
US 20020101425A1 

(12) Patent Application Publication (10) Pub. No.: US 2002/0101425 A1 
(19) United States 

Hamid (43) Pub. Date: Aug. 1, 2002 

(54) SYSTEM, METHOD AND ARTICLE OF 
MANUFACTURE FOR INCREASED I/O 
CAPABILITIES IN A GRAPHICS 
PROCESSING FRAMEWORK 

(76) Inventor: Hammad Hamid, Berkshire (GB) 

Correspondence Address: 
CARLTON FIELDS, PA 
PO. BOX 3239 
TAMPA, FL 33601-3239 (US) 

(21) Appl. No.: 09/772,540 

(22) Filed: Jan. 29, 2001 

Publication Classi?cation 

(51) Int. Cl? .......................... .. G06T 1/00; G06T 15/00; 
G06F 15/00; 6096 5/36 

(52) US. Cl. .......................................... .. 345/522; 345/558 

(57) ABSTRACT 
A system, method and article of manufacture are provided 
for affording enhanced I/O capabilities during use of a 
digital signal processor. Initially, graphics data and a com 
mand are received indicating a type of operation to be 
carried out on the graphics data. Next, it is determined 
Whether the operation requires I/O capabilities. If the opera 
tion does not require I/O capabilities, the operation is 
executed on the graphics data utilizing a ?rst circuit. On the 
other hand, if the operation requires I/O capabilities, the 
operation is executed on the graphics data utilizing a second 
circuit. In one embodiment, the second circuit includes a 
programmable gate array. 

12o 

NETWORK (135) 

113 116 114 118 134 
1/0 COMMUNICATION 

CPU ROM RAM ADAPTER ADAPTER 

112 

124 mi 13\6 13? 
USER DISPLAY 

‘111111? 132$ 126% 128 



Patent Application Publication Aug. 1, 2002 Sheet 1 0f 7 

DATA 

1O / SOURCE 

VERTEX 

13 / MEMORY 

V(N+2) 

V 

TRANS 
14 / FORMATION 

/ LIGHTING 

CLIP 

V(N+1 
) 

‘ 

---._-_.$§_T:HE_._--.,.. 

/ RENDERING 
18 

WW 
\ 

DISPLAY 
/ 

20 

Figure 1 
(PRIOR ART) 

12 

US 2002/0101425 A1 



Patent Application Publication Aug. 1, 2002 Sheet 2 0f 7 US 2002/0101425 A1 

12o 

é; NETWORK (135) 
110 116 114 118 ‘X 134 
\ \ \ HO / 

COMMUNICATION 
CPU ROM RAM ADAPTER ADAPTER 

112 

124 12% 13$ 13\8 
USER DISPLAY 'iBiii’é‘éE E] 

132 126% 128 

Fig. 1A 



Patent Application Publication Aug. 1, 2002 Sheet 3 0f 7 US 2002/0101425 A1 

224 

202 \ 
\ 

200 \‘ Shape VGA Monitor 220 
data on J / 
ho tPC \ s DAC 4 \-/ 

x n m‘: _ t I 218 

,>/ 
Co-ord -> Span ¢ Sync 
transform rendering generator X 210 

FPGA K 

21 6 

204 

Fig. 2 



Patent Application Publication Aug. 1, 2002 Sheet 4 0f 7 US 2002/0101425 A1 

300 

I 

K‘ 302 RECEIVING GRAPHICS DATA AND A COMMAND INDICATING A 
TYPE OF OPERATIONTO BE CARRIED OUT ON THE GRAPHICS 

DATA 

INTEGER ALGORITHM 304 
FLOATING POINT ALGORITHM 

OR AN INTEGER ? 

FLOATING POINT 
ALGORITHM 

306 
V 

308 EXECUTING THE OPERATIONON 
THE GRAPHICS DATA UTILIZING A 

FIRST CIRCUIT 

EXECUTING THE OPERATION ON 
THE GRAPHICS DATA UTILIZING A 

SECOND CIRCUIT 

Fig. 3 



Patent Application Publication Aug. 1, 2002 Sheet 5 0f 7 US 2002/0101425 A1 

400 

V 
402 

RECEIVING GRAPHICS DATA AND A COMMAND INDICATING A 
TYPE OF OPERATIONTO BE CARRIED OUT ON THE GMPHICS 

DATA 

YES 404 
HO CAPABILITIES 
REQUIRED? 

