Wide Web page [14]; these case studies
demonstrate the practicality of our methods.

When analyzing protocols using FDR, we make a num-
ber of implementation assumptions, which are reflected in
the way we model the intruder and the honest agents. For
example: above we made the assumption that honest agents
would time out if runs are taking too long; we normally as-
sume that the intruder is unable to decrypt messages unless
he has the appropriate key; and we normally assume that
the encryption method used has no “interesting” algebraic
properties. However, none of these assumptions are really
necessary: by altering the way we model the system, we can
remove these assumptions. Note, though, that the authentic-
ation specifications discussed in this paper are independent
of the implementation assumptions, and so would still be
applicable under different assumptions.
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