Platform Studio
User Guide

Embedded Development Kit
EDK 7.1

UG113 (v4.0) February 15, 2005

S XILINX®

© 2005 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one
possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any
claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any
warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that
this implementation is free from claims of infringement and any implied warranties of merchantability or fithess for a particular purpose.

Platform Studio User Guide www.xilinx.com UG113 (v4.0) February 15, 2005
1-800-255-7778

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

The following table shows the revision history for this document.

Version Revision
01/31/04 1.0 Initial Xilinx release for EDK 6.2i.
03/12/04 Updated for service pack release.
03/19/04 2.0 Updated for service pack release.
08/20/04 3.0 EDK 6.3i.
02/15/05 4.0 Updated for EDK 7.1i.
UG113 (v4.0) February 15, 2005 www.xilinx.com Platform Studio User Guide

1-800-255-7778

Platform Studio User Guide www.xilinx.com UG113 (v4.0) February 15, 2005
1-800-255-7778

$7 XILINX®

Preface

About This Guide

This document describes how to use the Xilinx® Embedded Development Kit (EDK). EDK
is a series of software tools for designing embedded programmable systems, and it
supports designs of processor sub-systems using the IBM PowerPC™ hard processor core
and the Xilinx® MicroBlaze™ soft processor core.

Guide Contents

This manual contains the following chapters.

Chapter 1, “Overview,” gives an overview of Platform Studio™ technology.

Chapter 2, “Creating a Basic Hardware System in XPS,” contains a step-by-step
procedure to generate a simple hardware system for EDK-based designs.

Chapter 3, “Writing Applications for a Platform Studio Design,” contains a step-by-
step procedure to generate software for EDK-based designs using Xilinx® EDK 7.1i
and Xilinx® ISE™ 7.1i software.

Chapter 4, “Address Management,” describes the embedded processor program
address management techniques. For advanced address space management, a
discussion on linker scripts is also included in this chapter

Chapter 5, “Interrupt Management,” outlines interrupt management in both
MicroBlaze and PowerPC. It details the interrupt handling in MicroBlaze and
PowerPC, and the role of Libgen for MicroBlaze and PowerPC.

Chapter 6, “Using Xilkernel,” describes Xilkernel, a set of interfaces and functions that
allow context switching and resource sharing between applications.

Chapter 7, “Using XilIMFS,” describes XilIMFS, a memory-based file system library.

Chapter 8, “Simulation in EDK,” describes the HDL simulation flow using EDK and
third party software.

Chapter 9, “Debugging in EDK,” describes the basics of debugging a system designed
using EDK.

Chapter 10, “Profiling Embedded Designs,” describes the steps to profile a program
on hardware using LibXil profile library provided with EDK.

Chapter 11, “System Initialization and Download,” describes the basics of system
initialization and download using the Platform Studio tools.

Platform Studio User Guide

www.xilinx.com 5

UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Preface: About This Guide

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Table 1-1: Additional Resources

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging.

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records.
http://support.xilinx.com/xInx/xil_ans_browser.jsp

Application Notes | Descriptions of device-specific design techniques and approaches.

http://support.xilinx.com/xInx/xweb/xil _publications_index.jsp
?category=Application+Notes

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging.

http://support.xilinx.com/xInx/xweb/xil _publications index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues.
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment.

http://www.support.xilinx.com/xInx/xil_tt_home.jsp

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Table 1-2: Typographical Conventions

Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system | speed grade: - 100
displays

Literal commands that you

Courier bold enter in a syntactical statement

ngdbui | d desi gn_nane

Commands that you select

f File - Open
Helvetica bold roma menu
Keyboard shortcuts Ctrl+C
6 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Conventions

SUXILINX®

Table 1-2: Typographical Conventions (Continued)

Convention Meaning or Use Example
Variables in a syntax
statement for which you must | ngdbui | d desi gn_nane
supply values
See the Development System
Italic font References to other manuals Reference Guide for more

information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as

bus[7: 0] , they are required.

ngdbui | d [opti on_nane]
desi gn_nane

A list of items from which you

Braces { } must choose one or more lowpwr ={on] of 1}

. Separates items in a list of _
Vertical bar | choices | owpwr ={on|of f}

. s | OB #1: Nane = QOUT
Vertical ellipsis | OB #2° Name = CLKI N

Repetitive material that has
been omitted

Horizontal ellipsis . ..

Repetitive material that has

al I owbl ock bl ock_nane

been omitted locl loc2 ... locn;
Online Document
The following conventions are used in this document:
Table 1-3: Online Document Conventions
Convention Meaning or Use Example
. See the section “Additional
Cross-reference link to a Resources” for details.
Blue text location in the current s Y
document Refer to “Title Forr_nats in
Chapter 1 for details.
Red text Cross-reference link to a See Figure 2-5 in the Virtex-lI
location in another document | Handbook.
. . . Go to http://www.xilinx.com
Blue, underlined text | Hyperlink to a website (URL) for the latest speed files.

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

&7 XILINX® Preface: About This Guide

8 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Table of Contents

Preface: About This Guide

GUIAE CONtENTS . . oo 5
AddItional RESOUICES oo 6
CONVENTIONS .« . oot 6
Typographical. e 6
ONlINE DOCUMIBNTo e e e 7

Chapter 1. Overview

Creating an Embedded Hardware System. ..., 17
Creating Software for the Embedded System 17
Software Libraries 17
System Simulation 18
Systemn Debug and Verification 18
System Initialization and Download tothe Board............................ 18

Fast Download 18

Generatingan ACE File. ... 18

Chapter 2. Creating a Basic Hardware System in XPS

OV IV W .o 19
ASSUMPLIONS . ..o o 19
SO PS. 19
Create @ NeW XPS Projecto e 20
SelectaTarget Boardot 20
Select the Processortobe Used i e 20
Configure the ProCESSOTttt e e e 21
Configure IO INterfacesot 21
Specify Internal Peripheral Settings o i 21
Specify Software Configuration. i 21
View System Summary and Generatet 22
View Peripherals and Bus Settingst 22
Generate BitStream 22
Download Bitstream and EXecute 23

Chapter 3: Writing Applications for a Platform Studio Design

OV VI BV L L 25
ASSUMIPTIONS . L 25
S S, o o 26
Configure Software Settings. i 26
View and Set Project OptioNns.o 27
Create EDK Software Libraries 27
Open/Create Your Application(s). e e 27
View and Set Application Options ... i 28
Platform Studio User Guide www.xilinx.com

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Build Applications e 28
Initialize Bitstreams with Applications. i 28
Download and Execute Your Application i 28
Download and Debug ApplicationsUsing XMD 29

Chapter 4. Address Management

MICroBlaze ProCeSSOr.o 31
Programs and MemoOryt 31
Current Address Space Restrictions i 31

Memory and Peripherals OVerviewt e 31
BRAM Size Limits. . oottt e 31
Special AdAreSSES . . . vttt 32
OPB AddressRange Detailsot e e 32
AdAresS M ..ot e 32
Memory Speeds and LatenCies. 33
SYStEM AdAreSS SPACE it ittt 33
System with Only an Executable (No Software Intrusive Debug) 33
System with Software Intrusive Debugging Support. 34
Default User AdAress SPaCeot ittt e 34
Advanced User AdAress SPacec.oii it 34
Different Base Address, Contiguous User Address Spaceovvviinnnnn 34
Different Base Address, Non-Contiguous User AddressSpace 34
Object-File SECtioNs i e e 35
BEXE e et 35
[0 = = 35
SUALAZ . .« ot 36
(0 L 36
SO, vt 36
SIS, Lt e 36
DSS 36
Minimal Linker SCript 37
LiNKer SCript . .o e 38

POWEIPC PrOCESSOr . . . oot 41
Programs and MEmMOIYot 41
Current Address Space Restrictions i 41

Special AdAreSSeS . . . v o 41
Default Linker OptionS.t e 41
Advanced User AddresS SPaceottt 42
Different Base Address, Contiguous User AddressSpace 42
Different Base Address, Non-Contiguous User AddressSpace 42
LiNKer SCriPt . . .o 43
Minimal Linker SCripto o 44
The Need for a Linker SCript. s 44
RESTIICHIONS . . . o oo e 44

Chapter 5: Interrupt Management

Interrupt Management 47
MicroBlaze Interrupt Management i 47
OVBIVIBW . . ottt e e e e e e 47
Interrupt Controller Peripheral 48
LimMiItatioNsSo ot e 50
10 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

SUXILINX®

Peripheral with an InterruptPort i 50
External Interrupt POrt 51
Interrupt Handlers 51
Interrupt Vector Tablein MicroBlaze i, 52
Interrupt Routines in MicroBlaze i, 52
MicroBlaze Enable and Disable Interrupts it 52
MicroBlaze Interrupt Handler i 52
MicroBlaze Register Handler i i 52
PowerPC Interrupt Management i 52
Libgen Customization. i i 53
Purpose of the Libgen Tool. e 53
Introducing Xparameters.n i 54
Example Systems for MicroBlaze 54
System Without Interrupt Controller (Single InterruptSignal) 54
PrOCEAUNE . . . ottt 55

Example MHS File Snippet.o e e 55

Example MSS File SNippetot 56

Example C Programttt e 56

Example MHS File Snippet (For an External Interrupt Signal). 57

Example MSS File SNippetot 57

Example C Programttt e 57

System With an Interrupt Controller (One or More Interrupt Signals) 58
PrOCEAUNE . o . ottt 58

Example MHS File Snippet.o e 59

Example MSS File SNippetot 59

Example C Programttt e 60
Example Systems for PowerPC 62
System Without Interrupt Controller (Single Interrupt Signal) 62
ProCEaUNE . . .o e 62

Example MHS File SNIppet.ot 62

Example MSS File SNIPPetot 63

Example C Programttt 63

Example MHS File Snippet (For External Interrupt Signal) 65

Example MSS File SNIPPetot 66

Example C Programt 66

System With an Interrupt Controller (One or More Interrupt Signals) 66
ProCEaUNE . ..o 67

Example MHS File SNIppet.ot 67

Example MSS File SNIPPet oot 69

Example C Programttt 69

Chapter 6: Using Xilkernel

Xilkernel ConCeptS. o 73
Processes, Threads, Context Switching, and Scheduling........................ 73

Synchronization ConStrucCts i e e 74

SEMAPNO S, .« . ot 75

MIUEEXES o v vt ottt e et e e e 75

Inter-Process Communicationt 75

Shared MEMOTY . ..t e 75

MESSAgE PaSSINg . . . oot ittt e e 76

Platform Studio User Guide www.xilinx.com 11

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Concepts Specificto Xilkernel i 76
Code and RUNEIME STFUCTUIEot e e 76
System Callsand Libraries i e 77
User Interrupts and Xilkernel i 77

Differences Between MicroBlaze & PowerPC Xilkernel Implementations 78

Using Device Drivers with Xilkernel i 78

Using Other Libraries with Xilkernel 78

Getting Started with Xilkernel 78

Xilkernel with MicroBlaze 78

Xilkernel with POWErPC 79

Building and Executing Xilkernel and Applications 79
Configuring and Generating Xilkernel 79
Creating Your Applicationo 80
Downloading/Debugging Your Xilkernel Application 81

Xilkernel Design EXamples. 81

Hardware and Software Requirementso i .. 81
HardWare e 81
SO VAN . . o 82

Design Example Files 82

Description of Example Sets. 82
Overview of the MicroBlaze System.t e 82
Overview of the PowerPC Systemt e 82
Overview of the Example Application Sets 83
Defining the Communications Settingst 83
Software Platform Specification 83
Building the Hardware and Software System. 87
The XilKernel DEMOo\ttt e e e e e 87
PowWerPC EXample Sets.ottt 103
Building the Hardware and Software System. i, 104
Running the Xilkernel Demo 104

Chapter 7. Using XiIMFS

XIIMFES CONCEPS. . ..o 107
Getting Started with XilMFS 108
UsiNg XIIMES 108
Configuring XilMFES e 108
Configuring XilMFS in the XPS MainWindow 108
Configuring XilMFS Parameters in MSS. i e 109

Creating Your Application e 109
UsingaPre-Built XilIMFSImage e 111

Chapter 8. Simulation in EDK

INtrodUCTION 113
EDK SIimulation BasicCs. 114
Behavioral Simulation 114
Structural Simulation. 114
Timing Simulation 115
EDK and ISE Simulation PoINtSot 115
12 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

SUXILINX®

Simulation Libraries 116
Xilinx Simulation Libraries. 116
UNISIM Library e e e e e 116

SIMPRIM Library 116
XilinxCoreLib Library. 116

EDK LibDrary ..o 116
Compiling Simulation Libraries............... . 117
Compiling Xilinx Simulation Libraries. i i 117
Library Compilation 117
CompXLib Command LineExample 118
Compiling EDK Behavioral Simulation Libraries............ 118

L - T 118
CompEDKLib Command Line Examples. 118

Other Details.ot 119

Setting Up SmartModels. 119
WiNOWS. . ot e 120

130 - Vg 1 120

LiUX. et 120
Third-Party Simulators. ... 120
ModelSim Setup for Using SmartModels. 120
NcSim Setup for Using SmartModels 122
Creating Simulation Models. 122
Creating Simulation Models Using XPS. i 122
Creating Simulation Models Using XPSBatch 123
Memory Initialization. ... 123
VHDL Models.o 123
Verilog Modelso 124
Simulating a BasiC SYStemM. 124
Simulation Model Files 125
Behavioral Modelo 125

Structural Model.o 125

Timing Modelo 125
MOdelSIM . 126
Compiling the SimulationModels i 126

Loading Your DeSIgN . . .o\ttt e 126

Providing Stimulus to Your Designottt e 127
Simulating Your DesSign . .. oo ot e 127

Using ModelSim’s Script Files i e 127

NS . o 127
Compiling the SimulationModels i 128
Elaborating Your DesSign.ottt e 128

Loading Your DeSIgN . . .ot ittt e 129
Simulating Your Design . ..o oo e 129
Submodule or Testbench Simulation................... 129
VH DL . . 130
VErlOg .« oo 131
MoOdelSIm . 132
VHD L . o 132

VErilOg . .o 132

NS . . 132
VHD L . .o e 132

VErilOg . .o 133

Platform Studio User Guide www.xilinx.com 13

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Using SmartModels 133
Accessing SmartModel’s Internal Signals 133

The Imewin Commandot 133

Viewing PowerPC Registersin ModelSim 134

Chapter 9: Debugging in EDK

INtroduction 135
Debugging PowerPC Software 135
Hardware Setup UsingaJTAG Cable. i i 135
Connecting JTAGPPC and PowWerPC o e 136

SOftWAKE SEEUPo 136
Example Debug SeSSioNo 136
Advanced PowerPC Debugging TipSo c v it i 139
PowerPC Simulator e 139
Configuring INStruction StEPo ot 139
Configuring MemoOry ACCESSottt et e 140

Support for Running Programs from ISOCM and ICACHE. 140

Accessing DCR Registers, TLB, ISOCM, Instruction and Data Caches............. 140
Debugging Setup for Third-Party Debug Tools 140
Debugging MicroBlaze Software 141
Hardware Setup for MDM-Based Debugging Using JTAG (HW-Based) 141
Connecting MDM and MicroBlazettt e 141

Software Setup for MDM-Based Debugging 142
Example Debug Session 142
Hardware Setup for XMDStub-Based Debugging Using JTAG (SW-Based) 144
Connecting MDM (as JTAG-Based UART) and MicroBlaze. 144
Configuring XMDStub Software Settingsinan MSSFile 144

Software Setup for XMDStub-Based Debugging 145
Using Serial Cable for XMDStub Debugging 145
Debugging Software on a Multi-Processor System.......................... 146
Hardware SEtUDot e 146

SOftWArE SELUD . . . o ot 148
Debugging Software on Virtual Platform................................... 148
Hardware Debugging Using ChipScope Proo, 148
Instantiating ChipScope Pro Coresinan EDK Design......................... 148
Connecting ChipScope ICON and ChipScope OPBorPLBIBA. 148

Steps Involved in Using ChipScope Pro Analyzer with an EDK Design 152
Using ChipScope ILA COret e 153
Using ChipScope Virtual 1O (VIO)Coret 153
Advanced ChipScope Debugging Tips. 153

Chapter 10: Profiling Embedded Designs

ASSUMPTIONS . . 155
Tool ReqQUIrEMENTS. o 155
FRatUINES. . . o 156

14 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

SUXILINX®

Profiling the Program on Simulator/virtual platform........................ 156

Using Xilinx Platform Studio IDE i 156

Building Your Application e 156

Collecting and Generatingthe ProfileData 156

Viewing the Profile Qutput. e e 157

Using Platform Studio SDKIDE e e 160

Profiling the Program on Hardware Target., 160

Using Xilinx Platform Studio IDE e 160

Enabling the Profiling Functions i 161

Building the User Application e 161

Timer/Interrupts Initialization in Your Application 162

Collecting and Generatingthe ProfileData, 163

Viewing the Profile QUtpuL. 164

Using Platform Studio SDKIDE e 164

Chapter 11: System Initialization and Download

ASSUMPLIONS .« . 167

INtroducCtion 167

Bitstream Initialization. 168

Initialize Bitstreams with Applications. i 168

Initialize Bitstreams Using Bootloops i 168

Software Program Loading 169

Downloading an Application Using XMD. 169

Bootloaders 169

SYStemM ACE . . 169

Fast Download on a MicroBlaze Systemo, 169

ASSUMPTIONS . . oo e e e 170

TOOl ReQUITEMENTSo 170

Step 1: Building the Hardware. 170

Step 2: Downloading Program/Datato Memory, 173

Generatinga System ACE File. ... 175

ASSUMIPEIONS . . . et 175

TOOl REQUITEMENTSo e e 175

GeNACE FaUIESot 175

GeNACE Model 175

The Genace.tCl SCript 176

012 176

[157 o[178

Supported Target Boardsttt 178

GenACE Script Flow and Files Generated i, 178

Generating ACE Files 179

SINGIE FPGA DBVICE . . ottt i e e 179

MUItiple FPGA DEBVICES . ..t i ittt ittt et e e e e e 182

Related Information. ... e 183

Adding a New Devicetothe JTAGChain 183

CF DEVICE FOrMAL . . o v ittt et e e 184

GlOSSaANY . . 185
Platform Studio User Guide www.xilinx.com 15

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

16 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 1

Overview

The Platform Studio User Guide is for users of the Embedded Development Kit (EDK). EDK
is a series of software tools for designing embedded processor systems on programmable
logic, and supports the IBM PowerPC™ hard processor core and the Xilinx® MicroBlaze™
soft processor core. Platform Studio™ is the graphical user interface technology that
integrates all of the processes from design entry to design debug and verification. This
document describes both simple and complex design tasks that you might do. This chapter
gives an overview of Platform Studio technology.

This chapter contains the following sections.

e “Creating an Embedded Hardware System”

e “Creating Software for the Embedded System”

e “Software Libraries”

e “System Simulation”

e “System Debug and Verification”

e “System Initialization and Download to the Board”

Note: Platform Studio tutorials are located online at
http://www.xilinx.com/ise/embedded/edk_examples.htm.

Creating an Embedded Hardware System

In order to design an embedded processor system, you must first create a hardware
platform. A hardware platform consists of one or more processors, buses, and peripherals
connected to the processors. Chapter 2, “Creating a Basic Hardware System in XPS,”
describes the steps needed to create a hardware platform.

Creating Software for the Embedded System

After a hardware processor system is created, you can run application software on the
processor. Chapter 3, “Writing Applications for a Platform Studio Design” guides you
through creating and compiling application software using Platform Studio. The chapter
also details options for downloading and debugging the application.

Software Libraries

Platform Studio supports various software libraries that are included in the installation.
These libraries can be used to enhance application software, because they provide specific
functions that are more coarsely grained tasks than driver routines. Chapter 6, “Using
Xilkernel,” describes the XilKernel library that provides functions for context switching

Platform Studio User Guide www.xilinx.com 17
UG113 (v4.0) February 15, 2005 1-800-255-7778

http://www.xilinx.com/ise/embedded/edk_examples.htm

&7 XILINX® Chapter 1: Overview

and resource sharing for multiple tasks. Chapter 7, “Using XiIMFS,” describes XiIMFS, a
memory-based file system library for creating and managing files and directories in
memory (RAM). Chapter 10, “Profiling Embedded Designs” describes the XilProfile
library, a software-intrusive profiling technology to create Call Graph and Histogram
information for program optimization. This library can be used to find hotspots in the
application software and tune the application for better performance.

System Simulation

After you have created a hardware embedded design and written the software to run on
the processors, you must do design simulation before verifying the design. Chapter 8,
“Simulation in EDK,” describes all of the simulation options that are a part of Platform
Studio technology, and illustrates the steps required to simulate the hardware and the
software running on the hardware.

System Debug and Verification

Once the processor system is created and application software written for the system, you
can either simulate the system using Platform Studio’s simulation options, or debug your
system as detailed in Chapter 9, “Debugging in EDK.” This chapter describes the Xilinx®
Microprocessor Debug (XMD) tool that forms the debug interface for hardware system
debug and software running on hardware. It explains the GNU debugger (GDB) tool and
how to use GDB with XMD. The chapter also discusses steps to using ChipScope™ with
Platform Studio Technology.

System Initialization and Download to the Board

Once you have created the processor system, and written the application software for the
system, you can download the system can be downloaded to the FPGA development
board. Chapter 11, “System Initialization and Download,” describes system initialization
and download, with an emphasis on Fast Download in MicroBlaze systems and System
ACE™ file Generation capabilities.

Fast Download

The Fast Download section describes an innovative “fast” download for MicroBlaze
systems. This technique uses a unidirectional Fast Simplex Link (FSL) from the MicroBlaze
Debug Module to the processor.

Generating an ACE File

This section illustrates the steps required to generate a System ACE configuration file that
is useful in production systems. The System ACE file is used to completely configure the
FPGA on a board with hardware bitstream, program, and data information, and to start
processor execution. This is the final step in design production.

18

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

S XILINX®
Chapter 2

Creating a Basic Hardware System in
XPS

This chapter provides a step-by-step procedure to generate a simple hardware system for
EDK-based designs using Xilinx® EDK 7.1 and Xilinx® ISE™ 7.1i EDK hardware. This
involves assembling a system that contains a processor along with buses and peripherals,
generating an HDL netlist, and implementing the design using ISE implementation tools
to generate a bitstream.

This chapter assumes that you are using the Xilinx® Platform Studio™ (XPS), an
integrated development environment included with the EDK. The chapter contains the
following sections.

e “Overview”
e “Assumptions”
° llSteps11

Overview

XPS is an integrated design environment (IDE) used to develop EDK-based system
designs. A simple Hello World system is used to demonstrate the flow involved in
building a processor hardware system. The hardware flow explained here is for the
PowerPC™ 405 processor embedded in Xilinx® Virtex™-Il Pro devices, but the flow for
the Xilinx® MicroBlaze™ soft-core processor is similar. The differences for creating a
MicroBlaze system are included.

Assumptions

This chapter assumes that you:

e Have a basic understanding of processor and bus based systems
e Have a board on which to test the generated hardware

Steps
The steps involved in creating a hardware system for EDK using XPS are as follows:
1. Create a New XPS Project
2. Select a Target Board
3. Select the Processor to be Used
4. Configure the Processor
Platform Studio User Guide www.xilinx.com 19

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 2: Creating a Basic Hardware System in XPS

© © N o g

Configure 10 Interfaces

Specify Internal Peripheral Settings
Specify Software Configuration

View System Summary and Generate
View Peripherals and Bus Settings

. Generate Bitstream
11.

Download Bitstream and Execute

Create a New XPS Project

1.

Open XPS from Start —» Programs — Xilinx Embedded Development Kit 7.1 —
Xilinx Platform Studio.

When XPS opens, a dialog box opens.
Select the Base System Builder Wizard radio button to create a new XPS project
using the Base System Builder (BSB) Wizard, and then click OK.

You can also begin a new project in the BSB by selecting File - New Project — Base
System Builder. This opens the Create New Project Using Base System Builder
Wizard dialog box.

Specify the location at which you want to create your XPS project. An XPS project file
hasa. xnp extension, and your XPS project resides in the directory where the XMP file
resides.

After you specify the XMP file location, click OK.

Select a Target Board

After you click OK in the previous step, XPS opens the BSB Wizard.

1.
2.

Select the | would like to create a new design radio button.
Click Next.
The next dialog box that opens allows you to select a target board.

Select the | would like to create a system for the following development board
dialog box.

Select Xilinx for the Board Vendor and AFX Virtex-Il Pro fg456 Board for the board
name.

The wizard also has an option to create a design for a custom board.

After you make all the selections, click Next to continue.

Select the Processor to be Used

After you select a board, the next dialog box prompts you to select a processor. You can
choose either PowerPC or MicroBlaze.

1.
2.

Select POWERPC.
Click Next.

20

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Steps S XILINX®

Configure the Processor

The software displays the Configure Processor dialog box that corresponds to the
processor that you selected in the previous step.

1. Specify the reference clock frequency that is available on the board.

Based on the selected reference clock, the choice of clock frequencies available for
processor and bus displays.

2. For this example, accept the default frequency.

The configuration page allows you to select the type of debug interface, on-chip
memory, and choice to enable cache. Default selections are already made.

3. Click Next.

Note: For MicroBlaze, the configuration page allows you to select the debug interface type, whether
you want any local data and instruction memory, and whether you want to enable cache for
MicroBlaze. Accept all the default values, and click Next.

Configure 10 Interfaces

Based on the board you selected, the BSB Wizard presents a list of external devices present
on the board. Each page in the wizard displays up to three devices. If there are more than
three, they are spread across multiple pages. By default, the wizard selects all devices to be
included in the design. For the purpose of creating a simple hardware system, keep only
one device for this example, the RS232.

1. Deselect all devices other than RS232.
2. Click Next.
Additional Configure 10 Interfaces pages open.

3. Deselect all the devices shown on other pages and click Next until you reach the Add
Internal Peripherals dialog box.

Specify Internal Peripheral Settings

When you are done with all of the Configure 10 Interfaces pages, the Add Internal
Peripherals dialog box opens. For a PowerPC design, an instance of internal memory (PLB
BRAM IF CNTLR) is added by default.

1. Select 32 kB for the memory size.

You can add additional peripherals by clicking Add Peripheral. For this simple
hardware system, however, do not add any other internal peripherals.

2. Click Next.

Note: For a MicroBlaze system, no internal peripheral is added by default. Do not add any
additional peripherals. Click Next.

Specify Software Configuration

Now you have created and configured your hardware system. However, since this is a
processor system, in order to test the hardware, you need some software that will execute
on the processor and exercise the bus, the memories, and the peripherals. The BSB Wizard
creates a simple test application for the software. The Software Settings dialog box in the
BSB Wizard allows you to change memories used for different sections of the software.

Platform Studio User Guide www.xilinx.com 21
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 2: Creating a Basic Hardware System in XPS

However, the default software created by BSB is sufficient to test the hardware you just
created.

Click Next.

View System Summary and Generate

Now you have a hardware system and the software to test it. In the System Created dialog
box, the wizard displays a hardware system summary, the processor settings, and various
peripherals arranged in terms of the buses to which they are connected. Review the
settings and click Generate. The wizard generates various XPS design files that capture
the system you have just created. Once design generation is done, the wizard displays a list
of files generated for the design. Click Finish to close the wizard.

View Peripherals and Bus Settings

When you complete the BSB Wizard, you return to the XPS main window. The BSB allows
you to create a simple design. Once you create the design, XPS provides various other tools
to view and modify the design. The System tab on the left displays a list of components
that your design contains. It also displays various project files and project options. The
Applications tab contains software file information.

Some of the most useful tools are located in the Add/Edit Hardware Platform
Specifications dialog box. To access this dialog box, select Project - Add/Edit Cores. This
dialog box contains five tabs: Peripherals, Bus Connections, Addresses, Ports, and
Parameters.

The Peripherals tab displays all of the non-bus components in your design. You can add or
delete new components on this page. It also provides a catalog of all IPs available for your
design. You can filter the IP catalog based on the processor or bus, and based on various
category of IPs.

The Bus Connections tab displays a matrix of buses and various peripherals connected to
that bus.

The Addresses tab displays addresses of all of the peripherals. You can change the address
map. If you add new peripherals or change your design, click Generate Addresses and
XPS generates new addresses. You can also lock certain addresses and let XPS generate the
rest.

For further details on this dialog box, refer to the “Xilinx Platform Studio (XPS)” chapter in
the Embedded System Tools Guide. For this simple hardware system, do not make any
modifications in the design.

Click Cancel.

Generate Bitstream

This brings you back into the main XPS environment. Now you are ready to implement the
design for the board. Select Tools — Generate Bitstream. This runs various tools which
take the hardware design and generate a bitstream for the FPGA. The location of this
bitstream isi npl enent ati on/ system bi t.

The bitstream only contains the hardware information. To populate the bitstream with the
software for the processor, select Tools — Update Bitstream. This option generates the
software and updates the bitstream with the software information. The resulting bitstream
is ready to be downloaded. It is located at i npl enent at i on/ downl oad. bi t.

22

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Steps S XILINX®

Download Bitstream and Execute
To download the application, set up the board and the parallel cable as required.

1. Open the HyperTerminal application from Start - Programs — Accessories —»
Communications — HyperTerminal on your Windows desktop.

Open a new connection with Baud Rate Setting of 9600.
Connect the appropriate COM port the board.
In XPS, select Tools — Download to download the bitstream to the board.

The processor begins executing. If you see meaningful text in your HyperTerminal
window, the design is running successfully on the board.

Platform Studio User Guide www.xilinx.com
UG113 (v4.0) February 15, 2005 1-800-255-7778

23

S XILINX® Chapter 2: Creating a Basic Hardware System in XPS

24 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 3

Writing Applications for a Platform
Studio Design

Overview

Assumptions

This chapter provides a step-by-step procedure to generate software for EDK-based
designs using Xilinx® EDK?7.1i and Xilinx® ISE™ 7.1i software. EDK software involves
building libraries, compiling C applications, initializing bitstreams with the application,
downloading applications onto external memories, and debugging applications using the
open source GNU debugger (GDB) running along with the EDK custom on-chip debugger.

This chapter assumes that you are using the Xilinx® Platform Studio™ (XPS), an
integrated development environment included with EDK. This chapter contains the
following sections.

e “Overview”
e “Assumptions”
° llSteps11

XPS is an integrated design environment (IDE) used to develop EDK-based system
designs. A simple "Hello World" example is used to demonstrate the flow involved in
building EDK libraries, creating and compiling applications, and debugging the
application using a debugger. The software flow is processor-independent and is
applicable to both MicroBlaze™ and PowerPC™.

This chapter assumes that you:

e Have created a valid EDK project for the Hello World example in
C:\Dat a\ Hel | oWorl d_System

e Have created a valid hardware platform in the Hello World example project
(C.\ Dat a\ Hel | oWor | d_Syst em) using the procedure described in Chapter 2,
“Creating a Basic Hardware System in XPS”

e Are familiar with C programming language and using GNU tools

Platform Studio User Guide www.xilinx.com 25
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 3: Writing Applications for a Platform Studio Design

Steps
The following are the steps involved in generating software for EDK designs using XPS:
1. Configure Software Settings
2. View and Set Project Options
3. Create EDK Software Libraries
4. Open/Create Your Application(s)
5. View and Set Application Options
6. Build Applications
7. Initialize Bitstreams with Applications
8. Download and Execute Your Application
9. Download and Debug Applications Using XMD
These steps are explained in detail in the following sections.
Configure Software Settings
1. Start XPS from Start - Programs — Xilinx Embedded Development Kit 7.1 —
Xilinx Platform Studio.
2. Open the Hello World example project by either clicking the Open Project toolbar
button or by selecting File - Recent Projects.
The tree view of the project, displayed on the left side of the XPS main window,
includes references to a variety of project-related files. These are grouped together in
the following general categories:
¢+ System BSP — This category defines the hardware platform used in the project.
The hardware platform includes processors, buses, and peripherals. Double-click
anywhere inside the category to open the Software Settings dialog box
+ Project Files — This category includes all project-specific files. The file types are
MHS, MSS, PBD, and UCF. For more information, refer to the “Xilinx Platform
Studio (XPS)” chapter in the Embedded System Tools Reference Manual.
¢ Project Options — This category includes all project-specific options. These
options include Device, Netlist, Implementation, HDL, and Sim Model. For more
information on these options, refer to the “Xilinx Platform Studio (XPS)” chapter
in the Embedded System Tools Reference Manual.
You can configure software settings for an EDK project using XPS or by editing the
MSS file.
26 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Steps

SUXILINX®

Right-click on the processor name in the tree view and select S/W settings.

This opens the Software Platform Settings dialog box. The top half of the window
displays various devices in the hardware platform and the drivers assigned to them. In
the bottom-right side of the window, you can select an operating system (OS). By
default, standalone is selected. This means that there is not an operating system
between the application software and the hardware platform. The application
software can still use the device drivers and some basic libraries. Default drivers are
assigned to the processor and each peripheral present in the hardware platform. The
pull-down menus in the Driver and Version columns allow you to select other
applicable drivers and driver versions.

To configure processor and peripheral drivers, click the Processor and Driver
Parameters tab. Similarly, you can use the Library/OS Parameters tab to configure
libraries and OS parameters. After you configure the software settings, click OK. The
wizard creates the software settings MSS file as shown in the right-hand side of the
XPS main window.

View and Set Project Options

1.

In XPS, select Options — Project Options.
The Project Options dialog box opens.

Set the appropriate Xilinx architecture, device size, package, and speed grades for
which the current project is targeted.

If custom drivers are used in the system, specify the appropriate path in the My
Peripheral Repository Directory field.

By default the Hello World project does not need an entry for this section.
Click OK.

Create EDK Software Libraries

In this step, you generate software libraries for the Hello World project.

In XPS, select Tools — Generate Libraries and BSPs. This invokes the tool for generating
software libraries, Libgen.

The software library for the Hello World project is created in this project area:

C\Data\Hel |l oWworl d_Syste\m croblaze O\lib\libxil.a

The address map of the system is created in this header file:

C:\Data\Hel | oWworl d_Syste\m crobl aze_0O\i ncl ude\ xparaneters. h

Open/Create Your Application(s)

1.

In XPS, click the Applications tab in the left panel.

A tree view opens with Software Projects on top and all software applications for the
processor below it.

Right-click Software Projects and select Add New Project to create a new software
project for the processor in the system.

This allows you to enter a name for this empty project. The tree view updates to
display the new project.

Platform Studio User Guide

www.xilinx.com 27

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 3: Writing Applications for a Platform Studio Design

3. Add the following C file, hel | 0. ¢, as one of the sources to the hello_world_app.

* Filenane : hello.c
Desc : Prints "Hello Wrld" on the STDOUT device

#i ncl ude "xparaneters. h"
int main() {

Xil _printf("Hello Werld \n");
}

Create the file hel | 0. ¢ using a text editor.
Right-click Sources for the hel | o_wor | d_app project and select Add File. This

opens the file browser to select the appropriate file. Select hel | 0. ¢ from the
appropriate location.

Caution! Adding a source to your project does not cause any file to be copied. This action only
adds the path and file name to the project data.

View and Set Application Options

Now you must set the compiler options for building the hello_world_app. To do this,
right-click on the project name in the tree view and select Set Compiler Options. A
window opens with multiple tabbed panels for setting various compiler options. Select the
Executable mode.

Build Applications

When you are done creating the application and setting the options, right-click on the
project name in the tree view and select Build Project to create the executable.

Alternatively, select Tools —» Compile Program Sources in XPS to build all of the
applications.

Initialize Bitstreams with Applications

After building the applications, XPS allows you to select the application that must be
initialized in the generated bitstream. To initialize the hello_world_app executable in the
bitstream, right-click on the project name hel | o_wor | d_app in the tree view and select
Mark to Initialize BRAMs. From the XPS main window, select Tools — Update Bitstream
to initialize the BRAMSs with the hello_world_app executable information.

Download and Execute Your Application

After the bitstream is initialized with the hello_world_app executable, download the
bitstream to the board. To download the application:

1. Set up the board and the parallel cable as required.
2. Setup the STDOUT device for display.

For the sample HelloWorld_System, RS232 is used as the STDOUT device. Therefore, a
Hyper terminal application opens with the appropriate Baud rate settings and is
connected to the appropriate COM port.

To download and execute the hel | o_wor | d_app application, select Tools — Download
in the XPS main window. This downloads the bitstream onto the board. After
downloading, Hel | o Wor | d displays on the Hyper terminal.

28

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Steps

SUXILINX®

Download and Debug Applications Using XMD

To debug your application using the Xilinx® Microprocessor Debugger (XMD), you must
set the appropriate compiler options in the application. To debug hel | o_wor | d_app:

1.

2.

Right-click on the hel | o_wor | d_app project name in the tree view of the
Applications tab and select Set Compiler Options.

This opens a window with multiple tabs for setting various compiler options.

Select XmdStub mode in order to debug the application.

Next, you must set the debug options.

1.
2.

6.

In the Compiler Settings dialog box, click the Optimization tab.

From the Optimization panel, under Debug Options, select Create symbols for
debugging (-g option).

After selecting the debug option, build the hello_world_app application as detailed in
“Build Applications” on page 28.

Download the bitstream and start XMD by selecting Tools — XMD.
The XMD debugger starts. Connect XMD to the board.

Refer to the “Xilinx Microprocessor Debugger (XMD)” chapter in the Embedded System
Tools Guide for more information.

When XMD is connected to the board, select Tools — Software Debugger to start the
GNU debugger.

The debugger window opens.

You can now download and debug the hello_world application using XMD and GDB.
Refer to the “Xilinx Microprocessor Debugger (XMD)” chapter in the Embedded System
Tools Guide for more information.

Platform Studio User Guide

www.xilinx.com 29

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 3: Writing Applications for a Platform Studio Design

30 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 4

Address Management

This chapter describes address management techniques for the embedded processor
program. For advanced address space management, this chapter also discusses linker
scripts.

This chapter contains the following sections.

e “MicroBlaze Processor”
e “PowerPC Processor”

MicroBlaze Processor

Programs and Memory

In MicroBlaze™, you can write either C, C++, or Assembly programs, and use the
Embedded Development Kit (EDK) to transform your source code into bit patterns stored
in the physical memory of a EDK System. Your programs typically access local and on-chip
memory, external memory, and memory-mapped peripherals. Memory requirements for
your programs are specified in terms of how much memory is required for storing the
instructions and how much memory is required for storing the data associated with the
program.

MicroBlaze address space is divided between the system address space and user address
space. In certain examples, you might need advanced address space management, which
you can do with the help of linker a script, as described in “Linker Script” on page 38.

Current Address Space Restrictions

Memory and Peripherals Overview

MicroBlaze uses 32-bit addresses, and as a result it can address memory in the range 0
through OxFFFFFFFF. MicroBlaze can access memory either through its Local Memory Bus
(LMB) port or through the On-chip Peripheral Bus (OPB). The LMB is designed to be a fast
access, on-chip block RAM (BRAM) memories only bus. The OPB represents a general
purpose bus interface to on-chip or off-chip memories as well as other non-memory
peripherals.

BRAM Size Limits

The amount of BRAM memory that can be assigned to the LMB address space or to each
instance of an OPB mapped BRAM peripheral is limited. The largest supported BRAM
memory size for Virtex™/Virtex™E is 16 kB and for Virtex™-11 it is 64 kB. It is important

Platform Studio User Guide www.xilinx.com 31
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 4. Address Management

to understand that these limits apply to each separately decoded on-chip memory region
only. The total amount of on-chip memory available to a MicroBlaze system might exceed
these limits. The total amount of memory available in the form of BRAMs is also FPGA
device specific. Smaller devices of a given device family provide less BRAM than larger
devices in the same device family.

ADDRESS SPACE MAP

0 (Address Start)
LMB Memory

On Chip OPB
Memory Increasing addresses

External OPB
Memory

Peripherals

Represents Holes
(Address End) in Address Range

UG111_09_111903

Figure 4-1: Sample Address Map for a MicroBlaze System

Special Addresses

Every MicroBlaze system must have user-writable memory present in addresses
0x00000000 through 0x00000028. These memory locations contain the addresses that
MicroBlaze jumps to after a reset, interrupt, or exception event occurs. This memory can be
part of the LMB or the OPB BRAM address space. Refer to the “MicroBlaze Application

Binary Interface (ABI)” chapter in the MicroBlaze Processor Reference Guide for further
details.

OPB Address Range Details

Within the OPB address space, you can arbitrarily assign address space to on/off-chip
memory peripherals and to on/off-chip non-memory peripherals. The OPB address space
might contain holes representing regions that are not associated with any OPB peripheral.
Special linker scripts and directives might be required to control the assignment of object
file sections to address space regions.

Address Map

Figure 4-1 shows a possible address map for a MicroBlaze System. The MicroBlaze
Hardware Specification (MHS) file contains an address map specifying the addresses of
LMB memory, OPB memory, external memory, and peripherals.

The address range grows from 0. At the lowest range is the LMB memory. This is followed
by the OPB memory, external memory and the Peripherals. Some addresses in this address
space have predefined meaning. The processor jumps to address 0x0 on reset, to address
0x8 on exception, and to address 0x10 on interrupt.

32

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Processor S XILINX®

Memory Speeds and Latencies

MicroBlaze requires two clock cycles to access on-chip Block RAM connected to the LMB
for write and two clock cycles for read. On chip memory connected to the OPB bus requires
three cycles for write and four cycles for read. External memory access is further limited by
off-chip memory access delays for read access, resulting in five to seven clock cycles for
read. Furthermore, memory accesses over the OPB bus might incur further latencies due to
bus arbitration overheads. As a result, instructions or data that must be accessed quickly
should be stored in LMB memory when possible.

__________ 0x00000000
™~ 70x00000000 !
crt0.o xmdstub
crtl.o

main program

main program

(@) (b)

UG111_10_082604

Figure 4-2: Execution Scenarios

For more information on memory access times, refer to the MicroBlaze Reference Guide.

System Address Space

MicroBlaze programs can be executed in different scenarios. Each scenario needs a
different set of system address space. The system address space might be occupied by the
XMDStub when software intrusive debug is required. System address space is also needed
by the C-runtime routines.

System with Only an Executable (No Software Intrusive Debug)

This scenario is depicted in Figure 4-2(a). The C-runtime file cr t 0. o is linked with your
program. The system file cr t 0. o starts at address location 0x0, immediately followed by
your program.

Platform Studio User Guide www.xilinx.com 33
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 4: Address Management

System with Software Intrusive Debugging Support

With systems requiring debug support, XMDStub must be downloaded at address location
0x0. The C-runtime file cr t 1. o is bundled with your program and is placed at a default
location. This scenario is shown in Figure 4-2(b).

Default User Address Space

The default usage of the compiler mb-gcc places your program immediately after the
system address space. You do not need to give any additional options in order to make
space for the system files. The default start address for your program is described in
Table 4-1.

Table 4-1: Start Address for Compilation Switches

Compile Option Start Address
-xI-mode-executable 0x0
-xI-mode-xmdstub 0x800

If you need to start the program at a location other than the default start address or if you
need non-contiguous address space, you must use advanced address space management,
as described in the next section.