V ‘ 406 

408 J 
EXECUTING THE OPERATION ON EXECUT'NG THE OPERAT'ONON 
THE GRAPHICS DATA UTILIZING A THE GRAPH'CS DATA UT'L'Z'NG A 

SECOND CIRCUIT FIRST CIRCUIT 

Fig. 4 



Patent Application Publication Aug. 1, 2002 Sheet 6 0f 7 US 2002/0101425 A1 

macro expr HSync (x) = (x>=HSyncStartCol && x<HSyncEndCol) ; 
macro expr VSync (y) = (y>=VSyncStartLine && y<VSyncEndLine) , 

interface bus_out () HSyncOut (HSync(ScanX) ) with {data = HSyncPin} ; 
interface bus_out () VSyncOut (VSync(ScanY) ) with {data = VSyncPin}; 

while (1) 

if (EndLine(ScanX) ) 

/* 
* Reached the end of the line 
* Reset x and increment y 

*/ 
par 
{ 

ScanX (unsigned (log2c'ei1(TotalCols) ) ) O; 
ScanY - EndScan(ScanY) ? (unsigned (log2cei1 (TotalLines) ) ) D : 

ScanY-l-l; 

else 

{ 

} 
ScanX = ScanX + 1; 

Fig. 5 



Patent Application Publication Aug. 1, 2002 Sheet 7 0f 7 US 2002/0101425 A1 

par 

{ 
/~x 
* Calculate colour 

*/ 
whi1e(1) 
{ 

if (ScanX>=NextStartX && ScanX[9] ==O) 

/* 
* Need to start the next span 

*/ 
par 

Colour = ColourBuff [SpanCount] @ 

(unsigned COLOUR_FRACTION_BITS) 0 , 
COlStep = ColourStep [SpanCounc] , 
NextStartX = StartX[SpanCount1 , 

SpanCount++; 
} 

} 
else 
{ 

[4: 
* Continue with current span 

*/ 
Colour += (unsigned)adjs ( (int) ColStep, width?iolour) ) ; 

} 
} 

/* 
* Output video 

*/ 
while (1) 

{ 
if (ScanY<48 i i ScanY>43l I | ScanX>5l1) 
{ 

/~k 
* Outside visible region — must be black 

*/ 
Video = O; 

} 
else 

{ 
/* 
* Inside visible region - look up colour 

*/ 
Video = ColourLUT [Colour \\ COLOUR_FRACTION_BITS1 ; 

} 
} 

} 



US 2002/0101425 A1 

SYSTEM, METHOD AND ARTICLE OF 
MANUFACTURE FOR INCREASED I/O 

CAPABILITIES IN A GRAPHICS PROCESSING 
FRAMEWORK 

FIELD OF THE INVENTION 

[0001] The present invention relates to graphics process 
ing systems and more particularly to I/O capabilities of 
graphics processing systems. 

BACKGROUND 0F THE INVENTION 

[0002] Rendering and displaying three-dimensional 
graphics typically involves many calculations and compu 
tations. For example, to render a three dimensional object, a 
set of coordinate points or vertices that de?ne the object to 
be rendered must be formed. Vertices can be joined to form 
polygons that de?ne the surface of the object to be rendered 
and displayed. Once the vertices that de?ne an object are 
formed, the vertices must be transformed from an object or 
model frame of reference to a World frame of reference and 
?nally to tWo-dimensional coordinates that can be displayed 
on a ?at display device. Along the Way, vertices may be 
rotated, scaled, eliminated or clipped because they fall 
outside the vieWable area, lit by various lighting schemes, 
coloriZed, and so forth. Thus the process of rendering and 
displaying a three-dimensional object can be computation 
ally intensive and may involve a large number of vertices. 

[0003] A general system that implements a graphics pipe 
line system is illustrated in Prior Art FIG. 1. In this system, 
data source 10 generates a stream of expanded vertices 
de?ning primitives. These vertices are passed one at a time, 
through pipelined graphic system 12 via vertex memory 13 
for storage purposes. Once the expanded vertices are 
received from the vertex memory 13 into the pipelined 
graphic system 12, the vertices are transformed and lit by a 
transformation module 14 and a lighting module 16, respec 
tively, and further clipped and set-up for rendering by a 
rasteriZer 18, thus generating rendered primitives that are 
stored in a frame buffer and then displayed on display device 
20. 

[0004] During operation, the transform module 14 may be 
used to perform scaling, rotation, and projection of a set of 
three dimensional vertices from their local or model coor 
dinates to the tWo dimensional WindoW that Will be used to 
display the rendered object. The lighting module 16 sets the 
color and appearance of a vertex based on various lighting 
schemes, light locations, ambient light levels, materials, and 
so forth. The rasteriZation module 18 rasteriZes or renders 
vertices that have previously been transformed and/or lit. 
The rasteriZation module 18 renders the object to a rendering 
target Which can be a display device or intermediate hard 
Ware or softWare structure that in turn moves the rendered 
data to a display device. 

