AdeptVision

Reference Guide

Version 12.1

Part Number 00962-01300, Rev. A
August 1997

CJ.y 150 Rose Orchard Way San Jose, CA 95134 « USA « Phone (408) 432-0888 « Fax (408) 432-8707
U;Ur Otto-Hahn-Strasse 23 « 44227 Dortmund ¢ Germany ¢ Phone (49) 231.75.89.40 « Fax(49) 231.75.89.450
qdep]‘ 41, rue du Saule Trapu « 91300 ¢ Massy ¢ France * Phone (33) 1.69.19.16.16 « Fax (33) 1.69.32.04.62

technology, inc. 1-2, Aza Nakahara Mitsuya-Cho « Toyohashi, Aichi-Ken « 441-31 « Japan « (81) 532.65.2391 * Fax (81) 532.65.2390

The information contained herein is the property of Adept Technology, Inc., and shall not be re-
produced in whole or in part without prior written approval of Adept Technology, Inc. The in-
formation herein is subject to change without notice and should not be construed as a
commitment by Adept Technology, Inc. This manual is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in this document.
Critical evaluation of this manual by the user is welcomed. Your comments assist us in prepara-
tion of future documentation. A form is provided at the back of the book for submitting your
comments.

Copyright 00 1992-1997 by Adept Technology, Inc. All rights reserved.

The Adept logo is a registered trademark of Adept Technology, Inc.

Adept, AdeptOne, AdeptOne-MV, AdeptThree, AdeptThree-XL, AdeptThree-MV, PackOne, PackOne-
MV, HyperDrive, Adept 550, Adept 550 CleanRoom, Adept 1850, Adept 1850XP,
A-Series, S-Series, Adept MC, Adept CC, Adept IC, Adept OC, Adept MV,

AdeptVision, AIM, VisionWare, AdeptMotion, MotionWare, PalletWare, FlexFeedWare,
AdeptNet, AdeptFTP, AdeptNFS, AdeptTCP/IP, AdeptForce, AdeptModules, AdeptWindows,
AdeptWindows PC, AdeptWindows DDE, AdeptWindows Offline Editor,
and V* are trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Printed in the United States of America

o >N

Table of Contents

Introduction .

Compatibility
Conventions . o
Related Publications . .
AdeptVision Keyword Summary
How Can | Get Help?
Within the Continental Unlted States
Service Calls .
Application Questions
Applications Internet E-Maill Address
Training Information
Within Europe
France .

Outside Contlnental Unlted States or Europe

Adept Fax on Demand :
Adept on Demand Web Page .

Descriptions of Vision Keywords .
AdeptVision Quick Reference . .

Prototype Recognition Algorithms

Overview :

Connedctivity Analy5|s

Chain Encode Perimeters

Fit Primitive Edges to Chains

Fit Lines and Arcs to Edges .

Classify Features .

Propose Prototype-to-image Matches
Verify Match . .

Perspective Distortion

Overview of Perspective Distortion . .

AdeptVision Reference Guide, Rev A

© o o oo ~N

14
14
14
15
15
15
15
15
16
16
16

17
295

301

302
302
303
303
303
304
304
305

307
308

Table of Contents

Calibration Arrays o 309
How to Use the Arrays “pmm.to.mm[,]” and “mm.to.pmm[,]” . 311

D Upgrading Program Code 313
Introduction Lo 314
Compatibility Summary 314
Index 317

4 AdeptVision Reference Guide, Rev A

List of Figures

Figure 2-1. Example of V.BORDER.DIST <
Figure 2-2. Shape Parameters for RectangularTooIs e b1
Figure 2-3. Shape Parameters for Arc-ShapedTools 53
Figure 2-4. Arrangement of Elements of Convolution Matrix 60
Figure 2-5. Effect of V.DISJOINT Switch 78
Figure 2-6. Arc Finder Shape T A
Figure 2-7. Line Finder Tool Start Posmon and Polarlty Coo 119
Figure 2-8. Sample Line Finder Tool 240
Figure 2-9. Effects of V.MAX.PIXEL.VAR Parameter o 168
Figure C-1. Vision Coordinate Systems 310

AdeptVision Reference Guide, Rev A 5

Table 1-1.
Table 1-2.
Table 2-1.
Table 2-2.

Table 2-3.

Table 2-4.
Table 2-5.

List of Tables

Related Publications .

AdeptVision Keyword Summary

VFEATURE Function Data

VFEATURE Function Data for ObjectFlnder
(following VLOCATE) . . :

VFEATURE Function Data for ObjectFlnder
(following VSHOW) .

Contents of VGETPIC/VPUTPIC Header Strrng

Elements of VGETCAL/VPUTCAL Scaler Calibration Array .

AdeptVision Reference Guide, Rev A

102

103
143
204

Introduction

Compatibility

Conventions

Related Publications
AdeptVision Keyword Summary
How Can | Get Help?

Within the Continental United States
Service Calls
Application Questions : :
Applications Internet E-Mail Address
Training Information
Within Europe
France : o
Outside Continental Unlted States or Europe
Adept Fax on Demand :
Adept on Demand Web Page

AdeptVision Reference Guide, Rev A

© o 0 o0

14

14
14
15
15
15
15
15
16
16
16

Chapter 1 Compatibility

Compatibility

This reference guide is for use with Adept controllers equipped with the
AdeptVision VXL option and V* operating system version 12.1 or later. See
Appendix D for details on using existing program code with 12.1 systems.

Conventions

Many operating system options require you to hold down the keys marked
“Shift” or “Ctrl” and then press another key. These types of key combinations are
shown as “Ctrl+C”, which means you should hold down the “Ctrl” key and press
the “C” key.

Related Publications

This reference guide details the extensions added to the V* language with the
AdeptVision VXL option. It is a companion to the V* Language Reference Guide
and V* Operating System Reference Guide, which cover the basic V* language
and operating system.

The following manuals may be required by your system:

Table 1-1. Related Publications

Manual Material Covered

AdeptVision User’s Guide Enhancements to the V* operating system that are added
when the AdeptVision option is installed

Instructions for Adept Utility Instructions for running various setup and configuration

Programs software utilities

Adept MV Controller User’s Guide Instructions for setting up, configuring, and maintaining the
controller that runs V*

Robot, motion, or force device user’s Instructions for installing and maintaining the motion

guides (if connected to your system) device connected to your system

Manual Control Pendant User’s Guide | Using the manual control pendant to move the robot and

(if connected to your system) interact with motion control programs

V*+ Operating System User’s Guide Details on the V* operating system

V* Operating System Reference Guide Detailed descriptions of the V* monitor commands

8 AdeptVision Reference Guide, Rev A

Chapter 1

AdeptVision Keyword Summary

Table 1-1. Related Publications (Continued)

Manual

Material Covered

V* Language User’s Guide

V* is a complete high-level language as well as an operating
system. This manual covers programming principles for
creating V* programs.

V* Language Reference Guide

Detailed descriptions of the keywords in the V* language

User’s guides for any AIM software that
may be installed on your system

Details on using AIM applications such as MotionWare or
VisionWare

AIM software reference guides

Details on the structure of AIM software and AIM
applications

AdeptVision Keyword Summary

Table 1-2 summarizes the keywords added with the AdeptVision VXL option.
Appendix A is a quick reference guide to the AdeptVision keywords, listing their
arguments and basic functions.

Table 1-2. AdeptVision Keyword Summary

Keyword

Description

V.2ND.MOMENTS

Enable computation of the best-fit ellipse for each region in the image.

V.2ND.THRESH

Set a second threshold for use during binary image processing.

VABORT Abort any active vision processing and all pending vision operations
associated with the given task number.

VADD Add two binary or grayscale images.

VAUTOTHR Determine good thresholds for binary image processing based on the
gradients in a grayscale frame store.

V.BACKLIGHT Establish the color (black or white) of the background.

V.BINARY Enable or disable automatic edge-image generation at VPICTURE time.

V.BORDER.DIST Define an image border reduction (in pixels) to mask out regions clipped by
the image border.

V.BOUNDARIES Enable or disable boundary analysis by the vision system.

V.CENTROID Enable computation of the centroid of each region in the image.

VCONVOLVE Perform an image convolution on a grayscale frame, possibly storing the
result in a different frame store.

VCOPY Copy all or part of an image from one operation region definition to another.

AdeptVision Reference Guide, Rev A 9

Chapter 1

AdeptVision Keyword Summary

Table 1-2. AdeptVision Keyword Summary (Continued)

Keyword Description

VCORRELATE Perform a normalized correlation, comparing a predefined template with a
rectangular image window, or searching for a closest match within the
window to a predefined template.

VDEF.AOI Define an area-of-interest. Areas-of-interest are used by most vision tools to
specify the tool placement within an image.

VDEF.CONVOLVE Define an image convolution.

VDEF.FONT Define, replace, or modify an Optical Character Recognition (OCR) font.

VDEFGRIP Define the shape and position of a robot gripper for clear-grip tests.

VDEF.LUT Define a user look-up table for mapping graylevel values.

VDEF.MORPH Define a binary morphological operation.

VDEF.SUBPROTO Define a subprototype.

VDEF.TRANS Define a transformation to apply to the location of all vision tools placed
until the next VDEF.TRANS instruction.

VDELETE Delete a specified prototype, subprototype, Optical Character Recognition
(OCR) font, or correlation template in the vision system.

V.DISJOINT Determine whether or not prototypes may be matched to multiple disjoint
regions.

VDISPLAY Select the current vision display mode or the display mode to be used when
the vision system performs its normal image processing functions.

V.DRY.RUN Enable simulation of various vision measurement and inspection operators.

VEDGE Compute edges in the grayscale image and threshold the edges, replacing the
binary image, using either a cross gradient or Sobel algorithm.

VEDGE.INFO Retrieve information about the edges and corners of a prototype or of a
region in the image.

V.EDGE.INFO Enable saving of information about edges in the image for recall via the

VEDGE.INFO instruction.

V.EDGE.STRENGTH

Set the edge threshold for grayscale image processing and fine-edge rulers.

V.EDGE.TYPE Determine the type of edge operator to use, cross gradient or Sobel, when a
VPICTURE or VEDGE instruction is performed.

VFEATURE Return specified information about the object most recently VLOCATEd or
the prototype most recently displayed by the VSHOW program instruction.

VFIND.ARC Fit a circular arc to an image edge bounded by a window that is shaped like a
ring or a ring segment.

VFINDER Perform ObjectFinder recognition using the planning associated with the
given virtual camera.

10 AdeptVision Reference Guide, Rev A

Chapter 1 AdeptVision Keyword Summary
Table 1-2. AdeptVision Keyword Summary (Continued)
Keyword Description
VFIND.LINE Fit a straight line to an image edge within a window.

VFIND.POINT

In a search window, find an edge point that is nearest to one side of the
window.

V.FIRST.COL Set the number of the first column of frame store data to be processed.

V.FIRST.LINE Set the number of the first line of frame store data to be processed.

V.FIT.ARCS Enable or disable the fitting of circular arcs when performing boundary
analysis.

V.GAIN Set the gain for the incoming video (camera) signal.

VGAPS Find the unverified gaps in a match with a prototype or subprototype.

VGET.AOI Return the definition of an area-of-interest.

VGETCAL Ask the system to fill in arrays with the previously defined vision calibration
data for a given virtual camera.

VGETPIC Read all or part of an image into a string array.

VGET.TRANS Return the value of the current vision transformation.

VHISTOGRAM Compute the histogram for a grayscale frame store.

V.HOLES Enable or disable the accounting of interior features in all objects.

V.I0.WAIT Enable the synchronization of taking pictures (VPICTURES) with an external
event that triggers the fast digital-input interrupt line.

VISION Enable the entire vision system.

V.LAST.COL Set the number of the last column of frame store data to be processed.

V.LAST.LINE Set the number of the last line of frame store data to be processed.

V.LAST.VER.DIST Enable an extra verification of prototype-to-image matches and specify the
pixel tolerance to use when determining boundary coincidence.

VLOAD Load vision prototypes, Optical Character Recognition (OCR) fonts, or
correlation templates from a disk file.

VLOCATE Identify and locate an object in the scene.

V.MAX.AREA Set the maximum area, above which the vision system ignores regions.

V.MAX.PIXEL.VAR During a VFIND.LINE or VFIND.ARC operation, this parameter specifies
the maximum pixel distance from the fit edge beyond which edge points
may be filtered out. During boundary analysis, this parameter sets the
maximum pixel deviation allowed when fitting lines and arcs to region
edges.

V.MAX.SD Set the distance (in units of standard deviation) from the fit line or arc

beyond which edge points should be filtered out.

AdeptVision Reference Guide, Rev A 11

Chapter 1

AdeptVision Keyword Summary

Table 1-2. AdeptVision Keyword Summary (Continued)

Keyword Description

V.MAX.TIME Set the maximum time allowed for the vision system to analyze a region
during prototype recognition or OCR.

V.MAX.VER.DIST Set the pixel tolerance for determining boundary coincidence during the
verification of prototype-to-image matches.

V.MIN.AREA Set the minimum area, below which the vision system ignores regions.

V.MIN.HOLE.AREA Set the minimum area, below which the vision system ignores holes.

V.MIN.LEN Set the minimum length of features to be used for feature pairs.

V.MIN.MAX.RADII Enable the feature that, for each region in the image, finds the two points on
the perimeter that are closest to and farthest from the region centroid.

VMORPH Perform a morphological transform on a binary image frame.

VMORPH Set the offset for the incoming video signal (that is, program the zero
reference for the A/D converter).

VOCR Perform Optical Character Recognition (OCR) or text verification in a
rectangular image window.

V.OVERLAPPING Determine whether or not objects may be overlapping in the image and still
be recognized.

V.PERIMETER Enable computation of the lengths of region perimeters.

VPICTURE Grab an image for processing.

VPLAN.FINDER Set up the type of “planning” used by the Finder when locating models.

VPUTCAL Give the system arrays filled with vision calibration data.

VPUTPIC Store into a frame store an image saved previously with VGETPIC.

VQUEUE Display object information for any objects queued in the vision system,
awaiting retrieval by VLOCATE instructions.

VQUEUE Return the number of objects in the vision system queue.

V.RECOGNITION Enable or disable prototype recognition by the vision system.

VRENAME Rename a prototype or subprototype.

VRULERI Obtain edge information or graylevels along a line or circular arc in the
current image.

VSELECT Select one of the two grayscale frame stores for processing or display and,
optionally, select a virtual camera and its calibration to be associated with the
frame store.

VSHOW List the defined prototypes or display a vision prototype, a subprototype, or
a specific prototype edge in the Vision display window. Edge numbers are
optionally shown.

12 AdeptVision Reference Guide, Rev A

Chapter 1

AdeptVision Keyword Summary

Table 1-2. AdeptVision Keyword Summary (Continued)

Keyword Description

VSHOW Display a vision prototype or subprototype and make information about it
available through the VFEATURE real-valued function.

V.SHOW.BOUNDS Enable the special display of the lines and arcs fit to the boundaries of
regions.

V.SHOW.EDGES Enable the special display of edges—both the primitive edges that are fit to
the boundaries of regions, and the edge points that are found by the finders
VFIND.LINE, VFIND.ARC, and VFIND.POINT.

V.SHOW.FEATS Enable the special display of features used for ObjectFinder recognition.

V.SHOW.GRIP Enable the special display of clear-grip tests.

VSHOW.MODEL Display a model—either a correlation template or an Optical Character
Recognition (OCR) font—and return information about it; or return
information about all the defined templates or OCR fonts.

V.SHOW.RECOG Enable the special display of the objects recognized.

V.SHOW.VERIFY Enable the special display of the verification step in the recognition process.

VSTATUS Display vision system status information in the Monitor display window.

VSTATUS Return vision system status information in a real array.

VSTORE Store in a disk file selected (or all) vision prototypes (and their
subprototypes), Optical Character Recognition (OCR) fonts, or correlation
templates.

V.STROBE Enable the firing of a strobe light in synchronization with taking pictures
(VPICTUREsS).

VSUBPROTO Determine the percentage of an edge or subprototype that was verified
during recognition. Also, this instruction can have the prototype position
refined, based on only a subprototype or a single edge, producing an
adjusted location for the prototype.

VSUBTRACT Subtract two binary or grayscale images.

V.SUBTRACT.HOLE Determine whether or not hole areas are to be subtracted from region areas.

V.SYNC.STROBE

Select synchronous or asynchronous firing of a strobe light when a picture is
taken (that is, when a VPICTURE is executed).

VTHRESHOLD Threshold a grayscale image, producing a binary image.

V. THRESHOLD Set the camera grayscale value that separates black pixels from white pixels.

V.TOUCHING Determine whether or not objects may be touching in the image and still be
recognized.

VTRAIN Initiate training of the object whose name is specified.

VTRAIN.FINDER Initiate training of the finder model whose name is specified

AdeptVision Reference Guide, Rev A 13

Chapter 1

How Can I Get Help?

Table 1-2. AdeptVision Keyword Summary (Continued)

Keyword Description

VTRAIN.MODEL Train on a vision “model”—a correlation template or an Optical Character
Recognition (OCR) font. For correlation, this instruction defines the template.
For OCR, this instruction trains the vision system to recognize characters in a
font, or causes the vision system to plan the recognition strategy for a fully
trained font.

VWAIT Delay program execution until processing of a VPICTURE or VWINDOW
operation is complete.

VWINDOW Perform processing (blob finder, prototype recognition, or ObjectFinder)
within a rectangular window in the image.

VWINDOWB Extract basic image information from within a rectangular window.

VWINDOWI Extract image information from within a window with any of the following
shapes: rectangle, circle, pie cut, ring, or ring segment.

How Can | Get Help?

The following section tells you who to call if you need help.

Within the Continental United States

Adept Technology maintains a Customer Service Center at its headquarters in San
Jose, CA. The phone numbers are:

Service Calls

(800) 232-3378 (24 hours a day, 7 days a week)
(408) 433-9462 FAX

NOTE: When calling with a controller-related question, please have
the serial number of the controller. If your system includes an Adept
robot, also have the serial number of the robot. The serial numbers
can be determined by using the ID command (see the V* Operating
System User’s Guide).

14

AdeptVision Reference Guide, Rev A

Chapter 1 How Can I Get Help?

Application Questions

If you have an application question, you can contact the Adept Applications
Engineering Support Center for your region:

Phone #,
Adept Office | Hours Region

San Jose, CA Voice (408) 434-5033 Western Region States:
Fax (408) 434-6248 AR, AZ,CA,CO,ID,KS, LA, MO, MT, NE,
8:00A.M. —5:00r.M. PST | NM, NV, OK, OR, TX, UT, WA, WY

Cincinnati, OH | Voice (513) 792-0266 Midwestern Region States:
Fax (513) 792-0274 AL, IA,IL, IN, KY, MI, MN, MS, ND, West
8:00A.M. — 5:00rP.M. EST | NY, OH, West PA, SD, TN, WI

Southbury, CT | Voice (203) 264-0564 Eastern Region States:
Fax (203) 264-5114 CT, DE, FL, GA, MD, ME, NC, NH, MA,
8:00 AM. —5:00P.M. EST | NJ, East NY, East PA, RI, SC, VA, VT, WV

Applications Internet E-Mail Address

If you have access to the Internet, you can send application questions by e-mail to:
adeptinfo@infolab.com

This method also enables you to attach a file, such as a portion of V* program
code, to your message.

NOTE: Please attach only information that is formatted as text.

Training Information
For information regarding Adept Training Courses in the USA, please call
(408)474-3246 or send a FAX message to (408)474-3226.

Within Europe

Adept Technology maintains a Customer Service Center in Dortmund, Germany.
The phone numbers are:

(49) 231 /75 89 40 from within Europe (Monday to Friday, 8:00 A.M. to 5:00 P.M.)
(49) 231/75 89 450 FAX

France

For customers in France, Adept Technology maintains a Customer Service Center
in Massy, France. The phone numbers are:

AdeptVision Reference Guide, Rev A 15

Chapter 1 How Can I Get Help?

(33) 169 19 16 16 (Monday to Friday, 8:30 A.M. to 5:30 .M., CET)
(33) 169 32 04 62 FAX

Outside Continental United States or Europe

For service calls, application questions, and training information, call the Adept
Customer Service Center in San Jose, California USA:

1 (408) 434-5000
1 (408) 433-9462 FAX (service requests)
1 (408) 434-6248 FAX (application questions)

Adept Fax on Demand

Adept maintains a fax back information system for customer use. The phone
numbers are (800) 474-8889 (toll free) and (503)207-4023 (toll call). Application
utility programs, product technical information, customer service information,
and corporate information is available through this automated system. There is
no charge for this service (except for any long-distance toll charges). Simply call
either number and follow the instructions to have information faxed directly to
you.

Adept on Demand Web Page

If you have access to the Internet, you can view Adept’s web page at the following
address:

http://www.adept.com

The web site contains sales, customer service, and technical support information.

16 AdeptVision Reference Guide, Rev A

Descriptions of Vision Keywords

This chapter presents detailed descriptions of all the V* system keywords related
to vision. These keywords are available only to systems with the AdeptVision
VXL option.

The global system switch VISION enables and disables all vision processing. If
this switch is DISABLEd, the system will behave as if the vision option is not
installed. The VISION switch default value is ENABLEd.

The vision system includes the following types of keywords:

= Program instructions

Functions

Monitor commands

System parameters

System switches

The keywords are presented in alphabetical order, with the description for each
keyword starting on a new page. Note that some keywords may belong to more
than one keyword type. The keyword is shown at the top of each page. The
sections described on pages 18 and 19 are included for each keyword, as
appropriate.

AdeptVision Reference Guide, Rev A 17

KEYWORD Keyword Type
Syntax

This section presents the syntax of the keyword. The keyword is shown in
uppercase and the arguments are shown in lowercase. The keyword must be
entered exactly as shown.! Parentheses must be placed exactly as shown.
Required keywords, parameters, and marks such as equal signs and parentheses
are shown in bold type; optional keywords, parameters, and marks are shown in
regular type. In the example:

KEYWORD req.paraml = req.param2 OPT.KEYWORD opt.param

KEYWORD must be entered exactly as shown!

req.paraml must be replaced with a value, variable, or expression

= the equal sign must be entered

req.param2 must be replaced with a value, variable, or expression
OPT.KEYWORD can be omitted but must be entered exactly as shown if used

opt.param may be replaced with a value, variable, or expression but
assumes a default value if not used

The keyword type (function, program instruction, and so on) is shown at the top
of the page.

An abbreviated syntax is shown for some keywords. This is done when the
abbreviated form is the most commonly used variation of the complete syntax.

Function
This section gives a brief description of the keyword.
Usage Considerations

This section lists any restrictions on the keyword’s use. If specific hardware or
other options are required, they will be listed here.

1In the SEE editor, instructions can be abbreviated to a length that uniquely identifies the
keyword. The SEE editor will automatically expand the instruction to its full length.

18 AdeptVision Reference Guide, Rev A

Keyword Type KEYWORD
Parameters

The requirements for input and output parameters are explained in this section. If
a parameter is optional, it will be noted here. When an instruction line is entered,
optional parameters do not have to be specified and the system will assume a
default. Unspecified parameters at the end of an argument list can be ignored.
Unspecified parameters in the middle of an argument list must be accounted for
by commas. For example, the following keyword has four parameters—the first
and third are used, and the second and fourth are left unspecified:

SAMPLE.INST var_1,,"test"

String and numeric input parameters can be constant values (3.32, “part_1”, etc.)
or any legitimate variable name (see Chapter 1 of the V* Language User’s Guide
for the requirements of a variable name). The data type of the constant or variable
must agree with the type expected by the keyword. String variables must be
preceded by a “$”. Precision-point variables must be preceded by a “#”. Belt
variables must be preceded by a “%”. String constants must be enclosed in quotes.
Real and integer constants can be used without modification. (V* keywords
cannot be used as variable names—see Appendix A for a complete list of
keywords.)

Details

This section describes the function of the keyword in detail.
Examples

Examples of correctly formed instruction lines are presented in this section.
Related Keywords

Additional keywords that are similar or are frequently used in conjunction with
this instruction are listed here.

AdeptVision Reference Guide, Rev A 19

V2ND.MOMENTS System Switch

Syntax

... V.2ND.MOMENTS [camera]

Function
Enable computation of the best-fit ellipse for each region in the image.
Usage Considerations

The system switches V.CENTROID and V.BOUNDARIES must also be enabled in
order for the second moments of inertia to be computed.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in AdeptVision User’s Guide for syntax details.)

Details

V.2ND.MOMENTS enables the computation of the second moments of inertia for
regions. Based on the second moments and centroid of each region, a “best-fit”
ellipse is fit to the region.

The dimensions of the best-fit ellipse are available from the VFEATURE function
after a VLOCATE instruction has succeeded. VFEATURE provides the ellipse
major and minor radii and the angle of the ellipse major axis. The center of the
ellipse is at the centroid of the region, which is also available from VFEATURE.

The areas and positions of holes are not considered during the computation of
moments. (The V.SUBTRACT.HOLE system switch does not affect moments.)
However, if you want these statistics for holes, you should enable V.HOLES,
disable V.DISJOINT, and do VLOCATEs in get-hole mode.

The best-fit ellipse is computed as follows. The ellipse is centered on the region
centroid. The major axis of the ellipse is aligned with the region axis of least
inertia. The minor axis of the ellipse is perpendicular to the major axis. The radii
of the ellipse axes are chosen so that the ellipse area and region area are equal, and
their ratios of major/minor axes of inertia are equal.

Example

The following program segment draws a cross on each region in the image,
showing the axes of the best-fit ellipses.

20 AdeptVision Reference Guide, Rev A

System Switch V2ND.MOMENTS

ENABLE V.BOUNDARIES, V.CENTROID, V.2ND.MOMENTS ;Necessary switches

ATTACH (vlun, 4) "GRAPHICS" ;Attach to the vision window
FOPEN (vlun) "Vision IMAXSIZE 640 480" ; and select graphics scaling
GTRANS (vlun, 1) ; in real-world millimeters

vf.cx = 42 ;Indexes of VFEATURE function
vf.cy =43 ; for centroid and best-fit
vf.major.axis = 48 ; ellipse dimensions

vf.major.radius = 49
vf.minor.radius = 50

VDISPLAY 3 ;Special display
VPICTURE ,0 ;Take a picture with virtual
; camera 1 and no recognition
VWAIT ;Wait for image processing to
; complete for graphics instr.
VLOCATE () $nam ;Locate anything in the image
WHILE VFEATURE(1) DO ;If a region was found...
cx = VFEATURE(vf.cx) ;Get centroid: Cx,Cy

cy = VFEATURE(Vf.cy)

maj = VFEATURE(vf.major.radius) ;Get min/max radii of ellipse
min = VFEATURE(vf.minor.radius)

ang = VFEATURE(vf.major.axis) ;Angle of major axis

dx = COS(ang)*maj ;Draw major axis

dy = SIN(ang)*maj

GLINE (vlun) cx+dx, cy+dy, cx-dx, cy-dy

ang = ang+90 ;Draw minor axis
dx = COS(ang)*min

dy = SIN(ang)*min

GLINE (vlun) cx+dx, cy+dy, cx-dx, cy-dy

VLOCATE () $nam ;Locate next region in the image
END

Related Keywords

VFEATURE (real-valued function)
V.BOUNDARIES (system switch)
V.CENTROID (system switch)
V.DISJOINT (system switch)
V.HOLES (system switch)
VLOCATE (program instruction)
V.MIN.MAX.RADII (system switch)
V.PERIMETER (system switch)

AdeptVision Reference Guide, Rev A

21

V.2ND.THRESH System Parameter

Syntax

... V.2ND.THRESH [camera]

Function

Set a second threshold for use during binary image processing.

Usage Considerations

Changing this parameter immediately affects the video input to the binary frame
buffers, assuming the VISION switch is enabled.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in AdeptVision User’s Guide for syntax details.)

Details

22

This is an optional second threshold that may be used with the primary threshold
V.THRESHOLD to separate “black” pixels from “white” ones. V.2ND.THRESH
and V.THRESHOLD define a range of grayscale values between which camera
pixels are considered to be black. Pixel values outside this range are considered to
be white. For example, if the value of V.2ND.THRESH is 50 and the value of
V.THRESHOLD is 70, camera pixels in the range 50 to 70 are interpreted as being
black, and pixels in the ranges 0 to 49 and 71 to 127 are interpreted as being white.
(The V.BACKLIGHT system switch determines whether white or black is the
background color.)

Normally, one threshold is sufficient for binary image processing.
V.2ND.THRESH should then be assigned the value 0 to disable its use. Dual
thresholds are sometimes very useful, however. For example, suppose the task is
to recognize a black and white checkerboard on a middle-gray background. By
setting the V.THRESHOLD and V.2ND.THRESH values so that the grayscale
range includes the middle-gray background, the checkerboard will appear as one
large square in the scene. As an another example, the object to be recognized may
be a uniform middle-gray color that is lying on a checkerboard background.

In general, the correct values for V.THRESHOLD and V.2ND.THRESH depend on
the particular application. The program instruction VAUTOTHR may be used to
automatically determine thresholds.

This parameter must be assigned an integer value in the range 0 to 127, inclusive.
The parameter is set to 0 (that is, its effect is disabled) when the V* and
AdeptVision systems are loaded into memory from disk.

AdeptVision Reference Guide, Rev A

System Parameter V.2ND.THRESH
Examples
Set dual thresholds for a region of interest with intensity range 45 to 67:

PARAMETER V.2ND.THRESH = 45
PARAMETER V.THRESHOLD = 67

Related Keywords

VAUTOTHR (monitor command and program instruction)
V.BINARY (system parameter)
V.THRESHOLD (system parameter)

AdeptVision Reference Guide, Rev A 23

VABORT Monitor Command and Program Instruction

Syntax
VABORT task_id

Function

Abort any active vision processing and all pending vision operations associated
with the given task number.

Parameter
task_id Optional real-valued expression specifying the number of a V*

program execution task. The special task number -2 indicates all
tasks. The special task number -1 indicates “self””, meaning the task
issuing the VABORT. Otherwise, “task_id” is an integer value in the
range 0 to N, where N is the largest task number supported by your
V* system. The default value is -1, meaning “self”.

Details

Most users will never need to use VABORT. When a user aborts a V* program that
is executing a vision instruction, or when the user aborts a vision monitor
command by typing Ctrl+C, V* automatically aborts the associated vision
processing. In fact, V* automatically sends the vision processor a VABORT
request (for the respective execution task) whenever a task is primed for
execution, starts executing, or completes execution. (This VABORT is sent to
cancel any pending VPICTURE that might be waiting for a fast digital-input
interrupt signal.)

The one vision instruction that can wait forever is a VPICTURE that waits for a
fast digital-input interrupt signal. The V.IO.WAIT system parameter enables this
wait mode. If the input signal never occurs, the VPICTURE request will never
complete. VABORT, however, may be used to cancel the request.

In multitasking applications, one task may issue a VABORT to abort a vision
instruction that another task is waiting on, thereby letting that task resume.

Only pending or executing vision instructions associated with the given task
number are aborted. However, if the given task number is -2, all pending or
executing vision instructions are aborted.

Example
Abort executing or pending vision instructions issued from task #0:

VABORT 0

24 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VADD

VADD (cam, type, dmode) dest_ibr = src1_ibr, src2_ibr

Function

Add two binary or grayscale images.

Parameters

cam

type

dmode

dest_ibr

srcl _ibr

Details

Selects the threshold parameters to apply to the result.
Optional integer value indicating the type of addition:

1 - for binary (default value)
2 - for average grayscale
3 - for summed grayscale

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

Integer value specifying the image buffer region that will receive the
result of adding the source image buffer regions. Image buffer
regions specify both a virtual frame buffer and an area of interest
(see the description of VDEF.AOI).

Integer values specifying the image buffer regions to add. The AOIs
src2_ibr must have been defined with a VDEF.AOI instruction. The
virtual frame stores specified for these two image buffer regions
must be in different physical frame stores.

The VADD operation adds two images. The images considered are identical areas
of interest within two frame stores. The areas are defined using VDEF.AOI
instructions. If the areas of interest are not the same size, the larger areas of
interest are shrunk to the same dimensions as the smallest, but each keeps its
original center location.

Each pixel in the area of interest for one image is added to the corresponding pixel
in the other image, and the result is stored in the corresponding pixel of the
destination image buffer region. The smaller the area of interest to be processed,
the faster the addition executes.

AdeptVision Reference Guide, Rev A 25

VADD Program Instruction

VADD type #1 is binary addition. The two binary images are simply OR’d
together, pixel by pixel. (In comparison, when the VSUBTRACT instruction is
used in binary mode, the images are exclusive OR’d.) The underlying grayscale
image in the destination image buffer region is left unmodified.

VADD type #2 adds the graylevel pixels in the two images together and divides
each pixel sum by 2 to produce an average. The division operation rounds up.
(Thatis, 1+2is1,2+2is 1, 3+2is 2, 4+2 is 2, etc.) Averaging images may be useful
for filtering out noise or for increasing pixel precision.

VADD type #3 adds the graylevel pixels in the two images, in effect increasing the
image intensity. Pixel sums are clipped at the maximum graylevel of 127. That is,
if the sum of two pixels exceeds 127, the sum is reduced to 127. Summing images
may be useful for increasing the brightness of dim images. (Note, however, that
the system parameters V.GAIN and V.OFFSET provide a more conventional
method of increasing the dynamic range of images when acquiring them from the
camera.)

With VADD types #2 and #3, the binary image associated with the destination
image buffer region is created by applying the threshold parameters for the given
virtual camera.

When the two source image buffer regions can be the same, the following special
considerations apply:

= VADD type #1 is not performed. (This would simply OR the image with itself
with no effect, and copy the result to the destination image buffer region.)

= VADD type #2 averages the image with itself (again an operation with no
effect), but the image is copied to the destination image buffer region.

= VADD type #3 is the only meaningful operation. It doubles the intensity of the
image buffer region and puts the result in dest_ibr

Example

26

Add two image buffer regions and place the result in the first image buffer region:

aoi2 = 2000 ;AOl number 2
cx=45 ;Center of AOI

cy=38 ;"

size =5 ;Length of side of AOI
rect=1 ;Use shape definition 1
ang=0

VDEF.AOI aoi2 = rect, cx, cy, size, size, ang
dest = aoi2+11 ;AOIl 2, virt. frame buffer 11

AdeptVision Reference Guide, Rev A

Program Instruction VADD

srcl = aoi2+11 :AOI 2, virt. frame buffer 11
src2 = aoi2+12 ;AOIl 2, virt. frame buffer 12
VADD dest = srcl, src2

Related Keywords

VCOPY (program instruction)
VDEEAOI (program instruction)
VEDGE (program instruction)
VGET.AOI (program instruction)
VSUBTRACT (program instruction)
VTHRESHOLD (program instruction)

AdeptVision Reference Guide, Rev A 27

VAUTOTHR

Syntax

Monitor Command and Program Instruction

VAUTOTHR(dmode, start, end) array[index] = ibr

Function

Determine good thresholds for binary image processing based on the gradients in
a grayscale frame store.

Parameters

dmode

start, end

array([]

index

ibr

Details

Optional real-valued expression specifying the display mode: 1 to
display the histogram and average contrast curve or 0 for no
display. The default is 1 (display).

Optional integer values specifying the range of intensities in which
to limit the search for good thresholds. These values must be in the
range 0 to 127, inclusive. The value of “start” must be less than the
value of “end”. By default, “start” is 0 and “end” is 127.

Optional array into which the threshold values are placed. The first
value in the array is the number of good thresholds found (“n”). The

next “n” values in the array are the thresholds, in order of
“goodness” (see below for details).

Optional integer value that identifies the first array element to be
defined in “array[] . Zero is assumed if the index is omitted. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

Optional real value, variable, or expression interpreted as an integer
that specifies the image buffer region to threshold. The image buffer
region specifies both an AOI and a frame store. See the definition of
VDEF.AOI.

VAUTOTHR computes a histogram for the image currently in memory and
automatically determines good threshold values. With automatic threshold
determination, the vision system can adapt to gradual changes in lighting over
time. The sample program given below, for example, could be called once every
30 minutes to adjust the threshold.

VAUTOTHR finds “optimum” thresholds by computing the average contrast in
the image produced by every threshold. The average contrast for every possible
threshold (0 to 127) is shown as a red curve overlaying the gray-level histogram,
which is shown in blue. Peaks in the red curve are the good thresholds—the
higher the peak, the better the threshold.

28

AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VAUTOTHR

The highest peak in the average contrast curve is not always the best threshold,
however. For example, specular reflections on shiny parts may produce a high
peak in the curve. The associated threshold would separate only the specular
reflections from the rest of the image, instead of separating the object from the
background. Since these specular reflections are usually the brightest part of the
image, their intensity will be located at the high end of the histogram.

To automate the filtering out of high average contrasts near the extreme ends of
the histogram, VAUTOTHR uses the system parameter V.MIN.AREA to trim the
ends. That is, if the number of pixels in the histogram above or below a peak is
less than V.MIN.AREA, the peak is discarded. This is done because there would
be regions in the image with areas less than V.MIN.AREA if one of these
discarded peaks were used as a threshold.

An effective strategy for auto-thresholding is first to choose manually the best
threshold, and then later have VAUTOTHR search for a threshold within a limited
range of the current threshold. To choose manually the best threshold, execute
VAUTOTHR as a monitor command with no parameters. The entire intensity
range is considered and the results are displayed. Then, overlay the results on the
live binary image by executing the monitor command “VDISPLAY 0, 1”. Finally,
try each of the “optimum thresholds” shown by changing the V.THRESHOLD
parameter, and decide on the best setting.

The frame store must contain a valid picture. Otherwise, an error results. (See the
VSELECT program instruction.)

Example

The following code computes a new threshold for the given virtual camera. The
search range is (t-20) to (t+20), where “t” is the current threshold:

LOCAL t, tmin, tmax

VPICTURE (cam) 2
;Take a quick picture

t = PARAMETER(V.THRESHOLDJ[cam])
;The current threshold
; Search range is +/-20 around the current threshold

tmin = MAX(0, t-20) ;Make sure it's >=0
tmax = MIN(127, t+20) ;Make sure it's <= 127
VWAIT

;Wait for image processing
VAUTOTHR (0, tmin, tmax) thrs[] ;Compute best threshold
IF thrs[0] > 1 THEN ;If got one, use it
PARAMETER V.THRESHOLD[cam] = thrs[1]
END

AdeptVision Reference Guide, Rev A 29

VAUTOTHR Monitor Command and Program Instruction

Related Keywords

30

VDEEAOI (system parameter)

VHISTOGRAM (monitor command and program instruction)
V.2ND.THRESH (system parameter)

V.MIN.AREA (system parameter)

V.THRESHOLD (system parameter)

AdeptVision Reference Guide, Rev A

System Switch V.BACKLIGHT

Syntax

... V.BACKLIGHT [camera]

Function
Define which color (black or white) is to be considered the background.
Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW, VWINDOWB, or VWINDOWI instruction, is
executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in AdeptVision User’s Guide for syntax details.)

V.BACKLIGHT affects binary operations only and has no effect on grayscale
processing.

Details

If the V.BACKLIGHT switch is enabled, the vision system considers the visual
background to be white. Otherwise, the background is considered to be black. The
objects to be recognized are in the foreground, the opposite color of the
background.

The borders of the image (that is, beyond the image limits set by the parameters
V.FIRST.LINE, V.LAST.LINE, V.FIRST.COL, and V.LAST.COL) are always treated
as background.

The state of V.BACKLIGHT is critically important for prototype training, for clear
grip tests, and for “blob” analysis. You may train prototypes only on foreground

objects. Gripper positions over foreground regions are never clear. V.MIN.AREA

applies to outermost foreground regions. V.MIN.HOLE.AREA applies to all inner
regions, both foreground and background.

However, the state of V.BACKLIGHT is not critical for prototype recognition.
Prototypes are either black or white. In fact, one prototype may be black while
another is white, and both may be found in the same image, regardless of the state
of V.BACKLIGHT.

AdeptVision Reference Guide, Rev A 31

V.BACKLIGHT System Switch
Example
Enable processing of backlit objects for virtual camera 3:

ENABLE V.BACKLIGHT[3]

Get the current setting for virtual camera 1:

val = SWITCH(V.BACKLIGHTI[1])

Related Keywords

V.BINARY (system switch)
VWINDOW (program instruction)
VWINDOWSB (program instruction)
VWINDOWI (program instruction)

32 AdeptVision Reference Guide, Rev A

System Switch V.BINARY

Syntax
... V.BINARY [camera]
Function

Enable or disable automatic edge-image generation at VPICTURE time.

Usage Considerations

This switch may become obsolete in future versions. Its functionality is identical
to performing a VEDGE instruction after a VPICTURE (*,1) 2 instruction.

A change to this switch takes effect when the next VPICTURE command or
instruction is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in AdeptVision User’s Guide for syntax details.)

Details
Normally, this switch is enabled.

If disabled, it will affect the operation of VPICTURE modes -1, 1, and 2, as
described below.

For VPICTURE modes 1 and 2, it will start a VEDGE operation
immediately following the completed acquisition into the virtual frame
buffer.

For VPICTURE mode -1, a VEDGE operation is performed prior to
processing of the image. In this case, the VPICTURE instruction will not
complete until after the first stage of processing (the computation of
run-lengths) is complete. Therefore, the run-lengths are computed on the
binary edge image which is the result of VEDGE (see Appendix B for
details on how vision run-lengths are generated).

In each case above, the choice of edge operation to be performed (cross-gradient
or Sobel) is determined by the value of the system parameter V.EDGE.TYPE. And,
the edge strength threshold is given by the V.EDGE.STRENGTH system
parameter.

Examples

Enable binary image processing for virtual camera #1, but not for virtual camera
#2:

ENABLE V.BINARY[1]
DISABLE V.BINARY[2]

AdeptVision Reference Guide, Rev A 33

V.BINARY System Switch

Related Keywords

34

VAUTOTHR (monitor command and program instruction)
VPICTURE (monitor command and program instruction)
VEDGE (program instruction)

V.EDGE.STRENGTH (system parameter)

V.EDGE.TYPE (system parameter)

V.THRESHOLD (system parameter)

V.2ND.THRESH (system parameter)

AdeptVision Reference Guide, Rev A

System Parameter V.BORDER.DIST

Syntax

... V.BORDER.DIST [camera]

Function

Define an image border reduction (in pixels) to mask out regions clipped by the
image border.

Usage Considerations

This parameter takes effect when the next VPICTURE command or instruction, or
VWINDOW instruction, is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

This parameter is useful for depalletizing applications where the camera sees only
a portion of the pallet at one time. In that case, the four sides of the image will cut
across (that is, “clip””) some of the objects in the pallet into two portions—a visible
portion and an invisible portion. (The four sides of the image are defined by the
parameters V.FIRST.COL, V.LAST.COL, V.FIRST.LINE, and V.LAST.LINE or by an
AOI definition.)

If an object has been cut by the edge of the image and more than half of the object
must be visible for it to be recognized, the vision system may spend a lot of time
proposing prototype matches to that object. Only a portion of an object needs to
be visible in order to propose a match, but most or all of the object (depending on
the prototype’s verify percentage and edge weights) needs to be visible to verify
the match.

V.BORDER.DIST defines an “inner border” within the “outer border” defined by
the parameters V.FIRST.COL, V.LAST.COL, V.FIRST.LINE, and V.LAST.LINE or
by AOI definition. Only the reduced image area (inside the inner border) is used
during the match-proposal step of image processing. The inner border affects
match proposals as described below.

If an object is completely outside the inner border and completely inside
the outer border, a match proposal is made because the object is completely
visible. That is, the inner border has no effect.

If an object is completely outside the inner border and partially outside the
outer border, no match proposals are made to that object.

AdeptVision Reference Guide, Rev A 35

V.BORDER.DIST System Parameter

If an object is partially inside the inner border and partially outside the
outer border, a correct match will probably still be proposed—based on
features in the reduced image area. The match will be verified based on all
the visible boundary of the object.

As a general rule, V.BORDER.DIST should be set to one half the image width of
the object being located. You may want to experiment with different values of
V.BORDER.DIST. To do that, you should enable the V.SHOW.VERIFY system
switch, select a special display mode (VDISPLAY mode #3), and process an image
(VPICTURE -1, VPICTURE 2 followed by VWINDOW). All the attempts to verify
match proposals are displayed in the Vision display window. Then, if the vision
system attempts to verify matches to objects cut off by the sides of the image, you
should increase V.BORDER.DIST. However, you should not make
V.BORDER.DIST so big that the system does not recognize objects that are
completely visible.

This parameter must be assigned an integer value in the range 0 to 100, inclusive.
The value is interpreted as the number of pixels between the outer border and the
inner border. The parameter is set to 0 (that is, no border reduction will occur)
when the V* and AdeptVision systems are loaded into memory from disk.

windows, but not with rotated windows. V.BORDER.DIST is

f CAUTION: V.BORDER.DIST works with orthogonal (VWINDOW)
ignored if the window is rotated.

Example

Figure 2-1 shows an image of a pallet containing round objects. Many of the
objects have been clipped by the image border. To speed up image processing, the
V.BORDER.DIST parameter was assigned the value 25. This defines an inner
border that is depicted by dashed lines in the figure. Features outside the inner
border are not used to propose or confirm matches. (The features may still be
used to verify matches, however.)

36 AdeptVision Reference Guide, Rev A

System Parameter V.BORDER.DIST

V.BORDER.DIST =25

Figure 2-1. Example of V.BORDER.DIST

Related Keywords

VDEEAOI (program instruction)
V.FIRST.COL (system parameter)
V.FIRST.LINE (system parameter)
V.LAST.COL (system parameter)
V.LAST.LINE (system parameter)

AdeptVision Reference Guide, Rev A 37

V.BOUNDARIES System Switch

Syntax
... V.BOUNDARIES [camera]
Function
Enable or disable boundary analysis by the vision system.

Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in AdeptVision User’s Guide for syntax details.)

Details

This switch allows the user to disable boundary analysis and, therefore, to disable
the entire object recognition process when a “full” VPICTURE (type # —1 or #0) or
a VWINDOW instruction is performed. Connectivity will be performed to extract
regions from the image, but their centroids and moments will not be calculated.
Only the more primitive region features such as area and bounding box are
computed.

Example
Minimize vision processing (for all cameras):

DISABLE V.BOUNDARIES

Related Keywords

VFEATURE (program instruction)
V.FIT.ARCS (system switch)
V.RECOGNITION (system switch)
VWINDOW (program instruction)

38 AdeptVision Reference Guide, Rev A

System Switch V.CENTROID

Syntax
... V.CENTROID [camera]

Function
Enable computation of the centroid of each region in the image.
Usage Considerations

The V.BOUNDARIES system switch must also be enabled in order for centroids to
be computed.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in the AdeptVision User’s Guide for syntax details.)

Details

V.CENTROID enables the computation of the centroids of regions. When it has
been computed, the centroid of a region is available, after a VLOCATE instruction
has succeeded, by using the VFEATURE function.

The positions and areas of holes are not considered in the centroid computation.
(The V.SUBTRACT.HOLE system switch does not affect this.) However, if you
want the centroids and areas of holes, you should enable V.HOLES, disable
V.DISJOINT, and do VLOCATEs in get-hole mode. If prototypes are being
recognized in the image, V.CENTROID does not have to be enabled to get the
locations of the recognized objects. Region centroids are different from recognized
object locations, although both are available with the VFEATURE function. If
region centroids are not needed, V.CENTROID should be disabled for efficiency. If
the V.2ND.MOMENTS or V.MIN.MAX.RADII system switch is enabled, the
V.CENTROID switch must also be enabled in order for the desired computation
to be performed.