Advanced User Address Space

Different Base Address, Contiguous User Address Space

Your program can run from any memory; that is, LMB memory or OPB memory. By
default, the compiler places your program at a location defined in Table 4-1. To run a
program from any address location other than default, you must provide the compiler mb-
gcc with an additional option.

The option required is:
-W, defsym -W, TEXT_START_ADDR=st art _address

where start_address is the new base address required for your program.

Different Base Address, Non-Contiguous User Address Space

You can place different components of your program on different memories. For example,
on MicroBlaze systems with non-contiguous LMB and OPB memories, you can keep your
code on LMB memory and the data on OPB memory. You can also create systems which
have contiguous address space for LMB and OPB memory, but with holes in the OPB
address space.

34 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Processor

SUXILINX®

For all such programs, you must create non-contiguous executable files. To facilitate your
creation of non-contiguous executable files, you must modify linker scripts. The default
linker script provided with the MicroBlaze Distribution Kit places all of your code and data
in one contiguous address space.

Linker scripts are defined in later sections in this document.

For more details on linker options, refer to the “GNU Compiler Tools” chapter in the
Embedded System Tools Reference Manual.

Object-File Sections

text

The sections of an executable file are created by concatenating the corresponding sections
in an object (. o) file. The various sections of the object file are displayed in Figure 4-3.

Sectional Layout of an object or an Executable File

text Text Section

.rodata Read-Only Data Section
.sdata2 Small Read-Only Data Section
.data Read-Write Data Section

.sdata Small Read-Write Data Section
.Sbss Small Uninitialized Data Section
.bss Uninitialized Data Section

UG111_11_111903

Figure 4-3: Sectional Layout of an Object or Executable File

This section of the object file contains executable code. This section has the x (executable),
r (read-only) andi (initialized) flags.

.rodata

This section contains read-only data of a size more than a specified size; the default is 8
bytes. You can change the size of the data put into this section with the nb- gcc - Goption.
All data in this section is accessed using absolute addresses. This section has the r (read-
only) and the i (initialized) flags. For more details, refer to the “MicroBlaze Application
Binary Interface (ABI)” chapter in the MicroBlaze Processor Reference Guide.

Platform Studio User Guide www.xilinx.com 35
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 4. Address Management

.sdata2

This section contains small read-only data of size less than 8 bytes. You can change the size
of the data going into this section with the mb- gcc - Goption. All data in this section is
accessed with reference to the read-only small data anchor. This ensures that all data in the
. sdat a2 section can be accessed using a single instruction; therefore, a preceding imm
instruction is never necessary. This section has the r (read-only) and the i (initialized)
flags. For more details refer to the “MicroBlaze Application Binary Interface (ABI)” chapter
in the MicroBlaze Processor Reference Guide.

.data

This section contains read-write data of a size more than a specified size; the default is 8
bytes. You can change the size of the data going into this section with the nb-gcc -G
option. All data in this section is accessed using absolute addresses. This section has the w
(read-write) and the i (initialized) flags.

.sdata

This section contains small read-write data of a size less than a specified size; the default is
8 bytes. You can change the size of the data going into this section with the nb- gcc -G
option. All data in this section is accessed with reference to the read-write small data
anchor. This ensures that all data in the . sdat a section uses a single instruction; therefore,
a preceding imm instruction is never necessary. This section has the w(read-write) and the
i (initialized) flags.

.Sbss

This section contains small un-initialized data of a size less than a specified size; the default
is 8 bytes. You can change the size of the data going into this section with the mb- gcc - G
option. This section has the w (read-write) flag.

.bss

This section contains un-initialized data of a size more than a specified size; the default is
8 bytes. You can change the size of the data going into this section with the nb- gcc -G
option. All data in this section is accessed using absolute addresses. The stack and the heap
are also allocated to this section. This section has the w (read-write) flag.

The linker script describes the mapping between all of the sections in all of the input object
files, and the output executable file.

Note: If your address map specifies that the LMB, OPB, and external memory occupy contiguous
areas of memory, you can use the default built-in linker script to generate your executable. To do this,
you invoke mb-gcc as follows:

mb-gcec filel.c file2.c

36

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Processor

SUXILINX®

Using the built-in linker script implies that you have no control over which parts of your
program are mapped to the different kinds of memory. The default scripts used by the
linker are located at:

<installation directory>/gnu/ m crobl aze/ <pl atfornme/ m crobl aze/
lib/ldscripts where <installation directory>pointstothe installation root of
EDK. <pl at f or n»> =nt,sol, orl i n These scripts are imbibed into the linker; therefore,
any changes to these scripts are not reflected. To customize linker scripts, you must write
your own linker script or select Tools — Generate Linker Script.

Minimal Linker Script

If your LMB, OPB, and external memory do not occupy contiguous areas of memory, you
can use a minimal linker script to define your memory layout. Here is a minimal linker
script that describes the memory regions only, and uses the default built-in linker script for
everything else.

/*
* Define the menory | ayout, specifying the start address and size of the
* different nenory regions. The instruction-side |ocal nmenory bus
(ILMB) will contain only executable code (x),
* the data-side local nenory bus (DLMB) will contain only initialized
data (i), and the data-side on-chip peripheral bus (DOPB) will contain
* all other witable data (w). Al sections of all your input
* object files nmust map into one of these menory regi ons. O her nenory
types
* that can be specified are "r" for read-only data.
*/
MEMORY
{
ILMB (x) : ORIGN
DLMB (i) : ORIGN
DOPB (w) : ORIGN

0x0, LENGIH = 0x1000
0x2000, LENGTH = 0x1000
0x8000, LENGTH = 0x30000

}

This script specifies that the ILMB memory contains all object file sections that have the x
flag, the DLMB contains all object file sections that have the i flag, and the DOPB contains
all object file sections that have the wflag. An object file section that has both the x and the
i flags, such as the . t ext section, is loaded into ILMB memory because this is specified
first in the linker script. Refer to “Object-File Sections” on page 35 for more information on
object file sections and the flags that are set in each.

You can now compile your source files by specifying the minimal linker script as though it
were a regular file. For example:

nmb-gcc minimal linker script filel.c file2.c
Remember to specify the minimal linker script as the first source file.

If you want more control over the layout of your memory, you must write a full-fledged
linker script. For example, you might want to split up your . t ext section between ILMB
and instruction-side on-chip peripheral bus (IOPB) or you might want your stack and heap
in DLMB and the rest of the . bss section in DOPB.

Platform Studio User Guide www.xilinx.com 37

UG113 (v4.0) February 15,

2005 1-800-255-7778

S XILINX® Chapter 4: Address Management

Linker Script

You must use a linker script if you want to control how your program is targeted to LMB,
OPB, or external memory. LMB memory is faster than both OPB and external memory. You
might want to keep the portion of your code that is accessed the most frequently in LMB
memory, and that which is accessed the least frequently in external memory.

You must provide a linker script to mb-gcc using the following command:
mb-gcc -W,-T -W,linker_script filel.c file2.c -save-tenps

This tells mb-gcc to use your linker script only, and to not use the default built-in linker
script.

The linker script defines the layout and the start address of each of the sections for the
output executable file. Here is a sample linker script.
/*
* Define the menory | ayout, specifying the start address and size of the
* different nenory regions.

*/
MEMORY
{
LMB : ORIG@ N = 0x0, LENGTH = 0x1000
OPB : ORIG N = 0x8000, LENGTH = 0x5000
}
/*
* Specify the default entry point to the program
*/
ENTRY(_start)
/*
* Define the sections, and where they are nmapped in nmenory
*/
SECTI ONS
{
/*
* Specify that the .text section fromall input object files will be

* placed in LMB nmenory into the output file section .text
* nb-gdb expects the executable to have a section called .text
*/
Ctext o {
/* Uncoment the following line to add specific files in the opb_text */
/* region */
/* *(EXCLUDE_FI LE(filel.o0).text) */
/* Comment out the following line to have nultiple text sections */

*(.text)
} >LMB

/* Define space for the stack and heap */
/* variables _heap nmust be set to the beginning of this area */
/* and _stack set to the end of this area */

= ALIGN(4);

_heap = .;

38

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Processor

SUXILINX®

.bss @ {

_HEAP_SI ZE = 0x400;

+= _HEAP_SI ZE;

_heap_end = .;

_STACK_SI ZE = 0x400;
+= _STACK_SI ZE;

= ALIGN\(4);
} >LMB
_stack = .;
/* */
/* Start of OPB menory */
/* */
.opb_text : {

/* Uncomment the following line to add an executabl e section into */
/* opb menmory */
/* filel.o(.text) */

} >OPB

= ALIGN(4);
.rodata : {

*(.rodata)
} >OPB

/* Alignnents by 8 to ensure that _SDA2 BASE on a word boundary */
= ALIG\(8);

_SSrw = .;

.sdata2 : {
*(.sdat a2)

} >OPB
= ALI G\(8);

_essrw = .;

_SSIrw_Size = _esSsrw - _Ssrw

_SDA2_BASE_ = _ssrw + (_ssrwsize / 2);

= ALIGN(4);
.data : {
*(. data)
} >OPB

/* Alignnents by 8 to ensure that _SDA BASE_ on a word boundary */
/* .sdata and .sbss must be contiguous */

= ALI G\(8);
_Ssro = .
.sdata : {

*(.sdata)

} >OPB

= ALI G\(4);
.sbss : {
__sbss_start = .

*(.sbss)
__sbss_end = .

} >OPB

= ALI G\(8);
_essro = .
_SSro_size = _essro - _Ssro;

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com 39

1-800-255-7778

S XILINX®

Chapter 4. Address Management

SDA BASE = _ssro + (_ssro_size |/ 2);

= ALI G\(4);
.opb_bss : {
__bss_start = .;
*(.bss) *(COVWON)
= ALI GN(4);
__bss_end = .;
} > OPB

_end = .;

}

If you choose to write a linker script, you must do the following to ensure that your
program will work correctly. This example linker script incorporates these restrictions.
Each restriction is highlighted in the example linker script.

Allocate space in the . bss section for stack and heap. Set the _heap variable to the
beginning of this area, _heap_end to the end of heap area (_heap + _HEAP_SIZE), and
the _st ack variable to the end of this area. See the . bss section in the preceding
script for an example. Stack and Heap can have their own spaces in terms of
_STACK_SIZE and _HEAP_SIZE size variables, but the main restriction is that both
stack and heap should be assigned to same memory contiguously as shown in the
previous example.

Ensure that the _SDA2 BASE _variable points to the center of the . sdat a2 area, and
that _SDA2_ BASE is aligned on a word boundary. See the previous example to view
how this is done.

Ensure that the . sdat a and the . sbss sections are contiguous, that the _ SDA BASE _
variable points to the center of this section, and that _ SDA BASE _is aligned on a
word boundary. See the previous example to view how this is done.

If you are not using the XMDStub, ensure that cr t O is always loaded into memory
address 0. The compiler mb-gcc ensures that this is the first file specified to the loader,
but the loader script needs to ensure that it gets loaded at address 0. See the . t ext
section in the previous example to view how this is done.

Ensure thatthe __sbss_start, _sbss_end, bss_start,and__bss_end
variables are defined to the start and end of the . sbss and . bss sections,
respectively. See the . bss and . sbss sections in the previous example to view how
this is done.

Ensure that the . bss and . conmon sections from input files are contiguous. ANSI C
requires that all uninitialized memory be initialized to startup. This is not required for
stack and heap. The standard cr t 0. s that Xilinx provides assumes a single . bss
section that is initialized to 0. If there are multiple . bss sections, this crt will not
work. You should write your own crt that initializes all of the . bss sections.

To minimize your simulation time, make sure to point your __bss_end immediately
after your declarations of all the . bss, and . conmon sections from input files. See the
. opb_bss section in the previous example to view how this is done.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual, located at http://www.gnu.org/manual.

40

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

http://www.gnu.org/manual

PowerPC Processor ST XILINX®

PowerPC Processor

Programs and Memory

In PowerPC™, you can write either C, C++, or Assembly programs, and use EDK to
transform your source code into bit patterns stored in the physical memory of the EDK
System. Your programs typically access local/on-chip memory, external memory, and
memory-mapped peripherals. Memory requirements for your programs are specified in
terms of how much memory is required for storing the instructions, and how much
memory is required for storing the data associated with the program.

Figure 4-4 shows a sample address map for a PowerPC-based EDK system. It shows that
there can be various memories in the system. Here you must use advanced address space
management, which you can do with the help of a linker script, as described in “Linker
Script” on page 38.

Current Address Space Restrictions

Special Addresses

Every PowerPC system should have the boot section starting at OXFFFFFFFC.

Default Linker Options

By default, the linker assumes that the program can occupy contiguous address space from
OXFFFF0000 to OXFFFFFFFF. It also assumes a default stack size of 4 kB, and a default heap
size of 4 kB.

To change the size of the allocated stack space, provide the following option to the
compiler powerpc-eabi-gcc:

-W, defsym - W, STACK SI ZE=st ack_si ze
where stack_size is the required stack size in bytes.

To change the size of the allocated heap space, provide the following option to the compiler
powerpc-eabi-gcc:

-W, defsym - W, HEAP_SI ZE=heap_si ze

where heap_size is the required heap size in bytes.

Platform Studio User Guide www.xilinx.com 41
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 4. Address Management

SAMPLE ADDRESS MAP

OxFFFF0O000 External Memory
PLB Peripherals
PLB BRAM
l OPB Peripherals
OXFFFFFFFC .boot

.boot should be at OXFFFFFFFC

UG111_12_111903

Figure 4-4: Sample Address Map for a PowerPC System

Advanced User Address Space

Different Base Address, Contiguous User Address Space

Your program can run from any memory. By default, the compiler places your program at
location OXFFFF0000. To run the program from any address location other than the default,
you must provide the compiler powerpc-eabi-gcc with an additional option.

The option required is:
-W, -defsym -W, START ADDR=start_address

where start_address is the new base address required for your program.

Different Base Address, Non-Contiguous User Address Space

You can place different components of your program in different memories. For example,
on PowerPC systems, you can keep your code in instruction cache memory and the data in
Zero Bus Turnaround™ (ZBT) memory.

For all such programs, you must create non-contiguous executable files. To facilitate
creation of non-contiguous executable files, you must modify linker scripts. The default
linker script provided with EDK places all of your code and data in one contiguous
address space.

Linker scripts are defined in the following section.

For more details on linker options, refer to the “GNU Compiler Tools” chapter in the
Embedded System Tools Reference Manual.

42

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

PowerPC Processor ST XILINX®

Linker Script

PowerPC Linker is built with default linker scripts. These scripts assume a contiguous
memory starting from address OxFFFF0000. The script defines boot . o as the first file to be
linked. The boot . o file is presentinthel i bxi | . a library, which is created by the library
generator tool, Libgen. The script defines the start address as OxFFFF000 if you have given
the start address through the linker option as:

-W, -defsym-W, _START_ADDRESS=0xFFFF8000

In this case, the start address is OXFFFF8000. The script starts assigning addresses to
different sections of the final executable: . vect or s,. t ext,. rodat a,. sdat a2,. shss2,
.data,.got1,.got2,.fixup,.sdata,.sbss,. bss,. boot0,and. boot inthatorder.
As it assigns the addresses, the script defines the following start and end of sections

variables: _ SDATA2_START__, SDATA2_END_ _, SBSS2_START__,
__SBSS2_END__, SDATA START__, SDATA END_ ,_ shss_start,
___Sbss_start,__sbss_end, ___shss_end, __ SDATA START__, SDATA END ,

__bss_start,and__bss_end. These variables define the sectional boundaries for each
of the sections. Stack and heap are allocated from the . bss section. They are defined
through __stack,__heap_start,and__heap_end. The bss section boundary does not
include either of stack or heap. The variable _end is defined after the . boot 0 section
definition.

The . boot section is fixed to start at location OxFFFFFFFC. This section is a jump to the
start of the . boot 0 section. The jump is defined to be 24 bits; therefore, the boot and
boot 0 sections should not have a difference of more than 24 bits. The . boot section is at
OXFFFFFFFC because of the fact that the PowerPC405 processor, on powerup, starts
running from the location OXFFFFFFFC.

You can review the default linker scripts used by the linker at:

$XILINX_EDK/ gnu/ power pc- eabi / nt (or sol)/ power pc-

eabi /i b/l dscripts, where $XILINX_EDK is the EDK installed directory. These
scripts are imbibed into the linker; therefore, any changes to these scripts will not be
reflected.

The choices of the default script that will be used by the linker from the
$XILINX_EDK/ gnu/ power pc- eabi / nt (orsol)/ power pc-eabi/lib/ldscripts
area are described as below:

o el f32ppc. x is used by default when none of the following cases apply
e el f32ppc. xn is used when the linker is invoked with the - n option.

o el f32ppc. xbn is used when the linker is invoked with the - Noption.
o el f32ppc. xr is used when the linker is invoked with the - r option.

o el f32ppc. xu is used when the linker is invoked with the - Ur option.
o el f32ppc. x is used when the linker is invoked with the - n option.

For a more detailed explanation of the linker options, refer to the GNU linker
documentation, available online at http://www.gnu.org/manual.

Platform Studio User Guide www.xilinx.com 43
UG113 (v4.0) February 15, 2005 1-800-255-7778

http://www.gnu.org/manual

S XILINX® Chapter 4: Address Management

Minimal Linker Script

The Need for a Linker Script

You must write a linker script if you want to control how your program is targeted to
instruction cache, ZBT, or external memory.

You must provide a linker script to powerpc-eabi-gcc using the following command:

power pc-eabi-gcc -W,-T -W,linker script filel.c file2.c -save-
t enps

This command tells powerpc-eabi-gcc to use your linker script only, and to not use the
default built-in one. The Linker Script defines the layout and the start address of each of
the sections for the output executable file.

Restrictions

If you choose to write a linker script, you must do the following to ensure that your
program will work correctly. The following example linker script incorporates these
restrictions. Each restriction is highlighted in the example linker script.

o Allocate space in the . bss section for stack and heap. Set the _st ack variable to the
location after _ STACK _SI ZE locations of this area, and the _heap_st art variable to
the next location after the _STACK_SI ZE location. Since the stack and heap need not
be initialized for hardware as well as simulation, define the __bss_end variable after
the . bss and . conmron definitions. Refer to the . bss section in the following
example script to see how this is done.

e Ensure that the variables __SDATA START__, SDATA END__, SDATA2_START,
__SDATA2_END_, SBSS2_START__, SBSS2 END , bss_start,
__bss_end, __sbss_start,and __sbss_end are defined to the beginning and
end of the sections sdat a, sdat a2, shss2, bss, and sbss respectively. Refer to the
following example to see how this is done.

e Ensure that the . sdat a and the . sbss sections are contiguous.
e Ensure that the . sdat a2 and the . shss2 sections are contiguous.
e Ensure that the . boot section starts at OXFFFFFFFC.

e Ensure that boot . o is the first file to be linked. Check the STARTUP boot . o in the
following script, which achieves this.

e Ensure that the . vect or s section is aligned on a 64 k boundary. In order to ensure
this, make . vect or s the first section definition in the linker script. The memory
where . vect or s is assigned to should start on a 64 k boundary. Include this section
definition only when your program uses interrupts or exceptions. See the following
example script to view how this is done.

e Each physical region of memory must use a separate program header. Two
discontinuous regions of memory cannot share a program header.

e Put all uninitialized sections (. bss, . sbss, . shss2, st ack, heap) at the end of a
memory region. If this is impossible, such as if . sdat a and . sbss are in the same
physical memory as . sdat a2 and . sbss2, start a new program header for the first
initialized section after all uninitialized sections.

e ANSI C requires that all uninitialized memory be initialized to startup. This is not
required for stack and heap. The standard crt 0. s that Xilinx provides assumes a
single . bss section that is initialized to 0. If there are multiple . bss sections, this crt
will not work. You should write your own crt that initializes all of the . bss sections.

44 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

PowerPC Processor ST XILINX®

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual, available at http://www.gnu.org/manual.

The following is a sample linker script.

/*

* Define default stack and heap sizes
>/

STACKSI ZE = 1k;

_HEAP_SI ZE = DEFI NED(_HEAP_SI ZE) ? _HEAP_SIZE : 4k;

/*

* Define boot.o to be the first file for Iinking.
* This statenent is nandatory.

>/

STARTUP(boot . 0)

/* Specify the default entry point to the program*/
ENTRY(_boot)

/*
* Define the Menory | ayout, specifying the start address
* and size of the different nmenory |ocations

*/

MEMORY

{
bram : ORIG N = Oxffff8000, LENGTH = Ox7fff
boot : ORIGAN = Oxfffffffc, LENGIH = 4

}

/*

* Define the sections and where they are napped in nmenory

* Here .boot sections goes into boot menmory. O her sections
* are mapped to bram nmenory.

*/

SECTI ONS

{

/*

* _vectors section nust be aligned on a 64k boundary

* Hence should be the first section definition as bramstart |ocation
is 64k aligned

*/

.vectors :

{
*(.vectors)

} > bram

. boot 0 : { *(.boot0)} > bram
. text { *(.text) } > bram
. boot : { *(.boot) } > boot
.data :
{

*(.data)

*(.got?2)

Platform Studio User Guide www.xilinx.com 45
UG113 (v4.0) February 15, 2005 1-800-255-7778

http://www.gnu.org/manual

S XILINX® Chapter 4: Address Management

*(.rodata)
*(.fixup)
} > bram

/* small data area (read/wite): keep together! */
.sdata : { *(.sdata) } > bram
. shss :

{
= ALIGN(4);
*(.sbss)
= ALI GN\(4);
} > bram
__sSbss_start
__sbss_end

ADDR(. sbss);
ADDR(. shss) + SI ZEOF(. sbss);

/* smal|l data area 2 (read only) */

.sdata2 : { *(.sdata2) } > bram
__SDATA2_START__ = ADDR(. sdat a2);
__SDATA2_END _ = ADDR(.sdata2) + S| ZEOF(.sdata2);

.shss2 : { *(.sbss2) } > bram
__SBSS2_START __ = ADDR(.sbss2);
__SBSS2_END__ = ADDR(.sbss2) + S| ZEOF(.sbss2);

. bss
{
= ALIGN(4);
*(. bss)
* (COMVON)
/* stack and heap need not be initialized and hence bss end is decl ared
here */

= ALI G\(4);
__bss_end = .;

/* add stack and heap and align to 16 byte boundary */
. = . + STACKSI ZE;
= ALI GN(16);
__stack = .;
_heap_start = .;
= . + _HEAP_SI ZE;
= ALI G\(16);
_heap_end = .;
} > bram
__bss_start = ADDR(. bss);
}

46 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

S XILINX®
Chapter 5

Interrupt Management

This chapter details the interrupt handling in MicroBlaze™ and PowerPC™, and the role
of Libgen for MicroBlaze and PowerPC. The chapter contains the following sections.

“Interrupt Management”

e “MicroBlaze Interrupt Management”
e “PowerPC Interrupt Management”

e “Libgen Customization”

e “Example Systems for MicroBlaze”

o “Example Systems for PowerPC”

Interrupt Management

Prior to the EDK 6.2 release, there were two levels of interrupt management possible using
EDK based on the levels of drivers. Interrupt management in EDK 6.2 unifies the different
level-based interrupt management into a single flow. This interrupt handling mechanism
works only for interrupt controller driver intc v1.00.c. The interface functions of the
interrupt management remains unchanged; therefore, your code remains unchanged. For
any interrupt controller driver prior to version v1.00.c, refer to the Interrupt Management
chapter in EDK 6.1 release.

Interrupt handling explained in this document is specific to the interrupt controller driver
intc v1.00.c.

MicroBlaze Interrupt Management

Overview

This section describes interrupt management for MicroBlaze. Interrupt Management
involves writing interrupt handler routines for peripherals and setting up the MHS and
MSS files appropriately. MicroBlaze has one interrupt port. An interrupt controller
peripheral is required for handling more than one interrupt signal.

Platform Studio User Guide www.xilinx.com 47
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 5: Interrupt Management

interrupt

MicroBlaze Interrupt

Source

Figure 5-1: MicroBlaze Connected to an Interrupt Source

Figure 5-1 shows MicroBlaze connected to an interrupt source. The interrupt port is
connected to the interrupt port of MicroBlaze. On interrupts, MicroBlaze jumps to address
location 0x10. This is part of the C Runtime library and contains a jump to the default
interrupt handler (_interrupt_handler). This function is part of the MicroBlaze Board
Support Package (BSP), which is provided by Xilinx. It accesses an interrupt vector table to
determine the name of the interrupt handler for the Interrupt Source. The interrupt vector
table is asingle entry table. The entry is a combination of the interrupt service routine (ISR)
and an argument that should be used with the ISR. This entry can be programmed in your
code. Functions are provided in the MicroBlaze BSP to change the handler of the Interrupt
Source at run time. The Interrupt Source could be any of the following:

e Interrupt Controller Peripheral

e Peripheral with an Interrupt Port

e External Interrupt Port

e Interrupt Handlers

e Interrupt Vector Table in MicroBlaze
e Interrupt Routines in MicroBlaze

Each of these cases is explained in detail in the following sections.

Interrupt Controller Peripheral

An interrupt controller peripheral should be used for handling multiple interrupts. In this
case, you are responsible for writing interrupt handlers for the peripheral interrupt signals
only. The interrupt handler for the interrupt controller peripheral is automatically
generated by Libgen. This handler ensures that interrupts from the peripherals are
handled by individual interrupt handlers in the order of their priority. Figure 5-2 shows
peripheral interrupt signals with priorities 1 through 4 connected to the interrupt
controller input.

48 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Interrupt Management S XILINX®

I_Driority 1 Peripheral 1
interrupt o
MicroBlaze Priority 2
interrupt]
Peripheral 2
Priority 3
interrupt Peripheral 3
i Interrupt P [
Interrupt Signal p
Controller —
Priority 4 Peripheral 4
interrupt

UG111_13 111903

Figure 5-2: Interrupt Controller and Peripherals

The corresponding MHS snippet is as follows:

BEG N opb_intc

paramet er | NSTANCE = nyintc

parameter HWVER = 1.00. b

par anet er C BASEADDR = OxFFFF1000

paramet er C_H GHADDR = OxFFFF10f f

bus_i nterface SOPB = opb_bus

port Irq = interrupt

port Intr = Priorityd interrupt & Priority3_interrupt &
Priority2 interrupt & Priorityl interrupt

END

begi n m crobl aze

par amet er | NSTANCE = nbl aze
paraneter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB = i_lnb

port | NTERRUPT = interrupt
end

The interrupt signal output of the controller is connected to the interrupt input of
MicroBlaze. The order of priority for each of the interrupt signals is defined from right to
left, with the right most signal having the highest priority and the left most signal having
the least priority as defined in the Intr port entry for interrupt controller in the MHS file
snippet shown above.

On interrupts, MicroBlaze jumps to the Xl nt ¢_Devi cel nt er r upt Handl er handler of
the interrupt controller peripheral using the interrupt vector table as defined in
“MicroBlaze Interrupt Management” on page 47. The handler of the interrupt controller
peripheral is automatically registered in the interrupt vector table by Libgen. The interrupt
controller handler services each interrupt signal that is active starting from the highest
priority signal. Each of the peripheral interrupt signal needs to be associated with an ISR.
The interrupt controller handler uses a vector table to store these routines corresponding to
each interrupt signal. If an interrupt is active, the interrupt controller handler calls the
corresponding routine. An argument is passed when the routine is called. The vector table
used by the interrupt controller handler is automatically generated by Libgen.

Platform Studio User Guide www.xilinx.com 49
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

The association of an ISR for a peripheral interrupt signal can be done either in the MSS file
or registered at run time using the function provided by the interrupt controller driver

Xl nt c_Connect, Xl ntc_Regi st erHandl er. These functions work on the vector table
generated by Libgen. For more information on the exact prototype of these functions, refer
to the Xilinx Device Drivers Documentation. If the ISRs are specified in the MSS file, Libgen
automatically registers these routines with the vector table of the interrupt controller
driver listed in the order of priority. The base address of the peripherals are registered as
the arguments to be passed to the ISR in the vector table. The following MSS snippet shows
how to register the ISR for a peripheral interrupt signal:

BEG N DRI VER

paramet er HW. I NSTANCE = Peripheral _1

paramet er DRI VER _NAME = Peri pheral _1 driver

paraneter DRI VER VER = 1.00. a

paramet er | NT_HANDLER = peripheral _1_int_handl er, INT_PORT =
Priorityl_Interrupt

END

Limitations

The following are the limitations for interrupt management using an interrupt controller
peripheral:

e The priorities associated with the interrupt sources connected the interrupt controller
peripheral are fixed statically at the time of definition in the MHS file. The priorities
cannot be changed dynamically in your code.

e There cannot be any holes in the range of interrupt sources defined in the MHS file.
For example, in the previous MHS file snippet, a definition such as the following is
not acceptable:

port Intr = Priorityd4_interrupt & ObO & Priority2_ interrupt

Peripheral with an Interrupt Port

A peripheral with an interrupt port can be directly connected to MicroBlaze as shown in
Figure 5-2 on page 49. In this case, you are responsible for writing interrupt handler for the
peripheral interrupt signal. The following MHS snippet describes the connectivity
between MicroBlaze and a peripheral instance. In this example, the peripheral instance is
called opb_timer.

BEG N opb_ti ner

paramet er | NSTANCE = nyti nmer
paranmeter HWVER = 1.00.b

par anet er C_BASEADDR = OxFFFF0000
paramet er C H GHADDR = OxFFFFOOf f
bus_interface SOPB = opb_bus

port Interrupt = interrupt
port CaptureTrig0 = net_gnd
END

begi n m crobl aze

par anmet er | NSTANCE = nbl aze
paraneter HWVER = 1.00.c
bus_i nterface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB = i_lnb

port | NTERRUPT = interrupt
end

50

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

MicroBlaze Interrupt Management S XILINX®

On interrupts, MicroBlaze jumps to the handler of the timer peripheral using the interrupt
vector table as defined in “MicroBlaze Interrupt Management” on page 47. If the timer
peripheral’s handler is specified in the MSS file, this routine is automatically registered in
the interrupt vector table by Libgen. The MSS snippet for the timer peripheral is then
similar to the following:

BEG N DRI VER
paramet er HW I NSTANCE = nyti ner
paraneter DRI VER NAME = tnrctr

parameter DRI VER VER = 1.00.b
parameter | NT_HANDLER = tiner_int_handl er, INT_PORT = Interrupt
END

The base address of the timer peripheral is registered as the argument for the routine in the
interrupt vector table. Alternately, this routine can be registered at run time in your code
using the m cr obl aze_r egi st er _handl er function provided in the MicroBlaze BSP.
Refer to the “Standalone Board Support Package” chapter in the EDK OS and Libraries
Reference Manual for more specifics on the function prototype.

External Interrupt Port

An external interrupt pin can connect to the interrupt port of MicroBlaze. In this situation,
the interrupt source is a global external interrupt. The following MHS snippet describes
the connectivity between MicroBlaze and the global interrupt signal:

PORT interrupt_inl = interrupt_inl, DOR=1IN, LEVEL = LON SIAS =
| NTERRUPT

begi n m crobl aze

par amet er | NSTANCE = nbl aze
paraneter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB = i_lnb

port | NTERRUPT = interrupt_inl
end

On interrupts, MicroBlaze jumps to the handler of the global external interrupt signal,
using the interrupt vector table as defined in “MicroBlaze Interrupt Management” on page
47. If the global interrupt signal’s handler is specified in the MSS file, this routine is
automatically registered in the interrupt vector table by Libgen. In this case, the MSS
snippet is similar to the following:

PARAMETER i nt _handl er = gl obint_handler, int_port = interrupt_inl

A null value is registered as the argument for the routine in the interrupt vector table.
Alternately, you can use the i cr obl aze_r egi st er _handl er function, provided in the
MicroBlaze BSP, in your code to register the routine at run time. Refer to the “Standalone
Board Support Package” chapter in the EDK OS and Libraries Reference Manual for more
specifics on the function prototype.

Interrupt Handlers

You can write your own interrupt handlers, or ISRs, for any peripherals that raise
interrupts. You write these routines in C as with other functions. You can give the interrupt
handler function any name with the signature void func (void *). Alternately, you can elect
to register the handlers defined as a part of the drivers of the interrupt sources.

Platform Studio User Guide www.xilinx.com 51
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 5: Interrupt Management

Interrupt Vector Table in MicroBlaze

On interrupts, MicroBlaze jumps to address location 0x10. This is part of the C Runtime
library and contains a jump to the default interrupt handler _i nt er rupt _handl er. This
function is part of the MicroBlaze BSP and is provided by Xilinx. It accesses an interrupt
vector table to figure out the name of the interrupt handler for the Interrupt Source. The
interrupt vector table is a single entry table. The entry is a combination of the ISR and an
argument that should be used with the ISR. This entry can be programmed in your code
using the interrupt routines in MicroBlaze BSP. The interrupt vector table is defined in the
file mi cr obl aze_i nterrupts_g. c inthe MicroBlaze BSP.

Interrupt Routines in MicroBlaze

The following are the interrupt-related routines defined in the MicroBlaze BSP.

MicroBlaze Enable and Disable Interrupts

The functions m cr obl aze_enabl e_i nt errupt s and

m crobl aze_di sabl e_i nt errupt s are used to enable and disable interrupts on
MicroBlaze. These functions are part of the MicroBlaze BSP and are described in the
“Standalone Board Support Package” chapter in the EDK OS and Libraries Reference Manual.

MicroBlaze Interrupt Handler

The function _i nt er rupt _handl er is called whenever interrupt input of MicroBlaze
becomes active. This function uses the interrupt vector table

MB_| nt err upt Vect or Tabl e to jump to the interrupt handler registered in the table.
This function is a part of the MicroBlaze BSP and is described in the “Standalone Board
Support Package” chapter in the EDK OS and Libraries Reference Manual.

MicroBlaze Register Handler

The function m cr obl aze_r egi st er _handl er is used to register an interrupt handler
with the MicroBlaze interrupt vector table. This function is a part of the MicroBlaze BSP
and is described in the “Standalone Board Support Package” chapter in the EDK OS and
Libraries Reference Manual.

PowerPC Interrupt Management

This section describes interrupt management for PowerPC.

Interrupt management involves writing interrupt handler routines for peripherals and
setting up the MHS and MSS files appropriately. PowerPC has two interrupt ports: critical
and non-critical interrupt ports. An interrupt controller peripheral is required for handling
more than one interrupt signal.

52 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Libgen Customization S XILINX®

47
POWerFC
47

Figure 5-3: PowerPC with Critical and Non-Critical Interrupts Connected to
Interrupt Sources

Figure 5-3 shows PowerPC connected to interrupt sources. The interrupt ports of the
interrupt sources are connected to the critical and non-critical interrupt ports of PowerPC.
On interrupts, PowerPC jumps to the handler registered in the exception table. You must
register the handler of the interrupt source with the PowerPC exception table using the
function XExc_Regi st er Handl er in the PowerPC BSP. This function is provided by
Xilinx. The Interrupt Source connected to PowerPC could be any of the following:

e Interrupt Controller Peripheral
e Peripheral with an Interrupt Port
e External Interrupt Port

For PowerPC, the interrupt handler of either an interrupt controller (in systems using
interrupt controller), or a peripheral/global port handler should be registered with the
exception table. Registering such handler should be part of your code. The handler can be
for either a non-critical interrupt port or a critical interrupt port based on the connection
defined in the MHS file. The following example snippet shows how to register a handler
for non-critical interrupts for PowerPC:

/* Initialize the ppc405 exception table*/
XExc_Init();

/* Register the interrupt controller handler with the exception table*/
XExc_Regi st er Handl er (XEXC_| D_NON_CRI Tl CAL_I NT,
(XExcept i onHandl er) XI nt c_Devi cel nt err upt Handl er,
XPAR_OPB_| NTC 0_DEVI CE_I D) ;

Apart from the registering of the handler with the exception table, the rest of the
processing for all the three interrupt sources previously listed are similar to the
explanation in MicroBlaze sections.

Libgen Customization

Purpose of the Libgen Tool

The Libgen tool generates the address map of the hardware system defined. The address
map defines the base and high addresses of each of the peripherals connected to the
processor. It also generates interrupt priorities for each of the peripherals connected to an

Platform Studio User Guide www.xilinx.com 53
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

interrupt controller peripheral. The information is generated in the header file
xpar amet er s. h. Based on the MSS file, Libgen does the following for interrupt
management;

o Register a handler with the exception table for MicroBlaze

e Ifan interrupt controller peripheral is used, generate the vector table for the interrupt
controller peripheral.

o Register handlers of each of the peripheral interrupt signal connected to the interrupt
controller peripheral in the vector table, if defined in the MSS file.

Introducing xparameters.h

The xpar anet er s. h file defines the hardware system that is used by the software. The
file includes an address map of the hardware system which includes the base and high
addresses of each of the peripherals connected to a processor. The haming conventions
used by the tool for generating base and high addresses are:

XPAR_<PERI PHERAL_| NSTANCE_NAVE> BASE_ADDR

XPAR_<PERI PHERAL_| NSTANCE_NAVE> HI GH_ADDR

The interrupt controller driver uses the priorities and the maximum number of interrupt
sources in a system using the definitions in xpar anet er s. h. Libgen generates priorities
for each of the interrupt signals as #defines in xpar anet er s. h using the following
naming conventions:

XPAR_<I NTC_| NSTANCE_NAME>_<PERI HPERAL_| NSTANCE_NAME> <PERI PHERAL_| NTER
RUPT_SI GNAL_NAMVE>_| NTR

XPAR_<PERI HPERAL_| NSTANCE_NAVE> <PERI PHERAL_| NTERRUPT S| GNAL_NAMVE> MAS
K

For example, the priority 1 interruptis defined as
XPAR _OPB | NTC_0_PERI PHERAL_1 PRI ORI TY_1_| NTERRUPT | NTR

XPAR_PERI PHERAL_1 PRI ORI TY_1_| NTERRUPT MASK

in xpar anet er s. h, where opb_i nt ¢c_0 is the instance name of the interrupt controller
peripheral.

Libgen also generates XPAR _<I NTC_| NSTANCE_NANME>_ MAX_NUM | NTR_I NPUTS to
define the total number of interrupting sources connected to the interrupt controller
peripheral, as displayed in Figure 5-2. The | NTRdefinitions define the identification of the
interrupting sources and should be in the range to

XPAR_<I NTC_I NSTANCE_NAME>_MAX_NUM | NTR_I NPUTS - 1, with 0 being the
highest priority interrupt.

Example Systems for MicroBlaze

System Without Interrupt Controller (Single Interrupt Signal)

An interrupt controller is not required if there is a single interrupting peripheral or an
external interrupting pin. A single peripheral might raise multiple interrupts. In this case,
an interrupt controller is required.

54

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for MicroBlaze S XILINX®

Procedure

To set up a system without an interrupt controller that handles only one level sensitive
interrupt signal, you must do the following:

1.

Set up the MHS and MSS file as follows:

¢ Connect the interrupt signal of the peripheral, or the external interrupt signal, to
the interrupt input of the MicroBlaze in the MHS file.

+ Give the peripheral an instance name using the I NSTANCE keyword in the MHS
file.
Libgen creates a definition in xpar amet ers. h (QUTPUT_DI R/ PROC | NST
NAVME/ i ncl ude) for XPAR_<I NSTANCE_NAME>_ BASEADDR mapped to the base
address of this peripheral.

Write the interrupt handler routine that handles the signal. The base address of the
peripheral instance is accessed as XPAR_<I NSTANCE _NAME>_ BASEADDR.

Designate the handler function to be an interrupt handler for the signal using the

| NT_HANDLER keyword in the MSS file. Refer to the “Microprocessor Software
Specification (MSS)” chapter in the Platform Specification Format Reference Manual for
more information.

The peripheral instance is first selected in the MSS file, and then the | NT_HANDLER
attribute is given the function name. In case of an external interrupt signal, the

| NT_HANDLER attribute is given as a global parameter in the MSS file. The attribute is
not part of any block in the MSS.

Libgen and mb-gcc are executed. This operation has the following implications:

+ The function automatically registers with the exception table. This ensures that
MicroBlaze calls the function on interrupts. By default, MicroBlaze turns off
interrupts from the time an interrupt is recognized until the corresponding rtid
instruction is executed.

¢ Oninterrupts, MicroBlaze jumps to the handler function using the exception
table.

Example MHS File Snippet

BEG N opb_ti mer

paranmet er | NSTANCE = nyti mer
parameter HWVER = 1.00. b

par anet er C BASEADDR = OxFFFF0000
paramet er C_H GHADDR = OxFFFFOOf f
bus_i nterface SOPB = opb_bus

port Interrupt = interrupt
port CaptureTrig0 = net_gnd
END

begi n m crobl aze

par amet er | NSTANCE = nbl aze
parameter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB =i _Inb

port | NTERRUPT = interrupt
end

Platform Studio User Guide

www.xilinx.com 55

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

Example MSS File Snippet

BEG N DRI VER
par amet er HW I NSTANCE = nyti ner
parameter DRI VER NAME = tnrctr

paraneter DRI VER VER = 1.00.b
parameter | NT_HANDLER = timer_int_handl er, |NT_PORT = Interrupt
END

Example C Program

#include <xtnrctr_|.h>
#i ncl ude <xgpio_I.h>
#i ncl ude <xparaneters. h>

/* dobal variables: count is the count displayed using the
* LEDs, and timer_count is the interrupt frequency.
*/

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default tinmer_count */

/* timer interrupt service routine */

void timer_int_handler(void * baseaddr_p) {
unsi gned int csr;
unsi gned int gpi o_dat a;

/* Read timer O CSRto see if it raised the interrupt */
csr = XTnr Ctr _nGet Cont r ol St at usReg(baseaddr _p, 0);

if (csr & XTC_CSR_| NT_OCCURED MASK) {
/* Increnent the count */

if ((count <<= 1) > 8) {
count = 1;

}

/* Wite value to gpio. 0 neans |ight up, hence count is negated */
gpi o_data = ~count;

XGpi o_nBSet Dat aReg(XPAR_MYGPI O BASEADDR, gpi o_dat a) ;

/* Clear the timer interrupt */
XTnr Ctr _nBet Cont r ol St at usReg(baseaddr _p, 0, csr);

}
}

voi d
mai n() {

unsi gned int gpi o_data;

/* Enabl e mcroblaze interrupts */
nm crobl aze_enabl e_interrupts();

/* Set the gpio as output on high 3 bits (LEDs)*/
XGpi o_nBSet Dat abi r ecti on(XPAR_MYGPI O BASEADDR, 0x00) ;

56

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for MicroBlaze S XILINX®

/* set the nunber of cycles the tiner counts before interrupting */
XTnr Ctr_nBet LoadReg(XPAR_MYTI MER_BASEADDR, O,
(timer_count*tiner_count+1) * 1000000);

/* reset the tiners, and clear interrupts */
XTnr Ctr_nSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED MASK | XTC CSR _LOAD MASK);

/* start the tiners */

XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_ENABLE TMR_MASK | XTC_CSR _ENABLE_ | NT_MNASK |
XTC_CSR_AUTO RELOAD MASK | XTC_CSR_DOWN_ COUNT_NASK) ;

/* Wait for interrupts to occur */
while (1)

}

Example MHS File Snippet (For an External Interrupt Signal)

PORT interrupt_inl = interrupt_inl, DOR=1IN, LEVEL = LON SIAS =
| NTERRUPT

begi n m crobl aze

par amet er | NSTANCE = nbl aze
paraneter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB = i_lnb

port | NTERRUPT = interrupt_inl
end
Example MSS File Snippet

PARAMETER i nt _handl er = gl obal _int_handler, int_port = interrupt_inl

Example C Program

#i ncl ude <xparaneters. h>

/* global interrupt service routine */
voi d gl obal _int_handler(void * arg) ({
/* Handl e the global interrupts here */

}

voi d
mai n() {

/* Enabl e mcroblaze interrupts */
nmi crobl aze_enabl e_interrupts();

/* Wait for interrupts to occur */
while (1)

Platform Studio User Guide www.xilinx.com 57
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

System With an Interrupt Controller (One or More Interrupt Signals)

An Interrupt Controller peripheral (INTC) should be present if more than one interrupt
can be raised. When an interrupt is raised, the interrupt handler for the INTC,

Xl nt c_Devi cel nt errupt Handl er, is called. This function then accesses the interrupt
controller to find the highest priority device that raised an interrupt. This is done via the
vector table created automatically by Libgen. On return from the peripheral interrupt
handler, INTC acknowledges the interrupt. It then handles any lower priority interrupts, if
they exist.

