
Colorado Springs Visit report

Andy Hamilton

February 18, 1988

1 Andy’s D705 Workshop Visit report

To :-

Anthony Scott-Hodgetts
Peter Cavill
S/W Group: Tony Debling, Tony King, Graeme Tozer, Russell Wayman

Central Apps: Jamie Packer, Laurie Pegrum, Alan Pinder

USA: Philip Mattos, Steve Burns and others.

And everyone else that wants it.

1.1 Overview of this Report

This report outlines the visit to Colorado Springs by Andy Hamilton of Cen-
tral Applications Group, Bristol, for the purposes of giving a 2 day workshop
to American FAE’s on the D705 Standalone Toolset, with particular empha-
sis on its use with Alien Language Compilers.

The Workshop was held on Thursday 11th and Friday 12th February 1988,
with about 15 attendees.

The report will discuss the travel arrangements, preparation arrangements,
course content, and finally conclude with a list of points that our American
friends wish to be brought to the powers that be.

All technical issues are in the second section.

1.2 The preparation

The entire course, including structure, examples, and training material, was
put together in just over a week. Many thanks to ASH’s team, especially
Tony King, for their assistance and information.

There was insufficient time to prepare training material to professional
”customer-quality” standards. The assistance with Mac slides offered by

1



Sara is greatly appreciated. Ta muchly Saz!

As a means of rehearsing the course, Central Apps kindly agreed to sit
through a trial run of the Material, on Monday 8th Feb. As a direct conse-
quence of this, the course policy was restructured in such a way as to not give
full information on any one topic in one go (so each topic would be revisited
in greater detail). This avoided making too many forward references.

Time was so short that no S/W duplicates were taken, and the training foils
were completed on the plane.

It was fortunate that I’d spoken with ASH before leaving; otherwise I’d not
have taken any American money with me. As it is, I still don’t know how
much a ”dime” is worth, except that I’ve brought five of them back home
with me.

1.3 The Flight

Ooo-err!! The flight to Colorado was very long and tiring, especially since it
was snowed-in at St Louis, Missouri, for eight hours. This meant I didn’t get
to the Clarion Hotel until 5 am, and I had to start the course that morning
at 8 o’clock. Just time for a quick bath...

In fact, if one were to do this sort of thing again, one would arrange to be
there a day early to recover from any such travel problems.

And in every case, my Psion Organizer tripped the airport metal detectors!

My discussion with Laurie before leaving led me to arrange for an Export
Licence to cover the software I would be taking out of the country. In
all, it had a commercial value of about 4400. This paperwork satisfied the
American Customs, but I had hassle at the British Customs at Gatwick on
the return leg. They were insistent that I should have filled out a ”return
goods” form on the way out of Britain, as they argued that anyone could
have typed up my Inmos Export Licence.

1.4 The Course

The Americans wanted to know how to use the Standalone toolset with our
Alien Language compilers. This really required a personal visit from some-
body at Bristol as there is no documentation to my knowledge describing
some of the ”supporting” processes required with alien programs in different
circumstances.

The Alien-languages covered were V1.3 C, V1.2 Pascal, and V1.1 FOR-

2



TRAN. All the alien compilers used were written by 3L. The toolset used
was at September 1987 one - not the one I had planned to use.

All examples were integrated closely with the material covered, and hand-
outs for reference and for the practicals were supplied for all attendees. I had
insufficient time to professionally laser-print these items. I didn’t ask the
FAE’s to write much alien code, but more to modify pre-supplied examples
to incrementally implement more complex features.

The course was heavily practical-based, beginning with the trivial ”hello
world” program in each alien language, culminating in an extravaganza of
multiple aliens running on a transputer network, on the second day.

Indeed, some FAE’s must have been so inspired by my incantations that
they proceeded to try and write a distributed Mandelbrot routine in each
alien language and have them each updating their own quarter of the screen
simultaneously. Armed with my entire set of alien documentation they em-
barked upon this adventure, and unfortunately were never seen again. Even
more unfortunately, neither was my documentation...