Example

The following program segment draws a dot at the centroid of each region in the

image.
ENABLE V.BOUNDARIES, V.CENTROID ;Enable necessary switches
VDISPLAY 3 ;Special display
VPICTURE ,0 ;Take a picture with virtual

; camera #1 and no recognition
ATTACH(vlun, 4) "GRAPHICS" ;Attach to the vision window

FOPEN(vlun) "Vision IMAXSIZE 640 480" ; and select graphics scaling

AdeptVision Reference Guide, Rev A 39

V.CENTROID System Switch

GTRANS(vlun, 1)
; in real-world millimeters

vf.cx = 42 ;Indexes of VFEATURE function
vf.cy =43 ; for centroid
VWAIT ;Wait for image processing to
; complete for graphics instr.
VLOCATE() $nam ;Locate anything in the image
WHILE VFEATURE(1) DO ;If a region was found...
cx = VFEATURE(Vf.cx) ;Get centroid: Cx,Cy

cy = VFEATURE(vf.cy)
; Draw a dot on the region centroid
GARC(vlun) cx, cy, 1

VLOCATE () $nam ;Locate next region in image
END

Related Keywords

40

V.BOUNDARIES (system switch)
VFEATURE (real-valued function)
V.2ND.MOMENTS (system switch)
V.HOLES (system switch)
VLOCATE (program instruction)
V.MIN.MAX.RADII (system switch)
V.PERIMETER (system switch)
V.SUBTRACT.HOLE (system switch)

AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VCONVOLVE

VCONVOYE (cam, type ,dmode) dest_ibr=src_ibr

Function

Perform an image convolution on a grayscale frame, possibly storing the result in
a different frame store.

Usage Considerations

The AdeptVision Enhanced VXL Interface option is required for convolutions
larger than 3x3. On standard vision systems, only the center 3x3 section of larger
convolutions is used (for both user-defined and predefined convolutions). Thus,
standard systems may use larger convolutions, but the results may not be as
expected (see the description of VDEF.CONVOLVE for a list of predefined
convolutions).

With the AdeptVision Enhanced VXL Interface option, VCONVOLVE will
execute faster.

Parameters

cam

type

dmode

dest_ibr

src_ibr

Selects the threshold parameters to apply to the convolved result.

Integer value in the range 1 to 32, inclusive. A value in the range 1 to
16 performs a predefined convolution, and a value in the range 17 to
32 performs a user-defined convolution (see the description of
VDEF.CONVOLVE).

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

Optional integer value specifying the image buffer region that will
receive the result of the convolution. Image buffer regions specify
both a virtual frame buffer and a size (see the description of
VDEF.AQI).

Optional integer value specifying the image buffer region to
convolve. The image buffer region’s AOI must have been defined
with a VDEF.AOI instruction.

NOTE: If only one image buffer region is specified, both image
buffer regions default to the specified image buffer region. If neither
image buffer region is specified, both default to the currently
selected full frame.

AdeptVision Reference Guide, Rev A 41

VCONVOLVE Program Instruction

The AOIs for convolutions greater than 3x3 are limited to 504 pixels
in width. If an AOI wider than 504 is specified, the image buffer
region is reduced based on the center of the image buffer region.

Details

A convolution is a neighborhood pixel operator that may be used to smooth an
image or extract edges. The effect of a convolution is visible in VDISPLAY mode
#1. As a first experiment with the VCONVOLVE instruction, type “VDISP 1” and
then try each of the predefined convolutions by repeatedly doing “VPIC 27,
followed by “VCON(, n)”, withnequal to 1, 2, ..., 16.

Convolutions types 1 to 16 are predefined, and types 17 to 32 can be defined by
the user. See the VDEF.CONVOLVE instruction in this manual for a description of
the predefined convolutions and an explanation of how to define new ones.

The image buffer region defines the convolved area. The smaller the area of the
image to be processed, the faster VCONVOLVE executes.

If the destination buffer is different from the source buffer, the destination buffer
assumes some attributes of the source buffer. In particular, the virtual camera that
was associated with the source buffer (when the image was acquired via
VPICTURE) becomes associated with the destination buffer. This affects
subsequent measurement or inspection operations on the frame, such as
VRULERI or VWINDOW, because conversion of pixel units to millimeters is
determined by the camera calibration.

Example

Apply a low-pass (averaging) filter to the currently selected full frame buffer:

VCONVOLVE (, 1)

Related Keywords

42

VDEEAOI (program instruction)
VDEECONVOLVE (program instruction)

AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VCOPY

VCOF (cam, scale, dmode, lut) dest_ibr = src_ i br

Function

Copy the image from one image buffer region to another.

Usage Considerations

The scaling and look-up-table features require the AdeptVision Enhanced VXL
Interface option.

Parameters

cam

scale

dmode

lut

dest_ibr

src_ibr

Optional integer value specifying a virtual camera. The
V.THRESHOLD and V.2ND.THRESH values associated with the
virtual camera are used when the scale parameter is 0.5 (see
Details).

Optional real-valued expression specifies magnification of the copy.
The acceptable values are 0.5, 1, and 2. The default is 1. This feature
requires the AdeptVision Enhanced VXL Interface option.

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

Optional integer in the range 1 to 133 maximum (the actual
maximum value is set with the DEVICE instruction) that specifies a
defined “look-up table”. The table is defined with a VDEF.LUT
instruction and specifies a replacement value for each possible
graylevel value. See the description of VDEF.LUT. This feature
requires the AdeptVision Enhanced VXL Interface option.

Integer value specifying the image buffer region to receive the
copied image. Image buffer regions specify both a size and a frame
store (see the description of VDEF.AOI).

Integer values specifying the image buffer region to copy. The image

buffer regions’s AOI must have been defined with a VDEF.AOI
instruction.

AdeptVision Reference Guide, Rev A 43

VCOPY Program Instruction

NOTE: If only one image buffer region is specified, both image
buffer regions default to the specified image buffer region. If neither
image buffer region is specified, both default to the currently
selected full frame which is selected with a VSELECT or VPICTURE
instruction—for example, VPICTURE (1,,1011).

Details

VCOPY copies one image buffer region to another and optionally zooms the
image. Both the grayscale and binary images are copied.

If the scale parameter is 0.5, the image is averaged with a 2x2 convolution. The
result is then subsampled and thresholded using the threshold parameters for the
virtual camera specified in “cam”.

If the scale parameter is 2, the source frame store must be the display frame store
(src_ibr must have the form nnn009).

After a frame is copied, the destination frame assumes some attributes of the
source frame. In particular, the virtual camera that was associated with the source
frame becomes associated with the destination frame. This affects subsequent
measurement or inspection operations on the frame, such as VRULERI or
VWINDOW, because conversion of pixel units to millimeters is determined by the
camera calibration.

NOTE: When copying from one area to another within the same
frame buffer, do not copy areas of interest that would overlap areas
that will be copied out of later in the operation. Specifically, you
cannot VCOPY a 100x100 pixel region down 10 pixels. By the time
the tenth row is read out from the source area of interest, it has
already been written over by line 1 of the source area of interest.

Examples

Copy one image buffer region in virtual frame store 11 to another image buffer
region in the same virtual frame store:

VCOPY 4011 = 5011

Related Keywords

44

VDEEAOI (program instruction)
VDEELUT (program instruction)
VADD (program instruction)
VSELECT (program instruction)
VSUBTRACT (program instruction)

AdeptVision Reference Guide, Rev A

Program Instruction VCORRELATE

Syntax
VCORREATE (cam, mode, dmode, max_depth, accep t, give_up)
data] i], act_depth =tplnum ,ibr
VCORREATE (cam, mo de, dmode) data] i]=tplnum, shape ,
cXx, ¢y, dx, dy , ang
Function

Perform a normalized grayscale or binary correlation, comparing a predefined
template with a rectangular image window, or searching for a closest match
within the window to a predefined template.

Usage Considerations

Binary correlation requires the AdeptVision Enhanced VXL Interface option.
Templates are defined with a VTRAIN.MODEL instruction.

Parameters
cam Optional real-valued expression indicating the virtual camera
number to use. (This parameter is currently not used.)
mode Optional real-valued expression used to specify a skip pattern, as

follows:

0 default, use the mode determined by the vision system
1 nonskipping mode

2 skip rows only

3 skip columns only

4 skip both rows and columns

max_depth Optional real-valued expression indicating the maximum depth of a
hierarchical search, as follows:

-1 default, go to the maximum depth possible, see the description
of act _depth . (If the specified template is a binary template,
hierarchical searches are not allowed and this parameter is
ignored.)

0 indicates no hierarchical search.

1 - 4 depth of hierarchical search

accept This parameter specifies the minimum acceptable score for the final
match. Default value is 0.8. Searching stops when this score is
returned. If a match exceeding this score is not found, the best
match is returned.

give_up If a hierarchical search is performed, this parameter specifies the
minimum score that must be realized at each level of the search in
order to continue searching at the next higher level. If a search does

AdeptVision Reference Guide, Rev A 45

VCORRELATE

46

dmode

data(]

act_depth

tplnum

ibr

shape

cX, cy

dx, dy

ang

Program Instruction

not find a match that exceeds this score, the search returns to the
next candidate at the lowest level. Default value is 0.2.

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid). When drawn, both the search
window and the highest-scoring template position are shown.

Real array into which the results of the correlation are placed.
Element “data[i]” receives the best correlation score, in the range 0
to 1 (where 1 is perfection). Elements “data[i+1]” and “data[i+2]”
receive the X and Y coordinates (in millimeters) of the center of the
template where it received the best correlation. Location accuracy is
only to one pixel.

Optional array index that identifies the first element to be defined in
the array “data]] . The default is 0. If a multiple-dimension array is
specified, only the right-most index is incremented as the values are
assigned.

Optional variable that returns the actual depth of a hierarchical
search. Searches will not go to the deepest level specified in
max_depth if the template becomes too small, the search area size is
too close to the template size, or the template degrades as a result of
reducing.

Real-valued expression specifying the correlation template number
in the range 1 to 99, inclusive.

Optional integer value specifying the image buffer region to search
for a match with a correlation template (tpinum). Image buffer
regions specify both a size and a frame store (see the description of
VDEF.AOI). The template size is reduced (if necessary) to a multiple
of four pixels. If an image buffer region is not specified, the
currently selected frame store is used.

The template size is reduced (if necessary) to a multiple of four
pixels. If anibr is not specified, the currently selected frame store is
used.

Not currently used.

Real-valued expressions specifying the position of the center of the
search window, in millimeters.

Real-valued expressions specifying the width (dx) and height (dy)
of the search window, in millimeters.

Not currently used.

AdeptVision Reference Guide, Rev A

Program Instruction VCORRELATE

Details

Normalized Grayscale Correlation (NGC) is an image-to-template comparison.
More than simply an image subtraction, normalized correlation normalizes the
differences, accounting for lighting or contrast changes. Additive or
multiplicative changes to the image do not affect the correlation results. Binary
correlation simply compares the black/white thresholded image with the binary
template.

To define a template, you merely define an orthogonal rectangle in a desired
image using the VTRAIN.MODEL instruction. The pixels within the image are
stored in the vision CPU memory. More than one template may be defined, and
they may be stored to disk for later recall (see the VSTORE and VLOAD keywords
for details). The pull-down menus on the Vision display window let you list,
show, delete, and rename templates.

Templates are numbered in the range 1 to 99. Some monitor commands and
instructions that reference templates use a string name of the form “TMPL_n”,
where “n” is the template number in the range 1 to 99.

One of the most important features is the ability to skip rows and/or columns
when correlating at the most-reduced levels of hierarchy. Not performing
correlation matches at every pixel location results in a much faster correlation
tool. However, certain templates such as the ones with low contrast or with
skinny features do not permit skipping. VTRAIN.MODEL analyzes each template
during training to determine a default skip pattern and a default depth of
hierarchy. The determination criteria places higher priority on robustness than
speed, resulting in a more conservative default depth and skip pattern. Being
conservative means a slower tool, but with less variation in execution time and
less chance of not finding the object.

The search time limit for levels 0 - 4 is controlled by the V.MAX.TIME parameter.
A value of 0 means that there is no time limit for the search.

The default values can be overridden by specifying the desired depth and skip
pattern using input parameters “max_depth” and “mode”, respectively.
However, not using the recommended depth and skip pattern may result in
mismatches or increased variability of execution times.

If the depth parameter is greater than 0, a hierarchical search is performed. The
image and template are first subsampled by averaging, and “mode” number of
reduced images are produced. A search is then made of the most reduced image,
and the location with the highest correlation match is selected. Next, the “mode -
1” reduced image is searched in close proximity to the location with the best
match. This process is iterated until the final target region image is searched at full
resolution. This process greatly increases the speed of correlation matching. The
system will not allow a search that results in a reduced image smaller than 8x8

AdeptVision Reference Guide, Rev A 47

VCORRELATE Program Instruction

pixels. For example, take an AlO that is being searched with “mode” = 3. First the
area of interest definition is reduced to 64x64, the template is reduced a
corresponding amount, and a search is made for a match. Next a 128x128 area is
searched in close proximity to the best match found in the 64x64 reduction.
Finally, a search is made of the 256x256 area in close proximity to the best match
found in the 128x128 reduction. (See Appendix F in the AdeptVision User’s Guide
for further details.)

The speed of the correlation operation is independent of the complexity of the
image. The speed depends on the size of the template, the size of the search
window, and the effectiveness® of the hierarchical search. Specifically, if the
template size is “w” by “h” pixels and the window size is “W” by “H”, the time
spent to correlate is proportional to f;,(Ww*h*(W-w+1)*(H-h+1)). When the search
window is the same size as the template, the above expression is f,(w*h), and the
operation runs fairly fast.

NOTE: Correlation templates provide a way to save images to CPU
memory or disk. Copying a complete image to memory takes about
1 second. Storing it to disk takes about 14 seconds. Loading it from
disk takes 13.5 seconds. Copying it to a frame buffer takes about 0.1
seconds.

If your controller is equipped with the AdeptVision Enhanced VXL Interface
option, binary correlation may be performed using the hardware binary
correlator. This executes a very fast correlation operation. The area-of-interest for
binary correlation must be at least 16 pixels wider and 4 pixels higher than the
template.

With 640x480 virtual frame stores, unused portions of the frame store are used to
store the correlation template. This unused space is 384x480 pixels, so this is the
largest template allowed. For a hierarchical search the template is limited to
384x341 pixels.

For frame stores smaller than 640x480, the template may be as large as the virtual
frame store (although hierarchical correlation is limited to 512x341 pixels).

Hierarchical correlation and binary correlation require an extra “scratch” frame
store. If both physical frame stores contain image data, VSELECT(mode = 1) must
be used to specify which frame store to use as the scratch frame store.

L An “effective” hierarchical search has a “depth” that quickly identifies candidate areas. Too
shallow a search will be slow to identify candidate areas. The give_up parameter can also help
the effectiveness of a search by halting unproductive searches before they reach the top level.

48 AdeptVision Reference Guide, Rev A

Program Instruction VCORRELATE
Example

Performs a normalized correlation using template #3, and display the search
window and results. The search window is centered at the point (140,260) and is
20mm x 30mm in size.

VDEF.AQI 3000 =1, 140, 260, 20, 30
VCORRELATE () results[] = 3, 3011

Related Keywords

VDEEAOI (program instruction)
VLOAD (monitor command)

VLOAD (program instruction)
VSHOW.MODEL (program instruction)
VSELECT (program instruction)
VSTORE (monitor command)

VSTORE (program instruction)
VTRAIN.MODEL (program instruction)

AdeptVision Reference Guide, Rev A 49

VDEEAOI Program Instruction

Syntax
VDEF.AOl aoi = shape, dim1, dim2, dim3 , dim4, ang1, ang2
Function

Define an area-of-interest (AOI). Areas-of-interest are used by most vision tools to
specify the tool placement within an image.

Usage Considerations

A special AOI (accessed as numbers 1000, 1001, or 1002) is predefined for
compatibility with programs written for 10.x versions of AdeptVision AGS. This
AOI refers to the entire frame store and cannot be redefined with VDEF.AOI.

Parameters
aoi Real value, variable, or expression interpreted as an integer in the
range 2000 to 200000 maximum (the actual range is specified with
the DEVICE instruction) that specifies the area-of-interest being
defined.
shape Real value, variable, or expression specifying the shape of the

area-of-interest. See Details below.

diml -dim4 Dimensions of the area-of-interest. The interpretation of these
values, as well as which values are required, is determined by the
shape parameter. See Details below.

angl, ang2 Orientation or angular range of the area-of-interest. The
interpretation of these values, as well as which values are required,
is determined by the shape parameter. See Details below.

Details

This instruction defines the shape, size, and orientation for most vision tools.
Figure 2-2 below shows the shape parameters that define rectangular or linear
shaped tools. Note that an area-of-interest can be defined that includes all
elements but still can be used for shapes that do not require all elements. For
example, the instruction:

VDEF.AOI 2000 = 1, 25, 45, 20, 10, 45

can be used by both point finders and linear rulers. In the case of a point finder,
the tool will be centered at x = 25, y = 45, with a width of 20mm, a height of 10mm,
and a rotation of 45°. If the area-of-interest is used for a linear ruler, the width
specification will be ignored, resulting in a ruler centered at x = 25, y = 45, with a

50 AdeptVision Reference Guide, Rev A

Program Instruction

VDEFE.AOI

length of 20mm and a rotation of 45°. If you want to define an area-of-interest just
for a ruler, you have to leave a place marker for the ignored dimensions. For
example, the following definition could be used for linear tools but not for tools
requiring a full rectangle:

VDEF.AOI 2000 =1, 25, 45, 20, 0, 45

A shape 3 definition accepts positive or negative values for dim3 and dim4. If
both these dimensions are negative, dim1 and dim2 specify the upper right corner
rather than the lower left corner.

NOTE: The area-of-interest widths are automatically reduced to a
multiple of four pixels.

Shape =1
Shape=2
Shape =3
Shape =4

- dim3— p
-« . angl T
B - dim4
dim1, dim2 i
> dim3——
<« . angl T
”537) dim4
diml1, dim2 i
<« dim3 —
angl dim4
- !
diml1, dim2
dim3, dim4
diml, dim2

<+ dim3
4\\

angl

P
%

dim1, dim2

<——dim3
<. angl

ﬂ

diml, dim2

<+— dim3
<. angl

fany

ﬂ

dim1, dim2

dim3, dim4

Figure 2-2. Shape Parameters for Rectangular Tools

AdeptVision Reference Guide, Rev A

51

VDEEAOI Program Instruction

52

Figure 2-3 shows the shape parameters that define arc-shaped tools. As in
rectangle-shaped tools, a fully defined area-of-interest can be used by simpler
shaped tools, and the appropriate dimensions are ignored. In the illustration,
diml and dim2 always refer to the center of the arc/circle. For shape 7, a positive
value for ang2 indicates a counterclockwise range from angl and a negative value
indicates a clockwise range. The sign of ang2 also determines whether ruler tools
search for edges in a clockwise or counterclockwise direction.

Shape 3 is inappropriate but allowed for finder tools. Shape 4 is not allowed for

line or point finders. Shapes 9 and 10 are inappropriate but allowed with the
VFIND.ARC instruction.

AdeptVision Reference Guide, Rev A

Program Instruction VDEEAOI

dim3

Shape =5
Shape =6

Shape =7

Shape =8

dim3 dim4 dim3 dima
Shape =9 angl
ang2
dim3 dim4
Shape = 10 angl
dim4
dim3
ang2

Figure 2-3. Shape Parameters for Arc-Shaped Tools

AdeptVision Reference Guide, Rev A 53

VDEEAOI Program Instruction

Before an AOI can be used by a vision tool, it must be combined with a virtual
frame buffer number. The VDEF.AOI instruction specifies only the area-of-interest
information. You must add a frame buffer specification to the area-of-interest
number to create a complete “image buffer region”. An image buffer regionis a 4-
to 6-digit value. VDEF.AOI specifies the left 1 to 3 digits and ignores the right
three digits. The frame store information must be added to the right three digits to
complete the image buffer region specification. This allows the same
area-of-interest to be used in different virtual frame buffers. See the example
below.

There are three physical frame stores in an AdeptVision VXL system. Two are for
vision operations and one is for displaying vision data.! The two physical frame
buffers used for vision operations are further divided into “virtual” frame stores.
Virtual frame buffers are allocated with the V* DEVICE command. See the V*
Language Reference Guide for details on DEVICE. See the AdeptVision User’s
Guide for a summary of using DEVICE to configure virtual frame stores. AOls
that extend beyond the virtual frame buffer are clipped. The form of a complete
image buffer region is:

NNN \AY P

area-of-interest number virtual frame buffer physical frame store

When “VVP” = 0, the currently selected virtual frame buffer is used. When
“NNN” =0, 1is assumed (full-frame).

NOTE: Instructions requiring two areas-of-interest that are the
same size will reduce the larger area-of-interest about its center.

Example
fs2=2 ;Physical frame store 2
fsl=1 ;Physical frame store 1
virt_fr = 2*10 ;Virtual frame store 2

54

: Define two areas-of-interest

aoi_up = 8*1000 ;Area-of-interest 8
aoi_dwn = 12*1000 ;Area-of-interest 12
VDEF.AOl aoi_up =1, 10, 15, 20, 10, 90

VDEF.AQIl aoi_dwn =1, 10, 5, 20, 10, 90

1 The special value VVP = 009 refers to the display frame store. This frame store contains the
image displayed on the monitor and can be referenced only by a VCOPY instruction.

AdeptVision Reference Guide, Rev A

Program Instruction VDEEAOI
; Define three image buffer regions

src_ibrl = aoi_up+virt_fr+fsl ;AOI 8, virtual frame 21
src_ibr2 = aoi_dwn+virt_fr+fs2 ;AOQIl 12, virtual frame 22
dest_ibr = aoi_up+virt_fr+fs2 ;AQI 8, virtual frame 22

; Add AOI 8 in virtual frame 21 (src_ibrl = 8021) to
; AOI 12 in virtual frame 22 (src_ibr2 = 12022). Place
; the resultin AOI 8 in virtual frame 22 (dest_ibr =8022).

VADD(1) dest_ibr = src_ibrl, src_ibr2
Related Keywords

VADD (program instruction)
VAUTOTHR (program instruction)
VCONVOLVE (program instruction)
VCOPY (program instruction)
VDEETRANS (program instruction)
VEDGE (program instruction)
VGET.AOI (program instruction)
VGET.TRANS (program instruction)
VHISTOGRAM (program instruction)
VMORPH (program instruction)
VPICTURE (program instruction)
VSUBTRACT (program instruction)
VCORRELATE (program instruction)
VFIND.ARC (program instruction)
VFIND.LINE (program instruction)
VFIND.POINT (program instruction)
VOCR (program instruction)
VRULERI (program instruction)
VTRAIN (program instruction)
VTRAIN.MODEL (program instruction)
VWAIT (program instruction)
VWINDOW (program instruction)
VWINDOWSB (program instruction)
VWINDOWI (program instruction)

AdeptVision Reference Guide, Rev A 55

VDEECONVOLVE Program Instruction

Syntax

VDEF.CONVOLVE type=a rray[i,]j]

Function

Define an image convolution.

Usage Considerations

VDEF.CONVOLVE is intended only for experienced users. It is not critical to the
operation of the vision system.

Convolutions larger than 3x3 require the AdeptVision Enhanced VXL Interface
option. When a convolution with a definition larger than 3x3 is performed by a
standard vision system, only the center 3x3 elements are used in the convolution.
Thus, predefined convolutions 1 to 6 will perform correctly on all systems.
Convolutions 7 to 14 will run on all systems but may not return the expected
results.

Parameters
type Integer value in the range 17 to 32, inclusive. This is the number of
the user-definable convolution that is being defined.
arrayl[,] Array of dimensions 7x7 defining a convolution. Each element in
the array must be in the range -128 to +127.
i, | Optional integers specifying the starting array index values. The
default value of iand j is 0.
Details

56

A convolution is a neighborhood pixel operator that may be used to smooth an
image or extract edges. The effect of a convolution is visible in VDISPLAY mode
#1. The VCONVOLVE program instruction performs convolutions.

The convolution is applied to each pixel in the grayscale frame store.

a. The convolution is applied to a single pixel by centering the convolution
on the pixel so that the 7x7 array of convolution terms overlays the
7x7-pixel neighborhood of the pixel.

b. Each term of the convolution is multiplied by the pixel value that it
overlays.

c. The 49 products are summed and divided by 128.

AdeptVision Reference Guide, Rev A

o O o o o o o

o o o o o o o

Program Instruction VDEECONVOLVE

d. The absolute value of the result is stored in the second image memory for
the center pixel. The exception is in convolution #14, where it has a
signed output with zero at graylevel 64.

All convolutions are 7x7 in size. However, smaller convolution sizes (such as 3x3)
may be defined inside a 7x7 matrix (as shown below).

The speed of VCONVOLVE depends on the system and the kernel: On the
standard system, the time is roughly 9ms for each nonzero element in the kernel.
With the AdeptVision Enhanced VXL Interface option, 4x4 or smaller takes 9ms;
larger kernels take 17ms. Also, the width of the AOI is limited to 508 pixels for
kernels larger than 4x4.

Convolutions numbered 1 to 16 are predefined and may not be redefined by the
user. The predefined convolutions are as follows:

1: 3x3 flat average 2: 3x3 gaussian average
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 14 14 14 0 0 0 0 5 15 5 0 0
0 14 14 14 0 0 0 0 15 47 15 0 0
0 14 14 14 0 0 0 0 5 15 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
3: 3x3 vertical edge 4: 3x3 horizontal edge
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 -25 0 25 0 0 0 0 25 75 25 0 0
0 -75 0 75 0 0 0 0 0 0 0 0 0
0 25 0 25 0 0 0 0 25 -75 -25 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

AdeptVision Reference Guide, Rev A 57

VDEECONVOLVE

58

o o o o o o o

o o o o o o o

o O o o o o o

o o1 o1 o1 o1 o1 O

5: 3x3 diagonal edge

0

7: 5x5 flat average

0

o o1 o1 o o1 O

9: 7x7 vertical edge

0
0

0

o o1 o1 o o1 o

0

o O o o o o

0

0

o o1 o1 o o1 O

1
5
13
17
13
5
1

Program Instruction

o O o o o o o

o o1 o1 o1 o1 o1 O

11
14
11

o O o o o o o o O o o o o o

o r b~ 00~ B~ O

o O o o o o o

o O o o o o o

6: 3x3 diagonal edge

0 0 0 0 0 0
0 0 0 0 0 0
0 0 48 30 0 0
0 48 0 48 0 0
0 -30 -48 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

8: 5x5 gaussian average

0 0 0 0 0 0
0 2 3 2 0 0
2 7 13 7 2 0
3 13 20 13 3 0
2 7 13 7 2 0
0 2 3 2 0 0
0 0 0 0 0 0

10: 7x7 horizontal edge
4 5 4 1 0
1n 14 1u 4
13 17 13 5 1
0 0 0 0

AdeptVision Reference Guide, Rev A

w w N O

Program Instruction VDEECONVOLVE

11: 7x7 diagonal edge 12: 7x7 diagonal edge
2 3 3 1 0 0 0 0 1 3 3 2 0
6 1 10 3 0 0 0 0 3 100 1 6 2
1mn 17 1 0 -3 -1 -1 -3 0 1mn 17 1 3
10 11 0 -1 -10 -3 -3 -10 -1 0 1 10 3
3 o -1 -17 -1 -3 -3 -1 -17 -1 0 3 1
0 -3 -10 -1 -6 -2 -2 6 -11 -10 -3 0 0
0 -1 3 3 =2 0 0 -2 3 3 -1 0 0
13: 7x7 gaussian average 14: 7x7 Laplacian
0 1 1 1 0 0 0 1 2 3 2 1 0
1 3 4 3 1 0 1 3 6 7 6 3 1
3 6 9 6 3 1 2 6 0 -17 0 6 2
4 9 1 9 4 1 3 7 17 59 17 7 3
3 6 9 6 3 1 2 6 0 -17 0 6 2
1 3 4 3 1 0 1 3 6 7 6 3 1
0 1 1 1 0 0 0 1 2 3 2 1 0
15, 16: Unity (reserved for future)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 127 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

AdeptVision Reference Guide, Rev A 59

VDEECONVOLVE Program Instruction

60

Convolutions numbered 17 to 32 can be defined by the user. When you define a
convolution, the instruction parameter “type ” must be in the range 17 to 32 and
the parameter “array[,] ” must be defined. The arrangement of the array
elements can be visualized as shown in Figure 2-4 (the figure assumes the starting
array indices are “array[1,1]”).

When you are defining a convolution, the terms should add up to about 128. If
both positive and negative terms are used, the sum of the positive ones and the
sum of the negative ones should be close to 128 and -128, respectively. These
guidelines will prevent overflow when computing the new center pixel value. If
the contrast in the image is low, however, larger terms may be used.

If a convolution is defined that is not centered in the 7x7 array, it will shift the
resulting image. To compensate for the shift, you should recalibrate the vision
system with that convolution enabled.

If an edge convolution is used, the V.BINARY system switch should be enabled.
Otherwise, the vision system will be finding edges of the edges.

When you use a convolution, the image boundaries (as defined by VDEF.AOI)
should be moved into the image a pixel or two to mask out the noise generated
when the convolution straddles the physical image boundary.

[1,1] [1,2] [1,3] [1,4] [1,5] [1,6] [1,7]
[2,1] [2,2] [2,3] [2,4] [2,5] [2,6] [2,7]
[3,1] [3,2] [3,3] [3.4] [3,5] [3,6] [3,7]
[4,1] [4,2] [4,3] [4,4] [4,5] [4,6] [4,7]
[5.1] [5.2] [5,3] [5.4] [5,5] [5,6] [5,7]
[6,1] [6,2] [6,3] [6,4] [6,5] [6,6] [6,7]
[7,1] [7,2] [7,3] [7.,4] [7,5] [7.,6] [7,7]

Figure 2-4. Arrangement of Elements of Convolution Matrix

AdeptVision Reference Guide, Rev A

Program Instruction VDEECONVOLVE

NOTE: Only the innermost 3x3 elements are considered with
standard vision systems.

Example

The following sequence of program instructions creates a new 3x3 low-pass filter
convolution that is identical to predefined convolution number 1 (“3x3 average—
flat™):

FORIi=1TO7 :Zero the entire 7x7 matrix
FORj=1TO7
vc[i,j] =0
END
END
FORi=3TO5 :Define the nonzero elements
FORj=3TO5
vcli,j] = 14
END
END

VDEF.CONVOLVE 17 = vc[1,1] ;Define the convolution as #17

Related Keyword

VCONVOLVE (program instruction)

AdeptVision Reference Guide, Rev A 61

VDEEFONT

Syntax

Program Instruction

VDEF.FONT (op) font_num, $chars , height, black_chars

Function

Define, replace, or modify an Optical Character Recognition (OCR) font.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters

op

font_num

$chars

height

black chars

Details

Optional real-valued expression defining the desired operation: 0 =
define or replace a font, 1 = modify an existing font. The default is 0.

Real-valued expression defining the number of the font being
defined, replaced, or modified. The number must in the range 1 to
99, inclusive.

String expression containing all of the characters in the font (in any
order). See below for more information.

Optional real-valued expression defining the typical height (in
pixels) of the tallest character in the font. The value must be in the
range 6 to 63 pixels. (Note: if characters in the font are wider than
they are tall, the maximum width should be specified instead of the
height.) This parameter is required if the operation (*op™) is 0;
otherwise, “height is ignored.

Optional real-valued expression that is interpreted as a boolean
(TRUE/FALSE) value. A TRUE value indicates that the characters in
the font are dark against a light background. A FALSE value
indicates the reverse situation. This parameter is required if the
operation (“op”) is 0. Otherwise, “black_chars " is ignored.

This instruction defines an OCR font to the vision system. It tells the system what
characters are in the font, the approximate size of the characters in the font, and
the (relative) color of the characters. A font must be defined with this instruction
before the vision system is trained on the font (with the VTRAIN.MODEL

instruction).

62

AdeptVision Reference Guide, Rev A

Program Instruction VDEEFONT

If a font is already defined and VDEF.FONT is performed with “op” equal to 0, the
existing font is deleted and replaced with the new definition. If “op” is 1, however,
an existing font is modified, not deleted. The only modification to a font that is
allowed is to add or delete characters in the font. The height and color of a font
cannot be changed. When a font is modified, the given string (“$chars”) defines
the new set of characters. Any training experience on characters that remain in the
modified font is retained. Up to 99 fonts may be defined, memory permitting.
Each font is completely independent. A font may contain up to 94 characters,
including symbols such as “{”” and “". All the characters must be in the ASCII
range 33 (“!”) to 126 (*“~”). In particular, the space character (ASCII 32) is not
permitted.

The characters defined to be in a font are actually just labels. The vision system
has no built-in strategies that are character-specific. Normally, you would use “A”
to label the character “A”. However, OCR performance will not be degraded if
you use “+” to label the character “A”, and train the system as such. Then, when
the vision system subsequently sees an “A” character, it will report that it saw a
s

See the AdeptVision User’s Guide for an overview of the AdeptVision OCR
capability.

Example

The following instruction defines font #1 as a black set of numerals,
approximately 24 pixels tall.

VDEF.FONT (0) 1, "0123456789", 24, TRUE

Related Keywords

VDELETE (monitor command and program instruction)
VOCR (program instruction)

VSHOW.MODEL (program instruction)
VTRAIN.MODEL (program instruction)

AdeptVision Reference Guide, Rev A 63

VDEFGRIP Program Instruction

Syntax

VDEFGRIP $proto, grip, mode, num_fngrs, trans| iL,wl jl,h[K]
VDEFGRIP $proto, O

Function
Define the shape and position of a robot gripper for clear-grip tests.
Usage Considerations

The VISION switch must be enabled and the vision processor must be idle for this
instruction to be executed.

Parameters

$proto String expression specifying the name of the prototype for which
the grip is being defined or deleted.

grip Real-valued expression with a value in the range 0 to 4. A gripper
number of 0 deletes all defined grippers for the specified prototype.
If the gripper number is in the range 1 to 4, it indicates which
gripper is being newly defined for the prototype.

mode Real-valued expression, interpreted as TRUE or FALSE, indicating

how invisible fingers are to be treated. Fingers are invisible if they
are outside the field of view. If the mode value is FALSE (zero),
invisible fingers are not considered clear. Invisible fingers are
assumed to be clear if the mode value is TRUE (nonzero).

num_fngrs Real-valued expression with a value in the range 1 to 5, specifying
the number of rectangles that are used to model the gripper
fingerprints.

trans]] Array of transformations that define the 2-D location and
orientation of the rectangles. The X, Y, and RZ components of each
transformation define the center position and orientation of one
rectangle relative to the position of the prototype. “num_fngrs
number of transformations must have been stored in sequential
array elements.

i, K These are optional array indexes that specify the first elements to be
accessed in the respective arrays. Zero is assumed for any array
index that is omitted. If a multiple-dimension array is specified, only
the right-most index is incremented as the values are referenced.

64 AdeptVision Reference Guide, Rev A

Program Instruction VDEFGRIP

w] Array of real values defining the widths of the rectangles, in
millimeters. “num_fngrs ” number of values must have been stored
in sequential array elements.

hi] Array of real values defining the heights of the rectangles, in
millimeters. “num_fngrs ” number of values must have been stored
in sequential array elements.

Details

One to four grip models may be defined per prototype. Each grip model consists
of one to five rectangles in any orientation, representing the gripper fingerprints
around the prototype. For simple two-finger grippers, two rectangles are
adequate. Odd-shaped grippers may be approximated by defining multiple,
overlapping rectangles. Grip models are automatically stored and restored with
the prototype model when the VSTORE and VLOAD commands are issued. The
grips defined for a prototype may be seen in the Vision display window via the
VSHOW command.

The clear-grip test is automatically performed whenever a prototype is
recognized and grippers are defined for it. The results of the test are available via
the VFEATURE function and are shown in the Vision display window with a
graphics display mode when the V.SHOW.GRIPS switch is enabled.

Grips are tested in the order of their numbering, 1 through 4. Once a grip is found
to be clear, further testing is halted, because only one clear grip is required. The
clear-grip algorithm checks each of the rectangles defining the grip until one is
found to be not clear or until all are found to be clear. A rectangle is clear if it
covers only background-colored pixels, where the background is defined by the
system V.BACKLIGHT switch. As a consequence, a rectangle completely enclosed
in a hole that is the color of the background is considered clear. Regions smaller
than V.MIN.AREA, that merge into the background, assume the color of the
background. Thus, these “noise regions” do not cause the clear-grip test to fail.

Example

In the following example, gripper fingerprints are defined for the prototype
named CASTING. Two rectangles are used to model the gripper, both 30
millimeters tall and 7.5 millimeters wide. The rectangles are located plus and
minus 25 millimeters from the prototype center along the X axis and 10
millimeters up from the center along the Y axis. The rectangles are oriented
orthogonally with respect to the X and Y axes.

AdeptVision Reference Guide, Rev A 65

VDEFGRIP Program Instruction

SET rects[0] = TRANS(25, 10, ,,,0)

SET rects[1] = TRANS(-25, 10, ,,, 0)

wids[0] = 7.5

wids[1] = 7.5

hts[0] = 30

hts[1] = 30

VDEFGRIP "CASTING", 1, TRUE, 2, rects][], wids[], hts][]

Related Keywords

VFEATURE (real-valued function)
VSHOW (monitor command)
VSHOW (program instruction)
V.SHOW.GRIP (system switch)

66 AdeptVision Reference Guide, Rev A

Program Instruction VDEELUT

Syntax

VDEF.LUT lut.num = lut[]

Function

Define a grayscale and binary “look-up table” for mapping graylevel and binary
values during a VCOPY operation.

Usage Considerations

Available only with the AdeptVision Enhanced VXL Interface option.

Parameters
lut.num Integer from 1 to 133 maximum that identifies the lut to define.
lut[] Array_of integer values in the range 0 - 255 that define the pixel
mapping.
Details

The maximum “lut_ num” is configurable using the DEVICE command. The
default value is 3. The maximum is 133 LUTSs, taking 33 Kb.

The “lut] " is an array of 256 values (index in range 0 to 255), where each value
must range from 0 to 255. The indices and the values in the array are both “pixel
values”. A pixel value is an 8-bit number. Bits 1 thru 7 are the graylevel value
(0-127), and the binary bit is bit 8. Therefore, indices 0-127 to the array will
transform the graylevels for which the binary bit is 0, and indices 128-255 will
transform the graylevels for which the binary bit is 1. In other words, this is an “8
bits in, 8 bits out” LUT. The one exception is when the VCOPY is used to
subsample or zoom. Then, the LUT is only “7 bits in”. That is, only the indices
0-127 are used, and they are applied AFTER the subsample or zoom operation. In
this case, the LUT is still “8 bits out”.

Example

Define a look-up table that turns all graylevel values 50 or lower to black and sets
the binary bit to black:

lut3 =3

FORXx=0TO 50 ;Zero out indices where the binary
lut[x] =0 ; bit is 0 and the graylevel value

END ;IS <= 50

FOR x =128 TO 238;Zero out indices where the binary
lut[x] =0 ; bit is 1 and the graylevel value

END ;IS <= 50

AdeptVision Reference Guide, Rev A 67

VDEELUT Program Instruction

; Leave remaining values unchanged
FOR x =51 to 127
lut[x] = x
END
FOR x = 239 to 255
lut[x] = x
END
VDEF.LUT lut3 = lut]]

Related Keywords

VCOPY (program instruction)
DEVICE (program instruction)

68 AdeptVision Reference Guide, Rev A

Program Instruction VDEEMORPH

Syntax
VDEF.MORPH (mode) type = array]] , dx, dy

Function
Define a binary morphological operation.
Usage Considerations

VDEF.MORPH is intended only for experienced users. It is not critical to the
operation of the vision system.

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters
mode Not currently used.
type Integer value in the range 9 to 16, inclusive. This is the number of
the user-definable morphological operation that is being defined.
array[] Array of length 512 that defines the morphological operation. Each
element in the array must have a zero or nonzero value.
dx, dy Not currently used.
Details

Binary morphological operations are nonlinear transformations of binary (or
edge) images. The VDEF.MORPH instruction defines the operation to perform.
The VMORPH instruction actually performs the operation.

Morphological operations may be used to eliminate small holes and gaps from the
image (by dilating and then eroding or vice versa), to thin edges, isolate certain
features such as straight lines, etc. Multiple operations are often performed in
sequence. Morphological operation types 1 and 2 are predefined as erosion and
dilation. Types 3 through 8 are undefined but reserved to be additional built-in
operations in the future. Types 9 through 16 can be defined by the user. (Type 9 is
actually predefined to be the game of Life, popularized years ago in Scientific
American, but it can be redefined by the user.) Binary morphological operations
are applied to every 3x3 pixel neighborhood in the binary image. Based on the
binary pixel values in a neighborhood and the operation to be performed, the
center binary pixel value may be changed. The parameter “array[], which

AdeptVision Reference Guide, Rev A 69

VDEEMORPH Monitor Command and Program Instruction

defines the operation, actually defines a look-up table. To index into the table, the
vision system constructs the nine bits of the index from a 3x3 pixel neighborhood.
The binary values of the nine pixels in a neighborhood about the center pixel “5”
are as follows:

9 8 7
6 5 4
3 2 1

Each of the pixel values 1 through 9 has the value 0 or 1. The 9 bits are combined
into a single number, ordered 987654321 (“1” is the least-significant bit). For
instance, consider a 3x3 binary neighborhood in the image as follows:

1 1 1
1 1 0
1 0 0

When the above is combined into a single number, the value in binary format
would be 111110100, which is 500 decimal.

Now, the VMORPH instruction operates as follows: Let the 9-bit value for a
neighborhood be called “neigh”. If “array[neigh]” is not 0, the center pixel of the
neighborhood is complemented. Otherwise, the center pixel is not changed.

Example

The following sequence of program instructions defines a simple morphological
operation to extract the boundary from a binary image. The operation simply
zeros binary pixels when the neighborhood is uniformly white (all 1s) and leaves
all other pixels unchanged. After executing this program, the operation can be
performed on an image by executing “VMORPH (10)”.

FORi=0TO 510 ;Zero almost the entire array
morph[i] =0
END
morph[511] =1 ;This neighborhood causes a
; change

VDEF.MORPH 10 = morph[] ;Define type 10

Related Keyword

VMORPH (program instruction)

70 AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VDEESUBPROTO

Syntax

VDEF.SUBPROTO proto:subname, first_edge, last_edge

Function

Define a subprototype.

Parameters
proto “proto " is the name of the prototype of which the new subprototype
subname is to be a portion. “subname” is the name of the subprototype being
defined. For the monitor command, these must be specified by an
unguoted string (see the example below). For the program
instruction, they must be specified by a string constant, variable, or
expression containing the *“:” separator (see the example below).
first_edge Real-valued expression that specifies the edge number of the
prototype that is to be the first edge of the subprototype.
last_edge Real-valued expression that specifies the edge number of the
prototype that is to be the last edge of the subprototype. Note that
“last_edge ” may be less than “first_edge .
Details

This instruction defines a subprototype of the prototype “proto ” to be the series
of edges from “first_edge " to “last_edge . The subprototype must consist of
edges from only one region of the subprototype. Thus, for example, two holes
cannot be grouped together to form a single subprototype. If “first_edge ” equals
“last_edge 7, the subprototype consists of a single edge.

Once the subprototype is defined, it has its own edge numbering. Thus, edge
“first_edge 7 of “proto " is edge #1 of the subprototype.

A subprototype remains associated with a prototype until the subprototype or the
prototype is VDELETEd. A subprototype is automatically saved and restored
when its associated prototype is VSTOREd and VLOADed. Subprototypes may
also be referenced by VEDGE.INFO, VGAPS, VSHOW, and VSUBPROTO. The
maximum number of prototypes and subprototypes (counted together) that may
be loaded in the system at one time is 25. Of course, an unlimited number may be
stored on disk.

AdeptVision Reference Guide, Rev A 71

VDEESUBPROTO Monitor Command and Program Instruction

Examples

The following examples compare the VDEF.SUBPROTO monitor command with
the program instruction. If VDEF.SUBPROTO is performed as a monitor
command, “proto:subname” must be a nonquoted string (like the VSHOW
parameter). If VDEF.SUBPROTO is used as a program instruction, the prototype
must be specified with a string expression.

VDEF.SUBPROTO CASTING:TOP, 3, 9 Monitor command

VDEF.SUBPROTO "CASTING:TOP", 3, 9 Program instruction

Related Keywords

72

V.EDGE.INFO (program instruction)
VGAPS (program instruction)
VSHOW (monitor command)
VSHOW (program instruction)
VSUBPROTO (program instruction)

AdeptVision Reference Guide, Rev A

Program Instruction VDEETRANS

Syntax
VDEF.TRANS (mode) dx, dy, angle, scale

Function

Define a transformation to apply to the location of all vision tools placed until the
next VDEF.TRANS instruction.

Usage Considerations

The transformation applies only to the task in which it is defined. Thus, each task
that requires a transformation must execute a VDEF. TRANS instruction for that
task.

This transformation applies to all tools regardless of whether they use the area of
interest definition syntax or explicitly include position information.

Parameters
mode Optional argument that must currently be set to 1. The default value
is 1.
dx, dy Optional real values, variables, or expressions interpreted as
millimeter offsets in the X,Y Cartesian plane. The default value is 0.
angle Optional real value, variable, or expression interpreted as an
angular rotation. The default value is 0.
scale Optional real value, variable, or expression interpreted as an integer
that scales the dimensions of the tool. The default is 1.
Details

The primary use of VDEF.TRANS is to place inspection tools relative to a frame or
object previously located by the vision system.

All vision tools (regardless of syntax used) placed after a VDEF.TRANS
instruction has been issued will have the indicated transformation applied before
the tool is placed. Issuing a VDEF.TRANS instruction with no arguments (defaults
of dx, dy, and angle = 0) will cancel the vision transformation.

Examples

; Rotate a ruler tool perpendicular to the angle returned by a
; line finder. "ibr_rect" has been defined for rectangular tools.

VFIND.LINE (1) data[] = ibr_rect ;Find the line

ang = data[4]+90 ;Angle for perpen. rotation
; Define the transformation

AdeptVision Reference Guide, Rev A 73

VDEETRANS Program Instruction

VDEF.TRANS ,, ang
; Place the ruler
VRULERI (1) rdata[] = ibr_rect

VDEF.TRANS ;Cancel transformation
; Place an inspection window relative to a found blob
ENABLE V.CENTROID :Get centroid information
VDEF.AOI win.aoi = 1, 10, -40 ;Postion of window relative
; to blob.
VPICTURE (1)
VLOCATE (1,2)"?" :Locate a "blob"
IF VFEATURE(1) THEN ;Make sure a blob was found

cx = VFEATURE(42)
cy = VFEATURE(43)
ang = VFEATURE(48)
VDEF.TRANS cx, cy, ang
VWINDOWI wdata[] = win.aoi
END
VDEF.TRANS ;Cancel transformation

Related Keywords

VDEEAOI (program instruction)
VGET.AOI (program instruction)
VGET.TRANS (program instruction)

74 AdeptVision Reference Guide, Rev A

Syntax

Monitor Command and Program Instruction VDELETE

VDELETE model_name

Function

Delete a specified prototype, subprototype, Optical Character Recognition (OCR)
font, or correlation template in the vision system.

Usage Considerations

The VISION switch must be enabled and the vision processor must be idle for this
command or instruction to be executed.

Parameters

model_name

Details

Name of the prototype, subprototype, OCR font, or correlation
template to be deleted.

If a subprototype is being deleted, the model name has the form
“namel:name2”, where “namel” and “name2” are the names of the
prototype and its subprototype, respectively.

If a font is being deleted, the model name has the form “FONT _n”,
where “n” is the number of the font in the range 1 to 99.

If a template is being deleted, the model name has the form
“TMPL_n”, where “n” is the number of the template in the range 1
to 99.

For the monitor command, this parameter must be a string constant
(not surrounded by quotes). For the program instruction, however,
the name can be specified with a string constant (including quotes)
or an expression.