Procedure

To set up a system with one or more interrupting devices and an interrupt controller, you
must complete the following steps:

1.

Set up the MHS and MSS files as follows:

+ Assign the interrupt signals of all the peripherals to the interrupt port (Intr in
most cases) of the interrupt controller in the MHS file.
The interrupt signal output of INTC is then connected to the interrupt input of
MicroBlaze.

+ Give the peripherals instance names using the INSTANCE keyword in the MHS
file. Libgen creates a definition in xpar anet er s. h for
XPAR _<I NTC_I NSTANCE_NANME>_ BASEADDR mapped to the base address of
each peripheral for use in the user program. Libgen also creates an interrupt mask
and interrupt ID for each interrupt signal with the priority settings XPAR _
<PERI HPERAL | NSTANCE_NAME> <PERI PHERAL | NTERRUPT _SI GNAL _NAME
> MASK and XPAR_<I NTC_| NSTANCE_NAME>_<PERI HPERAL _
| NSTANCE_NAME>_<PERI PHERAL_| NTERRUPT_SI GNAL_NAME>_| NTR. You
can use this to enable or disable interrupts.

Write the interrupt handler functions for each interruptible peripheral.

Designate each handler function to be the handler for an interrupt signal using the
INT_HANDLER keyword in the MSS file. Alternately, you can register the INTC
interrupt vector table in your code. For this example, we showcase both of these use
cases by setting the routine for timer in the MSS file and setting up the uar t interrupt
port handler in your code. Do not give the INTC interrupt signal an | NT_HANDLER
keyword. If the | NT_HANDLER keyword is not present for a particular peripheral, a
default dummy interrupt handler is used.

Run Libgen and mb-gcc to do the following:

+ Register the Xl nt c_Devi cel nt er r upt Handl er function as the main interrupt
handler with the MicroBlaze exception table by Libgen.
By default, MicroBlaze turns off interrupts from the time an interrupt is
recognized until the corresponding r t i d instruction is executed.

+ Automatically generate and compile an interrupt vector table in Libgen. Each of
the peripherals connected to INTC can also register its interrupt handlers with the
INTC interrupt handler.

¢ Have Xl nt c_Devi cent er rupt Handl er call the peripheral interrupt handler
using the updated interrupt vector table to identify the handler in order of
priority.

Note: MicroBlaze jumps to Xl nt c_Devi cel nt er r upt Handl er using the exception table

when an interrupt occurs.

58

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for MicroBlaze

SUXILINX®

Example MHS File Snippet

BEG N opb_ti ner

par anet er
par anet er
par anet er
par anet er

I NSTANCE = nyti ner
HWVER = 1.00.b
C_BASEADDR = OxFFFF0000
C_H GHADDR = OxFFFFOOf f

bus_interface SOPB = opb_bus
port Interrupt = tinerl
port CaptureTrig0 = net_gnd

END

BEG N opb_

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

uartlite

I NSTANCE = nyuart

HWVER = 1.00.b

C BASEADDR = 0xFFFF8000
C_H GHADDR = OxFFFF8O0FF

CDATABITS =8
C CLK FREQ = 30000000
C_BAUDRATE = 19200

C USE_PARITY = 0

bus_interface SOPB = opb_bus

port RX =

rx

port TX = tx
port Interrupt = uartl

END

BEG N opb_|

par anet er
par anet er
par anet er
par anet er

intc

I NSTANCE = nyintc
HWVER = 1.00.b
C_BASEADDR = OxFFFF1000
C_HI GHADDR = OxFFFF10f f

bus_interface SOPB = opb_bus

port Irq =

port Intr
END

i nterrupt
=timerl & uartl

begi n m crobl aze

par amet er | NSTANCE = nbl aze
paraneter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nb
bus_interface ILMB = i_lnb

port | NTERRUPT = interrupt

end

Example MSS File Snippet

BEG N DRI VER

par amet er HW I NSTANCE = nyti ner

paraneter DRI VER NAME = tnrctr

paranmeter DRI VER VER = 1.00.b

parameter | NT_HANDLER = tiner_int_handl er,
END

I NT_PORT = Interrupt

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

59

S XILINX® Chapter 5: Interrupt Management

BEG N DRI VER
par anet er HW. I NSTANCE = myuart
parameter DRI VER NAME = uartlite

parameter DRI VER VER = 1.00.b
END

Example C Program

#include <xtnrctr_I|.h>
#i nclude <xuartlite_|.h>
#include <xintc_|.h>

#i ncl ude <xgpio_I.h>

#i ncl ude <xparaneters. h>

/* dobal variables: count is the count displayed using the
* LEDs, and timer_count is the interrupt frequency.
*

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default tinmer_count */

/* uartlite interrupt service routine */
voi d uart _int_handl er(voi d *baseaddr_p) {
char c;
[* till uart FIFCs are enpty */
while (!XUartlLite_m sRecei veEnpt y(XPAR_MYUART_BASEADDR)) {
/* read a character */
c = XUartlLite_RecvByt e(XPAR_MYUART_BASEADDR) ;
/* if the character is between "0" and "9" */
if ((c>47) && (c<58)) {
timer_count = c-48;
/* print character on hyperterm nal (STDOUT) */
put nun{ti mer_count);
/* Set timer with new val ue of tinmer_count */
XTnr Ctr _nBet LoadReg(XPAR_MYTI MER_ BASEADDR, 0, (tinmer_count*tim
er _count+1) * 1000000);
}
}
}

/* timer interrupt service routine */

void timer_int_handler(void * baseaddr_p) {
unsi gned int csr;
unsi gned int gpio_data,;

/* Read tinmer 0 CSRto see if it raised the interrupt */
csr = XTnr Ctr_nGet Control St at usReg(XPAR_MWYTI MER_BASEADDR, 0);

if (csr & XTC_CSR_| NT_OCCURED MASK) {
/* Increnent the count */

if ((count <<= 1) > 8) {
count = 1;

}

60 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for MicroBlaze S XILINX®

/* Wite value to gpio. 0 neans |ight up, hence count is negated */
gpi o_data = ~count;

XGpi o_nBSet Dat aReg(XPAR_MYGPI O BASEADDR, gpi o_dat a) ;

/* Clear the timer interrupt */
XTrr Ct r _nSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0, csr);

}
}

voi d
mai n() {

unsi gned int gpi o_data;

/* Enabl e mcroblaze interrupts */
nm crobl aze_enabl e_interrupts();

/* Connect uart interrupt handler that will be called when an interrupt
* for the uart occurs
*/
XI nt c_Regi st er Handl er (XPAR_MYIl NTC_BASEADDR,
XPAR_MYI NTC_MYUART _| NTERRUPT _| NTR,
(XI'nterrupt Handl er) uart _i nt _handl er,
(void *) XPAR_MYUART_BASEADDR) ;

/* Start the interrupt controller */
XI nt c_mivast er Enabl e(XPAR_My|l NTC_BASEADDR) ;

/* Set the gpio as output on high 3 bits (LEDs)*/
XGpi o_ntet Dat abi r ecti on(XPAR_MYGPI O_BASEADDR, 0x00);

/* set the nunber of cycles the tiner counts before interrupting */
XTnrt Gt r_nBet LoadReg(XPAR_MYTI MER_BASEADDR, 0,
(timer_count*tinmer_count+1) * 1000000);

/* reset the tiners, and clear interrupts */
XTnr Ctr _nBSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED MASK | XTC CSR _LOAD MASK);

/* Enable timer and uart interrupts in the interrupt controller */
Xl nt c_nEnabl el nt r (XPAR_Myl NTC_BASEADDR, XPAR_MYyTI MER_| NTERRUPT_MASK
| XPAR_MYUART_I NTERRUPT_MASK) ;

/* Enable Uartlite interrupt */
XUar t Li t e_nEnabl el nt r (XPAR_MYUART_BASEADDR) ;

/* start the tiners */

XTnr Ctr _nBSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR _ENABLE_TMR_MASK | XTC_CSR_ENABLE_ | NT_MASK |
XTC_CSR_AUTO RELOAD MASK | XTC_CSR_DOWN_ COUNT_NASK) ;

/* Wait for interrupts to occur */
while (1)

Platform Studio User Guide www.xilinx.com 61
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 5: Interrupt Management

Example Systems for PowerPC

System Without Interrupt Controller (Single Interrupt Signal)

An interrupt controller is not required if there is a single interrupting peripheral or an
external interrupting pin and its interrupt signal is level sensitive. A single peripheral
might raise multiple interrupts. In this case, an interrupt controller is required.

Procedure

To set up a system without an interrupt controller that handles only one level sensitive
interrupt signal, you must do the following:

1. Set up the MHS and MSS files as follows:

¢ Connect the interrupt signal of the peripheral, or the external interrupt signal, to
one of the interrupt inputs of the PowerPC in the MHS file. The interrupt inputs
can be critical or non-critical.

+ Give the peripheral an instance name using the I NSTANCE keyword in the MHS
file. Libgen creates a definition in xpar anet er s. h (OUTPUT_DI R/ PROC | NST
NAME/ i ncl ude) for XPAR_<PERI HPERAL _| NSTANCE_NAME>_BASEADDR
mapped to the base address of this peripheral.

2. Write the interrupt handler routine that handles the signal. The base address of the
peripheral instance is accessed as XPAR _<PERI PHERAL | NSTANCE NAME
BASEADDR.

3. Designate the handler function to be an interrupt handler for the signal using the
| NT_HANDLER keyword in the MSS file. Refer to the “Microprocessor Software
Specification (MSS)” chapter in the Platform Specification Format Reference Manual for
more information.

The peripheral instance is first selected in the MSS file, and then the INT_HANDLER
attribute is given the function name. In case of an external interrupt signal, the
INT_HANDLER attribute is given as a global parameter in the MSS file. The attribute
is not part of any block in the MSS.

4. Run Libgen and powerpc-eabi-gcc.

Example MHS File Snippet

BEG N opb_ti ner

paramet er | NSTANCE = nyti nmer
paranmeter HWVER = 1.00.b

par anet er C_BASEADDR = OxFFFF0000
paramet er C H GHADDR = OxFFFFOOf f
bus_interface SOPB = opb_bus

port Interrupt = interrupt
port CaptureTrig0 = net_gnd
END

BEG N ppc405
PARAMETER | NSTANCE = PPC405_i
PARAMETER HW VER = 1.00. a

62 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for PowerPC S XILINX®

BUS_| NTERFACE DPLB = nypl b

BUS_| NTERFACE | PLB = nypl b

PORT CPMC405CLOCK = sys_cl k

PORT PLBCLK = sys_cl k

PORT CPMC405CORECLKI NACTI VE = net _gnd

PORT CPMC405CPUCLKEN = net _vcc

PORT CPMCA05JTAGCLKEN = net _vcc

PORT CPMCA05TI MERTI CK = net _vcc

PORT CPMZA05TI MERCLKEN = net _vcc

PORT MCPPCRST = net _vcc

PORT TI EC405DI SOPERANDFWD = net _vcc

PORT CA405RSTCHI PRESETREQ = C405RSTCH PRESETREQ
PORT CA05RSTCORERESETREQ = C405RSTCORERESETREQ
PORT CAO5RSTSYSRESETREQ = C405RSTSYSRESETREQ
PORT RSTCA05RESETCH P = RSTCAO5RESETCHI P
PORT RSTCA05RESETCORE = RSTCA05RESETCORE
PORT RSTCA05RESETSYS = RSTCA05RESETSYS

PORT TI EC4A05MMUEN = net _gnd

PORT ElI CCA405EXTI NPUTI RQ = i nt errupt

PORT EI CC405CRI TI NPUTI RQ = net _gnd

PORT JTGC4A05TCK = JTGAO5TCK

PORT JTGC405TDI = JTGCAO05TDI

PORT JTGCA05TMS = JTGCCA05TMS

PORT JTGCA05TRSTNEG = JTGCA05TRSTNEG

PORT C405JTGIDO = C405JTGTDO

PORT C405JTGTDCEN = C405JTGTDCEN

PORT DBGCA05DEBUGHALT = DBGCA05DEBUGHALT
END

Example MSS File Snippet

BEG N DRI VER
paranmet er HW. I NSTANCE = nyti ner
paraneter DRI VER NAME = tnrctr

parameter DRI VER VER = 1.00.b
parameter | NT_HANDLER = tiner_int_handl er, INT_PORT = Interrupt
END

Example C Program

/*'k*'k****'k*'k*'k*'k***'k*'k'k*'k*'k***'k*'k*'k*'k**'k*'k*'k*************************

* Copyright (c) 2001 Xilinx, Inc. Al rights reserved.

* Xilinx, Inc.
*

*

* This programuses the timer and gpio to denonstrate interrupt
handl i ng.

* The tiner is set to interrupt regularly. The frequency is set in the
code.

* Every tinme there is an interrupt fromthe tinmer,

a rotating display of |eds on the board is updated.

The LEDs and switches are in these bit positions:
LSB 0: gpio_i 0<3>
LSB 1: gpi o_i 0<2>
LSB 2: gpio_i o<l>
LSB 3: gpi o_i 0<0>

RE R R R b b Sk R SRR Sk Sk kS R R R R S o S R R R kR Rk kO kR o

I N . T R I

Platform Studio User Guide

www.xilinx.com 63

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

/* This is the list of files that nust be included to access the
peri pheral s:
* xtmrctr.h - to access the tiner

* xgpio_|.h - to access the general purpose I/0

* xparanmeters.h - Ceneral purpose definitions. Mst always be included
* when any drivers/print routines are accessed. This defines
* addresses of all peripherals, declares the interrupt service
* routines, etc.

>/

#include <xtnrctr_I|.h>

#i ncl ude <xgpio_I.h>

#i ncl ude <xparaneters. h>
#i ncl ude <xexception_|.h>

/* dobal variables: count is the count displayed using the
* LEDs, and timer_count is the interrupt frequency.
*/

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default tinmer_count */

/*
* Interrupt service routine for the tiner. It has been declared as an
ISR in

* the nes file using the attribute | NT_HANDLER. The I SR can be witten
as a normal C routine.
* The peri pheral can be accessed usi ng XPAR <peri pheral nane in the nmhs
fil e>_BASEADDR
* as the base address.
*/
void timer_int_handler(void * baseaddr_p) {
i nt baseaddr = (int)baseaddr_p;
unsi gned int csr;
unsi gned int gpio_data;
int baseaddr = (int) baseaddr_p;

/* Read tiner 0 CSRto see if it raised the interrupt */
csr = XTnr Ctr _nGet Control St at usReg(baseaddr, 0);

if (csr & XTC CSR_ | NT_OCCURED MASK) {
/* Shift the count */

if ((count <<= 1) > 16) {
count = 1;
}
XGpi o_nBet Dat aReg(XPAR_MYGPI O_BASEADDR, ~count);

/* Clear the tiner interrupt */
XTnr Ct r _net Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0, csr);

voi d
mai n() {

64

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for PowerPC S XILINX®

/* Initialize exception handling */
XExc_Init();

/* Register external interrupt handler */
XExc_Regi st er Handl er (XEXC_|I D_NON_CRI Tl CAL_I NT,
(XExcepti onHandl er) tiner_i nt _handl er, (void *)XPAR_MYTI MER_BASEADDR) ;

/* Set the gpio as output on high 4 bits (LEDs)*/
XGpi o_nBSet Dat abi r ecti on(XPAR_MYGPI O BASEADDR, 0x00) ;

/* set the nunber of cycles the tiner counts before interrupting */
XTnr Gt r_nBet LoadReg(XPAR_MYTI MER_BASEADDR, 0,
(timer_count*tiner_count+1) * 8000000);

/* reset the tiners, and clear interrupts */
XTnr Ctr_nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED MASK | XTC CSR _LOAD MASK);

/* start the tiners */

XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR _ENABLE TMR_MASK | XTC_CSR _ENABLE | NT_MNASK |
XTC_CSR_AUTO RELOAD MASK | XTC_CSR_DOWN_ COUNT_MASK) ;

/* Enable PPC non-critical interrupts */
XExc_nEnabl eExcepti ons(XEXC_NON_CRI Tl CAL) ;

/* Wait for interrupts to occur */
while (1)

}

Example MHS File Snippet (For External Interrupt Signal)

PORT interrupt_inl = interrupt_inl, DOR=1IN, LEVEL = LON SIAS =
| NTERRUPT

BEG N ppc405

PARAMETER | NSTANCE = PPC405_i

PARAMETER HW VER = 1.00. a

BUS_| NTERFACE DPLB = nypl b

BUS_| NTERFACE | PLB = nypl b

PORT CPMC405CLOCK = sys_cl k

PORT PLBCLK = sys_cl k

PORT CPMC405CORECLKI NACTI VE = net _gnd

PORT CPMCA05CPUCLKEN = net _vcc

PORT CPMCA05JTAGCLKEN = net _vcc

PORT CPMZA05TI MERTI CK = net _vcc

PORT CPMZ405TI MERCLKEN = net _vcc

PORT MCPPCRST = net _vcc

PORT TI EC405DI SOPERANDFWD = net _vcc

PORT CA05RSTCHI PRESETREQ = CA405RSTCH PRESETREQ
PORT C405RSTCORERESETREQ = CA405RSTCORERESETREQ
PORT CAO5RSTSYSRESETREQ = C405RSTSYSRESETREQ
PORT RSTCA05RESETCH P = RSTCA05RESETCHI P

PORT RSTCA05RESETCORE = RSTCA05RESETCORE

PORT RSTCA05RESETSYS = RSTCA05RESETSYS

Platform Studio User Guide www.xilinx.com 65
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

PORT TI EC4A05MMUEN = net _gnd

PORT ElI CCA05EXTI NPUTI RQ = interrupt_inl
PORT EI CC405CRI TI NPUTI RQ = net _gnd

PORT JTGCA05TCK = JTGCA05TCK

PORT JTGC405TDI = JTGC405TDI

PORT JTGCAO5TMS = JTGCA05TMS

PORT JTGCAO5TRSTNEG = JTGCA05TRSTNEG
PORT C405JTGIDO = C405JTGIDO

PORT C405JTGTDCEN = C405JTGIDCEN

PORT DBGCA05DEBUGHALT = DBGC405DEBUGHALT
END

Example MSS File Snippet

PARAMVETER i nt _handl er = global _int_handler, int_port = interrupt_inl

Example C Program

#i ncl ude <xparaneters. h>

/* global interrupt service routine */
voi d gl obal _int_handler(void * arg) {
/* Handl e the global interrupts here */

}

voi d
mai n() {

/* Initialize exception handling */
XExc_Init();

/* Register external interrupt handler */
XExc_Regi st er Handl er (XEXC_| D_NON_CRI Tl CAL_I NT,
(XExcepti onHandl er) gl obal _i nt _handl er, (void *)0);

/* Enabl e PPC non-critical interrupts */
XExc_nEnabl eExcepti ons(XEXC_NON_CRI Tl CAL) ;

/* Wait for interrupts to occur */
while (1)

System With an Interrupt Controller (One or More Interrupt Signals)

An Interrupt Controller peripheral (INTC) should be present if more than one interrupt
can be raised. When an interrupt is raised, the interrupt handler for the Interrupt
Controller, XI nt ¢c_Devi cel nt er rupt Handl er, is called. This function then accesses the
interrupt controller to find the highest priority device that raised an interrupt. This is done
via the vector table created automatically by Libgen. On return from the peripheral
interrupt handler, i nt ¢ i nterrupt handl er acknowledges the interrupt. It then
handles any lower priority interrupts, if they exist.

66

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for PowerPC S XILINX®

Procedure

To set up a system with one or more interrupting devices and an interrupt controller, you
must do the following:

1.

Set up the MHS and MSS files as follows:

+ Assign the interrupt signals of all the peripherals to the Intr port of the interrupt
controller in the MHS file. The interrupt signal output of INTC is then connected
to one of the interrupt inputs of PowerPC. The interrupt inputs can be either
critical or non-critical.

+ Give the peripherals instance names using the | NSTANCE keyword in the MHS
file. Libgen creates a definition in xpar anet er s. h for XPAR _<I NTC
_| NSTANCE_NAME>_BASEADDR mapped to the base address of each peripheral
for use in the your program. Libgen also creates an interrupt mask and interrupt
ID for each interrupt signal using the priorities XPAR_<PERI HPERAL _| NSTANCE
NAME> <PERI PHERAL _| NTERRUPT_SI GNAL_NAME>_MASK and XPAR
_<I NTC_I NSTANCE_NAME>_<PERI HPERAL _| NSTANCE_NAME>_<PERI PHERAL
_|I NTERRUPT _SI GNAL_NAME>_| NTR. This can be used to enable or disable
interrupts.

Write the interrupt handler functions for each interruptible peripheral.

Designate each handler function to be the handler for an interrupt signal using the

I NT_HANDL ERkeyword in the MSS file. Alternately, you can register the routines with
the INTC interrupt vector table in your code. For this example, we display both of
these use cases by setting the routine for the timer in the MSS file and setting up the
uar t interrupt port handler in your code. The | NTCinterrupt signal must not be given
an | NT_HANDL ER keyword. If the | NT_HANDLER keyword is not present for a
particular peripheral, the interrupt signal uses a default dummy interrupt handler.

Run Libgen and mb-gcc to do the following:

+ Automatically generate and compile an interrupt vector table in Libgen. Each of
the peripherals connected to INTC can also register its interrupt handlers with the
INTC interrupt handler.

¢ Have XI nt c_Devi cent er rupt Handl er call the peripheral interrupt handler
using the updated interrupt vector table to identify the handler in order of
priority.

Note: PowerPC jumps to XI nt c_Devi cel nt er rupt Handl er using the exception table

when an interrupt occurs. The Xl nt c_Devi cel nt er r upt Handl er is registered with the
exception table in your code.

Example MHS File Snippet

BEG N opb_ti mer

paramet er | NSTANCE = nyti nmer
parameter HWVER = 1.00. b

par anet er C BASEADDR = OxFFFF0000
paramet er C H GHADDR = OxFFFFOOf f
bus_i nterface SOPB = opb_bus

port Interrupt = tinmerl

port CaptureTrig0 = net_gnd

END

Platform Studio User Guide

www.xilinx.com 67

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

BEG N opb_uartlite

paranet er | NSTANCE = nyuart
parameter HWVER = 1.00. b

par anet er C BASEADDR = OxFFFF8000
paraneter C _H GHADDR = OxFFFF8O0FF

parameter C DATA BITS = 8
paranmeter C CLK_FREQ = 30000000
paramet er C_ BAUDRATE = 19200
paraneter C USE PARITY = 0

bus_interface SOPB = opb_bus
port RX = rx

port TX = tx

port Interrupt = uartl

END

BEGA N opb_intc

paramet er | NSTANCE = nyintc
paranmeter HWVER = 1.00.b

par anet er C_BASEADDR = OxFFFF1000
paramet er C_H GHADDR = OxFFFF10f f
bus_interface SOPB = opb_bus

port Irqg = interrupt
port Intr = tinerl & uartl
END

BEG N ppc405

PARAMETER | NSTANCE = PPC405_i

PARAMETER HW VER = 1.00. a

BUS_| NTERFACE DPLB = nypl b

BUS_| NTERFACE | PLB = nypl b

PORT CPMC405CLOCK = sys_cl k

PORT PLBCLK = sys_cl k

PORT CPMC405CORECLKI NACTI VE = net _gnd

PORT CPMCA05CPUCLKEN = net _vcc

PORT CPMCA05JTACGCLKEN = net _vcc

PORT CPMCA05TI MERTI CK = net _vcc

PORT CPMZ405TI MERCLKEN = net _vcc

PORT MCPPCRST = net _vcc

PORT TI EC405DI SOPERANDFWD = net _vcc

PORT CA05RSTCHI PRESETREQ = C405RSTCH PRESETREQ
PORT CA05RSTCORERESETREQ = CA405RSTCORERESETREQ
PORT CAO5RSTSYSRESETREQ = CA405RSTSYSRESETREQ
PORT RSTCAO5RESETCHI P = RSTCA05RESETCH P
PORT RSTCAO5RESETCORE = RSTCA05RESETCORE
PORT RSTCA05RESETSYS = RSTCA05RESETSYS

PORT TI EC405MMUEN = net _gnd

PORT EI CCA405EXTI NPUTI RQ = i nt errupt

PORT EI CC405CRI TI NPUTI RQ = net _gnd

PORT JTGCA05TCK = JTGAOS5TCK
PORT JTGCA05TDI = JTGCA05TDI
PORT JTGCAOS5TMS = JTGCAO5TMS

PORT JTGCA05TRSTNEG = JTGCA05TRSTNEG
PORT C405JTGIDO = C405JTGTDO

PORT CA05JTGIDCEN = C405JTGTDCEN

PORT DBGCAO5DEBUGHALT = DBGCA05DEBUGHALT
END

68

www.xilinx.com

Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for PowerPC S XILINX®

Example MSS File Snippet

BEA N DRI VER

par amet er HW I NSTANCE = nyti ner

parameter DRI VER NAME = tnrctr

paraneter DRI VER VER = 1.00.b

parameter | NT_HANDLER = timer_int_handl er, |NT_PORT = Interrupt
END

BEGA N DRI VER

par anet er HW I NSTANCE = myuart
paraneter DRI VER NAME = uartlite
paraneter DRI VER VER = 1.00.b
END

Example C Program

#include <xtnrctr_|.h>
#include <xuartlite_l.h>
#include <xintc_|.h>

#i ncl ude <xgpio_l.h>

#i ncl ude <xparaneters. h>

/* dobal variables: count is the count displayed using the
* LEDs, and tinmer_count is the interrupt frequency.*/

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default tinmer_count */

/* uvartlite interrupt service routine */
voi d uart _int_handl er(voi d *baseaddr_p) {
char c;
/[* till uart FIFCs are enpty */
while (!XUartLite_m sRecei veEnpt y(XPAR_ MYUART BASEADDR)) {
/* read a character */
c = XUartlLite_RecvByt e(XPAR_MYUART_BASEADDR) ;
/* if the character is between "0" and "9" */
if ((c>47) && (c<58)) {
timer_count = c-48;
/* print character on hyperterm nal (STDOUT) */
put nun{ti mer_count);
/* Set timer with new val ue of tiner_count */
XTrr Ctr _nBet LoadReg(XPAR_MYTI MER_BASEADDR, 0, (timer_count*tim
er _count+1) * 1000000);
}
}
}

/* timer interrupt service routine */

void timer_int_handl er(void * baseaddr_p) {
unsi gned int csr;
unsi gned int gpio_data;

i nt baseaddr = (int) baseaddr_p;

/* Read tinmer 0 CSRto see if it raised the interrupt */
csr = XTnr Ctr _nGet Control St at usReg(baseaddr, 0);

if (csr & XTC_CSR | NT_OCCURED MASK) {

Platform Studio User Guide www.xilinx.com 69
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 5: Interrupt Management

/* Increnent the count */

if ((count <<= 1) > 8) {
count = 1;

}

/* Wite value to gpio. 0 neans |ight up, hence count is negated */
gpi o_data = ~count;

XQ@pi o_nBSet Dat aReg(XPAR_MYGPI O BASEADDR, gpi o_dat a) ;

/* Clear the timer interrupt */
XTrr Ct r _nBSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0, csr);

}
}

voi d
mai n() {

unsi gned int gpi o_data;

/* Initialize exception handling */
XExc_Init();

/* Register external interrupt handler */

XExc_Regi st er Handl er (XEXC_| D_NON_CRI Tl CAL_I NT,
(XExcept i onHandl er) XI nt c_Devi cel nt errupt Handl er, (void
*) XPAR_MYI NTC DEVI CE_I D) ;

/* Connect uart interrupt handler that will be called when an interrupt
* for the uvart occurs
*/
XI nt c_Regi st er Handl er (XPAR_MYl NTC_BASEADDR,
XPAR_MYI NTC_MYUART_| NTERRUPT_| NTR,
(XI'nterrupt Handl er) uart _i nt _handl er,
(void *) XPAR_MYUART_BASEADDR) ;

/* Start the interrupt controller */
Xl nt c_mvast er Enabl e(XPAR_Myl NTC_BASEADDR) ;

/* Set the gpio as output on high 3 bits (LEDs)*/
XGpi o_nBet Dat abi r ect i on(XPAR_MYGPl O_BASEADDR, 0x00) ;

/* set the nunber of cycles the timer counts before interrupting */
XTnr Ctr _nBet LoadReg(XPAR_MYTI MER_BASEADDR, O,
(timer_count*tinmer_count+1) * 1000000);

/* reset the tiners, and clear interrupts */
XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED MASK | XTC CSR LOAD MASK);

/* Enable timer and uart interrupts in the interrupt controller */
XI nt c_nEnabl el nt r (XPAR_MYlI NTC_BASEADDR, XPAR_MYTI MER_| NTERRUPT_MASK
| XPAR_MYUART_I| NTERRUPT_MASK) ;

/* Enable Uartlite interrupt */
XUar t Li t e_nEnabl el nt r (XPAR_MYUART _BASEADDR) ;

70

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Example Systems for PowerPC S XILINX®

/* start the tiners */

XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_ENABLE_TMR _MASK | XTC_CSR _ENABLE_| NT_MASK |
XTC_CSR_AUTO RELOAD MASK | XTC_CSR_DOWN_COUNT_NASK)

/* Enabl e PPC non-critical interrupts */
XExc_nEnabl eExcepti ons(XEXC_NON_CRI Tl CAL) ;

/* Wait for interrupts to occur */
while (1)

Platform Studio User Guide www.xilinx.com 71
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 5: Interrupt Management

72 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

S XILINX®
Chapter 6

Using Xilkernel

Xilkernel is a small, robust embedded kernel that provides for scheduling multiple
execution contexts and a set of higher level services. It also provides for synchronization
and communication primitives to help design co-operatively executing tasks for solving a
problem. The first section of this chapter explains the fundamental operating system
concepts and their application to Xilkernel. The next section walks you through the series
of steps required within the Xilinx® Platform Studio™ (XPS) to include, configure and
build Xilkernel and applications. The final section provides a demonstration and step-by-
step analysis of actual applications executing on top of Xilkernel. These design examples
are targeted for the Insight 2VP7 FG456 demo board and are available for both
MicroBlaze™ and PPC.

This chapter contains the following sections.

o “Xilkernel Concepts”
e “Getting Started with Xilkernel”
o “Xilkernel Design Examples”

Xilkernel Concepts

The following general concepts are key to understanding a kernel: Processes, Threads,
Context switching, Scheduling, Synchronization, and Interprocess communication. These
general concepts are not explained in their entirety and detail in this chapter. However, a
basic introduction to each concept is provided. These concepts should be familiar to
anyone comfortable with operating system technology. Therefore, advanced users can skip
introductory portions and go directly to Xilkernel relevant parts. Some concepts are
completely specific to Xilkernel. These include Xilkernel configuration, application
linkage, block memory allocation, system initialization, interrupt handling and accessing
standard libraries.

Processes, Threads, Context Switching, and Scheduling

Operating systems typically run multiple user applications as independent processes. Each
process usually has its own memory space independent of the other processes. A hardware
timer periodically interrupts the processor to invoke the scheduler. The time interval
between these interrupts is called a time slice. The scheduler is a function within the
operating system (or Xilkernel) that determines which process should run in the current
time slice. The following sequence is an example of running processes:

1. Timeslice;: The kernel starts running and the scheduler function determines that
Process A should start running. The kernel begins Process A.

2. Timeslice,: The kernel stops Process A, saves its state, and begins Process B.

Platform Studio User Guide www.xilinx.com 73
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

3. Timeslices: The kernel stops Process B, saves its state, restores the saved state of
Process A, and then restarts Process A.

4. Timeslice,: Process A stops. The kernel restores the saved state of Process B and then
continues running Process B.

As a result of this sequence of operations, Process A and Process B appear to run
concurrently. For example, an embedded system might have two applications that must
run concurrently — the first application continuously processes input packets and outputs
filtered data, while the other application monitors push-button inputs and displays status
on an LCD panel. Without a kernel, the two applications would need to be combined into
one giant application. With a kernel, each application becomes an independent process,
and can be developed and tested independently. A process can perform several operations
on itself or other processes, such as creating a new process, yielding its time slice to another
process, killing another process, passing data or control to another process, waiting for
another process to finish, changing its own priority, and exiting.

In the context of Xilkernel, a thread is the unit of execution and is analogous to a process.
The programming interface for these threads is based on the widely used POSIX standard,
now supported by the IEEE, called pt hr eads. While other operating systems define a
thread as a light weight process and is a sub-unit of a ‘process,’ a thread in Xilkernel is the
primary unit of execution and does not correlate to the concept of thread groups forming a
process. Refer to the “Xilkernel” chapter in the EDK OS and Libraries Reference Manual for
more info about the Xilkernel process model. In further sections of this chapter, the term
process is used to encompass both threads and processes.

Xilkernel provides different scheduling algorithms, one of which can be selected to for a
particular combination of applications. The simplest scheduling algorithm provided by
Xilkernel is the round-robin scheduler. This scheduler places all processes in a queue and
assigns each time slice to the next process in the queue. Xilkernel provides another
scheduling algorithm called the priority scheduler. The priority scheduler places processes
in multiple queues, one for each priority level. On each timer interrupt, the priority
scheduler picks the first item in the highest priority queue. Each process is assigned a fixed
priority when it is created. Unlike other operating systems, Xilkernel only picks a process
to run only if it is ready to run and there are no higher priority processes that are ready.
Details of the scheduling algorithms are described in the “Xilkernel” chapter in the EDK
OS and Libraries Reference Manual.

Synchronization Constructs

When two processes try to access a shared resource such as a device, it might be necessary
to provide exclusive access to the shared resource for a single process. For example, if
Process A is writing to a device, Process B must wait until Process A is done, before it reads
the same block. Similarly if Process B is reading a shared memory block, Process A must
wait until Process B is done, before it writes a new value to the same block. The constructs
that allow one to ensure this kind of constraints are known as synchronization constructs.
Semaphores and mutexes are the two constructs provided by Xilkernel. In the previous
example, Process A and Process B could use semaphores to ensure correct operation.

74

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Concepts S XILINX®

Semaphores

Semaphores are much more advanced constructs than mutex locks and provide a counting
facility that can be used to co-ordinate tasks in much more complex fashions. A mutex lock
is essentially just a binary semaphore. In Xilkernel, mutex locks have a similar but
independent implementation from semaphores.

The following example scenario involves semaphores for coordinating access to a piece of
shared memory between two processes A and B. Process A uses semaphore X to signal
Process B, and Process B uses semaphore Y to signal A.

1. Process A creates semaphore X with an initial value of 0.

2. Process B starts by creating a semaphore Y with an initial value of 0 and waits for
semaphore X. The wait operation blocks a process until a corresponding signal
operation releases it.

3. Process A writes to the shared memory and invokes the sem post () function to
signal semaphore X. Process A then waits on semaphore Y before writing again.

Meanwhile, Process B, which was waiting for semaphore X, gets it and does the read
operation.

4. Process B signals semaphore Y, and waits again on semaphore X.

Mutexes

Mutexes are similar to semaphores, also allowing mutually exclusive access to a shared
resource. However, mutexes are defined only for threads in Xilkernel. The shared resource
might be a shared memory block as in the previous example, or it might be a peripheral
device such as a display device. A mutex is associated with the shared resource at software
design time. Then each thread that wants to access this resource first invokes a

pt hr ead_mut ex_1 ock() function on this mutex to obtain exclusive access. If the
resource is not available, the thread is blocked until the resource becomes available to it.
Once the thread obtains the lock, it performs the necessary functions with this resource and
then unlocks the resource using pt hr ead_nut ex_unl ock() .

Inter-Process Communication

Independently executing processes or threads can share information among themselves by
using standard mechanisms such as shared memory or message passing. By definition, the
data memory used by each process is distinct from the data memory used by other
processes.

Shared Memory

Consider a scenario in which you want to build a system with two processes that use
shared memory as described in the following:

1. Process A reads data from a serial input device and stores it in memory
2. Process B reads the data from memory and computes some value

In this scenario, you should store the data in a shared memory segment. When you
configure Xilkernel, as explained later, you can specify the number and size of shared
memory segments. Process A attaches to a named shared memory segment and writes
data to it. Process B attaches to the same shared memory segment using the same name and
reads data from it.

Platform Studio User Guide www.xilinx.com 75
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 6: Using Xilkernel

Message Passing

Another technique to allow Process A and Process B to share data is message passing. The
following example describes a system with two processes that use message passing:

1. Process A reads data from a serial device and then creates a message containing this
data.

Process A sends the message to a message queue, specifying a queue identifier.]

3. Process B then gets the message from a specified message queue and retrieves the data
in the message.

The message passing routines are higher level functions that use semaphores internally to
provide a simple communication mechanism between processes.

The programming interface for shared memory and messages is based on the POSIX
standard.

For more information about these functions, refer to the “Xilkernel” chapter in the EDK OS
and Libraries Reference Manual.

Concepts Specific to Xilkernel

Code and Runtime Structure

Xilkernel is structured as a library. The user application source files must link with
Xilkernel to access Xilkernel functionality. The final image linking the kernel to the
application becomes an Executable and Linking Format (ELF) file, which you can
download, bootload, debug, transfer around and process as with any other ELF file for
stand-alone programs.

Xilkernel on a PPC405 requires a special memory layout for two different sections, as
dictated by the hardware requirements. The basic requirement for the PPC is that memory
is allocated to the .vectors section starting at a 64KB address boundary and a .boot section at
OXFFFFFFFC. The rest of the code and data memory can be placed anywhere desired.

Your code must include xnk. h as the first include file in your sources. This enables
Xilkernel to extract certain definitions from the C standard library header files. Your
application must also include the mai n() routine. This routine is the entry point for the
kernel + application bundle. When you use mai n(), the kernel is still inactive. You can
perform pre-processing before the kernel starts. The entry point for the kernel is

xi | ker nel _mai n() . Use this function to start the kernel, scheduler, timers, and the
interrupt system. Control does not return from xi | ker nel _nmai n() . The scheduler is
now responsible for scheduling the configured tasks and continuing the execution in that
fashion. The following code snippet displays a simple application source file:

#i ncl ude “xnk. h”
#i ncl ude <stdio. h>
/* various declarations and definitions go here */

int main()

{
/* Application initialization code goes here */
/* Application not allowed to invoke kernel interfaces yet */
xil kernel _main (); /* Start the kernel */

/* Control does not reach here */

}

76 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Concepts S XILINX®

/* Statically created first thread */
int first_thread ()

{

/* Create nore threads and do processing as required */

}

The kernel bundled executable mode kernel can still service separately compiled
executables through a system call layer. This is similar to a mixed executable mode.

System Calls and Libraries

All of the Xilkernel functions previously described are available to your applications as
libraries. Many of these functions require exclusive access to kernel resources, which the
code guarantees by disabling interrupts while these kernel functions run. The following
flow of control is for invoking a system call, pr oc_do_sonet hi ng() :

1. Theproc_do_somet hi ng() function transfers control to the main kernel system call
handler.

2. The handler disables interrupts, preforms some pre-processing, and then invokes
sys_proc_do_sonet hi ng(), the internal version of the system call.

3. Once the system call is complete, the handler performs post-processing. It checks to
see if a rescheduling is required.

4. If arescheduling is required, then the handler invokes the scheduler and does a
context switch. If not, it re-enables interrupts before returning to the original caller.

User Interrupts and Xilkernel

In any processor-based hardware system, various peripherals can generate interrupt
signals. If multiple interrupting peripherals are present, an interrupt controller collects
these signals and feeds a single interrupt signal to the processor. Both PPC and MicroBlaze
kernels require a timer device to generate periodic interrupts and this is the only hardware
requirement that the kernel places. MicroBlaze requires an external timer interrupt to run
Xilkernel, while PowerPC™ has an internal timer that generates interrupts for Xilkernel.
Also, if an interrupt controller is present in the system, Xilkernel exports an interrupt
handler registering mechanism and invokes the handlers after it pre-processes each
hardware interrupt.

On MicroBlaze with interrupts enabled, when the processor receives an interrupt, it jumps
to address 0x10, which contains an instruction to jump to the Xilkernel interrupt handler.
By default, the Xilkernel interrupt handler handles only the timer interrupts. On such an
interrupt, Xilkernel performs its usual scheduling and time accounting steps. Functions to
handle interrupts from other peripherals must be registered with the Xilkernel interrupt
handler using the interrupt handler registration functions described in the “Xilkernel”
chapter in the EDK OS and Libraries Reference Manual.

On MicroBlaze and PowerPC, in addition to the usual interrupts, there might be other
hardware exceptions recognized by the processor. To register handlers for these
exceptions, follow the steps documented in the Standalone BSP reference guide.

Platform Studio User Guide www.xilinx.com 77
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Differences Between MicroBlaze & PowerPC Xilkernel Implementations

Xilkernel uses a single common programming interface on MicroBlaze and PowerPC.
However, the underlying hardware models are different, so you might notice a difference
in terms of compiled code size and performance. The primary difference is in the linker
scripts used for PowerPC, and the compiler flags used for MicroBlaze. Otherwise, the
kernel exports the same interfaces to both PPC and MicroBlaze.

Using Device Drivers with Xilkernel

Device drivers are software routines that interact with peripheral devices. A number of
device drivers are provided as part of the EDK to interface with Xilinx provided devices
such as UARTSs and various types of memory and input/output device controllers.
Xilkernel uses certain device drivers automatically - the UART device driver if a UART is
present in the hardware system, and the Interrupt Controller device driver if an interrupt
controller is present in the hardware system. Any application can use device drivers by
directly invoking the device driver interface. For interrupt handling of devices, your
applications must use the interrupt registration mechanism of Xilkernel.