[0005] Traditionally, each of the foregoing components is 
implemented using application speci?c integrated circuits. 
While such implementations afford increased speed, the 
integrated circuits must still multi-task by performing 
numerous different computations utiliZing the same hard 
Ware. This may lead to sloWer processing rates, especially 
When handling I/O. 

SUMMARY OF THE INVENTION 

[0006] A system, method and article of manufacture are 
provided for affording enhanced I/O capabilities during use 

Aug. 1, 2002 

of a digital signal processor. Initially, graphics data and a 
command are received indicating a type of operation to be 
carried out on the graphics data. Next, it is determined 
Whether the operation requires I/O capabilities. If the opera 
tion does not require I/O capabilities, the operation is 
executed on the graphics data utiliZing a ?rst circuit. On the 
other hand, if the operation requires I/O capabilities, the 
operation is executed on the graphics data utiliZing a second 
circuit. In one embodiment, the second circuit includes a 
programmable gate array. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0007] The invention Will be better understood When con 
sideration is given to the folloWing detailed description 
thereof Such description makes reference to the annexed 
draWings Wherein: 

[0008] 
[0009] FIG. 1A is a schematic diagram of a hardWare 
implementation of one embodiment of the present invention; 

[0010] FIG. 2 illustrates a modi?ed graphics pipeline, in 
accordance With one embodiment of the present invention; 

[0011] FIG. 3 illustrates a method for accelerating graph 
ics operations during use of a digital signal processor; 

[0012] FIG. 4 illustrates another method by Which the 
modi?ed graphics pipeline of FIG. 2 improves graphics 
processing; 
[0013] FIG. 5 illustrates the code associated With the 
synchroniZation pulse generator of the second circuit to 
illustrate the simplicity of I/O management using Handel-C 
and FPGAs; and 

[0014] FIG. 6 illustrates the details of the core loop 
associated With the span rendering module of the second 
circuit. 

FIG. 1 illustrates a prior art graphics pipeline; 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[0015] Apreferred embodiment of a system in accordance 
With the present invention is preferably practiced in the 
context of a personal computer such as an IBM compatible 
personal computer, Apple Macintosh computer or UNIX 
based Workstation. A representative hardWare environment 
is depicted in FIG. 1A, Which illustrates a typical hardWare 
con?guration of a Workstation in accordance With a pre 
ferred embodiment having a central processing unit 110, 
such as a microprocessor, and a number of other units 
interconnected via a system bus 112. The Workstation shoWn 
in FIG. 1A includes a Random Access Memory (RAM) 114, 
Read Only Memory (ROM) 116, an I/O adapter 118 for 
connecting peripheral devices such as disk storage units 120 
to the bus 112, a user interface adapter 122 for connecting 
a keyboard 124, a mouse 126, a speaker 128, a microphone 
132, and/or other user interface devices such as a touch 
screen (not shoWn) to the bus 112, communication adapter 
134 for connecting the Workstation to a communication 
netWork (e.g., a data processing netWork) and a display 
adapter 136 for connecting the bus 112 to a display device 
138. The Workstation typically has resident thereon an 
operating system such as the Microsoft WindoWs NT or 
Windows/95 Operating System (OS), the IBM OS/2 oper 
ating system, the MAC OS, or UNIX operating system. 



US 2002/0101425 A1 

Those skilled in the art Will appreciate that the present 
invention may also be implemented on platforms and oper 
ating systems other than those mentioned. 

[0016] Resident on the Workstation is a graphics pipeline 
similar to that shoWn in FIG. 1. It should be noted that such 
graphics pipeline may vary per the desires of the user. The 
present invention enhances such graphics pipeline for the 
purpose of further accelerating graphics processing during 
use. 

[0017] FIG. 2 illustrates a modi?ed graphics pipeline, in 
accordance With one embodiment of the present invention. 
As shoWn, the pipeline includes a ?rst circuit 200 that 
receives graphics data 202. Such ?rst circuit 200 includes a 
transform module 204, a span converter module 206, and 
random access memory (RAM) 208. The operation of such 
modules Will be set forth hereinafter in greater detail. In one 
embodiment, the ?rst circuit 200 includes an Alex Computer 
Systems Inc APAC509 SHARCPAC module. It should be 
noted, hoWever, that other digital signal processors may be 
utiliZed per the desires of the user. 

[0018] Coupled to the ?rst circuit 200 is a second circuit 
210 With a ?rst-in ?rst-out (FIFO) buffer 212 therebetWeen. 
The second circuit 210 includes a span buffering module 
214, a span rendering module 216, and a synchroniZation 
generator 218. The operation of such modules Will be set 
forth hereinafter in greater detail. The second circuit 210 
feeds output to a digital to analog converter (DAC) 220 
Which in turn drives a monitor 222. 