The type of model being supported is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name first is checked
against the lists of prototypes for backwards compatibility. Therefore, you should
not use the same name for a prototype model and an ObjectFinder model.

VDELETE deletes a prototype that has been trained or loaded into the vision
system. It does not affect a prototype that has been stored in a disk file.

For the VDELETE monitor command, the prototype or subprototype is displayed
in the Vision display window, and the operator is asked for confirmation before it

is deleted.

AdeptVision Reference Guide, Rev A 75

VDELETE Monitor Command and Program Instruction
VDELETE deletes OCR fonts and correlation templates in a similar manner.
Examples

Note that when VDELETE is used as a monitor command (as in the first example
below), the model name is not enclosed in quotes. When VDELETE is used as a
program instruction, however, quotes must be included if a string value is
specified.

Monitor command to delete the subprototype “fillet” associated with the
prototype “casting”:

VDELETE casting:fillet
Program instruction to delete the model named by the string variable “$model’:

VDELETE $model

Program instruction to delete font #2:

VDELETE "FONT_2"

Program instruction to delete template #1:

VDELETE "TMPL_1"

Related Keywords

VDEEFONT (program instruction)

VDEESUBPROTO (monitor command and program instruction)
VLOAD (monitor command)

VLOAD (program instruction)

VTRAIN (monitor command and program instruction)
VTRAIN.MODEL (program instruction)

76 AdeptVision Reference Guide, Rev A

System Switch V.DISJOINT

Syntax
... V.DISJOINT [camera]

Function

Determine whether or not prototypes may be matched to multiple disjoint
regions.

Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

When this switch is enabled, the V.HOLES switch has its effect (but not its setting)
disabled.

This is an array of switches—one for each virtual camera. (See the general
description of switches in the AdeptVision User’s Guide for syntax details.)

Details

If V.DISJOINT is enabled, the system finishes processing the boundaries of all
regions in the image before attempting object recognition. Disjoint regions in the
image may then contribute to the recognition of a single prototype.

When V.DISJOINT is disabled, each region in the image is processed to
completion (including all recognition attempts) before processing of the next
region is begun.

When scenes consist of multiple objects and V.DISJOINT is enabled, the vision
system uses more memory and may take more time to process the image.

The V.DISJOINT and V.TOUCHING switches affect the interpretation of the
“how_many” parameter to the VPICTURE and VWINDOW instructions. That
parameter specifies the maximum number of objects the vision system should try
to recognize. V.DISJOINT affects how the “how_many” parameter applies to the
image as a whole, whereas V.TOUCHING affects how it applies to each region in
the image. If V.DISJOINT is enabled, the number of objects specified by
“how_many” is the most that will be recognized in the entire image. If
V.DISJOINT is disabled, there is no limit on how many objects will be recognized
in the entire image.

AdeptVision Reference Guide, Rev A 77

V.DISJOINT System Switch

The following table summarizes the relationship between V.DISJOINT,
V.TOUCHING, and the “how_many” parameter to VPICTURE and VWINDOW.

Number of Objects | Number of
V.TOUCHING | V.DISJOINT | per Region Objects per Scene
Off Off 1 No limit
Off On 1 how_many
On Off how_many No limit
On On how_many how_many
Example

The two images in Figure 2-5 illustrate an object (a fork) that appears to the vision
system to be split into two parts. Thus, the V.DISJOINT switch must be enabled to

recognize the object.

R —

Image of fork split into two regions (V.SHOW.BOUNDS enabled)

C

/
AN

<
(-
-

UL L

Recognition of fork with V.DISJOINT and V.SHOW.RECOG enabled

Figure 2-5. Effect of V.DISJOINT Switch

Related Keyword

V.BOUNDARIES (system switch)
V.HOLES (system switch)
V.TOUCHING (system switch)

78 AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VDISPLAY

Syntax

VDISPLAY (camera) mode, overlay, xpan, ypan, zoom

Function

Select the current vision display mode or the display mode to be used when the
vision system performs its normal image processing functions.

Usage Considerations
The VDISPLAY monitor command may be used when a program is executing.

Vision model training must not be active for this instruction to execute.

Parameter
camera Optional real-valued expression that specifies the virtual camera
number. The special camera number 0 specifies all virtual cameras.
This parameter defaults to 0 (all virtual cameras) if no value is
specified. In that case, the parentheses can be omitted.
mode Real-valued expression that specifies the mode of operation to be
used. The available modes are listed here but described below.
-1 Grayscale camera output (live grayscale)
0 Thresholded camera output (live binary)
1 Frame-grabbed grayscale
2 Frame-grabbed edge or binary
3 Special display (graphics only)
4 Static graphics (graphics only)
5 Nodisplay (no alter)
overlay Optional real-valued expression that specifies whether or not to
overlay the graphics memory on the image to be displayed. Overlay
values are 0 for no overlay, 1 for overlay, and 2 for static overlay. See
Details below.
xpan Optional real value, variable, or expression in the range 0 to 1023
specifying a pan in the x direction. The default is 0.
ypan Optional real value, variable, or expression in the range 0 to 511
specifying a pan in the y direction. The default is 0.
zoom Optional real value, variable, or expression indicating the

magnification of the displayed image. Acceptable values are 0.5, 1,
2, and 4. The default is 1.

AdeptVision Reference Guide, Rev A 79

VDISPLAY

Details

80

Monitor Command and Program Instruction
The zoom argument is encoded with a resolution, as follows:

zoom = zoom factor + resolution * 1000

Resolution Description
0 No change to the resolution
1 Full resolution
2 Half resolution
3 Quarter resolution
4 Focus mode

Modes are set and remembered individually for each virtual camera (or for all
virtual cameras if “camera ” is 0). In all modes, VDISPLAY has immediate effect if
the vision system is not actively processing an image. Otherwise, the VDISPLAY
mode will go into effect the next time a VPICTURE command or instruction is
executed. The following describes the vision display modes.

Mode -1

Grayscale camera output. The live camera image is displayed in the
Vision display window. This is useful for positioning the camera,
focusing, and setting the aperture. Also note that the system
parameter settings V.GAIN and V.OFFSET affect the live camera
image displayed. This is the initial display mode.

NOTE: If no virtual camera number is specified with modes # -1
and #0, the image from the camera most recently referenced is
displayed.

Mode 0

Mode 1

Mode 2

Thresholded camera output. The Vision display window shows the
live thresholded output of the camera. This mode is primarily useful
for setting the threshold for binary image processing. The effects of
the parameters V.THRESHOLD and V.2ND.THRESH are both
visible. (See the Note above.)

Frame-grabbed grayscale. With this display mode, one of the two
grayscale frame stores is displayed. After a VPICTURE operation,
the frame acquired is displayed. Otherwise, VSELECT may be used
to select the frame to be displayed.

Frame-grabbed edge or binary. With this mode, one of the two
binary-edge frame stores is displayed. Depending on whether the

AdeptVision Reference Guide, Rev A

Mode 3

Mode 4

Mode 5

Monitor Command and Program Instruction VDISPLAY

V.BINARY system switch was enabled or not when the VPICTURE
was last executed, this display mode shows a frozen binary or edge
image. The VSELECT instruction may be used to select the frame to
be displayed.

Special display. This is the graphics display mode. All user
graphics, histograms, VSHOW of prototypes, training images, and
the special display graphics are visible in this mode.

In response to VPICTURE (or VWINDOW), the objects in the
camera view are graphically depicted in the Vision display window.
The image looks like display mode #2 except that only processed
regions are shown. Unprocessed regions, those not shown, are
smaller than V.MIN.AREA, larger than V.MAX.AREA, outside the
image bounds V.FIRST.COL, V.LAST.COL, etc.

In addition to the regions shown, image boundaries, prototype
boundaries, or clear-grip positions are displayed depending on
what switches are enabled. The relevant system switches are
V.SHOW.BOUNDS, V.SHOW.EDGES, V.SHOW.VERIFY,
V.SHOW.RECOG and V.SHOW.GRIP. Note that if too many of these
display switches are enabled, the resulting screen image may
become muddled.

The VPICTURE instruction and monitor command automatically
erases the vision graphics window when the display mode is #3 or
overlay is in effect. The erasure occurs simultaneously with the
acquire and any subsequent processing.

Static graphics. This is a graphics display mode like #3, except that
the vision display window is not automatically erased with each
VPICTURE. Further, the vision system does not automatically draw
graphics when operations such as VPICTURE, VRULER, and
VWINDOW are performed. Only the graphics instructions (such as
GCLEAR and GLINE) affect the vision display window. Thus, with
this display mode, the user has complete control over the graphics
overlay image. For example, statistical process control information
can be displayed continuously.

No display or no alter. This mode is for high-speed,
multiple-camera applications. A camera number should be
specified along with this display mode. Then, when a VPICTURE is
performed using that camera, the current display mode is not
changed. For example, if image from virtual camera #2 is being
displayed in binary mode (#2), the image from virtual camera #1 is
being displayed in no alter mode (#5), and a VPICTURE with virtual

AdeptVision Reference Guide, Rev A 81

VDISPLAY Monitor Command and Program Instruction

camera #1 is issued, the image from virtual camera #2 will continue
to be displayed in binary mode.

If camera = 0 (all virtual cameras), multiple VCOPY operations can
be performed to the display frame store allowing you to create your
own image (high-end systems only).

The “overlay parameter to VDISPLAY may have the value 0, 1, or 2. The
“overlay " value 0 (which is assumed when the system is initialized) disables
graphics overlay. A value of 1 or 2 enables the overlay of the graphics memory
over the image to be displayed, as selected by the VDISPLAY mode (# -1, #0, #1,
or #2).

The source of the color overlay is the graphics frame store that is visible in
VDISPLAY mode #3. Colors 1 through 16 are displayed as overlay colors.

An “overlay 7 value of 1 is like VDISPLAY mode #3. The vision display window is
automatically erased when a VPICTURE operation is performed and is
automatically drawn into when instructions such as VRULER and VWINDOW
are executed. See the description of mode #3 above, particularly that regarding
the erasure time.

An “overlay ” value of 2 is like VDISPLAY mode #4. That is, the vision display
window is static—modified only with user graphics instructions.

When acquiring images in single field mode, a “zoom” value of 4 is not allowed.
(The image is already horizontally zoomed by 2x so it will display correctly.)

The x and y pan values allow you to scan the entire frame store, regardless of
which areas have valid image data. A single frame-grabbed image uses 640 x 480
pixels leaving the remaining 1024 x 512 frame buffer untouched. However,
operations such as VCOPY and VCONVOLVE may write to any portion of the
frame store. Correlation templates are also stored in unused portions of the frame
store.

Examples

82

Turn on special display mode for virtual camera 4:
VDISPLAY (4) 3

Enable live video input with static overlay:
VDISPLAY -1, 2

Turn on live thresholded mode for all virtual cameras:
VDISPLAY

AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VDISPLAY
Related Keywords

VDEEAOI (program instruction)

VPICTURE (monitor command and program instruction)
VSELECT (program instruction)

V.SHOW.BOUNDS (system switch)

V.SHOW.EDGES (system switch)

V.SHOW.GRIP (system switch)

V.SHOW.RECOG (system switch)

V.SHOW.VERIFY (system switch)

AdeptVision Reference Guide, Rev A 83

V.DRY.RUN System Switch
Syntax
... V.DRY.RUN
Function
Enable graphics-only mode for various vision operators.
Usage Considerations

A change to this switch takes effect when the next vision operator is executed.

Details

This switch is for use by V* programs that wish to display a vision operation,
such as VFIND.LINE in the Vision display window, and move it around without
it actually fitting lines and showing results. For example, VisionWare uses this
option extensively. The setting of V.DRY.RUN affects all instructions that use an
image buffer region.

When V.DRY.RUN is enabled, tool graphics are displayed (if the tool’s display
mode is set appropriately), but the operation is not actually performed.

Example
Enter graphics-only mode:

ENABLE V.DRY.RUN

84 AdeptVision Reference Guide, Rev A

Program Instruction VEDGE

Syntax
VEDGE (cam, type, dmode) dest_ibr = src_ibr

Function

Compute edges in the grayscale image and threshold the edges, replacing the
binary image, using either a cross-gradient or Sobel algorithm.

Parameters

cam Optional integer value specifying a virtual camera. The value of
V.EDGE.STRENGTH associated with the virtual camera will be
used to compute edges. The default is 1.

type Optional integer value indicating the type of edge algorithm to use:
1 for cross-gradient and 2 for Sobel. The default is 1 (cross-gradient).

dmode Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The defaultis 1 (draw solid).

dest_ibr Optional integer value specifying the image buffer region to receive
the edge image. Image buffer regions specify both a size and a frame
store (see the description of VDEF.AOI). If this parameter is not
specified, the edge image will overwrite the source image (src_ibr).

src_ibr Integer value specifying the image buffer region from which to
extract edges. The image buffer region’s AOI must have been
defined with a VDEF.AOI instruction.

Details

This instruction computes edges from the grayscale values in an image and
thresholds the edges. Only the binary image associated with “dest_ibr " is
affected. If “dest_ibr " is not specified, “src_ibr " is used as the destination. That
is, the edge operation is performed “in place”.

The effect of a VEDGE operation is visible in VDISPLAY mode #2. It does not
affect the associated grayscale image. The “type ” parameter to VEDGE
determines the method of edge extraction. The cross-gradient operator is faster,
but the Sobel is a bit more robust. See the entry for the system parameter
V.EDGE.TYPE on page 94 for a detailed description of the cross-gradient and
Sobel methods.

The smaller the area of the image to be processed, the faster the operation
executes. The cross-gradient operator is faster than the Sobel operator.

AdeptVision Reference Guide, Rev A 85

VEDGE Program Instruction
Example

Compute cross-gradient edges for all of frame store #1 using 22 as the edge
strength:

PARAMETER V.EDGE.STRENGTHI[1] = 22
VEDGE (1, 1) 1001

Related Keywords

VTHRESHOLD (program instruction)
V.EDGE.TYPE (system parameter)

86 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VEDGE.INFO

VEDGE.INFO data] i]= proto_nam ,edge_num

Function

Retrieve information about the edges and corners of a prototype or of a region in

the image.

Usage Considerations

The V.EDGE.INFO switch must be enabled before a VPICTURE (in modes 0 or -1)
or VWINDOW instruction is executed in order to use VEDGE.INFO to retrieve
information about regions in the image. Also, if V.DISJOINT is true, edge
information is not available for regions that helped verify the recognition of a

prototype.

Vision model training must be inactive for this instruction to execute.

Parameters

data[]

proto_nam

Real array containing the requested edge information:

data[i+0] = 0 (line), +1 (convex arc), or —1 (concave arc)
data[i+1] = Weight: 0 to 100 (for prototype edges only)
data[i+2] = X coordinate of edge starting corner

data[i+3] =Y " "

data[i+4] = X coordinate of edge ending corner
data[i+5] =Y " " "
data[i+6] = X coordinate of arc circle center
data[i+7] =Y " " "

data[i+8] = Radius of arc circle

Coordinates and radii are in millimeters. For line edges, elements
“data[i+6]” through “data[i+8] are not defined.

Optional integer value that identifies the first array element to be
defined in “data] ”. Zero is assumed if the index is omitted. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

String expression that specifies the name of a prototype, a
subproto-type, or “?”. If a subprototype is specified, the string must
have the form “namel:name2”, where “namel” is the name of a
prototype and “name2” is the name of the prototype’s
subprototype. If edge information about a region in the image (that
is, not a prototype) is being requested, this parameter should not be
specified (defaulted) or it should be “?”.

AdeptVision Reference Guide, Rev A 87

VEDGE.INFO Program Instruction

edge_num Real-valued expression that specifies the number of the edge of the
region, prototype, or subprototype for which information is
requested.

Details

Knowing the positions and lengths of prototype edges could be useful in a V*
program that automatically places VFIND.LINE and VFIND.ARC operators on
selected edges of prototypes to determine edge positions with high accuracy. The
operators would be applied after prototype recognition.

The instruction VEDGE.INFO retrieves information about the edges and
(indirectly) the corners of a prototype. The edges of a prototype are numbered
starting at 1. VSHOW can be used to display a prototype with its edges
numbered. These are the edge numbers used with VEDGE.INFO to reference the
edges.

Each subprototype has its own edge numbering, starting with 1. Again, VSHOW
can be used to display a subprototype with its edges numbered.

To use VEDGE.INFO to get information about a region, the V.EDGE.INFO switch
must be enabled before the VPICTURE or VWINDOW instruction is executed.
Then the region must be VLOCATEd. A second VPICTURE or VWINDOW
operation deletes all edge information from the previous VPICTURE (or
VWINDOW) operation, even if a different virtual camera number is specified.
(When a different virtual camera is specified, objects from the previous
VPICTURE may still be VLOCATEd, but no edge information is available.)

After a region has been VLOCATEd, VFEATURE item 27 provides the number of
edges bounding the region, not counting holes. To get information about holes,
follow the same procedure for getting VFEATURE information about holes.

If V.DISJOINT is true, VEDGE.INFO does not return edge information for regions
that helped verify the recognition of a prototype.

Example

88

.PROGRAM display_edges($proto)

;ABSTRACT: This program displays, in the Monitor display window,
information about the edges of a prototype or subprototype.
The name of the prototype or subprototype is passed to the
program when it is called.

;INPUT PARAM: $proto - name of the prototype of interest

LOCAL datal[], edge_num, num_edges, ocorn(]
LOCAL $type

AdeptVision Reference Guide, Rev A

Program Instruction

; Display the prototype or subprototype and use VFEATURE
; to determine the number of edges it has

VSHOW 2, $proto, , , -1
IF NOT VFEATURE(1) THEN
TYPE $proto, " is not a known (sub)prototype"

GOTO 100
END
num_edges = VFEATURE(vf.num.bounds)
ocorn[1]=0 ;Need some initial values
ocorn[2] =0

; For each edge of the prototype, use VEDGE.INFO to
; retrieve information about the edge

FOR edge_num =1 TO num_edges
VEDGE.INFO data[] = $proto, edge_num
IF (ocorn[1] <> data[2]) OR (ocorn[2] <> data[3]) THEN
IF edge_num <> 1 THEN
TYPE " *** New region or edge gap ***"

END

TYPE " Corner: ", data[2], ",", /10, data[3]
END
IF data[0] == 0 THEN ;It's a LINE

TYPE edge_num, ") Line. Wt: ", data[1]
ELSE ;It's an ARC

IF data[0] > 0 THEN
$type "Convex"
ELSE
$type "Concave”
END
TYPE edge_num, ") ", $type, " arc.", /S
TYPE " Center: ", data[6], ",", /10, data[7], /S
TYPE ", Radius: ", data[8], /S
TYPE ", Wt: ", data[1]

END
TYPE " Corner: ", data[4], ",", /10, data[5]
ocorn[1] = data[4] ;Record endpoint of this edge
ocorn[2] = data[5]
END
100 RETURN

.END

Related Keywords

VSHOW (monitor command)
VSHOW (program instruction)
V.EDGE.INFO (system switch)

AdeptVision Reference Guide, Rev A

VEDGE.INFO

89

V.EDGE.INFO System Switch

Syntax
... V.EDGE.INFO [camera]

Function

Enable saving of information about edges in the image for recall via the
VEDGE.INFO instruction.

Usage Considerations

The V.BOUNDARIES system switch must be enabled in order for edge
information to be computed. Also, the V.FIT.ARCS switch must be enabled if
circular arcs are to be fit in addition to lines.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in the AdeptVision User’s Guide for syntax details.)

Details

When regions are analyzed and arcs and lines are fit to the boundaries of the
regions, the information is stored away if V.EDGE.INFO is enabled. The
instruction VEDGE.INFO may then be used to retrieve descriptions of the lines
and arcs that were fit.

If the V.FIT.ARCS system switch is disabled, no arcs will be fit. Furthermore, if the
V.MAX.PIXEL.VAR system parameter is 0, neither lines nor arcs will be fit to
region boundaries. In that case, the VEDGE.INFO instruction will return the
primitive edges that bound the regions. The time spent by the vision system
fitting lines and arcs will be saved, but usually many more primitive edges will
then be present. VEDGE.INFO must then be executed more times to retrieve the
entire boundary description.

Additional memory and some extra processing time is spent storing the edge
information, so if the information is not needed, this switch should be disabled.
This switch is disabled when the V* and AdeptVision systems are loaded into
memory from disk.

90 AdeptVision Reference Guide, Rev A

System Switch V.EDGE.INFO
Example
Save edge info for virtual camera #1.:

ENABLE V.EDGE.INFO[1]

Related Keyword

VEDGE.INFO (program instruction)

AdeptVision Reference Guide, Rev A 91

V.EDGE.STRENGTH System Parameter

Syntax

... V.EDGE.STRENGTH [camera]

Function

Set the edge threshold for grayscale image processing and fine-edge rulers.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE, VEDGE,
VRULER, VWINDOWI, VFIND.LINE, VFIND.POINT, or VFIND.ARC instruction
is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

92

This parameter is used by various vision functions, the first of which is to
threshold the edges during grayscale image processing. Grayscale image
processing occurs in response to a VEDGE instruction or a VPICTURE request
when the V.BINARY system switch is disabled. With grayscale edge processing,
edges are extracted from the image based on local gradients (local changes in
image intensity). The V.EDGE.TYPE parameter determines the edge operator
used: cross gradient or Sobel. The V.EDGE.STRENGTH parameter is the edge
threshold. If the edge magnitude in the neighborhood of a pixel is greater than
V.EDGE.STRENGTH, the pixel is considered white. Otherwise, the pixel is
considered black. The resulting image consists of regions of intensity change.

V.EDGE.STRENGTH is also used as an edge-sensitivity threshold for the
inspection operators: fine-edge ruler, type #5 VWINDOWI, VFIND.LINE,
VFIND.POINT, and VFIND.ARC. For example, consider fine-edge rulers. As the
grayscale pixels along the ruler are scanned, the gradients in the neighborhood of
each pixel are computed. Then, if the maximum gradient in the neighborhood is
greater than V.EDGE.STRENGTH, a search is started for the center of the edge
along the ruler. The position of the edge center, computed with subpixel accuracy
via interpolation, is then reported by VRULER as the edge point.

As the value of VEDGE.STRENGTH is lowered, more edge points will appear in
the image and will be reported by VRULER. On the other hand, increasing
V.EDGE.STRENGTH will reduce the number of edge points. To determine the
best value of V.EDGE.STRENGTH, disable the V.BINARY system switch and
enter display mode #2 so that the edges are visible in the Vision display window.
Then, take a series of pictures (each with “VPICTURE (cam) 2”), with a different
value of V.EDGE.STRENGTH for each picture.

AdeptVision Reference Guide, Rev A

System Parameter V.EDGE.STRENGTH

This parameter must be assigned an integer value in the range 0 to 127, inclusive.
The parameter is set to 20 when the V' and AdeptVision systems are loaded into
memory from disk.

Example
Use 15 as the edge threshold for all cameras:

PARAMETER V.EDGE.STRENGTH = 15

Related Keywords

V.BINARY (system switch)

VEDGE (program instruction)
VFIND.ARC (program instruction)
VFIND.LINE (program instruction)
VFIND.POINT (program instruction)
VPICTURE (program instruction)
VRULERI (program instruction)
VWINDOWI (program instruction)
V.BINARY (system parameter)
V.EDGE.TYPE (system parameter)

AdeptVision Reference Guide, Rev A 93

V.EDGE.TYPE System Parameter

Syntax

... V.EDGE.TYPE [camera]

Function

Determine the type of edge operator to use, cross-gradient or Sobel, when a
VPICTURE instruction is performed.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE instruction is
executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in this manual for syntax details.)

Details

94

This parameter determines the method of edge extraction for VPICTURE when
the V.BINARY system switch is disabled. If the V.EDGE.TYPE parameter value is
1, a cross-gradient operator is applied to the grayscale image. Otherwise, if the
parameter value is 2, the Sobel operator is used. The parameter is set to 1, for
cross-gradient, when the V' and AdeptVision systems are loaded into memory
from disk.

The cross-gradient operator is faster, but the Sobel operator is a bit more robust.
The V.EDGE.STRENGTH system parameter is the threshold for both operators.

The following details are only for the curious—they are not required for use. Both
operators are applied to every 3x3 neighborhood in the image window defined by
the system parameters V.FIRST.COL, V.LAST.COL, V.FIRST.LINE, and
V.LAST.LINE. Let the 9 grayscale pixels in a 3x3 neighborhood be labeled “a”
through “i”:

a b c
d e f
g h i

Then the cross-gradient computed for the neighborhood is simply:
Edge = MAX(ABS(a - i), ABS(c - 9))

The Sobel computed for the neighborhood is more complex. The vertical and
horizontal edges are computed separately, squared, added together, and the
square root of the sum is computed. (The system performs this operation more
efficiently than the following definition suggests.)

AdeptVision Reference Guide, Rev A

System Parameter V.EDGE.TYPE
Dx=a+2*d+g-(c+2*+1i)
Dy=a+2*h+c-(g+2*h +1i)
Edge = SQRT(Dx*Dx + Dy*Dy) / 4
“Dx” and “Dy” are the edge magnitudes in the horizontal and vertical directions,

respectively. “Dx” and “Dy” are more clearly depicted as convolutions with
positive and negative weights:

1 0 -1 1 2 1
Dx=2 0 -2 Dy=0 0 O
1 0 -1 -1 -2 -1

For every neighborhood, the edge magnitude has been computed (“Edge” above)
and compared with the V.EDGE.STRENGTH system parameter. If the edge
magnitude is greater than the threshold, the binary edge bit is set to 1. Otherwise,
itis setto 0.

To keep the threshold values comparable for the two edge operators, a
normalization factor is applied to the result of the Sobel operator before the
threshold comparison. Therefore, the V.EDGE.STRENGTH threshold used with
one edge operator is generally useful for the other. However, you should always
select the threshold specifically for the operator being used.

Example
Perform the cross-gradient for all cameras:

PARAMETER V.EDGE.TYPE =1

Related Keywords

VEDGE (program instruction)
VPICTURE (program instruction)
V.BINARY (system parameter)
V.EDGE.STRENGTH (system parameter)

AdeptVision Reference Guide, Rev A 95

VFEATURE Real-Valued Function

Syntax
VFEATURE (index)

Function

Return specified information about the object most recently VLOCATEAd or the
prototype most recently displayed by the VSHOW program instruction.

Usage Considerations

The VFEATURE function refers to the object most recently VLOCATEd or
VSHOWed, regardless of which program task executed the VLOCATE or
VSHOW instruction. Consequently, for predictable operation, only one program
should execute VLOCATE and VSHOW instructions.

The VSHOW monitor command has no effect on the data available with this

function.
Parameter
index Real value specifying the desired information item. The value must
be in the range 1 to 50, inclusive (see below).
Details

The VFEATURE indexes, corresponding values, and units of measure are listed in
Table 2-1, Table 2-2, and Table 2-3. All are explained in detail below.

Table 2-1. VFEATURE Function Data

Index Value Units (comment)
1 Valid (TRUE/FALSE)
2 X millimeters
3 Y millimeters
4 z millimeters
5 RX degrees
6 RY degrees
7 RZ degrees
8 Encoder offset encoder counts
9 Verify percentage percentage
10 Area raw pixels
11 Region ID
12 Instance ID

96 AdeptVision Reference Guide, Rev A

Real-Valued Function

VFEATURE

Table 2-1. VFEATURE Function Data (Continued)

Index Value Units (comment)
13 Min_X millimeters
14 Max_X millimeters
15 Min_Y millimeters
16 Max_Y millimeters
17 # holes in region
18 Time seconds
19 Flags (bit field: TRUE/FALSE)
20 Valid gripper (number of the gripper)
21 Hole number (number of the hole)
22 Parent number (number of hole’s parent)
23 Virtual camera number (1 through 32)
24 Effort level (0 through 4)
25 Color of prototype (Oorl)
26 # samples taught
27 # bounds
28 Min area of prototype raw pixels
29 Max area of prototype raw pixels
30 Cameras of prototype (bit field: 1 to 16)
31 Cameras of prototype (bit field: 17 to 32)
32 First edge number
33 Last edge number
34 X constraint of prototype mm (defined during training)
35 Y constraint of prototype
36 Angular constraint of proto
37-39 (Reserved for future use)
40 Area of all holes raw pixels
41 Perimeter millimeters
42 Centroid X millimeters
43 Centroid Y millimeters
44 Minimum radius angle degrees
45 Maximum radius angle degrees
46 Minimum radius millimeters
47 Maximum radius millimeters

AdeptVision Reference Guide, Rev A

97

VFEATURE Real-Valued Function

98

Table 2-1. VFEATURE Function Data (Continued)

Index Value Units (comment)
48 2nd moments major axis degrees
49 Major ellipse radius millimeters
50 Minor ellipse radius millimeters

ITEM 1. VFEATURE(1) has the value TRUE when the object or prototype
information is valid; otherwise it is FALSE.

The information is valid when a VLOCATE succeeds in locating an object in an
image or VSHOW succeeds in getting a prototype from the loaded prototype list.

The information is invalid when a no-wait VLOCATE fails to locate an object or a
VSHOW instruction fails to find a loaded prototype. An error occurs if the object
information is invalid and a VFEATURE is executed with an index other than 1.

ITEMS 2to 7. X, Y, Z, RX, RY, and RZ are the components of the object or
prototype transformation. (Note that the complete transformation is optionally
returned by the VLOCATE and VSHOW instructions.) The component RX is
always 0, and RY is always 180. RZ is the orientation of the object in the horizontal
plane, the image plane.

The setting of the V.CENTROID switch may affect the location components. If the
region is unknown (that is, the object name is “?”’) and the V.CENTROID switch is
enabled, the X,Y location is for the region centroid and RZ is 0. If the
V.CENTROID switch is disabled, the location is the center of the bounding box for
the unknown region. The setting of the V.CENTROID switch has the same effect
on the location components after a VLOCATE in find-hole mode. However, after a
VSHOW instruction in get-hole mode, the X,Y location is always the centroid of
the prototype.

After VLOCATE, the coordinates are in the reference frame of the camera. After a
VSHOW instruction, the coordinates are in the reference frame of the prototype
(origin of the coordinate system is the prototype centroid). Note that VSHOW
draws the prototype in the Vision display window so that the center of its
bounding box is at the center of the window.

ITEM 8. This VFEATURE item is the belt encoder value at the time the strobe light
fired (see the V.STROBE system switch). (This value is also available from the V*
DEVICE real-valued function.)

AdeptVision Reference Guide, Rev A

Real-Valued Function VFEATURE

ITEM 9. Verify percentage is a recognition certainty value. The verify percentage
is 0 if the region VLOCATEd is unknown. Otherwise, it is the percentage of the
weighted boundary of the prototype that was verified. If following a VSHOW
instruction, this is the verify percentage required for recognition of an instance of
the prototype.

ITEM 10. Following a VLOCATE, this is the area of the region in camera pixels. If
the V.SUBTRACT.HOLE system switch has been enabled, the region area has the
areas of holes subtracted from it. Otherwise, they are included. In either case, the
total area of the holes is available as VFEATURE item #40.

Note that this is the area of the region, not the area of the prototype instance.
Following a VSHOW, this feature is the area of the prototype.

ITEMS 11 and 12. (After VLOCATE only) Region ID is a count of the number of
regions encountered. Instance ID is a count of the number of objects recognized
and regions not recognized. These ID numbers start at 1 and count up.

The distinction between region and instance is for touching and overlapping
parts. If two objects touch and both are recognized, they account for 1 region ID
increment and 2 instance ID increments. If a region consists of multiple objects
and the objects are not recognized, the vision system has no way of knowing how
many objects there are, so the region ID and instance ID counts are both
incremented by 1.

If the vision V.DISJOINT system switch has been enabled, there may be more
regions than instances, because a single prototype may span two or more regions.

ITEMS 13 to 16. Min_X, Max_X, Min_Y, and Max_Y define a bounding box for the
region VLOCATEd or the prototype last VSHOWed. The bounding box is an
orthogonal rectangle that encloses the region, with the four corners: (Min_X,
Min_Y), (Min_X, Max_Y), (Max_X, Max_Y), (Max_X, Min_Y). One application of a
bounding box definition is for finding clear space for placing things on a
conveyor belt or a pallet. For a region, the bounding box coordinates are in the
reference frame of the camera. For a prototype (following a VSHOW instruction),
the coordinates are with respect to the reference frame of the prototype.

ITEM 17. Following VLOCATE, this is the number of holes detected in the region.
Following VSHOW, this is the number of holes in the prototype.

ITEM 18. This is the elapsed time (in seconds) spent to acquire and analyze the
image and to perform recognition. Since it is elapsed time, it includes the time
spent to update the display and to respond to any commands such as VSTATUS
and VQUEUE. The detailed procedure for keeping time is as follows.

AdeptVision Reference Guide, Rev A 99

VFEATURE Real-Valued Function

100

Timekeeping starts when the VPICTURE or VWINDOW command is received. A
time record is kept for each object recognized (or region analyzed and not
recognized) in the image. As each object is entered in the queue, making it ready
to be VLOCATEAd, the elapsed time is noted. Timekeeping is reset as the search
begins for the next object in the image. Consequently, the elapsed time associated
with the first object includes the time spent to acquire the image.

Other consequences of this timekeeping procedure are as follows. If multiple
objects are recognized in one region, the time spent performing boundary analysis
is attributed only to the first object located. Furthermore, if the V.DISJOINT switch
has been enabled, the time spent analyzing the boundaries of all regions is
attributed to the first object recognized. The elapsed time reported for subsequent
objects is only the time spent in the recognition algorithm.

ITEM 19. “Flags” is a bit field. Bit #1 is reserved for future use.

Bit #2 is defined when the V.HOLES switch has been enabled. If set, the bit
indicates that the region (or hole) VLOCATEd helped to verify the recognition of
the object. The boundary of a region helps to verify the recognition if the region
boundary coincides with the prototype boundary. Only part of the hole boundary
must coincide in order to help.

The other bits in the bit field are reserved for future use.

ITEM 20. Following a VLOCATE, this is the number of the grip position that is
clear. This VFEATURE entry is zero if no grippers have been defined via
VDEFGRIP, or if none of the grip positions are clear. Otherwise, it is the number of
the first grip that is clear. Grips are tested in the order of their numbering, 1 to 4.

ITEMS 21 and 22. “Hole number’” and “parent number” provide a numbering of
holes for determining parent, child, and sibling relationships. Following a
VLOCATE in the normal find-object mode or a VSHOW instruction in
get-prototype mode, the “hole number” is always 0 and the “parent number” is
always —-1. The parent in this case is the background. Following a VLOCATE in
the special find-hole mode or a VSHOW in get-hole mode, the “hole number” is
an integer value, 1 or greater. All of the holes in the object are numbered,
including holes in holes. The “parent number” of a hole is the parent’s “hole
number”. Thus, if an object has one hole and the hole has one hole in it, the first
hole’s “hole number” is 1 and its “parent number” is 0. The innermost hole has a
“hole number” of 2, with a “parent number” of 1.

ITEM 23. After a VLOCATE, this is the number of the virtual camera with which
the object was located. After a VSHOW, this is the number of a virtual camera
associated with the prototype. (VFEATURE items #30 and #31 are bit masks
representing all cameras associated with the prototype.)

AdeptVision Reference Guide, Rev A

Real-Valued Function VFEATURE

ITEM 24. (After VSHOW only) The effort level assigned to a prototype during
training.

ITEM 25. (After VSHOW only) The color (black or white) that the prototype had
during training.

ITEM 26. (After VSHOW only) The number of prototype samples taught during
training. This is a measure of the reliability of the prototype.

ITEM 27. The number of bounds in the prototype VSHOWed or region
VLOCATEQ. If a prototype, the count includes holes. If a region, the count does
not include holes. The bounds counted are lines and arcs. A solid disk has one
bound, a rectangular plate has four bounds, etc. In get-hole mode, it is the number
of bounds in the region for the hole.

ITEMS 28 and 29. (After VSHOW only) These are the minimum and maximum
areas associated with the prototype. The values are assigned to the prototype
during training.

ITEMS 30 and 31. (After VSHOW only) These two items are bit masks
representing the virtual cameras associated with the prototype. Both items are
16-bit fields, with each bit representing a different virtual camera. Item #30
represents virtual cameras 1 through 16. The least-significant bit of item #30
represents camera number 1, and the highest bit represents camera number 16.
Item #31 represents cameras 17 through 32, with the ordering similar to that of
item #30.

The prototype is associated with those cameras whose corresponding bits are set
to 1. For example, the value 6 in item #30 means that cameras 2 and 3 are
associated with the prototype (“B10+”B100 = 6).

ITEMS 32 and 33. (After VSHOW only) After VSHOW of a prototype, item #32 is
1 and item #33 is the number of bounds in the prototype’s main region (not
counting holes). These items define the range of edge numbers for the main
region. After VSHOW in get-subproto or get-hole mode, items #32 and #33
contain the range of edge numbers for the subprototype or hole’s region. The
subprototype numbers are relative to the prototype, not the subprototype
(otherwise, item #32 would always be 1 in get-subproto mode).

ITEMS 34 to 36. (After VSHOW only) During prototype training, constraints can
be defined that limit recognition to a specific area and rotation relative to the
defined prototype. These items return the x, y, and angular constraints defined
during training.

ITEM 40. (After VLOCATE only) This is the total area of all holes in the region last
located with a VLOCATE instruction.

AdeptVision Reference Guide, Rev A 101

VFEATURE Real-Valued Function

102

ITEM 41. (After VLOCATE only) If the V.PERIMETER system switch has been
enabled, this is the outer perimeter of the region in millimeters.

ITEMS 42 and 43. (After VLOCATE only) If the V.CENTROID system switch has
been enabled, these are the X,Y coordinates of the region centroid. These items are
undefined if V.CENTROID has not been enabled. The positions and areas of holes
are not considered in the centroid computation. (The V.SUBTRACT.HOLE system
switch does not affect this.)

ITEMS 44 to 47. (After VLOCATE only) If the switches V.MIN.MAX.RADII and
V.CENTROID have been enabled, these VFEATURE items indicate the points on
the boundary of the region that are closest to and farthest from the region
centroid. Items #44 and #45 indicate the direction of the closest and farthest points
relative to the region centroid. Items #46 and #47 are the distances from the
centroid to the points, measured in millimeters.

ITEMS 48 to 50. (After VLOCATE only) These are the dimensions of the “best-fit
ellipse” to the region. System switches V.2ND.MOMENTS and V.CENTROID
must have been enabled for this computation. Item #48 is the direction of the
region major axis (axis of least inertia), in the range —90 to +90 degrees. Items #49
and #50 are the radii of the best-fit ellipse for the region. The ellipse is centered at
the region centroid, and its major axis coincides with the region major axis. (See
the description of the V.2ND.MOMENTS switch for an explanation of the
derivation.)

Table 2-2. VFEATURE Function Data for ObjectFinder (following VLOCATE)

Index Value Units (comment)
1 Valid (TRUE/FALSE)
2 X millimeters
3 Y millimeters
4 z millimeters
5 RX degrees
6 RY degrees
7 Rz degrees
8 Encoder offset encoder counts
9 Verify percentage percentage
11 Model number in planning list, 1 - 10
12 Instance ID integer
13 Min_X millimeters
14 Max_X millimeters
15 Min_Y millimeters

AdeptVision Reference Guide, Rev A

Real-Valued Function

VFEATURE

Table 2-2. VFEATURE Function Data for ObjectFinder (following VLOCATE)

Index Value Units (comment)
16 Max_Y millimeters
18 Time seconds
23 Virtual camera number 1-32
27 # features in model integer

See the descriptions following Table 2-1 for each item in Table 2-2. Exceptions are

shown below.

ITEMS 11. (After VLOCATE only) The model number is the number of the
ObjectFinder model used in the planning list (1 - 10).

ITEMS 12. (After VLOCATE only) Instance ID is a count of the number of objects
recognized and regions not recognized. These ID numbers start at 1 and count up.

ITEM 27. The number of features in the model VLOCATEd. All of the line
segments and circular arcs in the model are counted, even if the weight (after
multiple-instance training) is zero.

Table 2-3. VFEATURE Function Data for ObjectFinder (following VSHOW)

Index Value Units (comment)
1 Valid (TRUE/FALSE)
2 X millimeters
3 Y millimeters
4 z millimeters
5 RX degrees
6 RY degrees
7 RZ degrees
9 Verify percentage percentage
12* Min verify percent percentage
13 Min_X millimeters
14 Max_X millimeters
15 Min_Y millimeters
16 Max_Y millimeters
17 # of pairs integer
19* Avg verify percent percent
* Indexes 12, 19, and 20 are a set that is computed following multi-instance training.

AdeptVision Reference Guide, Rev A 103

VFEATURE Real-Valued Function

104

Table 2-3. VFEATURE Function Data for ObjectFinder (following VSHOW)

Index Value Units (comment)
20* Max verify percent percent
21 Hierarchical level

22 Parent number always -1
23 Virtual camera number 1-32

24 Effort level 0

25 Convergence measure

26 # samples taught integer

27 # features in the model integer
28 Max pixel variance

29 Max loc distance

* Indexes 12, 19, and 20 are a set that is computed following multi-instance training.

See the descriptions following Table 2-1 for each item in Table 2-3. Exceptions are
shown below.

ITEM 12. Minimum verify percentage is a recognition certainty value. The verify
percentage following a VSHOW instruction is the minimum verify percentage
required for recognition of an instance of the finder model.

ITEM 17. Number of pairs. Following VSHOW, this is the number of pairs in the
finder model.

ITEM 19. Average verify percentage is a recognition certainty value. When
following a VSHOW instruction, this is the average verify percentage required for
recognition of an instance of the finder model.

ITEM 20. Max verify percentage is a recognition certainty value. When following
a VSHOW instruction, this is the maximum verify percentage required for
recognition of an instance of the finder model.

ITEM 21. Hierarchical level. This is the image processing level (0 - 2). See
VTRAIN.FINDER for details.

ITEM 25. Convergence measure. This is a measure of the convergence of the
feature weights during multi-instance training. Higher means more convergence
(i.e., higher confidence that the weights are really converging to some set of
constant values). This would mean that the model is stabilizing. In most cases, the
value should be at least 3. However, a value of 2 may be sufficient for some
applications.

AdeptVision Reference Guide, Rev A

Real-Valued Function VFEATURE

ITEM 27. The number of features in the finder model VSHOWed. All of the line
segments and circular arcs in the model are counted, even if the weight (after
multiple-instance training) is zero.

ITEM 28. Maximum pixel variation (measured in units of pixels). This parameter
controls the fitting of features to edges.

ITEM 29. Maximum location distance (measured in units of pixels). This
parameter controls the distance between proposals. It is used in a strategy that
attempts to prevent too many proposals from being made in the same location.

Example

IF VFEATURE(1) THEN
TYPE "Recognition time =", VFEATURE(18)
END

Related Keywords

VLOCATE (program instruction)
VSHOW (program instruction)

AdeptVision Reference Guide, Rev A 105

VFIND.ARC Program Instruction

Syntax
VFIND.ARC (cam, mode, dmode, effort, type) data] i]=ibr
VFIND.ARC (cam, mode, dmode, effort, type) data] i]=1,
XC, YC, I, Ir , ang0, angn
Function

Fit a circular arc to an image edge bounded by a window that is shaped like a ring
or a ring segment.

Usage Considerations

If the calibration being used includes correction for perspective distortion, the
correction is applied to the given center of the arc (xc, yc) and to the returned
values describing the fit arc.

Adept recommends that you use the first syntax.
Parameters

cam Optional real-valued expression that specifies a virtual camera
number. The default is 1. The camera number is used to determine
which V.EDGE.STRENGTH parameter to use.

mode Optional bit-field expression. The default is 0. In summary, the
bit-mask values and their meanings are listed here (see below for
details):

Circle color: 0 = dark, 1 = light
Find: 0 = center only, 2 = radius only, 4 = both
Search start position: 0 = center, 8 = inner, 16 = outer

dmode Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

effort Optional real-valued expression indicating the effort level to use
when finding the arc. The effort level ranges from 1 (least effort) to
100 (maximum effort). The default is 20.

type Optional real-valued expression specifying the type of arc finder: -2
= dynamic binary, -1 = raw binary, 0 = run-length binary, 2 =
fine-edge. Default is 2 (fine-edge).

datal] Real array describing the outcome of the arc fit:

data[i+0] = TRUE if an arc was fit; otherwise, FALSE

106 AdeptVision Reference Guide, Rev A

ibr

XC, yC

rr

angO0, angn

Program Instruction VFIND.ARC

data[i+1] = TRUE if any part of the search window falls off the
Vision display window

data[i+2], data[i+3] = X,Y coordinates of the arc center, in
millimeters

data[i+4] = Radius of the arc, in millimeters

data[i+5] = Percentage of the estimated arc’s extent for which edge
points were found: 0.0 to 100.0

data[i+6] = Maximum error (distance from the fit arc to the most
distant edge point found), in pixels

data[i+7] = Maximum error toward the inside of the circle or arc, in
pixels

data[i+8] = Maximum error toward the outside of the circle or arc, in
pixels

data[i+9] = Percent of edge points filtered out

Optional array index that identifies the first element to be defined in
“data]] . The defaultis 0. If amultiple-dimension array is specified,
only the right-most index is incremented as the values are assigned.

Integer value specifying the image buffer region within which to
search for an arc. Image buffer regions specify both a size and a
frame store (see the description of VDEF.AOI).

Real-valued expressions specifying the center coordinate of the
estimated arc circle, in millimeters. This coordinate may be outside
the image, but it must be within a 1000-pixel radius of the image
origin (bottom left corner) after being transformed from millimeters
to image pixels.

Real-valued expression specifying the radius of the estimated arc
circle, in millimeters. The value for “r” must be in the range 1 to 512
image pixels after it is converted from millimeters. Furthermore,
there is a minimum arc circumference (see “ang0, angn” below).

Real-valued expression specifying the radius range for the search, in
millimeters. This is the distance across the estimated radius within
which the vision system searches for the arc’s edge points. In other
words, the search extends from (r-rr/2) to (r+rr/2). The range of
acceptable values for “rr” is between 0 and (2*r).

Optional real-valued expressions specifying the angular range for
the search in degrees. If “ang0” and “angn’ are 0 and 360 (or 0 and
0), the search space is a complete ring and a circle is fit. The
acceptable range of values for these parameters is —1000 to +1000

AdeptVision Reference Guide, Rev A 107

VFIND.ARC Program Instruction

degrees. If (angn-ang0) exceeds 360 degrees, a complete ring is
assumed. The circumference of the estimated arc must be at least
three pixels. The arc circumference, with “r” in pixels, is
(20drdangn-ang0)/360). The defaults are 0.

Details

108

VFIND.ARC, operating in grayscale mode, finds a circular arc edge with subpixel
accuracy. The instruction has three basic modes of operation: find the center and
radius of the arc’s circle; find only the center, knowing the radius (“dim3” of the
area of interest definition); or find only the radius, knowing the center (“dim1”
and “dim2” of the area of interest definition). The operator takes about the same
amount of processing time for each of the three modes, but the accuracy of the
results is different, especially with small angular ranges. This is clarified below.

VFIND.ARC types # -2, # -1, and #0 are binary arc finders. That is, arcs are fit to
binary edge points, which are black-to-white or white-to-black transitions in the
image.

Type # -2 arc finders use the grayscale frame store. (This is the data visible in
VDISPLAY mode #1.) The values of the threshold parameters V.THRESHOLD
and V.2ND.THRESH at the time the finder is executed are used to determine
which pixels are black and white. Therefore, a different binary threshold can be
used for each finder.

Type # -1 arc finders use the raw-binary frame store. (This is the data visible in
VDISPLAY mode #2.) This is binary or edge data, depending on the setting of the
V.BINARY system switch.

Type #0 arc finders use the processed binary data produced by VWINDOW or
VPICTURE in modes # —1 or #0. (This data is shown in VDISPLAY mode #3.) Note
that system parameters such as V.MIN.AREA and V.FIRST.COL are used during
picture processing, whereas they are not taken into account with type # —1 or # -2
finders. Again, the image data is binary or edge data, depending on the setting of
the V.BINARY system switch.