Using Other Libraries with Xilkernel

The libc and libm libraries can be used by any application running as a process or thread
managed by Xilkernel. The XilFile, XilMFS, XilNet, and XilProfile libraries can also be used
by any application thread. However, the XilFile, XilMFS, XilNet and XilProfile libraries
access hardware devices either directly or indirectly. These libraries are not designed to be
completely re-entrant and thread-safe. As a result they are subject to restrictions on shared
access. The libc library is also not completely re-entrant (routines like malloc, free). If more
than one application thread wants to use these libraries at the same time, then the threads
need to use some sort of protection mechanism to coordinate access to the device.

Getting Started with Xilkernel

Xilkernel with MicroBlaze

If you want to use Xilkernel with MicroBlaze, your hardware platform must contain the
following minimum requirements:

e MicroBlaze processor.

e 7-24 KB of BRAM or other memory connected to the processor over Local Memory
Bus (LMB) or On-Chip Peripheral Bus (OPB), with an appropriate memory controller.
You might need more or less memory depending on how Xilkernel is configured.

e OPB timer or Fixed Interval Timer (FIT) peripherals connected to the interrupt port of
the processor either directly or through an interrupt controller.

o UART or UARTIite peripheral for input/output. This is optional and is only used for
demonstration/debug purposes.

78

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Getting Started with Xilkernel XX"JNX@

Xilkernel with PowerPC

If you want to use Xilkernel with PowerPC, your hardware platform must contain the
following minimum requirements:

PowerPC processor.

16-32KB of BRAM or other memory connected to the processor over PLB or OPB, with
an appropriate memory controller. You might need more or less memory depending
on how Xilkernel is configured. PowerPC systems need more memory than
MicroBlaze systems because of a large . vect or s section.

UART or UARTIite peripheral for input/output. This is optional and is only used for
demonstration/debug purposes.

Note: A separate timer is not needed as in the MicroBlaze system because the PowerPC contains
built-in timers for Xilkernel and other operating systems.

Building and Executing Xilkernel and Applications

There are three steps to building and executing Xilkernel and your applications:

1.
2.
3.

Configure and generate Xilkernel
Create your application(s)
Download/Debug Xilkernel

Each of these steps is explained in more detail in the following sections.

Configuring and Generating Xilkernel

You can configure a software platform to include Xilkernel by using the Software Platform
Settings dialog box as described in the following steps:

1.

Click the System tab on the navigator on the left side of the XPS main window to view
the hardware tree view.

Right-click the processor name in the processor tree view and select S/W Settings.

The Software Settings dialog box opens. The top half of this dialog box displays the
devices in the hardware platform and the drivers assigned to them. The bottom right
side of the dialog box allows you to select an OS. The available OS’s are VxWorks,
Standalone, and Xilkernel.

Select Xilkernel.

If multiple versions of Xilkernel are available, you can select an appropriate version.
To further configure Xilkernel, click on the Library/OS Parameters tab at the top of the
dialog box.

The Library/0S Parameters tab opens.

This tab displays all of the configurable parameters for Xilkernel. The parameters are
organized into categories and subcategories. For each parameter, the parameter type,
default value, and a short explanation are displayed. The default values are pre-

populated, and you can change the values as needed. You can collapse or expand the
tree view by clicking on the + or - symbols on the left side.

Note: You have not yet created any applications. You are only configuring aspects of your
software platform.

Click OK to save your selections.
Your Xilkernel configuration is complete.

Platform Studio User Guide

www.xilinx.com 79

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Note: Allthe GUI settings that you just set are translated to lines in the MSS in the OS section.
If you prefer text editing to GUIs, you can create this MSS file and run Libgen in the batch mode

flow.

The following MSS fragment reflects the settings as set in the previous example:

BEGA N OS

PARAMETER OS_NAME = xi | ker nel
PARAMETER OS_VER = 3.00. a

PARAMETER STDI N = RS232

PARAMETER STDOUT = RS232

PARAMVETER proc_i nstance = m crobl aze 0
PARAMETER confi g_debug_support = true
PARAMETER ver bose = true

PARAMETER systnr _spec = true
PARAMVETER systnr _dev = systemtimer
PARAMETER systnr _freq = 66000000
PARAMETER systnr _interval = 100
PARAMETER sysintc_spec = system.intc
PARAMETER confi g_sched = true
PARAMETER sched_t ype = SCHED PRI O
PARAVETER n_prio = 6

PARAVETER max_readyq = 10

PARAVETER confi g _pthread_support = true
PARAMETER max_pt hreads = 10
PARAMETER config_sema = true
PARAMETER max_sem = 4

PARAVETER max_semwaitq = 10
PARAVETER config _nsgq = true
PARAMETER num nsgqgs = 1

PARAMETER nsgq_capacity = 10
PARAMETER confi g_bufrmall oc = true
PARAMETER config_pthread_nutex = true
PARAVETER config tine = true

PARAMETER max_tnrs = 10

PARAVETER nmem table = ((4, 30), (8,20))

PARAMETER enhanced_features = true

PARAMETER config_kill = true

PARAMETER static_pthread_table = ((shell_main, 1))
END

For more information on Libgen and batch flows, see the “Library Generator” chapter
and the “Xilinx Platform Studio” chapter, both in the Embedded System Tools Guide.

Click Tools — Generate Libraries and BSPs to generate the Xilkernel library.

At the end of the Libgen flow, Xilkernel generation is complete and the file
I'i bxi | kernel . a is generated in the corresponding processor’s| i b/ folder.

Creating Your Application

You can create and build an application as described in the following steps:

1.

Click the Applications tab on the navigator on the left side of the XPS main window.

This opens the tree view with Software Projects on top and all software applications
for this processor below it. You can collapse or expand the tree view by clicking on the
+ or - symbols on the left side.

Right-click Software Projects and select Add SW Application Project.
The Add SW Application Project dialog box opens.

80

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

Xilkernel Design Examples S XILINX®

2. Typeaname for your project in the Project Name field, and select a processor from the
Processor drop-down list.

3. The tree view updates to show the new project (xilkernel_demo in this example), as
shown in the previous image.

4. Now you must set the compiler options for your application. Choose the compiler
optimization level, including paths as needed. The only compiler setting that you must
specify for your Xilkernel application is “xilkernel” in the list of libraries to link with

5. Create and add your source files, as described here:

a. Create your application source files. You can use your favorite text editor or IDE to
create your application.

b. Inthe Applications tab, right click the Sources item in the project tree view and
select Add File.

The Add Source and Header Files to the project dialog box appears.
¢. Navigate to your application source file and open it.
Your file is added to the project tree.

6. Right-click the project name in the tree view and select Build Project to create the
executable file that contains your kernel bundled application.

Downloading/Debugging Your Xilkernel Application

You can download and run the executable file of your application project as with any other
standalone application. If you want to debug your application, click the Run Debugger
toolbar button and select your Xilkernel application project as the project to debug. GDB
opens, allowing you to add breakpoints and debug your entire kernel and applications.

Note: If you want to debug your application with GDB, you must compile your project with -g.

Xilkernel Design Examples

This section demonstrates an example Xilkernel-based system, illustrating all the features
of the kernel. Xilinx recommends that you begin with this design example to see the actual
interfaces of the kernel being exercised. This design example is targeted for the Insight
V2P7 FG456 Rev 4 board. With minor effort, however, this example can be ported to any
board that can accommodate the design.

Hardware and Software Requirements
Your system must meet the following hardware and software requirements for this design
example.
Hardware

e Memec Design Insight V2P4/7 FG456 Rev 4 board
e Power supply
e JTAG and serial connection cables.

Platform Studio User Guide www.xilinx.com 81
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Software

Xilinx® EDK 7.1i
Xilinx® ISE™ 7.1i (G.35)

User Guide Example Zip Files: | nsi ght _PPC_XMK. zi p and
I nsi ght _MB_XMWK zi p.

Hyperterminal or some other terminal client.

Design Example Files

You can obtain the design examples online from the Xilinx website at the following URL.:

http://www.xilinx.com/ise/embedded/edk_examples.htm

Download the Xilkernel User Guide design example ZIP files, and extract them to a
location on your system. You can access these ZIP files by clicking the links for PPC XMK
Example and MB XMK Example.

In the design example folder, The MicroBlaze design example is located in the MB
subfolder, and the PowerPC example is located in the PPC subfolder.

Description of Example Sets

The hardware systems were built using the Base System Builder Wizard.

Overview of the MicroBlaze System

The MicroBlaze system consists of:

MicroBlaze at 66 MHz.

Hardware Debug module with fast download enabled.

32KB of LMB BRAM.

OPB Uartlite at 19200 baud.

4-bit LEDs.

3 Push Buttons.

32 MB of SDRAM.

DCM module to generate the system clock.

OPB interrupt controller connected to MicroBlaze interrupt port.

Two OPB timers connected through the interrupt controller. The second timer is used
to illustrate user-level interrupts.

Overview of the PowerPC System

The PowerPC system consists of:

PowerPC at 100 MHz.

64 KB of PLB BRAM.

OPB UARTIite at 19200 baud.
4-bit LEDs.

3 Push Buttons.

8-bit DIP switches.

82

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

http://www.xilinx.com/ise/embedded/edk_examples.htm

Xilkernel Design Examples S XILINX®

e 32 MB of SDRAM.
e DCM module clocking the PLB bus at 50 MHz.
e OPB interrupt controller connected to the PPC external interrupt port.

e An OPB timer connected through the interrupt controller. This timer is used to
illustrate user-level interrupt handling.

Overview of the Example Application Sets

The example application sets were designed to illustrate all the features of Xilkernel. All of
the features of the kernel are turned on and there are application threads that exercise most
of the interfaces, so the code size of the generated kernel is larger than available BRAM.
Therefore, the final kernel image is designed to run out of external memory in MicroBlaze
and a mix of BRAM and external memory in PPC405. Further description of the examples
focus on the MicroBlaze system. A separate section documents the differences in the
PowerPC examples.

Since the example applications include those that run from external memory, we must use
Xilinx® Microprocessor Debug (XMD) to download the programs and execute them. Each
of these EDK design examples contains a simple startup program to print a welcome
message and exit. This program initializes BRAM and executes on bitstream download.

Defining the Communications Settings

The steps described below can be run completely from XPS.

You must have hyperterminal or some other terminal client connected to the serial port
through which the RS232 interface on the target board is connected.

You should configure your session with the following settings:
e Bits per second: 19200

e Databits: 8
e Parity: None
e Stopbits: 1

e Flow control: None

Xilinx recommends that you save these connection settings. To connect using
hyperterminal, start up hyperterminal and open up the saved connection settings file.
Hyperterminal automatically waits for data from the other end.

Software Platform Specification

The example system has a pre-configured software platform, with chosen values for each
parameter. Review the following MSS snippet from the MicroBlaze example, and examine
some parameters and what they mean. This snippet is generated for this software
platform.

Click a parameter to view its description.

BEG N OS
PARAMETER OS_NAME = xi |l ker nel
PARAMETER OS_VER = 3.00. a
PARAMETER STDI N = RS232
PARAMETER STDOUT = RS232
PARAMETER proc_i nstance = m crobl aze 0

Platform Studio User Guide www.xilinx.com 83
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Enabl e di agnosti c/ debug nessages

PARAMETER confi g_debug_support = true
PARAMETER ver bose = true

M croBl aze systemtinmer device specification
PARAMETER systnr _spec = true

PARAMVETER systnr _dev = systemtimer

PARAMETER systnr_freq = 66000000

PARAMETER systnr _interval = 100

Specification of the intc device

PARAMVETER sysintc_spec = system.intc

Schedul i ng type
PARAMETER confi g_sched
PARAMETER sched_type =
PARAMETER n_prio = 6
PARAVETER max_readyq = 10

Configure pthreads

PARAVETER confi g _pthread_support = true
PARAMETER max_pt hreads = 10

Semaphore specification

PARAMETER config_sema = true

PARAMETER max_sem = 4

PARAVETER max_semwaitq = 10

MSQQ specification

PARAMETER config_nsgq = true

PARAMETER num nsgqgs = 1

PARAMETER nsgq_capacity = 10

MSGQ s require config bufmalloc to be true.
PARAVETER config bufnmalloc = true

Configure pthread mutex

PARAMETER config_pthread_nutex = true

Configure tinme related features

PARAMETER config_time = true

PARAMETER max_tnrs = 10

PARAVETER nmem table = ((4,30),(8,20))

Enhanced features

PARAMETER enhanced_features = true

= true
SCHED PRI O

PARAMETER config_kill = true
PARAMETER static_pthread_table = ((shell_main, 1))
END

The Xilkernel MSS specification is enclosed within an OS block. The parameters in bold are
the required parameters, which you must provide values for.

The following table describes each parameter:

Table 6-1: Software Platform Parameters

Parameter Description

OS_NAME These parameters combine to tell Libgen what the OS is.

OS_VER

STDI N These parameters provide input and output for the example

ST applications. In this example, you must tell Xilkernel the instance

DauT names of the peripherals that are to be used for standard inputs and

outputs. In this case, we use the OPB Uartlite peripheral in the
system, named RS232, as the input-output device.

84

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples

SUXILINX®

Table 6-1:

Software Platform Parameters (Continued)

Parameter

Description

proc_i nstance

This parameter ties the OS to a particular processor in the hardware
system. In this case, it is tied to the processor whose instance name
ism crobl aze 0.

confi g_debug_
support

This parameter controls various aspects of debugging the kernel.

ver bose

This sub-parameter of confi g_debug_support, if set to true,
will enable verbose messages from the kernel, such as on error
conditions. We set this to true in our example.

systnr _spec

This parameter is required and specifies whether or not the timer
specifications are defined.

Note: There is a different requirement for PPC405. Refer to the section
discussing the PPC405 example, Configuring PowerPC.

systnr_dev

Xilkernel requires a timer to tick the kernel. This parameter works
with the systnr _freqand systnr_i nt erval parameters.

systnr_freq

This parameter specifies the frequency at which the timer is clocked
at, measured in Hz. In this case, the timer is clocked at 66 MHz.

systnmr_interv
al

This parameter allows you to control the time interval at which the
kernel ticks are to arrive. This is auto-determined if a fit_timer is
used, since the interval cannot be programmed. Otherwise, a value
in milliseconds is provided. In this case, we provide a large
granularity tick of 100ms. This ensures that the output from the
application threads are not interleaved and appear mangled on the
screen. This setting directly controls the CPU budget of each thread.

sysi nt c_spec

The example hardware system has multiple interrupting devices,

so an interrupt controller is tied to the external interrupt pin of the
processor. In this case, the sysi nt c_spec parameter is set to the
instance name of the corresponding peripheral.

config_sched

sched_t ype

n_prio

max_readyq

You configure the scheduling scheme of the kernel with the

confi g_sched parameter. In this example, the scheduling type is
chosen to be SCHED_PRIO with 6 priority levels, and the length of
each ready queue is 10.

config_pthrea
d_support

This parameter specifies whether to support threads. Since this
example works with threads, this parameter is set to true.

mex_pt hr eads

This parameter controls the maximum number of pthreads that can
run on Xilkernel at any instant in time.

config_sena

This parameter determines whether to include semaphore support
in the kernel. In this example, conf i g_sema parameter is enabled.

max_sem

This parameter specifies the maximum number of semaphores
required at run-time.

max_sem waitq

This parameter specifies the length of each semaphore’s wait
queue.

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com 85
1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Table 6-1: Software Platform Parameters (Continued)

Parameter

Description

config_nsgq

This parameter enables the message queue category.

The message queue module depends on both the semaphore and
buffer memory allocation modules. Each message queue uses two
semaphores internally and uses block memory allocation to
allocate memory for messages in the queue. This dependency is
enforced both in the GUI and in the library generation process with
Libgen. Libgen Design Rule Checkers (DRCs) will catch any errors
due to missing dependencies.

num nsgqs

This parameter specifies the number of message queues. This
example requires a single message queue for the producer
consumer demo thread.

nsgg_capacity

This parameter specifies the maximum number of messages that
the queue accommodates. In this example, the message queue can
contain a maximum of 10 messages.

confi g_buf mal
| oc

This parameter defines whether or not to use buffer memory
allocation. In this example, buffer memory allocation is needed by
both the message queue module and the linked list demo thread, so
the parameter is set to true.

config_pthrea
d_rmut ex

This parameter defines whether to enable mutex lock support. This
example has a mutex lock demo thread, so it sets this parameter to
true.

config time

This parameter defines whether to enable software timer support.
This example requires software timer support, so it sets this
parameter to true.

max_tnrs This parameter specifies the maximum number of timers. This
example uses a maximum of 10 timers for the kernel to support.
mem t abl e This parameter statically specifies a list of block sizes that the kernel

will support when it starts.

It consists of a tuple (m,n) where m is the block size, and n is the
number of such blocks to be allocated. We have two entries in this
array - (4,30) and (8,20). This means that the kernel must support
up to 30 requests for memory of size 4 bytes and 20 requests for
memory of size 8 bytes.

86

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

Xilkernel Design Examples S XILINX®

Table 6-1: Software Platform Parameters (Continued)

Parameter Description
enhanced_feat | Theenhanced_f eat ur es parameter defines whether to use
ures enhanced features. One such feature is the ability to Kkill a process,
: . config_kill,asdefined in this example. In order to use
config_kill

enhanced features, the enhanced_f eat ur es parameter must be
defined as true, and each feature must also be separately included
and defined as true.

static_pthrea | This parameter specifies a list of threads to create at kernel startup.
d_table It is made up of an array of tuples (st art _f unc, prio) which
specifies, for each thread, the starting point of execution (start_func)
and the priority at which it starts (prio).

For this example, the static_pthread_table parameter is specified as
(shell_main, 1). The function shel | _mai n() is the start of the
shell, and the priority is 1.

Parameters whose default values have not been changed do not appear in the MSS by
design in XPS. All of the parameters in the platform specification are translated into
configuration directives and definitions in header files. Specifically, for Xilkernel,
os_config. handconfig_init.h arethe generated header files that contain C-
language equivalents of the specifications in the MSS file. For the system timer device and
system interrupt controller device specifications, the header files contain definitions of
base addresses of these devices, which are in turn used by the Xilkernel code. These header
files are generated under the main processor include directory. In this example, the include
directory isni cr obl aze_0/i ncl ude.

Building the Hardware and Software System

Open the design example EDK project in XPS. To build the hardware and software system
from scratch, select Tools — Update Bitstream. This builds the hardware bitstream,
software libraries including Xilkernel, and software applications including
xilkernel_demo, and initializes the bitstream. When you are ready to download, select
Tools —» Download to initialize your hardware connections and download the bitstream
to the target. Now you can continue to the Xilkernel demo.

The Xilkernel Demo

The Xilkernel demo is organized as a software application project. You can browse through
the sources as you go through this demo. The sources consist of the following files:

e shel | . c —Main controlling thread. Presents a shell with a few simple commands
from which you can launch the other demo threads.

e prodcon. ¢c — One or more producer consumer example threads using message
queues.

e [|list.c-Linked listdemo using the buffer memory allocation interfaces.

e sem c - Semaphore example displaying multiple competing threads using a
semaphore to co-ordinate.

e tictac. c-Simple tic-tac-toe game that illustrates how to dynamically assign stack
memory to a thread when creating it.

e tinertest.c-Simpletime management demo.

Platform Studio User Guide www.xilinx.com 87
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

pri o. ¢ — Thread illustrating dynamically changing priorities and priority queues in
the kernel structures.

mut exdeno. ¢ — Mutex demo, illustrating pthread mutex locks

cl ock. ¢ — Simple thread using the second timer device and handling interrupts from
it to keep track of wall-clock time. This illustrates user-level interrupt handling.

st andby. c — Simple illustration of how priority affects execution of threads.

Connecting to the Processor

1.

Connect to the processor in the system using XMD. You can open up XMD by selecting
Tools — XMD in the XPS main window, or by typing xd in the console. To connect to
the processor in the system, type connect nmb ndm

Download the kernel image as shown in the following code snippet:

XNMD%

Loading XMP File..
Loading MHS File..
Processor(s) in System::

M croBl aze(1l) : mcroblaze O

Address Map for Processor mcroblaze 0
(0x00000000- 0x00007fff) dlnb_cntlr dl mb
(0x00000000- 0x00007fff) ilnmb_cntlr il
(0x0c000000- 0x0c0000f f) debug nodule nb_opb
(0x0c000100- 0x0c0001ff) RS232 nb_opb
(0x0c000200- 0x0c0002f f) LEDs_4Bit nb_opb
(0x0c000300- 0x0c0003ff) Push_Buttons_3Bit nmb_opb
(0x0c000400- 0x0c0004f f) extra_tinmer nmb_opb
(0x0c000500- 0x0c0005ff) systemtinmer nb_opb
(0x0c000600- 0x0c0006ff) system.intc nb_opb
(0x0e000000-OxOf ffffff) SDRAM 8Wk32 nb_opb

Loading MsS File..

XMD% connect nb ndm

Connecting to cable (Parallel Port - LPT1).

Checki ng cabl e driver.

Driver windrvr6.sys version = 6.0.3.0. LPT base address = 0378h.
ECP base address = FFFFFFFFh.

Cabl e connection established.

JTAG chain configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 05026093 8 XC18V04
3 0124a093 10 XC2VP7

Assumi ng, Device No: 3 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors = 1

M croBl aze Processor 1 Configuration :
Version. ..., 2.00.a
No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...2

No of Wite Addr/Data Watchpoints..2
Instruction Cache Support.......... of f

88

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

Data Cache Support................. of f
JTAG MDM Connected to McroBlaze 1
Connected to "nb" target. id = 0
Starting GDB server for "nb" target (id = 0) at TCP port no 1234
XMD% dow xi | ker nel _deno/ execut abl e. el f
section, .text: 0x0e000000- 0x0e009bf 4
Processor (nicroblaze_0) I-Side Address Map:
0x00000000 - 0x00007fff
0x0e000000 - OxOf ffffff
Checking if Program|-Side Menory within Address Range..
Menory Test... PASSED

section, .rodata: 0x0e009bf4-0x0e00c881
section, .sdata2: 0x0e00c888-0x0e00c9d8
section, .data: 0x0e00c9d8-0x0e0O0caf0
section, .bss: 0x0eOOcaf 0- 0x0e0113c4
Processor (microblaze 0) D Side Address Map:
0x00000000 - 0x00007fff
0x0e000000 - OxOf ffffff
Checking if Program D-Side Menory within Address Range..
Menory Test... PASSED

Downl oaded Program xi | ker nel _deno/ execut abl e. el f
Setting PC with program start addr = 0x0e000000
XMD%

Begin Execution of the Processor

1.

Once the download step completes, the program counter of the processor points to the
start address of execution of the Xilkernel image. Make sure that hyperterminal is
connected as described in “Defining the Communications Settings” on page 83.

To begin the processor's execution, type con. You should see the kernel startup and
print messages, as displayed below. The shell starts to run, clears the screen, and then
presents the prompt for you to type your commands.

XM Start

XMK: Initializing Hardware. ..

XMK: Initializing interrupt controller

XMK: Connecting timer interrupt

XMK: Starting the interrupt controller

XMK: Initializing PIT device.

XMK: Systeminitialization...

XMK: Enabling interrupts and starting system..

I dl e Task

SHELL: Starting clock...

CLOCK: Successfully registered a handler for extra tinmer interrupts.
CLOCK: Configuring extra timer to generate one interrupt per second..
CLOCK: Enabling the interval timer interrupt...

This displays the output of the first two programs from the execution of Xilkernel. The
lines of output that start with X\VK: are debug messages from the kernel. The kernel begins
by initializing the hardware. This step includes initializing the interrupt controller and the
Periodic Interval Timer (PIT) device so that the kernel is interrupted at the configured time
interval. Then Xilkernel performs a system initialization. This includes initializing data
structures inside the kernel, kernel flags and creating the statically specified processes and
threads. The threads and processes are created in the same order that they were specified in
the MSS file. There is also an idle task created by the kernel. Thus the shell starts.

Platform Studio User Guide

www.xilinx.com 89

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

When the shell starts, it creates a cl ock thread. The cl ock thread illustrates user-level
interrupt handling in the following manner:

1. Initializes the extra timer peripheral to generate interrupts every one second.
2. Registers a handler for this interrupt with Xilkernel.

3. Initializes a semaphore with the value 0.

4. Enables the interrupt.
5

Performs a sem wai t () operation on the semaphore, causing the clock thread to be
blocked.

Upon each interrupt, the ext ra_t i mer _i nt _handl er () handler resets the timer
counter device and invokes a semaphore system call to post to the semaphore. This causes
the clock thread to be unblocked once every second. Whenever the clock thread is
unblocked, it increments its concept of time, and returns to a wait operation on the
semaphore, blocking again. This simple thread illustrates how you can register handlers
for other interrupts in the system and perform communication between the interrupt
handler and your application threads, such as a semaphore post operation as in this
example. Your user-level interrupt handlers cannot invoke blocking system calls.

Using the Application Threads

At this time, there are three active threads: the idle task, the shell, and the clock. The idle
task never runs while there are other higher priority threads in the system, so you do not
see it run. The shell runs, providing a prompt on the user computer and responding to user
commands. The shell can be used to launch other example threads.The clock thread
executes every one second, when the extra timer provides an interrupt.

Consider the POSIX threads API before examining the different application threads. The
pthread’s APl implemented in Xilkernel is very close to the POSIX standards; therefore,
many applications in the demo can be directly compiled using the compiler for any POSIX
operating system and execute without any changes.

One of the first commands used by an application creating threads is:
retval = pthread_ attr_init(&attr);

This system call initializes an attributes structure pt hread_at tr _t that can be used to
configure the creation parameters for a new thread. It includes fields to specify the
scheduling priority, the detach state of the created thread, and the stack that is to be used.
The pt hread_attr_i ni t system call inserts default attributes in the attribute structure
specified. The default attributes are that the scheduling priority is the lowest priority of the
system, with no custom stack space and with the threads created in the default detach
state, PTHREAD CREATE_ DETACHED. This detach state specifies that the thread’s resources
will be automatically reclaimed and completely flushed from the system upon the thread’s
termination. Specifying the detach state as PTHREAD CREATE_JO NABLE causes the
thread’s storage to be reclaimed only when another thread joins, as described in “Making a
Thread Joinable” on page 91. Use pt hread_at tr _i ni t () only if you want to modify
some of these attributes later. With other system calls, you can change just the other
creation attributes, and untouched parameters will have default values. If only default
attributes are required, then do not change attributes at all; instead, use a NULL pointer in
the pt hr ead_cr eat e() system call.

The system call pt hr ead_cr eat e() creates a new thread dynamically, as described here:
retval = pthread_create(&idl, &ttr,thread_func, &rgl);

At the end of the create system call, a new thread is created, starting from the function
specified in the call. This thread starts in the ready state, waiting to be scheduled. The

90

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

system call returns the 1D of the newly created thread in the location of the first parameter.
The thread identifier is of type pt hr ead_t . This identifier must be used in identifying the
target of many thread operations. The created thread executes based on the scheduling
policy. For example, if the thread was created with a higher priority, then it executes
immediately, while if it was created with a lower priority, it executes when the scheduling
allows it to. A thread exits by invoking the following code:

pthread_exit(&et);

Alternatively, a thread that does not use the pt hr ead_exi t () call in its body invokes it
implicitly. Therefore, use pt hr ead_exi t () only if you want to return a value to the
joining thread.

Making a Thread Joinable

If a thread is configured to be joinable, then the call to pt hr ead_exi t () suspends the
calling thread without reclaiming resources and context switches to the next schedulable
process or thread. The exit routine takes a pointer argument that points to a return value
data structure. This pointer argument can be reclaimed by any thread that joins with this
thread. Joins are performed with the pt hr ead_j oi n() system call, as shown in the
following code:

print ("-- shell going into wait-nbde to join with | aunched
program\r\n");
ret = pthread_join (tid, NULL);

This code snippet is run by the shell whenever it launches the application threads. It
performs a join, which causes the shell to suspend while waiting for the thread. The
thread’s identifier is the value contained in t i d to terminate. When the target thread
terminates, the shell is unblocked and it goes about reclaiming the resources of the target
thread. The second parameter to pt hr ead_j oi n() , if provided, is used for reclaiming the
return value of the terminated thread.

Xilkernel Demo, continued
1. Type hel p in the shell to see possible commands:

shel | >hel p

Li st of commands
run <programnun®: Run a program For e.g. "run 0" |oads the first

progr am
time ?HHVW? : Set/Display the current tine.

st andby . Suspend all tasks for 10 seconds. ldle task executes.
cl ear : Cear the screen

list . List the prograns |oaded for this exanple system
hel p : This help screen

exit : Exit this shell

shel | >

2. Setthe current time using the t i me command:

shel | >ti me 0637

shel | >time

Time is: 06:37:01.

Note: The cl ear command clears a screenful of the hyperterminal window.

Platform Studio User Guide www.xilinx.com 91
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Use the shel | >st andby command to have the shell create the standby thread at a
higher priority than itself:

shel | >st andby
I dl e Task

| dl e Task

I dl e Task

| dl e Task

| dl e Task

I dl e Task
shel | >

The st andby command illustrates strict priority scheduling. The shell is the highest
priority process when it is waiting for input. The shell also always performs a

pt hr ead_j oi nwith the thread that it launches to wait for it to complete. Our standby
thread, however, performs asl eep(1000) call, causing it to suspend for 10 seconds.
Therefore, all threads are suspended and only the idle task executes.

Type | i st in the shell to view a list of programs that the shell can load. When the
standby thread terminates, then the shell gets control again and it returns the prompt.

shel | >l i st
Li st of prograns |loaded in this exanple system

0: MEMORY : Linked list exanple using buffer nmenory allocation

1: SEM . Semaphores exanpl e

2: PRODCON: Producer consumer exanple using nmessage queues

3: TIMER : Tiner exanple, illustrating software tiners

4: TICTAC : TicTacToe thread with dynami cally assigned | arge stack
5: MJTEX : Mitex |ock deno

6: PRRO : Priority queue deno

shel | >

Typerun O inthe hyperterminal session to run the memory allocation example. The
shell creates a new thread using the pt hr ead_cr eat e system call with default
attributes. The output from the execution of I | i st . el f is shown below:

shel | >run 0
-- shell going into wait-nmode to join with | aunched program

LLI ST: Sorted Linked List |nplenentation.

LLI ST: Denonstrates nenory allocation interfaces.
LLI ST: Creating block nenory pool....

LLI ST: Adding to list 10 statically defined el enents....
(0123456789)

LLI ST: Deleting the list elenments.. 0,5,9

LLI ST: The list right nowis,

(1234678)

LLI ST: Adding to list 1535, 661, 2862 and 8.

LLI ST: The list right nowis,

(12346788 661 1535 2862)

LLI ST: Del eti ng bl ock nenory pool ...

LLI ST: Done. Good Bye.

shel | >

This is a linked list program which uses the dynamic buffer memory allocation
interface of Xilkernel. It starts off by creating a buffer memory pool of 20 buffers, each
of size 8 bytes with the buf cr eat e() system call.

i = bufcreate (&rbuft, menbuf, 20, 8);

92

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

If the call returns successfully, it returns the identifier of the created memory buffer in
mbuf t . Every time the application thread needs to add an element to the linked list, it
invokes buf mal | oc().

tenp = (list_t *)bufmalloc (MEMBUF_ANY, sizeof(list_t));

The first parameter should be the identifier of the memory buffer that was created;
however, programs can obtain a buffer from any memory buffer available. This program
illustrates such a usage of the buf mal | oc() interface. When you invoke buf mal | oc()
with MEMBUF_ANY as the memory buffer identifier, it requests that the kernel finds the
requested sized block from any memory buffer available. The linked list thread, t , deletes
an element and releases storage for that element with the buf f r ee() method. The
application starts by adding some elements, then removing some, then again adding some
and terminating.

Semaphore Example

Among the system calls used in this example thread, of interest are the POSIX compliant
semaphore calls, as described below:

e Creating a semaphore and getting a handle to it
seminit (&protect, 1, 1)

Thesem.init () system call creates a new semaphore inside the kernel and returns
the identifier of the created semaphore in the location passed as the first parameter.
This identifier is of type sem t . The second argument is ignored. The third argument
provides the initial value of the semaphore.

e Performing a wait operation on the semaphore
semwait (& zvous_1)

The wait operation blocks execution of the calling process until the semaphore is
successfully acquired. The semaphore’s value indicates the current state of the
semaphore. If the semaphore value is greater than zero, then the process decrements
this value and successfully acquires the semaphore. If it is less than or equal to zero,
then the process blocks.

e Performing a post operation on the semaphore
sem post (& zvous_1)

The post operation increments the value of the referenced semaphore. If the
semaphore value indicates that there are processes waiting to acquire the semaphore,
then it unblocks exactly one waiting process from the waiting queue. This queue is a
priority queue when scheduling is priority driven.

e Destroying the semaphore
sem destroy (&protect)

This call deallocates the semaphore resources and removes it from the system. This call
fails if there are processes blocked on the semaphore.

The semaphore main thread initializes a total of three semaphores. It uses two of these as
flags to converge with two dynamically created threads. That is, it creates these
semaphores with an initial value of 0. The created threads, as one of their first steps,
perform sem wai t () on these converged semaphores. The main thread performs all the
thread creation and initialization operations, and flags the threads off by running a post on
both threads. This ensures that both threads start their critical sections as closely as
possible.

Platform Studio User Guide www.xilinx.com 93
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

The threads then contend for the console to perform some message output operations. To
prevent the interleaving of the output on the console, they do this inside a critical section.
The protect semaphore is used to ensure mutual exclusion while executing in the critical
section. The protect semaphore has an initial value of 1. The threads use sem wai t () to
acquire the semaphore and then use sem post () to release it when they are completed
with the critical section.

The two threads contend a couple of times and then terminate. The main thread, which
was waiting to join with these two threads, now reclaims their resources, destroys the
semaphores, and terminates. Type r un 1 in the hyperterminal shell prompt to run this

example:
shel | >run 1
-- shell going into wait-node to join with | aunched program
SEM Starting...
SEM Spawning 1...
SEM Returned TID: 00000003
SEM Spawni ng 2..
SEM Returned TID: 00000004
SEM Rendezvousing with 1.
SEM Thread 1: Doing semwait.
SEM Thread 1: 00000000
SEM Thread 1: 00000001
SEM Thread 1: 00000002
SEM Thread 1: 00000003
SEM Thread 1: 00000004
SEM Thread 1: 00000005
SEM ThreadSEM Rendezvousing with 2.
1: 00000006
SEM Thread 1: 00000007
SEM Thread 1: 00000008
SEM Thread 1: 00000009
SEM Thread 1: Doing sem post.
SEM Thread 1: Doing semwait.
SEM Thread 1SEM Thread 2: Doing semwait.
00000000
SEM Thread 1: 00000001
SEM Thread 1: 00000002
SEM Thread 1: 00000003
SEM Thread 1: 00000004
SEM Thread 1: 00000005
SEM Thread 1: 00000006
SEM Thread 1: 00000007
SEM Thread 1: 00000008
SEM Thread 1: 00000009
SEM Thread 1: Doi ng sem post.
SEM Thread 2: 00000000
SEM Thread 2: 00000001
SEM Thread 2: 00000002
SEM Thread 2: 00000003
SEM Thread 2: 00000004
SEM Thread 2: 00000005
SEM Thread 2: 00000006
SEM Thread 2: 00000007
SEM Thread 2: 00000008
SEM Thread 2: 00000009
SEM Thread 2: Doi ng sem post.
SEM Thread 2: Doing semwait.
SEM Thread 2: 00000000

94

www.xilinx.com
1-800-255-7778

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

SEM Thread 2: 00000001

SEM ThreadSEM Successfully joined with thread 1. Return val ue of
term nated thread: 00000064

SEM Thread 2: 00000002

SEM Thread 2: 00000003
SEM Thread 2: 00000004
SEM Thread 2: 00000005
SEM Thread 2: 00000006
SEM Thread 2: 00000007
SEM Thread 2: 00000008
SEM Thread 2: 00000009

SEM Thread 2: Doing sem post.

SEM Successfully joined with thread 2. Return value of term nated
thread: 00000

0c8

SEM Rel easi ng misc resources..

SEM Good bye !

shel | >

Next, you execute the producer consumer example. This application solves the producer
consumer problem using message queues. An application that uses message queues must
include the sys/ i pc. h and sys/ nsg. h header files to make available standard
declarations. Consider the POSIX compliant message queue API that is used in this
example:

Creating a message queue and getting a handle to it
nsgi d = nsgget (key, |PC _CREAT);

The nsg_get () system call creates a new message queue inside the kernel and
returns an identifier to it. When obtaining a message queue, a unique key is used to
identify the message queue. Thus two threads, by agreeing upon a command key, can
operate on the same message queue and co-ordinate.

Performing a blocking message send
msgsnd (nsgid, &rsg_p, 4, 0)

The message send operation blocks execution of the calling process until the message
in the buffer msg_p is successfully stored in the message queue. The size of the
message to be sent is passed in as an argument. You can make the message send
operation non-blocking by using | PC_NOWMAI T in the flags.

Performing a blocking message receive
msgrcv (nmegid, &rsg c, 4, 0,0)

The receive operation blocks the calling thread until a message is placed on the
message queue. The target buffer to store the message and the size of the target buffer
are also passed in as parameters. You can make the receive non-blocking by using the
I PC_NOWAI T flag. When this call returns successfully, a message is stored in the
requested buffer.

Retrieving the message queue statistics
nmsgct | (nmegi d, | PC_STAT, &stats)

Statistics about the message queue can be retrieved using the nsgct | () API. The
statistics are placed in the stats structure, which is of type msgi d_ds. The statistics
that can be retrieved are the number of messages in the queue, the maximum size of
the message queue, the identifier of the last process that performed a send operation
on the queue, and the identifier of the last process that performed a receive on the
queue.

Platform Studio User Guide

www.xilinx.com 95

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

e Removing the message queue
nsgctl (nsgid, 1PC_ RM D, NULL)

The message queue is removed, again, with the nsgct | () API. The operation
requested should be | PC_RM D. This forcefully clears the message queue and flushes
out messages that are in the queue and processes that are waiting on the message
gueue, either on a send or a receive.

The message queue application begins by creating two threads: a producer thread and a
consumer thread. The producer thread continues producing all of the english alphabets from
a to t while the consumer consumes the same. One way to synchronize both the producer
and the consumer is to use message queues to store whatever the producer produces, and
have the consumer consume from the message queue. The message queue acts as the
synchronizing agent in this case. Both the producer and the consumer use blocking sends
and receives. Therefore, the producer blocks when all the production buffers (message
gueue) are full and is unblocked whenever the consumer consumes a message. Similarly,
the consumer blocks on empty buffers and gets unblocked whenever the producer
produces an item. The main thread performs some additional operations, such as
requesting the statistics of the message queue, verifying that it cannot acquire an existing
message queue in exclusive mode, removing the message queue from the system, and
ensuring that processes that are blocked on the queue are flushed out of the queue.

Type run 2 in the hyperterminal shell prompt. The following code displays the output
from this example:

shel | >run 2

-- shell going into wait-node to join with | aunched program
PRODCON: Starting. .

PRODCON: Spawni ng Producer. .

PRODCON: Producer -- Start !

PRODCON: Pr oducer - -
PRODCON: Pr oducer - -
PRODCON: Pr oducer - -
PRODCON: Pr oducer - -
PRODCON: Pr oducer - -
PRODCON: Pr oducer - -
PRODCON: Pr oducer -
PRODCON: Returned TID: 00000003
PRODCON: Spawni ng consuner. ..
-9

PRODCON: Producer -- h

PRODCON: Producer -- i

PRODCON: Producer -- j

PRODCON: Consuner -- Start !

DO QOO T

PRODCON: Returned TID: 00000004

PRODCON: Waiting for these guys to finish.
PRODCON: Pr oducer - -
PRODCON: Consuner - -
PRODCON: Pr oducer - -
PRODCON: Consurmer - -
PRODCON: Pr oducer - -
PRODCON: Consuner - -
PRODCON: Pr oducer --
PRODCON: Consuner - -
PRODCON: Pr oducer - -
PRODCON: Consumer - -
PRODCON: Pr oducer - -

TD®DOQS O30T X

96

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples

SUXILINX®

PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:

PPRODCON: Successfully joined with producer.

t hr ead:
00000000

Consurer
Pr oducer
Consuner
Pr oducer
Consuner
Pr oducer
Consurrer
Pr oducer
Pr oducer
Consuner
Consuner
Consurer
Consurer
Consurer
Consuner
Consuner
Consuner

RODCON: Consuner
PRODCON: Consuner -- s
PRODCON: Consuner -- t

PRODCON: Consuner -- Done. ERRORS (1 indicates error

nessage) :
00000000
PRODCON:
PRODCON:
PRODCON:
PRODCON:
PRODCON:
nessage q
ssfully f

Consuner

SuccePRODCON: Consurer

-

-- Signalling min.
Starting other tests..
Trying to create a nessage queue with the same key.

EXCL node. ..
ueue
ailed :).

Errno: 00000011
PRODCON: Retrieving nsgid for already created nsgQ
PRODCON: Retrieving statistics from nessage queue.

PRODCON: MsgQ stats:

nmsg_gnum 00000000
msg_gbytes : 00000000
nmsg_| spid 00000004
nmsg_l rpid 00000005
End Stats
PRODCON:
it.
PRODCON: Consuner -- G eat! Got
PRODCON: Consuner -- Term nating.
PRODCON: Successful ly renpved nessage queue.
PRODCON: Successfully joined with consuner.
thread: 0
0000000
PRODCON: Rel easi ng mi sc resources..
PRODCON: Done !
shel | >

Ret urn val ue of term nated

in correspondi ng

Doi ng ot her tests...Blocking on

Attenpting to destroy nessage Q while a process is occupying

Ki cked out

of msgrcv appropriately.

Ret urn val ue of term nated

You can run this example unlimited times. Since the semaphore and producer consumer
examples are based on the POSIX API, they should be completely portable onto a POSIX
OS without any change.

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

97

S XILINX®

Chapter 6: Using Xilkernel

Timer Example

The following are some of the basic interfaces used in this example:

Getting number of clock ticks elapsed since kernel start

ticks = xget_clock_ticks ();

This routine returns the number of times the kernel received a timer interrupt, such as
a kernel tick, since the kernel was started. This is a useful measure as a kind of
timestamp, or in other time-related calculations.

Suspending the current task for a certain number of milliseconds

sl eep(1000);

This routine causes the kernel to suspend the invoking thread for the specified number
of milliseconds. The thread regains control after the time elapses.

The timer test thread begins by creating multiple threads, each of which reports the current
timestamp. Each thread then attempts to sleep for a different time amount. This can be
seen by the idle task executing in between the suspension of the threads. The time actually
slept by each thread can be compared against wall clock time and verified.

Typerun 3 in the shell prompt. The following code displays output from this demo
thread:

shel Il >run 3

-- shell going into wait-nbde to join with | aunched program
TI MER_TEST: Starting...

TI MER_TEST: Creating 3 threads...

Thread 0 starting..