[0019] In operation, the second circuit 210 of?oads the 
?rst circuit 200 and the rest of the graphics pipeline in a 
manner that Will soon be set forth for the purpose of 
accelerating graphics processing. In one embodiment, the 
second circuit 210 includes a ?eld programmable gate array 
(FPGA) device. Use of such device provides ?exibility in 
functionality, While maintaining high processing speeds. 

[0020] Examples of such FPGA devices include the 
XC2000TM and XC3000TM families of FPGA devices intro 
duced by Xilinx, Inc. of San Jose, Calif. The architectures of 
these devices are exempli?ed in US. Pat. Nos. 4,642,487; 
4,706,216; 4,713,557; and 4,758,985; each of Which is 
originally assigned to Xilinx, Inc. and Which are herein 
incorporated by reference for all purposes. It should be 
noted, hoWever, that FPGA’s of any type may be employed 
in the context of the present invention. 

[0021] An FPGA device can be characteriZed as an inte 
grated circuit that has four major features as folloWs. 

[0022] (1) A user-accessible, con?guration-de?ning 
memory means, such as SRAM, PROM, EPROM, 
EEPROM, anti-fused, fused, or other, is provided in the 
FPGA device so as to be at least once-programmable by 
device users for de?ning user-provided con?guration 
instructions. Static Random Access Memory or SRAM is of 
course, a form of reprogrammable memory that can be 
differently programmed many times. Electrically Erasable 
and reProgrammable ROM or EEPROM is an example of 
nonvolatile reprogrammable memory. The con?guration 
de?ning memory of an FPGA device can be formed of 
mixture of different kinds of memory elements if desired 
(e.g., SRAM and EEPROM) although this is not a popular 
approach. 

Aug. 1, 2002 

[0023] (2) Input/Output Blocks (IOB’s) are provided for 
interconnecting other internal circuit components of the 
FPGA device With external circuitry. The IOB’s‘ may have 
?xed con?gurations or they may be con?gurable in accor 
dance With user-provided con?guration instructions stored 
in the con?guration-de?ning memory means. 

[0024] (3) Con?gurable Logic Blocks (CLB’s) are pro 
vided for carrying out user-programmed logic functions as 
de?ned by user-provided con?guration instructions stored in 
the con?guration-de?ning memory means. 

[0025] Typically, each of the many CLB’s of an FPGA has 
at least one lookup table (LUT) that is user-con?gurable to 
de?ne any desired truth table,—to the extent alloWed by the 
address space of the LUT. Each CLB may have other 
resources such as LUT input signal pre-processing resources 
and LUT output signal post-processing resources. Although 
the term ‘CLB’ Was adopted by early pioneers of FPGA 
technology, it is not uncommon to see other names being 
given to the repeated portion of the FPGA that carries out 
user-programmed logic functions. The term, ‘LAB’ is used 
for example in US. Pat. No. 5,260,611 to refer to a repeated 
unit having a 4-input LUT. 

[0026] (4) An interconnect netWork is provided for carry 
ing signal traffic Within the FPGA device betWeen various 
CLB’s and/or betWeen various IOB’s and/or betWeen vari 
ous IOB’s and CLB’s. At least part of the interconnect 
netWork is typically con?gurable so as to alloW for pro 
grammably-de?ned routing of signals betWeen various 
CLB’s and/or IOB’s in accordance With user-de?ned routing 
instructions stored in the con?guration-de?ning memory 
means. 

[0027] In some instances, FPGA devices may additionally 
include embedded volatile memory for serving as scratchpad 
memory for the CLB’s or as FIFO or LIFO circuitry. The 
embedded volatile memory may be fairly siZable and can 
have 1 million or more storage bits in addition to the storage 
bits of the device’s con?guration memory. 

[0028] Modern FPGA’s tend to be fairly complex. They 
typically offer a large spectrum of user-con?gurable options 
With respect to hoW each of many CLB’s should be con?g 
ured, hoW each of many interconnect resources should be 
con?gured, and/or hoW each of many IOB’s should be 
con?gured. This means that there can be thousands or 
millions of con?gurable bits that may need to be individu 
ally set or cleared during con?guration of each FPGA 
device. 

[0029] Rather than determining With pencil and paper hoW 
each of the con?gurable resources of an FPGA device 
should be programmed, it is common practice to employ a 
computer and appropriate FPGA-con?guring softWare to 
automatically generate the con?guration instruction signals 
that Will be supplied to, and that Will ultimately cause an 
unprogrammed FPGA to implement a speci?c design. (The 
con?guration instruction signals may also de?ne an initial 
state for the implemented design, that is, initial set and reset 
states for embedded ?ip ?ops and/or embedded scratchpad 
memory cells.) 