Type #2 arc finders are the highest-precision arc finders. The edge points used in
the least-squares type of fit algorithm are found in the grayscale frame store with
subpixel accuracy. (The image data used is visible in the Vision display window in
VDISPLAY mode #1.)

The portion of the image through which VFIND.ARC searches for edge points is
shaped like a ring or a ring segment. This area is defined by the area of interest
definition or the instruction parameters for the estimated arc center (xc,yc),
estimated arc radius (r), the search range (rr), and the angular range (ang0,angn).

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.ARC

The mode bits for the VFIND.ARC “mode” parameter are defined as follows (they
all default to zero):

Bit 1 (LSB) Dark inside (0) versus light inside (1) (mask value = 1)

If the inner part of the arc (or circle) is light, this bit should be set.
Otherwise, this bit should be clear. Based on this bit, VFIND.ARC searches
for edges with a particular sign: pixel transitions that are light-to-dark or
dark-to-light.

Bits 2,3 Center only (0), radius only (2), both (4) (mask value = 6)

Center only (0): In this mode, the given radius (“dim3” of the
area-of-interest definition) is assumed to be precise, and only the arc’s
circle center is computed.

Radius only (0): In this mode, the given center (first and second elements of
the area of interest definition) is assumed to be precise, and only the arc’s
radius is computed.

Both (4): In this mode, both the arc’s circle center and radius are fit. The
given arc center (“dim1” and “dim2” elements of the area-of-interest
definition) and radius (“dim3” of the area-of-interest definition) are used
only to define the area to be searched for edge points.

Bits 4,5 Center (0), inner (8), outer (16) (mask value = 24)

This defines the initial search point for edges. The search for edges is along
radial lines from the center of the arc. The length of each edge search is
“rr”. If more than one edge is found along one radial line, these bits (#4 and
#5) of the mode parameter determine which one to use. By default, the
edge closest to the center of the search area (the radius [“dim3” of the area
of interest definition] from the center [“dim1” and “dim2” of the area of
interest definition]) is chosen. This is fine for most situations. However, if
nearby edges are known to be present that do not belong to the arc edge,
one of these mode bits may be set to help avoid use of the non-arc edges. If
inner (bit #4) is set, the edge closest to the center of the arc’s circle is used. If
outer (bit #5) is set, the edge farthest from the center is used. Only one bit
may be set.

The VFIND.ARC operator is displayed in the Vision display window as a ring or
ring segment. The outer half of the ring is either dark blue or light blue,
depending on the given color of the arc’s circle (“mode” bit # 1). The inner half is
drawn in the other color. Bisecting the width of the ring is a guide arc drawn in
green—this is the estimated arc (defined by elements 1, 2, 3, 5, and 6 of the area of
interest definition). The inner and outer arcs show the search range (third element
of the area of interest definition) for the search. The initial search point is
indicated by a knot in yellow on either the inner, center, or outer arc (depending
on “mode” bit 4 and 5). The resulting fit arc is drawn in red (if one is found).

AdeptVision Reference Guide, Rev A 109

VFIND.ARC Program Instruction

110

When using the first syntax, the shape defined by VDEF.AOI should be 5, 6, 7, or
8. Figure 2-6 shows the mechanics of an arc finder. These mechanics are
determined by the “mode” bits in the VFIND.ARC instruction and the shape
specification in the area-of-interest definition. The appearance of the tool shown
in Figure 2-6 was created with a VDEF.AOI instruction specifying shape 5. The
tool dimensions from the VDEF.AOI instruction are as follows: dim1 and dim2 are
the center of the finder tool within the image; dim3 is the guide radius (shown as
a dotted line in Figure 2-3); dim4 is the search range; and angl and ang2 indicate
the angular range of the search. The “mode” bits from the VFIND.ARC
instruction are: bit 1 is 0, indicating a search for an arc with a dark inside (shown
by the dark blue inner radius of the tool); bit 2 = 0, bit 3 = 1 indicating that the
arc’s radius and center will be calculated; and bit 4 =0, bit 5 = 1, indicating that
the search will start from the outer radius (shown by a white dot on the outer
radius). The following code will create the arc finder in Figure 2-6:

arc_ibr =2011 ;area-of-interest 2, frame buffer 11

arc=5 ;shape #5

diml =35

dim2 = 40.5

dim3 =12

dim4 =8

angl=0

ang2 = 290

mode = 16+4+0 ;start from outside (mask = 16), find
; both (mask = 4), dark inside (mask = 0)

VDEF.AOQI arc_ibr = arc, diml, dim2, dim3, dim4, ang1, ang2

VFIND.ARC (1, mode, 1) data[] = arc_ibr

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.ARC

Find both: Calculate
radius and center

"mode" = @ @

Start search: Dark inside: Looks for
Search from arc with a dark inside
outer radius within the search range

Dot indicates
search starts at
outer radius

\

Dark inner ring
indicates search
for arc with dark

dim4 =
search range

inside within (arc with dark inside
search range must occur in
this range)
diml, dim2 =
dim3 = D tool center
guideline (radius of center of ang2

search range)

Figure 2-6. Arc Finder Shape

If part of the operator falls off the Vision display window (that is, if part of the
search area must be clipped by the virtual frame buffer defined in the image
buffer region), that situation is noted by the value of “data[i+1]”. The vision
system still attempts to fit an arc.

No arc is fit if fewer than three edge points are found, or if the resulting arc radius
would be too large. Then “data[i+0]” returns FALSE.

Edge points are found within the search area, and then an arc is fit to the edge
points using a special triangulation algorithm. The effort level specifies how
much time should be spent searching for edge points. If the effort level is 1, only a
few edge points (about five, evenly spaced across the angular range) are sought. If
the effort level is 100, as many edge points as possible are sought. High effort
levels with big arcs use a lot of execution time. Unless the arc image is small or
noisy, a low effort level should be used. This should provide adequate accuracy.

VFIND.ARC optionally filters out edge points that are far from the fit arc and then
refits the arc. This is an iterative process that increases the execution time but
provides more accurate and consistent results, particularly when noise is present
in the image. Two system parameters, V.MAX.SD and V.MAX.PIXEL.VAR, control
the filtering process. VFIND.ARC filters edge points if V.MAX.SD is nonzero.

AdeptVision Reference Guide, Rev A 111

VFIND.ARC Program Instruction

112

Otherwise, filtering is disabled. V.MAX.SD specifies the number of distance
standard deviations from the fit arc beyond which edge points should be
discarded. V.MAX.PIXEL.VAR specifies the maximum pixel distance below which
no edge points should be discarded. (See the description of the V.MAX.SD system
parameter for more information on the iterative, filtering process.)

The edge points found by VFIND.ARC are displayed in the Vision display
window when the V.SHOW.EDGES system switch is enabled. Edge points used in
the final fit of the arc are displayed in white. Edge points discarded during the
filtering process are displayed in gray. (Note that displaying the edge points is
computationally expensive, so it should be enabled only for investigative
purposes.)

Items “data[i+7]”, “data[i+8]”, and “data[i+9]” are returned only when edge
filtering is enabled (that is, when V.MAX.SD is nonzero). Item “data[i+9]” is the
percentage of edge points filtered out. This percentage ranges from 0 up toward
100. It can never be 100, however, because the filtering process always stops
before filtering out too many points.

The execution time for VFIND.ARC is proportional to the effort level multiplied
by the circumference of the arc. Also, the execution time increases as the search
range increases. An approximate formula for computing the execution time in
microseconds is shown below—where C is the arc circumference in pixels, E is the
effort level, and RR is the radius range in pixels. This formula does not account for
edge filtering, which will add additional time that depends on the number of
filtering iterations performed.

Time = C * E * (11 + RR/6)

After an arc has been fit (that is, after the final fit if edge filtering is enabled), the
edge points used to fit the arc are compared with the fit arc, and the distance from
the fit arc to the most distant edge point is returned (data[i+6]). This distance is in
pixels. If this value is not close to one, the arc edge in the image is either very
rough or some extraneous edges were detected and used in the arc fitting. If edge
filtering is enabled, “data[i+7]” and “data[i+8]” more specifically indicate the
most distant edge points inside and outside the arc, respectively. (Data item
“data[i+6]” is the maximum of “data[i+7]” and *“data[i+8]".)

Accuracy is more dependent on the angular range of the arc than on the effort
level. Angular ranges of 180 degrees or more provide very accurate (subpixel)
results. Fitting an arc with an angular range of less than 45 degrees can have very
large errors. This assumes that both the center and radius are being computed.
The results are much more accurate if one or the other is known in advance.

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.ARC
Example

The following instruction will use a fine-edge (default type) arc finder to look for
a light circle on a dark background (mode bit #1 set), computing both the center
and radius (mode bit #3 set). The effort level is 50. The estimated center location
and radius are (30,46) and 10, respectively. The search range is 5; the angular
range is 360 degrees (0 to 0).

VDEF.IAO 2001 =5, 30, 46, 10, 5
VFIND.ARC (, 1 BOR 4, , 50) data[] = 2001

Related Keywords

VDEEAOI (program instruction)
VFIND.LINE (program instruction)
VFIND.POINT (program instruction)
V.MAX.PIXEL.VAR (system parameter)
V.MAX.SD (system parameter)
V.SHOW.EDGES (system switch)

AdeptVision Reference Guide, Rev A 113

VFINDER Program Instruction

Syntax

VFINDER (cam, type, dmode, how_many_total {, times[]}) ibr

Function

This instruction performs ObjectFinder recognition using the planning associated
with the given virtual camera.

Parameter

cam Real-valued expression indicating the virtual camera’s “planning”
to use and parameters to read.

type Type of recognition operation to perform. Default value is 1.
1 = ObjectFinder recognition
2 = ObjectFinder recognition for multi-instance training

dmode Real-valued expression that specifies the display mode to use when
displaying the border of the window:
-1 Nodraw
0 Erase
1 Draw solid (default)
2 Complement
3 Draw dashed
4 Complement dashed

how_many_total
Specifies the total number of objects to find. In the case of multiple
models planned together, this is regardless of which models are
found. DEFAULT = -1 (find as many objects as possible). If 0 is
given, none will be found, but the image is still processed through
feature extraction.

times[] Array of “max_time” information for the recognition process. The
whole array is optional, defaults are as if “times[o] ” =0.
[0] How many “max_time” parameters to follow.
[1] Max time to first part. (defaults to V.MAX.TIME[cam])
[2] Max time to subsequent parts. (defaults to times[1])

ibr Integer value specifying the image buffer region within which to
search. The AOI must be a nonrotated rectangle. Image buffer
regions specify both a size and a virtual frame buffer (see the
description of VDEF.AOI).

NOTE: There is no optional shape specification; it must be an
image buffer region (ibr).

114 AdeptVision Reference Guide, Rev A

Program Instruction VFINDER

Details

This instruction performs ObjectFinder recognition using the planning associated
with the given virtual camera. As shown below, several of the same switches and
parameters apply as for prototype recognition.

Input parameters using virtual cameras

NOTE: All switches and parameters should use the default
settings, except as noted here.

The following settings are required:
PARAMETER V.MIN.AREA[vc] =4
PARAMETER V.MIN.HOLE.AREA[vc] =4

The following settings are suggested:
V.MAX.PIXEL.VAR[vc] Same as for models trained.

V.EDGE.STRENGTH[vc] Same as for models trained, assuming that the
F-stop or illumination has not changed significantly
from when the model was trained.

V.MAX.TIME[vc] =2.0 Used if the “times[] ” array is omitted.
V.MAX.VER.DIST[vc] = 5.0

The following switches are available for enabling visual feedback:
V.SHOW.FBNDS[vc] Similar to V.SHOW.BOUNDS, but for ObjectFinder.
V.SHOW.FEATS[vc] Shows final features used for ObjectFinder.

V.SHOW.VERIFY[vc] Same as for prototype recognition. The lines and
arcs of the prototype are compared to the edges in
the image, and they are drawn in the Vision display
window.

V.SHOW.RECOG|vc] Overlays the models on the found instances.

AdeptVision Reference Guide, Rev A 115

VFIND.LINE

Syntax

VFIND.LINE

VFIND.LINE

Function

Program Instruction

(cam, pos, dmode, effort, type) data] i]=ibr
(cam, pos, dmode, effort, type) data] i] =1,
Xc, yc¢, length, width , angle

Fit a straight line to an image edge within a window.

Usage Considerations

If the calibration being used includes correction for perspective distortion, the
correction is applied to the returned values describing the fit line.

Adept recommends that you use the first syntax.

Parameters

cam

pos

dmode

effort

type

data[]

116

Optional real-valued expression that specifies a virtual camera
number. The default is 1. The camera number is used to determine
which V.EDGE.STRENGTH parameter to use.

Optional real-valued expression indicating the starting point in the
search window: -1 = dark side, 0 = middle guideline, +1 = light side.
The default value of “pos” is 0.

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The defaultis 1 (draw solid).

Optional real-valued expression indicating the effort level to use
when fitting the line. The effort level can range from 1 (least effort)
to 100 (maximum effort). The default is 50.

Optional real-valued expression specifying the type of line finder:
—2 = dynamic binary, -1 = raw binary, 0 = run-length binary, 2 =
fine-edge. The default is 2 (fine-edge).

Real array describing the outcome of the line fit:

data[i+0] = TRUE if a line was fit; otherwise, FALSE

data[i+1] = TRUE if any part of the search window falls off the vision
display window

data[i+2], data[i+3] = X,Y coordinate on the line nearest to the initial
search point, in millimeters

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.LINE

data[i+4] = Angle of the fit line, in degrees

data[i+5] = Percentage of the guideline’s extent for which edge
points were found: 0.0 to 100.0

data[i+6] = Maximum error (distance from the fit line to the most
distant edge point found), in pixels

data[i+7] = Maximum error toward the dark side of the line, in pixels

data[i+8] = Maximum error toward the bright side of the line, in
pixels

data[i+9] = Percent of edge points filtered out

ibr Integer value specifying the image buffer region within which to
search for a line. Image buffer regions specify both a size and a
virtual frame buffer (see the description of VDEF.AOI).

i Optional array index that identifies the first element to be defined in
“data[] . The defaultis 0. If amultiple-dimension array is specified,
only the right-most index is incremented as the values are assigned.

Xc, yC Real-valued expressions specifying the center of the guideline
(center line in the search window), in millimeters. The values for
both “xc” and “yc” must be in the range —1000 to 1000 image pixels
after being converted from millimeters.

length Real-valued expression specifying the length of the guideline
(length of the search window), in millimeters. The value for
“length”” must be in the range 1 to 1000 image pixels after it is
converted from millimeters.

width Real-valued expression specifying the width of the search window,
in millimeters. The value for “width” must be in the range 1 to 1000
image pixels after it is converted from millimeters.

angle Optional real-valued expressions specifying the angle of the
guideline, in degrees. The default is 0. However, angles of 90 and
270 degrees are most efficient.

Details

VFIND.LINE finds a linear edge in a window with subpixel accuracy (if a
grayscale tool is used). First, edge points are found, and then a line is fit to the
edge points using a least-squares fit algorithm.

VFIND.LINE types #-2, #-1 and #0 are binary line finders. That is, lines are fit to
binary edge points, which are black-to-white or white-to-black transitions in the
image.

AdeptVision Reference Guide, Rev A 117

VFIND.LINE Program Instruction

118

Dynamic binary line finders (type #-2) use the grayscale frame store. (This is the
data visible in VDISPLAY mode #1.) The values of the threshold parameters
V.THRESHOLD and V.2ND.THRESH at the time the finder is executed are used
to determine which pixels are black and white. Therefore, a different binary
threshold can be used for each finder.

Raw binary line finders (type #-1) use the raw-binary frame store. (This is the
data shown in VDISPLAY mode #2.) This is binary or edge data, depending on the
setting of the V.BINARY system switch.

Run-length line finders (type #0) use the processed binary data produced by
VWINDOW or VPICTURE in modes #-1 or #0. (This data is shown in VDISPLAY
mode #3.) Note that system parameters such as V.MIN.AREA and V.FIRST.COL
are used during picture processing and, therefore, will affect this type of finder,
whereas they will not be taken into account for the other binary finders (type #-1
and #-2). Again, the image data is binary or edge data, depending on the setting
of the V.BINARY system switch.

Fine-edge line finders (type #2) are the highest-precision finders. The edge points
used in the least-squares-fit algorithm are found in the grayscale frame store with
subpixel accuracy. (The image data used is visible in the Vision display window in
VDISPLAY mode #1.)

At the center of the VFIND.LINE search window is the “guideline”, the user’s
estimate of the edge location. The guideline is defined by a point (the center
point), and an angle. The search area is further specified by the length of the
guideline (breadth of scan), the width of the search window (range about the
guideline within which the vision system is to search), and an initial search
location.

In the examples shown below, the guidelines are horizontal (angle = 0), so the
search windows are rectangles and the “width” of the search window is the
height of the rectangles. The examples illustrate the three possible initial search
locations.

The different possible positions for the initial search point allow control over the
processing of multiple edges in the search window. If the initial search pointisin
the center position, edge points nearest the guideline are used (when there are
multiple edge points perpendicular to the guideline to choose from). Otherwise,
the edge points nearest the side containing the initial search point are used. See
Figure 2-7.

The VFIND.LINE operator has a polarity that determines whether a light-to-dark
or dark-to-light edge is being fit. The vision system assumes that the dark side of
the edge is on the top of the line being searched for and the light side is on the
bottom (assuming *“angle” is 0). For visual reference, one half of the search

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.LINE

window is drawn in dark blue, and the other half is drawn in light blue; the
guideline is drawn in green, and the initial search point is drawn in yellow; the fit

line is drawn in red, and the point on the line closest to the initial search point is
drawn in white. See Figure 2-7.

pos =0 pos =0

Edges Found

pos =1, ang = 180 pos = -1

Figure 2-7. Line Finder Tool Start Position and Polarity

AdeptVision Reference Guide, Rev A 119

VFIND.LINE Program Instruction

Figure 2-8 shows a finder tool and the instructions that created the tool.

shape =1

diml =204

dim2 = 25.6

dim3 =15

dim4 =12

angl=0

rect_ibr = 3000+22 ;aoi 3, frame buffer 22

VDEF.AOI rect_ibr = shape, dim1, dim2, dim3, dim4, angl
VFIND.LINE (1, 1, 1) data[] = rect_ibr

‘<7dim34ﬁ

dim1, dim2 i

Figure 2-8. Sample Line Finder Tool

The area searched for edges always has its sides aligned along the horizontal,
vertical, or diagonal directions. Consequently, the VFIND.LINE window is a
parallelogram, not necessarily a rectangle. The guideline can have any
orientation, but the sides of the search window at the ends of the guideline are
always horizontal, vertical, or diagonal.

In the two search windows shown below, imagine that the guideline in the
left-hand window is 20 degrees off vertical and the guideline in the right-hand
window is 30 degrees off vertical. The windows have different shapes because the
window automatically changes orientation from “vertical” to “diagonal” when
the guideline is at 22.5 degrees, since that is halfway between 0 and 45 degrees.
This is the worst-case shape distortion, since it is near the transition point.

120 AdeptVision Reference Guide, Rev A

Program Instruction VFIND.LINE

The effort level specifies how dense the scan is along the guideline. Only a few
edge points are sought if the effort level is 1. If the effort level is 100, as many edge
points as possible are sought. The effort level affects both execution time and
accuracy.

If part of the operator falls off the Vision display window (that is, if part of the
search window must be clipped to the virtual frame store), “data[i+1]” notes it,
and the vision system still attempts to fit a line. However, no line is fit if fewer
than two edge points are found.

After a line has been fit, the edge points found are compared with the fit line, and
the distance from the fit line to the most distant edge point is returned (data[i+6]).
This distance is in pixels. If this value is not close to one, the linear edge in the
image is very rough or some extraneous edges were detected and used in the line
fitting.

NOTE: For highest accuracy when fitting a line to a linear edge, the
corners at the ends of the linear edge should not fall within the
VFIND.LINE search window. Parts of the other edges that are
connected to the corners may be detected by VFIND.LINE and used
in the least-squares fit. This shifts the fit line away from the linear
edge of interest toward one or both of the neighboring edges.

VFIND.LINE optionally filters out edge points that are far from the fit edge and
then refits the edge. This is an iterative process that increases the execution time
but provides more accurate and consistent results, particularly when noise is
present in the image. Two system parameters, V.MAX.SD and
V.MAX.PIXEL.VAR, control the filtering process. VFIND.LINE filters edge points
if V.MAX.SD is nonzero. Otherwise, filtering is disabled. V.MAX.SD specifies the
number of distance standard deviations from the fit line beyond which edge

AdeptVision Reference Guide, Rev A 121

VFIND.LINE Program Instruction

points should be discarded. V.MAX.PIXEL.VAR specifies the maximum pixel
distance below which no edge points should be discarded. (See the description of
the V.MAX.SD system parameter for more information on the iterative filtering
process.)

The edge points found by VFIND.LINE are displayed in the Vision display
window when the system switch V.SHOW.EDGES is enabled. Edge points used in
the final fit of the line are displayed in white. Edge points discarded during the
filtering process are displayed in gray. (Note that displaying the edge points is
computationally expensive, so it should be enabled only for investigative
purposes.)

Items “data[i+7]”, “data[i+8]”, and “data[i+9]” are returned only when edge
filtering is enabled (that is, when V.MAX.SD is nonzero). Item “data[i+9]” is the
percent of edge points filtered out. This percentage ranges from 0 up toward 100.
It can never be 100, however, because the filtering process always stops before
filtering out too many points.

The execution time for VFIND.LINE is proportional to the effort level multiplied
by the length of the guideline. Also, execution time increases as the width of the
operator increases. And the operator is faster when rotated near 90 or 270 degrees
than it is when rotated near 0 or 180 degrees. The cost of filtering depends on the
number of iterations performed.

After a line has been fit (that is, after the final fit if edge filtering is enabled), the
edge points used to fit the line are compared with the fit line, and the distance
from the fit line to the most distant edge point is returned (data[i+6]). This
distance is in pixels. If this value is more than one or so, the line edge in the image
is very rough or some extraneous edges were detected and used in the line fitting.
If edge filtering is enabled, “data[i+7]” and “data[i+8]” more specifically indicate
the most distant edge points from the dark and bright sides of the line,
respectively. (Data item *“data[i+6]” is the maximum of “data[i+7]” and
“data[i+8]”.)

Example

122

The following program segment finds a corner point with high precision, where
the corner is formed by two linear edges. VFIND.LINE is used twice, one for each
line. Then the program “line_line” (also shown below) is called to compute the
point where the two lines intersect. (A similar program is shown in the
programming example in AdeptVision User’s Guide.)

cam=1 ;Define virtual camera
VPICTURE (cam) 2 ;Quick frame grab
PARAMETER V.MAX.SD[cam] = 1.5 ;Filter beyond 1.5 Std Devs
PARAMETER V.MAX.PIXEL.VAR[cam] = 1 ;Keep points within 1 pixel

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.LINE

rect_ibr=2011

VDEF.AOI rect_ibr = 1, 300, 270, 80, 90

VFIND.LINE (cam, , , 100) a[] = rect_ibr

VDEF.TRANS 80, -70, 0, 0, 90 ;Move the aoi
VFIND.LINE (cam, , , 100) b[] = rect_ibr

IF NOT (a[0] AND b[0]) THEN
TYPE "Both edges not found"
STOP

END

CALL line_line(a[2], a[3], a[4], b[2], b[3], b[4], X, y)

; X,Y is the precision corner point found

.PROGRAM line_line(x1, y1, angl, x2, y2, ang2, X, Yy)
;ABSTRACT Find the intersection point of two lines
LOCAL dx1, dyl, dx2, dy2, f, fract, numerator

dx1 = COS(angl)

dyl = SIN(angl)

dx2 = COS(ang?2)

dy2 = SIN(ang2)

numerator = (y2-y1)*dx2-(x2-x1)*dy2

IF ABS(dx1) > ABS(dyl) THEN ;Divide by larger number
fract = dy1/dx1
f = numerator/(fract*dx2-dy2)
X = x1+f
y = yl+fract*f

ELSE
fract = dx1/dy1l
f = numerator/(dx2-fract*dy2)
y = y1+f
X = x1+fract*f

END

.END

Related Keywords

VDEEAOI (program instruction)
VFIND.ARC (program instruction)
VFIND.POINT (program instruction)
V.MAX.PIXEL.VAR (system parameter)
V.MAX.SD (system parameter)
V.SHOW.EDGES (system switch)

AdeptVision Reference Guide, Rev A 123

VFIND.POINT Program Instruction

Syntax
VFIND.POINT (cam, pos, dmode, effort, type) data] i]=ibr
VFIND.POINT (cam, pos, dmode, effort, type) data] i]=1,
Xc, yc¢, length, width , angle
Function

In a search window, find the edge point that is nearest to one side of the window.
Usage Considerations

The frame store currently selected must contain a valid picture. Otherwise, an
error results.

If the calibration being used includes correction for perspective distortion, the
correction is applied to the found point returned.

Adept recommends that you use the first syntax.
Parameters

cam Optional real-valued expression that specifies a virtual camera
number. The default is 1. The camera number is used to pick the set
of switches and parameters to use.

pos Optional real-valued expression indicating the starting point in the
search window: -1 = dark side; +1 = light side. The default value of
“pos” is —1.

dmode Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

effort Optional real-valued expression indicating the effort level to use
when searching for edge points. The effort level can range from 1
(least effort) to 100 (maximum effort). The default is 100.

type Optional real-valued expression specifying the type of point finder:
-2 = dynamic binary, -1 = raw binary, 0 = run-length binary, 2 =
fine-edge. The default is 2 (fine-edge).

datal] Real array describing the outcome of the search, as follows:

data[i+0] = TRUE if an edge point was found, otherwise FALSE

124 AdeptVision Reference Guide, Rev A

Program Instruction VFIND.POINT

data[i+1] = TRUE if any part of the search window falls off the
Vision display window

data[i+2], data[i+3] = X,Y coordinates of the edge point found, in
millimeters

ibr Integer value specifying the image buffer region within which to
search for a point. Image buffer regions specify both a size and a
frame store (see the description of VDEF.AOI).

i Optional array index that identifies the first element to be defined in
“data]] . The defaultis 0. If a multiple-dimension array is specified,
only the right-most index is incremented as the values are assigned.

Xc, yC Real-valued expressions specifying the center of the search window,
in millimeters. The values for both “xc” and “yc” must be in the
range —1000 to 1000 image pixels after they are converted from
millimeters.

length Real-valued expression specifying the length of the search window,
in millimeters. The value for “length” must be in the range 1 to 1000
image pixels after it is converted from millimeters.

width Real-valued expression specifying the width of the search window,
in millimeters. The value for “length” must be in the range 1 to 1000
image pixels after it is converted from millimeters.

angle Optional real-valued expressions specifying the orientation of the
search window in degrees. The default is 0. However, angles of 90
and 270 degrees are most efficient.

Details

The VFIND.POINT instruction looks for edges in a search window. It operates
like a “fat ruler”, looking along a wide path in search of an edge. An example
application would be to find the right-most point on a circle when you know the
circle’s approximate position. VFIND.POINT could also be used to find the end of
a pin.

VFIND.POINT types # -2, # —1 and #0 are binary point finders. Binary edge
points are black-to-white or white-to-black transitions. The maximum accuracy is
one pixel.

Dynamic binary point finders (type # —2) use the grayscale frame store. (This is
the data visible in VDISPLAY mode #1.) The values of the threshold parameters
V.THRESHOLD and V.2ND.THRESH at the time the finder is executed are used
to determine which pixels are black and white. Therefore, a different binary
threshold can be used for each finder.

AdeptVision Reference Guide, Rev A 125

VFIND.POINT Program Instruction

126

Raw binary point finders (type # —1) use the raw-binary frame store. (This is the
data shown in VDISPLAY mode #2.) This is binary or edge data, depending on the
setting of the V.BINARY system switch.

Run-length binary point finders (type #0) use the processed binary data produced
by VWINDOW or VPICTURE in modes # —1 or #0. (This data is shown in
VDISPLAY mode #3.) Note that system parameters such as V.MIN.AREA and
V.FIRST.COL are used during picture processing and, therefore, will affect this
type of finder, whereas they will not be taken into account for the other binary
finders (type # —1 and # —2). Again, the image data is binary or edge data,
depending on the setting of the V.BINARY system switch.

Fine-edge point finders (type #2) find edge points with subpixel accuracy. The
image data used is in the grayscale frame store (which is visible in the Vision
display window in VDISPLAY mode #1).

VFIND.POINT is similar to the VFIND.LINE instruction. The search window is a
parallelogram. Graphically, the operator looks the same except the center
guideline is missing. As shown below, the knot (0) specifying the initial search
position is on either one side of the window or the other.

(pos =-1) (pos = 1)

Given the search window on the left above, the edge finder would return the
(X,Y) coordinate of the edge point in the window that is closest to the top of the
window. In the search window on the right, the edge point closest to the bottom
of the window would be returned.

The VFIND.POINT operator has a polarity that determines whether a
light-to-dark or dark-to-light edge is being fit. The vision system assumes that the
dark side of the edge is on the top and the light side is on the bottom when the
tool rotation is 0. For visual reference, one half of the search window is drawn in
dark blue, and the other half is drawn in light blue. The initial search point is
drawn in yellow. The edge point found is drawn in red. If the V.SHOW.EDGES
system switch is enabled, all the candidate edge points within the search window
(that is, those that have the correct polarity) are displayed in white. (Note that
displaying all of the edge points is computationally expensive, so
V.SHOW.EDGES should be enabled only for investigative purposes.)

AdeptVision Reference Guide, Rev A

Program Instruction VFIND.POINT

Like VFIND.LINE, the VFIND.POINT operator always searches for edges along
horizontal, vertical, or diagonal directions. Consequently, the search window is a
parallelogram, not necessarily a rectangle. The sides of the window that contain
the initial search point can have any orientation, but the other two sides of the
search window are always horizontal, vertical, or diagonal.

VFIND.POINT returns a coordinate whose distance from the side of the search
window containing the initial search point (“0”) is accurate. Note that the
distance—but not necessarily the coordinate—is accurate. In particular, the
coordinate has only about one pixel of accuracy along the axis parallel to the “0”
side of the window. The accuracy of the coordinate along the axis that is
perpendicular to the “0” side of the window is much better, particularly for
fine-edge VFIND.POINT operations, similar to that of a fine-edge ruler.

The effort level specifies the “fineness of the comb” used in the search for edge
points. VFIND.POINT searches inside the window along search lines that run
perpendicular to the side of the window containing the initial search point. The
search lines are spaced one pixel apart. If the effort level is 100, all search lines are
searched for edge points. If the effort level is 50, only every other search line is
searched for edges. The effort level is basically the percentage of all potential
search lines that will be searched for edge points.

For very high accuracy in locating a corner formed by two linear edges, the
VFIND.LINE instruction should be used. (See the program example given with
VFIND.LINE.) If one or both of the edges are circular arcs, the VFIND.ARC
instruction may be used in a similar manner.

If part of the operator falls off the Vision display window (that is, if part of the
search window must be clipped to the virtual frame store), “data[i+1]” notes it,
and the vision system still searches for edge points.

The execution time for VFIND.POINT is proportional to the length of the search
window. Also, the execution time increases as the width of the window increases,
and as the effort level increases. The operator is faster when rotated near 90 or 270
degrees than it is when rotated near 0 or 180 degrees.

Example

The following instruction sequence uses the V.EDGE.STRENGTH system
parameter for camera #3 to find the right-most edge point in a search rectangle.
The search is from the “light side” (pos = 1) of a rectangle located at (100, 67.33).
The search window is 40 millimeters high and 25 millimeters wide. The rotation
angle is 90 degrees.

cam =3
pos=1
shape =1
diml1 =100

AdeptVision Reference Guide, Rev A 127

VFIND.POINT Program Instruction

dim2 = 67.33
dim3 =40
dim4 =25
angl =90
rect_ibr = 4012 ;area-of-interest 4, virt.frame buffer 12
VDEF.AOQI rect_ibr = shape, dim1, dim2, dim3, dim4, angl
VFIND.POINT (cam, pos) data[] = rect_ibr
IF data[0] THEN
TYPE "Point found at (", /F0.3, data[2], ",", data[3],)"
ELSE
TYPE "No point found"
END

Related Keywords

128

VDEEAOI (program instruction)
VFIND.ARC (program instruction)
VFIND.LINE (program instruction)
VRULERI (program instruction)
V.SHOW.EDGES (system switch)

AdeptVision Reference Guide, Rev A

System Parameter V.FIRST.COL
Syntax
... V.FIRST.COL [camera]
Function
Set the number of the first column of pixels to be processed.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE or VWINDOW
is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

This parameter, together with V.LAST.COL, is used to set the range of camera
pixel columns that are processed during VPICTURE and VWINDOW operations.
Columns outside the range specified are ignored by the vision system.
(VDEF.AOI is the preferred method for defining a processing border for
VPICTURE and VWINDOW.)

This parameter must be assigned an integer value in the range 1 (at the left edge
of the virtual frame buffer) to the current value of the parameter V.LAST.COL.
The parameter V.FIRST.COL is set to 1 when the V™ and AdeptVision systems are
loaded into memory from disk.

Example
Process all camera images starting at the left-most border:

PARAMETER V.FIRST.COL =1

Related Keywords

VDEEAOI (program instruction)
V.FIRST.LINE (system parameter)
V.LAST.COL (system parameter)
V.LAST.LINE (system parameter)

AdeptVision Reference Guide, Rev A 129

V.FIRST.LINE System Parameter

Syntax

... V.FIRST.LINE [camera]
Function

Set the number of the first line of pixels to be processed.
Usage Considerations

A change to this parameter takes effect when the next VPICTURE or VWINDOW
instruction is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

This parameter, together with V.LAST.LINE, is used to set the range of camera
pixel lines that are processed during VPICTURE or VWINDOW operations. Lines
outside the range specified are ignored by the vision system. (VDEF.AOI is the
preferred method for defining a processing border for VPICTURE and
VWINDOW.)

This parameter must be assigned an integer value in the range 1 (for the line at the
bottom of the virtual frame buffer) to the current value of the parameter
V.LAST.LINE. The parameter V.FIRST.LINE is set to 1 when the V" and
AdeptVision systems are loaded into memory from disk.

Example
Start processing camera images beginning with the first line of data:

PARAMETER V.FIRST.LINE =1

Related Keywords

VDEEAOI (program instruction)
V.FIRST.COL (system parameter)
V.LAST.COL (system parameter)
V.LAST.LINE (system parameter)

130 AdeptVision Reference Guide, Rev A

System Switch V.FIT.ARCS

Syntax

... V.FIT.ARCS [camera]

Function

Enable or disable the fitting of circular arcs when performing boundary analysis.
Usage Considerations

A change to this switch takes effect when the next VPICTURE, VWINDOW, or
VTRAIN operation is executed.

This is an array of switches—one for each virtual camera. (See the general
description of switches in the AdeptVision User’s Guide for syntax details.)

Details

This switch allows the user to disable arc fitting during boundary analysis. When
arc fitting is disabled, the vision system attempts to fit only lines instead of
attempting to fit both lines and arcs. This improves performance for scenes that
contain no (or very few) boundary segments that appear as arcs.

If the vision system is doing prototype recognition and none of the prototypes
associated with the virtual camera being VPICTUREd have any arcs, V.FIT. ARCS
is automatically disabled for the VPICTURE (or VWINDOW) operation. Even if
the prototypes have arcs, the vision system will fit only arcs with similar radii,
filtering out arcs with other radii. (The definition of “similar radii is liberal,
depending on the standard deviations of the radii of the prototype arcs and the
effort levels of the prototypes.)

The V.BOUNDARIES system switch overrides the V.FIT. ARCS switch. That is, if
V.BOUNDARIES is disabled, arcs will not be fit regardless of the setting of
V.FIT.ARCS.

Similarly, if the V.MAX.PIXEL.VAR system parameter is 0, both line fitting and arc
fitting are automatically disabled.

Related Keywords

V.BOUNDARIES (system switch)

VFEATURE (real-valued function)

VPICTURE (monitor command and program instruction)
V.RECOGNITION (system switch)

AdeptVision Reference Guide, Rev A 131

V.GAIN System Parameter

Syntax

... V.GAIN [camera]

Function

Set the gain for the incoming video (camera) signal.

Usage Considerations

Changing this parameter immediately affects the video output of the camera
interface board.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

132

The V.GAIN parameter works with the V.OFFSET parameter to select the
incoming analog video gain and offset, respectively. V.GAIN multiplies (scales)
the video signal, whereas V.OFFSET shifts (translates) the video signal.

Before adjusting the values of V.OFFSET and V.GAIN, you should take a picture,
compute the histogram, and study the video data displayed in the Vision display
window. To take the picture and compute the histogram, enter the V* monitor
commands “VPICT (cam) 2” and “VHIST” (where “cam” is the number of the
virtual camera being used) or use the mouse to make the menu selections to
perform these same operations.

The goal is to have the video data fill most of the intensity range (0 to 127) without
spilling over either end. If the video data spills over the left end, the histogram
curve shows a spike over the “0” intensity label. Similarly, if the video data spills
over the right end, the curve shows a spike at or near the “127” intensity label.

You should increase V.GAIN to expand the intensity range of the video data or
decrease V.GAIN to reduce the intensity range. Similarly, you should increase
V.OFFSET to shift the video data toward the left and decrease V.OFFSET to shift it
toward the right. For good results, you may have to repeat the procedure of
taking a picture, computing the new histogram, and adjusting V.GAIN and
V.OFFSET a few times.

V.GAIN must be assigned an integer value in the range 1 to 256, inclusive. The
parameter is set to 128 when the V™ and AdeptVision systems are loaded into
memory from disk.

AdeptVision Reference Guide, Rev A

System Parameter
Example
Make the video gain 120 for all virtual cameras:
PARAMETER V.GAIN =120
Related Keywords

VHISTOGRAM (monitor command and program instruction)
V.OFFSET (system parameter)

AdeptVision Reference Guide, Rev A

V.GAIN

133

VGAPS

Syntax

Program Instruction

VGAPS data[i] = proto_name, edge_num

Function

Find the unverified gaps in a match with a prototype or subprototype.

Usage Considerations

The V.LAST.VER.DIST system parameter must be nonzero when the last
VPICTURE was performed to make the necessary information available to the
VGAPS instruction.

The VGAPS instruction refers to the object most recently VLOCATEd regardless
of which program task executed the VLOCATE instruction. Consequently, for
predictable operation, only one program task should execute VLOCATE

instructions.

Parameter
data[]
[
proto_nam
134

Real array containing the requested gap information:
data[i+0] = Number of gaps in the edge or edge numbers in the list

data[i+1] = Verify percentage: 0 to 100. If the parameter “edge_num”
is 0 (see below), this is the verify percentage for the
entire prototype. Otherwise, it is the verify percentage
for the one edge.

data[i+2] = If “edge_num” is 0, this is the start of a list of the edges of
the prototype or subprototype that have gaps in them. If
“edge_num” is not zero, this is the start of a list of the
millimeter ranges for the gaps in the specified edge,
where “data[i+2n]” and “data[i+2n+1]” indicate the
start and end of gap #n, respectively.

Optional integer value that identifies the first array element to be
defined in “data] ”. Zero is assumed if the index is omitted. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

Optional string expression that specifies the name of the prototype
or subprototype for which gap information is requested. If a
subprototype is specified, the string must have the form
“namel:name2”, where “namel” is the name of the prototype and
“name2” is the name of the prototype’s subprototype. The default, if
“proto_name” is not specified, is the prototype last VLOCATECd.

AdeptVision Reference Guide, Rev A

Program Instruction VGAPS

edge_num Optional real-valued expression that specifies the number of the
prototype or subprototype edge for which information is requested.
The default is 0, which requests a list of all the edge numbers that
have gaps in them. If the value is nonzero, gap information about a
specific edge is requested. The edge number is relative to the
prototype’s edge numbering, unless “proto_name ” specifies a
subprototype. Then, the “edge_num” is relative to the subprototype’s
edge numbering.

Details

When a prototype object is recognized in the image, each edge of the prototype is
compared with the edges in the image to verify the prototype match. When the
V.LAST.VER.DIST system parameter is nonzero, the portions of prototype edges
that are not verified are remembered. These unverified portions are called gaps.
Gaps could be caused by cutouts, flashing, occluding debris, or by dimensions
that are out of tolerance.

To identify all the gaps in a prototype or subprototype, the prototype must first be
VLOCATEd. Then use VGAPS with an “edge_num” value of 0. This returns into
“data[]” a list of the edges that have gaps in them. Then use VGAPS again with
these edge numbers to find where the gaps are within each particular edge. A gap
is defined by a pair of distances (in millimeters) from the start of the edge (line or
arc). The portion of the edge between the pair of distances is a nonverified gap. As
their numbering indicates, the edges of each region in a prototype are ordered in a
clockwise direction. The distances in the “data] ” array returned by VGAPS use
the same direction. If a pair of distances in “data[] ", indicating a gap, are 0 and
5.2, then the gap starts at the first corner of the edge (moving clockwise around
the region), extending into the edge 5.2 millimeters. Circular edges begin at 0
degrees, the point on the circle that is farthest right in the Vision display window.

If only some of the edges of the prototype (or subprototype) are of interest, use the
VSHOW monitor command to display all of the edge numbers for the prototype.
Then use VGAPS with each edge number of interest.

VGAPS provides the requested information only if it refers to the most recent
picture taken (via VPICTURE) and the most recent object located (via VLOCATE).
Also, the V.LAST.VER.DIST system parameter must be nonzero when the
VPICTURE operation is performed. Otherwise, the gap information is not
retained and VGAPS results in the error message “*Information not available*”.

Example

Before this program is called, the parameter V.LAST.VER.DIST must be nonzero, a
VPICTURE must be performed, and a VLOCATE of the prototype must succeed.
The name of the prototype must be passed to the “$proto” parameter of this
program.

AdeptVision Reference Guide, Rev A 135

VGAPS Program Instruction

136

The second argument to VLOCATE (’vloc) must have been specified and then
passed to this program. This is a transformation variable that is assigned the
location of the object.

.PROGRAM label_gaps($proto, vioc)

;ABSTRACT: This program displays, in the Monitor display window,
; information about all the gaps in a recognized prototype and

; puts a "G" at the center of each gap in the Vision display

; window.

INPUT PARAMS: $proto - name of the prototype to examine
; vloc - transformation variable that is assigned the
; location of the object

LOCAL cang, cnt, d360_circum, dx, dy, einfo[], enum

LOCAL gaps][], gcx, gey, glist[], gnum, mid, xta[]

LOCAL $type

; Get a list of all the prototype edges that have gaps.

VGAPS glist[] =, 0
TYPE "Total verify percentage: ", glist[1]

; Display a description of each prototype edge that has a gap.
; Then display the gap ranges and label the gaps in the vision
; display window.

FOR cnt =1 TO glist[0]
enum = glist[cnt+1]

; Get information about the prototype edge from VEDGE.INFO.
; Then get information about the edge gaps from VGAPS.

VEDGE.INFO einfo[] = $proto, enum
VGAPS gaps[] =, enum
TYPE /C1, " Corner: " einfo[2], ",", einfo[3]

IF einfo[0] == 0 THEN ;If line
TYPE enum, ") Line. ", gaps[1], "% verified."
ELSE ;Else arc

IF einfo[0] > 0 THEN
$type "Convex"
ELSE
$type "Concave"
END

TYPE enum, ") ", $type, " arc.", /S

TYPE " Radius: ", einfo[8], /S

TYPE ", center: ", einfo[6], ",", einfo[7], /S
TYPE", ", gaps[1], "% verified."
d360_circum = 360/(2*PI*einfo[8])

AdeptVision Reference Guide, Rev A

Program Instruction

cang = ATANZ2(einfo[3]-einfo[7],einfo[2]-einfo[6])
END

; For each gap in the edge, type out its range
; and label the gap with a "G".

TYPE" Gaps: ", IS
FOR gnum =1 TO gaps[0]
IF gnum > 1 THEN
TYPE", ", IS
END
TYPE gaps[gnum*2], " -->", gaps[gnum*2+1], /S
mid = (gaps[gnum*2]+gaps[gnum*2+1])/2
IF einfo[0] == 0 THEN
dx = einfo[4]-einfo[2] ;Line
dy = einfo[5]-einfo[3]
mid = mid/SQRT(SQR(dx)+SQR(dy))
gcx = einfo[2]+dx*mid
gcy = einfo[3]+dy*mid
ELSE
IF einfo[0] > 0 THEN
mid = cang-mid*d360_circum
ELSE
mid = cang+mid*d360_circum
END
gex = einfo[6]+einfo[8]*COS(mid)
gcey = einfo[7]+einfo[8]*SIN(mid)
END
DECOMPOSE xta[] = vloc:TRANS(gcx,gcey,0)
GRANS (vwin,1)
GTYPE (vwin) xta[0], xta[1], "G"
END
TYPE /C1, " Corner: ", einfo[4], ",", einfo[5]
END
.END

Related Keywords

VDEESUBPROTO (program instruction)
VSHOW (monitor command)

VSHOW (program instruction)
VSUBPROTO (program instruction)
V.LAST.VER.DIST (system parameter)

AdeptVision Reference Guide, Rev A

JArc

VGAPS

137

VGET.AOI Program Instruction

Syntax
VGET.AOI array[i]=aoi

Function
Return the definition of an area-of-interest.
Usage Considerations

The area-of-interest must have been defined with a VDEF.AOI instruction.

Parameters
array[] Variable name identifying the array to receive the AOI definition.
i Optional integer value specifying the starting array index.
aoi Real-valued expression identifying the area-of-interest.

Details

If the VGET.AOI instruction specifies a valid AOI number, the following
information is returned in “array[]”:

array/i] Returns the shape number if definition is valid; returns -1 if
definition is not valid

array[i +1] Dimension 1 of AOI

array[i + 2] Dimension 2 of AOI

array[i + 3] Dimension 3 of AOI

array[i + 4] Dimension 4 of AOI

array[i +5] Angle 1 of AOI

array[i + 6] Angle 2 of AOI

Example
Change dim3 of aoi 3 to 37.4:
VGET.AOI def[] = 3000
IF def[0] <> -1 THEN
VDEF.AOI 3000 = def[0], def[1], def[2], 37.4, def[4], def[5]
END
Related Keyword

VDEEAOI (program instruction)

138 AdeptVision Reference Guide, Rev A

Program Instruction VGETCAL
Syntax

VGETCAL (cam) scalers[i], pmm.to.pix[j,K], pix.to.pmm[l,m], to.cam

Function

Ask the system to fill in arrays with the previously defined vision calibration data
for a given virtual camera.

Parameters
cam Optional real-valued expression that specifies the virtual camera
number.
scalers[] Real array that receives the scaler calibration values.
pmm.to.pix[,] Optional, two-dimensional real array that receives the
millimeter-to-pixel transformation matrix. If this array is
specified, the array “pix.to.omm[,] ” must also be specified.
pix.to.pmm[,] Optional, two-dimensional real array that receives the
pixel-to-millimeter transformation matrix. If this array is
specified, the array “pmm.to.pix[,] ” must also be specified.
i Optional integer values that identify the first array
j.k element to be defined in the respective array. Zero is assumed
l,m for each index that is omitted. If an array is specified that has
more dimensions than needed, only the right-most indexes are
incremented as the values are assigned.
to.cam Optional variable that recieves the vision transformation.
Details

This instruction is used by the calibration programs supplied with the vision
system. The calibration programs perform a VGETCAL to determine what
calibration data was previously defined via VPUTCAL.

On power-up, the vision system preassigns calibration data for all virtual
cameras. Virtual cameras are associated with physical cameras in blocks of four;
virtual cameras 1-4 are associated with physical cameras 1-4, virtual cameras 5-8
are associated with physical cameras 5-8, etc. For each virtual camera, one
millimeter is made equal to one pixel, and perspective calibration is not used. This
makes the system usable for setup or experimentation. For precision work,
however, a calibration procedure should be performed.