Thread 0 clock ticks currently: 0002le6a. Sleeping for 6 seconds
Thread 1 starting..
Thread 1 clock ticks currently: 00021e6a. Sleeping for 1 second
Thread 2 starting..

Thread 2 clock ticks currently: 00021e6a. Sleeping for 2 seconds
TI MER_TEST: C ock ticks before: 138858.

Thread 1 done.

TI MER TEST: dock ticks after: 138868.

TI MER TEST: d ock ticks before: 138868.

TI MER_TEST: Creating 1 threads...

Thread 1 starting..

Thread 1 clock ticks currently: 00021e74. Sleeping for 1 second
I dl e Task

Thread 2 done.

Thread 1 done.

| dl e Task

I dl e Task

Thread 0 done.

TI MER TEST: dock ticks after: 138918.

TI MER TEST: End deno. ..

shel | >

98

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

Tic-Tac-Toe Game

This application thread does not illustrate any kernel interfaces; however, it is slightly
unique and brings to light a common run-time requirement, the run-time stack of a thread.
Since this thread has nine levels of recursion in its MIN-MAX algorithm, it makes sense to
give a bigger stack to it. The static pthread stack size specification, however, applies
globally to all threads. You control the stack size selectively for a few special threads by
using the shell when creating the tictac thread. This example is displayed in the following
code snippet:

static char tictac_stack[TI CTAC_STACK_SI ZE]
__attribute__ ((aligned(4)));

pthread_attr_init (&attr);
if (opt == 4) {
/* Special attention to tictac thread */
pthread_attr_setstack (&ttr, tictac_stack, TICTAC STACK Sl ZE);

}
ret = pthread_create (&id, &ttr, (void*)proginfo[opt].start_addr,
NULL) ;

You usethe pt hread_attr_set st ack() interface to modify the default thread creation
stack attributes. You do this by assigning a memory buffer, ti ct ac_st ack in this
example, to be used as a stack and by also telling the implementation the size of the stack.
Therefore, you can selectively choose to assign a different stack space to threads, preferring
over the default fixed stack size allocated by the kernel.

Type run 4 in the shell prompt. Here is a part of the output from the tictac thread:

shel l >run 4

-- shell going into wait-node to join with | aunched program
TI CTAC. Gane Starting

TI CTAC. Current board -->

TI CTAC. Make a nove (1-9):
TI CTAC. Current board -->
Al |

TI CTAC. | amthinking..
TI CTAC. Current board -->
Al I

TI CTAC. Make a nove (1-9):

Platform Studio User Guide www.xilinx.com 99
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Mutex Demo Application

The following are some of the basic mutex operations that are performed by this
application.

e Initializing a mutex lock
pthread_nutex_init (&mutex, NULL)

Thept hread_mut ex_i ni t () system call creates a new mutex lock within the kernel
and returns the identifier of the mutex in the location passed as the first parameter. The
type of this mutex identifier is pt hr ead_nut ex_t . The initialization call requires a
second parameter, which gives a pointer to a mutex initialization attributes structure.
Because only the basic mutex types are supported, this parameter is unused and
NULL or an attribute initialized with pt hread_nmut exattr _i ni t () should be
passed in.

There is an alternative way to initialize the mutex lock statically, by assigning the value
PTHREAD MUTEX | NI Tl ALI ZERto the pt hr ead_rut ex_t structure. This allows
the kernel to initialize the mutex lock, in a lazy fashion, whenever it is operated on for
the first time.

e Performing a lock operation on the mutex
pt hr ead_mut ex_I| ock (&t ex)

This call locks the mutex for the calling process or thread and returns. If the mutex is
already locked, then the calling process or thread blocks until it is unblocked by some
mutex unlock operation.

e Performing a mutex unlock operation
pt hr ead_mut ex_unl ock (&mrut ex)

This call unlocks the mutex, which must be currently locked by the calling process or
thread, and returns. If there are processes blocked on the mutex, this call unlocks
exactly one of them. If scheduling is priority-driven, then it unlocks the highest-
priority process in the wait queue. If scheduling is round-robin, then it unlocks the first
process in the wait queue.

e Destroying the mutex lock
pt hr ead_nut ex_destroy (&mrut ex)

This call destroys the mutex lock. No consideration is given for blocked processes and
mutex lock and unlock state.

The mutex demo application creates some configured number of threads (3 in this
case). Each thread contends for a critical section in which it increments a global
variable. The main thread looks at this global variable to reach a particular value and
then proceeds to join with the threads. The threads use the lock and unlock primitives
to access the critical section. The threads also delay inside the critical section to
demonstrate contention by other threads. There is also a “bad thread” that tries to do
an illegal operation and therefore runs into an error. There are also interfaces for
testing the recursive type pthread mutex locks.

Type r un5 to start the mutex demo application. The following code sample displays
the output for this example:

shel | >run 5

-- shell going into wait-nbde to join with | aunched program
MUTEXDEMO Starting..

MUTEXDEMO: Launchi ng 3 contending threads..

MUTEXDEMO. Thread(0) starting...

100

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples

SUXILINX®

MUTEXDEMO;
MUTEXDEMO;
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO;
MUTEXDEMO;
starting...
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO;
MUTEXDEMO:
MUTEXDEMO;
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO;
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:

cont endi ng. .

MUTEXDEMO:
or indicati
MUTEXDEMO.
MUTEXDEMO.

d(1) waiting for

MUTEXDEMO:
m mai n.
MUTEXDEMO:
MUTEXDEMO.
MUTEXDEMO.
MUTEXDEMO.
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO.
MUTEXDEMO.
MUTEXDEMO.
error.
MUTEXDEMO:
MUTEXDEMO:
MUTEXDEMO.
MUTEXDEMO.
shel | >

Thread(0) waiting for indication from main.
Thread(0) waiting for indication from main.
Thread(0) waiting for indication from nmain.
Thread(0) waiting for indication from main.
Thread(0) waiting for indication from nmain.
Thread(0) waiting for indication from main.
Thread(0) waiting for indication fr MUTEXDEMO Thread(1)
Thread(1) waiting for indication from nmain.
Thread(1) waiting for indication from nmain.
Thread(1) waiting for indication from nmain.
Thread(0) waiting for indication from main.
Thread(0) waiting for indication from main.
Thread(0) waiting for indication from main.
Thread(0) waiting fm main.

Thread(1) waiting for indication from nmain.
Thread(1) waiting for indication from nmain.
Thread(1) waiting for indication from main.
Thr eaMJTEXDEMO: Thread(2) starting...
Thread(2) waiting for indication from main.
Thread(2) waiting for indication from nmain.
Thread(2) waiting for indication fro
Providing indication to waiting threads to start

Waiting for threads to get past critical section...
on from main.

Thread(0) contending...

Thread(0) in critical section..WII
i ndi cation from nain.
Thread(1) contending...

spend sone tinme here.

Thread(2) contending...

Waiting for threads to get past critical section...
Thread(1) in critical section..WII spend sonme tine here.
Thread(0) nutex done...

Waiting for threads to get past critical section...
Thread(2) in critical section..WII spend sonme tine here.
Thread(1) nutex done...

Thread(2) nutex done...

BAD THREAD: Starting..

| amgoing to try to unlock a nutex I don’t own and force an
Good! | got the right error!

BAD_THREAD Done.

Destroyi ng nutex | ocks...

Done. Good Bye !

You can run this demo an unlimited number of times.

Next, run the last application thread. This thread illustrates priority scheduling and
dynamic priority. It also illustrates how priority is ingrained even in the wait queues of
primitives like semaphores, mutex locks, and message queues.

Create several threads with different priority ordering. All the threads block on a single
semaphore which is initialized to 0. The main thread unblocks one single thread using
sem post . Subsequently, threads must be unblocked in priority order, instead of the
original blocking order. This is confirmed by the outputs issued by the threads. One single

Platform Studio User Guide

UG113 (v4.0) February 15, 2005

www.xilinx.com 101

1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

LOW priority thread also tests the sem t i medwai t () API by repeatedly attempting to
acquire the semaphore with a time out specified. This thread is the last thread that acquires
the semaphore, but should have timed out several times in between. The main thread joins
with the remaining threads and terminates this portion of the test.

In the second stage of the test, the main thread creates another thread at highest priority. It
then tests this thread by changing its priority at regular intervals and sleeping in the
intervals. This is confirmed by the puppet thread not producing any output in the intervals
that the main thread sleeps. The main thread then kills this puppet thread using the kill
system call.

The following are the relevant interfaces illustrated with this example:

Specifying thread priority during creation

spar.sched _priority = prio[i];

pthread_attr_set schedparanm(&attr, &par);

This snippet illustrates how the priority of a thread is controlled while creating a
thread. By setting the priority attribute of the thread creation attributes and passing
the same attributes structure to the pt hr ead_cr eat e() call, the priority of a thread
is controlled.

Dynamically changing the priority of a thread

retval = pthread create(& owpriotid, &ttr, low prio_thread_ func,

NULL) ;

spar.sched _priority = (NUM PUPPET _THREADS - 1) - i;

if ((retval = pthread_setschedparam (puppet_tid[i], 0, &spar)) != 0)
The pt hr ead_set schedpar an{() call changes the priority of a thread. This snippet
shows how the priority of the puppet threads are flipped at runtime by the main
thread.

Enhanced features; killing a thread

if (kill (main_thread_pid) !'= 0) {

This snippet shows how the low priority thread kills the main thread. Notice that the
identifier passed to the Kill interface is a different identifier, not of type pt hread_t .
This is because POSIX threads does not define aki | | () interface. This is a custom
interface exported by Xilkernel. Therefore, use the underlying process context
identifier to kill the thread. The process context identifier is retrieved by using the
following call:

mai n_thread_pid = get_currentPID ();

Typer un 6 inthe shell prompt to run this application thread. The following code snippet
displays the output for this example:

shel Il >run 6

-- shell going into wait-nbde to join with | aunched program
PRI OTEST: Starting...

PRI OTEST: Spawni ng: O.

Thread(0): Starting...

PRI OTEST: Returned TID: 3.

PRI OTEST: Spawni ng: 1.

Thread(1): Starting...

PRI OTEST: Returned TID 4.

Thread(LOWPRIO): Starting. | should be the |owest priority of them
all...

PRI OTEST: Returned TID: 5.

PRI OTEST: Yawn..sl eeping for a while (400 ns)

Thread(LOWPRI O): TI MEDOUT while trying to acquire sem

102

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

Thread(LOANPRI O): TI MEDOUT while trying to acquire sem
Thread(LOAPRI O): TI MEDOUT while trying to acquire sem
PRI OTEST: Tinme to wake up the sleeping threads...
Thread(1): Acquired sem Doing some processing...
Thread(1): Done...

Thread(LOANPRI O): TI MEDOUT while trying to acquire sem
Thread(0): Acquired sem Doing some processing...
Thread(0): Done...

PRI OTEST: Joining with threads...

PRI OTEST: Allowing the LOAPRIO thread to finish...

PRI OTEST: Joining with LOAPRI O thread...

Thread(LOANPRI O): TI MEDOUT while trying to acquire sem
Thread(LOAPRI O): Acquired sem Doing sone processing...
Thread(LOANPRI O): Done. ..

PRI OTEST: Dynamic priority test phase starting !

PRI OTEST: Initializing barrier semaphore to value O...
PRI OTEST: Creating puppet threads...

PUPPET(0): Starting...

PUPPET(0): Bl ocki ng on semaphore. ..

PUPPET(1): Starting...

PUPPET(1): Bl ocking on semaphore. ..

PRI OTEST: Now | amflipping the priorities of all the bl ocked puppet
t hr eads.

PRI OTEST: Now | am posting to the semaphores and rel easing all the
puppets.

PUPPET(1): Got semaphore...

PUPPET(1): Rel easi ng semaphore. ..

PUPPET(1): DONE. ..

PUPPET(0): Got semaphore. ..

PUPPET(0) : Rel easi ng senaphore. ..

PUPPET(0) : GRR Taki ng revenge for being denoted in priority..
PUPPET(0): Killing main thread before | die...

shel | >PUPPET(0) : SUCCESS.

PUPPET(0) : DONE. ..

shel | >

When you are done with the examples, type exi t in the shell prompt. This ends all the
application threads and leaves only the idle task to continue.

PowerPC Example Sets

The same example sets that are available for MicroBlaze are available for PowerPC. The
examples follow the same configuration and organization in each set, as they do in the
MicroBlaze system. There is no difference in the way that the example application threads
are written and the way that they execute on the shell. However, you will see that run-time
behavior is different, which is basically due to the hardware differences. Refer to the
instructions in “Xilkernel with MicroBlaze” on page 78 to run the demo Xilkernel
application.

Platform Studio User Guide www.xilinx.com 103
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 6: Using Xilkernel

Configuring PowerPC

The software specification for the Xilkernel demo system in PPC405 differs very slightly
from that of the MicroBlaze. The following portions of the software specification differ
from that of MicroBlaze:

PARAMETER proc_i nstance = ppc405_0
PARAMETER systnr _freq = 100000000

PARAMETER systnr _interval = 80

The processor instance for this platform specification must be changed to reflect the
PPC405 processor. Since the PPC405 in this design is clocked at 100MHz, we change the
syst nr _f r eq parameter to reflect this. The interval has also been changed slightly to
allow for the same kind of output; even the hardware is different.

Building the Hardware and Software System

Open the design example EDK project in XPS. To build the hardware and software system
from scratch, select Tools — Update Bitstream. This action builds the hardware bitstream,
software libraries including Xilkernel, and software applications including
xilkernel_demo, and initializes the bitstream. When you are ready to download, initialize
your hardware connections and download the bitstream to the target by selecting Tools —
Download. Next, run the Xilkernel demo.

Running the Xilkernel Demo

Connect to the processor in the system using XMD. You can open XMD either through the
XPS main window by selecting Tools — XMD, or by typing xnd in the console. Connect to
the processor in the system with the connect ppc hwcommand. Once you have
connected to the processor, download the kernel image. The code snippet for this example
is displayed below:

XMD% connect ppc hw

Connecting to cable (Parallel Port - LPT1).

Checki ng cable driver.

Driver windrvr6.sys version = 6.0.3.0. LPT base address = 0378h.
ECP base address = FFFFFFFFh.

Cabl e connection established.

I NFO EDK - Assunption: Sel ected Device 3 for debugging.

JTAG chain configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 05026093 8 XC18V04
3 0124a093 10 XC2VP7

XMD: Connected to PowerPC target. Processor Version No : 0x20010820
Addr ess nappi ng for accessing special PowerPC features from XMY GDB:

| -Cache (Data) : Disabled
| -Cache (Tag) . Disabl ed
D-Cache (Data) : Disabled
D- Cache (Tag) : Disabled
| SOCM : Disabl ed
TLB : Disabl ed
DCR . Disabl ed
104 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Xilkernel Design Examples S XILINX®

Connected to "ppc" target. id =0
Starting GDB server for "ppc" target (id = 0) at TCP port no 1234
XMD% dow xi | ker nel _deno/ execut abl e. el f

Once the download step is complete, the program counter of the processor points to the
start address of Xilkernel, since Xilkernel is the last of the programs to be downloaded.
Make sure you have hyperterminal connected as described in “Defining the
Communications Settings” on page 83. Type con to begin the demo. Follow the steps
described in “Xilkernel with MicroBlaze” on page 78 to walk through the design examples.

Platform Studio User Guide www.xilinx.com 105
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 6: Using Xilkernel

106 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 7

Using XiIIMFS

XilMFS is a memory-based file system library that can be used in standalone mode or
along with the Xilkernel library. You can use XiIMFS functions to read and write files and
to create and manage directories and files in RAM. You can also use XilMFS to access read-
only files from read-only memory (ROM or Flash).

This chapter contains the following sections.
o “XilMFS Concepts”

e “Getting Started with XilIMFS”
e “Using XilMFS”

XiIMFS Concepts

XilMFS allows you to treat the RAM, ROM, Flash, or other memory in your system as a
collection of files, organized into directories and subdirectories as needed. You can create
and delete files from your program, allowing you to log information in a convenient
format. You can also read data from files, allowing your software to be more data-driven.

XilIMFS requires the use of BRAM or other external RAM for a read-write file system.It
works on MicroBlaze™, PowerPC™, and on the host platforms Solaris, Linux, and
PC/Cygwin.

When XilMFS is used in conjunction with a Flash or ROM for a read-only file system, a
separate tool called nf sgen is used to create the read-only file system image. This tool is
bundled along with the XilMFS libraries in source code form. It is run on the host machine
(Solaris, Linux or PC/Cygwin) to generate a file system image that can then be loaded into
the target memory.

For example, if you want your MicroBlaze or PowerPC target system to have a read-only
file system that contains a directory d1 which has two files a. t xt and b. t xt . You first
create the directory d1 and the filesa. t xt and b. t xt somewhere on your host machine.
Then you run nf sgen to create a memory image file containing d1,a. t xt ,and b. t xt .
Finally, you download this memory image file to the target memory, and the XilIMFS file
system is available for use.

Platform Studio User Guide www.xilinx.com 107
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 7: Using XilMFS

Getting Started with XiIMFS

If you want to use XilMFS with MicroBlaze or PowerPC, you will need a hardware
platform that contains at least the following:

Using XiIMFS

MicroBlaze or PowerPC processor

8KB or larger BRAM or other memory connected to the processor over LMB, PLB, or
OPB, with an appropriate memory controller (more or less memory might be needed
depending on how XilMFS is configured)

There are three steps to using XilMFS with your applications:

1.
2.
3.

Configure XiIMFS
Create your application
Create a file system image on your host and download to target (Optional)

The following sections explain each of these steps in detail.

Configuring XilIMFS

You can configure Xilkernel using the XPS main window or by editing the MSS file.

Configuring XiIMFS in the XPS Main Window

1.

In the XPS main window, click the System tab in the tree view panel to open the
hardware tree view.

Right-click the processor name in the tree view and select S/W Settings.
The Software Platform Settings dialog box opens.

The top half of this dialog box displays various devices in the hardware platform and
the drivers assigned to them. The bottom right side of the dialog box allows you to
select an OS: Standalone or others.

Select Standalone.
Click the Library/OS Parameters tab at the top of the dialog box to configure XilIMFS.

The Library/0OS Parameters tab shows all the configurable parameters for XilMFS. For
each parameter, the parameter type, default value, and a short explanation are shown.
These parameters are pre-populated with the default values, and you can change them
as needed. Collapse or expand the tree view by clicking the + or - symbols on the left
side.

After setting all the parameters, click OK to save.
You can always go back and change the saved values if you want to.

The base address and numbytes parameters allow you to indicate that a certain region
of memory starting at that base address and extending to numbytes bytes is reserved
for XilMFS.

Caution! The current version of the library generator and related tools does not verify that the
memory reserved for XilIMFS is actually present in the hardware or whether this memory is used
by some other code or peripheral device.

108

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Using XilMFS S XILINX®

When you are done with this panel, click OK.
Select Tools — Generate Libraries and BSPs.

This updates the standard Xilinx C libraries to be created, and the XilMFS library
functions are included in this library. You do not have to specify any additional
libraries in the compiler settings for your application. A file called nf s_confi g. h is
generated in the standard include area. You must include this file in your application
code to use XilMFS.

Configuring XiIMFS Parameters in MSS

All the main window settings corresponding to XilMFS are stored in an MSS file in the
libraries section. If you prefer text editing, you can directly create this MSS file and run
Libgen in the batch mode flow.

The following code snippet displays a sample MSS fragment for XilMFS:

BEG N LI BRARY
PARAVETER LI BRARY_NAME = xilnfs
PARAMETER LI BRARY_VER = 1. 00. a
PARAVETER base_address = 0x10000000
END

For more information on Libgen and batch flows, see the “Library Generator” chapter and
the “Xilinx Platform Studio” chapter, both in the Embedded System Tools Guide.

Creating Your Application

You can use XPS to set up a software project as described in Chapter 3, “Writing
Applications for a Platform Studio Design.” After configuring your libraries to include
XilMFS, you are ready to create your application source files, as described in the following
steps:

1. Use your favorite text editor or Integrated Development Environment (IDE) to create
your application code.

2. Right-click Sources in the project tree view, and select Add File to add your source
files.

3. Right-click on the project name in the tree view and select Build Project to create the
executable that contains your application.

To use XilMFS in your application, you must include nf s_conf i g. h in your source. This
file defines three parameters that determine the size, location, and type of your Memory
File System (MFS). These values have been set in XPS or in the MSS file, depending on your
choice of tools. The following code displays a sample nf s_confi g. h file:

Platform Studio User Guide www.xilinx.com 109
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 7: Using XilMFS

/***

CAUTION: This file is automatically generated by Libgen.
Version: Xilinx® EDK 6.2 EDK Gm 10
DO NOT EDI T.

E I I D T

Copyright (c) 2003 Xilinx, Inc. Al rights reserved.

* Description: MFS Paraneters

*

***/

#i f ndef _MFS_CONFI G_H

#define _MFS CONFI G H

#i nclude <xil nfs. h>

#defi ne MFS_NUMBYTES 100000

#defi ne MFS_BASE_ADDRESS 0x10000000
#define MFS_INIT_TYPE MFSI NI T_NEW
#endi f

To use XilMFS in your application code, callthenf s_i nit_f s() function as shown in the
following code sample, using the parameters defined in nf s_confi g. h Create a
directory, open a file and write to it, and then open a file and read from it, as shown. See the
“LibXil Memory File System” chapter in the EDK OS and Libraries Reference Manual for
more information.

#i ncl ude <stdio. h>
#include "nfs_config.h"

int main(int argc, char *argv[]) {
char buf[512];
char buf2[512];
int buflen;
int fdr;
int fdw,
int tnp;
int numiter;
nfs_init_fs(MS_NUMBYTES, M-S_BASE ADDRESS, M-SI N T_NEW ;

tnp = nfs_create dir("testdirl");

fdw = nfs_file_open("testfilel", MS_MODE_CREATE);

strcpy(buf,"this is a test string");

for (numiter = 0; numiter < 100; num.ter++)
tnp = nfs file_ wite(fdw, buf, strlen(buf));

fdr = nfs_file_open("testfilel”, MFS MODE_READ);

while((tnp= nfs_file_read(fdr, buf2, 512))== 512){
buf 2[511]1="\0";
strcpy(buf, buf?2);

}

tmp = nfs_file_close(fdr);

110 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Using XilMFS

SUXILINX®

Using a Pre-Built XilMFS Image

1.

Create adirectory on your host file system containing the files you want in your image.
In the following example, the directory is called t est nf s, and the files are called
a.txt andb. txt:

nfs>1|s -Rtestnfs

testnfs:

a.txt b.txt

Run nf sgen to create the image and write the image to a file called i nage. nf s.
nfs> nfsgen -cvbf inmage.nfs 10 testnfs

testnfs:
a.txt 15
b.txt 18

MFS bl ock usage (used / free / total) =4/ 6/ 10
Size of menory is 5320 bytes

Bl ock size is 532

nf s>

In this example, nf sgen is called with a block size of 10, resulting in a memory image
size of 5320 bytes, or 10 blocks, of which four are used to store the directory t est nf s
and the filesa. t xt and b. t xt.

Load this image file into memory at a suitable address, such as 0x10000000. You can
use XMD to download data, or you can use another tool to copy this data to memory.
For more information about using XMD, refer to the “Xilinx Microprocessor Debugger
(XMD)” chapter in the Embedded System Tools Guide.

In your application, initialize the file system as follows:

nfs_i nit_geni mage(5324, 0x10000000, MFSI NI T_ROM | MAGE) ;

Now you are ready to use the file system in read-only mode. You can traverse directories,
open and close files, and read files using the XiIMFS functions in your application.

Note: Linux and Cygwin hosts are typically little-endian machines, while Solaris hosts and
MicroBlaze and PowerPC targets are big-endian. When using mfsgen on little-endian machines, use
the - s option to generate an image in big-endian format so it is readily usable on both MicroBlaze and
PowerPC targets.

Platform Studio User Guide

www.xilinx.com 111

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 7: Using XilMFS

112 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

S XILINX®
Chapter 8

Simulation in EDK

This chapter describes the basic Hardware Description Language (HDL) simulation flow
using the Xilinx® EDK with third-party software. It includes the following sections:

e “Introduction”

e “EDK Simulation Basics”

e “Simulation Libraries”

e “Compiling Simulation Libraries”

e “Third-Party Simulators”

e “Creating Simulation Models”

e “Memory Initialization”

e “Simulating a Basic System”

e “Submodule or Testbench Simulation”
e “Using SmartModels”

Introduction

Increasing design size and complexity and recent improvements in design synthesis and
simulation tools have made HDL the preferred design language of most integrated circuit
designers. The two leading HDL synthesis and simulation languages today are Verilog and
VHDL. Both of these languages have been adopted as IEEE standards.

The two most common design methods used in both VHDL and Verilog logic designs are
structural and behavioral.

Structural design is a method by which a designer instantiates and utilizes predefined
components (or structures) and describes how they are to be connected together. For
example, a four-bit adder can be created by instantiating four one-bit adders and
connecting them together. The one-bit adder itself can be created by instantiating and
connecting the appropriate lower-level gates. A design that applies the structural design
method can be easily represented as a netlist that describes the components used and their
connections.

Behavioral design is a method by which a designer uses a much higher level of abstraction
than structural design. The design might contain high-level operations, such as a four-bit
addition operator (this is not an adder as in structural design), without having a
knowledge of how the design will be implemented. Synthesis tools then take these
behavioral designs and infer the actual gate structures and connections to be used,
generating a netlist description. As synthesis tools evolve, behavioral designs will become
more and more common.

Platform Studio User Guide www.xilinx.com 113
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 8: Simulation in EDK

EDK Simulation Basics

EDK IP components are designed with a mix of behavioral and structural descriptions. For
simplicity, we refer to these source descriptions only as behavioral, even though they have

some structural instantiations.

This section introduces the basic facts and terminology of HDL simulation in EDK. There
are three stages in the FPGA design process in which you conduct verification through
simulation. Figure 8-1 shows these stages.

-———
|
|
|
|
|
I

Behavioral Simulation

Figure 8-1:

Design Design Design Design Implemented
Entry Synthesis Netlist Implementation Design Netlist
Behavioral Structural Timing
Simulation Simulation Simulation

UG111_01_111903

FPGA Design Simulation Stages

EDK refers to pre-synthesis simulation as Behavioral Simulation. Behavioral simulation is
done from an HDL description of the design before it is synthesized to gates. This is the
quickest and least detailed HDL simulation method.

Behavioral simulation is used to verify the syntax and functionality without timing
information. The majority of the design development is done through behavioral
simulation until the required functionality is obtained. Errors identified early in the design
cycle are inexpensive to fix compared to functional errors identified during silicon debug.

Structural Simulation

EDK refers to post-synthesis simulation as Structural Simulation. After the behavioral
simulation is error free, the HDL design is synthesized to gates and a purely structural
description of the design is generated. At this point, you can verify what the synthesis tool
did with the behavioral design. The post-synthesized structural simulation is a functional
simulation that can be used to identify initialization issues and to analyze “don’t care”
conditions. Timing information is not used at this simulation level. This method is slower

and has more details than behavioral simulation.

Xilinx tools have the ability to write out purely structural HDL netlists for a post-
synthesized design. These VHDL or Verilog netlists are written using UNISIM library
components, which describe all the low-level hardware primitives available in Xilinx®

FPGAs.

114

www.xilinx.com
1-800-255-7778

Platform Studio User Guide

UG113 (v4.0) February 15, 2005

EDK Simulation Basics S XILINX®

Timing Simulation

EDK refers to post-implementation simulation as Timing Simulation. This is the same as
structural simulation, but with back-annotated timing information. Timing simulation is
important in verifying the operation of your circuit after the worst-case place and route
(PAR) delays are calculated for your design. The back annotation process produces a netlist
of library components annotated in an SDF file with the appropriate block and net delays
from the place and route process. The simulation identifies any race conditions and setup-
and-hold violations based on the operating conditions for the specified functionality. This
simulation method is the slowest and is more detailed.

EDK and ISE Simulation Points
Xilinx® ISE™ supports the following simulation points:

e Behavioral (RTL)

e Post-Synthesis Structural

e Post-NGDBuild (Pre-Map) Structural with no Timing
e Post-Map with Partial Timing

e Post-PAR with Full Timing

Refer to the “Verifying Your Design” chapter in the Synthesis and Verification Design Guide in
your ISE distribution to learn more about the ISE simulation points.

EDK does not support the third and fourth points above. The other three have the
equivalencies described in Table 8-1.

Table 8-1: Simulation Terminology Equivalency

Xilinx Simulation Points EDK Simulation Project Navigator
Model Model
Register Transfer Level (RTL) Behavioral Behavioral
Post-Synthesis (Pre-NGDBuild) Structural Not Available
Gate-Level Simulation
Post-NGDBuild (Pre-Map) Not Available Post-Translate
Gate-Level Simulation
Post-Map Partial Timing Not Available Post-Map
(CLB and I0B Block Delays)
Timing Simulation Timing Post-PAR
Post-PAR Full Timing
(Block and Net Delays)
Platform Studio User Guide www.xilinx.com 115

UG113 (v4.0) February 15, 2005 1-800-255-7778

http://toolbox.xilinx.com/docsan/xilinx6/books/docs/sim/sim.pdf

&7 XILINX® Chapter 8: Simulation in EDK

Simulation Libraries

EDK simulation netlists use low-level hardware primitives available in Xilinx® FPGAs.
Xilinx provides simulation models for these primitives in the libraries listed in this section.

Xilinx Simulation Libraries

Xilinx® ISE provides the following libraries for simulation:

UNISIM Library

This is a library of functional models used for behavioral and structural simulation. It
includes all of the Xilinx Unified Library components that are inferred by most popular
synthesis tools. The UNISIM library also includes components that are commonly
instantiated such as 1/0s and memory cells.

You can instantiate the UNISIM library components in your design (VHDL or Verilog) and
simulate them during behavioral simulation. Structural simulation models generated by
Simgen instantiate UNISIM library components.

All asynchronous components in the UNISIM library have zero delay. All synchronous
components have a unit delay to avoid race conditions. The clock-to-out delay for these is
100 ps.

SIMPRIM Library

Thisis alibrary used for timing simulation. This library includes all of the Xilinx Primitives
Library components that are used by Xilinx implementation tools.

Timing simulation models generated by Simgen instantiate SIMPRIM library components.

XilinxCoreLib Library

The Xilinx® CORE Generator™ is a graphical intellectual property design tool for creating
high-level modules like FIR Filters, FIFOs, CAMs, and other advanced IP. You can
customize and pre-optimize modules to take advantage of the inherent architectural
features of Xilinx FPGA devices, such as block multipliers, SRLs, fast carry logic, and on-
chip, single-port, or dual-port RAM.

The CORE Generator HDL library models are used for behavioral simulation. You can
select the appropriate HDL model to integrate into your HDL design. The models do not
use library components for global signals.

EDK Library

All EDK IP components are written in VHDL. Some of the IP components distributed with
EDK have an encrypted source. EDK provides precompiled libraries of these components
that can be used for behavioral simulation. Unencrypted EDK IP components can be
compiled using the CompEDKL.ib utility provided by Xilinx. CompEDKLib deploys the
encrypted and unecrypted VHDL only compiled models into a common location.

116 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Compiling Simulation Libraries S XILINX®

Compiling Simulation Libraries

Most modern simulators require you to compile the HDL libraries before you can use them
for design simulations. The advantages of compiling HDL libraries are speed of execution
and economy of memory.

A GUI utility is available for compiling these libraries. To run this utility, do the following:

1. Launch XPS
You can choose to create a XPS project, but a XPS project is not required for this step.

2. If you have an XPS project open, then do the following:
a. Select Options — Project Options.
b. Click the HDL and Simulation tab.
¢. Inthe Simulation Libraries Path area, select the EDK and Xilinx libraries to
compile.
d. Click Compile.

3. If you do not have an XPS project open, then select Options — Compile Simulation
Libraries.

This opens the Simulation Library Compilation Wizard, which guides you through the
compilation process.

Command line executables for compiling the simulation libraries are also available and are
described in the subsequent sections. However, Xilinx strongly recommends that you use
this GUI tool. Using the GUI ensures that the correct set of tool options are used, and
generally enhances your experience through better interaction with XPS.

Compiling Xilinx Simulation Libraries

Xilinx provides CompXLib to compile the HDL libraries for all Xilinx-supported simulators.
This utility compiles the UNISIM, SIMPRIM and XilinxCoreLib libraries for all supported
device architectures using the tools provided by the simulator vendor.

Refer to the “Verifying Your Design” chapter in the Synthesis and Verification Design Guide in
your ISE distribution to learn more about compiling and using Xilinx simulation libraries.

Library Compilation

To compile your HDL libraries using CompXLib, follow these steps. You must have an
installation of the Xilinx implementation tools:

1. Run CompXLib with the - hel p option if you need to display a brief description for the
available options:
conpxlib -help
2. The CompXLib tool uses the following syntax:
compxlib -s <simulator> -f <famly[:lib],<famly[:lib],...|all>
[-1 <language>]
[-0 <conpxlib_output_directory>]
[-W
[-p <sinulator_path>]
Note: Each simulator uses certain environment variables which you must set before invoking

CompXLib. Consult your simulator documentation to ensure that the environment is properly set
up to run your simulator.

Platform Studio User Guide www.xilinx.com 117
UG113 (v4.0) February 15, 2005 1-800-255-7778

http://toolbox.xilinx.com/docsan/xilinx6/books/docs/sim/sim.pdf

&7 XILINX® Chapter 8: Simulation in EDK

Note: Make sure you use the - p <si mul at or _pat h> option to point to the directory where
the modelsim executable is, if it is not in your path.

CompXLib Command Line Example

The following is an example of a command for compiling Xilinx libraries for MTI_SE:
> conpxlib -s nti_se -f all -I vhdl -w -0 .

This command compiles all the necessary XILINX libraries into the current working
directory.

Compiling EDK Behavioral Simulation Libraries

Before starting behavioral simulation of your design, you must compile the EDK
Simulation Libraries for the target simulator. For this purpose, Xilinx provides
CompEDKULIib, a tool for compiling the EDK HDL-based simulation libraries using the
tools provided by the simulator vendor. It compiles all of the HDL sources for all IP that is
provided unencrypted and copies the precompiled libraries for encrypted IP to the same
location.

Usage

conpedklib [-h'] [-o output-dir-nane] [-Ip repository-dir-nane]
[-E conpedklib-output-dir-nane] [-lib core-nane]
[-conpile_sublibs] [-exclude deprecated]
-s nti_se|nti_pe|ncsim-X conpxlib-output-dir-nane

This tool compiles the HDL in EDK pcore libraries for simulation using the simulators
supported by EDK. Currently, the only supported simulators are MTI PE/SE and NCSIM.

CompEDKLib Command Line Examples

Use Case I: Launching the GUI Tool for Compiling Both the Xilinx and EDK
Simulation Libraries.

conpedklib

No options are required. This launches the same GUI as when selecting Options —
Compile Simulation Libraries in XPS.

Note: This is the only mode of ConpEDKLi b that also compiles the Xilinx Libraries. All the other
modes only compile the EDK libraries.

Use Case Il: Compiling HDL Sources in the Built-In Repositories in the EDK

The most common use case is as follows:

conpedkl i b -0 <conpedkl i b-out put-dir-nane>
- X <conpxl i b-out put -di r-name> -excl ude deprecat ed

In this case, the pcores available in the EDK install are compiled and then stored in
<conpedkl i b- out put - di r - narme>. The value to the - X option indicates the directory
containing the models outputted by CompXLib such as the uni si m si npri mand

Xi l'i nxCor eLi b compiled libraries.

Pcores can be in development, active, deprecated, or obsolete state. Adding - excl ude
depr ecat ed has the effect of not compiling deprecated cores. However, if you have
deprecated cores in your design, do not use the - excl ude depr ecat ed option.

118 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Compiling Simulation Libraries S XILINX®

Use Case lll: Compiling HDL Sources in Your Own Repository

If you have your own repository of EDK style pcores, you may to compile them into
<conpedkl i b- out put - di r - name> as follows:

conpedkl i b -0 <conpedkl i b-out put-dir-nane>
- X <conpxl i b-out put - di r - nane>
- E <conpedkl i b- out put - di r - nane>
-l p <Your-Repository-Dir>

In this form, the - E value accounts for the possibility that some of the pcores in your
repository may need to access the compiled models generated by Use Case I. This is very
likely because the pcores in your repository are likely to refer to HDL sources in the EDK
built-in repositories.

You can limit the compilation to named cores in the repository:

conpedkl i b -o <conpedkl i b-out put-dir-nane>
- X <conpxl i b-out put - di r - nane>
- E <conpedkl i b- out put - di r - nane>
-1 p <Your-Repository-Dir>
-lib corel
-lib core2

In this case, the entire repository is read but only the pcores indicated by the - ¢ options are
compiled.

You can add - conpi | e_subl i bs to the above to compile the pcores that the indicated
pcore depends on.

Other Details

e |f the simulator is not indicated, then MT]I is assumed.

e You can supply multiple - Xand - E arguments. The order is important. If you have
the same pcore in two places, the first one is used.

e Some pcores are secure in that their source code is not available. In such cases, the
repository contains the compiled models. These are copied out into <conpedkl i b-
out put - di r - nanme>.

e If your pcores are in your XPS project, you do not need to do Use Case II.
XPS/SIMGEN will create the scripts to compile them.

e Only VHDL is supported.
e The execution log is available in conpedkl! i b. | og.

e Starting in EDK 7.1, the file indicated by your MODELSIM environment variable is
not modified by CompEDKLib. However, the simulation scripts generated by
SIMGEN will modify the file pointed to by the MODELSIM variable.

Setting Up SmartModels

SmartModels represent integrated circuits and system buses as black boxes that accept
input stimulus and respond with appropriate output behavior. Such behavioral models
provide improved performance over gate-level models, while at the same time protecting
the proprietary designs created by semiconductor vendors. SmartModels connect to
hardware simulators through the SWIFT interface, which is integrated with over 30
commercial simulators, including Synopsys VCS, Cadence Verilog-XL, Cadence NcSim,
and Model Technology ModelSim SE/PE(®),

Platform Studio User Guide www.xilinx.com 119
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 8: Simulation in EDK

The Xilinx® Virtex™-11 Pro simulation flow uses Synopsys LMC models to simulate the
IBM PowerPC™ microprocessor and Rocket 1/0 multi-gigabit transceiver. LMC models
are simulator-independent models that are derived from the actual design and are
therefore accurate evaluation models. To simulate these models, a simulator that supports
the SWIFT interface must be used. The SmartModels are included in the ISE
Implementation Tools.

The following steps outline how to set up the models. After setting up the SmartModels,
refer to “Third-Party Simulators” on page 120 to setup your simulator to use SmartModels.

Windows

On Windows, go to Start — Control Panel — System. The System Properties dialog box
opens. Select the Advanced tab and click Environment Variables. The Environment
Variables dialog box opens.

The most commonly used value of LMC_HOME is suggested below. The conpedkl i b
utility indicates what the correct setting is for your installation.

Set the variables to the following values (if not already set):

LMC HOVE %I LI NX% smart nodel \ nt\i nstal |l ed_nt
PATH %.MC_HOVE% bi n; %4.MC_HOVE% | i b\ pcnt . | i b; %PATH%

Note: %PATH% represents what your PATH variable had before doing the changes. Make sure you
keep this.

Solaris

Set the following variables, if not already set:

setenv LMC_HOME $XI LI NX/ snart nodel / sol /i nstal | ed_sol
setenv LD LI BRARY_PATH $LMC HOME/ | i b/ sun4Sol ari s. |i b: $LD_LI BRARY_PATH
set env PATH $LMC_HOVE/ bi n: ${ PATH}

Linux

Set the following variables, if not already set:

setenv LMC_HOVE $XILINX/ smartnodel /lin/installed_lin
setenv LD_LI BRARY_PATH $LMC HOVE/ | i b/ x86_l i nux. i b: $LD_LI BRARY_PATH
set env PATH $LMC_HOVE/ bi n: ${ PATH}

Third-Party Simulators

EDK requires that some third-party simulators are obtained and set up. This section
provides some information on these tools.

ModelSim Setup for Using SmartModels

Although ModelSim PE/SE supports the SWIFT interface, certain modifications must be
made to the default ModelSim setup to enable this feature. The ModelSim installation
directory contains an initialization file called nodel si m i ni . Inthis initialization file, you
can edit GUI and simulator settings so that they default to your preferences. You must edit

1. ModelSim XE does not support SmartModels.

120

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Third-Party Simulators S XILINX®

parts of this nodel si m i ni file in order for it to work properly with the Virtex-11 Pro
device simulation models.

Make the following changes to the nodel si m i ni file located in the MODEL_TECH
directory. Alternately, you can change the MODEL SI Menvironment variable setting in the
MT]I setup script so that it points to the nodel si m i ni file located in the project design
directory.

1. Edit the statement Resol uti on = ns and change itto Resol uti on = ps.

2. Comment the statement called Pat hSepar at or = / by adding ; atthe beginning of
the line.

3. For Verilog designs, enable smartmodels by searching for the variable Ver i user and
change it to:

¢ OnWindows: Veri user = $MODEL_TECH | i bswi ftpli.dllI
¢ OnSolaris: Veriuser = $MODEL_TECH/ | i bswi ftpli. sl
¢ OnLinux:Veriuser = $MODEL_TECH | i bswi ftpli. sl

4. Search for the [| nt] section and uncomment the | i bsmand | i bswi ft definitions
according to your operating system.

For Example:

¢ On Windows, uncomment these lines:

i bsm= $MODEL_TECH | i bsm dI |
libswift = $LMC HOVE/lib/pcnt.lib/libswft.dll

¢ On Solaris, uncomment these lines:

i bsm= $MODEL_TECH | i bsm sl
libswift = $LMC_ HOWVE/ i b/ sun4Sol aris.lib/libswft.so

¢ On Linux, uncomment these lines:

i bsm= $MODEL_TECH | i bsm sl
libswift = $LMC HOVE/ i b/ x86_linux.lib/libswft.so

Note: It is important to make the changes in the order in which the commands appear in the
nodel si mini fil e. The simulation might not work if the order recommended above is not
followed.

After you edit the modelsim.ini file, add some environment variables, if they are not
already defined.

e InWindows, go to Start - Control Panel —» System. The System Properties dialog
box opens. Select the Advanced tab and click Environment Variables. The
Environment Variables dialog box opens.

Set the variables to the following values:

MODELSI M <pat h_t o_nodel si m i ni _scri pt >\ nodel si mini
PATH <MT1 _pat h>\ wi n32; %°ATH%

Note: %PATH% represents what your PATH variable had before doing the changes. Make sure
you keep this.

e On Solaris and Linux, add the following environment variables to the MTI ModelSim
setup script:

set env. MODELSI M <pat h_t o_nodel si mi ni _scri pt>/ nmodel simi ni
setenv PATH <MTI _pat h>/ bi n: ${ PATH}

Note: Change the parameters included within the brackets <> to match the system configuration.

Note: If the MODELSIM environment variable is not set to point to the file you edited, MTI might not
use this INI file, and the simulator will not read the initialization settings required for simulation.