I was able to offer many words of advice to get people and their practicals
working, although in some cases I had no answers. In fact, I have brought
back with me several disks of American problems, which mysteriously failed
to compile and / or run, to be investigated.

Many questions from the audience were concerned with implementation de-
tail of our software, and which I was unable to fully answer at the time.
Consequently, I have a list of issues and points which I intend to pursue
quickly so I can Catnip everyone resent with the answers.

Unfortunately, the audience were hostile to the usability of the product with
alien languages, and this was not dampened any by the version incompat-
ibility problems we had with the AFSERVER. I would go so far as to say
they were singularly unimpressed with the toolset and its use with alien
compilers, although it is undeniably powerful.

The main problems arose because some of my disk media, containing the
toolset utilities that I planned to use was found to be unreadable in Col-
orado. As a consequence, we had to do the course with a toolset that was
incompatible with the alien languages software. The ramifications of this
are discussed in the technical section.

However, perhaps our difficulties be viewed as a blessing in disguise as this
is what customers themselves may face if they do not use EXACTLY com-
patible products. Since each FAE had to devise a method of overcoming
the difficulties, they will all be in a stronger position to assist the customers
with their difficulties - if they ever want anything more to do with it.

3



1.5 Things I could do better next time

1. Bring readable S/W, ie, use low density media, written on a low density
drive, with duplicates, and ensure not to X-ray anything before the
course. This part was worked out with Philip.

2. Speak louder and more authoritatively. One must learn to control the
rabble!

1.6 Conclusion

In conclusion, the course fulfilled and indeed exceeded its objectives.

On the one hand, the Americans now know how to use our existing products
to allow multiple-alien transputer networks to be constructed. This will
enable them to offer their customers the most well-balanced first-hand advice
and support.

On the other hand, I have brought back to Bristol some questions and issues
which the Americans raised during the workshop. These issues provide
valuable feedback to the design processes employed here at Inmos, and can
surely only lead to us producing better, more coherent, products. Once
I have gathered some answers to these questions, I can further assist the
Americans in their job of customer assistance in this complex area.

It is my firm belief that our engineers in other countries need this type of
course without delay if they are to be able to maintain the high customer
credibility and respect that we demand at Inmos.

4



2 Suggestions and Questions from the Americans

This is the technical bit. In detail. Indeed. INMOS.

2.1 General Information

1. Philip wants me to work with Alan Pinder and Laurie to make the
course into a proper course, suitable for fee-paying customers.

2. I need the Catnip summaries every month.

3. The USA are putting a high emphasis on micro products now, em-
barking on a big training programme for transputers and DSP.

4. The Inmos Product Registration form (Part 72 TRN 139 00) has an
incorrect zip code for the Colorado Springs postal address. There is
an erroneous 9 in the zip: it should read CO 80935 rather than CO
980935. I have a sample from Philip for perusal.

2.2 Software Issues Requiring Action

Items in this section are perceived as requiring action of some sort. The
first few items are presented in a prioritized manner, most urgent items
first. Suggestions are included where possible; generally beginning with the
words ”We must...”!

I intend to notify the American FAE’s and anyone else who wants to know,
the comments I receive on these actionable items.

1. Somebody must go through the usability of our multi-alien stuff. Cus-
tomers could not cope with the present arrangement, as it took Inmos
people long enough to get things working. If we had a friendly front-
end to all our existing utilities, to lead the user through the generation
of a harness, specific to his requirements, I believe we could transform
the appearance of our software beyond recognition.

Such a front-end would be ideal for those people who, perhaps, don’t
want to know anything about occam. These people could simply
lift their alien programs, include a few channel communication items
(which could be partially automated too) and a harness could be au-
tomatically constructed for each application. Such a front end would
greatly simplify the compilation (of occam and alien source), harness
complexities, and the linking and configuring of the system.

5



I believe such a front-end could be written in less than a month to
automatically generate an occam harness and even supervise the alien
and occam compilations and linking. This would be an addition to our
existing utilities, rather than a replacement for any of them. None of
our current software would have to be changed for such a user-interface
to be written.