AdeptVision Reference Guide, Rev A 139

VGETCAL Program Instruction
Since the calibration arrays are normally filled by an Adept V™ utility program,
the programmer should not have to be completely familiar with the individual

array elements. However, the contents of the arrays are listed in this manual in
the description of the VPUTCAL instruction.

Example

VGETCAL (3) cal[], mp[,], pm[,] ;Get cam calibration data

Related Keyword

VPUTCAL (program instruction)

140 AdeptVision Reference Guide, Rev A

Program Instruction VGETPIC
Syntax

VGETPIC (cam, type, s_rate, s_mode) $pic[r, c] =shape, x0, y0, dx, dy

Function
Read all or part of an image into a string array.
Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameter

cam Optional real-valued expression that specifies a virtual camera
number. The default is 1. (This parameter is currently ignored.)

type Optional real-valued expression indicating the type of data to store
in the array “$pic[,] 7. The defaultis 1.

1 = Grayscale image and binary (or edge) image
2 = Binary (or edge) image only

s_rate Optional real-valued expression specifying the sampling rate for
reading pixels. If the rate is N, every Nth pixel is read out of every
Nth row. The rate must be in the range 1 to 100. The default is 1.

s_mode Optional real-valued expression specifying the sample mode, which
is meaningful only if the sample rate (s_rate) is greater than 1. Pixels
are simply sampled if “s_mode” is O (the default). Pixels are averaged
if “s_mode” is 1, in which case the binary portion of the image will be
stripped.

NOTE: The parentheses in the instruction syntax can be omitted if
all four of the above parameters are omitted.

$picl,] Array into which to put a header string and picture data.

rc Row and column indexes into the array “$pic[,] ", indicating where
the picture and header information is to be stored. The defaults are 0
for both “r” and “c”. The header string is stored in the element
“$pic[r,c]”. The picture data is stored starting at element
“$pic[r+1,c+1]".

shape Optional real-valued expression indicating the shape of the image to

read. The default is 1, indicating a rectangular shape (which is the
only shape now available).

AdeptVision Reference Guide, Rev A 141

VGETPIC Program Instruction

x0, yO Optional real-valued expressions specifying the coordinate of the
lower-left corner of the image to be read. The coordinate is in pixel
units and must be within the image. The defaultis (1,1), the
lower-left corner on the Vision display window.

dx, dy Optional real-valued expressions specifying the width and height of
the image to read, in pixel units. The image dimensions are listed in
the table above. If the width or height of the image window being
read exceeds the image dimensions on the top or right, the
dimensions are automatically reduced and the new dimensions are
stored in the header string. If not specified, “dx” and “dy” default to
the full image size. (For grayscale VGETPICs, “dx” is limited to 512
pixels.)

Details

142

This instruction reads a rectangular window of an image and stores it into a
two-dimension string array. Unless the data is packed (see below), each string in
the array holds 128 pixels. As many strings as needed are filled for each row (four
is the maximum required). There is one row of strings for each row of the image
window being read. A header string is stored in “$pic[r, c]” (normally the [0,0]
location), which contains pertinent information about the stored image. See
below.

Type #1 VGETPIC reads the image in the frame store currently selected. (See the
VSELECT program instruction.) This includes both the grayscale data (lower 7
bits of each byte) and the binary or edge data (high bit of each byte). A type #2
VGETPIC reads only the binary or edge image—the image you see when in
VDISPLAY mode 2.

The image data is binary for type #2 VGETPIC. Therefore, for efficiency, the data
is packed eight pixels to a string character, with the left-most pixel in the
least-significant bit. No partial characters are packed, so “x0” and *“dx” are
automatically adjusted to have the image window read start and stop on an
eight-pixel boundary (“dx” ends up being a multiple of eight). The actual starting
coordinates and dimensions used are stored in the header string.

NOTE: The only required parameter is “spic[,] . All the other
parameters default so that the entire image is saved.

The sample rate (s_rate) and sample mode (s_mode) parameters are supported for
the image frame stores. When the sample rate is greater than one, the image
stored in “$pic[,] ” is significantly smaller. The sample mode determines the
method of image reduction. For example, if the sample rate is 2, the image is
shrunk by a factor of 2 in both the X and Y directions. If the sample mode is 0, the
image is reduced simply by using every other pixel on every other line. If the

AdeptVision Reference Guide, Rev A

Program Instruction VGETPIC

sample mode is 1, each pixel in the reduced image is the average of the pixelsin a
2x2 neighborhood. Likewise, if the sample rate is 6, mode 0 would use every 6th
pixel on every 6th line, and mode 1 would determine each pixel of the reduced
image to be the average over a 6x6 neighborhood.

Use of the sampling feature can greatly reduce the amount of memory needed to
store an image. A sample rate of 2 results in an image that is 1/4 the size of the
original. Sampling may be used to save several reduced images for simultaneous
display (see the description of VPUTPIC later in this chapter).

Normally, you never have to examine or alter the header string. However, for
completeness, its contents are described in Table 2-4 below. The VPUTPIC
instruction requires that this information be present and consistent with the
picture data stored in the rest of the array. Therefore, you should not change the
header string without a full understanding of the format. The items in the header
string are all integer values. They may be extracted using the V™ INTB function.

Table 2-4. Contents of VGETPIC/VPUTPIC Header String

Start Char | Item Description
1 version Version number for maintaining compatibility
3 system Type of system: 2 for area grayscale systems
5 camera Virtual camera accessed by VGETPIC
7 type Type of image data: 1, 2, [3, 4] (pre-11.0 images only)
9 packed 0 for 1 pixel per byte; 1 for 8 pixels per byte
11 sample_rate Sample rate used
13 sample_mode | 0 for sampling; 1 for averaging
15 shape 1 for rectangular
17 x0 Actual x0 of starting location
19 y0 Actual y0 of starting location
21 dx Actual number of image columns read and stored
23 dy Actual number of image rows read and stored
25 chars_per_row | Number of characters per row used in $pic[,]
27 clipped Boolean: TRUE if clipped in either direction

AdeptVision Reference Guide, Rev A 143

VGETPIC Program Instruction
Example

VGETPIC $savpic],] ;Save the current full image

VPUTPIC $savpic[,] ;Restore the image saved above

See the description of VPUTPIC for more examples.
Related Keywords

VDISPLAY (monitor command and program instruction)
VPUTPIC (program instruction)
VSELECT (program instruction)

144 AdeptVision Reference Guide, Rev A

Program Instruction VGET.TRANS
Syntax

VGET.TRANS array[i]

Function
Return the value of the current vision transformation.
Usage Considerations

Each task has its own vision transformation, so VGET.TRANS must be issued in
the correct task.

Parameters
array[] Variable identifying the array to receive the vision transformation.
i Optional integer expression specifying the starting array index. The
defaultis 0.
Details

The current vision transformation definition is returned in the array elements:

array[i] Always returns 1

array[i + 1] X offset of the vision transformation
array[i + 2] Y offset of the vision transformation
array[i + 3] Rotation of the vision transformation
array[i + 4] Scale of the vision transformation

Example
Rotate the current vision transformation by 90°:

VGET.TRANS t_def[]
VDEF.TRANS t_def[1], t_def[2], t_def[3]+90

Related Keyword

VDEETRANS (program instruction)

AdeptVision Reference Guide, Rev A 145

VHISTOGRAM Monitor Command and Program Instruction

Syntax

VHISTOGRAM (dmode) array[index] = ibr

Function
Compute the histogram for a grayscale frame store.
Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters

dmode Optional real-valued expression specifying the display mode: 1 to
display the histogram, or 0 not to display it. This parameter defaults
to 1 (do display) if no value is specified. In that case, the parentheses
can be omitted.

array[] Optional array into which the values are placed. Elements [index] to
[index+127] are filled with the pixel counts for each of the possible
intensity values, 0 to 127.

index Optional integer value that identifies the first array element to be
defined in “array[] 7. Zero is assumed if the index is omitted. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

ibr Optional integer value that specifies the image buffer region
(area-of-interest and frame store) to use. The area-of-interest must
have been defined with a VDEF.AOI instruction. The default frame
is the current frame—the one selected most recently via VPICTURE,
VSELECT, or by a menu pick using the mouse.

Details

VHISTOGRAM computes a histogram for an image currently in memory. The
image is visible in VDISPLAY mode #1. The histogram is computed by simply
reading all the pixels in the image defined by “ibr ” and counting the number of
pixels at each intensity level. These counts are placed in the array if that optional
parameter was specified.

The image memory read may be any valid image buffer region. The region must
contain a valid picture. Otherwise, an error results. (See the VSELECT program
instruction.) Image histograms are useful for determining the gain (V.GAIN) and
offset (V.OFFSET) for the incoming camera data. Histograms also help determine
the thresholds for binary image processing.

146 AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VHISTOGRAM

When the histogram is displayed in the Vision display window, the range of
intensity is represented by the horizontal axis and the number of pixels per
intensity is represented along the vertical axis. The vertical axis is scaled to
accommodate the highest peak. That axis is not labeled because usually only the
relative magnitudes are important.

The following text is displayed to the side of the histogram:

Min: aaa
Max: bbb

where “aaa” is the minimum intensity with a nonzero count of pixels and “bbb” is
the maximum intensity with a nonzero count.

Note that the VWINDOWI program instruction can return the same information
as VHISTOGRAM. VWINDOWI does not display the histogram, but it can be
executed when the vision system is not in an idle state.

Example
Take a quick picture:

VPICTURE 2

Compute and display the histogram:

VHISTOGRAM

Related Keywords

VDEEAOI (program instruction)

VAUTOTHR (monitor command and program instruction)
VWINDOWI (program instruction)

V.GAIN (system parameter)

V.OFFSET (system parameter)

AdeptVision Reference Guide, Rev A 147

V.HOLES System Switch

Syntax

... V.HOLES [camera]

Function

Enable or disable the accounting of interior features in all objects.

Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

The setting of this switch is ignored by the vision system when the V.DISJOINT
switch is enabled.

This is an array of switches—one for each virtual camera. (See the general
description of switches in the AdeptVision User’s Guide for syntax details.)

Details

If the V.HOLES switch is enabled, the system keeps track of the holes in all
objects, whether or not the objects have been recognized. The description of a hole
is available by executing the VLOCATE instruction, followed by use of the
VFEATURE function. Holes are described by their area, bounding box, and their
parent, child, and sibling relationships with other holes. Also, if an object has been
recognized, the VFEATURE function reports which holes helped verify the
presence of the object in the image.

Determining hole locations may be useful for inspection or for implementing
unusual recognition strategies. As an example of inspection, components missing
from printed circuit boards may be discovered by backlighting the boards and
looking for unexpected holes.

The memory used for storage of the hole information is taken away from the
memory normally allocated for the object queue. The object queue holds the
objects seen until VLOCATE instructions are processed. Every satisfied
VLOCATE instruction removes one object from the object queue, leaving room for
a new object. (The object queue is displayed when the VQUEUE monitor
command is issued.)

The vision system queue has a maximum capacity of 1200 objects and holes. Each
hole in the queue takes the place of one object.

Related Keywords

148

VFEATURE (real-valued function)
VLOCATE (program instruction)
V.DISJOINT (system switch)

AdeptVision Reference Guide, Rev A

System Parameter V.IO.WAIT

Syntax
... V.IO.WAIT [camera]

Function

Enable the synchronization of taking pictures (VPICTURES) with an external
event that triggers the fast digital-input interrupt line.

Usage Considerations

Operation of the external trigger can be configured with the Adept controller
configuration program (in the file CONFIG_C.V2 on the Utility Disk). See the V*
Language User’s Guide for details on digital 1/0.

A change to this parameter takes effect when the next VPICTURE command or
instruction is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

If the V.IO.WAIT parameter is set to 1, VPICTURE commands or instructions wait
for an interrupt from the fast digital-input interrupt line before acquiring an
image. This is useful for taking pictures of fast-moving objects. For example, the
object could trigger a simple sensor, such as a photoelectric cell, that is wired into
the V™ controller.

NOTE: When taking pictures of moving objects, a strobe light or
shuttered camera should be used to minimize image blur. (For more
information on the use of strobe lights, see the system switch
V.STROBE and the system parameter V.SYNC.STROBE in this
manual. For information on the various camera types, see the
AdeptVision User’s Guide.)

The fast digital-input interrupt line provides a significant improvement in
response time to external events. When this line is used, the worst-case delay
from the time the line is triggered until the strobe light output signal is fired is
about 10 microseconds. If, instead, a V* program uses the WAIT instruction to
wait for a digital signal before performing a VPICTURE, the delay can be as long
as 16 milliseconds.! The worst-case delay should be planned for if objects in the
scene are moving fast with respect to the camera field of view.

1 This worst-case delay assumes the Adept system controls a robot, has multiple execution tasks
active, or has busy device drivers. If the system has no robot, only a single execution task
running, and no busy device drivers, the delay can be as long as 2 milliseconds.

AdeptVision Reference Guide, Rev A 149

V.IO.WAIT System Parameter

What is the effect of a worst-case delay of 16 milliseconds? Consider, for example,
a field of view that is 5.12 centimeters wide. Each pixel, then, is 0.1 millimeter
wide.! If the objects in the field of view are moving at the (high) speed of 1 meter
per second, a worst-case delay of 16 milliseconds corresponds to a shift of 160
pixels.? Since the frame store is 512 pixels wide, a shift of 160 pixels could shift
part of the object being analyzed out of the field of view.

When the V.IO.WAIT parameter is set to 1, a VPICTURE operation could wait
indefinitely for the external trigger. However, the VPICTURE instruction has a
special no-wait mode that may be used to allow the application program to
continue without waiting for the VPICTURE operation to begin. (Also note that
the VPICTURE monitor command or a program containing the VPICTURE
instruction may be aborted in various ways.)

When V.IO.WAIT is set to 0 (the default), VPICTURE operations do not wait for
the external trigger. This parameter may be assigned only the values 0 or 1.

Example
Wait for the external trigger when taking pictures with camera #1.:

PARAMETER V.IO.WAIT[1] =1

Related Keywords

VPICTURE (monitor command and program instruction)
VABORT (monitor command and program instruction)
VWAIT (program instruction)

V.STROBE (system switch)

V.SYNC.STROBE (system parameter)

15.12 cm per 512 pixels = 0.01 cm/pixel = 0.1 mm/pixel
2 (0.016 second) * (1000 mm/second) / (0.1 mm/pixel) = 160 pixels

150 AdeptVision Reference Guide, Rev A

System Switch VISION
Syntax
... VISION
Function
Enable the entire vision system.

Usage Considerations

This switch must be enabled before any vision commands or instructions may be
executed.

Details

The vision processor initializes itself when the VISION system switch is enabled.
The vision processor automatically enables VISION on power-up.

If the switch is already enabled and a picture is being processed (a VPICTURE or
VWINDOW has been issued earlier), typing “ENABLE VISION” makes the vision
system stop processing images and reinitialize itself. When VISION is enabled,
the vision system performs an equipment check. If there is a failure, the V' system
displays an error message in the Monitor display window, such as “*Camera
interface board absent*”. When the VISION switch is disabled, the vision system
closes the vision display window, removing the menu selections. When enabled,
the vision system reopens the window and restores the menu selections,
assuming that a user task does not have the window opened for read/write.

Example
Restart the vision system:

ENABLE VISION

AdeptVision Reference Guide, Rev A 151

V.LAST.COL System Parameter

Syntax

... V.LAST.COL [camera]
Function

Set the number of the last column of pixels to be processed.
Usage Considerations

A change to this parameter takes effect when the next VPICTURE or VWINDOW
is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of vision parameters in the AdeptVision User’s Guide for syntax
details.)

Details

This parameter, together with V.FIRST.COL, is used to set the range of pixel
columns that are processed during VPICTURE and VWINDOW operations.
Columns outside the range specified are ignored by the vision system.
(VDEF.AOI is the preferred method for defining a processing border for
VPICTURE and VWINDOW.)

The value of the parameter V.LAST.COL must be greater than the value of
V.FIRST.COL and less than or equal to 640.1 The parameter V.LAST.COL is set to
its maximum value when the V™ and AdeptVision systems are loaded into
memory from disk.

Example
Process all image data up to the 256th column of pixels:

PARAMETER V.LAST.COL = 256

Related Keywords

VDEEAOI (program instruction)

V.FIRST.COL (system parameter)
V.FIRST.LINE (system parameter)
V.LAST.LINE (system parameter)

1 This is the maximum setting. The effective value of V.LAST.COL is limited by the virtual frame
allocation made with the DEVICE instruction or the CONFIG_C utility.

152 AdeptVision Reference Guide, Rev A

System Parameter V.LAST.LINE
Syntax
... V.LAST.LINE [camera]
Function
Set the number of the last line of pixels to be processed.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE or VWINDOW
is executed.

This is an array of parameters—one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

This parameter, together with V.FIRST.LINE, is used to set the range of pixel lines
that are processed during VPICTURE and VWINDOW operations. Lines outside
the range specified are ignored by the vision system. (VDEF.AOI is the preferred

method for defining a processing border for VPICTURE and VWINDOW.)

The value of the parameter V.LAST.LINE must be greater than the value of
V.FIRST.LINE and must be less than or equal to 480.1 The parameter V.LAST.LINE
is set to its maximum value when the V* and AdeptVision systems are loaded into
memory from disk.

Example
Process all camera images up to the last line of data:

PARAMETER V.LAST.LINE =480

Related Keywords

VDEEAOI (program instruction)
V.FIRST.COL (system parameter)
V.FIRST.LINE (system parameter)
V.LAST.COL (system parameter)

1 This is the maximum setting. The effective value of V.LAST.LINE is limited by the virtual frame
allocation made with the DEVICE instruction or the CONFIG_C utility. In field-acquire mode,
lines are numbered from 1 to 240. Thus, in that mode the maximum effective value of
V.LAST.LINE is 240.

AdeptVision Reference Guide, Rev A 153

V.LAST.VER.DIST System Parameter

Syntax

... V.LAST.VER.DIST [camera]

Function

Enable an extra verification of prototype-to-image matches and specify the pixel
tolerance to use when determining boundary coincidence.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of parameters, one for each virtual camera. (See the general
description of parameters in the AdeptVision User’s Guide for syntax details.)

Details

154

When this parameter is nonzero, it enables an extra verification of each
prototype-to-image match. Furthermore, the value of V.LAST.VER.DIST is used
(in place of the value of the parameter V.MAX.VER.DIST) during the extra
verification as the distance criterion in the coincidence test (that is, when the
positions and orientations of prototype edges are compared with those of nearby
edges in the image).

In addition, when V.LAST.VER.DIST is nonzero, information about the final
verification is saved for use by the program instructions VGAPS and
VSUBPROTO.

The VGAPS instruction provides information about unverified gaps in prototype
edges. When this kind of information is needed, the parameter V.LAST.VER.DIST
may be assigned a smaller value than V.MAX.VER.DIST, thereby specifying a
tighter tolerance test. However, it should not be assigned a value smaller than
V.MAX.PIXEL.VAR, which is the pixel variance allowed when fitting the edges
(lines and arcs) in the image.

With the VSUBPROTO instruction, the verified percentages of edges of
subprototypes or an individual prototype may be determined. VSUBPROTO may
also be used to refine the position of the recognized prototype, based on a
subprototype or a single prototype edge. In this latter case, the V.LAST.VER.DIST
parameter may be assigned a value larger than V.MAX.VER.DIST, in order to
“reach out” to edges that are suspected of deviating in position.

Like VMAX.VER.DIST, V.LAST.VER.DIST is in pixel units. V.LAST.VER.DIST
must be assigned a real value in the range 0 to 16, inclusive. The parameter is set
to 0 when the V* and AdeptVision systems are loaded into memory from disk.
That is, the extra verification is disabled.

AdeptVision Reference Guide, Rev A

System Parameter V.LAST.VER.DIST
Examples

PARAMETER V.LAST.VER.DIST[vcam] =0
PARAMETER V.LAST.VER.DIST[2] = PARAMETER(V.MAX.VER.DIST[1])

Related Keywords

VGAPS (program instruction)
VSUBPROTO (program instruction)
V.MAX.VER.DIST (system parameter)

AdeptVision Reference Guide, Rev A 155

VLOAD Monitor Command

Syntax
VLOAD file_spec

Function

Load vision models (ObjectFinder models, prototypes, Optical Character Recog-
nition fonts, or correlation templates) from a disk file.

Usage Considerations
VLOAD will not load files created prior to version 11.0.
Parameter

file_spec Specification of the disk file from which the vision models are to be
loaded. This consists of an optional physical device, an optional disk
unit, an optional directory path, a file name, and an optional file
extension. Uppercase or lowercase letters can be used.

The current default device, unit, and directory path are considered
as appropriate (see the DEFAULT command in the V* Operating
System Reference Guide).

If no filename extension is specified, the extension “.VS” is
appended to the name given.

Details

All the vision models previously VSTOREd in the given file are loaded and added
to those already in memory. If the file contains a vision model with the same
name, font number, or template number as one already in the vision system,
loading is aborted. That is, none of the vision models in the file are loaded.

Any subprototypes associated with a prototype are also restored automatically.

As the VLOAD command is processed, V* displays in the Monitor display
window the names of the models, along with their virtual camera associations. If
fonts or templates are loaded, their identifying numbers are displayed.

156 AdeptVision Reference Guide, Rev A

Monitor Command VLOAD
Example

The following monitor command loads the models from the disk file named
“OBJECTS.VS” and displays their virtual camera associations as shown.

VLOAD objects

07 XS 1 —

I N = ——
CRANK I — *
BRACKET = - L — S—

Related Keywords

VSHOW.MODEL (program instruction)
VTRAIN (program instruction)
VTRAIN.MODEL (program instruction)
VLOAD (program instruction)
VSTORE (monitor command)

VSTORE (program instruction)
VTRAIN.FINDER (program instruction)

AdeptVision Reference Guide, Rev A 157

VLOAD

Syntax

Program Instruction

VLOAD (lun) $file_spec

Function

Load vision models (ObjectFinder models, prototypes, Optical Character Recog-
nition fonts, or correlation templates) from a disk file.

Usage Considerations

VLOAD will not load files created prior to version 11.0.

Parameters

lun

$file_spec

Details

Real-valued expression that specifies the logical unit number to be
associated with the operation. This must be one of the logical unit
numbers for a disk device (see the ATTACH instruction in the V*
Language Reference Guide). The logical unit number used must not
already be in use by the program for another disk access.

String expression that specifies the disk file from which the vision
models are to be loaded. This consists of an optional physical
device, an optional disk unit, an optional directory path, a file name,
and an optional file extension. Uppercase or lowercase letters can be
used.

The current default device, unit, and directory path are considered
as appropriate (see the DEFAULT command in the V* Operating
System Reference Guide).

If no filename extension is specified, the extension “.VS” is
appended to the name given.

All the vision models previously VSTOREd in the given file are loaded and added
to those already in memory. If the file contains a vision model with the same
name, font number, or template number as one already in the vision system,
loading is aborted. That is, none of the vision models in the file are loaded.

Any subprototypes associated with a prototype are also restored automatically.

Vision models already in RAM cannot be overwritten by new models with the
same name. They must be first be VDELETEd or VRENAMEd.

158

AdeptVision Reference Guide, Rev A

Program Instruction VLOAD

The IOSTAT real-valued function can be used after this instruction to determine if
any error occurred during the load operation (see the V" Language User’s Guide
for details).

NOTE: The application program must not have attached the logical
unit, since the VLOAD instruction automatically attaches and
detaches the logical unit.

Example

The following program instruction loads the models stored in the disk file named
“OBJECTS.VS” on the default system disk. Logical unit number 6 is associated
with the operation and is used to check for successful completion:

VLOAD (6) "objects"

IF IOSTAT(6) < 0 THEN
TYPE /C1, "VLOAD failure: ", $ERROR(IOSTAT(6)), /C1
HALT

END

Related Keywords

VLOAD (monitor command)
VSTORE (monitor command
VSTORE (program instruction)

AdeptVision Reference Guide, Rev A 159

VLOCATE Program Instruction

Syntax

VLOCATE (camera, mode, order) $name, trans_var

Function
Identify and locate an object in the scene.
Parameter

camera Optional real-valued expression that specifies the virtual camera
number. All cameras are implied if the camera number is 0.

mode Optional bit-field expression indicating whether a particular object
is being sought and whether the VLOCATE should wait if
necessary. (See below for details.)

order Optional real-valued expression for selecting objects by size or
position in the image. The default is 0, for no specific order desired.
(See below for detalils.)

NOTE: This parameter has certain restrictions for the ObjectFinder
tool. See the table on page 162 for details.

$name String variable to be assigned the name of the object found
(“find-any” mode) or a string expression representing the name of
the object to be located (“find-particular” mode). (This parameter
must be omitted in find-hole mode [see below]).

trans_var Optional transformation variable to be assigned the location of the
object. (See details below.)

Details

The vision system keeps a queue of the recognized objects and unrecognized
regions found during image processing. The queue is filled by doing VPICTURE
or VWINDOW instructions and is emptied using the VLOCATE instruction.?
Each VPICTURE and VWINDOW operation clears the vision queue for the
specified virtual camera and fills the queue with the results of the new image.

An object must be VLOCATEd in order to obtain subprototype information (see
the VSUBPROTO instruction) or gap information (see the VGAPS instruction).

1 VLOCATE retrieves one object from the queue. After each VLOCATE, the VFEATURE
real-valued function may be used to obtain information about the found object.

160 AdeptVision Reference Guide, Rev A

Program Instruction VLOCATE

NOTE: Subprototype information and gap information does not
apply to the ObjectFinder tool.

The mode bits are defined as follows (they all default to zero).

Bit 1 (LSB) Wait (0) versus No-wait (1) (mask value = 1)

Bit 2

Bit 3

Wait (0): The VLOCATE instruction will stop program execution until any
region is located, or a specific prototype is recognized, depending on the
find-any/find-particular bit (see below). Once the VLOCATE is satisfied,
control returns to the V™ program, even if image processing is not yet
complete (that is, there are more regions to process). If the VLOCATE is not
satisfied, program execution continues when the entire image has been
processed.

No-wait (1): Program execution will continue without waiting.
Default: Wait mode (0).

Find-any (0) versus Find-particular (1) (mask value = 2)

Find-any (0): Any object located for the given virtual camera will satisfy
the VLOCATE (the next one in the queue is returned in the desired

“order). The “$name” parameter must be a string variable, which is filled
in with the name of the object found.

Find-particular (1): If this bit is set to one, a particular object is sought. The
name of the object to be found must be given. The name *“?” may be given
if an unknown region is sought.

Default: Find-any mode (0).

Find-object (0) versus Find-hole (1) (mask value = 4)
NOTE: Find-hole does not apply to the ObjectFinder tool.

Find-object (0): This is the normal mode of operation where recognized
objects or unrecognized regions are located.

Find-hole (1): In this mode, the VLOCATE is a request for hole information
about the object last located. This mode provides a way to inspect for
unexpected holes in objects. In order for this find-hole mode to be used, an
object first has to be VLOCATEd in the normal find-object mode. The
subsequent find-hole VLOCATEs refer to the object found. Each find-hole
VLOCATE returns one hole of the object. The information provided by the
VFEATURE function is sufficient to reconstruct the parent, child, and
sibling relationships between the holes, in case there are holes within holes.

AdeptVision Reference Guide, Rev A 161

VLOCATE Program Instruction

If two or more objects are touching or overlapping, they have the same set
of holes because they are all part of the same outer region. Consequently,
the same hole may be VLOCATEAd in find-hole mode multiple times—once
after each object is recognized. The duplicate hole descriptions are the
same, except for the “flags” bit returned by VFEATURE that indicates if the
hole boundary contributed to the recognition of the object.

VLOCATE in find-hole mode refers to the object most recently
VLOCATEd, regardless of which program task executed the VLOCATE
instruction. Consequently, there is possible confusion when more than one
program task performs VLOCATESs. Thus, for predictable operation with
find-hole requests, applications should be organized to have only one
program task execute VLOCATE instructions.

The other VLOCATE mode bits are ignored in find-hole mode. That is,
no-wait mode and find-any mode are implicitly in effect. Also, the “name”
parameter to VLOCATE must be omitted when find-hole mode is
specified.

VLOCATE in find-hole mode succeeds only after a VPICTURE or
VWINDOW processed with the V.HOLES switch enabled and the
V.DISJOINT switch disabled.

Default: Find-object mode (0).

The “order ” parameter to VLOCATE allows you to locate objects in the image in a
preferred order: biggest first, left-most first, etc. This applies to recognized objects,
unrecognized regions, and holes, depending on the mode of the VLOCATE. The
“order ” parameter must have a value in the range 0 to 10. The values are
interpreted as follows:

Value Object Indicated

Any

Biggest first (not used for ObjectFinder)
Smallest first (not used for ObjectFinder)
Left-most, based on box center
Right-most, based on box center
Bottom-most, based on box center
Top-most, based on box center
Left-most, based on nearest box edge

Right-most, based on nearest box edge

© 00 N oo o B~ w N -, O

Bottom-most, based on nearest box edge

[EEY
o

Top-most, based on nearest box edge

162 AdeptVision Reference Guide, Rev A

Program Instruction VLOCATE

If the “order ” parameter is omitted, the value 0 is assumed, which means no
particular order is desired. “order ” values 3 through 6 select criteria based on the
center of the object’s bounding box. For example, an “order” value of 3 is a
request for the object whose bounding box center is nearest the left side of the
image. Values 6 through 10 select criteria based on the object’s closest edge. For
example, an “order ” value of 8 is a request for the object whose right edge is
nearest the right side of the image. When a nonzero value is specified for “order ”
in a VLOCATE instruction, the vision system searches through the queue of
processed objects to find the one that satisfies the requested order. If the vision
system has not completed processing of all the objects in the image, the
unprocessed objects are not considered in the order search. If you want all the
objects to be included, execute a VWAIT program instruction before the
VLOCATE to ensure that image processing has completed.

The real-valued function VFEATURE(1) must be evaluated to determine if an
object was located.

Memory is reserved for storing objects in the various vision queues (one queue
for each virtual camera). This memory allocation can be changed with the
DEVICE instruction. See the AdeptVision User’s Guide for details.

The setting of the V.CENTROID switch may affect the location value returned by
VLOCATE in find-any mode. If the region located is unknown (that is, the object
name is “?”’) and the V.CENTROID system switch is enabled, the location
returned is for the region centroid. If the V.CENTROID switch is disabled, the
location is the center of the bounding box for the unknown region. The setting of
the V.CENTROID switch has the same effect on the location returned by a
VLOCATE in find-hole mode.

The V.CENTROID switch does not affect the location returned by VLOCATE in
find-particular mode. In that mode, the location is always for the region centroid.

Example

Locate an instance of the prototype named OBJ found in virtual camera #3,
waiting if necessary, and then assign the object location to “cx’:

VLOCATE (3, 2) “OBJ", cx

Get the name and location of the next object or region in the queue in “wait”
mode:

VLOCATE (0,) $name, loc

AdeptVision Reference Guide, Rev A 163

VLOCATE Program Instruction

Return the name and location of the next object in the queue for virtual camera #2,
but do not wait if no object is found:

VLOCATE (2, 1) $name, loc

Related Keywords

V.BOUNDARIES (system switch)

VFEATURE (real-valued function)

VFINDER (program instruction)

VGAPS (program instruction)

V.HOLES (system switch)

VPICTURE (monitor command and program instruction)
V.RECOGNITION (system switch)

VSUBPROTO (program instruction)

VWINDOW (program instruction)

164 AdeptVision Reference Guide, Rev A

System Parameter V.MAX.AREA

Syntax
... V.MAX.AREA [camera]

Function
Set the maximum area above which the vision system ignores regions.
Usage Considerations

A change to this parameter takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

The effects of changes to this parameter are visible in the Vision display window
only in a special display mode. Regions larger than V.MAX.AREA will still appear
in display modes #1 and #2.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

Regions that contain more than V.MAX.AREA number of pixels are ignored by
the vision system during object recognition, clear-grip testing, and standard ruler
measurements. This parameter is less commonly useful than V.MIN.AREA. A
situation in which V.MAX.AREA would be useful, however, occurs when a fixture
is in the scene that is larger than the object to be recognized or measured. In that
case, time can be saved by setting V.MAX.AREA smaller than the area of the
fixture region but larger than the object region, because then the fixture boundary
is not analyzed.

When a region area is larger than V.MAX.AREA, the region is merged into the
background. Any holes of the region also become merged into the background
because they are the same color as the background. However, any holes observed
in the holes are kept and treated like separate regions.

CAUTION: If multiple objects touch or overlap, their combined
area in the image is compared with V.MAX.AREA. Consequently, if
V.MAX.AREA is set to be larger than the area of one object but
smaller than the combined areas of two objects, the image of two
touching objects is ignored—they disappear.

AdeptVision Reference Guide, Rev A 165

VMAX.AREA System Parameter

This parameter must be assigned an integer value in the range 1 to 1,048,576
(1024c1024), inclusive.! Furthermore, the value must be greater than or equal to
the value of the parameter V.MIN.AREA. The parameter V.MAX.AREA is set to
307,200 when the VV* and AdeptVision systems are loaded into memory from
disk.

Example
Ignore regions that are larger than 100,000 pixels in area:
PARAMETER V.MAX.AREA = 100000
Related Keywords

V.MIN.AREA (system parameter)
V.MIN.HOLE.AREA (system parameter)

1 The effective maximum of V.MAX.AREA is the area of the virtual frame buffer. Virtual frame
buffer sizes are specified with the DEVICE instruction.

166 AdeptVision Reference Guide, Rev A

System Parameter V.MAX.PIXEL.VAR
Syntax

... V.MAX.PIXEL.VAR [camera]

Function

During a VFIND.LINE or VFIND.ARC operation, this parameter specifies the
maximum pixel distance from the fit edge beyond which edge points may be fil-
tered out.

During boundary analysis, this parameter sets the maximum pixel deviation
allowed when fitting lines and arcs to region edges.

Usage Considerations

A change to this parameter takes effect when a new region is analyzed, or when a
VFIND.LINE or VFIND.ARC instruction is executed.

The effects of changes to this parameter are visible in the Vision display window
only during training or in a special display mode after a VPICTURE, VWINDOW,
VTRAIN, VFIND.LINE, or VFIND.ARC operation.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

This parameter has two different functions, depending on the image processing
operation being performed. The line and arc finders, VFIND.LINE and
VFIND.ARC, use it as a distance threshold for controlling the filtering of edge
points. The finders optionally iterate, discarding edge points that are too far from
the fit line or arc. The parameter V.MAX.PIXEL.VAR specifies the maximum
distance from the fit edge within which edge points are always preserved. See the
parameter V.MAX.SD on page 170 for a more complete description of the filtering
algorithm used by the finder.

As a general guideline, when the finders operate in grayscale mode,
V.MAX.PIXEL.VAR should be set to 1 or larger. When operating in binary mode, it
should be set to 1.5 or larger. In both cases, if it is set to less than 0.5, the finders
automatically use the value 0.5.

The other function of V.MAX.PIXEL.VAR applies during boundary analysis,
when a VWINDOW, VPICTURE (in mode #0 or #-1), or VTRAIN operation is
executed. During boundary analysis, the vision system characterizes the regions
in the image as a connected sequence of lines and arcs. The lines and arcs are an
approximation of the boundary of the binary image. V.MAX.PIXEL.VAR
determines the maximum number of pixels by which the lines and arcs may

AdeptVision Reference Guide, Rev A 167

V.MAX.PIXEL.VAR System Parameter

deviate from the binary image boundary. When this tolerance is increased, edges
are smoothed and fewer lines and arcs are generated. On the other hand, a more
accurate model of the boundary is attained when this tolerance is decreased. For
all practical purposes, V.MAX.PIXEL.VAR should be kept in the range 1.0 to 3.0.

If V.MAX.PIXEL.VAR is 0, both line and arc fitting are disabled. This may be
useful for some applications that use the VEDGE.INFO instruction and want only
the primitive edges that bound regions (that is, the edges displayed when the
V.SHOW.EDGES system switch is enabled). The allowable range for this
parameter is 0.0 to 8.0, inclusive. The parameter is set to 1.5 when the V* and
AdeptVision systems are loaded into memory from disk.

Example

The following figure illustrates the effects on boundary analysis for three different
values of V.MAX.PIXEL.VAR.

- -

PARAMETER V.MAX.PIXEL.VAR = 0.75

=i

PARAMETER V.MAX.PIXEL.VAR = 1.5

@ —

PARAMETER V.MAX.PIXEL.VAR = 3.0

Figure 2-9. Effects of V.MAX.PIXEL.VAR Parameter

168 AdeptVision Reference Guide, Rev A

System Parameter V.MAX.PIXEL.VAR
Related Keywords

VFIND.ARC (program instruction)

VFIND.LINE (program instruction)

V.MAX.VER.DIST (system parameter)

VPICTURE (monitor command and program instruction)
VTRAIN (monitor command)

VTRAIN (program instruction)

VWINDOW (program instruction)

AdeptVision Reference Guide, Rev A 169

V.MAX.SD System Parameter

Syntax

... V.MAX.SD [camera]

Function

Set the distance (in units of standard deviation) from the fit line or arc beyond
which edge points should be filtered out.

Usage Considerations

A change to this parameter takes effect when a VFIND.LINE or VFIND.ARC
program instruction is performed.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

170

This parameter is used only during execution of the line and arc finders,
VFIND.LINE and VFIND.ARC. If V.MAX.SD is nonzero, the finder filters out
edge points that are more than V.MAX.SD standard deviations from the fit (line or
arc) edge, and then the finder refits the edge. This filtering is disabled if
V.MAX.SD is zero. In more detail, the filtering operation is as follows. First the
finder (either VFIND.LINE or VFIND.ARC) locates edge points within its area of
interest. Then the following steps are performed:

1. An edge, either a line or an arg, is fit to the edge points using a least-squares
technique.

2. The distance from each edge point to the fit edge is computed, and the
standard deviation of all the distances is computed.

3. Edge points farther than “d” from the fit edge are discarded, where “d” is
defined as follows:

d = MAX(V.MAX.PIXEL.VAR[cam], V.MAX.SD[cam] * sd)

V.MAX.PIXEL.VAR is a system parameter, and “sd” is the standard deviation
computed in step #2 above. V.MAX.PIXEL.VAR should be set to at least 1
when the finders operate in grayscale mode, and to at least 1.5 when the
finders operate in binary mode. This distance threshold keeps the finders
from discarding good edge points when the distance standard deviation
(“sd”) is small.

4. If no points were discarded, or too many points were discarded, processing
stops. (“Too many points were discarded” means fewer than two edge points
remain for fitting a line, or fewer than three edge points remain for fitting an
arc.)

AdeptVision Reference Guide, Rev A

System Parameter V.MAX.SD

Otherwise, go back to step #1 to refit the edge to the remaining points.

This filtering capability is useful when *“salt and pepper” noise is present in the
image within the area of interest for the finder. When the noise is not close to the
true edge, a single filtering iteration should remove all the noise. However, if
there are many “noise edges” near the true edge, multiple iterations will be
performed and some good edge points may be filtered out. An example situation
where many iterations would be performed is when the line finder tries to fit a
line to a nonlinear edge such as an arc.

The allowable range for V.MAX.SD is 0 to 5, inclusive. V.MAX.SD is set to 0 when
V* and AdeptVision systems are loaded into memory from disk.

Given a normal distribution of edge points, 5 standard deviations should
encompass all of the edge points, so it will usually have the same effect as a
V.MAX.SD value of 0—that is, causing no edge points to be filtered out. If edge
filtering is desired, V.MAX.SD should be in the range 1 to 2 for the best results in
most situations.

Related Keywords

VFIND.ARC (program instruction)
VFIND.LINE (program instruction)
V.MAX.PIXEL.VAR (system parameter)

AdeptVision Reference Guide, Rev A 171

VMAX.TIME System Parameter
Syntax
... V.MAX.TIME [camera]

Function

Set the maximum time allowed for the vision system to analyze a region during
object finding, prototype recognition, or OCR. A value of 0 means that there is no
time limit.

Usage Considerations
A change to this parameter takes effect when a new region is analyzed.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

This parameter sets the (approximate) maximum number of seconds the vision
system will spend either analyzing a region and recognizing an object, or
performing character recognition (see the VOCR instruction). This limit keeps the
vision system from taking too much time analyzing complex, unrecognizable
images.

For prototype recognition, note that the maximum time is per object not per
region. Thus, for example, if V.MAX.TIME is 2 and three parts touch in a region,
the vision system could spend up to 6 seconds analyzing that region.

V.MAX.TIME is set to 5 when the V" and AdeptVision systems are loaded into
memory from disk. The range is 0 to 999. A value of 0 means that there is no time
limit.

Example

Allow 2.5 seconds for the vision system to recognize each object:

PARAMETER V.MAX.TIME = 2.5

172 AdeptVision Reference Guide, Rev A

System Parameter V.MAX.VER.DIST

Syntax
... V.MAX.VER.DIST [camera]

Function

Set the pixel tolerance for determining boundary coincidence during the verifica-
tion of prototype-to-image matches.

Usage Considerations

A change to this parameter takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of parameters—one for each virtual camera. (See the AdeptVision
User’s Guide for a general description of parameters.)

Details

During the processing of object recognition, prototype-to-image matches are
proposed and verified. To verify a match (that is, verify that an instance of the
prototype is visible in the image), the vision system searches for image
boundaries that are “nearly coincident” with the proposed positions of the
prototype boundaries. The system parameter V.MAX.VER.DIST defines, in terms
of pixels, the tolerance of the “nearly coincident” test. The portions of the
prototype boundaries that are located within V.MAX.VER.DIST pixels of image
boundaries are considered verified.

The parameter V.LAST.VER.DIST is used in the same way as V.MAX.VER.DIST
but only during the final verification of each match. Depending on the complexity
of the prototype being recognized, one or more verifications are performed per
match proposal. When a prototype-to-image match is verified, all the edges of the
prototype are compared to the nearby image edges (that is, edges within
V.MAX.VER.DIST pixels), and statistics are gathered describing the deviations in
position and rotation. Following each verification, the vision system computes a
prototype-to-image transformation that minimizes the deviations in edge
positions and rotations.

These steps of verification and repositioning may be performed a number of times
in order to refine the fit of the prototype. If the parameter V.LAST.VER.DIST has a
nonzero value, an extra, final verification is performed using V.LAST.VER.DIST as
the maximum verify distance. V.LAST.VER.DIST, if smaller than
V.MAX.VER.DIST, becomes a tolerance test. If V.LAST.VER.DIST is larger than
V.MAX.VER.DIST, V.LAST.VER.DIST reaches out to features of the object that
may be out of tolerance. (The program instructions VSUBPROTO and VGAPS
provide final verification information on selected individual edges or
subprototypes of the prototype.)

AdeptVision Reference Guide, Rev A 173

V.MAX.VER.DIST System Parameter

This parameter must be assigned a real value in the range 1 to 16, inclusive.
V.MAX.VER.DIST should always be greater than V.MAX.PIXEL.VAR. The
parameter V.MAX.VER.DIST is set to 3 when the V* and AdeptVision systems are
loaded into memory from disk.

Example

PARAMETER V.MAX.VER.DIST = 3.5

Related Keywords

VGAPS (program instruction)
V.LAST.VER.DIST (system parameter)
V.MAX.PIXEL.VAR (system parameter)
V.RECOGNITION (system parameter)
VSUBPROTO (program instruction)

174 AdeptVision Reference Guide, Rev A

System Parameter V.MIN.AREA

Syntax
... V.MIN.AREA [camera]
Function

Set the minimum area below which the vision system ignores regions.

Usage Considerations

Normally, changes to this parameter take effect immediately, filtering out any
small regions that close off. However, when clear-grips have been defined,
changes to this parameter do not go into effect until a new VPICTURE is
executed.

The effects of changes to this parameter are visible in the Vision display window
only in a special display mode. Regions smaller than V.MIN.AREA will still
appear in display modes #1 and #2.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

Regions that contain fewer than V.MIN.AREA number of pixels are ignored by
the vision system during object recognition, clear-grip testing, and standard ruler
measurements. This parameter should be set large enough so that the vision
system does not waste time analyzing noise spots and small enough so that no
region of interest is discarded.

This parameter must be assigned an integer value in the range 1 to 1,048,576
(10241024), inclusive. However, the value must be less than or equal to the value
of V.MAX.AREA,! and it must be greater than or equal to the value of the
parameter V.MIN.HOLE.AREA. The parameter V.MIN.AREA is set to 16 when
the V* and AdeptVision systems are loaded into memory from disk.

Example
Ignore regions that are smaller than 25 pixels in area:
PARAMETER V.MIN.AREA = 25

Related Keywords

V.MAX.AREA (system parameter)
V.MIN.HOLE.AREA (system parameter)

1 The effective maximum of V.MAX.AREA is the area of the virtual frame buffer. Virtual frame
buffer sizes are specified with the DEVICE instruction.

AdeptVision Reference Guide, Rev A 175

V.MIN.HOLE.AREA System Parameter

Syntax

... V.MIN.HOLE.AREA [camera]

Function

Set the minimum area below which the vision system ignores holes.

Usage Considerations

A change to this parameter takes effect when a new region is analyzed.

The effects of changes to this parameter are visible in the Vision display window
only in a special display mode. Holes with areas smaller than
V.MIN.HOLE.AREA will still appear in display modes #1 and #2.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

Holes that contain fewer than V.MIN.HOLE.AREA number of pixels are ignored
by the vision system during object recognition, clear-grip testing, and standard
ruler measurements. This parameter should be set large enough so that the vision
system does not waste time analyzing noise spots and small enough so that no
region of interest is discarded.

This parameter must be assigned an integer value in the range 1 to the value of
the parameter V.MIN.AREA, inclusive. The system parameter
V.MIN.HOLE.AREA is set to 8 when the V* and AdeptVision systems are loaded
into memory from disk.

Example

Ignore holes that are smaller than 10 pixels in area:

PARAMETER V.MIN.HOLE.AREA =10

Related Keywords

176

V.MAX.AREA (system parameter)
V.MIN.AREA (system parameter)

AdeptVision Reference Guide, Rev A

System Parameter V.MIN.LEN

Syntax

...V.MIN.LEN [camera]

Function
Set the minimum length of features to be used for feature pairs.
Usage Considerations

This parameter is used by VTRAIN.FINDER and VPLAN.FINDER. See those
program instructions for details.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

Features that contain fewer than V.MIN.LEN number of pixels are ignored by the
vision system during feature-pairing operations. This parameter should be set
large enough so that the vision system does not waste time analyzing noise spots
but small enough so that all features of a minimum desired length are included.

This parameter must be assigned an integer value (there is no minimum or
maximum value). The default value is 40 pixels.

Example
Ignore features that are smaller than 25 pixels in length.

PARAMETER V.MIN.LEN = 25

AdeptVision Reference Guide, Rev A 177

V.MIN.MAX.RADII System Switch

Syntax

... V.MIN.MAX.RADII [camera]

Function

Enable the feature that, for each region in the image, finds the two points on the
perimeter that are closest to and farthest from the region centroid.

Usage Considerations

The system switches V.BOUNDARIES and V.CENTROID must be enabled in
order for V.MIN.MAX.RADII to have its effect.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When the switches V.MIN.MAX.RADII and V.CENTROID are both enabled, the
perimeters of all regions are scanned to find the points closest to, and farthest
from, the region centroids. This information is available with the VFEATURE
function after a VLOCATE instruction has succeeded. The points are represented
by their distances and directions (angles) from the region centroid.

This information is also available for holes. To get information about holes, you
should enable V.HOLES, disable V.DISJOINT, and do VLOCATEs in get-hole
mode.

Example

178

For each region in the image, the following program segment draws lines from
the centroid to the points on the perimeter that are closest to and farthest from the
centroid.