Platform Studio User Guide www.xilinx.com 121
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 8: Simulation in EDK

NcSim Setup for Using SmartModels

Add the following environment variables, if they are not already defined.

In Windows, go to Start — Control Panel — System. The System Properties dialog
box opens. Select the Advanced tab and click Environment Variables. The
Environment Variables dialog box opens.

Set the variables to the following values:

CDS_HOMVE <Cadence pat h>
PATH %.MC_HOVE% bi n; %.MC_HOVE% | i b\ pcnt . i b;
%CDS_HOVE% t ool s\ bi n; %CDS_HOVE% t ool s\ | i b; %PATH%
Note: %PATH% represents what your PATH variable had before doing the changes. Make sure
you keep this.

On Solaris and Linux, add the following environment variables to the Cadence NcSim
setup script:

setenv CDS_HOME <Cadence pat h>
setenv LD LI BRARY_PATH ${CDS_HOVE}/t ool s/li b:\

$LMC HOVE/ | i b/ sun4Sol aris.|ib: ${LD LI BRARY_PATH}
setenv PATH ${LMC_HOVE}/ bi n: ${ CDS_HOVE}/ bi n: ${ PATH}

Note: Change the parameters included within the brackets <> to match the system configuration.

Creating Simulation Models

You can create simulation models using the XPS Graphical User Interface, XPS batch mode,
and Simgen. Refer to the “Simulation Model Generator” chapter of the Embedded System
Tools Reference Manual for details on how to use Simgen.

Creating Simulation Models Using XPS

Do the following to generate simulation models using XPS:

1.

2.
3.
4

© N o O

Open your project.

Create or modify your MHS file in XPS.
Select Options — Project Options.
Click the HDL and Simulation tab.

a. Selectasimulator from the Simulator Compile Script option list. The options are
“ModelSim”, “NCSim”, or “None.”

b. Specify the path to the Xilinx and EDK precompiled libraries in the Simulation
Libraries Path box.

c. Select the Simulation Model: Behavioral, Structural, or Timing.

Click OK to save your settings .

To generate the simulation model, select Tools — Sim Model Generation.
When the process finishes, HDL models are saved in the simulation directory.
To open the simulator application, select Tools — Hardware Simulation.

122

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Memory Initialization XX"JNX@

Creating Simulation Models Using XPS Batch
Do the following to generate simulation models using the XPS batch mode:

1. Open your project by loading your XMP file:
XPS% | oad xnp <fil enanme>. xnp
2. Set the following simulation values at the XPS prompt.
a. Select the simulator of your choice using the following command:

XPS% xset sinmulator [nmti | ncs | none]
b. Specify the path to the Xilinx and EDK precompiled libraries using the following
commands:

XPS% xset simx_|lib <path>
XPS% xset simedk_lib <path>

c. Select the Simulation Model using the following command:
XPS% xset simnodel [behavioral | structural | timng]
3. To generate simulation model, type the following:
XPS% run si nmodel
When the process finishes, HDL models are saved in the simulation directory
To open the simulator, type the following:
XPS% run sim

Memory Initialization

After a simulation model is created for a system, the software data must be included in the
memory simulation models for the system to run the program.

A C program that has been compiled to generate an executable file can be put inside the
simulation models. When running and debugging the software program in the simulator,
there will be several iterations of changes and compilation only of the C program and not
the hardware design. Creating this data inside the simulation models would be very
inefficient. If there are no hardware changes, there is no need to run any hardware creation
or implementation tools again.

EDK supports initialization of data in BRAM blocks. BRAM blocks are formed of several
BRAMs arranged and configured to create a memory of the size specified in the design.
The simulation models that Xilinx provides for these BRAMS use generics in the case of
VHDL and parameters in the case of Verilog as the means to initialize them with data.

If there is any program with which to initialize memory, EDK creates separate memory
initialization HDL files that include the data for the design.

VHDL Models

For VHDL simulation models, EDK generates a VHDL file that contains a configuration for
the system with all initialization values. For a design described in a file called

syst em nmhs, there is a VHDL system configuration in the file syst em i ni t. vhd. The
configuration in this file maps the required generics for each of the BRAM blocks
connected to a processor in the system.

Platform Studio User Guide www.xilinx.com 123
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 8: Simulation in EDK

Verilog Models

For Verilog simulation models, EDK generates a Verilog file that contains an extra module
to be used along with the system with all initialization values. For a design described in a
file called syst em mhs, there is a VHDL system configuration in the file

syst em.i ni t. v. This module does not have any ports and does not instantiate any other
module. It only contains a set of def par amstatements to define the required parameters
for each of the BRAM blocks connected to a processor in the system.

Simulating a Basic System

You have created a hardware system and the software to run on it. You also created
simulation models and compile scripts for your hardware simulator. Next you will use a
hardware simulator to simulate your design as described in the following sections.

XPS creates all simulation files in the simulation directory in the project directory and
inside a subdirectory for each of the simulation models.

<proj ect _directory>/simnulation/<si m nodel >

For example, if the three supported simulation models (behavioral, structural, and timing)
are created and your project directory is pr oj _di r, you have the following directory
structure:

proj _dir/
si mul ati on/
behavi oral /
structural/
timng/
Note: There will be other directories in your project directory, but these are not relevant for now.

Older hardware simulators use an interpreted technique. These kinds of simulators have
reasonable performance when simulating small designs but become inefficient as
hardware designs become larger and larger.

Modern hardware simulators use a compiled technique. They can either translate an HDL
representation and generate a C representation that is later translated to native machine
code by a C compiler, or they can directly generate native machine code. In either of these
cases, simulations runs much faster.

EDK 7.1 generates compile scripts for two compiled simulators: Model Technology’s
ModelSim and Cadence’s NcSim.

124

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Simulating a Basic System S XILINX®

Simulation Model Files

Behavioral Model

After a successfully generating behavioral simulation models, the si nul at i on directory
contains the following files in the behavi or al subdirectory:

Table 8-2: Files in the simulation\behavioral Directory

File Description
peri pheral _wrapper.[vhd| V] Modular simulation files for each component.
el abor at e/ Subdirectory with HDL files for components that
require elaboration.
syst em nane. [vhd| v] The top-level HDL file of the design.
system_name_init.Jvhd] v] Memory initialization file, if needed.
syst em nane. [do| sh] Script to compile the HDL files and load the

compiled simulation models in the simulator.

Structural Model

After a successfully generating structural simulation models, the si nul at i on directory
contains the following files in the st r uct ur al subdirectory:

Table 8-3: Files in the simulation\structural Directory

File Description
peri pheral _wrapper.[vhd| V] Modular simulation files for each component.
syst em nane. [vhd| v] The top-level HDL file of the design.
system nane_init.[vhd]|v] Memory initialization file, if needed.
syst em nane. [do| sh] Script to compile the HDL files and load the
compiled simulation models in the simulator.

Timing Model

After successfully generating timing simulation models, the si mul at i on directory
contains the following files in the t i m ng subdirectory:

Table 8-4: Files in the simulation\timing Directory

File Description
syst em nane. [vhd| v] The top-level HDL file of the design.
syst em nane. sdf The Standard Delay Format (SDF) file with the

appropriate block and net delays from the place
and route process used only for timing simulation.

system nane_i nit.[vhd]|v] Memory initialization file, if needed.

syst em nane. [do| sh] Script to compile the HDL files and load the
compiled simulation models in the simulator.

Platform Studio User Guide www.xilinx.com 125
UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Chapter 8: Simulation in EDK

ModelSim

To simulate using ModelSim, do the following steps, which are described in detail in the
following subsections.

1. Compile the design
2. Load the design

3. Provide stimulus
4. Run the simulation

Compiling the Simulation Models

EDK generates a . do file to compile the generated simulation models. This file contains a
set of library mapping and compile commands.

When this file is used, the library mappings are recorded by ModelSim in your

nodel si mi ni file. If you have a $MODEL S| Menvironment variable pointing to a

nodel si m i ni file, this file is used by ModelSim. However, if the environment variable is
not set, a new nodel si m i ni fileis created by ModelSim in the current directory.

To use the compile script generated for an MHS file named syst em nhs, type the
following at the ModelSim command prompt:

Model Si n» do system do

Loading Your Design

Before simulating your design, you must load it. There are differences in how you load the
design depending on the language that was used for the top level and whether or not you
have memory blocks to initialize.

Loading VHDL Designs

If your top level created by EDK was in VHDL, you should load the design using

Model Si n» vsi m syst em conf

This command loads the configuration. The simulator uses the design and all of the
parameters specified in the configuration. As a result, you will have all of the memory
blocks initialized with the appropriate data.

If you do not have any data to put into memory blocks, you can use the following
command to load the design only:

Model Si n» vsi m system

Loading Verilog Designs
If your top level created by EDK was in Verilog, you should load the design using
Model Si n» vsi m system conf system gl bl

This loads the module containing the parameter definitions that initialize the memory
blocks in your system, loads the system module itself, and loads the gl bl module.

If you do not have any data to put into memory blocks, use the following command to load
only the system and the gl bl modules:
Model Si n» vsi m system gl bl

Note: The Verilog files written by EDK employ the usel i b directive to load simulation libraries. Still,
you only need to use - Lf for user-defined libraries.

126 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Simulating a Basic System S XILINX®

Providing Stimulus to Your Design

After loading the design and before running the simulation, you must stimulate the clock
and reset signals. You can do this with the f or ce command:

force -freeze sim/systenisys clk 1 0, 0 {10 ns} -r 20 ns
force -freeze sim/systenisys reset 1
force -freeze sim/systenisys_reset 0 100 ns, 1 {200 ns}

The first command sets the clock signal to a 20 ns period. The second and third commands
set the reset signal (active Low) to be active after 100 ns and go back to inactive after 200 ns.
You should change these values as appropriate for your simulation.

Note: You can also use ModelSim’s GUI to set the values for these signals. ModelSim’s user
documentation describes how to do it.

Simulating Your Design

To run the simulation, type r un and the number of time units for which you want the
simulation to run. For example,

VSI M> run 100

Using ModelSim’s Script Files

You can put all the commands to compile the HDL files, load the design, give stimulus, and
simulate your design in a single . do file. For example, you can create a script file called
r un. do with the following:

Conpil e Design
do system do

Load Design
VSi m system

Set Stimulus

force -freeze sim/systenisys clk 1 0, 0 {10 ns} -r 20 ns
force -freeze sim/systenisys reset 1

force -freeze sim/systenisys reset 0 100 ns, 1 {200 ns}

Run sinul ation
run 2 us
To run this script, on ModelSim’s command prompt type:

Model Si n> do run. do

NcSim
To simulate using ModelSim, you must do the following:
1. Compile the design
2. Elaborate the design
3. Load the design
4. Run simulation
Platform Studio User Guide www.xilinx.com 127

UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Chapter 8: Simulation in EDK

Compiling the Simulation Models

EDK generates a . sh file to compile the generated simulation models. The library
mappings are created in the cds. | i b file in the same directory.

To use the compile script generated for an MHS file named syst em mhs, type the
following at the Command line prompt:

> sh system sh

Elaborating Your Design

After the design compiles, it requires elaboration. Elaboration is different for VHDL and
Verilog, or if you are using swift models.

VHDL
To elaborate the design, type:

> ncel ab -rel ax -noxilinxaccl -access +rwe system structure
If the design has any memories to be initialized, type:

> ncel ab -relax -noxilinxaccl -access +rwe system conf

Verilog
To elaborate the design, type:

> ncel ab -relax -noxilinxaccl -access +rwc -tinmescale 1ns/1ps \
system gl bl

If the design has any memories to be initialized, type:

> ncel ab -relax -noxilinxaccl -access +rwe -tinescale 1ns/1ps \
system conf system gl bl

Swift Models
If you are using swift models, add the following switch to the ncel ab command line:

-loadplil swiftpli:swft_boot

Special Cases
For VHDL timing simulation, compile the SDF file using the SDF compiler:
> ncsdf ¢ syst em sdf

and point to the compiled SDF file using a command file and the following switch on the
ncelab command line:

-sdf _cnd_file sdf.cnd
where the sdf . cnf file contains the following
COWPI LED _SDF_FI LE = “system sdf . X",
SCOPE = : SYSTEM

128 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Submodule or Testbench Simulation ST XILINX®

Loading Your Design

Before simulating your design, you must load the design. There are differences in how you
load the design depending on the language that was used for the top level and whether or
not you have memory blocks to initialize.
Loading VHDL Designs
If your top level created by EDK was in VHDL, you should load the design using

ncl aunch> ncsi m syst em conf

This command loads the configuration. The simulator uses the design and all of the
parameters specified in the configuration. As a result, you have all the memory blocks
initialized with the appropriate data.

If you do not have any data to put into memory blocks, you can use the following
command to load only the design:

ncl aunch> ncsi m system structure

Loading Verilog Designs
If your top level created by EDK was in Verilog, you should load the design using
ncl aunch> ncsi m system conf:v

This loads the module containing the parameter definitions that initialize the memory
blocks in your system, loads the system modaule itself, and loads the gl bl module.

If you do not have any data to put into memory blocks, use the following command to load
only the system and the gl bl modules:

ncl aunch> ncsimsystemv

Simulating Your Design

To run the simulation, type r un and the number of time units for which you want the
simulation to run. For example,

ncsi > run 100

Submodule or Testbench Simulation

In certain cases, the EDK design will not be the top level of your design. This is the case
when you instantiate it in a higher level design for synthesis or when you instantiate the
EDK design in a testbench for simulation. In either case, the design hierarchy is modified
and the EDK design is pushed down the hierarchy one level. This section describes
instantiating simulation models in testbenches or higher level systems.

Platform Studio User Guide www.xilinx.com 129
UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Chapter 8: Simulation in EDK

VHDL
You can instantiate an EDK design in a testbench or higher level design using the following
syntax:
entity <testbench nane> is
end <testbench nanme>;
architecture <testbench architecture> of <testbench name>is
<desi gn instance nane>. <design nane>
generic map (
<generi cs>
)
port map (
<ports>
)
end <testbench architecture>;
configuration <configuration name> of <testbench nane> is
for <testbench architecture>
for <design instance nanme> : <design name>
use configuration work.<design configuration nane>;
end for;
end for;
end <configuration nane>;
For example, if the design name is syst em you write the following code in a VHDL file
such astb. vhd:
entity tbis
end tb;
architecture STRUCTURE of tb is
nysystem system
port map (
sys_clk => ny_clk,
sys_rst => my_rst
)
end STRUCTURE;
configuration tb_conf of tbis
for STRUCTURE
for nysystem: system
use configuration work.system conf;
end for;
end for;
end tb_conf;
You should also include all of the other components, signals, and stimulus generation code
in the same file.
The EDK system configuration, syst em conf in this case, defines all of the memory
initialization definitions for your design. If this configuration is not used, there will be no
data in any memory blocks. If the design has no memory blocks to be initialized, you can
omit using the configuration.
130 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Submodule or Testbench Simulation ST XILINX®

Verilog
You can instantiate an EDK design in a testbench or higher level design using the following
syntax:
nodul e <t est bench nanme> ()
<desi gn configurati on nane>
<desi gn configurati on name>();
<desi gn name>
<desi gn nane>
(
.<portl> (),
.<port2> (),
)
endnodul e
For example, if the design name is syst em you write the following code in a Verilog file,
suchastb. v:
nodul e th();
syst em conf
system conf ();
system
system
(
.sys_clk (ny_clk),
.sys_rst (ny_rst)
)
endnodul e
You should also include all of the other components, signals, or stimulus generation code
in the same file.
The configuration module, syst em conf in this case, is a module that has all of the
memory initialization parameter definitions for your design. If this module is not
instantiated, there will be no data in any memory blocks. If the design has no memory
blocks to be initialized, you can omit the configuration module instantiation.
Platform Studio User Guide www.xilinx.com 131

UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Chapter 8: Simulation in EDK

ModelSim

This section provides partial instructions on how to compile, load, and simulate using
ModelSim. For a more extensive explanation, refer to “Simulating a Basic System” on page
124 or the ModelSim user documentation.

VHDL
e Tocompile thetb. vhd file, type
Model Si m> vcom -93 -work work tb.vhd

e To load the testbench, type
Model Si m» vsi mtb_conf

Or if there are no memory blocks to initialize, type
Model Sime vsimthb

e Tosimulate, type
VSI M> run 100

Verilog
e Tocompilethetb. v file, type
Model Sim» vliog -incr -work work th.v

e To load the testbench, type
Model Sime vsimtb gl bl

e Tosimulate, type
VSI M> run 100

NcSim
This section provides partial instructions on how to compile, load, and simulate using
NcSim. For a more extensive explanation, refer to “Simulating a Basic System” on page 124
or the NcSim documentation.
VHDL
e To compile thet b. vhd file, type
ncl aunch> ncvhdl -v93 -work work tb. vhd
e To elaborate it, type
ncl aunch> ncel ab tb_conf
Or if there are no memory blocks to initialize, type
ncl aunch> ncel ab tb: structure
e To load the testbench, type
ncl aunch> ncsimtb_conf
Or if there are no memory blocks to initialize, type
ncl aunch> ncsimthb
e To simulate, type
ncsi m> run 100
132 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Using SmartModels S XILINX®

Verilog
e Tocompilethetb. v file, type
ncl aunch> ncvl og -update -work work th.v

e To elaborate it, type
ncl aunch> ncelab tb gl bl

e To load the testbench, type
ncl aunch> ncsimtb gl bl

e Tosimulate, type
ncsim> run 100

Using SmartModels

Accessing SmartModel’s Internal Signals

The Imcwin Command

The | ntwi n command has the following options:
I ncwi n read <wi ndow_i nst ance> [-<radi x>]

The Imcwin read command displays the current value of a window. The optional
radix argument is - bi nary, - deci mal , or - hexadeci nal , which can be
abbreviated.

Inmcwin write <w ndow_i nstance> <val ue>

Thel ncwi n wri t e command writes a value into a window. The format of the
value argument is the same as that used in other simulator commands which take
value arguments.

| rcwi n enabl e <wi ndow_i nst ance>

Thel ncwi n enabl e command enables continuous monitoring of awindow. The
specified window is added to the model instance as a signal (with the same name
as the window) of type st d_| ogi c orstd_I| ogi c_vect or. You can then
reference this signal in other simulator commands just as you would any other
signal.

| rcwi n di sabl e <wi ndow_i nst ance>

Thel ntwi n di sabl e command disables continuous monitoring of a window.
The window signal is not deleted, but it no longer updates when the model’s
window register changes value.

I ncwi n rel ease <wi ndow_i nst ance>

Some windows are actually nets, and the Imcwin wr i t e command behaves more
like a continuous force on the net. The Imcwin r el ease command disables the
effect of a previous Imcwin wr i t e command on a window net.

Platform Studio User Guide www.xilinx.com 133
UG113 (v4.0) February 15, 2005 1-800-255-7778

&7 XILINX® Chapter 8: Simulation in EDK

Viewing PowerPC Registers in ModelSim

You can enable and view the contents of PowePC registers during simulation. The | nt
command provides access to the PowerPC SmartModel. This section provides some
examples of the command usage.

Note: The InstanceName path below is an example only. You should replace <InstanceName> with
the path that matches your design.

e To see the SmartModel Status Report, type
VSIM> Int -all reportstatus
This lists all the available registers and shows the full instance name path to the
SmartModel. For example,
| nst anceNane:
/ system ppc405_i/ippcd05_swift/ppcd05_swift _inst
e To enable a register to be read, use:
VSI M> | ncwi n enabl e <l nst anceNane>/ GPRO
This enables GPRO to be read. You must enable each register to which you want access.

e To read the value of a register, type
VSI M> exam ne <I nst anceName>/ GPRO
e To add a register to the wave window, use
VSI M> add wave <I nstanceNanme>/ GPRO

134 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

S XILINX®
Chapter 9

Debugging in EDK

This chapter describes the basics in debugging a system designed using EDK. This
includes software debugging using Xilinx® Microprocessor Debugger (XMD) and the
GNU Debugger (GDB) as well as hardware debugging using the ChipScope Pro™ cores
and ChipScope Analyzer tool. This chapter is organized into the following sections.

e “Introduction”

e “Debugging PowerPC Software”

e “Debugging MicroBlaze Software”

e “Debugging Software on a Multi-Processor System”
o “Debugging Software on Virtual Platform”

e ‘“Hardware Debugging Using ChipScope Pro”

Introduction

A significant percentage of the design cycle of complex processor systems is spent in
debugging and verification. This includes debugging of software running on processors
and verification of on-chip bus transactions and hardware logic. Since time-to-market is a
key factor in most designs, appropriate tools are needed for both these time-consuming
tasks.

EDK provides software tools, XMD, GDB, and Platform Studio™ SDK to debug software
running on processors. The Debugging Software sections describe the debugging
processes using XMD and GDB. For more information on debugging using Platform
Studio SDK, refer to the “Platform Studio SDK Online Documentation.”

EDK provides IP cores to access processors, buses, and random logic in your design inside
the FPGA. These are described in “Hardware Debugging Using ChipScope Pro.”

Debugging PowerPC Software

Hardware Setup Using a JTAG Cable

PowerPC™ 405 has a built-in JTAG port for debugging software. The JTAG ports of the
PowerPC™ processors can be chained with the JTAG port present in Xilinx® FPGAs using
the FPGA primitive called JTAGPPC. This way, the same JTAG cable used by the Xilinx®
ISE™ iMPACT tool for configuring the FPGA with a bitstream can also be used for
debugging PowerPC programs.

Platform Studio User Guide www.xilinx.com 135
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 9: Debugging in EDK

Connecting JTAGPPC and PowerPC

EDK provides wrappers for connecting the PowerPC and JTAGPPC FPGA primitives to
use the previously mentioned JTAG debug setup. If you use the Base System Builder (BSB)
to create the design, this connection is done automatically when you select “Use FPGA
JTAG pins” for the JTAG Debug Interface option. The following Microprocessor Hardware
Specification (MHS) file snippet of an EDK design demonstrates how the two wrappers
must be connected for the simple case of FPGAs with a single PowerPC processor.

BEG N ppc405

PARAVETER | NSTANCE = ppc405_0
PARAVETER HW VER = 2. 00. ¢
BUS_| NTERFACE DPLB = pl b
BUS_| NTERFACE | PLB = pl b

BUS | NTERFACE JTAGPPC = jtagppc_0_0

PORT PLBCLK = sys_clk_s

PORT C405RSTCHI PRESETREQ = CA05RSTCHI PRESETREQ
PORT C405RSTCORERESETREQ = CA05RSTCORERESETREQ
PORT CAO5RSTSYSRESETREQ = CA405RSTSYSRESETREQ
PORT RSTCA05RESETCHI P RSTCA05RESETCHI P

PORT RSTCA05RESETCORE RSTCA05RESETCORE

PORT RSTCAO5RESETSYS = RSTCA05RESETSYS

PORT CPMC405CLOCK = proc_cl k_s

END

BEG N j tagppc_cntlr
PARAVETER | NSTANCE = jtagppc_0O
PARAMETER HW VER = 2. 00. a
BUS_| NTERFACE JTAGPPQD = jtagppc_0_0
END

For more information about the JTAGPPC connection, refer the PPC405 JTAG port section
of the PowerPC 405 Processor Block Reference Guide. For more information about MHS files
and making port connections in Platform Studio, refer the Embedded Systems Tools Reference
Manual.

Software Setup

Once the FPGA is configured with a bitstream containing the above JTAG connection, you
can use XMD to connect to the PowerPC processor and debug programs using GNU
Debugger (GDB).

Example Debug Session

The example design contains a PowerPC 405 processor, on-chip BRAM, UART peripheral,
OPB_MDM peripheral, and GPIO peripheral. The OPB_MDM peripheral has the UART
enabled and is used as STDIN/STDOUT for the processor. The peripheral communicates
with XMD over the JTAG interface. The PowerPC PIT timer is used to generate interrupts
at equal intervals.

1. Specify XMD Debug Options
a. In XPS, select Options — XMD Debug Options.
b. Select Hardware as the connection type.

136 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Debugging PowerPC Software S XILINX®

XMD Debug Options

PowerPiC

Processor: [Architecture:

Conneckion Type
T Simulakar * Hardware T

2n-Chip Hardware debugaing over 1TAG cable

Figure 9-1: XMD Debug Options, PowerPC Hardware Target

2. Start XMD and connect to the PowerPC processor.

In XPS, select Tools — XMD. This launches XMD with the xnd - xnp <syst em xnp>
-opt etc/xnmd_ppc405_0. opt option.

XMD%

Loading XMP File..

Processor(s) in System::

Power PC405(1) : ppc405_0

Address Map for Processor ppc405_0
(0x40000000- 0x4000f fff) LEDs_4Bit pl b- >pl b2opb- >opb
(0x40400000- 0x4040ffff) debug_nodul e pl b->pl b2opb->opb
(0x40600000- 0x4060ffff) RS232 pl b->pl b2opb->opb
(OxffffcO00-Oxffffffff) plb_bramif _cntlr_1 plb

Executi ng Connect Cmd: connect ppc hw -cable type xilinx_parallel port
LPT1 -debugdevi ce cpunr 1

Connecting to cable (Parallel Port - LPT1).

Checki ng cable driver.

Driver windrvr6.sys version = 6.2.2.2. LPT base address = 03BCh.
ECP base address = 07BCh.

ECP hardware is detected.

Cabl e connection established.

Connecting to cable (Parallel Port - LPT1) in ECP node.

Checki ng cable driver.

File C/Xilinx7.1/bin/nt/xpcddrvr.sys not found.

Driver xpcddrvr.sys version = 1.0.4.0. LPT base address = 03BCh.
Cabl e Type = 1, Revision = 3.

Cabl e connection established.

I NFO EDK - Assunption: Sel ected Device 3 for debuggi ng.

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05046093 8 XCF04S
2 05046093 8 XCF04S
3 0124a093 10 XC2VP7
Platform Studio User Guide www.xilinx.com 137

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 9: Debugging in EDK

XMD: Connected to PowerPC target. Processor Version No : 0x20010820
Addr ess mapping for accessing special PowerPC features from XMY GDB:

| -Cache (Data) : Disabled
| -Cache (Tag) . Disabl ed
D-Cache (Data) : Disabled
D- Cache (Tag) : Disabled
| SOCM : Disabl ed
TLB : Disabl ed
DCR : Disabled

Connected to PowerPC target. id =
Starting GDB server for target (id = 0) at TCP port no 1234
XMD%

Now XMD is connected to PowerPC and has started a GDB server port 1234 for
source level debugging using the GDB console. For more information on options for
the connect command, refer to the “XMD?” chapter of the Embedded System Tools
Reference Manual.

Start the STDIN/ZOUT terminal in XMD.

a. Inthe XMD shell, type connect mdm - uart.XMD connects to the UART
interface of OPB_MDM.

Connected to the JTAG M croProcessor Debug Mdul e (MDM
No of processors =0
Connected to MDM UART t ar get

b. Inthe XMD shell, type terminal. This opens a terminal shell.

Wilinx7 . 1\bintntixtclsh.exe

Release 7.11 — xtclsh H.37

Copyright <c) 1995-2005 Xilinx. Inc. All rights reserved.

JTAG—hased Hyperterminal.

(TCP Port no used iz 4321

Help =

Terminal Output reguirements :
(i> HMD is connected to MDM {using "mbconnect mdm' command,. and
€ii>» Processor’'s STDOUT is redirected to the MDM <{oph_mdm>

Terminal Input requirements =
(i> HHMD is connected to MDM C{using "mbconnect mdm' command,. and
€ii) Processor's SIDIN is redirected to the MDM <opb_mdm).
Then. text input from this console will he sent to the MDM’ s UHRT port.
NOTE: this is a line—-buffered conszole and you have to press "Enter'
to send a string of characters to the MDM.
NOTE: for MicroBlaze targets, some output might show up in the XMD console

Accepted connection from 127.8.8.1 localhost 4339

JTAG Hyperterminal Started

Figure 9-2: JTAG-Based Hyperterminal

Start the GDB (powerpc-eabi-gdb) console.
In XPS, select Tools — Software Debugger.

Connect GDB to XMD’s GDB server TCP port 1234 and debug the program locally
(hostname=localhost) or remotely (hostname = IP addr).

For help in using GDB, select Help — Help Topics in GDB.

138

www.Xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Debugging PowerPC Software S XILINX®

Advanced PowerPC Debugging Tips

PowerPC Simulator

You can use the PowerPC 405 Instruction Set Simulator to debug and verify your software
before you have a Virtex™-1l Pro hardware board with a working PowerPC system. The
ISS supports only the processor and memory models by default. Therefore, the default
setup cannot be used to debug firmware that accesses peripheral cores.

For more information about using the PowerPC ISS with XMD/GDB and its restrictions,
refer to the “XMD” chapter in the Embedded System Tools Reference Manual. For more
information about the PowerPC ISS and how to extend it to add bus models for
peripherals, refer to the IBM PowerPC 405 documentation.

Configuring Instruction Step

XMD supports two Instruction Step modes. You can use the debugconfig command to
select between the modes. The two modes are:

Instruction step with Interrupts disabled
This is the default mode. In this mode the interrupts are disabled.

Instruction step with Interrupts enabled

In this mode the interrupts are enabled during step operation. XMD sets a hardware
breakpoint at the next instruction and executes the processor. If an interrupt occurs, it
is handled by the registered interrupt handler. The program stops at the next
instruction.

Note: The Instruction Memory of the program should be connected to the processor d-side
interface.

. XMD% debugconfig

Debug Configuration for Target 0

Step Mbde. I nterrupt Disabled
Menmory Data Wdth Matching... Disabled

XMD% debugconfi g -step_node enabl e_i nterrupt
XMD% debugconfi g

Debug Configuration for Target 0O

Step Mode. I nterrupt Enabl ed
Menory Data Wdth Matching... Disabled

Note: This configuration also applies to MicroBlaze™ Hardware Targets.

Platform Studio User Guide

www.xilinx.com 139

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 9: Debugging in EDK

Configuring Memory Access

XMD supports handling different memory data width accesses. The supported data
widths are Word (32 bits), Half Word (16 bits) and Byte (8 bits). By default, XMD uses Word
accesses when performing memory read/write operations. You can use the debugconfi g
command to configure XMD to match the data width of memory operation. This is usually
necessary for accessing Flash devices of different data widths.

XMD% debugconfi g
Debug Configuration for Target 0

Step Mode. I nterrupt Disabled
Menmory Data Wdth Matching... Disabled

XMD% debugconfi g -nmenory_dat awi dt h_mat chi ng enabl e
XMD% debugconfi g
Debug Configuration for Target 0O

Step Mode. I nterrupt Disabled
Menory Data Wdth Matching... Enabl ed

Note: This configuration also applies to MicroBlaze Hardware Targets

Support for Running Programs from ISOCM and ICACHE

There are restrictions on debugging programs from PowerPC ISOCM memory and
Instruction CACHEs, particularly that you cannot use software breakpoints. In such cases,
XMD can automatically set hardware breakpoints, if the address ranges for the ISOCM or
ICACHES are provided as options to the connect command in XMD. In this case of
ICACHE, this is only necessary if you try to run programs completely from the ICACHE
by locking its contents in ICACHE.

For more information about the specific XMD connect options, refer to the “XMD” chapter
in the Embedded System Tools Reference Manual. Refer also to the “Setting Debug Options
and Invoking XMD? section of the Platform Studio Online Help.

Accessing DCR Registers, TLB, ISOCM, Instruction and Data Caches

The previously mentioned special features of the PowerPC can be accessed from XMD by
specifying the appropriate options to the connect command in the XMD console. Refer to
the “XMD” chapter in the Embedded System Tools Reference Manual for more information
and example debug sessions to demonstrate the usage.

Debugging Setup for Third-Party Debug Tools

In order to use third-party debug tools such as Wind River SingleStep and Green Hills
Multi, Xilinx recommends that you bring the JTAG signals of the PowerPC out of the FPGA
as User 10 to appropriate debug connectors on the hardware board. Apart from the JTAG
signals, TCK, TMS, TDI, and TDO, you must also bring the DBGC405DEBUGHALT and
C405JTGTDOEN signals out of the FPGA as User 10. In the case of multiple PowerPCs,
Xilinx recommends that you chain the PowerPC JTAG signals inside the FPGA. For more
information about connecting the PowerPC JTAG port to FPGA User 10, refer to the
PPC405 JTAG port section of the PowerPC 405 Processor Block Reference Guide.

Note: You must NOT use the JTAGPPC module while bringing the PowerPC JTAG signals out as
User 10.

140 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Debugging MicroBlaze Software S XILINX®

Debugging MicroBlaze Software

MicroBlaze is a soft processor implemented using FPGA logic and is configurable
according to your requirements. One of the configurable options is the debug mode. You
can use the hardware debug logic in MicroBlaze for better control over the processor
resources and advanced debug features. Alternatively, you can debug programs using
XMDStub (a ROM monitor) over a UART (JTAG-based or RS232-based) and trade-off
control and features for debug logic area.

Hardware Setup for MDM-Based Debugging Using JTAG (HW-Based)

Connecting MDM and MicroBlaze

Microprocessor Debug Module (MDM) is the core that facilitates the use of JTAG for
debugging one or more MicroBlaze processors. The MDM core instantiates the FPGA
primitive named BSCAN_VIRTEX][2] to connect the FPGA’s JTAG port to the MicroBlaze
debug ports. Only a single MDM core can be instantiated in a system and that core can in
turn connect to multiple MicroBlaze processors. When you use the BSB to create a
MicroBlaze system, the MicroBlaze-MDM connection is automatically setup when you
select Use On-chip Debug Logic as the debug option. The following MHS snippet of an
EDK design demonstrates how to connect the MDM and MicroBlaze for a simple case of a
single MicroBlaze system with hardware debug logic enabled.

BEG N mi crobl aze

PARAVETER | NSTANCE = mi crobl aze_0
PARAMETER HW VER = 4. 00. a
PARAMETER C_DEBUG ENABLED = 1
PARAMETER C NUMBER OF PC BRK = 2
PARAMETER C_NUMBER _OF RD_ADDR BRK
PARAMETER C_NUMBER_OF WR_ADDR BRK
BUS | NTERFACE DOPB = mb_opb

BUS | NTERFACE | OPB = mb_opb

BUS_| NTERFACE DLMB dl nb

BUS_| NTERFACE | LMB ilnb

PORT CLK = sys_cl k_
PORT DBG CAPTURE = DBG CAPTURE_s
PORT DBG CLK = DBG CLK s

PORT DBG REG EN = DBG REG EN s
PORT DBG TDI = DBG TD _s

PORT DBG TDO = DBG TDO s

PORT DBG_UPDATE = DBG_UPDATE_s
END

[EEN

[I T |

BEGA N opb_ndm

PARAVETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAMETER C_MB_DBG PORTS = 1
PARAMETER C USE UART = 1
PARAMETER C UART W DTH = 8
PARAMETER C_BASEADDR = 0x80002000
PARAVETER C _H GHADDR = 0x800020f f
BUS_| NTERFACE SOPB = nb_opb

PORT OPB_ Gk = sys_clk_s

PORT DBG CAPTURE_0 = DBG _CAPTURE s
PORT DBG CLK 0 = DBG CLK s

PORT DBG REG EN 0 = DBG REG EN s

Platform Studio User Guide www.xilinx.com 141
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 9: Debugging in EDK

PORT DBG TDI_0 = DBG TDI _s

PORT DBG TDO 0 = DBG TDO s

PORT DBG UPDATE 0 = DBG_UPDATE s
END

Software Setup for MDM-Based Debugging

Once the FPGA is configured with a bitstream containing the previous debug setup, you
can use XMD to connect to the MicroBlaze processor and debug programs using GDB.

Example Debug Session

The example design contains a MicroBlaze processor, on-chip BRAM, UART peripheral,
OPB_MDM peripheral, and GPIO peripheral. The OPB_MDM peripheral has the UART
enabled and is used as STDIN/STDOUT for the processor. The peripheral communicates
with XMD over the JTAG interface.

Specify XMD Debug Options
a. In XPS, select Options — XMD Debug Options.
b. Select Hardware as the connection type.

XMD Debug Options @@

Processor: |{[ilsge e == Srchitecture: MicroBlaze

Connection Tvpe
" Simulator ' Hardware " stub 7
2n-Chip Hardware debugging using OFE_MDM peripheral over 1TAE cable

Figure 9-3: XMD Debug Options, MicroBlaze Hardware Target

Start XMD and connect to the MicroBlaze processor (via MDM).

In XPS, select Tools — XMD. This launches XMD with the xnd - xnp <syst em xnp>
-opt etc/xmd_m crobl aze_0. opt option.

XMD%
Loading XMP File..
Processor(s) in System::

M croBl aze(1) : mcroblaze_0

Address Map for Processor mcroblaze 0
(0x00000000- 0x00003fff) dlnb_cntlr dl mb
(0x00000000- 0x00003fff) ilnmb_cntlr ilnmb
(0x84000000- 0x8400ffff) opb_timer_1 nb_opb
(0x84010000- 0x8401ffff) opb_intc_0O nb_opb
(0x84020000- 0x8402f fff) debug_nodul e nb_opb
(0x84030000- 0x8403ffff) RS232 nb_opb
(0x84040000- 0x8404ffff) LEDs_4Bit nb_opb

Executi ng Connect Cnd: connect nmb ndm-cable type xilinx_parallel port
LPT1

- debugdevi ce cpunr 1

Connecting to cable (Parallel Port - LPT1).

142

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Debugging MicroBlaze Software

SUXILINX®

Checki ng cable driver.
Driver wi ndrvr6.sys version = 6.2.2.2.
ECP base address = 07BCh.
ECP hardware i s detected.

Cabl e connection established.

Connecting to cable (Parallel Port - LPT1)

Checki ng cable driver.

LPT base address

in ECP node.

File C/Xilinx7.1/bin/nt/xpcddrvr.sys not found.

Driver xpc4drvr.sys version = 1.0.4.0.
Cable Type = 1, Revision = 3.
Cabl e connection established.

JTAG chain configuration

LPT base address

Devi ce | D Code IR Length Part Nane
1 05046093 8 XCF04S
2 05046093 8 XCF04S
3 0124a093 10 XC2VP7

Assumi ng, Device No: 3 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM

No of processors = 1

M croBl aze Processor 1 Configuration :

Version. 4.00.a

No of PC Breakpoints............... 2
No of Read Addr/Data Watchpoints...1
No of Wite Addr/Data Watchpoints..1

I nstruction Cache Support.......... of f
Data Cache Support................. of f
Exceptions Support................ of f
FPU Support....................... of f
FSL DCache Support................. of f
FSL | Cache Support................. of f
Hard D vider Support............... of f
Hard Multiplier Support............ on
Barrel Shifter Support............. of f
MSR clr/set Instruction Support....off
Conpare Instruction Support........ of f

JTAG MDM Connected to M croBl aze 1

Connected to McroBlaze "ndnml' target. id
Starting GDB server for "mdm' target (id

XNDY%

0
0) at TCP port

03BCh.

03BCh.

no 1234

Now XMD is connected to the MicroBlaze processor and has started a GDB server port
1234 for source-level debugging using the GDB console.

Start the STDIN/ZOUT terminal in XMD.

In the XMD shell, type t er i nal . This opens a terminal shell.

Note: Explicit connection to MDM is not necessary, since MicroBlaze is connected via the MDM

interface.
Start the GDB (mb-gdb) console.

In XPS, select Tools — Software Debugger or type nb- gdb.

Connect GDB to XMD’s GDB server TCP port 1234 and debug the program locally
(hostname=localhost) or remotely (hostname = IP addr).

Platform Studio User Guide

www.xilinx.com

UG113 (v4.0) February 15, 2005 1-800-255-7778

143

S XILINX® Chapter 9: Debugging in EDK

6. For help using GDB, select Help — Help Topics in GDB.
For more information, refer to the following reference guides:

+ MicroBlaze Processor Reference Guide
¢ MDM datasheet
¢ “XMD” chapter in the Embedded System Tools Reference Manual

Hardware Setup for XMDStub-Based Debugging Using JTAG (SW-Based)

Connecting MDM (as JTAG-Based UART) and MicroBlaze

As previously mentioned, MicroBlaze programs can also be debugged using a ROM
monitor program called XMDStub. In this case, the hardware debug logic in MicroBlaze
need not be enabled - parameter C_DEBUG_ENABLED can be set to “0” or false. Also, the
C_MB_DBG_PORTS parameter on the MDM core can be set to “0” to reduce logic usage.
But the UART interface on the MDM must be enabled as follows:

BEG N mi crobl aze
PARAVETER | NSTANCE = mi crobl aze_0
PARAMETER HW VER = 3. 00. a
PARAMETER C_DEBUG ENABLED = 0
BUS_| NTERFACE DOPB = mb_opb
BUS_| NTERFACE | OPB = nmb_opb
BUS | NTERFACE DLMB = dl nb

BUS | NTERFACE ILMB = il nb
PORT CLK = sys_clk_s
END

BEG N opb_mdm
PARAMETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAVETER C MB_DBG PORTS = 0
PARAMETER C USE_UART = 1
PARAMETER C_UART_WDTH = 8
PARAMETER C_BASEADDR 0x80002000
PARAMETER C_H GHADDR 0x800020f f
BUS | NTERFACE SOPB = mb_opb
PORT OPB Ck = sys_clk_s
END

Configuring XMDStub Software Settings in an MSS File

In the Software Platform Settings dialog box in XPS, set up the xndst ub_peri pher al
parameter to enable XMDStub-based debugging.

BEG N PROCESSOR

PARAMETER DRI VER_NAME = cpu

PARAMETER DRI VER_VER = 1.00. a

PARAMETER HW. I NSTANCE = mi crobl aze_0

PARAMETER COWPI LER = nb-gcc

PARAMETER ARCHI VER = nb- ar

PARAMETER XMDSTUB_PERI PHERAL = debug_nodul e
END

144 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Debugging MicroBlaze Software S XILINX®

Software Setup for XMDStub-Based Debugging

For XMDStub-based debugging, you must connect to the MicroBlaze processor from XMD
using the connect nb stub -comm jtag command.

XMD Debug Options

Processar; |miu:ru:u|:ulaze_lil ﬂ Architeckure: MicroBlaze

Connection Type
™ Simulator 7 Hardware Skub O o

ROM monitor debugging using xmdstub program over ITAG or Serial cable

...

MicroBlaze Stub
" Serial ¥ IT&G

Figure 9-4: XMD Debug Options, MicroBlaze Stub

Connecting GDB to XMD is similar to the hardware-based debugging case described
earlier.

For more information on the connect command options, refer to the MicroBlaze Stub
Target section in the “XMD” chapter of the Embedded System Tools Reference Manual.

Using Serial Cable for XMDStub Debugging

In the absence of a JTAG connection to the FPGA containing the MicroBlaze system, you
can also use a standard serial cable to debug programs on MicroBlaze. In this case, you
must instantiate the UARTIite peripheral (opb_uartlite) in the EDK design and connect it
to the OPB bus. As described above in the Software settings MSS file, the UARTIite
peripheral must be chosen as the xmdstub_peripheral. In XMD, use the connect stub -
conm seri al command.