Indeed, as recently as 18th Feb, our UK marketing and FAE’s asked
Central applications if such a program were possible to write in a
month or so to encourage S/W houses of the ease of porting their code
to transputers without having to know anything about occam. Even
the stages of incorporating our run-time channel communications into
customer’s existing S/W could be partially automated.

2. This is REALLY important. We must have ONE AFserver that works
with everything! The course got so seriously convoluted because the
AFserver needed by all the toolset utilities (which was an earlier ver-
sion, about Sept 87) was totally incompatible with the AFserver re-
quired by all the alien-language compilers. The incompatibility arose
because one AFserver used BYTE tags and the other used INTeger
tags, and manifested itself every time as a protocol violation.

We currently have two version 1.3 AFservers that are different !

To make matters worse, our EXE utilities supplied with toolset and
alien languages, explicitly reference by drive, name, and directory the
AFserver program. This was particularly irritating with the toolset
linker, called LINKT.EXE.

Imagine the scenario: Using a September 87 toolset and the newest
alien language compilers, we had to use the alien AFserver to compile
alien code (implicit in the alien EXE file used to call the B4 compiler),
the toolset AFserver and linker to compile the occam harness and link
the alien and occam code together. This became so ANNOYING,
to ensure the correct AFserver and linker were used at each stage,
requiring very careful set-up of DOS paths, development directories,
and AFserver names. Some FAE’s took to dynamically renaming the
AFserver so the embedded references to it within our DOS EXE pro-
grams would use the correct one at the correct time. We had real
problems in Colorado.

In summary then, we need one AFserver that works with all our util-
ities, as it should be possible for the AFserver to detect whether to
expect BYTE or INT protocol tags, and lock into that mode of opera-
tion. It is not adequate to have option flags at the AFserver command
line, since some of our .EXE programs explicitly reference the AF-
server by name and parameters. Having one multi-protocol AFserver
will alleviate so much hassle.

6



Urgent decision needed here.

3. While on this subject, the toolset linker, LINKT.EXE, which is dif-
ferent from and incompatible with the alien language linker programs,
is called exactly the same as each alien language linker. At least all
our alien language linkers (and loaders) are the same now, but unless
one is bf very careful with the DOS path names used, then almost cer-
tainly the DOS paths established to allow use of the alien compilers
will cause the wrong linker to be run.

In summary, we must either use and supply ONE linker for use with
toolset and alien programs (currently the toolset linker is different and
more powerful than the ones used by the alien language linkers), OR
we must give the toolset linker LINKT.EXE a different name from the
alien language linkers (to prevent DOS PATHs getting in the way).

4. A lot of our software is drive-dependent, for drive C:. This cov-
ers not just the toolset utilities, but also the alien language compiler
packages. This is very very BAD, as most FAE’s use drives D: or E:.
One can just imagine customers doing the same too, and using logical
drive names.

The C compiler looks for the included header file chanio.h on C:
drive. This is BAD. Again we have drive dependent utilities, if the
C compiler thinks the ”standard place” is on drive C:. This totally
precludes the use of the ”standard place” notation with logical drive
names, or multiple / partitioned hard disks.

Nothing must assume drive specificity.

Can’t we follow the practice of many other products, like Turbo C,
and use files of set-up information which describe where the ‘standard
place” is, and all the user’s own default flags and settings etc?

5. Investigation is required to find out what components of the new Func-
tion Compiler toolset fail to operate correctly with the FORTRAN
and C run-time libraries. Exhibited behaviour anomalies include the
C function scanf to hang up, and the FORTRAN output routines
WRITE to cause garbled output. No doubt these are just surface effects
of a more serious problem. But the fact is that there is some incom-
patibility between the Function Toolset utilities and out most recent
alien languages, and we must get it fixed before widespread replication
for customer sale.

6. We should document the supporting processes required for use with
alien programs. For example, we should have written examples of the
stub.filer, and the channel 0 purger, with multiple transputers and
channel connections. This should be supplied with the toolset product.