[0030] The number of logic bits that are used for de?ning 
the con?guration instructions of a given FPGA device tends 
to be fairly large (e.g., 1 Megabits or more) and usually 
groWs With the siZe and complexity of the target FPGA. 



US 2002/0101425 A1 

Time spent in loading con?guration instructions and veri 
fying that the instructions have been correctly loaded can 
become signi?cant, particularly When such loading is carried 
out in the ?eld. 

[0031] For many reasons, it is often desirable to have 
in-system reprogramming capabilities so that recon?gura 
tion of FPGA’s can be carried out in the ?eld. 

[0032] FPGA devices that have con?guration memories of 
the reprogrammable kind are, at least in theory, ‘in-system 
programmable’ (ISP). This means no more than that a 
possibility eXists for changing the con?guration instructions 
Within the FPGA device While the FPGA device is ‘in 
system’ because the con?guration memory is inherently 
reprogrammable. The term, ‘in-system’ as used herein indi 
cates that the FPGA device remains connected to an appli 
cation-speci?c printed circuit board or to another form of 
end-use system during reprogramming. The end-use system 
is of course, one Which contains the FPGA device and for 
Which the FPGA device is to be at least once con?gured to 
operate Within in accordance With prede?ned, end-use or ‘in 
the ?eld’ application speci?cations. 

[0033] The possibility of recon?guring such inherently 
reprogrammable FPGA’s does not mean that con?guration 
changes can alWays be made With any end-use system. Nor 
does it mean that, Where in-system reprogramming is pos 
sible, that recon?guration of the FPGA can be made in 
timely fashion or convenient fashion from the perspective of 
the end-use system or its users. (Users of the end-use system 
can be located either locally or remotely relative to the 
end-use system.) 

[0034] Although there may be many instances in Which it 
is desirable to alter a pre-eXisting con?guration of an ‘in the 
?eld’ FPGA (With the alteration commands coming either 
from a remote site or from the local site of the FPGA), there 
are certain practical considerations that may make such 
in-system reprogrammability of FPGA’s more dif?cult than 
?rst apparent (that is, When conventional techniques for 
FPGA recon?guration are folloWed). 

[0035] A popular class of FPGA integrated circuits (IC’s) 
relies on volatile memory technologies such as SRAM 
(static random access memory) for implementing on-chip 
con?guration memory cells. The popularity of such volatile 
memory technologies is oWed primarily to the inherent 
reprogrammability of the memory over a device lifetime that 
can include an essentially unlimited number of reprogram 
ming cycles. 
[0036] There is a price to be paid for these advantageous 
features, hoWever. The price is the inherent volatility of the 
con?guration data as stored in the FPGA device. Each time 
poWer to the FPGA device is shut off, the volatile con?gu 
ration memory cells lose their con?guration data. Other 
events may also cause corruption or loss of data from 
volatile memory cells Within the FPGA device. 

[0037] Some form of con?guration restoration means is 
needed to restore the lost data When poWer is shut off and 
then re-applied to the FPGA or When another like event calls 
for con?guration restoration (e.g., corruption of state data 
Within scratchpad memory). 

[0038] The con?guration restoration means can take many 
forms. If the FPGA device resides in a relatively large 
system that has a magnetic or optical or opto-magnetic form 
of nonvolatile memory (e.g., a hard magnetic disk)—and the 
latency of poWering up such a optical/magnetic device 

Aug. 1, 2002 

and/or of loading con?guration instructions from such an 
optical/magnetic form of nonvolatile memory can be toler 
ated—then the optical/magnetic memory device can be used 
as a nonvolatile con?guration restoration means that redun 
dantly stores the con?guration data and is used to reload the 
same into the system’s FPGA device(s) during poWer-up 
operations (and/or other restoration cycles). 
[0039] On the other hand, if the FPGA device(s) resides in 
a relatively small system that does not have such optical/ 
magnetic devices, and/or if the latency of loading con?gu 
ration memory data from such an optical/magnetic device is 
not tolerable, then a smaller and/or faster con?guration 
restoration means may be called for. 