;Required switches

ENABLE V.BOUNDARIES, V.CENTROID, V.MIN.MAX.RADII

VDISPLAY 3 ;Special display
VPICTURE ,0 ;Take a picture with virtual

; camera #1 and no recognition
ATTACH (vlun, 4) "GRAPHICS" ;Attach to the vision window
FOPEN (vlun) "Vision IMAXSIZE 640 480" ; & select graphics scaling
GTRANS (vlun, 1) ; in real-world millimeters
vf.cx = 42 ;Indexes of VFEATURE function
vf.cy =43 ; for centroid
vf.minr.ang = 44 ; and min/max radii values

AdeptVision Reference Guide, Rev A

System Switch

vf.maxr.ang = 45
vf.minr.dist = 46
vf.maxr.dist = 47

VWAIT ;Wait for image processing to
; complete for graphics instr.
VLOCATE () $nam ;Locate anything in the image

WHILE VFEATURE(1) DO ;If a region was found...
cx = VFEATURE(Vf.cx) ;Get centroid: Cx,Cy

cy = VFEATURE(vf.cy)

rmindist = VFEATURE(vf.minr.dist) ;Get distance and angle to
rmaxdist = VFEATURE(vf.maxr.dist) ; closest and farthest pts

rminang = VFEATURE(vf.minr.ang)
rmaxang = VFEATURE(vf.maxr.ang)

XX = cx+COS(rminang)*rmindist ;Draw line to closest point

yy = cy+SIN(rminang)*rmindist
GLINE (vlun) cx, cy, xX, yy

xX = cx+COS(rmaxang)*rmaxdist ;Draw line to farthest point

yy = cy+SIN(rmaxang)*rmaxdist
GLINE (vlun) cx, cy, XX, yy

VLOCATE () $nam ;Locate next region in the image

END
Related Keywords

V.2ND.MOMENTS (system switch)
V.BOUNDARIES (system switch)
V.CENTROID (system switch)
V.DISJOINT (system switch)
VFEATURE (real-valued function)
V.HOLES (system switch)
VLOCATE (program instruction)
V.PERIMETER (system switch)

AdeptVision Reference Guide, Rev A

V.MIN.MAX.RADII

179

VMORPH

Syntax

VMORPH ¢am,

Function

Program Instruction

type , dmode, thresh) dest_ibr, count = src_ibr

Perform a morphological transform on a binary image frame.

Parameters

cam

type

dmode

thresh

dest_ibr

count

src_ibr

Details

Not currently used.

Integer value indicating the type of morphological operation to
perform. Type 1 is erosion, 2 is dilation, and types 8 through 16 are
user-definable. Types 3 though 7 are undefined, reserved for future
built-in operations.

Optional real-valued expression specifying the display mode to use
when displaying the border of the area-of-interest: -1 = no draw, 0 =
erase, 1 = draw solid, 2 = complement, 3 = draw dashed, 4 =
complement dashed. The default is 1 (draw solid).

Not currently used.

Integer value specifying the image buffer region to receive the
image data that has been modified with a morphological operation.
Image buffer regions specify both a size and a frame store (see the
description of VDEF.AOI).

Optional variable name that receives the sum of binary pixels in the
destination image buffer region. This can be used as a stopping
criterion for edge thinning operations (to indicate stasis state). If
“count " is specified, forward processing is suspended until the
operation completes.

Integer value specifying the image buffer region to apply the
morphological operation. The region’s AOI must have been defined
with a VDEF.AOI instruction.

Binary morphological operations are nonlinear transformations of binary (or
edge) images. The VDEF.MORPH instruction defines the operation to perform.
The VMORPH program instruction performs the operation.

180

AdeptVision Reference Guide, Rev A

Program Instruction VMORPH

Morphological operations may be used to eliminate small holes and gaps from the
image (by dilating and then eroding or vice versa), to thin edges, to isolate certain
features such as straight lines, etc. Multiple operations are often performed in
sequence.

Morphological operation types 1 and 2 are predefined to be erosion and dilation,
respectively. Types 3 through 7 are undefined, reserved for future built-in
operations. Types 8 through 16 are user-definable. (Type 9 is actually predefined
to be “Life”, a simulation of cellular organisms popularized years ago in
“Scientific American”, but it can be redefined by the user).

Binary morphological operations are applied to every 3x3 pixel neighborhood in
the binary image. Based on the binary pixel values in a neighborhood and the
operation to be performed, the center binary pixel value may be changed. See the
VDEF.MORPH instruction in this manual for details on how the operation is
performed.

The effect of a VMORPH operation is visible in VDISPLAY mode #2. It does not
affect the associated grayscale image.

The erosion operation clears binary pixels that have at least one neighboring pixel
with the value 0. The dilation operation does the opposite, setting all pixels that
have at least one neighboring pixel with the value 1.

The smaller the area of the image to be processed, the faster VMORPH executes.
Examples

VDEF.AOI 2000 =1, 100, 100, 50, 50
VMORPH (, 2) = 2011;Dilate the binary image twice
VMORPH (, 2) = 2011
VMORPH (, 1) = 2011;Then erode the image twice
VMORPH (, 1) = 2011

Related Keywords

VDEEAOI (program instruction)
VDEEMORPH (program instruction)

AdeptVision Reference Guide, Rev A 181

VOCR

Program Instruction

Syntax
VOCR (cam, op, dmode) data] i], locs[j] =font_num , $expected, ibr
VOCR (cam, op, dmode) datal[i], locs[j] = font_num, $expected
shape, cx, cy, dx, dy , ang
Function

Perform Optical Character Recognition (OCR) or text verification in a rectangular
image window.

Usage Considerations

Parameters

182

cam

op

dmode

data[]

locs[]

]

A font must have been created previously with the VDEFRFONT and
VTRAIN.MODEL instructions.

Optional real-valued expression indicating the virtual camera
number to use for selecting various system parameters (such as
V.MIN.AREA and V.MAX.AREA). The default camera is 1.

Optional real-valued expression specifying the desired operation to
perform (the default is 0):

0 = Quick verification of expected text

1 = Robust verification of expected text, short output
2 = Robust verification of expected text, full output
3 = Recognition (no expected text)

Optional real-valued expression specifying the display mode to use
when displaying the border of the area-of-interest: -1 = no draw, 0 =
erase, 1 = draw solid, 2 = complement, 3 = draw dashed, 4 =
complement dashed. The default is 1 (draw solid).

NOTE: The parentheses in the instruction syntax can be omitted if
all three of the above parameters are omitted.

Real array that is filled with data describing the results of the OCR
operation (see below).

Optional real array that is filled with data describing the position of
the recognized characters (see below).

Optional array index that identifies the first element to be defined in
“data[] and “locs[] ”, respectively. Zero is assumed for any index
that is omitted. If a multiple-dimension array is specified, only the
right-most index is incremented as the values are assigned.

AdeptVision Reference Guide, Rev A

Program Instruction VOCR

font_num Real-valued expression that specifies the font to be recognized or
verified. (The value must be in the range 1 to 99.)

$expected Optional string containing the text expected to be found within the
OCR window. This string is ignored if “op” is 3. This string is
required for all other values of “op”.

ibr Integer value specifying the image buffer region within which to
search for characters for recognition or verification. Image buffer
regions specify both a size and a frame store (see the description of
VDEF.AOI).

shape Optional real-valued expression indicating the shape of the
window. Currently, the only choice is 1, for a rectangular window.

CX, Cy Real-valued expressions specifying the center coordinates of the
window, in millimeters.

dx Real-valued expression specifying the width of the window, in
millimeters.

dy Real-valued expression specifying the height of the window, in
millimeters.

ang Optional real-valued expression specifying the orientation of the

window, in degrees. The default is 0 degrees.
Details

This instruction performs the OCR functions of text verification or recognition.
When text is verified, the vision system knows what text to expect. With text
recognition, the vision system tries to recognize the text with no expectations,
except that the characters in the image can be found in the designated font.

Before this instruction is used, the specified OCR font must have been defined
using the VDEF.FONT instruction and fully trained using the VTRAIN.MODEL
instruction. (See the AdeptVision User’s Guide for an overview of the
AdeptVision OCR capability.)

VOCR operates on the binary image in the current frame store. The
virtual-camera argument to VOCR selects the group of system switches and
parameters to use. The following switches and parameters affect VOCR:
V.MIN.HOLE.AREA, V.MIN.AREA, V.MAX.AREA, VMAX.TIME, and
V.SHOW.EDGES. The system switch V.SUBTRACT.HOLES is always enabled
during VOCR operations.

AdeptVision Reference Guide, Rev A 183

VOCR Program Instruction

184

The VOCR image buffer region should encompass a single line of text. Within the
image buffer region, characters are ordered left to right, assuming no rotation
(element 5 of the AOI is 0). If rotated, the definition of “left” changes with the
rotation. The VOCR operator is drawn like VWINDOW or VWINDOWI, except
that the “left” edge is drawn in a special color for reference. To see the character
outlines during recognition, enable V.SHOW.EDGES (for the specified virtual
camera) and provide a “dmode” value other than -1 (no draw). Note, however, that
this slows down the execution of VOCR somewhat.

Planning for OCR needs to be performed (one time) after a font has been trained
or loaded from disk (using VLOAD). If the font being used has not been planned,
the VOCR instruction automatically initiates planning. Also, the
VTRAIN.MODEL instruction may be used to force the vision system to plan for
OCR.

VOCR returns a variety of information to satisfy different inspection
requirements. The information returned by the four modes of operation (selected
with the “op” parameter) is explained below. Each operation mode returns match
scores in the range 0 to 100. A score of 0 means no correlation. A score of 100
means a perfect match. Scores of 100 are uncommon. To earn this, a character
would have to be the exact average of all its trained examples.

Operation 0: Quick Verification

In this mode of operation, the bounded areas in the image buffer region are
compared against the given expected text ($expected) on a 1-to-1 basis. This is the
fastest mode of operation. Only three values are returned in the array “data]]

data[i+0] = Number of character regions found and analyzed
data[i+1] = Average score of “sexpected ” characters verified
data[i+2] = Minimum score of “$expected characters verified

Operation 1: Robust Verification, Short Output

This is a more robust form of verification than Quick Verification (op =0), but it is
slower. Even though VOCR knows what text to expect, it compares each bounded
area in the image buffer region with all the characters in the font. The top two
character matches for each bounded area are then compared to the expected
character. (The top two matches or “picks” are the two with the highest match
scores.) VOCR then returns data indicating whether all of the expected characters
were first picks or, at least, first or second picks. If all of the expected characters
were first picks and the font is complete, the text is guaranteed to be readable.
Even if the expected characters were all first or second picks, the text was
probably readable. Some characters in the font, such as “I” and “1”, may be very
similar and, thus, open to misreading by VOCR, whereas a human would use

AdeptVision Reference Guide, Rev A

Program Instruction VOCR

context to choose between the two. For example, in the text “War of 1612, people
readily interpret the “I” (lowercase “L’’) between the “6” and the “2” as the
numeral “1”. In this mode of operation, the following data is returned in addition
to that returned for Quick Verification (op = 0) above:

data[i+3] = TRUE if expected characters were all 1st picks
data[i+4] = TRUE if they were all 1st or 2nd picks

Operation 2: Robust Verification, Full Output

This operation is identical to the one above (op = 1), except more information is
returned. In addition to the array elements described above, the top two picks and
their scores are returned for each character in the expected text.

data[i+5] = 1st character pick

data[i+6] = Score of 1st character pick

data[i+7] = 2nd character pick

data[i+8] = Score of 2nd character pick

... (These four items repeat for each character region found and
analyzed—a total of “data[i+0]” times)

This additional information may be used in the V* program to permit certain
alternates to the expected.

Operation 3: Recognition

Recognition means there is no expected text. Each character region in the image is
compared to each character in the font. For each character region found and
analyzed, the two top-scoring characters in the font are returned along with their
scores. The data returned is almost identical to that described above.

data[i+0] = Number of character regions found and analyzed

data[i+1] = Average score of all top picks

data[i+2] = Minimum score of all top picks

data[i+3] =0

data[i+4] =0

data[i+5] = 1st character pick

data[i+6] = Score of 1st character pick

data[i+7] = 2nd character pick

data[i+8] = Score of 2nd character pick

... (The last four items repeat for each character region found and
analyzed—a total of “data[i+0]” times)

Regardless of the operation performed, position information is returned when the
array “locs[] ” is specified in the VOCR instruction. Returning this information
takes additional time, so if it is not needed, the array “locs[] ” should not be
specified. When the array “locs[] ” is specified, it receives a definition of the

AdeptVision Reference Guide, Rev A 185

VOCR Program Instruction

186

minimum box that surrounds all of the bounded areas. If the operation is “Robust
Verification, Full Output” (op = 2) or “Recognition” (op = 3), the center of the
bounding box for each character is also returned. All of the position information is
in millimeters.

Information returned by all operations:

loc[j+0] = Minimum X of text bounding box
loc[j+1] = Minimum Y of text bounding box
loc[j+2] = Maximum X of text bounding box
loc[j+3] = Maximum Y of text bounding box

Additional information returned when “op” is 2 or 3:

loc[j+4] = X component of center of character bounding box
loc[j+5] = Y component of center of character bounding box
(These two items repeat for each character region found and
analyzed—a total of “data[i+0]” times)

Any bounded area taller than 63 pixels is ignored. If the characters to be
recognized are larger than this, normal prototype recognition may be used. VOCR
also considers the values of V.MIN.AREA, V.MIN.HOLE.AREA, and
V.MAX.AREA. These parameters may be used to filter unwanted regions within
the VOCR tool search area.

Up to 80 character regions are analyzed in an OCR window. Any additional
bounded areas are ignored. Similarly, when verifying text, extra characters in the
window are ignored. For example, if there are 10 characters in the given
“$expected " string and 12 bounded areas are found in the window, the right most
2 areas are ignored. That is, VOCR reports that only 10 characters were found.

If fewer character regions are found than expected, the expected characters with
no corresponding bounded areas are given a score of 0 when computing the
average and minimum scores. Also, “data[i+3]” ("expected characters were all 1st
picks”) and “data[i+4]” ("they were all 1st or 2nd picks™) are both assigned the
value FALSE.

Merged characters are automatically split when there is expected text. This
includes the VOCR operations “Quick verification” (op = 0) and “Robust
verification” (op = 1 or 2), but not “Recognition” (op = 3). Splitting works with
rotated VOCR windows.

The splitting criteria are simple. First, there must be fewer regions in the VOCR
window than expected. Then, while processing the bounded areas in the VOCR
window from left to right, the following test is performed: If the width of the
current area is closer to the total width of the current and next expected characters
than to the width of the character currently expected, then the bounded area is
split.

AdeptVision Reference Guide, Rev A

Program Instruction VOCR

A bounded area is split based on the average width of the character currently
expected. (The average width is based on the trained instances of the character.)
This simple strategy for splitting works well when only two characters are
merged into a single bounded area, but inaccuracies accumulate if more
characters are merged together. As a general rule, VOCR splits two characters
very well, splits three merged characters moderately well, and splits four or more
characters poorly.

Example

The following V* program uses the VOCR instruction to perform character
recognition or verification (depending on the value of the variable “op”). The
results are displayed in the Monitor window, a box is drawn around the text in
the Vision display window, and (if “op” is 2 or 3) a dot is drawn at the center of
each character found.

NOTE: This example program assumes that the OCR font has
already been defined and trained.

.PROGRAM test.ocr()

; ABSTRACT Example program showing basic OCR capabilities
AUTO ang, cam, cc, cnt, cx, cy, dx, dy, dm, font, op
AUTO $ans, $exp
LOCAL xx[], data[], locs][]

; Change these values to suit your needs:

font=1 ;Font number

op=2 ;VOCR operation:; 0 to 3

$exp = "ABCDEFG" ;Expected text (required if op <> 3)
cx = 256 ;Center of the box

cy = 242

dx = 350 ;Width and height of the box

dy =50

ang=0 ;Orientation of the box

cam=1 ;Camera number

dm=-1 ;Display mode

VDISPLAY (cam) 2, 1

VPICTURE (cam) 2

WHILE TRUE DO
VWINDOWI xx[] =, cx, ¢y, dx, dy, ang ;Draw window
VDISPLAY (cam) 0, 1 ;Show live video
TYPE "Position the text in the window shown. ", /S
PROMPT "Press Enter when ready. ", $ans
VPICTURE (cam) 2
VDEF.AOI 2000 = 1, cx, cy, dx, dy, ang
VOCR (cam, op, dm) data][], locs][] font, $exp, 2001

AdeptVision Reference Guide, Rev A 187

VOCR Program Instruction

TYPE "# chars found:", data[0], /S
TYPE ", Average score:", data[1], ", Min score:", data[2]
TYPE "# chars found:", data[0], /S
TYPE ", Average score:", data[1], ", Min score:", data[2]

IF (op=1) OR (op =2) THEN
TYPE "Expected 1st picks? ", data[3], /S
TYPE ". 1st or 2nd? ", data[4]
END
IF op >2 THEN ;If individual picks returned...
cc=5
FOR cnt 1 TO data[0]
TYPE "Picks: ", $INTB(data[cc]), /S
TYPE " (", /10, data[cc+1], ")", /S
TYPE ", ", $INTB(data[cc+2]), /S
TYPE " (, /10, data[cc+3], ")"
cc =cc+4
END
END

; Draw text bounding box

GTRANS (20, 1)
GRECTANGLE (20) locs[0], locs[1], locs[2], locs[3]
IF op >2 THEN
FOR cnt = 0 TO data[0]-1 ;"Dot" centers of regions
GARC (20) locs[2*cnt+4], locs[2*cnt+5], 3
END
END

PROMPT "Press Enter to repeat, or Ctrl+Z to quit. ", $ans
END
.END

Related Keywords

VDEEAOI (program instruction)
VDEEFONT (program instruction)
V.MAX.AREA (system switch)
V.MAX.TIME (system switch)
V.MIN.AREA (system switch)
V.MIN.HOLE.AREA (system switch)
V.SHOW.EDGES (system switch)
VSHOW.MODEL (program instruction)
VTRAIN.MODEL (program instruction)

188 AdeptVision Reference Guide, Rev A

System Parameter V.OFFSET

Syntax

... V.OFFSET [camera]

Function

Set the offset for the incoming video signal (that is, program the zero reference for
the A/D converter).

Usage Considerations

Changing this parameter immediately affects the video output of the camera
interface board.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

The V.OFFSET parameter works with the V.GAIN parameter to select the
incoming analog video offset and gain, respectively. V.GAIN multiplies (scales)
the video signal, whereas V.OFFSET shifts (translates) the video signal.

Before adjusting the values of V.OFFSET and V.GAIN, you should take a picture,
compute the histogram, and study the video data displayed in the Vision display
window. To take the picture and compute the histogram, enter the V* monitor
commands “VPICTURE (cam) 2” and “VHISTOGRAM (), where “cam” is the
number of the virtual camera being used. Or, use the mouse to make the menu
selections to perform these same operations.

The goal is to have the video data fill most of the intensity range (0 to 127) without
spilling over either end. If the video data spills over the left end, the histogram
curve shows a spike over the “0” intensity label. Similarly, if the video data spills
over the right end, the curve shows a spike at or near the “127” intensity label.

You should increase V.GAIN to expand the intensity range of the video data, or
decrease V.GAIN to reduce the intensity range. Similarly, you should increase
V.OFFSET to shift the video data toward the right, and decrease V.OFFSET to shift
it toward the left. For good results, you may have to repeat the procedure of
taking a picture, computing the new histogram, and adjusting V.GAIN and
V.OFFSET a few times.

V.OFFSET must be assigned an integer value in the range 0 to 255, inclusive. The
parameter is set to 255 when the V* and AdeptVision systems are loaded into
memory from disk.

AdeptVision Reference Guide, Rev A 189

V.OFFSET System Parameter
Example
Shift the incoming video by 96:

PARAMETER V.OFFSET = 96

Related Keywords

VHISTOGRAM (monitor command and program instruction)
V.GAIN (system parameter)

190 AdeptVision Reference Guide, Rev A

System Switch V.OVERLAPPING

Syntax

... V.OVERLAPPING [camera]
Function

Determine whether or not objects may be overlapping in the image.
Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

If this switch is enabled, the V.TOUCHING system switch is automatically
assumed to be enabled.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

Normally, objects to be recognized in the scene are not overlapping, so
V.OVERLAPPING should be disabled. Object recognition is more efficient in this
case.

The setting of V.OVERLAPPING affects the recognition strategy used by the
vision system and the way recognition proposals are verified in the image. If
V.OVERLAPPING is enabled, any edge in the image may be used to verify
multiple objects, not just one object. For example, if the corresponding holes of
two overlapping objects line up, the one hole seen could be used to verify both
objects.

Since edges may be used to verify the presence of more than one object, in some
situations the vision system may incorrectly recognize two or more objects where
there is only one. A V* program could be written that compares the locations of
the objects in order to discard the invalid duplicates.

Example
Do not allow objects to overlap in the image:

DISABLE V.OVERLAPPING

Related Keyword

V.BOUNDARIES (system switch)
V.TOUCHING (system switch)

AdeptVision Reference Guide, Rev A 191

V.PERIMETER System Switch
Syntax
... V.PERIMETER [camera]
Function
Enable computation of the lengths of region perimeters.
Usage Considerations
The V.BOUNDARIES system switch must be enabled to compute perimeters.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When this switch is enabled, the outer boundary of each region in the image is
scanned and its length is computed. The computation is fast. The information is
available from the VFEATURE function after a VLOCATE instruction has
succeeded.

This information is also available for holes. To get information for holes, you
should enable V.HOLES, disable V.DISJOINT, and do VLOCATEs in get-hole
mode.

Example

The following program segment computes a “roundness’ factor for each region in
the scene based on the region perimeter and area. The roundness factor will be
close to 1.0 for circles and less than 1.0 for other shapes. This may be used in place
of prototype recognition to recognize circles.

ENABLE V.BOUNDARIES, V.PERIMETER ;Necessary switches

DISABLE V.SUBTRACT.HOLE ;If this is enabled, VFEATURE(40)
; should be added to the area

vf.area =10 ;VFEATURE index for area (pixels)

vf.perimeter = 41 ;VFEATURE index for perimeter (mm)

VGETCAL vb[] ;Need items in calibration array
;Define indexes for:

x.scale = 15 ; Pixel scale(mm/pixels)

y.scale = 16

scale = SQR((vb[x.scale]+vb[y.scale])/2)

VPICTURE ,0 ;Take picture with virt. cam#1, no recog
VLOCATE () $nam ;Locate anything in the image

192 AdeptVision Reference Guide, Rev A

System Switch V.PERIMETER

WHILE VFEATURE(1) DO ;If a region was found...

area = VFEATURE(vf.area)*scale ;Raw pixel area > mm square

perim = VFEATURE(vf.perimeter)

roundness = 4*Pl*area/(perim*perim)

TYPE "Region roundness ", roundness

VLOCATE () $nam ;Locate next region in the image
END

Related Keywords

VFEATURE (real-valued function)
V.2ND.MOMENTS (system switch)
V.CENTROID (system switch)
V.HOLES (system switch)
V.MIN.MAX.RADII (system switch)

AdeptVision Reference Guide, Rev A 193

VPICTURE Monitor Command and Program Instruction

Syntax
VPICTURE (camera, wait, acq_ibr, sel_ibr) mode, how_many

Function
Acquire an image into a frame store and/or initiate processing.
Usage Considerations

The VPICTURE program instruction does not suspend program execution while
the image is being processed. In other words, program execution continues with
the next instruction while the vision system processes the image. However, if the
parameter V.IO.WAIT is set to 1, image processing does not begin until the fast
digital-input interrupt signal is received. Thus, in that case, program execution
can be suspended for an indefinite time while the system waits for the high speed
digital input signal.

NOTE: Some vision instructions cause an error if they are executed
while vision processing is still active. The VWAIT program
instruction will suspend program execution until the vision
processor is idle.

Parameters

camera Optional real-valued expression that specifies the virtual camera
number. The value 1 is assumed if no camera is specified.

wait Optional real-valued expression indicating whether or not to wait
for the image acquisition to complete. The choices are:

-1 to wait for completion of the image acquire and the first stage
of processing (run-length encoding)
0 towait only for the image acquire to start
1 for no waiting at all

Values of 0 and 1 apply only to quick frame grabs (mode #2, see
below). The default is -1 (wait for the completion).

acq_ibr Optional real-valued expression that specifies the grayscale frame
store into which the image is acquired. Currently, only the virtual
frame buffer referenced in the image buffer region is used. The full
frame is used regardless of any AOI defined for the image buffer
region. The default is 1011.

sel_ibr Optional real-valued expression that specifies the grayscale frame
store to be selected for subsequent processing. Currently, only the
virtual frame buffer referenced in the image buffer region is used.

194 AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VPICTURE

The full frame is used regardless of any AOI defined for the image
buffer region. The default is the value of “acq_ibr 7, indicating the
frame buffer into which the image is acquired. This parameter
applies only to quick frame grabs (mode #2). In other modes, the
selected frame is made equal to “acq_ibr .

NOTE: The parentheses in the instruction syntax can be omitted if
all four of the above parameters are omitted.

mode Real-valued expression that specifies the processing mode. The
mode is optional and defaults to —1.

-1 Initiates processing of a new camera image
0 Initiates reprocessing of previous camera image
1 Grabs an image and holds it for future processing
2 Quick frame grab

The above list should actually be listed in reverse order because a
VPICTURE in mode # -1 is effectively the same as a VPICTURE in
mode #2 followed by another in mode #0. Mode #2 acquires an
image (as does mode #1), and mode #0 processes the image. Mode
—1 does both.

how_many Optional real-valued expression that specifies the maximum
number of objects the vision system should try to recognize. This
limitis applicable only in VPICTURE modes # —1 and #0. (See below
for details.)

-1 Locate as many as possible (the default)
0 Locate none (V.RECOGNITION effectively disabled)
1 Locate only one object
2 Locate at most two objects

etc.

Details

VPICTURE modes #-1 and #0 initiate processing. When this happens, the vision
system collects the camera data (grabs a frame), analyzes it to identify objects, and
displays the results in the Vision display window in the manner dictated by the
current VDISPLAY mode. The computed part information is then stored in the
vision system queue and is accessible with the VLOCATE program instruction
and the VFEATURE real-valued function. Also, region boundary descriptions are
available with the VEDGE.INFO instruction.

AdeptVision Reference Guide, Rev A 195

VPICTURE Monitor Command and Program Instruction

196

The vision system queues (one for each virtual camera) have a specified amount
of memory allocated for recognized and unrecognized regions. This allocation can
be set with the DEVICE program instruction. Holes are included in the queues if
the V.HOLES system switch is enabled and the V.DISJOINT system switch is
disabled.

An image is processed when a VPICTURE operation is performed in mode #-1 or
#0 and all the object data for a particular virtual camera is retained in that virtual
camera’s queue until another VPICTURE or VWINDOW operation for the same
virtual camera is executed. This means that the user may accumulate located
object information gathered from several different virtual cameras before
accessing it with VLOCATE instructions.

Keep in mind that a significant time delay (perhaps as long as a minute or more)
can occur before image processing commences. This delay occurs the first time a
VPICTURE or VWINDOW operation is executed for a particular virtual camera
after prototype training (VTRAIN) has been performed, or certain recognition
parameters and switches have been altered for that virtual camera. During this
interval, the vision system analyzes the trained information to generate the data
that it requires to perform the actual image processing. If a VPICTURE monitor
command causes this planning, the message “Planning, please wait” is displayed
in the Monitor display window. The VPICTURE and VWINDOW program
instructions do not give any such notice.

When VPICTURE is executed as a monitor command, several informational
messages may be displayed. These indicate which prototypes are known (with
their virtual camera associations), and which require more training before they
can be reliably recognized.

Execution of a VPICTURE instruction generally completes (and thus the program
continues) after the frame grab is done, but before all image processing is

completed. Consequently, if the camera is mounted on a robot, the controlling V*
program may have robot motion instructions following a VPICTURE instruction.
Then the vision system will process the acquired image while the robot is moving.

There are four exceptions to the statement that a VPICTURE instruction
completes after the frame grab is done:

1. If the V.STROBE system switch is enabled, the VPICTURE completes
immediately after the strobe signal, before the acquisition is done (see the
description of V.STROBE for more details).

2. If the VPICTURE mode is #2 (quick frame grab) and “wait ” =0, VPICTURE
completes after the acquisition has been started. Not waiting until the
acquisition is complete is appropriate only when the camera and scene are
both still.

AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VPICTURE

3. If the VPICTURE mode is #2 (quick frame grab) and “wait ” =1, VPICTURE
completes immediately, before acquisition begins. This mode is useful when
the VPICTURE is waiting for a fast digital-input interrupt signal before
starting to acquire an image (see below).

4. If “wait ” =-1, VPICTURE will wait until the first stage of processing
(run-length encoding) is complete.

The above exceptions do not apply if planning for prototype recognition is
performed. In that case, VPICTURE always waits until the frame grab is done
before completing.

If the V.IO.WAIT system parameter is set to 1, a VPICTURE waits for a fast
digital-input interrupt signal before starting to acquire an image. Consequently,
except when the VPICTURE “wait ” parameter is 1, the program containing the
VPICTURE instruction will wait an unlimited amount of time until the input
signal is received. (See the description of the V.IO.WAIT parameter for details.)

The “future frame grab” provides the ability to pregrab an image and hold it for
processing later (mode #1). This is useful when the vision system is still
processing a previous image and the next one is in view of the camera. (The vision
system can process only one image at a time.) Instead of making a robot or
manufacturing process wait for the current image processing to complete, mode
#1 may be used to pregrab the next image and thus allow the robot or process to
proceed.

With a future frame grab, no operation may be performed on the frame-grabbed
image except for a VPICTURE in mode #0. However, a future frame grab can be
converted into a quick frame grab (mode #2, below) by simply VSELECTing the
frame. Also, if the frame being acquired into is different from the frame store
currently selected, a future frame grab is automatically treated as a quick frame
grab. This distinction is important because almost all of the vision instructions
operate on images acquired via quick frame grabs.

VPICTURE in mode #0 processes the pregrabbed image. If no pregrabbed image
is being held, the previous image is reprocessed. This is useful for experimenting
with different switch and parameter settings. Note, however, that the settings of
the gain, offset, and threshold parameters do not have any effect upon
reprocessing of a picture. (The VEDGE and VTHRESHOLD instructions may be
used to compute new edge or binary images from an existing grayscale image.) If
there is no pregrabbed image, mode #0 is identical to:

VWINDOW(cam, 1, dmode, how_many) 1000

AdeptVision Reference Guide, Rev A 197

VPICTURE Monitor Command and Program Instruction

198

Mode #2 is provided as a “quick frame grab” mode for measurement and
inspection instructions such as VRULERI and VFIND.LINE, for image processing
instructions such as VHISTOGRAM and VSUBTRACT, and for the VWINDOW
instruction. VPICTURE in mode #2 only grabs an image, performing no automatic
region or boundary analysis.

Mode #2 takes from 16 - 50 milliseconds to complete (if the V.BINARY system
switch is enabled). By comparison, VPICTURE operations in modes #-1 and #0
typically take 60 - 80 milliseconds to complete, depending on the complexity of
the binary image (assuming that the entire image is being processed as defined by
the image buffer region). Thus, VPICTURE operations in mode #2 provide time
savings for vision applications that use windows or inspection operators, but no
object recognition or region analysis (for example, centroids) outside of windows.
For maximum speed of a VPICTURE in mode #2, enable the V.BINARY system
switch.

There are two grayscale physical frame stores that can acquire images. While one
frame store is acquiring a quick frame grab, the other can be analyzed via
inspection operators in a V* program. This means that images can be
continuously acquired (30 frames per second) and analyzed in a “ping-pong”
manner. The “acq_ibr ” parameter to VPICTURE indicates which frame store is to
receive the new image. The “sel_ibr ” parameter indicates which frame store to
select for subsequent instructions such as VWINDOW!I, VRULER, VFIND.LINE,
etc.

The VSELECT instruction performs the same function as the “sel_ibr ” parameter
to VPICTURE. Since VSELECT is a separate instruction, however, a program can
acquire two camera images into the two frame stores and then use VSELECT to
quickly switch back and forth between them while performing analyses.

The values of the parameters V.FIRST.COL, V.FIRST.LINE, V.LAST.COL, and
V.LAST.LINE are used to clip the window to the image. That is, the vision system
ignores any portion of the window that is outside these boundaries.

If V.RECOGNITION is enabled (prototype recognition is being performed), the
“how_many” parameter may be very effective in reducing processing time in
VPICTURE modes #-1 and #0. (The “how_many” parameter is not applicable in
other modes.) If the image contains extraneous edges or is noisy, the system
normally locates all instances of prototypes quickly but then spends a relatively
long time analyzing the extraneous edges. The extra time analyzing the
extraneous edges can be avoided if the programmer knows that there is a certain
number of objects in the image and specifies that number as the “how_many”
parameter.

AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VPICTURE

The V.TOUCHING and V.DISJOINT switches affect the way the “how_many”
parameter is interpreted. V.TOUCHING affects the way “how_many” applies to
each region in the image, whereas V.DISJOINT affects the way “how_many” applies
to the image as a whole. If the V.TOUCHING switch is enabled, up to “how_many”
objects are recognized per region.l If V.TOUCHING is disabled, no more than one
object is recognized per region in the image. If V.DISJOINT is enabled, at most
“how_many” objects are recognized in the entire image. If V.DISJOINT is disabled,
there is no limit to how many objects are recognized in the entire image. The
following table summarizes the combinations.

Number of Objects | Number of
VTOUCHING | V.DISJOINT per Region Objects per Scene
Off Off 1 No limit
Off On 1 how_many
On Off how_many No limit
On On how_many how_many

NOTE: If clear-grip tests have been defined for the prototypes (see
VDEFGRIP), objects located that do not have a clear grip are not
counted toward the “how_many” limit. Thus, more than “how_many”
objects may be found and placed in the vision queue (see VQUEUE).

Examples
VPICTURE, 3 ;Find at most 3 objects with virtual camera 1
VPICTURE (4) ;Find as many objects as possible with camera 4
VPICTURE 1 ;Grab a frame for later processing

VPICTURE (7) 0, -1 ;Find as many objects as possible in the
; image being held from virtual camera 7

Initiate picture processing with a monitor command, producing the following
output:

VPICTURE

Running. Objects to be recognized:
0 5 10 15 20 25 30

CASTING ko (Only 5 examples trained)
FLANGE * (Only 1 example, ignored)
CRANK kokk *

BRACKET * * (Only 3 examples trained)

1 The V.TOUCHING switch is automatically considered to be enabled whenever the
V.OVERLAPPING switch is enabled.

AdeptVision Reference Guide, Rev A 199

VPICTURE Monitor Command and Program Instruction

The following code shows how to perform inspections at frame rates (30 frames
per second). For simplicity, this program performs a single window inspection on
each grayscale frame.

; Define AOls
insp_ibrl = 1011 ;aoi 1, virt. frame buffer 11
insp_ibr2 = 2012 ;a0i 2, virt. frame buffer 12

VDEF.AOI insp_ibrl = 1, 380, 240, 50, 50, 0
VDEF.AOI insp_ibr2 = 1, 150, 150, 100, 10, 0

; Prime the pump by grabbing into frame 2

VPICTURE (cam2, 0, insp_ibr2) 2
WHILE TRUE DO ;Loop forever...

; Grab into 1, select 2 for a window inspection
VPICTURE (caml, 0, insp_ibrl, insp_ibr2) 2
VWINDOWI (cam2, 5, -1) data[] = insp_ibr2
IF (data[4] < 250) OR (data[4] > 350) THEN
; Report deviation in edge counts here

END

; Grab into 2, select 1 for a window inspection
VPICTURE (cam2, 0, insp_ibr2, insp_ibrl) 2
VWINDOWI (caml, 5, -1) data[] = insp_ibrl
IF (data[4] < 100) OR (data[4] > 150) THEN

; Report deviation in edge counts here

END
END

Related Keywords

200

VDEEAOI (program instruction)
VLOCATE (program instruction)
VWINDOW (program instruction)
VSELECT (program instruction)
V.BINARY (system switch)
V.DISJOINT (system switch)
V.OVERLAPPING (system switch)
V.TOUCHING (system switch)

AdeptVision Reference Guide, Rev A

Monitor Command and Program Instruction VPLAN.FINDER

Syntax
VPLAN.FINDER (cam, type, dmode) $fmods[], $bmods]]

Function

Set up the type of “planning” used by the Finder when locating models.

Parameters
cam Real-valued expression indicating the virtual camera number to use
for associating “planning” with and to read parameters from.
type Real-valued expression indicating the type of planning:
0 = Basic initial planning
1 = Quick initial planning (for multi-instance training)
dmode Not used.
$fmods|] An array of foreground models. Each list must contain names of
valid, trained models, starting with index [0] and terminating with a
null string as the last name.
$bmods]] An array of background models. Each list must contain names of
valid, trained models, starting with index [0] and terminating with a
null string as the last name.
Details

Foreground models are those for which you would like the Finder to return
locations. Background models are those that may be present, but which you are
not interested in locating. Specifying these, when applicable, will help planning
tell which features of the foreground models are best for finding proposals that
are not ambiguous with respect to other similar-looking objects in the scene.

Description of planning types

Type 0 planning takes the lists of models and does all the preparation work
needed for recognition ahead of time, to allow for the fastest possible recognition
times. Planning is usually fairly fast but can take many seconds to compute and
many Kb to store (from V* program memory) if the total number of model pairs is
large.

Type 1 planning is faster than Type 1 planning but causes recognition to be
slower. (However, you may achieve more reliable results using Type 2.) It does
this by several means, most significant of which is that confirmation is not
planned for. Therefore, during recognition, all proposals go on to verification.
This method can be costly since verification is a time-consuming operation.

AdeptVision Reference Guide, Rev A 201

VPLAN.FINDER Monitor Command and Program Instruction
Input parameters using virtual cameras
The following settings are required:
V.MIN.LEN[vC] =20 Percentage of features (by length) to ignore.
For Type O(normal planning), v.MIN.LEN is ignored.

For Type 1(quick planning), v.MIN.LEN[VC] is the number of features to use
for planning. For example, a value of 20 means to plan with the 20 longest

features.
The following settings are suggested:

V.MAX.VER.DIST[vC] = 5.0

202 AdeptVision Reference Guide, Rev A

Program Instruction VPUTCAL

Syntax
VPUTCAL (camera) scalers[i], pmm.to.pix[j,K], pix.to.pmm]l,m], to.cam
Function

Load vision calibration data from 1 to 3 arrays.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters
camera Real-valued expression that specifies the virtual camera.
scalers[] Real array of calibration values (see below).

pmm.to.pix[,] Optional, two-dimensional real array that defines the
millimeter-to-pixel transformation matrix. If this array is
specified, the array “pix.to.omm[,] ” must also be specified.

pix.to.pmm[,] Optional, two-dimensional real array that defines the
pixel-to-millimeter transformation matrix. If this array is
specified, the array “pmm.to.pix[,] ” must also be specified.

i, j, Kk, I, m Optional integer values that identify the first array element to be
referenced in the respective array. Zero is assumed for each
index that is omitted. If an array is specified that has more
dimensions than needed, only the right-most indexes are
incremented as the values are referenced.

to.cam Optional transformation expression that defines the vision
transformation to store with the calibration data. (Note: in V*
version 11.0, to.cam must be a variable. In version 11.1 and
higher, to.cam will not have to be a variable.)

Details

The calibration programs supplied with the AdeptVision systems fill the
calibration arrays and execute a VPUTCAL instruction at the end of a successful
calibration. This calibration data is used when performing operations that involve
millimeter distances or locations in the image, such as VPICTURE, VWINDOW,
VRULER, VLOCATE, and VFEATURE.

Since the calibration arrays are generally filled by an Adept utility program, the
programmer should not have to be familiar with all the individual array elements.
However, since some elements may be useful to know about, a brief description of
the array elements is provided in the table below.

AdeptVision Reference Guide, Rev A 203

VPUTCAL

Program Instruction

Any undefined elements of the input arrays are automatically assumed to be zero.
Subsequent VGETCAL instructions will retrieve arrays that are defined
completely.

NOTE: The user is discouraged from setting any of the array values
unless explicitly requested to do so by Adept documentation or
personnel. The descriptions here are intentionally terse.

Table 2-5. Elements of VGETCAL/VPUTCAL Scaler Calibration Array

Index

Name

Value or Meaning

0

calibrated

Calibration status:

0 => Uninitialized

1 => Initialized for calibration
2 => Okay (calibrated)

cam.num

Physical camera number

method

Calibration method and link mounting used. The value of this
element is determined and used by Adept software. See the
documentation for the Adept calibration utilities for specific values.
(For camera-only calibrations; method = 1.)

link.num

Link number of the robot that the camera is mounted on.

Maintained for backward compatibility; should not be used in 11.0
or later systems.

56,7

not used

Must be 0

not used

MustbeOor 1

9-12

not used

13

flags

Bit field:
Not set Set
1 HPSnotused HPSused
2 Full frame Field acquire
3 Normal Synchronous shuttered camera
4 Normal Asynchronous shuttered camera
Remaining bits reserved, must be 0.

14

xy.ratio

Camera pixel height/width (converts X to Y). Read only—returned
by VGETCAL but not used by VPUTCAL.

15

x.scale

Horizontal scale factor (mm/pixel)

16

y.scale

Vertical scale factor (mm/pixel)

17

cam model

0 = Normal RS-170 camera (Panasonic GP-MF702, Sony XC-77, etc.)
1 = Panasonic GP-CD40

2 = Reserved

3 = MF-702 asynch reset mode (noninterlaced full frame 30Hz)

4 = MF-702 asynch reset mode (interlaced full frame)

5 = MF-552 asynch reset mode (interlaced full frame)

6, 7 = Reserved

8-15 = Initially, same as 0.

204

AdeptVision Reference Guide, Rev A

Program Instruction VPUTCAL

Table 2-5. Elements of VGETCAL/VPUTCAL Scaler Calibration Array (Continued)

Index Name Value or Meaning

18 pixel Index 1-8 of pixel compensation table used for filling in missing
compensation | pixels;
table 0 = no pixel compensation

19-20 not used Must be 0

Several of the entries in the scaler array documented here are not actually used by
the vision system but are generated by the Adept calibration utility programs and
are used by other Adept software. Those entries, identified here only for
completeness, are:

Element 2: Calibration method
Element 3: Link number
Element 13, bit1: HPS-used flag

The value for “xy.ratio” must be in the range 0.5 to 1.5. If the “x.scale/y.scale”
supplied to VPUTCAL is not in the acceptable range, the error

Invalid vision X/Y ratio

is reported when the next VPICTURE operation is processed.

The arrays “pmm.to.pix[,] ” and “pix.to.pmml[,] ”” contain two-dimension
homogeneous transformations. These transformations implicitly contain the x
and y millimeter-per-pixel scaling contained in the array “scaler[] . In addition,
the transformations may contain terms that correct for perspective distortion. If
the two transformations are not specified with VPUTCAL, correction for
perspective distortion is automatically disabled. (See Appendix C for more
information on perspective distortion.)

Example
Calibrate virtual camera 2 using the data in “cal.array[]

VPUTCAL (2) cal.array][]
Related Keyword

VGETCAL (program instruction)

AdeptVision Reference Guide, Rev A 205

VPUTPIC Program Instruction
Syntax

VPUTPIC (camera, type, zoom) $pic[r, c], x0,y0
Function

Store into a frame store an image saved previously with VGETPIC.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameter

camera Optional real-valued expression that specifies the virtual camera
number. If not specified, the camera number in the picture header at
“$pic[r,c]” is used. (This parameter is currently ignored.)

type Optional real-valued expression indicating the type of data to
expect in the “spic[,] ” array. If not specified, the value in the
picture header is used.

1 = Grayscale image and binary (or edge) image
2 = Binary (or edge) image only

zoom Optional real-valued expression indicating the zoom factor to use
when writing the picture to the frame store. If zoom is N, every
pixel is blown up to an NxN square. The zoom factor must be in the
range 1 to 100. The default is 1.

NOTE: The parentheses in the instruction syntax can be omitted if
all three of the above parameters are omitted.

$pic[,] Array of picture data, including a header string. The data in this
array is assumed to have been created by the VGETPIC program
instruction.

rc Row and column indexes into the array “spic[,] ”, indicating where
the header string and picture data are. The defaults are 0 for both
“r”and “c”. The header string is in the element “$pic[r,c]”. The
picture data starts at element “$pic[r+1,c+1]”.

x0, yO Optional real-valued expressions specifying the coordinate of the
lower-left corner of the image where the picture is to be stored. If
not specified, the starting coordinate stored in the header string is
used. “x0” and “y0” are in pixel units and must be in the image. The
maximum value is the size of the virtual frame buffer the image
data is being written to. Virtual frame buffer sizes are configured

206 AdeptVision Reference Guide, Rev A

Program Instruction VPUTPIC

with the DEVICE instruction. See the AdeptVision User’s Guide for
details.

Details

This instruction provides a means for replacing picture data extracted using the
VGETPIC instruction. Normally, this is used for reviewing an old picture.
However, for diagnostic purposes, saved camera images may be VPUTPIC’d back
into the image memory and reprocessed.

To restore an old image for reprocessing, a “quick frame grab” (VPICTURE in
mode #2) should be performed first. Then the saved grayscale and binary image
may be restored via a type #1 VPUTPIC, or a binary image may be restored via a
type #2 VPUTPIC. The VWINDOW instruction or a VPICTURE in mode 0
(repicture) processes the data in the binary image. The VWINDOWI and ruler
instructions use either the binary or the grayscale image, depending on the type
of operation.

If all the optional parameters are defaulted, all the pertinent information is taken
from the header string. However, a VPUTPIC of a saved grayscale image places
the image in the frame store currently selected. (See the VSELECT program
instruction.)

See the description of the VGETPIC instruction for detailed information on the
header string.

Example

Reduce the full grayscale image by a factor of 4 in both the X and Y directions and
then put it back, zoomed up by the same amount. Use averaging (mode #1) when
reducing the image.

VGETPIC (,,4,1) $picture][,]
VPUTPIC (,,4) $picture[,]

Restore the same image, but at its reduced size. The image is repeated 16 times to
fill the Vision display window.

FORy0=1TO 480 STEP 480/4
FOR x0=1TO 640 STEP 640/4
VPUTPIC (,,1) $picturel[,], x0, yO
END
END

Related Keywords

VDISPLAY (monitor command and program instruction)
VGETPIC (program instruction)
VSELECT (program instruction)

AdeptVision Reference Guide, Rev A 207

VQUEUE Monitor Command

Syntax

VQUEUE (camera)

Function

Display object information for any objects queued in the vision system awaiting
retrieval by VLOCATE instructions.

Usage Considerations

This command may be used when a program is executing, but vision model
training must not be active.

Parameter

camera Optional real-valued expression that specifies the virtual camera
number. If this parameter is specified and is nonzero, only objects
found for that virtual camera are listed. Otherwise, regions found
for all cameras are listed starting with those most recently
VPICTUREd or VWINDOWed.

The parentheses can be omitted if no virtual camera is specified.
Details

After the vision system has processed an object, the object information generated
by the recognition algorithms is stored in the vision system until a VLOCATE
instruction is executed. The VQUEUE command displays the following
information for each queued object, grouped by the virtual camera number they
were found in:

Name The name of the prototype that matches the object. If no match is
found, the object name is “?”.

Verify Percent Weighted percentage of the prototype boundary that matches
the processed image.

Area The number of camera pixels enclosed by the object’s region
boundary.

X This is the “X” component of the object transformation.

Y This is the *“Y”” component of the object transformation.

RZ This is the “r” component of the object transformation.

Instance ID Number of the object. Since an image may contain several

objects that match the same prototype, this number is provided

208 AdeptVision Reference Guide, Rev A

Monitor Command VQUEUE

to allow a program to unambiguously reference a specific
instance. The first object encountered after a VPICTURE or
VWINDOW instruction is assigned an ID of 1, and each
subsequent object is assigned the next sequential number.