7



As it is, I am planning on writing a Technote very soon to specifically
describe what has to be done to get alien programs working with the
toolset, which tied in nicely with my course in Colorado Springs.

7. The file formats used by our utilities should be published. This is es-
pecially important since we have so many of them and they are always
being changed. I recently ran into difficulties when my toolset config-
urer objected to ”incorrect link format”. This was due to a change in
.LSC file formats between the new Function Compiler Toolset and the
previous release. It is, of course, not documented from the customer’s
standpoint.

If one were to be in a situation of having a linked SC file, without the
sources for it, and one wished to reconfigure it (perhaps as part of a
hardware upgrade to Sun’s from a PC host), then one is stuck unless
one knows how to remove system dependent additives (like loaders etc)
and re-process the system at the binary file level. Imagine how much
time this could save in final development ’adjustments”, and also in
changing a transputer software base between hosts.

This ties in with another ”customer awareness” issue. I heard recently
that we have of the order of eleven different loader bootstrap programs,
and that bootable files written on one system cannot be simply AF-
serve’d onto another system. This is crazy. How can we give customers
an easy hardware upgrade path (eg from PC to SUN) if all the boota-
bles have to be redone from scratch? If we had a published file format,
and utilities to strip loaders etc off binary (.BIN, .LSC, .B4, and BT
files), then this would significantly enhance the Inmos computability
strategy. We could promote it as a toolset feature, rather than keeping
quiet about the whole issue. The marketing team would love it!

8. We need some sort of debug facilities with our alien systems. Is this
in the pipeline?

9. We need a mechanism to automatically unflatten TDS folds into flat
files for use with toolset, preferably one that does not destroy all the
comments in the top fold crease line. The utility should also make
appropriate SC files into #SC files, with prompting to the user for a
file name to use for each #SC. The bones of such a device already
exists in the form of the toolset FDEP utility, which walks (briskly!)
through toolset occam code and looks for #SC files and library usage
(to make file dependency information since the order of compilation
and linking of toolset occam source is critical). This could probably be
hacked to traverse a TDS-format file and search for similar things and
generate the correct set of #SC and #INCLUDE files. How about it

8



then? Customers will want this as a development upgrade path from
their TDS commitments.

10. We need the capability to run our alien compilers with the AFserver’s
-:e option safely. Currently, all our alien compilers may inadvertently
set the transputer error flag during normal operation (what sort of
normal operation?). Surely, as with occam, being able to halt on error
is critical to containing a rogue process. Surely we should have a
compile-time option to exclude the generation of code that could set
the error flag, at the recognised expense of performance.

11. If any of our alien language programs exceed the amount of stack
space allocated to them, they fail unpredictably. Not very good for a
”secure” system. So, can’t a run-time routine be linked in that checks
for this and can give appropriate warning to the program in danger of
failing?

12. The FAE’s would prefer to see all manuals bound into one, rather than
having a Delivery Manual, a User Manual, and a Reference Manual, for
each alien language. This also applies to the toolset documentation.

13. The FAE’s would prefer for the occam compiler to be able to produce
more than one error at each go. Currently, it terminates at each error
it finds. Is this possible, perhaps as an option flag supplied to the
compiler, to be able to go through all the source code and list all
possible errors (on the proviso that some errors may be caused entirely
by preceding ones)?

14. FAE’s were concerned that the occam compiler will die if there are
any TAB characters in the occam source file. They felt it was safe to
assume the default of 8 spaces for one tab character, as most editors
output tabs just for the hell of it. If it was suitably prominent that
the compiler used 8 spaces to one TAB (or perhaps a compiler option
could specify an alternative sizing - very flexible), then this would al-
low toolset usage with every editor on the market. Remember that a
”big feature” of the toolset is that it allows the user to use a devel-
opment environment with which they are familiar - must we also add
the constraint that TABS are taboo?

15. The FAE’s believe that it would be useful for an alien-language pro-
gram to be able to know what channel it booted from. This could per-
haps be provided by a run-time library utility. Such a facility would be
useful to allow a program to communicate with the thing that booted
it, (eg like TDS does with the host), in situations where a program
may be booted from arbitrary links depending upon its purpose. So,

9



is there a need for an ’establish boot link” utility, and could one be
provided easily?