[0040] Many end-use systems such as cable-TV set tops, 
satellite receiver boXes, and communications sWitching 
boXes are constrained by prespeci?ed design limitations on 
physical siZe and/or poWer-up timing and/or security provi 
sions and/or other provisions such that they cannot rely on 
magnetic or optical technologies (or on netWork/satellite 
doWnloads) for performing con?guration restoration. Their 
designs instead call for a relatively small and fast acting, 
non-volatile memory device (such as a securely-packaged 
EPROM IC), for performing the con?guration restoration 
function. The small/fast device is eXpected to satisfy appli 
cation-speci?c criteria such as: (1) being securely retained 
Within the end-use system; (2) being able to store FPGA 
con?guration data during prolonged poWer outage periods; 
and (3) being able to quickly and automatically re-load the 
con?guration instructions back into the volatile con?gura 
tion memory (SRAM) of the FPGA device each time poWer 
is turned back on or another event calls for con?guration 
restoration. 

[0041] The term ‘CROP device’ Will be used herein to 
refer in a general Way to this form of compact, nonvolatile, 
and fast-acting device that performs ‘Con?guration-Restor 
ing On PoWer-up’ services for an associated FPGA device. 

[0042] Unlike its supported, volatilely reprogrammable 
FPGA device, the corresponding CROP device is not vola 
tile, and it is generally not ‘in-system programmable’. 
Instead, the CROP device is generally of a completely 
nonprogrammable type such as exempli?ed by mask-pro 
grammed ROM IC’s or by once-only programmable, fuse 
based PROM IC’s. Examples of such CROP devices include 
a product family that the XilinX company provides under the 
designation ‘Serial Con?guration PROMs’ and under the 
trade name, XC1700D. TM. These serial CROP devices 
employ one-time programmable PROM (Programmable 
Read Only Memory) cells for storing con?guration instruc 
tions in nonvolatile fashion. 

[0043] Apreferred embodiment is Written using Handel-C. 
Handel-C is a programming language marketed by CeloXica 
Limited. Handel-C is a programming language that enables 
a softWare or hardWare engineer to target directly FPGAs 
(Field Programmable Gate Arrays) in a similar fashion to 
classical microprocessor cross-compiler development tools, 
Without recourse to a HardWare Description Language. 
Thereby alloWing the designer to directly realiZe the raW 
real-time computing capability of the FPGA. 
[0044] Handel-C is designed to enable the compilation of 
programs into synchronous hardWare; it is aimed at com 
piling high level algorithms directly into gate level hard 
Ware. 

[0045] The Handel-C syntaX is based on that of conven 
tional C so programmers familiar With conventional C Will 
recogniZe almost all the constructs in the Handel-C lan 
guage. 



US 2002/0101425 A1 

[0046] Sequential programs can be Written in Handel-C 
just as in conventional C but to gain the most bene?t in 
performance from the target hardware its inherent parallel 
ism must be exploited. 

[0047] Handel-C includes parallel constructs that provide 
the means for the programmer to exploit this bene?t in his 
applications. The compiler compiles and optimiZes Han 
del-C source code into a ?le suitable for simulation or a net 
list Which can be placed and routed on a real FPGA. 

[0048] More information regarding the Handel-C pro 
gramming language may be found in “EMBEDDED SOLU 
TIONS Handel-C Language Reference Manual: Version 
3,”“EMBEDDED SOLUTIONS Handel-C User Manual: 
Version 3.0,”“EMBEDDED SOLUTIONS Handel-C Inter 
facing to other language code blocks: Version 3.0,” and 
“EMBEDDED SOLUTIONS Handel-C Preprocessor Ref 
erence Manual: Version 2.1,” each authored by Rachel GanZ, 
and published by Embedded Solutions Limited, and Which 
are each incorporated herein by reference in their entirety. 
Additional information may be found in a co-pending appli 
cation entitled “SYSTEM, METHOD AND ARTICLE OF 
MANUFACTURE FOR INTERFACE CONSTRUCTS IN 
A PROGRAMMING LANGUAGE CAPABLE OF PRO 
GRAMMING HARDWARE ARCHITECTURES” Which 
Was ?led under attorney docket number EMB1P041, and 
Which is incorporated herein by reference in its entirety. 

[0049] FIG. 3 illustrates a method 300 for accelerating 
graphics operations during use of a digital signal processor. 
Initially, graphics data and a command are received indicat 
ing a type of operation to be carried out on the graphics data. 
Note operation 302. 

[0050] Thereafter, it is determined in decision 304 as to 
Whether the operation is a ?oating point algorithm or an 
integer algorithm. As an option, the ?oating point algorithm 
may include the calculation of three-dimensional coordi 
nates. Moreover, the integer algorithm may include a ren 
dering algorithm, the generation of synchroniZation pulses, 
and/or the generation of a video output signal. 

[0051] If the operation is the ?oating point algorithm, the 
operation is executed on the graphics data utiliZing the ?rst 
circuit 200, as indicated in operation 306. On the other hand, 
if it is decided in decision 304 that the operation is the 
integer algorithm, the operation on the graphics data is 
executed utiliZing the second circuit 210. Note operation 
308. As mentioned earlier, the second circuit 210 includes a 
programmable gate array. 