Platform Studio User Guide www.xilinx.com 145

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 9: Debugging in EDK

XMD Debug Options

Processar; |min:rn:n|:nlaze_lil ﬂ Architecture: MicroBlaze

Conneckion Type
" Simulakor " Hardware (+ Sob O

R.CM monitor debugging using xmdstub program over 1TAG or Serial cable
¥ Advanced Options

MicroBlaze skub
[+ Serial [ITAG

| Serial Port; | COML -

Baud Rate:

Figure 9-5: XMD Debug Options, MicroBlaze Serial

Connecting GDB to XMD is similar to the hardware-based debugging case described in
“Hardware Setup for MDM-Based Debugging Using JTAG (HW-Based)” on page 141.

For more information on the connect command options, refer to the MicroBlaze Stub
Target section in the “XMD” chapter of the Embedded System Tools Reference Manual.

Debugging Software on a Multi-Processor System

XMD enables debugging multiple heterogeneous processors in a system. You can use an
XMD terminal to connect to multiple processors or use a separate XMD terminal for each
processor. Use GDB for debugging program on processor.

Hardware Setup

Multiple PowerPC Debug

In order to debug multiple PowerPCs using a single JTAG cable, the JTAG signals of all the
PowerPCs, specifically TDI and TDO, must be chained together and connected to the
FPGA's JTAG port using the JTAGPPC module.

For more information about chaining the JTAG ports of multiple PowerPCs, refer to the
PPC405 JTAG port section of the PowerPC 405 Processor Block Reference Guide and the
JTAGPPC Controller Data Sheet, available online at
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/jtagppc_cntlr.pdf.

Multiple MicroBlaze Debug

In order to debug multiple MicroBlaze processors using a single JTAG cable, use MDM. All
of the MicroBlaze processors should be connected to MDM. The following MHS snippet of
an EDK design demonstrates how to connect the MDM and two MicroBlaze processors.

146

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

http://www.xilinx.com/bvdocs/ipcenter/data_sheet/jtagppc_cntlr.pdf

Debugging Software on a Multi-Processor System S XILINX®

BEG N mi crobl aze
PARAVETER | NSTANCE = mi crobl aze_0
PARAMETER HW VER = 4. 00. a
PARAMETER C DEBUG ENABLED = 1
PARAMETER C NUMBER OF PC BRK = 2
PARAMETER C_NUMBER_OF RD_ADDR BRK
PARAMETER C_NUMBER _OF WR_ADDR BRK
BUS | NTERFACE DOPB = mb_opb

BUS_| NTERFACE | OPB = nb_opb
BUS_| NTERFACE DLMB = dl b
BUS_| NTERFACE | LMB = i | nb

S

PORT CLK = sys_cl k_
PORT DBG_CAPTURE = DBG CAPTURE s 0
PORT DBG CLK = DBG CLK s_0

PORT DBG REG EN = DBG REG EN s_0
PORT DBG TDI = DBG TDI _s 0

PORT DBG TDO = DBG TDO s_0

PORT DBG_UPDATE = DBG_UPDATE_ s_O
END

BEGA N opb_ndm

PARAVETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAMETER C_MB_DBG PORTS = 2
PARAMETER C USE UART = 1

PARAMETER C UART W DTH = 8
PARAMETER C_BASEADDR = 0x80002000
PARAVETER C _H GHADDR = 0x800020f f
BUS_| NTERFACE SOPB = nb_opb

PORT OPB_ Gk = sys_clk_s

PORT DBG CAPTURE 0 = DBG CAPTURE_s_0
PORT DBG CLK 0 = DBG CLK s_0

PORT DBG REG EN 0 = DBG REG EN s_0
PORT DBG TDI_0 = DBG TDI _s 0

PORT DBG_TDO 0 DBG TDO s_0

PORT DBG_UPDATE_O0 = DBG_UPDATE s_0O
PORT DBG CAPTURE_1 = DBG CAPTURE s_1
PORT DBG CLK 1 = DBG CLK s 1

PORT DBG REG EN 1 = DBG REG EN s_1
PORT DBG TDI 1 = DBG TDI _s_1

PORT DBG TDO 1 = DBG TDO s_1

PORT DBG_UPDATE_1 = DBG _UPDATE s_1
END

BEG N mi crobl aze
PARAVETER | NSTANCE = microbl aze_1
PARAMETER HW VER = 4. 00. a
PARAMETER C_DEBUG ENABLED = 1
PARAMETER C NUMBER OF PC BRK = 2
PARAMETER C NUMBER OF RD ADDR BRK
PARAMETER C_NUMBER OF WR ADDR BRK

A

BUS_| NTERFACE DOPB = nb_opb
BUS_| NTERFACE | OPB = nb_opb
BUS_| NTERFACE DLMB = dl nb
BUS_| NTERFACE | LMB = i | nb

S

PORT CLK = sys_cl k_
PORT DBG CAPTURE = DBG CAPTURE s 1
PORT DBG CLK = DBG CLK s_1

Platform Studio User Guide www.xilinx.com 147
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 9: Debugging in EDK

PORT DBG REG EN = DBG REG EN s_1
PORT DBG TDI = DBG TDl _s_1
PORT DBG TDO = DBG TDO s_1
PORT DBG UPDATE = DBG UPDATE s_1

Software Setup

While debugging a multi-processor system, you can connect to a specific processor from
XMD/GDB by providing options to the connect command in the XMD console. The
option to specify a particular processor from the XMD console is - debugdevi ce cpunr
<processor nunber >. The exact value for the pr ocessor numnber depends on the
order in which the PowerPC processors were chained in the hardware system or the order
in which the MicroBlaze processors are connected to MDM. For each processor connection,
XMD opens a GDB server at different TCP port numbers such as 1234 and 1235. From
GDB, connect to the appropriate processor using the different TCP ports.

Debugging Software on Virtual Platform

XMD enables debugging of Virtual Platform systems. You can connect to Virtual Platform
using the vpconnect command in an XMD shell. Use GDB or Platform Studio SDK for
debugging the program.

For more information on generating Virtual Platform, refer to the “Virtual Platform
Generator” chapter of the Embedded System Tools Reference Manual.

Hardware Debugging Using ChipScope Pro

EDK provides five ChipScope Pro cores for hardware debugging:

1. chipscope_icon — Provides communication to other ChipScope cores

2. chipscope_opb_iba — Facilitates monitoring of OPB Bus transactions

3. chipscope_plb_iba — Facilitates monitoring of PLB Bus transactions

4. chipscope_vio — Facilities Virtual 10 to probe FPGA signals via JTAG

5. chipscope_ila — Facilities monitoring individual non-bus signals in the processor
design

For more information on each of these cores, refer to the Debug and Verification category
of the Processor IP Reference Guide or the ChipScope Pro Software and Cores User Manual in the
ChipScope installation.

Instantiating ChipScope Pro Cores in an EDK Design

Connecting ChipScope ICON and ChipScope OPB or PLB IBA

ChipScope ICON core provides the JTAG connectivity for all other ChipScope cores and
therefore is necessary to use any of the other ChipScope cores. A single ICON can connect
to one or more ChipScope cores via one or more 36-bit control connections. The OPB or PLB
IBA must be connected to the appropriate bus using a monitor (Bus Analyzer) connection.
The following example MHS file snippet demonstrates an example setup for a MicroBlaze
design containing the MDM debug peripheral and the ChipScope ICON and IBA cores.

148

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Hardware Debugging Using ChipScope Pro

SUXILINX®

BEGQ N chi pscope_i con
PARAMETER | NSTANCE = chi pscope_i con_0
PARAMETER HW VER = 1. 00. a

PARAVETER C_SYSTEM CONTAINS MDM = 1 # Needed i f opb_nmdmis al so present

PARAMETER C_NUM CONTROL_PORTS = 1
PORT control 0 = opb_i ba_control
END

BEGQ N chi pscope_opb_i ba

PARAVETER | NSTANCE = chi pscope_opb_iba_0
PARAMETER HW VER = 1. 00. a

PARAMETER C DATA UNITS = 1

PARAMETER C CONTROL_UNITS = 1

PARAMETER C WRDATA UNITS = 1

PARAMETER C RDDATA UNITS = 1
PARAMETER C ADDR UNI TS = 1
BUS | NTERFACE MON_OPB = mb_opb
PORT OPB_ Gk = sys_clk_s

PORT chi pscope_icon_control =
END

opb_i ba_control

The following figures demonstrate how to set this up in Platform Studio.

Add/Edit Hardware Platform Specifications

UG113 (v4.0) February 15, 2005

1-800-255-7778

Peripherals lBus Connections] Addresses] Ports l Parameters
E?ig Cells with white backgrounds can be edited. To delete ™ Show All Component Fitter
[l | peripherals, choose one or more rows and click Delete. Processor " Speciic " Intemupt
" MicroBlaze Only r
Peripheral HW Ver |In5E|nce | & PowerPC Only " Analog t“ 1o _
ppc4ds 2.00.¢ jppc{ls_ﬂ " Either Processaor L e ~ e
jtagppc_cntr 2.00.a ﬂ jtagppe_0 " Communications Memory
Bus " CPU " Seral
proc_sys_reset 1.00.a reset_block ™ DCR " OPB
plb2opb_bridge 1.01.a ﬂplhlﬂpb CFSL ¢ PLE " Custom IP € Timers
opb_uartlite 1.00.b Rs232 o g Bl
opb_apio 3.01a v |LEDs_4Bit ~ ocm
plb_bram_if_cntir | 1.00.b _ﬂ plb_bram_if_cnilr_1
bram_block 1L.00.a plb_bram_if_cntir_1_bram EE:E:EEEZ—:;DH
dem_module 1.00.a dem_0 chipscope_opb_iba
chipscope_icon 1.00.a chipscope_icon_0 EE:E:EEEEJ;:E—ME
chipscope_plb_iba | 1.00.a chipscope_plb_iba_0 -+
chi b_iba | 1.00. chi b_iba_0 = opb_itag_uart
ipscope_opb_iba a ipscope_opb_iba_ Delete 55 @ oty
0K Cancel Apply Help
Figure 9-6: Adding ChipScope ICON and OPB/PLB IBA Cores
Platform Studio User Guide www.xilinx.com 149

S XILINX®

Chapter 9: Debugging in EDK

Add/Edit Hardware Platform Specifications

Peripherals Bus Connections]Addresses] Ports I F‘amme‘fers]

Click: on squares to make master, slave or masterslave (M, 5, MS) connections.

Right click on any bus instance (column header) for a context menu.

Choose one or more buses {use Shift or Ctr). Click Add.

e der v2d vl 00 2 e

- dsocm_v10 v1_00 b
ppc405 0 mdcr fdsloc%_v 11D‘JD2T:DD‘E

sl_w20 v1_00. |
ppc405_0 dplb << Add fsl_vw20_v2_00_a 1
" isocm_v10_v1_00_b
prcdls Diplb isocm_v10_v2_00_a w
ppc405_|:| dsocm I—L ..4AnR ..4 A
405 0 Choose the BRAM port to connect to the controller port.
ek il (SHEEIEND Give a name to the connection.
plb2opb sdcr Cntir Port BRAM Port | Connector
plb2apb splb 3 plb_bram_if_entlr... |plb_bram_if_cntlr_... j plb_bram_...
plbZ2opb mopb ra
RS232 sopb ¥
LED=_4RBit zopb g
plb_brapg it e,
| <'g|;i-pscope_p|b_iba_|3 mon_plb | B
.ehiﬂgcope_opb_iba_ﬂ man_oph B
m —CT-___ Other Transparent bug (point to poirt) connections
plb sder
Source Destination | Connector
ppc405_0 jtagppe | jtagppe_0 jtagpped v | jtsappe_0_0
QK | Cancel Apply Help

Figure 9-7: Connecting the OPB/PLB IBA to the OPB/PLB as a Bus Analyzer

150

www.xilinx.com
1-800-255-7778

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

Hardware Debugging Using ChipScope Pro

SUXILINX®

Add/Edit Hardware Platform Specifications

UG113 (v4.0) February 15, 2005

1-800-255-7778

Peripheralz] Bus Connections] Addresses Ports] Parameters]
Edtemal Ports Connections: [™ Show ports with default connections
Ports Fitter:
Part Name Net Name |Pola... |F:ange |Class |Sensit... | |chipscope_ j
foga_0_RS232.R... |fpoa_D_RS232_RY | INPUT e T e S
foga_0_RS232.T... |fpoa_0RSZ32TX OUT...
,,,,,,,,,,,,,,,,,,,, 2
fpga_0_R5232 r... |net_gnd OUT... chipscope_pb,iba_0 e,
fpga_0_LEDs_4Bi... |fpga_0_LEDs_4Bit.. OUT.. [0:3] FLE_Clk
3 chipscope_icon_cartrol
sys_dk_pin demn_ck_s INPUT CLK Delete b g 1
sys_rst_pin sys_rst s INPUT iba_trig_out
AddPot|
4] chipscope_opb_iba_0
OPB_Clk
SYS_Rst
chipscope_icon_control
iba_trig_in
Intemal Ports Connections: iba_trig_out
Instance Part Name et Mame |Po|... |Range |Class |5ef ETtaemlmal chipscope_jcon_0
RS232 oPB_Clk sys_ck_s »|I LK controlQ
control1
RS232 RY =TT U S 5210 control2
chipscope_jgame control1 chipscope_icon_0_control1 — <chdd | o3
Me_icon_ﬁ controld chipscope_icon_0_controld ~ « |0 ggmﬂg
’chipscope_opb_iba_[l S¥3_Rst sys_rst_s |1 LEas control& -
chipscope_opb_iba_0 |chipscope_icon_control | chipscope_icon_0_controld |1 [35:0] Egmﬂg
chipscope_opb_iba_0 [OPB_Clk sys_clk s |1 CLK e control9
imscope_plb_iba 0 |PLB_Ck sys_ck s |1 CLK cortrol10
control11
mipsw_ﬂ chipscope_icon_control | chipscope_icon_0_control1 cortrol12 -
7 T i ok -—m—deal1 ——
oK | Cocdl | ooy | b |
Figure 9-8: Connecting the ICON “control” Signals to the OPB/PLB IBA
Platform Studio User Guide www.xilinx.com 151

S XILINX®

Chapter 9: Debugging in EDK

Add/Edit Hardware Platform Specifications

Peripherals I Bus Cnnnectinns] Addresses I Ports Parameters l

Edit Parameters assigned to IF Instance in MHS Choose |P Instance for a list of parameters.

These parameter val j mide default MPD values. |chipscnpe_opb_iba_[!' j Open POF Doc

Parameters with default values from MFD.

Pefameter value\ Choose one or more {using shift and ctd) and click Add.
C_NUM_DATA_SAMPLES 512
C_CONTROL_UNITS . Parameter Value ~
T :
 DATA TS C_ENABLE_TRIGGER_OUT q
C_CONTROL_UNITS 1
€_CONTROL_UNIT_COUNTER_WI... |0
C_CONTROL_UNIT_MATCH_TYPE basic with edges -
<<Add | e anpr TS 1
C_ADDR_UNIT_COUNTER_WIDTH |0
s C_ADDR_UNIT_MATCH_TYPE extended with edges
C_DATA_UNITS 1
C_DATA_UNIT_COUNTER_WIDTH |0
C_DATA_UNIT_MATCH_TYPE basic
C_WRDATA_LINITS i}
C_WRDATA_UNIT_COUNTER_WI... |0
C_WRDATA_UNIT MATCH TYPE | basic
C_RDDATA_UNITS 0
C_RDDATA_UNIT_COUNTER_WIDTH |0
C_RODATA_UNIT_MATCH_TYPE | basic
C_PY_UNITS 0
DV LIMTT COIRTED AT n Y
& | £ >

QK | Cancel Apply Help

Figure 9-9: Enabling Individual OPB IBA Monitors

Steps Involved in Using ChipScope Pro Analyzer with an EDK Design

1.

Generate a netlist with the ChipScope cores.

Once a valid MHS design is created with the ChipScope ICON and IBA setup, you can
implement this design from XPS and generate a netlist. For the ChipScope cores,
Platgen automatically calls some Tcl scripts in the background that will run the
ChipScope Core Generator to create netlists for these cores with the appropriate
parameters.

Implement the design to create a bitstream.

When ngdbui | d is run, the netlists are all merged into a single design and a bitstream
file is then generated that contains the embedded ChipScope Logic or Bus Analyzer.

Download the bitstream to the board.

When this bitstream is downloaded to the FPGA, you can use the ChipScope Analyzer
to view bus transactions in the design.

152

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Hardware Debugging Using ChipScope Pro S XILINX®

Open ChipScope Analyzer.

From the Analyzer, connect to the JTAG cable. The Analyzer automatically connects to
the FPGA and detects the IBA present in the design, but the signal names do not reflect
that of the OPB IBA.

Import the ChipScope OPB IBA signals . cdc file into the Analyzer.

Platgen and the Tcl wrappers for the ChipScope cores create the signals . cdc file based
on the design parameters in the following directory:

<EDK Project Directory>/inplenmentation/<OPB |BA instance
name>_wr apper/ <OPB | BA i nst ance nane>. cdc

For example, if the instance name of the OPB IBA in your design is

chi pscope_opb_i ba_0 then

<Proj ect >/ i npl enent ati on/ chi pscope_opb_i ba_0_wr apper/ chi pscope_
opb_i ba_0. cdc is the ChipScope signals . cdc file that must be imported into the
Analyzer.

Now, you can use the ChipScope Analyzer to monitor the bus transactions.

For more information on using the ChipScope Analyzer, refer to the ChipScope Pro
Software and Cores User Manual.

Using ChipScope ILA Core

You can use ChipScope ILA to monitor individual signals in a processor design. When the
ChipScope ILA core is used in Platform Studio, only signals at the top level of the processor
design (at the MHS level) can be monitored using the ILA. By using the ILA connection

feature in the FPGA Editor, you can monitory signals at level of hierarchy using this ILA.

Using ChipScope Virtual 10 (VIO) Core

The ChipScope VIO core provides peek-and-poke access into FPGA internal or external
signals at the MHS level. Unlike the other ChipScope cores, this core is not used like a logic
analyzer to collect a signal trace, but to directly read and write logic signals at runtime
from ChipScope Analyzer. The ChipScope VIO core supports asynchronous or
synchronous input or output probes into the hardware. They can also be visualized as
LEDs, numerical display for virtual outputs and pushbuttons, DIP switches, or pulse
trains for virtual inputs. Refer to the ChipScope Pro Software and Cores User Manual for more
information.

Advanced ChipScope Debugging Tips

If more than one ChipScope core (excluding ICON) is used in a design, then set the
C_NUM_CONTROL__PORTS parameter appropriately in the ICON and make one control
port connection for each ChipScope core.

If the opb_mdm core is used in a design along with the ChipScope cores, then set the
C_SYSTEM CONTAI NS_NMDMto 1. Otherwise, set it to 0, the default value.

ChipScope VIO does not have any bus interfaces. The synchronous or asynchronous
input or output ports should be connected directly to other ports in the MHS.

Generic Trigger Units in the OPB and PLB IBA with variable width can be used to
monitor individual non-bus signals in the design. This is equivalent to using the
ChipScope ILA core.

Platform Studio User Guide

www.xilinx.com 153

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 9: Debugging in EDK

e For the ChipScope OPB and PLB IBA cores, for each match unit, the
C _<UNI T>_MATCH_TYPE parameter can be used to have different kinds of trigger
matching. The possible string values for this C_<UNI T>_MATCH_TYPE parameter are
basi c,basi ¢ with edges, ext ended, extended w th edges,range, and
range with edges.

e For detailed explanations of various ChipScope core parameters, refer to the ChipScope
Pro Software and Cores User Manual in the ChipScope Installation.

154 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 10

Profiling Embedded Designs

Assumptions

This chapter describes profiling standalone PowerPC™ and MicroBlaze™ programs on
Hardware, Simulator, and virtual platform (system simulator) targets. Function Call
Graph and Histogram information of the program can be generated using different targets.
Profiling can be performed from Xilinx® Platform Studio™ IDE (XPS) or Platform Studio
SDK IDE. Profiling in XPS is command-line-based using Xilinx® MicroProcessor
Debugger (XMD) and GNU gprof tools. Profiling in SDK is interactive and provide
graphical profile views. This chapter describes profiling in XPS and SDK.

Topics covered in this chapter include:

e “Assumptions”

e “Tool Requirements”

e “Features”

o “Profiling the Program on Simulator/virtual platform”
o “Profiling the Program on Hardware Target”

This chapter assumes that you:

e Are familiar with EDK and have built systems with XPS.

e Are familiar with debugging applications using XMD.

e Are familiar with C programming and have used GNU tools.

Tool Requirements

Program profiling requires the following tools in EDK:

e Xilinx Platform Studio (XPS).

e EDK GNU tools.

e Library generator (Libgen).

e Xilinx Microprocessor Debugger (XMD).

e Xilinx® Platform Studio SDK.

e The opb_timer peripheral for MicroBlaze (For Hardware targets).
e virtual platform (system simulator).

Platform Studio User Guide www.xilinx.com 155
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 10: Profiling Embedded Designs

Features

Program profiling has the following features:

e Histogram (flat profile) and Call Graph information.

+ Histogram: Shows how much time the program spent in each function and how
many times the function was called.

¢ Call Graph: Shows for each function, which functions called it, which other
functions it called, and how many times.

e Profiling parameters are conf i gur abl e, Sanpl i ng Frequency, H st ogram
Bi nsi ze,and Ti mer to use.

e Graphical profile views in Platform Studio SDK.
Note: Profiling is not supported on the PowerPC Simulator target.

Note: EDK®6.3i LibXil Profile Library has been deprecated. Xilinx recommends that you use the new
profiling method that is described in “Profiling the Program on Hardware Target” on page 160.

Profiling the Program on Simulator/virtual platform

MicroBlaze simulator (in-built XMD) and virtual platform support software non-intrusive
profiling; that is, no profiling software code is instrumented in your program. This provides
accurate profiling information.

This section illustrates the steps to profile a MicroBlaze program. The program to be
profiled is a dhrystone application.

Using Xilinx Platform Studio IDE

Steps involved in Profiling using XPS are:

1. Building Your Application

2. Collecting and Generating the Profile Data
3. Viewing the Profile Output

Building Your Application

Your application is compiled and built using Software Settings in XPS. Refer to Chapter 3,
“Writing Applications for a Platform Studio Design” for more details.

Collecting and Generating the Profile Data

XMD helps in the generation of output files that can be read by GNU gprof tools. You can
do the following actions in XMD for profiling:

e Open XMD Tcl shell by selecting Tools — XMD. Connect to the MicroBlaze simulator
or virtual platform target.

e Download the executable file.
e Run the Program.

e After the Program has continued execution for sufficient time and when profiling
information is needed, stop the Program or set a breakpoint at the exit location.

e To generate Profile output file, type pr of i | e in XMD. This generates a profile output
file, gnon. out .

156

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Profiling the Program on Simulator/virtual platform

SUXILINX®

Sample profiling session using XMD:

XMDY%
XNMD% connect

Connected to

secti
secti
secti
secti
secti
secti

nb sim

" b
Starting GDB server for
XMD% dow execut abl e. el f
.text:

on,
on,
on,
on,
on,
on,

target.

. bss:

n n,bn

0x00000000- 0x00000cdO
.rodat a: 0x00000cd0- 0x00000d4f
. sdat a2: 0x00000d50- 0x00000d64
.data: 0x00000d68- 0x00000d94

. sdata: 0x00000d98- 0x00000d9c
0x00000da0- 0x00003998

id=20
target (id = 0) at TCP port no 1234

Downl oaded Program execut abl e. el f

Setting PC with program start

XMD% bps exit
Setting breakpoint at 0x00000090

XMD% con

XMD% profile
Profile data witten to gnon. out

XNDY%

Viewing the Profile Output

addr

= 0x00000000

Use GNU gprof tool (mb-gprof) to read the output file. Refer to the UNIX Manual page
gprof for more information.

nb- gpr of

Flat profile:

Each sanpl e counts as le-08 seconds

%

time

19.
14.
14.
13.
10.
.95
.53
. 69
.41
. 98
. 98
. 84
. 56
. 85
.71
.09
.07
.04
.00
.00
.00
.00

2}

O O0OO0OO0OO0COO0OO0OO0ORrRFRPREFPEPNWOOM

14
95
52
33
35

secon

0.

COOCOOLLOLOLOLOLOLOO0O0O0O0000O0

cunul ati ve

ds

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

sel f

seconds

0.

COPLLOOLELOOLLOOOLLO0O00O

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Cal |

calls
100
1

1
100
100
100
100
100
300
300
100
100
100
100
100

gr aph

sel f
ns/ cal |

1350

102435. 00 102455. 00
940.
730.
490.
390.
260.

56.
46.
140.
130.
110.
60.
50.
335.

20
20

.10

00
00
00
00
00
67
67
00
00
00
00
00
00

.00
.00

t ot al
ns/ cal
1350.10 divsi 3_proc
105470. 00 602150.00 nmin

940.
1283.
1486

390.

320.

56.
46.

186.

130.

110.

60.
50.
335.

20.
20.

00
33
67
00
00
67
67
67
00
00
00
00
00

00
00

-b mcrobl aze_0/ code/ execut abl e. el f gnon. out

name

_crtinit
strcnp
Proc_1
Func_2
Proc_8
Proc_6
Func_1
Proc_7
Proc_3
Proc_4
Proc_2
Func_3
Proc_5
mal | oc
XNul | Handl er
_startl

_program cl ean

_program.nit
_start
exit

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

157

S XILINX® Chapter 10: Profiling Embedded Designs

granul arity: each sanple hit covers 8 byte(s) for 0.00%of 0.00 seconds

index %tine self children call ed name
<spont aneous>
[1] 99.9 0.00 0. 00 _startl [1]
0. 00 0. 00 1/1 mai n [2]
0. 00 0. 00 1/1 _crtinit [6]
0. 00 0. 00 1/1 _programcl ean [19]
0.00 0. 00 1/1 _startl [1]
[2] 85.4 0. 00 0. 00 1 mai n [2]
0.00 0. 00 100/ 100 Func_2 [3]
0. 00 0. 00 100/ 100 di vsi 3_proc [4]
0. 00 0.00 100/ 100 Proc_1 [5]
0. 00 0.00 100/ 100 Proc_8 [8]
0.00 0. 00 100/ 100 Proc_4 [13]
0. 00 0. 00 200/ 300 Func_1 [11]
0.00 0. 00 100/ 100 Proc_2 [14]
0. 00 0.00 100/ 100 Proc_5 [16]
0. 00 0.00 100/ 300 Proc_7 [12]
0. 00 0.00 2/ 2 mal | oc [17]
0. 00 0. 00 100/ 100 mai n [2]
[3] 21.1 0.00 0. 00 100 Func_2 [3]
0. 00 0. 00 100/ 100 strenp [7]
0. 00 0.00 100/ 300 Func_1 [11]
0. 00 0. 00 100/ 100 mai n [2]
[4] 19.1 0.00 0. 00 100 di vsi 3_proc [4]
0. 00 0.00 100/ 100 mai n [2]
[5] 18.2 0. 00 0.00 100 Proc_1 [5]
0. 00 0.00 100/ 100 Proc_6 [9]
0.00 0. 00 100/ 100 Proc_3 [10]
0. 00 0. 00 100/ 300 Proc_7 [12]
0. 00 0. 00 1/1 _startl [1]
[6] 14.5 0. 00 0.00 1 _crtinit [6]
0. 00 0. 00 1/1 _program.init [20]
0. 00 0. 00 100/ 100 Func_2 [3]
[7] 13.3 0.00 0. 00 100 strcnp [7]
0. 00 0.00 100/ 100 mai n [2]
[8] 5.5 0. 00 0.00 100 Proc_8 [8]
0.00 0. 00 100/ 100 Proc_1 [5]
[9] 4.5 0. 00 0. 00 100 Proc_6 [9]
0. 00 0.00 100/ 100 Func_3 [15]
0. 00 0.00 100/ 100 Proc_1 [5]
[10] 2.6 0. 00 0. 00 100 Proc_3 [10]
0. 00 0. 00 100/ 300 Proc_7 [12]
0. 00 0.00 100/ 300 Func_2 [3]
0. 00 0.00 200/ 300 mai n [2]
[11] 2.4 0. 00 0.00 300 Func_1 [11]
158 www.xilinx.com Platform Studio User Guide

1-800-255-7778 UG113 (v4.0) February 15, 2005

Profiling the Program on Simulator/virtual platform

SUXILINX®

mai n [2]

Proc_1 [5]

Proc_3 [10]
Proc_7 [12]

main [2]
Proc_4 [13]

main [2]
Proc_2 [14]

Proc_6 [9]
Func_3 [15]

main [2]
Proc_5 [16]

mai n [2]
mal | oc [17]

<spont aneous>
XNul | Handl er [18]

_startl [1]
_program cl ean [19]

_crtinit [6]
_program.init [20]

<spont aneous>
_start [21]

0.
0.
0.
[12] 2.0 0.
0.
[13] 1.8 0
0.
[14] 1.6 0
0.
[15] 0.9 0
0.
[16] 0.7 0
0.
[17] 0.1 0
[18] 0.1 0
0.
[19] 0.0 O
0.
[20] 0.0 O
[21] 0.0 O
[22] 0.0 O

<s pont aneous>
exit [22]

I ndex by function

[11] Func_1
[3] Func_2

[15] Func_3
[5] Proc_1

[14] Proc_2
[10] Proc_3
[13] Proc_4
[16] Proc_5

00 0. 00 100/ 300
00 0. 00 100/ 300
00 0. 00 100/ 300
00 0. 00 300
00 0. 00 100/ 100
00 0. 00 100
00 0. 00 100/ 100
00 0. 00 100
00 0. 00 100/ 100
00 0. 00 100
00 0. 00 100/ 100
00 0. 00 100
00 0. 00 2/ 2
00 0. 00 2
00 0. 00
00 0. 00 1/1
00 0. 00 1
00 0. 00 1/1
00 0. 00 1
00 0. 00
00 0. 00
nane

[9] Proc_6

[12] Proc_7

[8] Proc_8

[18] XNul | Handl er

[6] _crtinit

[19]
[20]
[21]

_programcl ean
_program.init
_start

[1] _startl

[4] divsi 3 proc
[22] exit

[2] main

[17] mall oc

[7] strcnp

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

159

S XILINX® Chapter 10: Profiling Embedded Designs

Using Platform Studio SDK IDE

The steps involved in Profiling using SDK are:

1. Create/build the application in Debug build configuration.
2. Run the application.
a. Create a Run Configuration.

b. Specify the MicroBlaze simulator or virtual platform target in the Target
Connection tab.

c. Enable Profiling in the Profiler tab.
d. Click Run to profile the program and collect profile information.
3. Open the Profiling perspective to view the profile outputs.

For more detailed information, refer to the Profiling section of the Platform Studio SDK
Online Help.

Profiling the Program on Hardware Target

A program running on a hardware target is profiled using the software intrusive method. In
this method, profiling software code is instrumented in your program. On program
execution, this profiling code stores information on the hardware. XMD collects the profile
information and generates the output file, which can be read by the GNU gprof tool. The
program’s functionality remains unchanged but it slows down the execution.

Software intrusive profiling requires memory for storing profile information and timer for
sampling instruction address. opb_timer is the supported profile timer. For PowerPC
systems, you can also use Programmable Interrupt Timer (PIT) as profile timer.

The following steps illustrate profiling on a MicroBlaze program. The system has BRAM
and External Memory. The system has an opb_timer, and the Interrupt signal is directly
connected to MicroBlaze External Interrupt signal. The opb_timer is used as the profile
timer on MicroBlaze.

The program to be profiled is a dhrystone application. It is executed from BRAM address
space.

Note: The profiling steps for PowerPC target is similar to MicroBlaze. Any difference in steps are
highlighted.

Using Xilinx Platform Studio IDE

Steps involved in Profiling using XPS are:
1. Enabling the Profiling Functions.

2. Building the User Application

3. Collecting and Generating the Profile Data
4. Viewing the Profile Output

160 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Profiling the Program on Hardware Target

SUXILINX®

Enabling the Profiling Functions

Open the EDK design in XPS.

1.

4,

Open the Software Platform Settings window by selecting Projects — Software
Platform Settings.

Click the Library/OS Parameters tab. Under MicroBlaze Standalone configuration,
enable enable_sw_intrusive_profiling by selecting true. Select opb_timer as the
profile_timer to use for profiling.

Click OK.

Software Platform Settings

Software Platform] Pracessar, Driver Parameters and Interupt Handlers Librars/05 Parameters l
Library and 05 Parameters
Instance Current Yalue Default W... | Type | Description
= & microblaze_0 : stahdalone
&3 enable_sw_intrusive_profiling
4? b enable_sw_intrusive_profiling |true Li false bool Enable SAW Intrusive Profil
| v profile_tirmer _timer_1 l:] nane periph... Specify the Timer to use fo

— ¥ stdin R5232 Li none periph... stdin peripheral
— 7 stdout RSZ32 l] none periph... stdout peripheral
— 7 need_xil_malloc false :] false bool Is xil_malloc required ?
e microblaze_exception_vectors {(XE... J ((MEXC_U... array Specify the handlers for the

Figure 10-1: Profile Configuration Parameters

Generate libraries by selecting Tools — Generate Libraries and BSPs. This generates
the profile functionsinthe | i bxi | . a library.

Note: For PowerPC targets, you can use in-built Programmable Interrupt Timer (PIT) as a profile
timer. Specify none for profile_timer to use PIT for profiling.

Building the User Application

1.

Open/Create the dhrystone application. Refer to Chapter 3, “Writing Applications for
a Platform Studio Design” for more details.

Right-click the project name in the tree view and select Set Compiler Options. In the
Advanced tab, specify -pg as Program Sources Compiler Options.

Refer to the “Timer/Interrupts Initialization in Your Application” section below for
any changes in your application.

Build the application.

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

161

S XILINX® Chapter 10: Profiling Embedded Designs

Timer/Interrupts Initialization in Your Application

Initialize the profile timer by setting the timer interval, registering the timer handler, and
enabling interrupts. Enable system interrupts for proper profiling. The instrumented
profiling functions perform all the initialization required.

In the following system configurations, no changes are required in your program for

initialization:

e The system has an opb_timer. This opb_timer is used for profiling and its Interrupt
signal is directly connected to the Processor Interrupt signal.

Processor opb._timer

Inferupt | Interrupt

Figure 10-2: An opb_timer Connected to A Processor Interrupt Port

e The system has an interrupt controller with an opb_timer as a single interrupt source.
The interrupt controller is connected to Processor Interrupt signal and the opb_timer
is used for profiling.

Processor mterrupt opb_timer
controller

Intertupt e Interrupt | eff— Tnterrupt

Figure 10-3: An opb_timer Connected to A Processor Using An Interrupt Controller

Note: For PowerPC, a Programmable Interrupt Timer is used for profiling.

For system configurations which have multiple interrupt sources, the profiling functions
perform the initialization required for profile timers. Perform the following initialization in
your application:

1. Perform interrupt controller initialization.
2. Enable the profile timer interrupt in the interrupt controller.
3. Enable processor interrupts and exceptions.

162 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Profiling the Program on Hardware Target S XILINX®

The following code snippet is for a MicroBlaze-based system:

Xl nt c_mvast er Enabl e(SYSI NTC_BASEADDR) ;

XIntc_SetlntrSvcOption(SYSINTC_BASEADDR, XI N _SVC ALL_| SRS _OPTION) ;
XI'nt c_nEnabl el ntr(SYSI NTC_BASEADDR, PROFI LE_TI MER | NTR_MASK);

nmi crobl aze_enabl e_interrupts();

For more information on Profiling functions, refer to the “Standalone Board Support
Package” chapter of the OS and Libraries Reference Manual.

Collecting and Generating the Profile Data

XMD helps in the generation of output files that can be read by GNU gprof tools. You can
do the following functions in XMD for profiling.

Open XMD Tcl shell by selecting Tools — XMD. Connect to the MicroBlaze simulator
or virtual platform target.

Specify the profiling sampling frequency, histogram bin size, and memory address for
collecting profile data. Use the profi | e - confi g command.

Download the executable file.
Run the Program

After the Program has continued execution for sufficient time and when profiling
information is needed, stop the Program or set a breakpoint at the exit location.

Sample profiling session using XMD:

XMD% connect b mdm

Connecting to cable (Parallel Port - parportO0).

W nDriver v6.03 Jungo (c) 1997 - 2003 Build Date: Aug 10 2003 X86
15: 27: 16.

parport0: baseAddress=0x378, ecpAddress=0x778

LPT base address = 0378h.

ECP base address = 0778h.

ECP hardware is detected.

Cabl e connection established.

Connecting to cable (Parallel Port - parportQO) in ECP node.
LPT base address = 0378h.

Cable Type = 1, Revision = 0.

Setting cable speed to 5 MHz.

Cabl e connection established.

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05046093 8 XCF04S
2 05046093 8 XCF04S
3 0124a093 10 XC2VP7

Assumi ng, Device No: 3 contains the McroBlaze system
Connected to the JTAG M croProcessor Debug Mdul e (MDM
No of processors =1

M croBl aze Processor 1 Configuration :

Version.oiiiiiinnn. 4.00.a

No of PC Breakpoints............... 2

No of Read Addr/Data Watchpoints...1

No of Wite Addr/Data Watchpoints..1

Instruction Cache Support.......... of f
Data Cache Support................. of f
Exceptions Support................ of f
Platform Studio User Guide www.xilinx.com 163

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 10: Profiling Embedded Designs

FPU Support....................... of f
FSL DCache Support................. of f
FSL | Cache Support................. of f
Hard Divider Support............... of f
Hard Multiplier Support............ on
Barrel Shifter Support............. of f
MSR clr/set Instruction Support....off
Conpare I nstruction Support........ of f

JTAG MDM Connected to M croBl aze 1
Connected to "nb" target. id =0
Starting GDB server for "nb" target (id = 0) at TCP port no 1234
XMD% profile -config sanpling_freq_hz 10000 binsize 4 profile_nmem
0x22070000
XMD% dow execut abl e. el f
section, .text: 0x22000000-0x22001cac
section, .rodata: 0x22001cac-0x22001d34
section, .data: 0x22001d38-0x22001db8
section, .sdata: 0x22001db8-0x22001dbc
section, .bss: 0x22001dc0- 0x220055e0
Downl oaded Program dhryst one/ execut abl e. el f
Setting PC with program start addr = 0x22000000
Pr ogram dhryst one/ execut abl e. el f being Profil ed on Hardware
Initialized Profile Configurations for the Program:
Sanpling Frequency............... 10000 Hz
H stogram Bin Size............... 4 \Wrds
Menmory for Profiling used from..0x22070000
Menory Used for Profiling Data...2140 Bytes
XMD% bps exit
Setting breakpoint at 0x220000f 4
XMD% con
XMD% profile
Profile data witten to gnon. out
XNMD%

Viewing the Profile Output

Use GNU gprof tool (mb-gprof or powerpc-eabi-gprof) to read the output file. Refer to the
UNIX Manual page gprof for more information.

Using Platform Studio SDK IDE

Steps involved in Profiling using SDK are:

1.

Enable the Profiling function in XPS as described in “Enabling the Profiling Functions”
on page 161.

Create/build the application. Build the application in Profile build configuration, this
compiles the application using the -pg option.

Refer to “Timer/Interrupts Initialization in Your Application” on page 162 for any
changes in your application.

164

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Profiling the Program on Hardware Target S XILINX®

4. Run the application.
a. Create a Run Configuration.
b. Specify the Hardware target in the Target Connection tab.

c. Enable Profiling in the Profiler tab. Specify the sampling frequency, histogram bin
size, and address for storing profile information.

d. Click Run to run the program and collect profile information.
5. Open the Profiling Perspective to view the profile outputs.

For more detailed information, refer to the Profiling section of the Platform Studio SDK
Online Help.

Platform Studio User Guide www.xilinx.com 165
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 10: Profiling Embedded Designs

166 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Chapter 11

System Initialization and Download

Assumptions

Introduction

This chapter describes the basics of system initialization and download using the Xilinx®
Platform Studio™ (XPS) tools. It contains the following sections.

e “Assumptions”

e “Introduction”

e “Bitstream Initialization”

e “Software Program Loading”

e “Fast Download on a MicroBlaze System”
e “Generating a System ACE File”

This chapter assumes that you have already done the following:

e Created an EDK project
e Created a hardware system and a software application in your EDK project

o Used the Xilinx® ISE™ tools to create a bitstream for the hardware, and the EDK
compiler tools to create an Executable and Linking Format (ELF) file for the
application

System initialization and download consists of updating the hardware bitstream with
BRAM initialization data, downloading this modified bitstream to the FPGA, and
initializing external memories if necessary. There are several methods available to do this.
Select the appropriate method for your project considering the application and the stage of
the project.

If the entire software application is contained within Field Programmable Gate Array
(FPGA) BRAM blocks and no external memories must be initialized, you can initialize the
system by updating the bitstream. Refer to “Initialize Bitstreams with Applications” on
page 168 for more details.

If a part of the software application resides in external memory, you can use the Xilinx®
Microprocessor Debug (XMD) to download the software application after the FPGA is
programmed with the bitstream. Refer to “Downloading an Application Using XMD” on
page 169 for more details. You must use a bootloop to ensure that the processor does not
enter a bad state between download of the bitstream and download of the application.
Refer to “Initialize Bitstreams Using Bootloops” on page 168 for more information on
bootloops.

Platform Studio User Guide www.xilinx.com 167
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 11: System Initialization and Download

You can also initialize the system using System ACE™. System ACE CF configures devices
using Boundary-Scan (JTAG) instructions and a Boundary-Scan Chain. System ACE CF is
a two-chip solution that requires the System ACE CF controller and either a CompactFlash
card or one-inch Microdrive disk drive technology as the storage medium. Refer to
“Generating ACE Files” on page 179 for more details. You can also use a bootloader as the
mechanism to load the application from some nonvolatile memory into processor memory
and execute it. Refer to “Bootloaders” on page 169 for more details.

Bitstream Initialization

Initialize Bitstreams with Applications

If your entire software application fits on FPGA BRAM blocks, you can initialize the
system by updating the hardware bitstream with the BRAM initialization data. You can
then download this updated bitstream to the FPGA.

After building the applications, XPS allows you to select the application that must be
initialized in the generated bitstream. To initialize an executable in the bitstream, do the
following:

1. Right-click on the project name in the tree view and select Mark to Initialize BRAMSs.

2. From the XPS main window, select Tools — Update Bitstream to initialize the BRAMSs
with the selected executable information.

Once the bitstream is initialized with the executable, the bitstream downloads to the
board.

To download the application, set up the board and the parallel cable as required.

To download and execute the selected application, select Tools — Download in the
XPS main window. This downloads the bitstream onto the board, brings the processor
out of reset, and starts execution.

Initialize Bitstreams Using Bootloops

Once the FPGA is configured with a bitstream, the processor comes out of reset and begins
executing. If the system is not yet initialized with the software application, the processor
might execute code that puts it into a state that it cannot be brought out of with a soft reset.
The processor must therefore be kept in a known good state until the system is completely
initialized.