16. It ought to be possible to use the ’output.or.fail.t” set of utilities with
alien languages. The run-time library utilities could provide each of
their four channel communication primitives with the two types of
failure detection and correction associated with resilient systems (as
available from occam) - that of abort communication on timeout, and
abort communication on signal from another process. It is recognized
that such capability could probably be provided at the occam harness
level by having those parts of an alien, which are to communicate with
hard links, wrapped-up by an occam process to provide the failure
recovery needed (is even this possible with toolset and aliens?).

17. The C compiler seems to print trace guff on the screen when given a
path name when it compiles something. The screen display observed
is perhaps that of the T-code instructions being generated by the com-
piler.

In fact, Glenn Hill and I have seen this behaviour with the FORTRAN
compiler in connection with the Spice project, and observed a factor
of about fifty times reduction in speed of compiler output.

Something should be done about this.

18. The C compiler behaves awkwardly In some situations: For example,
I am informed that according to Kernighan & Ritchie C (the standard
which our compiler follows), with arrays &buff is the same as buff as
a parameter. Yet using this form with our run-time library routine
_inmess results in a compiler error.

As another example, if any #include files do not terminate with a
CR/LF, then the C compiler is unable to return to the original (calling)
file - it gets stuck in the satellite included file. I have an example of
this on my disk for the S/W people.

I also have an example of the C compiler behaving differently to the
Turbo C compiler in a casting operation. Our compiler appears to
cast differently.

Putting a C while loop with no actions (ie just a semicolon after it)
to cause a live-lock causes utterly strange behaviour - it causes the
entire program to die with no output at all. This ties in with the item
discussing a problem whereby ”if something would go wrong, then it
can go wrong temporally before it happens anyway”.

19. Under some conditions, an alien program is called with an (undocu-
mented) support process called stub.filer, which exhibits the be-
haviour of an AFserver. It is used primarily by programs that expect

10



to be sitting on the AFserver (although only one can unless one uses
a special multiplexer process). Now, if a transputer program sits on
the server, it is called with a support process called screen.handler.
However, the parameters required by these support processes are dif-
ferent (one is a subset of the other), but I was asked it it would be pos-
sible to make them ”plug-compatible”, with a view to making things
clearer for the user.

Perhaps this could be combined with the ”channel 0 purger” which
is required with every instantiation of the stub.filer (except with
Pascal?), and which is done implicitly within the screen.handler
process anyway.

20. All our utilities should display a message on the screen to indicate
what files they are writing. For example, the FDEP does (as it writes
the .LNK and .DEP files), and this is useful. But the C compiler does
nothing visible if it compiles successfully. It would be reassuring to
have it display a message to indicate the writing of file cprog.bin,
for example. The occam compiler is similarly quiet. Although, these
utilities do have ”information” switches, in the C and occam cases they
don’t give filename creation information anyway. Surely the output
files being written should be default information?

21. Regarding our alien run-time libraries, if more than one alien requires
the same routine from a library, then the linker will link in multiple
copies of the routine. I am asked if this means that our run-time
libraries are not re-entrant, and that they must use absolute addressing
rather than relative addressing. Surely, although our run-time libraries
require some static data, they could have separate workspaces which
would allow only one copy of one routine to be used. Please explain
this.

22. Inmos should supply the source of the occam and alien run-time li-
braries. This would allow users to specifically modify some of our
routines for their own requirements. For example, I was told of cus-
tomers who, in order to maximize performance, had to conserve every
byte of code to get the program to fit on-chip. This required them to
put together their own run-time libraries containing only essential rou-
tines for the program. Since Inmos must have the sources for all out
run-time libraries somewhere, surely it would be possible to archive
these and supply them with the toolset and alien products. Now that
the component binaries of each run-time library module are supplied,
this is a good step in the right direction.