[0052] FIG. 4 illustrates another method 400 by Which the 
modi?ed graphics pipeline of FIG. 2 improves graphics 
processing. In particular, the present method 400 provides 
enhanced I/O capabilities during graphics processing. Ini 
tially, in operation 402, graphics data and a command is 
received indicating a type of operation to be carried out on 
the graphics data. 

[0053] Next, it is determined Whether the operation 
requires I/O capabilities in decision 404. If it is determined 
that the operation does not require I/O capabilities in deci 
sion 404, the operation is executed on the graphics data 
utiliZing the ?rst circuit 200. Note operation 406. On the 
other hand, if it is determined that the operation requires I/O 
capabilities in decision 404, the operation is executed on the 
graphics data utiliZing the second circuit 210. Again, the 
second circuit includes a programmable gate array. 

[0054] The present invention thus provides an enhanced 
real-time graphics rendering and display system for three 

Aug. 1, 2002 

dimensional scenes. Such an application is an ideal example 
of Where FPGAs can help out conventional DSPs since there 
are sections Which require both intensive ?oating point and 
fast ?xed point operations. 

[0055] The conventional DSP (in one embodiment a 
SHARC processor) is ideally suited to ?oating point, irregu 
lar algorithms such as the calculation of 3D coordinates of 
solid objects. FPGAs on the other hand are suited to narroW 
Width data paths in integer, regular algorithms such as 
rendering of tWo technologies pixels. Thus, the Work can be 
split betWeen the tWo technologies exploiting the strengths 
of each Within the same application. 

[0056] With their I/O ?exibility, FPGAs are also ideally 
suited to providing interaction With the outside World Which 
is not provided directly by a speci?c module. This can be 
usefull either because no module exists Which can handle the 
required I/O format or to reduce the hardWare required by 
combining multiple I/O formats into one FPGA. The 1/0 
capabilities of the FPGA on a graphics system such as the 
APAC509 may be illustrated by generating the VGA signals 
for the graphics display directly from the pins of the FPGA. 
All that is required externally is a simple DAC consisting of 
an R-2R resistor ladder to drive the analogue RGB signals 
of the monitor. 

[0057] The processing associated With various modules of 
the ?rst and second circuit 200 and 210, respectively, of 
FIG. 2 Will noW be set forth in greater detail. 

[0058] DSP Processing (First Circuit 200) 

[0059] The data 202 consisting of vertices and faces is 
taken from a host PC hard disk or any other similar source 
using standard APEX parallel development environment I/O 
functions from Alex Computer Systems, Inc. It should be 
understood that other functions may be employed in other 
types of environments. 

[0060] The ?rst circuit 200 then makes coordinate trans 
formations and projects the 3D points into 2D space using 
the coordinate transform module 204. Simple light shading 
is also performed at this point by calculating the intensity at 
each vertex given by a single point light source and a ?xed 
ambient light. 

[0061] The span converter module 206 of the ?rst circuit 
200 then generates a list of depth sorted single line spans 
consisting of a horiZontal starting point, a starting color and 
a color gradient Which are then packed into the on-chip 
RAM 208 on the ?rst circuit 200. 

[0062] Simultaneously, a looped, chain DMA is used to ?ll 
the FIFO 212 betWeen the ?rst circuit 200 and the second 
circuit 210 from an on-chip span data buffer. The DMA 
sequencer hardWare of the ?rst circuit 200 is used to ensure 
that the FIFO 212 never over?oWs or becomes empty. 

[0063] FPGA Processing (Second Circuit 210) 

[0064] The Handel-C program on the second circuit 210 
(FPGA) consists of a number of parallel tasks. This illus 
trates the major advantage of using FPGAs for processing 
hardWare is inherently parallel. 

[0065] One task is used to generate the VGA sync pulses 
using synchroniZation pulse generator 218 of the second 
circuit 210. This task consists of tWo counters—ScanX and 
ScanY—and some comparisons to generate pulses at the 
correct period. FIG. 5 illustrates the code associated With 



US 2002/0101425 Al 

the synchronization pulse generator 218 of the second circuit 
210 to illustrate the simplicity of I/O management using 
Handel-C and FPGAs. 

[0066] A second task is used to read span data from the 
?rst circuit 200 via the FIFO 212. This operation is per 
formed during the video horiZontal blanking period so that 
it does not disturb the video generation task. One scan line 
of spans is buffered during one scan line of blanking 
utiliZing the span buffering module 214 of the second circuit 
210. 