A bootloop is a software application that keeps the processor in a defined state until the
actual application can be downloaded and run. It consists of a simple branch instruction,
and is located at the processor’s boot location. XPS contains a predefined bootloop
application.

To use a bootloop, create the software application as usual. The linker script used is no
different from the case in which no bootloop is used; that is, the software application
should contain instructions at the processor’s boot location.

The software application should not be used to initialize the system BRAMSs. Right-click
the project name in the tree view, and ensure that Mark to Initialize BRAMSs is not selected.
If it is, click to deselect it. To initialize BRAMSs with the bootloop, right-click on the default
bootloop project (processor name_bootloop) in the tree view and select Mark to Initialize
BRAMSs.

168

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Software Program Loading S XILINX®

Update the bitstream with the bootloop by selecting Tools — Update Bitstream in the
XPS main window.

You can then download the bitstream to the FPGA. You can then download the software
application using either XMD or System ACE.

Software Program Loading

Downloading an Application Using XMD

Using XMD is one way to initialize application memory that lies external to the FPGA. To
download an application using XMD, do the following:

1. Initialize the bitstream with a bootloop, and configure the FPGA with this information.
Note: For MicroBlaze™ systems, the processor must be connected to an MDM module.
Select Tools — XMD from the main XPS window to start XMD.

Connect to the processor.
¢+ ForaPowerPC™ system, use connect ppc hw
+ For a MicroBlaze system, use connect nb nmdm
4. Download the software application using dow <path to executable file>.

Refer to the XMD documentation for more XMD commands and options.

Bootloaders

Bootloaders are small software programs that reside in internal BRAM memory. They run
when the processor comes out of reset. A bootloader sets up registers and copies the main
application program from external nonvolatile memory, such as flash memory, into
internal BRAM memory. Once the application is copied, the bootloader runs it by
branching to the entry point of the application. All interrupts are turned off when the
bootloader is executing. The application is responsible for all interrupt handling.

System ACE

You can use the System ACE solution to download software through Joint Test Action
Group (JTAG) in a similar way to the debugger. This way a single System ACE controller
can be augmented to contain both the bitstream and software initialization data. Refer to
“Generating a System ACE File” on page 175 for more information.

Fast Download on a MicroBlaze System

This section describes the steps to build a MicroBlaze system for downloading data at high
speeds to internal and external memory from XMD during debugging. The system uses a
unidirectional Fast Simplex Link (FSL) from the MicroBlaze Debug Module (opb_ndn) to
the MicroBlaze processor. Faster download speeds are necessary when debugging a large
program, such as a uClinux-based application, or when downloading large data files to
external memory. The download mechanism described below provides speeds up to 500
Kb per second.

Platform Studio User Guide www.xilinx.com 169
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 11: System Initialization and Download

The section contains the following topics:

e “Assumptions”

e “Tool Requirements”

e “Step 1: Building the Hardware”

e “Step 2: Downloading Program/Data to Memory”

Assumptions
This chapter assumes that you:

e Have created an EDK project, including hardware and software, using XPS.
e Are familiar with debugging a program using XMD/GDB.

Tool Requirements

Fast download on MicroBlaze is supported on IP and tools of the following or later
versions:

e mcroblaze 2.10.a
e opb_nmdm 2.00. a

e xmd EDK 7.1

e nmb-gdb EDK 7.1

Step 1: Building the Hardware

The MicroBlaze Debug Module opb_ntdmhas Slave (Input) and Master (Output) FSL
Interfaces. For downloading purposes, we use only the Master FSL Interface. This Interface
is connected to the Slave FSL Interface (SFSLO) of MicroBlaze through an FSL Bus Interface.

To build the hardware, you must instantiate the FSL Bus Interface. You must also connect
the MFSLO Interface of opb_ndmand SFSLO Interface of MicroBlaze. To perform these
tasks, select Project — Add/Edit Cores in XPS. For more information, refer Chapter 2,
“Creating a Basic Hardware System in XPS”.

170 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Fast Download on a MicroBlaze System

SUXILINX®

Add/Edit Hardware Platform Specificatio

Perpherals Bus Connections l.ﬁ.ddresses] Puortz] Parameters]

Click. on squares ta make master, slave or mazter-zlave (M, 5. M5] connect
Right click on any buz instance [column header] for a contest men.

ricrablaze 0 dimb

microblaze 0 imb

microblaze_0 dopb

microblaze_0 iopb

ol microblaze 0 zfzl0

rmicroblaze_0 mfsld

dimb_cntlr zlmb

iimb_cntlr glmb

debug_module zoph

debug_module zfzI0

rfEbug_module misi

gystem_intc zopb

gugtem_timer zoph

conzole_uart zoph

debug_uart zopb

suztem_agpio soph

zram_flash zoph

E

Chaoc
Give

Crr
dln

ilrr

Figure 11-1: Add/Edit Core

Bus Connections

Platform Studio User Guide

UG113 (v4.0) February 15, 2005

www.xilinx.com
1-800-255-7778

171

S XILINX®

Chapter 11: System Initialization and Download

Mame = f=l_w20_0
IF Mame = fz]_w20
"ergion = 2.00.a

C_EXT_RESET HIGH =0

FROCESSOR

aze

micral*ersion = 3.00.a

Mame = microblaze 0

IF Mame = microblaze

C_DEBUG_EMABLED =1
C_FSL_LINKS =1

C_MUMBER_OF_PC_BRK =2

C_MUMBER_OF_RD_&DDR_BRE =1
C_MUMBER_OF ‘wH_ADDR_BRK =1

DLME =5 dimb
ILME =3 ilmb

DOPE =» mb_opb
I0PE =» mb_opb
CLE = aps_clk_s

DBG_CAPTURE =» DEG_CAPTURE s
DBG_CLK = DEG_CLK s
DBG_REG_EM =» DBG_REG_EN_:
DEG_TDI =» DBG_TD &

DBEG_TDO =» DEG_TDO s

DBG_LUPDATE = DBG_OPDATE =
Interrupt =3 Interupt

f
FERIPHERAL
Mame = debug_module
IP Mame = opb_mdm
Werzion = 2.00.5
C_MB_DBG_PORTS =1
C_JaRT_WIDTH =8
C_USE_UART =1
C WRITE_FSL_PORTS =1

=» fal v

SOFB = mb_oph

OFB_Clk => svz clk_=
DBG_CAPTURE_O=» DBG_CAPTIURE =
DBG_CLK_0=r DBG_CLK_ s
DBG_REG_EM_0=: DBG_REG_EM_s
DEG_TDI_O0=: DBG_TDI_=
DEG_TDO_0=:DBG_TDO s
DBG_UPDATE_0=> DBG_UPDATE s

apb_m

dm

f

Figure 11-2: MicroBlaze-FSL-MDM Connection in the PBD Editor

The following is the MHS code snippet of the connection:

BEGA N micro
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
BUS | NTERF
BUS | NTERF
BUS | NTERF

BUS_| NTERFACE DOPB
BUS_| NTERFACE | OPB

PORT CLK =

bl aze
| NSTANCE = microbl aze_i
HW VER = 3.00. a

C USE BARREL = 1

CUSEDV =1

C_DEBUG ENABLED = 1

C_NUMBER OF PC BRK = 4

C_NUVBER_OF _RD_ADDR_BRK

C_NUMBER_OF_WR_ADDR_BRK

C FSL_LINKS = 1

ACE SFSLO = downl oad_Ii nk
I mb

ACE DLMB = d_| nb_v10
ACE ILMB = i | nb_v10
= d_opb_v20
= d_opb_v20

sys_clk

PORT | NTERRUPT = interrupt

END

[EEN

172

www.xilinx.com
1-800-255-7778

Platform Studio User Guide
UG113 (v4.0) February 15, 2005

Fast Download on a MicroBlaze System

SUXILINX®

BEG N opb_mdm

PARAMETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAMETER C MB_DBG PORTS = 1
PARAMETER C USE_UART = 1
PARAMETER C_UART_WDTH = 8
PARAMETER C_BASEADDR = OxFFFFCO00
PARAMETER C_Hl GHADDR = OxFFFFCOFF
PARAMETER C WRI TE_FSL_PORTS = 1
BUS | NTERFACE MFSLO = downl oad_Ii nk
BUS | NTERFACE SOPB = d_opb_v20
PORT OPB_C k = sys_clk

END

BEGA N fsl_v20
PARAVETER | NSTANCE = downl oad_I i nk
PARAVETER HW VER = 1.00.b
PARAMETER C EXT_RESET HIGH = 0

PORT SYS_Rst = sys_rst
PORT FSL_O k = sys_clk
END

Step 2: Downloading Program/Data to Memory

XMD determines if opb_ndmhas an MFSLO Interface and if the MicroBlaze SFSLO
Interface is connected to opb_nmdmwhile connecting to a MicroBlaze target. If both
conditions are satisfied, XMD uses the fast download methodology to increase download

speeds.

The MFSLO Interface on opb_ndmis determined by reading the config word of the MDM
module on hardware, so XMD should be connected to the board. The SFSLO Interface

connection is determined by loading the MHS file of your EDK design. If MHS file is not
loaded, then XMD will not be able to determine the connection and therefore will not use

fast download methodology.
The following is an XMD debug session example:

bash-2.05% xnd -xnp system xnp
Xilinx® M croprocessor Debug (XMD) Engi ne
Xilinx® EDK 6.3 Build EDK Gmm 8

Copyright (c) 1995-2004 Xilinx, Inc. Al rights reserved.

XNMD%

Loading XMP File..
Loading MHS File..
Processor(s) in System::

M croBl aze(1) : mcroblaze_0

Address Map for Processor mcroblaze 0
(0x00000000- 0x00003fff) dlnb_cntlr dl mb
(0x00000000- 0x00003fff) ilnmb_cntlr ilnmb
(0x80000000- 0x81ffffff) sdramcontroller
(0xc0000000- Oxc0003fff) Ethernet _MAC nb_opb
(Oxff000000-0Oxff7fffff) sramflash nmb_opb
(Oxffe00000-0Oxffefffff) sramflash nmb_opb
(Oxffff0000-0OxffffOlff) sramflash nb_opb
(Oxffffl1l000-Oxffffl10ff) systemtinmer nb_opb
(Oxffff2000-0xffff20ff) console_uart nb_opb
(Oxffff3000-0xffff30ff) systemintc nb_opb

nb_opb

Platform Studio User Guide www.xilinx.com
UG113 (v4.0) February 15, 2005 1-800-255-7778

173

S XILINX® Chapter 11: System Initialization and Download

(Oxffff4000-O0xffffd40ff) debug_uart nb_opb
(Oxffff5000-0xffff50ff) systemgpio nb_opb
(OxffffcO000-OxffffcOff) debug nodule nb_opb

Loading MSS File..

XMD% connect nb ndm

Connecting to cable (Parallel Port - parportO).

W nDriver v6.03 Jungo (c) 1997 - 2003 Build Date: Aug 10 2003 X86
15: 27: 16.

par port 0: baseAddr ess=0x378, ecpAddress=0x778

LPT base address = 0378h.

ECP base address = 0778h.

ECP hardware is detected.

Cabl e connection established.

Connecting to cable (Parallel Port - parport0) in ECP node.
LPT base address = 0378h.

Cable Type = 1, Revision = 0.

Cabl e connection established.

openCabl e xilinx_parallel, returned CSSUCCESS

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05046093 8 XCF04S

2 05046093 8 XCF04S

3 0124a093 10 XC2VP7

Assumi ng, Device No: 3 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors = 1

M croBl aze Processor 1 Configuration :
Version...........oo i 2.10.a
No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...2

No of Wite Addr/Data Watchpoints..2

Instruction Cache Support.......... on
Instruction Cache Base Address..... 0x80000000
I nstruction Cache Hi gh Address..... Ox81ffffff
Data Cache Support................. on
Data Cache Base Address............ 0x80000000
Data Cache H gh Address............ Ox81ffffff
MBsf sl - MDWhf sI Connected........... Yes

JTAG MDM Connected to McroBlaze 1
Connected to McroBlaze "ndnml' target. id
Starting GDB server for "ndm' target (id
XMD% dow mi crobl aze_i / code/ execut abl e. el f
Downl oaded Program m crobl aze_0/ code/ execut abl e. el f
Setting PC with program start addr = 0x00000000
section, .text: 0x00000000-0x00001274
section, .rodata: 0x00001274-0x000015f5
section, .sdata2: 0x000015f 8-0x00001748
section, .data: 0x00001748-0x0000177c
section, .bss: 0x00001780- 0x00001ba0
Downl oaded Program mi crobl aze_0/ code/ execut abl e. el f
Setting PC with program start addr = 0x00000000

XMD%

0
0) at TCP port no 1234

174 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Generating a System ACE File S XILINX®

Note: When XMD is used for generation of a System ACE file, it does not read the config word from
MDM; that is, XMD does not know if the MFSLO Interface is available on MDM. When the MHS file is
not available, XMD cannot verify the FSL connection. In these cases, XMD can be forced to use the
fast download methodology by using -pfsl option of the connect command. For more information,

refer to the “Xilinx Microprocessor Debugger (XMD)” chapter in the Embedded System Tools Guide.

Note: For the Xilinx Parallel Cable, the default JTAG clock speed is set to 5 MHz. You can change
the speed by setting the XIL_IMPACT_ENV_LPT_SETCLOCK_VALUE environment variable in the
shell. The allowed values are 10000000, 5000000, 2500000, 1250000, and 625000 (Hz).

Generating a System ACE File

This section describes the steps to generate System ACE configuration files from an FPGA
bitstream and ELF/data files. The ACE file generated can be used to configure the FPGA,
initialize BRAM, initialize external memory with valid program or data, and bootup the
processor in a production system. EDK provides a Tool Command Language (Tcl) script,
genace. t cl , which uses XMD commands to generate ACE files. ACE files can be
generated for PowerPC and MicroBlaze with MDM systems.

Assumptions
This chapter assumes that you:
e Are familiar with debugging programs using XMD and with using XMD commands.

e Are familiar with general hardware and software system models in EDK.
e Have a basic understanding of Tcl scripts.

Tool Requirements
Generating an ACE file requires the following tools:

e genace.tcl
e xmd
e i MPACT (from ISE)

GenACE Features

GenACE has the following features:

e Supports PowerPC and MicroBlaze with MDM targets

e Generates ACE files from hardware (Bitstream) and software (ELF/data) files.
e Initializes external memories on PowerPC and MicroBlaze systems.

e Supports Single/Multiple FPGA device systems.

GenACE Model

The System ACE files generated support the System ACE CF family of configuration
solutions. System ACE CF configures devices using Boundary-Scan (JTAG) instructions
and a Boundary-Scan Chain. System ACE CF is a two-chip solution that requires the
System ACE CF controller, and either a CompactFlash card or one-inch Microdrive disk
drive technology as the storage medium. The System ACE file is generated from a Serial
Vector Format (SVF) file. An SVF file is a text file containing both programming
instructions and configuration data to perform JTAG operations.

Platform Studio User Guide www.xilinx.com 175
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 11: System Initialization and Download

XMD and iMPACT generate SVF files for software and hardware system files respectively.
The set of JTAG instructions and data used to communicate with the JTAG chain on board
is an SVF file. It includes the instructions and data to perform operations such as
configuring FPGA using iMPACT, connecting to the processor target, downloading the
program, and running the program from XMD are captured in an SVF file format. The SVF
file is then converted to an ACE file and written to the storage medium. These operations
are performed by the System ACE controller to achieve the determined operation.

The following is the sequence of operations using iMPACT and XMD for a simple
hardware and software configuration that gets translated into an ACE file.

1.

6.

Download the bitstream using iMPACT. The bitstream, downl oad. bi t , contains
system configuration and bootloop code.

Bring the device out of reset, causing the Done pin to go high. This starts the Processor

system.

Connect to the Processor using XMD.

Download multiple data files to BRAM or External memory.

Download multiple executable files to BRAM or External memory. The PC points to
the start location of the last downloaded ELF file.

Continue execution from the PC instruction address.

The flow for generating System ACE files is bit — svf, elf — svf, binary data — svf and
svf — ace file. The genace. t cl script allows the following operations to perform.

The Genace.tcl Script

Syntax

xmd -tcl genace.tcl [-opt <genace options_file>] [-jprog] [-target

<target _type>]
<Data_files>] [

[-hw <bitstream file>] [-elf <EIf_Files>] [-data
-board <board_type>] -ace <ACE file>

Table 11-1: genace.tcl Script Command Options

Options Default Description
- opt <genace options file> none GenACE options are read from the options file.
-j prog false Clear the existing FPGA configuration. This option should not
be specified if performing runtime configuration.
-target <target_type> ppc_hw | Target to use in the system for downloading ELF/Data file.
Target types are:
ppc_hw
To connect to a ppc405 system
mim
To connect to a MicroBlaze system. This assumes the presence
of opb_mdmin the system.
- hw<bitstream file> none The bitstream file for the system. If an SVF file is specified, the
SVF file is used.
-el f <list_of Elf Files> none List of ELF files to download. If an SVF file is specified, it is used.

176

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Generating a System ACE File S XILINX®

Table 11-1: genace.tcl Script Command Options (Continued)

Options Default Description

- dat a <data file> <load address> | none List of Data/Binary file and its load address. The load address
can be in decimal or hex format (0x prefix needed). If an SVF file
is specified, it is used.

- boar d <board_type> auto This identifies the JTAG chain on the board (Devices, IR length,
Debug device, and so on). The options are given with respect to
the System ACE controller. The script contains the options for
some pre-defined boards. Board type options are:

m 300
mI300 board with Virtex2P7 device

menec
Memec board with Virtex2P4 device and P160

nbdeno
Xilinx® MicroBlaze Demo Board Virtex21000 device

auto

Auto Detect Scan Chain and form options for any generic
board. The board should be connected for this option. The
GenACE options are written out as a genace.opt file. The user
can use this file to generate an ACE file for the given system.

user
The user specifies the - conf i gdevi ce and

- debugdevi ce option in the Options file. Refer to the
genace. opt file for details.

-confi gdevi ce (only for - user | none Configuration parameters for the device on the JTAG chain:

board type) e devi cenr: Device position on the JTAG chain

e idcode: ID code

e irl engt h: Instruction Register (IR) length

e part name: Name of the device

The device position is relative to the System ACE device and
these JTAG devices should be specified in the order in which

they are connected in the JTAG chain on the board. This option
can be specified only in the options file.

- debugdevi ce (only for - user none The device containing PowerPC/MicroBlaze to debug or
board type) configure in the JTAG chain. Specify the device position on the
chain,devi cenr,and number of processors, cpunr. This option
can be specified only in the options file.

- ace <ACE file> none The output ACE file. The file prefix should not match any of
input files (bitstream, elf, data files) prefix.

Platform Studio User Guide www.xilinx.com 177
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 11: System Initialization and Download

Usage

xmd -tcl genace.tcl -jprog -target mdm-hw i npl ement ati on/ downl oad. bi t
-elf executabl el. el f executabl e2. svf -data i nage. bi n Oxf e000000 - board
auto -ace system ace

Equivalent genace. opt file (for Memec V2P4FF672 board):

-jprog

-target mdm

-hw i npl enent ati on/ downl oad. bi t

-el f executablel.elf executabl e2. svf

-data i mage. bi n Oxf e000000

-ace system ace

-board user

-configdevi ce devicenr 1 idcode 0x5026093 irlength 8 partname XC18V04
-configdevi ce devicenr 2 idcode 0x123e093 irlength 10 partnanme XC2VP4
- debugdevi ce devicenr 2 cpunr 1

Note: The board option in the above options file has been changed from auto to user. The
genace. opt file should not have a blank line, the parser would error out.

Supported Target Boards

The Tcl script supports the following three boards.

e Memec 2VP4/7 FG456: This board has the following devices in the JTAG chain:
XC18V04 — XC18V04 — XC2VP4/7

e ML300: This board has the following device in the JTAG chain: XC2VP7.

¢ MicroBlaze Demo Board: This board has the following device in the JTAG chain:
XC2V1000.

For placing software in OCM memory or for using cache, XMD options in the Tcl script
must be changed. These are described in later sections.

GenACE Script Flow and Files Generated

Hardware Bitstream Downloading and FPGA Programming

1. The bitstream file is converted to SVF file format by calling iMPACT.
2. Thebit2svf. scr command file is passed to iMPACT.
3. The generated SVF file is copied to the final <ACE_filename>. svf file.

The bitstream file is assumed to contain a bootloop code or some valid program
initialized in BRAM. If an SVF file already exists for the BIT file, the SVF file is used
and iIMPACT is not called. The script uses the file extension SVF to determine the file

type.
Downloading Software ELF/Data Files

1. If software is being downloaded, a delay is introduced to allow the system to come
from reset. This is appended to <ACE_filename>. svf file by routine
write_swprefix.

2. Thedatafiles are converted to an SVF file <data_filename>. svf by the xnd_dat a2svf
routine. This contains instructions and data to connect to the target, download the file,
and disconnect from the target.

178 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Generating a System ACE File S XILINX®

3. The executable ELF files are converted to an SVF file, <elf_filename>. svf , by the
xmd_el f 2svf routi ne. This contains instructions and data to connect to the target,
download the file, and disconnect from the target.

4. The generated SVF files are appended to the final SVF file.

Running the Software ELF Program

1. Asw suffix.svf fileis generated by thewr i t e_swsuf f i x routine, which
contains commands to run the ELF file. This is appended to the final SVF file.

2. Thefinal <ACE filename>. svf fileisconverted to an ACE file by calling the svf 2ace
command in IMPACT (iMPACT batch mode command). The GenACE script writes out
the svf 2ace. scr command file with the appropriate svf 2ace command

arguments. This svf 2ace. scr command file is passed on to iMPACT to generate the
final ACE file.

Generating ACE Files

Single FPGA Device

System ACE files can be generated for the following scenarios.

Hardware and Software Configuration

xmd -tcl genace.tcl -jprog -target mdm-hw i npl ement at i on/ downl oad. bi t
-elf executabl el. el f executabl e2. svf -data i nage. bi n Oxf e000000 - board
nbdeno -ace system ace

Hardware and Software Partial Reconfiguration

xmd -tcl genace.tcl -target mdm -hw i npl enentati on/ downl oad. bit -elf
execut abl el. el f executabl e2. svf -data inage. bin Oxfe000000 -board
nbdeno -ace system ace

Hardware Only Configuration

xmd -tcl genace.tcl -jprog -target mdm-hw i npl ement ati on/ downl oad. bi t
-board nmbdenp -ace system ace

Hardware Only Partial Reconfiguration

xmd -tcl genace.tcl -target mdm-hw inpl ement ati on/ downl oad. bit -board
nbdeno -ace system ace

Software Only Configuration (Downloading and Running)

xmd -tcl genace.tcl -target mdm -elf executabl el.elf executable2.svf -
dat a i mage. bi n 0xf e000000 -board nbdenp -ace system ace

Platform Studio User Guide www.xilinx.com 179
UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 11: System Initialization and Download

Software Only Configuration (Downloading)

This configuration requires changing the genace.tcl script. In the Tcl procedure
genace{}, comment out the following lines, which create and append sw_suf fi x. svf.

write_swsuffix $param(target) "sw suffix.elf" $xnmd_options

Cenerate code to execute the program downl oaded

set suffixsvf [open "sw suffix.svf" "r"]

puts $final _svf "\n// Issuing Run command to PowerPC to start
execution\n"

fcopy $suffixsvf $final_svf

cl ose $suffixsvf

Command line genace options are:

xmd -tcl genace.tcl -target mdm -elf executabl el.elf executabl e2.svf -
dat a i nage. bi n 0xf e000000 -board mbdeno -ace system ace

Software Only Configuration on MicroBlaze; Downloading Using Fast Download

For a MicroBlaze target, software files can be downloaded with greater speeds using Fast
Download methodology. This requires the presence of an FSL link between MicroBlaze
and MDM, which makes downloading faster and creates a small ACE file.

This configuration requires changing the genace. t ¢l script. In procedure genace add
the following line:

append xnd_options " -pfsl port O type s"
Get the irLength of FPGA
set options_list [concat $xnd_options]

The command line options are the same as the configurations above.

ACE Generation for a Single Processor in Multiple Processors System:

Many of the Virtex™-I1l Pro and Virtex™-4 devices contain two PowerPC processors or the
System might contain multiple MicroBlaze processors. To generate ACE file for a single
processor use -debugdevice option. Use cpunr to specify the Processor instance.

In the example we assume a configuration with two PowerPC processors and ACE file is
generated for processor number 2. The options file for this configuration is:

-jprog

-target ppc_hw

-hw i npl enent ati on/ downl oad. bi t

-elf executable.elf

-ace final _system ace

-board user

-configdevi ce devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
- debugdevi ce devicenr 1 cpunr 2 <= Note: The cpunr is 2

Multiple PowerPC Processors System Configuration:

Many of the Virtex-Il Pro and Virtex-4 devices contain two or more processors. Typically,
each of these processors requires a separate ELF file. We assume a configuration with two
PowerPC processors, each loaded with a single ELF file. The configuration of the board is
specified in the options file.

180

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Generating a System ACE File S XILINX®

This configuration requires the following steps to generate the ACE file:

1.

Generate an SVF for the BIT file.
The options file text is displayed below:

-jprog

-target ppc_hw

-hw i npl enent ati on/ downl oad. bi t

-ace final _system ace

-board user

-configdevi ce devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
- debugdevi ce devicenr 1 cpunr 1

Generate an SVF for the First Processor ELF file.
The options file text is displayed below:

-target ppc_hw

-elf executablel.elf

-ace el fl. ace

-board user

-configdevi ce devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
- debugdevi ce devicenr 1 cpunr 1

This generates the execut abl el. svf and sw_suf fi x. svf files. Copy the
sw_suf fi x. svf filetothesw _suffi x1. svf file.

Generate an SVF for the Second Processor ELF file.
The options file text is displayed below:

-target ppc_hw

-elf executable2.elf

-ace el f2.ace

-board user

-configdevi ce devicenr 1 idcode 0x1266093 irlength 14 partnane
XC2VP20

- debugdevi ce devicenr 1 cpunr 2 <= Note: The cpunr is 2.

This generates the execut abl e2. svf and sw_suf fi x. svf files. Copy the
sw_suf fi x. svf fileto thesw_suffi x2. svf file.

Concatenate the files in the following order: f i nal _syst em svf,
execut abl el. svf, execut abl e2. svf,sw suffi x1. svf, and
sw_suffix2.svf tofinal _system svf.

Generate the ACE file by calling i npact - batch svf2ace. scr. The following
SCR file should be used:

svf2ace -wck -d -i final_systemsvf -o final_system ace
qui t

Platform Studio User Guide

www.xilinx.com 181

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX®

Chapter 11: System Initialization and Download

Multiple MicroBlaze Processors System Configuration

This example uses a configuration with two MicroBlaze processors connected to MDM,
each loaded with a single ELF file. The configuration of the board is specified in the options
file.

This configuration requires multiple steps to generate the ACE file and change to
genace. t cl script.

1. Generate an SVF for the BIT file.
The options file text is displayed below:

-jprog

-target nmdm

-hw i npl enent ati on/ downl oad. bi t

-ace final _system ace

-board user

-configdevi ce devicenr 1 idcode 0x123e093 irlength 10 partnanme XC2VP4
- debugdevi ce devicenr 1 cpunr 1

2. Generate an SVF for the First Processor ELF file.
The options file text is displayed below:

-target nmdm

-elf executablel.elf

-ace el fl. ace

-board user

-configdevi ce devicenr 1 idcode 0x123e093 irlength 10 partname XC2VP4
- debugdevi ce devicenr 1 cpunr 1

This generates the execut abl el. svf and sw_suf fi x. svf files. Copy
sw_suf fi x. svf filetothesw suffi x1. svf file.

3. Generate an SVF for the Second Processor ELF file.
The options file text is displayed below:

-target nmdm

-elf executabl e2.elf

-ace el f2.ace

-board user

-configdevi ce devicenr 1 idcode 0x123e093 irlength 10 partname XC2VP4
- debugdevi ce devicenr 1 cpunr 2 <= Note: The cpunr is 2.

This generates the execut abl e2. svf and sw_suf fi x. svf files. Copy the
sw_suf fi x. svf filetothesw suf fix2. svf file.

4. Concatenate the files in the following order: f i nal _syst em svf,
execut abl el. svf, execut abl e2. svf,sw _suffi x1. svf,and
sw_suf fix2.svf tofinal _system svf.

5. Generate the ACE file by callingi npact - bat ch svf 2ace. scr. The following SCR
file should be used:

svf2ace -wtck -d -i final _systemsvf -o final_system ace
qui t

Multiple FPGA Devices

Generation of System ACE files for boards with multiple FPGA devices follows the same
pattern as multi-processor configuration. We assume a configuration with two FPGA
devices, each with a single Processor and single ELF file. The configuration of the board is
specified in the options file.

182

www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

Generating a System ACE File S XILINX®

This configuration requires multiple steps to generate the ACE file.

1.

2.

Generate an SVF for the first FPGA device.
The options file is given below:

-jprog

-target ppc_hw

-hw i npl enent ati on/ downl oad. bi t

-elf executablel.elf

-ace fpgal. ace

-board user

-configdevi ce devicenr 1 idcode 0x123e093 irlength 10 partnanme XC2VP4
-configdevi ce devicenr 2 idcode 0x123e093 irlength 10 partnanme XC2VP4
- debugdevi ce devicenr 1 cpunr 1

This generates the file f pgal. svf.

Generate an SVF for the second FPGA device.
The options file is given below:

-jprog

-target ppc_hw

-hw i npl ement at i on/ downl oad. bi t

-elf executable2.elf

-ace fpga2. ace

-board user

-configdevi ce devicenr 1 idcode 0x123e093 irlength 10 partnanme XC2VP4
-configdevi ce devicenr 2 idcode 0x123e093 irlength 10 partnanme XC2VP4
- debugdevi ce devicenr 2 cpunr 1 <= Note: The change in Devicenr

This generates the file f pga2. svf.
Concatenate the files in the following order: f pgal. svf and f pga2. svf to
final _system svf.

Generate the ACE file by callingi npact - bat ch svf 2ace. scr. The following SCR
file should be used:

svf2ace -wck -d -i final_systemsvf -o final_system ace
quit

Related Information

Adding a New Device to the JTAG Chain

An XMD supported device list is located at $XI LI NX_EDK/ dat a/ xnmd/ devi cei d. | st
or $XI LI NX_EDK/ dat a/ xnmd/ devi cet abl e. | st . If XMD detects a device as
“UNKNOWN” in the JTAG chain, the IR length of the device has to be specified manually
by the user. This can be done in the following ways:

Edit the devi cet abl e. | i st.

Add a new entry for the device to the devi cet abl e. | st . XMD then supports the
device. You must add Device ID Code, IR Length, and Name in the list file. For more
details, refer the devi cet abl e. | st file.

Editthe devi cei d. | i st.

Add a new entry for the device to the devi cei d. | st . XMD then supports the device.
You must add entry to all three sections in the list file. For more details, refer the
devi cei d. | st file.

Platform Studio User Guide

www.xilinx.com 183

UG113 (v4.0) February 15, 2005 1-800-255-7778

S XILINX® Chapter 11: System Initialization and Download

e Provide a GenACE OPT file with options.
You can specify the - conf i gdevi ce and - debugdevi ce options in the options file.

o Editthe genace. t cl file.

Add a new board type in genace. t cl . Specify the xnd_opt i ons,
jtag_fpga position,andjtag _devi ces values for the board. Refer to the
genace. t cl filein EDK installation at $XI L1 NX_EDK/ dat a/ xnd/ genace. t cl for

more details.

CF Device Format
To have the System ACE controller read the CF device, do the following:

1. Format the CF device as FAT 16.

2. CreateaXi | i nx. sys file in the root directory. This file contains the directory
structure to use by the ACE controller. Copy the generated ACE file to the appropriate
directory. For more information refer to the “iMPACT” section of the ISE
documentation.

184 www.xilinx.com Platform Studio User Guide
1-800-255-7778 UG113 (v4.0) February 15, 2005

$7 XILINX®

Glossary

Click on a letter, or scroll down to view the entire glossary.

BCDEFGHIJLMNOPSUVXZ

B
BBD file
Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.
Bitlnit
The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
BlockRAMs in the FPGA.
BMM file
Block Memory Map file. A Block Memory Map file is a text file that has
syntactic descriptions of how individual Block RAMs constitute a
contiguous logical data space. Data2MEM uses BMM files to direct the
translation of data into the proper initialization form. Since a BMM file
is a text file, it is directly editable.
BSB
Base System Builder. A wizard for creating a complete EDK design.
BSP
See Standalone BSP.
C
CSV file
Comma Separated Value file.
EDK 7.1i www.xilinx.com 185

Glossary (v.1.0) February 15, 2005

1-800-255-7778

S XILINX®

Glossary

D
DCR
Device Control Register.
DLMB
Data-side Local Memory Bus. See also: LMB
DMA
Direct Memory Access.
DOPB
Data-side On-chip Peripheral Bus. See also: OPB
DRC
Design Rule Check.
E
EDIF file
Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.
EDK
Embedded Development Kit.
ELF file
Executable Linked Format file.
EMC
Enclosure Management Controller.
EST
Embedded System Tools.
F
FATfs (XilFATfs)
LibXil FATFile System. The XilFATfs file system access library
provides read/write access to files stored on a Xilinx SystemACE
CompactFlash or IBM microdrive device.
FPGA
Field Programmable Gate Array.
186 www.xilinx.com EDK 7.1i

1-800-255-7778 Glossary (v.1.0) February 15, 2005

SUXILINX®

FSL
MicroBlaze Fast Simplex Link. Unidirectional point-to-point data
streaming interfaces ideal for hardware acceleration. The MicroBlaze
processor has FSL interfaces directly to the processor.
G
GDB
GNU Debugger.
GPIO
General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.
H
HDL
Hardware Description Language.
I
IBA
Integrated Bus Analyzer.
IDE
Integrated Design Environment.
ILA
Integrated Logic Analyzer.
ILMB
Instruction-side Local Memory Bus. See also: LMB
IOPB
Instruction-side On-chip Peripheral Bus. See also: OPB
IPIC
Intellectual Property Interconnect.
IPIF
Intellectual Property Interface.
EDK 7.1i www.xilinx.com 187

Glossary (v.1.0) February 15, 2005

1-800-255-7778

S XILINX®

Glossary

ISA
Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.
ISC
Interrupt Source Controller.
ISS
Instruction Set Simulator.
J
JTAG
Joint Test Action Group.
L
Libgen
Library Generator sub-component of the Platform Studio(tm)
technology.
LibXil Standard C Libraries
EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.
LibXil File
A module that provides block access to files and devices. The LibXil
File module provides standard routines such as open, close, read, and
write.
LibXil Net
The network library for embedded processors.
LibXil Profile
A software intrusive profile library that generates call graph and
histogram information of any program running on a board.
LMB
Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.
188 www.xilinx.com EDK 7.1i

1-800-255-7778 Glossary (v.1.0) February 15, 2005

SUXILINX®

M
MDD file
Microprocessor Driver Description file.
MDM
Microprocessor Debug Module.
MES
LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.
MHS file
Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.
MLD file
Microprocessor Library Definition file.
MPD file
Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.
MSS file
Microprocessor Software Specification file.
MVS file
Microprocessor Verification Specification file.
N
NCF file
Netlist Constraints file.
@)
OCM
On Chip Memory.
OPB
On-chip Peripheral Bus.
EDK 7.1i www.xilinx.com 189

Glossary (v.1.0) February 15, 2005

1-800-255-7778

S XILINX®

Glossary

F)
PACE
Pinout and Area Constraints Editor.
PAO file
Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.
PBD file
Processor Block Diagram file.
Platgen
Hardware Platform Generator sub-component of the Platform
Studio(tm) technology.
PLB
Processor Local Bus.
PSF
Platform Specification Format. The specification for the set of data
files that drive the EDK tools.
S
SDF file
Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.
SDK
Software Development Kit.
Simgen
The Simulation Generator sub-component of the Platform Studio(tm)
technology.
Standalone BSP
Standalone Board Support Package. A set of software modules that
access processor-specific functions. The Standalone BSP is designed
for use when an application accesses board or processor features
directly (without an intervening OS layer).
190 www.xilinx.com EDK 7.1i

1-800-255-7778 Glossary (v.1.0) February 15, 2005

SUXILINX®

U
UCF
User Constraints File.
V
VHDL
VHSIC Hardware Description Language.
VP
Virtual Platform.
VPg en
The Virtual Platform Generator sub-component of the Platform Studio
technology.
X
XCL
Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.
Xilkernel
The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.
XMD
Xilinx® Microprocessor Debugger.
XMK
Xilinx® Microkernel. The entity representing the collective software
system comprising the standard C libraries, Xilkernel, Standalone BSP,
LibXil Net, LibXil MFS, LibXil File, and LibXil Drivers.
XMP
Xilinx® Microprocessor Project. This is the top-level project file for an
EDK design.
XPS
Xilinx® Platform Studio. The GUI environment in which you can
develop your embedded design.
EDK 7.1i www.xilinx.com 191

Glossary (v.1.0) February 15, 2005

1-800-255-7778

S XILINX® Glossary

XST
Xilinx Synthesis Tool.
Z
/BT
Zero Bus Turnaround™,
192 www.xilinx.com EDK 7.1i

1-800-255-7778 Glossary (v.1.0) February 15, 2005

	Platform Studio User Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	Overview
	Creating an Embedded Hardware System
	Creating Software for the Embedded System
	Software Libraries
	System Simulation
	System Debug and Verification
	System Initialization and Download to the Board
	Fast Download
	Generating an ACE File

	Creating a Basic Hardware System in XPS
	Overview
	Assumptions
	Steps
	Create a New XPS Project
	Select a Target Board
	Select the Processor to be Used
	Configure the Processor
	Configure IO Interfaces
	Specify Internal Peripheral Settings
	Specify Software Configuration
	View System Summary and Generate
	View Peripherals and Bus Settings
	Generate Bitstream
	Download Bitstream and Execute

	Writing Applications for a Platform Studio Design
	Overview
	Assumptions
	Steps
	Configure Software Settings
	View and Set Project Options
	Create EDK Software Libraries
	Open/Create Your Application(s)
	View and Set Application Options
	Build Applications
	Initialize Bitstreams with Applications
	Download and Execute Your Application
	Download and Debug Applications Using XMD

	Address Management
	MicroBlaze Processor
	Programs and Memory
	Current Address Space Restrictions
	Memory Speeds and Latencies
	System Address Space
	Default User Address Space
	Advanced User Address Space
	Object-File Sections
	Minimal Linker Script
	Linker Script

	PowerPC Processor
	Programs and Memory
	Current Address Space Restrictions
	Advanced User Address Space
	Linker Script
	Minimal Linker Script

	Interrupt Management
	Interrupt Management
	MicroBlaze Interrupt Management
	Overview
	Interrupt Controller Peripheral
	Peripheral with an Interrupt Port
	External Interrupt Port
	Interrupt Handlers
	Interrupt Vector Table in MicroBlaze
	Interrupt Routines in MicroBlaze

	PowerPC Interrupt Management
	Libgen Customization
	Purpose of the Libgen Tool
	Introducing xparameters.h

	Example Systems for MicroBlaze
	System Without Interrupt Controller (Single Interrupt Signal)
	System With an Interrupt Controller (One or More Interrupt Signals)

	Example Systems for PowerPC
	System Without Interrupt Controller (Single Interrupt Signal)
	System With an Interrupt Controller (One or More Interrupt Signals)

	Using Xilkernel
	Xilkernel Concepts
	Processes, Threads, Context Switching, and Scheduling
	Synchronization Constructs
	Inter-Process Communication
	Concepts Specific to Xilkernel
	Differences Between MicroBlaze & PowerPC Xilkernel Implementations
	Using Device Drivers with Xilkernel
	Using Other Libraries with Xilkernel

	Getting Started with Xilkernel
	Xilkernel with MicroBlaze
	Xilkernel with PowerPC
	Building and Executing Xilkernel and Applications

	Xilkernel Design Examples
	Hardware and Software Requirements
	Design Example Files
	Description of Example Sets

	Using XilMFS
	XilMFS Concepts
	Getting Started with XilMFS
	Using XilMFS
	Configuring XilMFS
	Creating Your Application
	Using a Pre-Built XilMFS Image

	Simulation in EDK
	Introduction
	EDK Simulation Basics
	Behavioral Simulation
	Structural Simulation
	Timing Simulation
	EDK and ISE Simulation Points

	Simulation Libraries
	Xilinx Simulation Libraries
	EDK Library

	Compiling Simulation Libraries
	Compiling Xilinx Simulation Libraries
	Compiling EDK Behavioral Simulation Libraries
	Setting Up SmartModels

	Third-Party Simulators
	ModelSim Setup for Using SmartModels
	NcSim Setup for Using SmartModels

	Creating Simulation Models
	Creating Simulation Models Using XPS
	Creating Simulation Models Using XPS Batch

	Memory Initialization
	VHDL Models
	Verilog Models

	Simulating a Basic System
	Simulation Model Files
	ModelSim
	NcSim

	Submodule or Testbench Simulation
	VHDL
	Verilog
	ModelSim
	NcSim

	Using SmartModels
	Accessing SmartModel’s Internal Signals

	Debugging in EDK
	Introduction
	Debugging PowerPC Software
	Hardware Setup Using a JTAG Cable
	Software Setup
	Advanced PowerPC Debugging Tips

	Debugging MicroBlaze Software
	Hardware Setup for MDM-Based Debugging Using JTAG (HW-Based)
	Software Setup for MDM-Based Debugging
	Hardware Setup for XMDStub-Based Debugging Using JTAG (SW-Based)
	Software Setup for XMDStub-Based Debugging
	Using Serial Cable for XMDStub Debugging

	Debugging Software on a Multi-Processor System
	Debugging Software on Virtual Platform
	Hardware Debugging Using ChipScope Pro
	Instantiating ChipScope Pro Cores in an EDK Design
	Steps Involved in Using ChipScope Pro Analyzer with an EDK Design
	Using ChipScope ILA Core
	Using ChipScope Virtual IO (VIO) Core
	Advanced ChipScope Debugging Tips

	Profiling Embedded Designs
	Assumptions
	Tool Requirements
	Features
	Profiling the Program on Simulator/virtual platform
	Using Xilinx Platform Studio IDE
	Using Platform Studio SDK IDE

	Profiling the Program on Hardware Target
	Using Xilinx Platform Studio IDE
	Using Platform Studio SDK IDE

	System Initialization and Download
	Assumptions
	Introduction
	Bitstream Initialization
	Initialize Bitstreams with Applications
	Initialize Bitstreams Using Bootloops

	Software Program Loading
	Downloading an Application Using XMD
	Bootloaders
	System ACE

	Fast Download on a MicroBlaze System
	Assumptions
	Tool Requirements
	Step 1: Building the Hardware
	Step 2: Downloading Program/Data to Memory

	Generating a System ACE File
	Assumptions
	Tool Requirements
	GenACE Features
	GenACE Model
	The Genace.tcl Script
	Generating ACE Files
	Related Information

	Glossary