23. My version of the multiplexer which allows several programs to have
simultaneous access to the server does not work correctly. It fails

11



to terminate, possibly because it does not fully implement the most
recent AFserver protocol. I need a new one to experiment with, and
since it is a fairly sizeable beast, it should be supplied to customers
with the toolset as standard software.

24. T2 support is wanted in USA. I pointed out that the smallest C pro-
gram still needs about 40k to run it in, although I couldn’t explain
quite why it takes so much RAM. So, they still want T2 support, and
presumably that would cover M2 support.

25. Our toolset comes supplied with an occam file dependency utility,
used to ensure correct compilation and linking sequence (of occam
code only). It can be post-processed into a DOS batch file for auto-
matic compilation using the toolset TOBAT utility (it’s drive depen-
dent though) which is good for compiling everything in one go, but
wasteful having made small occam source changes. Alternatively, one
can use the toolset TOMAKE utility, which makes output suitable for
use with a conditional recompilation tool, such as MAKE (which we
don’t supply). Although one assumes that the toolset user will wish
to use his own development environment, and should therefore own a
make-like utility, I wonder if it wouldn’t be simple and inexpensive to
include such a utility with the toolset as a complete package to allow
for those who don’t.

26. The toolset FDEP utility produces a .LNK file for use with the toolset
linker. Unfortunately, it has to be hacked into a different form for use
with alien programs. Recognising that FDEP doesn’t know about the
alien program names, it still requires layout changes and brackets and
colons and fiddling to get the linker to use the LNK file properly. Also,
the old linkers do not assume any file name extensions (eg bin) but
the Function Toolset Linker one does - does FDEP correspond OK?

2.3 Questions about our Software

Items in this section probably do not require any action or decisions.

I intend to notify the American FAE’s, and anyone else who wants to know,
the answers I receive to these questions.

1. In some cases, our alien programs appear to execute in an ultra-slow
”debug” mode, outputting about two characters per second to the
screen. I have seen this behaviour before when static variable space
had been exceeded, yet this happened in Colorado for no apparent

12



reason. Under what conditions will this slow-output phenomenon oc-
cur? And what is causing it? I have seen previously a message like ”C
startup Rev 009” in connection with insufficient workspace.

2. To enable alien programs to communicate with other alien programs,
one uses the occam predefines LOAD.INPUT.CHANNEL and LOAD.OUTPUT.CHANNEL
at the occam harness level, to perform the inter-connections. Gener-
ally, one would define a CHAN OF ANY to sit between each alien for
one direction of communication. However, since the channel passing
mechanism involves passing a vector of integer pointers to channels,
can one simply assign the channel pointer integers to the appropriate
channel pointer in the other alien? This appeared to work OK, but is
it safe? It certainly simplified the harness a little.

3. Can one use the B008 with toolset? More generally, can one use any
run-time configurable crossbar switch with toolset? I assume that the
protocol used for configuring the cross-bar link switch is suitably docu-
mented to allow an occam harness to set-up the necessary connections,
although this would have to be done prior to attempting to export
code to the network. This almost implies a tow stage network boot ;
first dynamically ’configure” the cross-bar switch controlling network
layout, then boot the network with code to execute. Comments on
feasibility and possibility of this please.

4. Our toolset utilities are generally booted and run with the -:e flag on
the AFserver. However, on some occasions, the FDEP utility set the
error flag during it’s normal execution on some source occam harness
files. This happened consistently. If the utility was booted without the
error-test flag, then the utility ran correctly and concluded successfully
with the LNK and DEP output files. Explain this.

5. The toolset TOBAT utility, which runs on the host PC rather than the
transputer board, was observed to CRASH when running. Why? One
enterprising attendee hacked the source code (which we supply with
the utility - good move Inmos ; we need more of this) and used the
transputer C compiler to successfully execute the utility on a trans-
puter (having removed the drive dependency). Now that’s what I call
neat thinking!

6. Philip seemed to know of a Perihelion C compiler and debugger which
is to be available mid year (”Mid what year”, asked the FAE’s). I
knew nothing about it and so couldn’t Comment. Info please.