Camera This is the virtual camera number of the object.
Example

VQUEUE (4)

Name Verify Area X Y RZ Instance Camera

Percent ID

FLANGE 99.9 2000 -10.1 1230 3000 1 4

CASTING 100.0 1234 101.0 49.2 17014 2 4

? 0.0 165432 765.3 30.9 0.00 3 4

Related Keyword

VOQUEUE (real-valued function)

AdeptVision Reference Guide, Rev A 209

VQUEUE Real-Valued Function

Syntax

VQUEUE (camera, $name)

Function
Return the number of objects in the vision system queue.
Usage Considerations

Vision model training must not be active for this operation to execute.

Parameters
camera Optional real-valued expression that specifies the virtual camera
number. The default is 0, meaning all cameras.
$name Optional string expression that specifies the name of a prototype.
Details

If a prototype name is specified, VQUEUE returns the number of them in the
gueue for the given virtual camera. If the virtual camera is not specified or is 0,
VQUEUE returns the total number of prototype instances in all virtual camera
gueues. If neither a camera nor a name is specified, the total number of all objects
in all queues is returned.

Examples

Determine the total number of objects seen by all virtual cameras and the number
seen by virtual camera #3:

total.objects = VQUEUE()
object.cnt[3] = VQUEUE(3)

Find out the total number of objects matching the prototype “CASTING” that
have been seen by all virtual cameras and the number seen by virtual camera #7:

casting.cnt = VQUEUE(, "CASTING")
num.castings = VQUEUE(7, "CASTING")
Related Keywords

VLOCATE (program instruction)
VOUEUE (monitor command)

210 AdeptVision Reference Guide, Rev A

System Switch V.RECOGNITION
Syntax
... V.RECOGNITION [camera]
Function
Enable or disable prototype recognition by the vision system.

Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

This switch is normally enabled. When V.RECOGNITION is disabled, the vision
system operates as if no prototypes have been defined. This is a useful operating
mode when calibrating, for example, because then only the centroids of regions
are needed. If no prototypes are defined, the state of V.RECOGNITION has no
effect.

Example
Disable object recognition (for all virtual cameras)—do only boundary analysis:

ENABLE V.BOUNDARIES
DISABLE V.RECOGNITION

Related Keywords

VLOCATE (program instruction)
V.SHOW.RECOG (system switch)

AdeptVision Reference Guide, Rev A 211

VRENAME Monitor Command

Syntax
VRENAME new_name = old_name
Function
Rename a prototype or subprototype.
Usage Considerations
This command may be used even while a main control program is executing.
Parameters

new_name The new name of a prototype or subprototype. If a subprototype is
being named, this parameter must have the form “namel:name2”
(entered without quotation marks), where “namel” is the name of
the prototype containing the subprototype “name?2”. Either namel,
namez2, or both may be new.

old_name The name of an existing prototype or subprototype. See above for
the syntax of subprototype names.

Examples
Rename the prototype:
VRENAME SPADE = SHOVEL
Rename the subprototype:

VRENAME GASKET:NOTCH = GASKET:INDENT

Details

The type of model being supported is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name is checked first
against the lists of prototypes for backward compatibility. Therefore, you should
not use the same name for a prototype model and an ObjectFinder model.

Related Keywords

VDELETE (monitor command and program instruction)
VSHOW (monitor command)

VSHOW (program instruction)

VTRAIN (monitor command and program instruction)

212 AdeptVision Reference Guide, Rev A

Program Instruction VRULERI

Syntax
VRULERI (cam, type, dmode, maxcnt, edge.dir) data] i], mags[j] =ibr
VRULERI (cam, type, dmode, maxcnt, edge.dir) data] i], mags[j] =
1, x0, yO, len , ang
VRULERI (cam, type, dmode, maxcnt, edge.dir) data[i], mags[j] =
shape, cx, cy, radius , ang0, angn
Function

Obtain edge information or graylevels along a line or circular arc in the current

image.

Usage Considerations

If the calibration being used includes correction for perspective distortion, the
correction is applied to both the placement and results of the ruler.

Adept recommends the first syntax.

Parameters

cam

type

dmode

maxcnt

Optional real-valued expression indicating the virtual camera
number to use for selecting the V.EDGE.STRENGTH parameter that
identifies strong edges for a fine-edge (type #2) or fine-pitch (type
#3) ruler. The default camera is 1.

Optional real-valued expression specifying the type of ruler:

-2 dynamic binary

raw binary

run-length binary (default)
graylevel

fine-edge

fine-pitch

WNPFP OB

Optional real-valued expression indicating the display mode to use
when displaying the ruler: -1 = no draw, 0 = erase, 1 = draw solid, 2
= complement, 3 = draw dashed, and 4 = complement dashed. The
default is 1 (draw solid).

Optional real-valued expression specifying the maximum number
of values to return. For an edge-finding ruler, this causes processing
to stop after the specified number of edges are found. For a
graylevel (type #1) ruler, this specifies the exact number of pixel
values to return, starting from the start of the ruler. The default is -1,
to return as many values as possible.

AdeptVision Reference Guide, Rev A 213

VRULERI
edge.dir
data[]

I j
mags(]

214

Program Instruction

Optional real-valued expression specifying the polarity of the edges
to be considered by the ruler:

-1 Consider only light-to-dark edges
0 Consider all edges (default)
1 Consider only dark-to-light edges

NOTE: The parentheses in the instruction syntax can be omitted if
all five of the above parameters are omitted.

Real array into which the transitions detected by the ruler are
placed. The data format of this array is:

count, color/clipped, value_1, value 2, ...,
value_n

“count” is the number of transitions detected by the ruler.

The *“color/clipped” value is the starting color of a binary ruler
(ruler types # -2, # —1 and #0). For a type #1, type #2, or type #3
ruler, the value is -1 if any part of the ruler is “clipped” by an edge
of the frame store. Otherwise, the value is 0.

The values (value_i) represent the data returned by the ruler. The
interpretation of these values depends on the shape and type of
ruler.

For a linear ruler, the values are (millimeter) distances along the
ruler from the start to each transition.

For an arc ruler, the values are angular distances, in degrees,
from the start to each transition.

For a graylevel (type #1) ruler, the values are pixel graylevel
values along the ruler. The graylevels are not valid if the ruler
was clipped, as described above (indicated by -1 as the second
value in the array).

Optional integer values that identify the first array elements to be
defined in “data[]” and “mags|]”, respectively. Zero is assumed for
any array index that is omitted. If a multiple-dimension array is
specified, only the right-most index is incremented as the values are
assigned.

Optional array into which the signed edge magnitudes are placed
for each of the edges returned in “data[]”. For convenience, the
“count” and “color/clipped” values are duplicated into the first two

AdeptVision Reference Guide, Rev A

Program Instruction VRULERI

elements defined in this array. This array is valid only for type #2
and type #3 rulers.

ibr Integer value specifying the image buffer region for the ruler. Image
buffer regions specify both a size and a frame store (see the
description of VDEF.AOI).

shape Real-valued expression indicating how the ruler path is described: 1
for line, 2 for counter-clockwise arc, 3 for clockwise arc. The default
is 1 (linear ruler).

x0, y0 Real-valued expressions indicating the coordinates (in millimeters)
of the starting point for the linear ruler.

len Real-valued expression specifying the length of the linear ruler, in
millimeters.
ang Optional real-valued expression indicating the angle of the linear

ruler in degrees, measured counter-clockwise from the X axis, using
the start of the ruler as the origin. The default is 0 (horizontal ruler).

CX, Cy Real-valued expressions specifying the center of the arc ruler’s
circle, in millimeters.

radius Real-valued expression specifying the radius of the arc ruler’s circle,
in millimeters.

ang0, angn Optional real-valued expressions specifying the angular range of
the arc ruler, in degrees. Each value defaults to 0. A full circular arc
is performed if the two angles are equal.

Details

Ruler types # —1 and #0 operate on binary data. These rulers determine locations,
along a directed line or circular arc, of black-to-white or white-to-black
transitions. The starting color returned is the color (black=0, white=1) of the pixel
nearest to the start of the ruler. Each color change along the ruler is returned as a
transition point, measured in millimeters or degrees from the start of the ruler.
The transition points returned are accurate within about one pixel.

Ruler types # -2, #1, #2, and #3 operate on grayscale data. These ruler types must
be preceded by a VPICTURE in modes # —1, #0 or #2 (that is, any mode but #1—
future frame-grab). The setting of the V.BINARY system switch has no effect on
these rulers. These ruler types can operate on either of the two grayscale frame
stores (see the VSELECT program instruction).

AdeptVision Reference Guide, Rev A 215

VRULERI Program Instruction

Ruler types # -2, # -1, #0, #2, and #3 are “edge rulers”, and they all return the
same type of information. The only differences are the sources of the edge
information.

Type # -2 (dynamic binary) rulers use the grayscale frame store. (This is
the data visible in VDISPLAY mode 1.) The current values of the threshold
parameters V.THRESHOLD and V.2ND.THRESH at the time the ruler is
executed are used to determine which pixels are considered foreground
and which are background. Therefore, a different binary threshold can be
used for each ruler.

Type # —1 (raw-binary) rulers use the raw-binary frame store. This is the
data visible in VDISPLAY mode 2. This is binary or edge data, depending
on the setting of the V.BINARY system switch.

Ruler type #0 (run-length binary) uses processed binary data produced by
VWINDOW or VPICTURE in modes # —1 or #0. (This data is shown in
VDISPLAY mode #3.) Note that system parameters such as V.MIN.AREA
and V.MAX.AREA are used during picture processing, whereas they are
not taken into account with ruler type # —1. Again, the image data is binary
or edge data, depending on the setting of the V.BINARY system switch.

The edges returned by a type #2 (fine-edge) ruler are based on the
graylevels on and near the path of the ruler. The edge detection technique
used is more sophisticated than the one used at recognition time. This ruler
type is designed to detect edges that are close to perpendicular to the
direction of the ruler. If a ruler is far from perpendicular to an edge at the
point where the ruler and edge intersect, the ruler is less accurate and less
sensitive to that edge. A good rule of thumb is to keep the ruler within 20
degrees of perpendicular for best results. The sensitivity of the ruler to
edges is determined by the V.EDGE.STRENGTH parameter. The higher the
parameter value, the stronger an edge must be in order to be detected.

The edges returned by a type #3 (fine-pitch) ruler are similar to a type #2
ruler except the edge detection algorithm has been optimized for finding
closely spaced edges. For maximum accuracy, this ruler type must be
placed as perpendicular as possible to the edges being detected.

For straight rulers, the distance to grayscale edges is accurate with varying
degrees of subpixel accuracy, depending mostly on ruler and edge orientation.
When both image edge and a linear ruler are exactly horizontal or vertical, the
distance to an edge has a standard deviation of about 0.04 pixel (with a maximum
error of 0.1 pixel). For angled image edges, the standard deviation is around 0.1
pixel (with a maximum error of 0.3 pixel) if the ruler is kept within 20 degrees of
perpendicular to the edge. The repeatability and absolute accuracy will depend
on camera and lens quality, as well as calibration and lighting conditions. For arc
rulers, the angles are accurate to about half a pixel.

216 AdeptVision Reference Guide, Rev A

Program Instruction VRULERI

For type #2 or #3 rulers, you can include the “mags[] ” parameter to request that
the gradient magnitudes for each of the edges found be returned into that array.
Positive gradients indicate a dark-to-light edge and negative gradients indicate a
light-to-dark edge. The absolute values of these gradient magnitudes are
compared against the V.EDGE.STRENGTH parameter to determine if pixels are
edge candidates.

For ruler types # -2, # -1, #0, #2, and #3 (that is, edge rulers), the starting element
in the array (”data[i]”’) contains the number of transitions found. Therefore, the
number of elements in the array defined after a VRULERI is (data[i] +2). The
maximum number of transitions that VRULERI will locate and report is 100 (or
the value of the “maxcnt ”” parameter). Any additional transitions are ignored. If a
ruler is requested that lies entirely off the image, zero transitions are returned. If a
ruler lies only partially on the image, transitions are detected only for the section
of the ruler that is in the image.

When an arc ruler is clipped, the “maxcnt ” parameter is ignored and all the
transitions along the ruler are returned.

The coordinates of the end points of a linear edge ruler, or the center of an arc
ruler, may be outside of the image—but they must be within a 1000-pixel radius
of the image origin (bottom left corner) after being transformed from millimeters
to image pixels.

Ruler type #1 returns the graylevel values at each pixel along the path of the ruler.
The first element in the array is the count of pixels along the ruler. The starting
color is always 0. Graylevel rulers can be used to determine the average graylevel
along a line.l The maximum length of a type #1 ruler is 508 pixels. If a linear ruler
starts outside the frame store, the off-frame pixels are padded with zeros. If the
end of a linear ruler goes outside the frame store, no padding is done. In that case,
the array is just shorter. If any part of a graylevel (type #-1) arc ruler falls outside
the frame store, no information is returned other than an indication that the ruler
was clipped.

Edge rulers do not report edges that occur within one pixel (two pixels for arc
rulers) of the edge of the image, the start of the ruler, or the end of the ruler. This is
because the information needed to compute the edge position is not complete in
these areas.

The time required to process a ruler depends on the orientation and length of the
ruler and the number of transitions encountered. (The parameter “maxcnt ” may
be used to limit the latter.) In addition, the speed is affected if you are having the
ruler displayed or are getting grayscale edge magnitudes returned. All these
things affect the speed of each ruler type differently.

1 The VWINDOWI instruction can be used to extract information about areas of an image.

AdeptVision Reference Guide, Rev A 217

VRULERI Program Instruction

For run-length (type #0) linear rulers, the more horizontal the ruler, the faster it is
processed. Exactly horizontal rulers are a special case and process fastest—their
speed is independent of their length. Horizontal or vertical type # -2 and # -1
rulers are slightly faster than those with random angle orientations. With the
exception of exactly horizontal type #0 rulers, type #-1 rulers are typically the
fastest rulers. For fine-edge (types #2 and #3) rulers, orientation has no effect, but
they are about half as fast as a run-length binary ruler. The speed of graylevel
(type #1) rulers is dependent only on their length and shape.

When no region-oriented information is needed and single-pixel precision is
sufficient, the fastest cycle time can be achieved by using a “quick frame grab”
(VPICTURE in mode #2) followed by type # —1 rulers. These raw-binary rulers are
very fast. Enable the V.BINARY system switch for maximum speed of a
VPICTURE in mode #2. If object recognition is not needed, but the filtering effects
of parameters such as V.MIN.AREA are needed, the time delay before rulers are
processed can be minimized by disabling the V.BOUNDARIES system switch.

The following comments on perspective distortion may be of interest to the expert
user.

If the calibration being used includes correction for perspective distortion,
the correction is applied to the placement of the ruler. Since perspective
transformations of lines are lines, the two end points of a linear ruler are
transformed to the perspectively corrected plane. Thus, the results from
the ruler (millimeter distances to edge points along the ruler) are
automatically corrected for distortion.

The center of an arc ruler is similarly transformed. However, the path of an
arc ruler that is followed in the image memory is an upright ellipse. This
only approximates the perspectively distorted arc. (A perspectively
distorted circle is neither a circle nor an ellipse.) The two radii of the ellipse
are determined by the X/Y ratio in the camera calibration data. The angles
to edges will be correct in the perspectively corrected plane, but edge
points computed based on those angles (using the center and radius of the
arc ruler) will not be exact because the ruler shape is not perfectly elliptical
when there is perspective distortion.

Examples

218

Cast a run-length (type #0) binary ruler along a horizontal line starting at the
point (30,20) of length 80 and put the detected binary transition information into
the array “xx[]”. For maximum speed: don’t draw the ruler (dmode =-1), and
stop after finding two edges (maxcnt = 2):

VRULERI (, 0, -1, 2) xx[] = 1, 30, 20, 80

AdeptVision Reference Guide, Rev A

Program Instruction VRULERI

Cast a fine-edge (type #2) ruler along the same line as in the previous example
and find the edges (using grayscale calculations with subpixel precision) and put
the signed gradient magnitudes in the array “mags[]”. Draw the ruler so it can be
seen (dmode = 1), along with the edges found. Find only light-to-dark edges
(edge.dir =-1):

VRULERI (, 2, 1, 2) xx[], mags]] = 1, 30, 20, 80

Related Keywords

VDEEAOI (program instruction)
VFIND.POINT (program instruction)
VWINDOWI (program instruction)
V.BINARY (system parameter)
V.EDGE.STRENGTH (system parameter)

AdeptVision Reference Guide, Rev A 219

VSELECT Program Instruction

Syntax

VSELECT (mode) ibr = camera

Function

Select a virtual frame buffer for processing or display and, optionally, select a vir-
tual camera and its calibration to be associated with the frame buffer.

Parameters

mode 0 = select a virtual frame buffer
1 = deselect a frame buffer (see Details below)

ibr Real value, variable, or expression that specifies an image buffer
region. The last three digits of the image buffer region, which
specify a virtual frame buffer, are used to select the virtual frame
buffer. The special values 1011 and 1012 select virtual frame buffers
11 and 12, which are full-frame buffers. In addition, for convenience
and backward compatibility, the values 1, 11, and 1001 select frame
11, and values 2, 12, and 1002 select frame 12.

camera Optional real value, variable, or expression that specifies a virtual
camera number to be associated with the selected frame store. By
default, the previous association with the frame store is unchanged
if “camera ” is omitted.

Details

There are 32 (maximum) virtual grayscale frame buffers.l The VSELECT
instruction selects the virtual frame buffer to access. Operations such as
VRULERI, VWINDOWI, VFIND.LINE, VHISTOGRAM, and VGETPIC access the
currently selected frame buffer.

By default, the “current” frame buffer is the one selected by a VPICTURE
operation. Using VPICTURE, an image can be acquired into any frame buffer.

The VSELECT instruction performs the same function as the “sel_ibr” parameter
to VPICTURE. Since VSELECT is a separate instruction, however, a program can
acquire two camera images into different frame buffers and then use VSELECT to
quickly switch back and forth between them while performing analyses.

1 The actual number is configurable with the DEVICE program instruction (see the AdeptVision
User’s Guide).

220 AdeptVision Reference Guide, Rev A

Program Instruction VSELECT

When a frame buffer is selected, the virtual camera number used with the
VPICTURE operation that acquired that image is automatically selected, along
with the calibration data and all the system switches and parameters associated
with that camera. However, if a “camera” parameter is supplied in the VSELECT
instruction, the calibration data, switches, and parameters for that camera are
selected. This capability is useful with split images, where one half of the image is
calibrated differently from the other half.

If a quick frame grab is still acquiring an image into the frame store being
selected, the VSELECT instruction causes program execution to wait for the
acquisition to complete.

For some vision operations (such as binary correlation), two scratch frame stores
are needed. The display frame store will always be used for one. For the other, the
system will use any frame store that does not contain valid image data. However,
if all frame stores contain valid data, then an error code will be returned. Once a
frame store has valid data, it will continue to have valid data until an ENABLE
VISION instruction is processed. VSELECT with “mode” = 1 will deselect a frame
buffer, making it available as a scratch frame store (the optional “camera ”
argument is ignored).

Related Keyword

VPICTURE (monitor command and program instruction)
VDEEAOI (program instruction)

AdeptVision Reference Guide, Rev A 221

VSHOW

Syntax

Monitor Command

VSHOW proto_name, grip, edge_num

Function

List the defined prototypes or display a vision prototype, a subprototype, or a
specific prototype edge in the Vision display window. Edge numbers are option-

ally shown.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

This command supports the ObjectFinder tool. Except where noted, the usage is
the same as for prototypes.

This command may be used even while a control program is executing.

Parameters

proto_name

grip

edge_num

Details

Optional name of a prototype or subprototype to be displayed in the
Vision display window. If no name is specified, the list of all defined
prototypes is displayed in the Monitor display window.

If a subprototype is desired, this parameter must have the form
“namel:name2” (entered without quotation marks), where “namel”
is the name of the prototype containing the subprototype “name2”.

Optional real-valued expression that specifies the grip position to be
displayed along with the prototype. The default grip value is 0,
which means no grip positions are shown. The value -1 causes all
grip positions to be displayed. A value in the range 1 to 4 displays
the corresponding single grip position.

Optional real-valued expression that indicates:

0 Do not show the edge numbers
-1 Show all edge numbers
>0 Show specific edge number

The type of model being supported is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name is checked
against the lists of prototypes first, for backward compatibility. Therefore, you
should not use the same name for a prototype model and an ObjectFinder model.

222

AdeptVision Reference Guide, Rev A

Monitor Command VSHOW

When a single prototype is specified, its prototype image is displayed in the
Vision display window, and a list of its descriptor values is displayed in the
Monitor display window, along with the names of any subprototypes associated
with the prototype. The prototype is displayed at its nominal location in the
Vision display window. This is the location of the first instance of the prototype.

If display of a subprototype is requested, the prototype is displayed in gray and
the subprototype, in color.

If the “grip ” parameter is nonzero, the specified grip position is shown
overlaying the prototype in the Vision display window.

If “edge_num” is nonzero, one or more edge numbers are shown. You may need to
know these edge numbers for the program instructions VEDGE.INFO,
VDEF.SUBPROTO, VSUBPROTO, and VGAPS.

The following are explanations of the descriptor values displayed:

Color Color of the object when it was trained. During
subsequent image processing, in order for a region to be
recognized as an object, it must have the same color as the
prototype. The value of “color” will be either “Black” or

“White”.
Number of taught Number of images that were used during training to
examples generate the prototype. The more images used, the more

reliable the prototype.

Area Area of the prototype in camera pixels including any
holes. This is the area of the first trained instance of the
prototype.

Minimum area Minimum region area for recognition.

Maximum area Maximum region area for recognition.

Effort level Effort level associated with the prototype.

Verify percentage Minimum percentage of the weighted prototype

boundary that has corresponding image edges before the
prototype is accepted as a correct match.

Camera associations List of the virtual cameras associated with the prototype.

Symmetry Special information that is displayed if the part is
symmetric.
Subprototypes List of the subprototypes associated with the prototype.

AdeptVision Reference Guide, Rev A 223

VSHOW Monitor Command
Example

Display the outline of the prototype “flange” in the Vision display window
together with gripper definition #2 (two subprototypes are associated with the
prototype: “right_side” and “top.part”):

VSHOW flange, 2
Color: White

Number of taught examples: 5

Area: 10521

Minimum area: 6000

Maximum area: 14000

Effort level: 3

Verify percentage: 70%

Camera associations: 12,4

subprototypes: right_side
top.part

List all the prototypes currently loaded in the system.

VSHOW
0O 5 10 15 20 25 30
N N
0715y 1 | —
ST V] S —

This indicates that “FLANGE” and “CASTING” are the only object prototypes
defined. Their virtual camera associations are as shown.

Related Keywords

VDEESUBPROTO (program instruction)
VEDGE.INFO (program instruction)
VGAPS (program instruction)

VSHOW (program instruction)
VSUBPROTO (program instruction)

224 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VSHOW

VSHOWmode, $proto_name , trans_var, grip, edge_num

Function

Display a vision model (ObjectFinder, prototype, or subprototype) and make
information about it available through the VFEATURE real-valued function.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters

mode

$proto_name

trans_var

grip

edge_num

Optional bit field expression indicating which of several possible
events should result from this instruction. (Defaults to 0; see below
for details.)

String variable to be assigned the name of the vision model accessed
(for “get-next” mode), or a string expression representing the name
of the vision model to be shown (for “get-specific” mode).

If a subprototype is desired, this parameter must have the form
“namel:name2”, where “namel” is the name of the prototype
containing the subprototype “name2”.

Optional transformation variable to be assigned the location of the
prototype in the Vision display window. This parameter is not
accepted if a subprototype is being accessed.

Optional real-valued expression that specifies the grip position to be
displayed along with the model. The default value is 0, which
means no grip positions are shown. The value -1 causes all defined
grip positions to be displayed. A value in the range 1 to 4 displays
the corresponding single grip position. This parameter is ignored if
“no display” mode is requested.

Optional real-valued expression that indicates if the model edge
numbers are to be shown. The default is 0, which means the
numbers are not shown. All edge numbers are shown if “edge_num”
is—1. If “edge_num” is a positive number, the number of that edge is
shown.

AdeptVision Reference Guide, Rev A 225

VSHOW Program Instruction

Details

226

The type of model being displayed is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name is checked
against the lists of prototypes first, for backward compatibility. Therefore, you
should not use the same name for a prototype model and an ObjectFinder model.

The VSHOW instruction may be used to display and acquire information about a
single model. After each use of the VSHOW instruction, the VFEATURE
real-valued function may be used to obtain information about the model.
VSHOW is similar to the VLOCATE program instruction, except that VSHOW
works with pretaught models and VLOCATE works with objects found by
VPICTURE or VWINDOW.

VSHOW optionally displays the specified model. Thus, with display disabled,
you can use the instruction to get the names of the loaded models (one at a time)
without disturbing the display.

The mode bits are defined as follows (they all default to zero):
Bit 1 (LSB) Show model location constraints (mask value = 1)

Don’t display constraints (0): Location constraints are not displayed.

Display constraints (1): Any position or orientation constraints associated
with the prototype are shown in the Vision display window. (Mode bit #4
must be 0 so that the prototype is displayed.) After the prototype is
VSHOWed, the prototype’s nominal location and relative constraints can
be seen overlaying live video (use the monitor command “VDISPLAY
(camera) —1,1”) to see how the prototype’s nominal location compares with
the object currently in the camera field of view.

Bit 2 Get-next (0) versus Get-specific (1) (mask value = 2)

Get-next (0): If bit #3 is set (get-hole mode, see below), the next hole is
returned. If bit #3 is clear and bit #6 is set (get-subproto mode), the next
subprototype is returned. If bits #3 and #6 are both clear, the next prototype
is returned. If the next prototype or subprototype is requested, the
“proto_name” parameter must be a string variable. It is filled in with the
name of the prototype or subprototype found. A VSHOW in get-first mode
(see bit #5 below) must be executed before the “next” prototype can be
found. If the last prototype, hole, or subprototype was already returned,
VFEATURE(1) returns FALSE after a get-next VSHOW.

Get-specific (1): A specific prototype or subprototype is accessed. Its name
must be specified (by “proto_name”) as a string expression. Bits #3, #5, and
#6 are ignored in this case.

AdeptVision Reference Guide, Rev A

Bit 3

Bit4

Bit5

Bit 6

Program Instruction VSHOW
Get-prototype (0) versus Get-hole (1) (mask value = 4)
NOTE: Get-hole is not applicable for ObjectFinder models.

This bit is ignored if bit #2 is set (get-specific mode).

Get-prototype (0): Requests information about a prototype. (See bit #2,
“Get-next (0)”.)

Get-hole (1): VSHOW in this mode requests hole information. In order for
get-hole mode to be used, a prototype first has to be VSHOWed. The
subsequent get-hole VSHOWS refer to that prototype. Each get-hole
VSHOW returns one hole of the prototype. (Note: When bit #3 is set, bit #6
is ignored.)

In get-hole mode, no string variable is needed for the “proto_name”
parameter to the VSHOW instruction.

Display (0) versus Don’t-display (1) (mask value = 8)

Display (0): The model is displayed in the vision display window. The
model is positioned at its nominal location—the location of the first
instance of the model in the field of view.

Don’t display (1): Don’t display the model in the Vision display window.

Get-next (0) versus Get-first (1) (mask value = 16)

This bit is ignored if bit #2 is set (get-specific mode).

Get-next (0): Requests information about the next item. (See bit #2,
“Get-next (0)”.)

Get-first (1): Return the first model in the system or return the first hole or
subprototype associated with the model last VSHOWed. The specific
action depends on the settings of bits #3 (get-hole mode) and #6
(get-subproto mode). (The order of the models in the system is determined
by the order in which they are created using VTRAIN or loaded into the
system from disk.)

Get-proto/hole (0) versus Get-subproto (1) (mask value = 32)

NOTE: Get-proto/hole and Get-subproto are not applicable for
ObjectFinder models.

This bit is ignored if bit #2 (get-specific mode) or #3 (get-hole mode) is set.

Get-proto/hole (0): Requests information about a prototype or hole. (See
bit #2, “Get-next (0)”.)

AdeptVision Reference Guide, Rev A 227

VSHOW Program Instruction

Get-subproto (1): This mode requests information about a subprototype. In
order for this mode to be used, a prototype first has to be VSHOWed. The
subsequent get-subproto VSHOWS refer to that prototype. Each
get-subproto VSHOW returns one subprototype of the prototype. In this
mode, the “proto_name ” parameter must be a string variable.

VSHOW in get-hole or get-subproto mode refers to the prototype most recently
VSHOWed, regardless of which program task executed the VSHOW instruction.
Consequently, there is possible confusion when more than one program task
executes VSHOW instructions. Thus, for predictable operation with these request
modes, applications should be organized to have only one program task execute
VSHOW instructions.

If the “edge_num” parameter is nonzero, one or more edge numbers are shown.
These edge numbers may be needed for use of the program instructions
VEDGE.INFO, VDEF.SUBPROTO, VSUBPROTO, and VGAPS.

Examples

Display the model named “casting” and put its location on the display into the
transformation “cx’:

VSHOW 2, "CASTING", cx
Create in “$protos[]” a list of the models currently loaded:
i=0
VSHOW ~B11000, $protos]i] :Get first model
WHILE VFEATURE(1) DO
i=i+1

VSHOW "B01000, $protos]i] ;Get next in the list
END

Related Keywords

VEDGE.INFO (program instruction)
VFEATURE (real-valued function)
VLOCATE (program instruction)
VSHOW (monitor command)

228 AdeptVision Reference Guide, Rev A

System Switch V.SHOW.BOUNDS

Syntax
... V.SHOW.BOUNDS [camera]

Function
Enable the special display of the lines and arcs fit to the boundaries of regions.
Usage Considerations

A change to this switch takes effect when the next region is displayed in the
Vision display window with a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When V.SHOW.BOUNDS is enabled, the connected sequence of lines and arcs
that bound regions are displayed in the Vision display window overlaying the
displayed regions. Each connected pair of lines or arcs is joined at a corner, which
looks like a little knot. The bounds are displayed in a unique color to distinguish
them from other graphics.

If V.SHOW.BOUNDS, V.RECOGNITION, and V.EDGE.INFO are all disabled, the
system does not perform arc and line fitting at all, since it is not needed (see
below). Thus, when V.RECOGNITION and V.EDGE.INFO are disabled, the
V.SHOW.BOUNDS switch controls whether or not arc and line fitting is done. For
applications that do not use recognition, disabling V.SHOW.BOUNDS wiill
decrease processing time, because arc and line fitting takes a significant amount of
time.

The three conditions that require the system to perform arc and line fitting are:

1. If V.RECOGNITION is enabled and prototypes are loaded in the system, the
system must perform arc and line fitting as a normal step in the recognition
process.

2. If V.EDGE.INFO is enabled, the system must perform arc and line fitting so
that the information is available for VEDGE.INFO requests.

3. If the V.SHOW.BOUNDS switch is enabled, arcs and lines must be fit so that
they can be shown in the Vision display window.

Related Keywords

VEDGE.INFO (program instruction)
V.RECOGNITION (system switch)

AdeptVision Reference Guide, Rev A 229

V.SHOW.EDGES System Switch

Syntax

... V.SHOW.EDGES [camera]

Function

Enable the special display of edges—both the primitive edges that are fit to the
boundaries of regions, and the edge points that are found by the finders
VFIND.LINE, VFIND.ARC, and VFIND.POINT.

Usage Considerations

A change to this switch takes effect when a VFIND.LINE, VFIND.ARC,
VFIND.POINT, VPICTURE (in mode #0 or # —1), or VWINDOW is executed. The
Vision display window must have a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When V.SHOW.EDGES is enabled, edges are displayed when certain vision
operations are performed. There are two groups of operations that display edges
when V.SHOW.EDGES is enabled.

The first group consists of the finders: VFIND.LINE, VFIND.ARC, and
VFIND.POINT. When V.SHOW.EDGES is enabled, the edge points that are found
in the area of interest of a finder are displayed in the Vision display window.
VFIND.LINE and VFIND.ARC display in white the edge points that were used to
fit a line or an arc, respectively. Edge points that were filtered out are displayed in
gray. VFIND.POINT displays in white all the edge points it found.
(VFIND.POINT does not filter out edge points.) The display of edge points by the
finders is very costly in terms of processing time, so V.SHOW.EDGES should be
enabled only for investigative purposes.

The other operations that display edges when V.SHOW.EDGES is enabled involve
boundary analysis. Both VPICTURE (in modes #0 and # —1) and VWINDOW
perform boundary analysis. When V.SHOW.EDGES is enabled, the connected
sequence of primitive straight lines that bound the regions are displayed in the
Vision display window, overlaying the displayed regions. The lines are joined by
corners, which look like little knots. The edges are displayed in a unique color to
distinguish them from other graphics.

Example

230

Show the results of subsequent edge fitting:

ENABLE V.SHOW.EDGES

AdeptVision Reference Guide, Rev A

System Switch V.SHOW.EDGES
Related Keywords

VFIND.ARC (program instruction)

VFIND.LINE (program instruction)

VFIND.POINT (program instruction)

VPICTURE (monitor command and program instruction)
VWINDOW (program instruction)

AdeptVision Reference Guide, Rev A 231

V.SHOW.FEATS System Switch

Syntax

... V.SHOW.FEATS [camera]

Function

Enable the special display of features used for ObjectFinder recognition.

Usage Considerations

A change to this switch takes effect when the next region is displayed in the
Vision display window with a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When V.SHOW.FEATS is enabled, the features used for ObjectFinder recognition
are displayed in the Vision display window overlaying the displayed regions.
Each connected pair of lines or arcs is joined at a corner, which looks like a little
knot. The bounds are displayed in a unique color to distinguish them from other
graphics.

If V.SHOW.FEATS is disabled, the system does not perform arc and line fitting for
ObjectFinder recognition since it is not needed. For applications that do not use
recognition, disabling V.SHOW.FEATS will decrease processing time because arc
and line fitting takes a significant amount of time.

Related KeywordS

232

V.SHOW.BOUNDS (system switch)

AdeptVision Reference Guide, Rev A

System Switch V.SHOW.GRIP
Syntax
... V.SHOW.GRIP [camera]
Function
Enable the special display of clear-grip tests.

Usage Considerations

A change to this switch takes effect when the next region is displayed in the
Vision display window with a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

When V.SHOW.GRIP is enabled, clear-grip tests are shown in a special display
mode (for example, VDISPLAY mode #3). That is, each rectangle of a grip
definition is displayed as it is tested. Of course, this is performed only when
gripper positions have been defined for the prototype and the prototype has been
recognized.

Grips are tested in the order of their numbering, 1 through 4, as defined with
VDEFGRIP instructions. Once a grip is found to be clear, further testing is halted,
because only one clear grip is required. Each grip is modeled by one to five
rectangles. The algorithm for testing for clear grips checks each of the rectangles
until one is found to be not clear or until all are found to be clear. Consequently,
when a grip is not clear, the operator may see only some of the rectangles that
define the grip.

Example
Show the clear-grip tests:

ENABLE V.SHOW.GRIP

Related Keyword

VDEFGRIP (program instruction)

AdeptVision Reference Guide, Rev A 233

VSHOW.MODEL Program Instruction

Syntax

VSHOW.MODEL ngode) $chars, datali] = $model_num

Function

Display a model—either a correlation template or an Optical Character Recogni-
tion (OCR) font—and return information about it, or return information about all
the defined templates or OCR fonts.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Parameters

mode Optional expression that is interpreted as a bit field to control the
behavior of this instruction. Currently, only bit 1 (mask value 1) is
used. If “mode” is 0, the font(s) or template(s) is (are) displayed. If
“mode” is 1, nothing is displayed. The default is 0.

$chars Optional string variable to be assigned the set of characters in the
font specified by the parameter “$model_num ”. (This parameter is
ignored if “$model_num " refers to all fonts or to a correlation
template.)

datal] Optional array into which font or template information is to be
placed. The amount of information depends on whether the model
specified by “$model_num ” (see below) is a font or a correlation
template. The information returned further depends on whether all
models (that is, all fonts or all templates) or a single model is
specified.

If a specific OCR font is referenced:

data[i+0] = Number of characters in the font

data[i+1] = Height of the font in pixels

data[i+2] = Font color: TRUE = black, FALSE = white

data[i+2+1] = Number of trained instances of the first character in
“$chars

data[i+2+n] = Number of trained instances of the nth character in
“$chars

If a specific correlation template is referenced:

234 AdeptVision Reference Guide, Rev A

Program Instruction VSHOW.MODEL

data[i+0] = Width of the template in pixels
data[i+1] = Height of the template in pixels

If all fonts or templates are referenced:

data[i+0] = Number of fonts or templates defined
data[i+1] = Number of first font or template defined

data[i+n] = Number of nth font or template defined

i Optional array index that identifies the first element to be defined in
“data]] . The defaultis 0. If a multiple-dimension array is specified,
only the right-most index is incremented as the values are assigned.

$model_num String variable specifying a font, all fonts, a template, or all
templates for display (if mode = 0) and return of information.

The string naming a font has the form “FONT_n", where “n” is the
number (in the range 1 to 99) of a single font, or “FONT _0” specifies
all fonts.

Similarly, the name of a template has the form “TMPL_n", where
“n” is the number (in the range 1 to 99) of a single template;
“TMPL_0" specifies all templates.

Details

The VSHOW.MODEL instruction may be used to display and make queries about
one or all correlation templates in vision memory. The vision system displays a
specific template by copying the template from system memory into the frame
store currently displayed. The template is centered in the frame store. If all
templates are specified for display, a list of the identifying numbers of all known
templates is displayed.

The VSHOW.MODEL instruction may also be used to display and make queries
about one or all OCR fonts in vision memory. Fonts are displayed in the Vision
display window. If all fonts are specified, a list of the identifying numbers of all
known fonts is displayed. If a specific font is specified, the characters in the font
are displayed along with the following information:

= The approximate height of the font as specified in the VDEF.FONT instruction

« The color of the font characters: black on white or white on black

AdeptVision Reference Guide, Rev A 235

VSHOW.MODEL Program Instruction

= The base orientation
This angle is set when the font is first trained (see the instruction
VTRAIN.MODEL). When the font is subsequently trained or
recognition/verification is performed (see VOCR), the features in the OCR
window are rotated as necessary to match the base orientation.

= For each character in the font, the vision system displays the number of times
that the character has been trained

The above information, except for the base orientation, is also returned in the
“data[]” parameter of this instruction.

Examples
Display a list of all defined templates:

VSHOW.MODEL () = "TMPL_0"

Get all the information about font "font.num®”, but don’t display it:
VSHOW.MODEL (1) $str, data[] = "FONT_"+$ENCODE(/I0,font.num)

Related Keywords

VCORRELATE (program instruction)
VDEEFONT (program instruction)
VOCR (program instruction)
VTRAIN.MODEL (program instruction)

236 AdeptVision Reference Guide, Rev A

System Switch V.SHOW.RECOG

Syntax

... V.SHOW.RECOG [camera]

Function
Enable the special display of the objects recognized.
Usage Considerations

A change to this switch takes effect when the next region is displayed in the
Vision display window with a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

This switch is normally enabled so that the operator can see what the vision
system is recognizing. That is, when this switch is enabled, the silhouettes of all
recognized prototypes are drawn in the Vision display window overlaying the
displayed regions. The silhouettes are displayed in a unique color to distinguish
them from other graphics. If no prototypes are loaded in the vision system, the
switch has no effect.

Example
Show the objects recognized:

ENABLE V.SHOW.RECOG

Related Keyword

V.RECOGNITION (system switch)

AdeptVision Reference Guide, Rev A 237

V.SHOW.VERIFY System Switch

Syntax

... V.SHOW.VERIFY [camera]

Function

Enable the special display of the verification step in the recognition process.
Usage Considerations

A change to this switch takes effect when the next region is displayed in the
Vision display window with a graphical display mode in effect.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

This switch controls a diagnostic tool. When the switch is enabled, all attempts to
verify proposed matches are drawn in the Vision display window, overlaying the
displayed regions. That is, as the lines and arcs of the prototype are compared to
the edges in the image, they are drawn in the Vision display window. The verified
parts are displayed in one color and the unverified parts, in a different color.

Usually, when a verification fails (the proposed match fails), not all of the
prototype boundary is drawn. This simply illustrates the early cutoff of the
verification process. That is, the amount of the prototype boundary that did not
verify exceeded the maximum allowed, according to the prototype edge weights
and “verify percentage” threshold.

NOTE: This display option is often very time-consuming. The
parameter V.MAX.TIME may have to be increased if the verification
of all match proposals is to be seen.

Related Keywords

V.RECOGNITION (system switch)
V.SHOW.BOUNDS (system switch)
V.SHOW.EDGES (system switch)

238 AdeptVision Reference Guide, Rev A

Monitor Command VSTATUS

Syntax

VSTATUS
Function

Display vision system status information in the Monitor display window.
Usage Considerations

This command may be used even while a main control program is executing.
Details

This command displays key vision status information in the Monitor display
window for all 32 virtual cameras. However, the status line for a particular
camera is not displayed if the run state is Idle and the other entries are 0. This
reduces the amount of unimportant text displayed. Usually only one or a few
cameras have any useful status information.

The following are explanations of the values that are displayed:
Camera number Virtual camera number.

Run state Indicates the current operational mode of a particular
virtual camera: Idle, Running (processing images),
Busy (processing a vision tool), Waiting (waiting for a
fast digital-input interrupt signal to acquire an image),
Frame held (for future processing), or Training.

Objects recognized Number of objects matched to a prototype.

Regions not recognized Number of closed regions that were not matched to a
prototype.

Both of the above numerical values are zeroed for a particular virtual camera each
time a VPICTURE or VWINDOW operation is performed for that camera.

Example
VSTATUS

Camera Run Objects Regions not

number state recognized recognized
1 Idle 79 1
2 Waiting 0 0
4 Running 0 0
5 Idle 0 56

Related Keyword

VSTATUS (program instruction)

AdeptVision Reference Guide, Rev A 239

VSTATUS Program Instruction

Syntax

VSTATUS (camera, type) array[index]

Function

Return vision system status information in a real array.

Parameters
camera Optional real-valued expression that specifies the virtual camera
number. The default is 1.
type Optional real-valued expression that specifies the group of
information wanted. The default is 0. See below for details.
array[] Real array that receives the data. The data are stored in sequential
array elements.
index Optional integer value that identifies the first array element to be
defined in “array[] . Zero is assumed if the index is omitted. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.
Details

This is functionally equivalent to the VSTATUS monitor command except that
more information is available and it is placed into an array instead of being
displayed.

There are two different sets of information that can be requested (with the “type ”
parameter). The values stored for each set are as follows (the actual element
containing a particular item is “index ” plus the item’s “relative index”):

Relative | Contents of Array Elements
Index for “type” =0
0 Run state: 0 = Idle
1 =Running
2 =Training
3 =Frame held
4 = Busy
5 = Waiting
1 Number of objects recognized
2 Number of regions not recognized

240 AdeptVision Reference Guide, Rev A

Program Instruction VSTATUS

The above set of information is the same as that displayed by the VSTATUS
monitor command. (See the description of the VSTATUS monitor command for an
explanation of the values.)

Relative | Contents of Array Elements
Index for “type” =1
0 Selected frame: 1 or 2
1 Virtual camera: 1 through 32
2 Display mode: -1,0, 1, 2, 3,4,0r5
3 Overlay mode: 0, 1, or 2
4 Displayed frame: 1 or 2
5 Displayed virtual camera: 1 through 32
6 Valid image data: 0 (false) or -1 (true)
7 Valid run-lengths: 0 (false) or -1 (true)

The above items are returned when the VSTATUS “type” parameter is 1. The first
two items, “Selected frame” and “Virtual camera”, are the frame store and virtual
camera currently selected. The VPICTURE and VSELECT instructions can change
the current frame and camera, as can menu selections made with the mouse.

The next four items from a type #1 VSTATUS describe what is being displayed in
the Vision display window. “Display mode” and “Overlay mode” have the same
meaning as the corresponding parameters to the VDISPLAY operator. “Displayed
frame” indicates which of the two frames is being displayed, assuming one is
being displayed (infer from the current display mode). Finally, the “Displayed
virtual camera” is the virtual camera associated with the displayed frame.

The last two items from a type #1 VSTATUS indicate whether the selected frame
contains valid grayscale image data or valid run-lengths.

“Valid run-lengths” is true if a VPICTURE in mode -1 or 0, or a VWINDOW
operation, was performed. If run-lengths are valid, a type #0 rulers and finders
instruction may be performed.

The “camera ” parameter is not relevant for VSTATUS type #1.

VSTATUS is a “nonsequential” instruction. The distinction between sequential
and nonsequential processing applies only when multiple V" tasks are executing
vision instructions. Then, while the vision system is processing a vision
instruction for one task and additional vision instructions are queued up from
other tasks, another task can execute a VSTATUS instruction, and it will complete
immediately (before completion of the instruction that was being processed or of
gueued instructions).

AdeptVision Reference Guide, Rev A 241

VSTATUS Program Instruction
Example

Store type #0 status information for virtual camera #1 in the array “status[]” in
elements 10 through 12:

VSTATUS (1) status[10]
Related Keyword

VSTATUS (monitor command)

242 AdeptVision Reference Guide, Rev A

Syntax

Monitor Command VSTORE

VSTORE file_spec = model_name, model_name, ...

Function

Store in a disk file selected (or all) vision prototypes (and their subprototypes),
Optical Character Recognition (OCR) fonts, or correlation templates.

Usage Considerations

The VISION switch must be enabled and the vision processor must be idle for this
command to be executed.

Parameters

file_spec

model_name

Details

Specification of the disk file into which the models are to be stored.
This consists of an optional physical device, an optional disk unit,
an optional directory path, a filename, and an optional file
extension. Uppercase or lowercase letters can be used.

The current default device, unit, and directory path are considered
as appropriate (see the DEFAULT command in the V* Operating
System User’s Guide).

If no filename extension is specified, the extension “.VS” is
appended to the name given.

Optional name of a current prototype, OCR font, or correlation
template to be saved in the file. Uppercase or lowercase letters can
be used. If no model names are listed, all prototypes are stored. In
this case, the equal sign can be omitted.

Font names have the form “FONT_n”, where “n” is the number of
the font, in the range 1 to 99. The special font name “FONT_0” refers
to all the fonts.

Template names have the form “TMPL_n"", where “n” is the number
of the template, in the range 1 to 99. The special template name
“TMPL_0” refers to all the templates.

The type of model being stored is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name is first checked
against the lists of prototypes for backward compatibility. Therefore, you should
not use the same name for a prototype model and an ObjectFinder model.

AdeptVision Reference Guide, Rev A 243

VSTORE Monitor Command

NOTE: When no model names are specified, VSTORE stores all the
models in memory to the disk file. There is no way to globally store
only the ObjectFinder models. If you want to do this, you must store
each model individually by specifying the model name. (It will
assume all prototypes if no names are given.)

This command saves the specified prototypes, fonts, or correlation templates in
the given disk file. Note, however, that prototypes, fonts, and templates may not
be mixed in a file. Thus, all the model names must be prototypes, or they must all
be fonts, or they must all be templates. If no model names are specified, all the
prototypes currently in system memory are stored in the file.

As prototypes are stored, their names are displayed in the Monitor display
window along with their virtual camera associations. When prototypes are
stored, any subprototype definitions are stored along with them.

As fonts or templates are stored, the numbers of the fonts or templates are
displayed in the Monitor window. If the model name “FONT_0” is specified, all
the defined fonts are stored in the file. Similarly, if the model name is “TMPL_0”,
all the defined templates are stored.

As the file is created, the model information is written in a special format for later
recall with the VLOAD command or instruction.