[0067] A third task generates the 18 bit per pixel video 
output signal by reading the buffered spans and setting the 
value on 18 FPGA pins to the correct color for the current 
pixel using the ScanX and ScanY counters from the sync 
generator task. FIG. 6 illustrates the details of the core loop 
associated With the span rendering module 216 of the second 
circuit 210. 

[0068] To provide a comparison for performance measure 
ment, the span rendering module 216 of the second circuit 
210 has also been implemented on a single SHARC DSP 
using the host PC screen to display the results. Performance 
improvements depend on the shape being rendered but over 
a selection of 5 shapes the FPGA gives an approximate 
speed increase of 2.5 times. Coupled With this is the absence 
of speci?c video hardWare or video frame buffer Which 
translates into loWer component count and system cost. 

[0069] While various embodiments have been described 
above, it should be understood that they have been presented 
by Way of example only, and not limitation. Thus, the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above described exemplary embodi 
ments, but should be de?ned only in accordance With the 
folloWing claims and their equivalents. 

What is claimed is: 
1. A method for providing enhanced I/O capabilities 

during use of a graphics processor, comprising the steps of: 

(a) receiving graphics data and a command indicating a 
type of operation to be carried out on the graphics data; 

(b) determining Whether the operation requires I/O capa 
bilities; 

(c) executing the operation on the graphics data utiliZing 
a ?rst circuit if the operation does not require I/O 
capabilities; and 

(d) executing the operation on the graphics data utiliZing 
a second circuit if the operation requires I/O capabili 
ties; 

(e) Wherein the second circuit includes a programmable 
gate array. 

2. Amethod as recited in claim 1, Wherein the ?rst circuit 
includes a digital signal processor. 

3. A method as recited in claim 1, Wherein the program 
mable gate array is programmed using Handel-C. 

4. Amethod as recited in claim 1, Wherein the ?rst circuit 
is coupled to the second circuit With a ?rst-in-?rst-out 
(FIFO) buffer coupled therebetWeen. 

5. A method as recited in claim 1, Wherein the program 
mable gate array is capable of handling multiple I/O formats. 

6. A method as recited in claim 1, Wherein the program 
mable gate array is coupled to a digital-to-analog converter. 

Aug. 1, 2002 

7. A computer program product for providing enhanced 
I/O capabilities during use of a graphics processor, com 
prising: 

(a) computer code for receiving graphics data and a 
command indicating a type of operation to be carried 
out on the graphics data; 

(b) computer code for determining Whether the operation 
requires I/O capabilities; 

(c) computer code for executing the operation on the 
graphics data utiliZing a ?rst circuit if the operation 
does not require I/O capabilities; and 

(d) computer code for executing the operation on the 
graphics data utiliZing a second circuit if the operation 
requires I/O capabilities; 

(e) Wherein the second circuit includes a programmable 
gate array. 

8. A computer program product as recited in claim 7, 
Wherein the ?rst circuit includes a digital signal processor. 

9. A computer program product as recited in claim 7, 
Wherein the programmable gate array is programmed using 
Handel-C. 

10. A computer program product as recited in claim 7, 
Wherein the ?rst circuit is coupled to the second circuit With 
a ?rst-in-?rst-out (FIFO) buffer coupled therebetWeen. 

11. A computer program product as recited in claim 7, 
Wherein the programmable gate array is capable of handling 
multiple I/O formats. 

12. A computer program product as recited in claim 7, 
Wherein the programmable gate array is coupled to a digital 
to-analog converter. 

13. A system for providing enhanced I/O capabilities 
during use of a graphics processor, comprising: 

(a) logic for receiving graphics data and a command 
indicating a type of operation to be carried out on the 
graphics data; 

(b) logic for determining Whether the operation requires 
I/O capabilities; 

(c) logic for executing the operation on the graphics data 
utiliZing a ?rst circuit if the operation does not require 
I/O capabilities; and 

(d) logic for executing the operation on the graphics data 
utiliZing a second circuit if the operation requires I/O 
capabilities; 

(e) Wherein the second circuit includes a programmable 
gate array. 

14. A system as recited in claim 13, Wherein the ?rst 
circuit includes a digital signal processor. 

15. Asystem as recited in claim 13, Wherein the program 
mable gate array is programmed using Handel-C. 

16. A system as recited in claim 13, Wherein the ?rst 
circuit is coupled to the second circuit With a ?rst-in-?rst-out 
(FIFO) buffer coupled therebetWeen. 

17. Asystem as recited in claim 13, Wherein the program 
mable gate array is capable of handling multiple I/O formats. 

18. Asystem as recited in claim 13, Wherein the program 
mable gate array is coupled to a digital-to-analog converter. 

* * * * * 