7. Do all our alien programs execute at low priority? Is there an option
to run anything at high priority? Could this option be easily provided,

13



and passed defined at the occam harness level? Or would a PRI PAR
do the same job without requirement for implementation alterations?

8. On the subject of stub.filer, I was asked for some examples of situ-
ations where the stub.filer would be used with alien programs. For
example, it is used with an alien program that does not talk to the
AFserver, and yet has been linked with the full run-time libraries. For
an alien not to talk to the server surely implies the use of channel
i/o communications exclusively, and so therefore couldn’t the alien be
linked with the Standalone run-time library? Some examples please.

9. How does screen.handler know when to terminate with a Pascal
program? Apparently the Pascal run-time libraries do not send a
terminating character on channel zero like C and FORTRAN do.

10. Please explain the selective loading of the run-time libraries. At what
sort of granularity is it selective? A 3 line C program with one printf
statement results in bootable file of about 40k. This is truly fantastic.
What is happening In there? What is linked in to take all that space?
The Inmos distributed flight simulator takes only double that.

The FAE’s were not impressed with the sizes of the bootable files.
In fact, on some of my examples, linking aliens with the stand-alone
run-time libraries saved only hundreds of bytes, on bootable files of
size 60k. Surely the standalone libraries are supposed to save space In
situations where only channel i/o is used.

11. I need more information on the flag parameter used to call the alien
programs with. In particular, bit 2 is supposed to determine whether
the alien’s run-time library terminates the filer or not, or something.
I am asked what the libraries do to indicate they are shutting down.
What exactly does the whole flag parameter do?

12. Do our toolset and alien utilities return correct ”exit” information to
the host operating system to allow proper use of batch files to abort
subsequent operations if, say, an alien or occam compilation fails?

13. Can we send Pascal and C records / structures using the channel i/o
routines for arbitrary length messages? I said we could send this in
Pascal due to the UNIV CHAR part of the message routines, but one
would have to know how many bytes to send since Pascal presumably
won’t tell you how much space a record takes. Is any of this true?

14. Behavioural question: If a harness is set-up in such a way that would
cause an alien program to not terminate or not communicate properly,
then it can cause even the parts that should work to fail without
any actions at all. In other words, those parts temporally preceding

14



a bomb-out appear to be affected too, frequently resulting in total
inactivity of the program.

Presumably this is a result of the implementation of our run-time
channel communication routines (buffers being accidentally over writ-
ten etc by a rogue communication?), but an explanation as to the
cause of this is required, and how to spot it’s possible occurrence too.

I have an example of this on my disk for the S/W people if they want
it, which appears to be caused (in this case) by putting a C while loop
with no actions (causing livelock). But why is the rest of the system
prevented form operating?

2.4 Andy’s observations on America

Lets end with some observations of the Colorado Trip.

1. TWA has no row 13 on their aircraft seating. But American Airlines
does.

2. American toilets are very low. American baths generally have con-
cealed inner-bath plugs, operated by levers. And the bath tap is a
single wall mounted pipe which is controlled using a knob with two
degrees of freedom, resulting in aerated bubbly water. Hmm.

3. Most cars are big and dirty. Lots of four-wheel drive trucks. Lots of
gravel roads. Cars are cheap and so’s the petrol (80 cents a gallon).
Roads are not kerbed. No sprint returns on car instruments.

4. Blue skies, lots of sun, no clouds, yet it’s cold unless in direct sunlight.

5. Everyone has ice with everything. Except American tea which is ter-
rible.

6. Buildings are wooden, with underground windows, huge basements.
Garage doors are electric and remote controlled. Mosquito netting is
used on opening windows. Rooms are generously proportioned.

7. Shop prices have no tax shown - this is added cunningly when you
come to pay for anything.

15


	1 Andy's D705 Workshop Visit report
	1.1 Overview of this Report
	1.2 The preparation
	1.3 The Flight
	1.4 The Course
	1.5 Things I could do better next time
	1.6 Conclusion

	2 Suggestions and Questions from the Americans
	2.1 General Information
	2.2 Software Issues Requiring Action
	2.3 Questions about our Software
	2.4 Andy's observations on America