Examples

The following command stores all the prototypes from the vision system into a
file named “OBJECTS.VS”. This file will contain two prototypes: “casting” and
“flange”, with the virtual camera associations shown:

VSTORE objects

CASTING ***emmemeemcemoem e

S V] S SO ——
The following command stores the prototypes “smd1” and “quad” in a file
named “PROTOS.VS” on disk drive “B”:

VSTORE B:protos = smd1, quad
0 5 10 15 20 25 30

Related Keywords

VLOAD (monitor command)
VLOAD (program instruction)
VSTORE (program instruction)

244 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VSTORE

VSTORE (lun) %file_spec = $model_name, $model_name, ...

Function

Store in a disk file selected (or all) vision prototypes (and their subprototypes),
Optical Character Recognition (OCR) fonts, or correlation templates.

Parameters

lun

$file_spec

$model_name

Real-valued expression that specifies the logical unit number to be
associated with the operation. This must be one of the logical unit
numbers for a disk device (see the ATTACH instruction in the V*
Language Reference Guide). The logical unit number used must not
already be in use by the program for another disk access.

String expression that specifies the disk file into which the models
are to be stored. This consists of an optional physical device, an
optional disk unit, an optional directory path, a filename, and an
optional file extension. Uppercase or lowercase letters can be used.

The current default device, unit, and directory path are considered
as appropriate (see the DEFAULT command in the V* Operating
System User’s Guide).

If no filename extension is specified, the extension “.VS” is
appended to the name given.

Optional string expression that specifies the name of a current
prototype, OCR font, or correlation template to be saved in the
given file. Uppercase or lowercase letters can be used. If no model
names are listed, all prototypes are stored. In this case, the equal
sign can be omitted.

Font names have the form “FONT_n”, where “n” is the number of
the font, in the range 1 to 99. The special font name “FONT_0” refers
to all the fonts.

Template names have the form “TMPL_n", where “n” is the number
of the template, in the range 1 to 99. The special template name
“TMPL_0” refers to all the templates.

AdeptVision Reference Guide, Rev A 245

VSTORE Program Instruction

Details

The type of model being stored is determined by the name, which has been
trained as either a prototype or an ObjectFinder model. The name is first checked
against the lists of prototypes for backward compatibility. Therefore, you should
not use the same name for a prototype model and an ObjectFinder model.

NOTE: When no model names are specified, VSTORE stores all the
models in memory to the disk file. There is no way to globally store
only the ObjectFinder models. If you want to do this, you must store
each model individually by specifying the model name. (It will
assume all prototypes if no names are given.)

Like the VSTORE monitor command, this instruction saves the specified
prototypes, fonts, or templates in the given disk file. Note, however, that
prototypes, fonts, and templates may not be mixed in a file. Thus, all the model
names must be prototypes, or they must all be fonts, or they must all be
templates. If no model names are specified, all the prototypes currently in system
memory are stored in the file. If the model name “FONT_0” is specified, all the
defined fonts are stored in the file. Similarly, if the model name is “TMPL_0”, all
the defined templates are stored.

When prototypes are stored, any subprototype definitions are stored along with
them. As the file is created, the prototype or font information is written in a
special format for later recall with the VLOAD command or instruction. The
IOSTAT real-valued function can be used after this instruction to determine if any
error occurred during the disk operation.

NOTE: The application program must not have attached the logical
unit since the VSTORE instruction automatically attaches and
detaches the logical unit.

Examples

246

The following instruction stores all the prototypes from the vision system into a
file named “OBJECTS.VS” on the default system disk. Logical unit number 5 is
associated with the operation. That logical unit number could be used to check for
any error during the operation (see below):

VSTORE (5) "objects"

The following example stores a single font in the file “FONT.VS”. The number of
the font is defined by the real variable “font.num”, which is used to construct the
name of the font in the form “FONT_n”:

VSTORE (5) "font.vs" = "FONT_"+ENCODE(/IO, font.num)

AdeptVision Reference Guide, Rev A

Program Instruction VSTORE

The following example stores the prototypes “smd1” and “quad” in a file named
“PROTOS.VS” on the hard disk (*“C”). Logical unit number 6 is associated with
the operation and is used to check for a successful completion:

$pnamel = "smd1l"

VSTORE (6) "C:PROTOS" = $pnamel, "quad"

IF IOSTAT(6) <0 THEN
TYPE /C1, "VSTORE failure: ", $ERROR(IOSTAT(6)), /C1
HALT

END

Related Keywords

VLOAD (monitor command)
VLOAD (program instruction)
VSTORE (monitor command)

AdeptVision Reference Guide, Rev A 247

V.STROBE System Switch

Syntax

... V.STROBE [camera]

Function

Enable the firing of a strobe light in synchronization with taking pictures
(VPICTURES).

Usage Considerations

A change to this switch takes effect with the next VPICTURE command or
instruction.

This is an array of switches, one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

There are two strobe outputs. Strobe 1 is used for physical cameras 1 and 3. Strobe
2 is used for physical cameras 2 and 4. See the Adept MV Controller User’'s Guide
for cable detalils.

Details

248

When V.STROBE is enabled for a virtual camera, the strobe light is fired when a
VPICTURE operation is performed for that camera. Strobe lights are usually used
to take pictures of moving objects without getting a blurred image. For example,
if objects are riding on a moving conveyor belt, a trigger mechanism (such as a
photoelectric cell) may be connected to a digital input line that signals a V*
application program when a VPICTURE instruction should be executed.

NOTE: For the fastest, most consistent response to an external
event, the fast digital-input interrupt line should be used. For more
information, see the description in this manual of the VIO.WAIT
system parameter.

The timing of the strobe signal within the picture acquisition and with respect to
the VPICTURE request depends on the system parameter V.SYNC.STROBE. This
parameter determines if the strobe is fired synchronously or asynchronously with
respect to the camera read-out cycle, and if there is to be a reset of the camera’s
vertical drive signals. (See the description in this manual of V.SYNC.STROBE for
details.)

The following constraints on the strobe device must be met for successful strobe
operation:

1. The combination of the flash latency (from trigger input) and the flash
duration must not exceed 100 microseconds.

AdeptVision Reference Guide, Rev A

System Switch V.STROBE

2. The polarity required by the strobe device must match the strobe polarity that
is specified in the camera model. All the default camera models are set for
“active high”. This can be changed with the DEVICE instruction.

3. The duration of the strobe signal (120 microseconds) must be acceptable to the
strobe device.

A VPICTURE instruction in “wait” mode normally waits for the acquisition of the
camera image to finish before the next instruction in the V' program starts to
execute. However, if the V.STROBE switch is enabled, the VPICTURE
“completes” after the strobe signal, letting the V™ program resume earlier than
usual. That is done because the strobe light is assumed to be sufficiently bright to
freeze the image, even if the camera is mounted on a robot and the next
instruction is a robot motion. If this assumption is not valid for the application,
the application program should execute a VWAIT instruction after the VPICTURE
and prior to any other instructions that may cause the image to change.

Simultaneous with the firing of the strobe light, the positions of all the encoders
connected to the Adept system are automatically “latched”. That is, the positions
are read and stored internally. In addition to external encoders (for example, those
on conveyor belts), motor encoders (with the AdeptMotion VME option) and the
joint encoders on the Adept robot are latched when the strobe light fires.

The latched encoder positions can be accessed with the V* DEVICE function. (For
version 10.x and older: If an object in the image has been VLOCATEA, the position
of external encoder #1 is also available as VFEATURE(8).) The position of a belt
encoder may be used with the V* belt-tracking features to locate and pick up
objects from a moving belt. The V* LATCH and #PLATCH functions return the
latched robot position as a transformation and as a precision point, respectively.
(See the V" Language Reference Guide for details on the DEVICE, LATCH,
LATCHED, and #PLATCH functions.)

Example
Enable the strobe light for virtual camera #1.
ENABLE V.STROBE[1]
Related Keywords

VPICTURE (monitor command and program instruction)
V.IO.WAIT (system parameter)
V.SYNC.STROBE (system parameter)

AdeptVision Reference Guide, Rev A 249

VSUBPROTO Program Instruction

Syntax

VSUBPROTOVver_percent, trans_var = subproto_name, edge_num

Function

Determine the percentage of an edge or subprototype that was verified during
recognition. Also, this instruction can have the prototype position refined, based
on only a subprototype or a single edge, producing an adjusted location for the
prototype.

Usage Considerations

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

The V.LAST.VER.DIST system parameter must have been nonzero when the last
VPICTURE or VWINDOW was performed to make the necessary information
available to the VSUBPROTO instruction.

The VSUBPROTO instruction refers to the object most recently VLOCATEd,
regardless of which program task executed the VLOCATE instruction.
Consequently, for predictable operation, applications should be organized to have
only one program task execute VLOCATE instructions.

Parameters
ver_percent Optional real-valued variable that is to be assigned the
percentage of the subprototype or edge that was verified (0 to
100).
trans_var Optional transformation variable to be assigned the refined

250

location of the prototype object.
NOTE: “ver_percent ” and/or “trans_var ~ must be specified.

subproto_name Optional string expression specifying the name of the
subprototype in the form “namel:name2”, where “namel” is the
name of the prototype last VLOCATEd and “name2” is the name
of the subprototype.

edge_num Optional real-valued expression that specifies the edge number
of the prototype or subprototype for which information is
requested. If “subproto_name " is specified, “edge_num” is optional
and refers to an edge of the subprototype, using its edge
numbering. If “edge_num” is omitted (or has the value 0), the
entire subprototype is referenced.

AdeptVision Reference Guide, Rev A

Program Instruction VSUBPROTO

If “subproto_name " is not specified, “edge_num” must be specified
(and cannot be zero), and refers to an edge in the last prototype
VLOCATEd, using the edge numbering for that prototype.

Details

After a prototype has been recognized and VLOCATEd, the VSUBPROTO
instruction may be used to find what percentage of a subprototype or individual
edge was verified. The verify percentage returned is an unweighted quantity.
That s, it is not adjusted by the edge weights that the user is able to assign during
training.

This instruction also can be used to refine the position information for the
prototype, based on only a subprototype or a single edge. The adjusted location
for the prototype is returned via the parameter “trans_var . The adjustment
computation is based on the final verification of the prototype. (Information is
retained in the vision system, recording which portion of each prototype edge
was verified by which portion of each image edge. The position refinement
calculations account for the lengths of the edges verified, their positional variance
[based on the training instances], the verified corners of the edges, and their
positional variances.)

If you are interested in only one edge or a few edges, the VFIND.LINE and
VFIND.ARC instructions provide greater subpixel location accuracy.

You can use the VSHOW command or instruction to determine edge numbers for
the “edge_num” parameter in the VSUBPROTO instruction.

VSUBPROTO provides the requested information only if it refers to the most
recent picture taken (with a VPICTURE or VWINDOW operation) and the most
recent object located (with VLOCATE). Also, the V.LAST.VER.DIST system
parameter must have been nonzero when the VPICTURE was performed.
Otherwise, the needed information is lost and VSUBPROTO produces the error
message “fdnformation not availabler™.

Examples

The following examples show all the valid combinations of the input parameters
for the instruction (that is, the parameters on the right of the equal sign). For each
example shown, one or the other (but not both) of the output variables “ver” or
“vloc” could be omitted:

AdeptVision Reference Guide, Rev A 251

VSUBPROTO Program Instruction

; Consider all of the subprototype FLANGE:ASIDE
VSUBPROTO ver, vloc = "FLANGE:ASIDE"

; Consider only edge #2 of the subprototype FLANGE:BSIDE
VSUBPROTO ver, vloc = "FLANGE:BSIDE", 2

; Consider only edge #16 of the latest prototype
VSUBPROTO ver, vloc =, 16

Related Keywords

VDEESUBPROTO (program instruction)
VGAPS (program instruction)

VSHOW (monitor command)

VSHOW (program instruction)
V.LAST.VER.DIST (system parameter)

252 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VSUBTRACT

VSUBTRACT (cam, type, dmode) dest_ibr = srcl_ibr, src2_ibr

Function

Subtract two binary or grayscale images.

Parameters

cam

type

dmode

dest_ibr

srcl_ibr
src2_ibr

Details

Selects the virtual camera to supply threshold values used in
creating the binary image.

Optional integer value indicating the type of subtraction: 1 for
binary, 2 for grayscale averaging, or 3 for grayscale subtraction. The
default is 1 (binary).

Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The defaultis 1 (draw solid).

Optional integer value specifying the image buffer region that will
receive the result of the image subtraction. Image buffer regions
specify both a size and a frame store (see the description of
VDEF.AOI). If specified, the resulting image is stored in this image
buffer region. Otherwise, the result replaces the source image buffer
region (srcl_ibr).

Integer values specifying the image buffer regions to subtract. The
image buffer regions’ AOIs must have been defined with a
VDEF.AOI instruction. src2_ibr ~ will be subtracted from src1_ibr

Image subtraction may be useful to subtract fixtures from an image or to inspect a
part by comparing it with the stored image of a golden part. Of course, precisely
repeatable placement of the parts is necessary in this latter case.

Image subtraction is also useful in combination with other image transformations
such as the VCOPY and VMORPH instructions. When subtracting binary images,
the two source image buffer regions are exclusive ORed (XOR) and the result is
stored in “dest_ibr . The underlying grayscale image is left unmodified.

Grayscale averaging is defined as follows:

dest_ibr = (srcl_ibr - src2_ibr + 128) / 2

AdeptVision Reference Guide, Rev A 253

VSUBTRACT Program Instruction

The “+128” normalizes the output so that no difference has the mid-gray value 64.
When the “src1_ibr ” pixel value is greater than the “src2_ibr ” value, the result
is light (more than 64). Otherwise, the result is dim (less than 64).

Grayscale subtraction subtracts the graylevel values in src2_ibr ~ from srcl_ibr
and clips the result at 0 so negative values are not created. src1_ibr and src2_ibr
must be in different frame stores.

If “src1_ibr 7 is the same as “src2_ibr ”, a binary subtraction simply zeros the
binary frame store. A grayscale subtraction would fill the frame store with a
uniform brightness of 64.

The smaller the area of the image to be processed, the faster the subtraction
executes.

Example

Subtract virtual frame buffers #11 and #12 and store the result in frame #11:

VSUBTRACT (,1) 1011 = 1011,1012

Related Keywords

254

VADD (program instruction)

VCOPY (program instruction)
VEDGE (program instruction)
VTHRESHOLD (program instruction)

AdeptVision Reference Guide, Rev A

System Switch V.SUBTRACT.HOLE

Syntax
... V.SUBTRACT.HOLE [camera]

Function
Determine whether or not hole areas are to be subtracted from region areas.
Usage Considerations

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

If V.SUBTRACT.HOLE is enabled, region areas do not include the areas of any
holes in the regions. Otherwise, region areas do include the hole areas. This
difference changes the effects of the values of V.MIN.AREA, V.MAX.AREA,
V.MIN.HOLE.AREA, and the minimum/maximum areas associated with
prototypes. Furthermore, the areas reported by VQUEUE and VFEATURE are
affected by the setting of this switch.

When operating in grayscale (nonbinary) mode, an object region in the image
consists of edges (so most of the object area is considered to be a hole). Therefore,
if you need to monitor the total area of an object when operating in grayscale
mode, it is useful to disable V.SUBTRACT.HOLE (item B). With this switch
disabled, any break in the edge would cause the hole area to merge with the
background and would be immediately discounted in the area calculation (item
C). With V.SUBTRACT.HOLE enabled, the hole area would always be subtracted
from the total area (item A). A small break in the edge may not cause a significant
enough difference in the total area to be detected.

A B C

O O OO

V.SUBTRACT.HOLE enabled v SUBTRACT.HOLE disabled V.SUBTRACT.HOLE disabled

Total area=edge region only Total area=edge region + hole Break causes hole area to

(gray area is excluded) (gray area is included) merge with background. Total
area is significantly reduced.

This switch does not affect the calculations enabled by the system switches
V.CENTROID, V.PERIMETER, V.MIN.MAX.RADII, and V.2ND.MOMENTS.

AdeptVision Reference Guide, Rev A 255

V.SUBTRACT.HOLE System Switch
Example

Subtract hole areas when computing region areas:
ENABLE V.SUBTRACT.HOLE

Related Keywords

V.MAX.AREA (system parameter)
V.MIN.HOLE.AREA (system parameter)
V.MIN.AREA (system parameter)

256 AdeptVision Reference Guide, Rev A

System Parameter V.SYNC.STROBE

Syntax
... V.S YNC.STROHE [camera]

Function

Select synchronous or asynchronous firing of a strobe light when a picture is
taken (that is, when a VPICTURE is executed).

Usage Considerations

A change to this parameter takes effect when the next VPICTURE command or
instruction is executed.

The V.STROBE switch must be enabled in order for the V.SYNC.STROBE
parameter to have any effect.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

The value of this parameter determines when a strobe light should be fired with
respect to the camera read-out cycle. The choices are synchronous, asynchronous,
and asynchronous with reset.

If V.SYNC.STROBE is set to 2, strobing is asynchronous and the camera
vertical drive is reset.

If V.SYNC.STROBE is set to 1, strobing is synchronous and image quality is
highest.

If V.SYNCH.STROBE is set to 0, strobing is asynchronous and response
time is shortest.

Only the values 0, 1, or 2 can be assigned to V.SYNC.STROBE. The default setting
is 0.

Normally, the cameras used with AdeptVision VXL comply with the interlaced,
RS-170 video standard. Every 60th of a second, one field (even or odd) is read
from the camera. A full frame consists of two fields: an even field and an odd
field.

When the value of the system parameter V.SYNC.STROBE is 2, the vertical drive
will be reset when a picture is taken. The strobe signal will be output at the same
line as for synchronous strobe (V.SYNC.STROBE of 0). This line is defined in the
camera model as “delay_strobe”.

AdeptVision Reference Guide, Rev A 257

V.SYNC.STROBE System Parameter

CAUTION: Only some cameras have this feature. And there are

properly for this mode to operate. See your camera’s manual for

ﬁ always some internal or external switches that need to be set

258

details.

Camera model 2 supports this mode. Camera models 3, 4, and 5 MUST have this
mode selected.

When V.SYNC.STROBE is set to 0, the strobe light is fired asynchronously—as
soon as a VPICTURE request occurs. However, for interline transfer CCD
cameras, there is a specific time during vertical blank when charges are
transferred out of the pixels. There can be no strobing during this time. Therefore,
there is a “no-strobe” region defined that prevents strobing. If the picture is
requested (triggered) during the no-strobe time, the strobe is postponed until just
after the no-strobe region. Since this region is 1.25ms long, there can be a
worst-case latency from picture request to image acquire of 1.25ms when using
this mode. Note also that if the V' program containing the VPICTURE instruction
uses an external signal to initiate the VPICTURE request, a delay occurs between
the external event and firing of the strobe. (See the description of the V.IO.WAIT
parameter for information about this “activation” delay.)

If V.SYNC.STROBE is set to 1, the strobe light is fired synchronously, always at a
fixed time with respect to the camera read-out cycle. Normally, this time is during
the read-out of the 4th horizontal line. Sometimes with CCD cameras, firing a
bright strobe light can cause a ghost image to appear in one field of the image.
This is caused by excessive light that leaks into the vertical shift registers. This
ghosting can be minimized or even eliminated by turning down the aperture of
the camera lens to reduce the amount of light entering the camera. If this is not
possible, the DEVICE instruction can be used to set the strobe output at line 20.

By firing the strobe at this time, ghosting never occurs and overall image quality
is best. However, since the light is strobed immediately after a field transfer, the
frame grabber must wait one field time before acquiring a frame, because the first
field will not have been exposed to the strobe light. This adds a constant 16.7
milliseconds to the execution time of a VPICTURE. Consequently, using this
method, the fastest ping-pong processing rate is 20 frames per second instead of
30.

Another problem with firing the strobe at a fixed time is the variable time
between the VPICTURE request (or the external event triggering the VPICTURE)
and the firing of the strobe. The worst-case delay is 16.7 milliseconds. This
worst-case delay should be planned for if objects in the scene are moving fast with
respect to the camera field of view.

AdeptVision Reference Guide, Rev A

System Parameter V.SYNC.STROBE

What is the effect of a worst-case delay of 16.7 milliseconds? Consider, for
example, a field of view that is 6.4 centimeters wide. Then each pixel is 0.1
millimeter wide.! If objects in the field of view are moving at the (high) speed of 1
meter per second, a worst-case delay of 16.7 milliseconds corresponds to a shift of
167 pixels.? Since the frame store is 640 pixels wide, a 167-pixel shift could shift
part of the object being analyzed out of the field of view.

When you are using a strobe light synchronously, you should perform the above
calculations for your application and adjust the setup accordingly. For example, a
camera lens with a shorter focal length may be needed to increase the field of
view. Or, increase the distance between the camera and objects to be viewed. Also,
the vision tools used to locate the object in the image will need a wider search
space along the direction of travel of the object.

Example
Select asynchronous strobing for camera #1.:
V.SYNC.STROBE[1] = 0
Related Keywords

VPICTURE (monitor command and program instruction)
V.IO.WAIT (system parameter)
V.STROBE (system switch)

1 6.4 cm per 640 pixels = 0.01 cm/pixel = 0.1 mm/pixel
2 (0.0167 second) * (1000 mm/second) / (0.1 mm/pixel) = 167 pixels

AdeptVision Reference Guide, Rev A 259

VTHRESHOLD Program Instruction

Syntax

VTHRESHOLD(cam, type, dmode) dest_ibr = src_ibr

Function
Threshold a grayscale image, producing a binary image.

Parameters

cam Optional integer specifying the virtual camera that will supply
values for VTHRESHOLD and V.2ND.THRESHOLD.

type Optional integer identifying the image type.

-1 Same result as type 1 (see below). Allows the switch
V.BACKLIGHT
to be passed as the type value.
0 Reverse the output polarity (substitute a binary bit value of 0 for
each 1, and a binary bit value of 1 for each 0).
1 Default. No change to output polarity.

dmode Optional real-valued expression specifying the display mode for
this operator. The choices are: -1 = no draw, 0 = erase, 1 = draw
solid, 2 = complement, 3 = draw dashed, and 4 = complement
dashed. The default is 1 (draw solid).

dest_ibr Optional integer identifying the image buffer region that will
receive the thresholded values.

src_aoi Optional integer identifying the image buffer region that will be
thresholded.

Details

This instruction thresholds the frame store with the given threshold(s). This is
useful after a VCONVOLVE, VADD, or VSUBTRACT operation. It may also be
used to threshold one part of an image differently from another.

The effect of a VTHRESHOLD operation is visible in VDISPLAY mode #2. It does
not affect the associated grayscale image.

260 AdeptVision Reference Guide, Rev A

Program Instruction VTHRESHOLD

Example

cam.virt=1
PARAMETER VTHRESHOLDJ[cam.virt] = 54

;Threshold the current image at graylevel 54
VTHRESHOLD (cam.virt)
Related Keyword

VEDGE (program instruction)

AdeptVision Reference Guide, Rev A 261

V.THRESHOLD System Parameter

Syntax
... V.THRESHOLD [camera]
Function
Set the camera grayscale value that separates black pixels from white pixels.

Usage Considerations

Changing this parameter immediately affects the video output of the camera
interface board, assuming the VISION switch is enabled.

This is an array of parameters—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting parameters.

Details

This parameter sets the software threshold that is used to determine whether a
camera pixel is to be interpreted as being white or black. All pixels with an
intensity less than or equal to this threshold are set to black, and pixels with
intensities greater than this value are set to white.

The V.2ND.THRESH system parameter provides a dual-threshold capability. See
the description of V.2ND.THRESH for more information. V.THRESHOLD and
V.2ND.THRESH are for use during binary image processing. For grayscale
processing, there is an edge threshold parameter called V.EDGE.STRENGTH.

The correct value for V.THRESHOLD depends on the particular application. The
VAUTOTHR program instruction may be used in most cases to automatically
determine the best threshold.

V.THRESHOLD must be assigned an integer value in the range 0 to 127, inclusive.
It has the initial value 63.

Example
Set all grayscale pixel values above 100 to white, and all others to black:
PARAMETER V. THRESHOLD = 100
Related Keywords

VAUTOTHR (monitor command and program instruction)
V.2ND.THRESH (system parameter)
V.BINARY (system parameter)

262 AdeptVision Reference Guide, Rev A

System Switch V. TOUCHING

Syntax
... V.TOUCHING [camera]

Function
Determine whether or not objects may be touching in the image.
Usage Considerations

This switch is for use only with prototype recognition. V.RECOGNITION must be
enabled for this switch to have any effect.

A change to this switch takes effect when the next VPICTURE command or
instruction, or VWINDOW instruction, is executed.

V.TOUCHING is assumed to be enabled if the V.OVERLAPPING system switch is
enabled. That is, the actual setting of V.TOUCHING is then ignored.

This is an array of switches—one for each virtual camera. See the AdeptVision
User’s Guide for details on setting switches.

Details

If objects touch in the image, their regions merge into a single region. In this case,
V.TOUCHING should be enabled so that the vision system will attempt to
recognize multiple objects per region. Otherwise, the system will recognize at
most one object per region.

The V.TOUCHING and V.DISJOINT switches affect the interpretation of the
“how_many” parameter to the VPICTURE and VWINDOW instructions. That
parameter specifies the maximum number of objects the vision system should try
to recognize. V.TOUCHING affects how the “how_many” parameter applies to
each region in the image, whereas V.DISJOINT affects how it applies to the image
asawhole. If the V.TOUCHING switch is enabled, up to “how_many’ objects will
be recognized per region.! If V.TOUCHING is disabled, at most one object will be
recognized per region in the image.

1 The V.TOUCHING switch is automatically considered to be enabled whenever the
V.OVERLAPPING switch is enabled.

AdeptVision Reference Guide, Rev A 263

V. TOUCHING

System Switch

The following table summarizes the relationship between V.TOUCHING,
V.DISJOINT, and the “how_many” parameter to VPICTURE and VWINDOW.

Number of Objects | Number of Objects
V. TOUCHING | V.DISJOINT | per Region per Scene
Off Off 1 No limit
Off On 1 how_many
On Off how_many No limit
On On how_many how_many
Example

Inform the vision system that objects may touch in the image:

ENABLE V. TOUCHING

Related Keywords

V.BOUNDARIES (system switch)
V.DISJOINT (system switch)
V.OVERLAPPING (system switch)
V.RECOGNITION (system switch)

264 AdeptVision Reference Guide, Rev A

Syntax

Monitor Command VTRAIN

VTRAIN $prototype , shape, cx, cy, width, height, ang

VTRAIN $prototype , ibr

Function

Initiate training of the prototype whose name is specified.

Usage Considerations

The command and the instruction both require that all virtual cameras be idle
(that is, no VPICTURE or VWINDOW operation can be executing).

Prototype training is sensitive to camera calibration. Before training prototypes,
mount, focus, and securely fix your cameras and lenses. Then calibrate the
camera(s) that will be used to train and recognize the prototypes. The same
camera(s) with the same calibration and position used to train a prototype must
be used to recognize the prototype.

Parameters

$prototype

shape

Name of the prototype to be trained. For the monitor command, the
name of the prototype must be a string constant (not surrounded by
guotes). For the program instruction, however, the prototype name
may be a string variable, constant (including quotes), or a string
expression.

Optional real-valued expression indicating the shape of the
window. Currently, the only choice is 1, for rectangular.

NOTE: If any of the following four parameters (cx, cy, width, or
height) is specified, all four parameters must be specified.

cX, cy

width

height

ang

ibr

Optional real-valued expressions specifying the center coordinate of
the window, in millimeters.

Optional real-valued expression specifying the width of the
window, in millimeters.

Optional real-valued expression specifying the height of the
window, in millimeters.

Optional real-valued expression specifying the orientation of the
window, in degrees. The default is 0 degrees.

Optional integer value specifying the image buffer region for
training a prototype. Image buffer regions specify both a size and a

AdeptVision Reference Guide, Rev A 265

VTRAIN Monitor Command

frame store (see the description of VDEF.AOI). The image buffer
region’s AOI must specify a rectangular shape.

Details

VTRAIN is used to create a new object prototype or to modify an existing
prototype. If the prototype exists, the user may show the vision system a new
instance or change the prototype’s virtual camera associations, effort level, edge
weights, verification threshold, minimum/maximum areas, or position
constraints.

A window may be specified when creating a new object prototype or training
another instance of a prototype. The window can be used to limit the portion of
the image that is considered. (The window specification is the same as that for the
VWINDOW instruction, which is used to perform object recognition within
windows.)

Once VTRAIN has been initiated, the mouse is used to interact with the system.
The user can abort a VTRAIN monitor command at any time by entering Ctrl+C.

See the AdeptVision User’s Guide for a description of the training process.

Example

Initiate vision training for a prototype named “flange™:

VTRAIN flange

Related Keywords

266

VDEEAOI (program instruction)
VLOCATE (program instruction)
VSTORE (program instruction)

AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN

Syntax

VTRAIN (cam, mode, arg) $prototype, ibr =value

VTRAIN cam, mode, arg) $prototype, shape, cx, cy, dx, dy, ang = value
Function

Initiate training of the prototype whose name is specified.

Usage Considerations

This instruction requires that all virtual cameras be idle (that is, no VPICTURE or
VWINDOW operation can be executing).

Prototype training is sensitive to camera calibration. Before training prototypes,
mount, focus, and securely fix your cameras and lenses. Then calibrate the
camera(s) that will be used to train and recognize the prototypes. The same
camera(s) with the same calibration and position used to train a prototype must
be used to recognize the prototype.

Parameters

cam

mode

Optional integer specifying the virtual camera (and associated
calibration, switches, and parameters) to use when acquiring an
image for defining a prototype. This camera will also be the default
camera associated with the prototype (see the AdeptVision User’s
Guide for details on associating cameras with a prototype).

Optional integer interpreted as follows:

0 A new image is acquired when prototype editing begins.

Repeated training samples are allowed, and a new picture is
acquired for each.

The existing image is used. This allows you to preprocess an
image before training. After one sample, training exits.

Disable options in the training pull-down menus. “value
controls which options are disabled. If “New Example” is
disabled, training proceeds similar to “mode” = 1.

Change a prototype parameter but do not train new samples.
The parameter to change is specified in “arg . The new value for
the parameter is specified in *“value ”

AdeptVision Reference Guide, Rev A 267

VTRAIN

268

arg

$prototype

ibr

shape

Program Instruction

If “mode” = 3, a prototype parameter is being changed. This
parameter identifies the parameter to change (“value ” supplies the
value):

arg Parameter Range (allowed for “value ™)
1 Verify percent 0to 100
2 Effort level Oto4
3 Min area (in pixels) 1 to (proto area— 1)
4 Max area (in pixels) (proto area + 1) to image size
5 +X constraint (in mm)
6 Y constraint (in mm)
7 *+Rotational constraint
8 Virtual camera bit mask hex1toF
9 Virtual camera bit mask hex 10 to FF

Name of the prototype to be trained. For the monitor command, the
name of the prototype must be a string constant (not surrounded by
guotes). For the program instruction, however, the prototype name
may be a string variable, constant (including quotes), or a string
expression.

Integer value specifying the image buffer region for training a
prototype. Image buffer regions specify both a size and a frame
store (see the description of VDEF.AOI). The image buffer region’s
AOI must specify a rectangular shape.

Optional real-valued expression indicating the shape of the
window. Currently, the only choice is 1, for a rectangular window.

NOTE: If any of the following four parameters (cx, cy, dx, and dy)
are specified, all four parameters must be specified.

cx, ¢y

dx

dy

ang

Real-valued expressions specifying the center coordinate of the
window, in millimeters.

Real-valued expression specifying the width of the window, in
millimeters.

Real-valued expression specifying the height of the window, in
millimeters.

Optional real-valued expression specifying the orientation of the
window, in degrees. The default is 0 degrees.

AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN

value If “mode” = 3, the instruction is changing a prototype parameter, and
this parameter supplies the new value.

If “mode” = 2, the instruction is altering the training pull-down
menus, and this parameter is a bit mask indicating which options
should be disabled. The mask values for each option are:

Mask
Pull Down Item Value
New example 1
Verify percent 2
Effort level 4
Min/max areas 8
Limit position 16
Edge weights 32
Assign cameras 64

Details

VTRAIN is used to create a new object prototype or to modify an existing
prototype. If the prototype exists, the user may show the vision system a new
instance or change the prototype’s virtual camera associations, effort level, edge
weights, verification threshold, minimum/maximum areas, or position
constraints.

A window may be specified when creating a new object prototype or training
another instance of a prototype. The window can be used to limit the portion of
the image that is considered. (The window specification is the same as that for the
VWINDOW instruction, which is used to perform object recognition within
windows.)

Once VTRAIN has been initiated, the mouse is used to interact with the system.
Training initiated with a VTRAIN instruction can be terminated by aborting the
program that contains the instruction.

See the AdeptVision User’s Guide for a description of the training process.
Example
Initiate vision training for a prototype named “flange™:

VTRAIN flange

AdeptVision Reference Guide, Rev A 269

VTRAIN Program Instruction
Related Keywords

VDEEAOI (program instruction)
VLOCATE (program instruction)
VSTORE (program instruction)

270 AdeptVision Reference Guide, Rev A

Syntax

Program Instruction VTRAIN.FINDER

VTRAIN.FINDER (cam, mode, dmode, arg, arg2, arg3)

Function

$model_name, ibr = value, value2, value3

Initiate training of the finder model whose name is specified.

Usage Considerations

This instruction requires that all virtual cameras be idle (that is, no VPICTURE or
VWINDOW operation can be executing).

Training is sensitive to camera calibration. Before training begins, mount, focus,
and securely fix your cameras and lenses. Then calibrate the camera(s) that will be
used to train and recognize the prototypes. The same camera(s) with the same
calibration and position used for training must also be used for recognition.

Parameter

cam

mode

dmode

arg, arg2, arg3

$model_name

ibr

Optional integer specifying the virtual camera (and associated
calibration, switches, and parameters) to use when acquiring an
image for defining a prototype. This camera will also be the
default camera associated with the prototype (see the
AdeptVision User’s Guide for details on associating cameras
with a prototype).

Optional integer specifying the operating mode for this
instruction. See below for details.

Optional real-valued expression that specifies the display mode
to use when displaying the border of the window:
-1 Nodraw

0 Erase

1 Default. Draw solid

2 Complement

3 Draw dashed

4 Complement dashed

Integers whose meaning depends on the value of the mode
parameter. See below for details.

String containing the name for the model (up to 15 characters).

Integer value specifying the image buffer region for training a
model. Image buffer regions specify both a size and a frame store
(see the description of VDEF.AOI). The image buffer region’s

AdeptVision Reference Guide, Rev A 271

VTRAIN.FINDER Program Instruction

272

value

AOI must specify a nonrotated rectangular shape. For
correlation templates, the AOI is reduced, if necessary, to a
multiple of four pixels.

Floating point expressions whose meaning depends on the value
of the mode parameter. See below for details.

Description of the mode parameter:

This section describes the meanings of the different values used with the mode
parameter, and the meanings of other input parameters used with a particular
mode. If an input parameter is not shown, it cannot be used for that mode.

Mode 1:

Mode 2:

Mode 3:

Mode 4:

Mode 6:

Mode 7:

Train first instance (new model)

arg Hierarchical level (0 - 2) is the result of the subsampled image
0 Full resolution
1 One-half resolution
2 One-quarter resolution

arg2 \Verify percent

arg3 Symmetry override

Display features only

arg Hierarchical level (0 - 2) is the result of the subsampled image
0 Full resolution
1 One-half resolution
2 One-quarter resolution

arg2 Edges only (0,1)
0 Features are fit to the edges and the features are displayed
1 Only the results of edge detection are displayed

Set finder model parameters (after last instance)
To train new instances during multi-instance training, use VFINDER
with type =2.
arg Indicates the value:
1 Symmetry of model
2 Unused
3 Verify percent to assign to model
value The value to assign to the designated parameter

Feature weight setting (also feature deletion)
arg Feature number (1 to num_features)
(-1 means all features)
value New weight to assign
0 deletes the feature (deletion means that the feature is not
used)
1-100 relative weighting for verification. The feature is still
used to form feature-pairs.

Display a model feature
arg Number of the feature to display

Display a model feature in RED
arg Number of the feature to display

AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN.FINDER

Mode 8: Accept the last trained additional instance
arg Low weight cutoff (used for multi-instance training and is the
threshold on feature weights [on a scale of 0 - 100]; feature
weights below the low weight cutoff are set to zero)

Mode 9: Do not accept the last trained additional instance
arg Low weight cutoff

Mode 10: Clear all multi-instance training statistics. Leave the first instance.
arg Low weight cutoff

Mode 11: Apply low-weight filtering
arg Low weight cutoff

Mode 12: Undo the last accepted instance
arg Low weight cutoff

Details

When normal (initial) training is performed, a new model is created and assigned
the given input values. Additionally, the ibr is processed to create edge pixels and
these are further processed to extract lines and arcs. The lines and arcs are paired
up in various ways to form intrinsic "feature pairs". These can be later used to
match with similar pairs formed from recognition images to make proposals of
instances of the model. These lines, arcs, and pairs define the geometric portion of
the model.

There are three system parameters (described below) that control the processing.

1. The system parameter V.EDGE.STRENGTH[vc] controls the threshold for edge
points extracted during preprocessing.

2. The system parameter V.MAX.PIXEL.VAR][vc] controls the primary fitting of
lines and arcs. A secondary operation performs a least-squares fitting to the
edge points, which greatly improves the accuracy.

3. Thesystem parameter V.MIN.LEN[vc] restricts the pairs by setting a minimum
length for the features allowed to be used to make pairs.

The system switch V.FIT.ARCS[vc] should normally be enabled, but can be
disabled to some advantage in certain trouble cases. If an object is mostly lines,
but contains some segments that occasionally fit as arcs due to noise in the image,
you can force the system to fit only lines and avoid the additional computation
time required to fit arcs.

Input parameters using virtual cameras

All switches and parameters should be at the default settings, except as noted
here:

The following settings are required:
PARAMETER V.MIN.AREA[vc] =4

PARAMETER V.MIN.HOLE.AREA[vc] =4

AdeptVision Reference Guide, Rev A 273

VTRAIN.FINDER Program Instruction
The following settings are suggested:

ENABLE V.FIT ARCS[vc] (May be disabled if the image consists of
mostly lines. See the description above for
details.)

V.MIN.LEN[vc] =10 (See the description above for details.)
V.MAX.PIXEL.VAR[vc] =2.5 (See the description above for details.)

V.EDGE.STRENGTH][vc] =9 (See the description above for details.)

274 AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN.MODEL

Syntax

VTRAIN.MODEL (cam, plan) $model_name, S$text , ibr

VTRAIN.MODEL (cam, plan) $model_name, S$text
shape, cx, cy, dx, dy , ang

Function

Train on a vision “model”—a correlation template or an Optical Character Recog-
nition (OCR) font. For correlation, this instruction defines the template. For OCR,
this instruction trains the vision system to recognize characters in a font, or causes
the vision system to plan the recognition strategy for a fully trained font.

Usage Considerations

The frame store currently selected or the specified image buffer region must
contain a valid picture. Otherwise, an error results.

The VISION switch must be enabled, the vision processor must be idle, and vision
model training must not be active for this instruction to be executed.

Font training is sensitive to camera calibration. Before training fonts, mount,
focus, and securely fix your cameras and lenses. Then calibrate the camera(s) that
will be used to train and perform OCR. The same camera(s) with the same
calibration and position used to train a font must be used to recognize characters
in the font.

Correlation templates are independent of camera calibration but are sensitive to
the image size, which can change by moving the camera, changing lenses, or
refocusing a lens. Make sure the camera setup remains unchanged during
template training and matching.

Adept recommends the first syntax.

Parameters
cam Optional real-valued expression indicating the virtual camera
number to use for selecting various parameters for training an OCR
font (such as V.THRESHOLD and V.MIN.AREA). The default
camerais 1.
plan If “$model_name” specifies an OCR font, optional real-valued

expression that specifies the operation desired. (When planning is
requested, only the “plan ” and “$model_name ” parameters are
considered. All the others can be omitted.)

0 Directs the vision system to perform OCR training

AdeptVision Reference Guide, Rev A 275

VTRAIN.MODEL Program Instruction

1 Directs the system to plan recognition and to display
associated graphics (see below)

-1 Directs the system to plan recognition, but without display of
associated graphics (see below)

If “$model_name” specifies a correlation template’s mode of training,
as follows:

0 Default, creates a hierarchical grayscale template
1 No longer used.
2 Creates a nonhierarchical grayscale template

$model_name String variable specifying a template for definition, a font for
training, or all fonts for planning.

The string naming a font has the form “FONT_n", where “n” is the
number (in the range 1 to 99) of a single font, or “FONT_0" specifies
all fonts.

The string name of a template has the form “TMPL_n", where “n” is
the number of the template, in the range 1 to 99.

$text (For OCR training only.) Optional string variable that specifies the
characters in the font that are to be trained. The text may contain
duplicate characters. Spaces are ignored.

ibr Integer value specifying the image buffer region for training a
model. Image buffer regions specify both a size and a frame store
(see the description of VDEF.AOI). The image buffer region’s AOI
must specify a nonrotated rectangular shape. For correlation
templates, the AOI is reduced, if necessary, to a multiple of four
pixels.

shape Optional real-valued expression indicating the shape of the
window. Currently, the only choice is 1, for a rectangular window.

NOTE: If any of the following four parameters (cx, cy, width, and
height) are specified, all four parameters must be specified. They are
always needed for defining a template, or training on a font, but
they are never needed for planning a font.

cX, cy Real-valued expressions specifying the center coordinate of the

rectangular training window (or template definition window), in
millimeters.

276 AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN.MODEL

dx Real-valued expression specifying the width of the window, in
millimeters.

dy Real-valued expression specifying the height of the window, in
millimeters.

ang Optional real-valued expression specifying the orientation of the

OCR training window, in degrees. The default is 0 degrees. When
defining a correlation template, this must be omitted or have the
value 0.

Details
This instruction is used for both correlation templates and OCR fonts.

Correlation Templates

VTRAIN.MODEL defines and fully trains a correlation template in one step. (This
is simple compared to prototype or font models, which require a definition step
followed by multiple training steps with different example images.) A correlation
template is merely a grayscale window extracted from the image.
VTRAIN.MODEL analyzes the template and determines the default depth for
hierarchical search and skip patterns for each level of hierarchy. The new
information is stored in the template.

The position and size of the window is specified with the VTRAIN.MODEL
instruction. When VTRAIN.MODEL is executed, the pixels within the window
are copied from the frame store into the vision CPU memory. It remains there
until it is deleted (via VDELETE).

NOTE: Template widths must be a multiple of 4 pixels and will be
reduced if they are not an exact multiple.

You should consider the memory requirements of templates when using
correlation in applications. A large template with a size of 400x400 pixels will use
160,000 bytes of vision CPU memory. The FREE monitor command and program
instruction report both the amount of vision CPU memory available and the
amount used for all models—templates, fonts, and prototypes.

OCR Fonts

After a font has been defined with the VDEF.FONT instruction, the characters in
the font can be trained. The vision system is taught to recognize characters by
showing it what they look like. Each character should be shown to the system a
number of times because the system accumulates statistics on the appearance of
the characters. (See the AdeptVision User’s Guide for an overview of the OCR
capability in AdeptVision.)

AdeptVision Reference Guide, Rev A 277

VTRAIN.MODEL Program Instruction

278

To train the vision system on characters, you must define an image buffer region
that encompasses them in the current image. Together with the image buffer
region, you tell the vision system what characters are inside the region, ordered
left to right as you would normally read the text. Since the region can be rotated,
the “left” edge of the window is drawn a different color for reference. For a
rotation of 180 degrees, the “left” edge is actually on the right and the text inside
should look upside down. When the vision system analyzes the bounded areas in
the image buffer region, it orders the bounded areas by distance from the “left”
edge. The characters specified in the “stext ” parameter are assumed to be in this
order.

Each character in a font may be trained a different number of times. Also, a
character may appear more than once in a training window. The vision system
ignores the spacing between characters. Thus, for example, training on the
characters “Lot 34 would have the same effect as training on “Lot34”.

All characters in the font should be trained 5 to 15 times for reliable operation.
The vision system does not allow a character to be trained more then 30 times.
When training the vision system, samples of the text representing the range of
acceptable appearance should be used. If only a single sample of the text is
available, you should still show it to the vision system multiple times, moving it
around a little and rotating it slightly in both directions (such as plus and minus 5
to 10 degrees) to provide some variety in appearance.

Note that training on a font is different from prototype training. With font
training, there is no system interaction with the keyboard or pointing device. In
particular, there is no “Are you sure?” confirmation. Consequently, you must
make sure the window encompasses the given text before executing the
VTRAIN.MODEL instruction. Otherwise, you could corrupt the system’s models
of the characters. The Example section below contains a simple V* routine to help
perform font training.

VTRAIN.MODEL returns an error and does not modify the current character
models if the number of regions in the window is not identical to the number of
characters in the given “$text” parameter. However, if you make a mistake that
does not result in VTRAIN.MODEL returning an error, you should VDELETE the
font and start over by redefining the font.

Each character must appear as a single bounded binary area. Thus, for example,
the characters “;” and *:” cannot be trained. The V.MIN.AREA system parameter
should be adjusted to filter out the dots over the letters “i”” and “j”. Also, if
characters touch, the system processes them as a single character. (Automatic
splitting of touching characters is not done during training.) VTRAIN.MODEL
displays the outline of each bounded area in the Vision display window, so you
can see the bounded areas that were analyzed. Before training on a font, you
should run the program “set.gain” (in the file SET_GAIN.V2 on the Adept Utility
Disk) to adjust the gain and offset. Next, take a picture and find a good threshold

AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN.MODEL

using the VAUTOTHR monitor command or with the pull-down menus. You
should also take some sample pictures in VDISPLAY mode 3 and adjust the
parameter V.MIN.AREA to filter out dots and noise. Keep V.MIN.HOLE.AREA
low enough so that the holes in letters do not disappear.

Characters may be trained in one orientation and recognized in a different one. In
fact, characters in a font may be trained in different orientations (such as first
horizontally, then diagonally). The system automatically rotates the character
features so that the given window orientation matches the “base orientation” of
the font.

All characters in a font share the same “base orientation”. The base orientation is
defined by the AOI used during the first training instance with the font. Thus, if
you first trained “A” using an AOI with the angle 30 degrees, and then trained
“B” using an AOI with the angle 0, the “B” would be rotated 30 degrees to bring it
into alignment with the font’s “base orientation” of 30.

In addition to training, VTRAIN.MODEL may be used to make the vision system
“plan” a font for recognition. This is not a crucial step, however, because the
VOCR instruction automatically plans a font that has not been planned. However,
since planning may take a few minutes, you may prefer to control when that
occurs by executing VTRAIN.MODEL in an initialization program.

When a font is planned and its display is enabled (plan = 1), the characters in the
font are displayed at the top of the Vision window as they are planned. Then a
discrimination matrix is displayed so that you can watch the effects of the vision
system’s auto-weighting of features. The color coding in the matrix indicates how
the average character (horizontally) scores with respect to the model (vertically).
The colors and associated score ranges are listed below, where a score of 100
indicates complete ambiguity (or “perfect match” if in the diagonal, where the
character is compared to its own model):

Color Score
Dark gray 0to 10
Medium gray 10to 20
Dark green 20to 30
Green 30 to 40
Yellow 40 to 50
Orange 50 to 60
Red 60 to 100

The vision system tries to make all the scores outside the diagonal below 30.
When a score cannot be reduced more for some reason, a small black plus sign is
drawn in the patch of color.

AdeptVision Reference Guide, Rev A 279

VTRAIN.MODEL Program Instruction

When a font is stored to disk (via VSTORE), the character information
accumulated as a result of training is stored, but the results of planning are not
stored. The data structures created during planning are very large. Thus, rather
than storing and loading large disk files (which in itself takes considerable time),
smaller files are used. Consequently, after a font is VLOADed, it must be planned
before use.

A 26-character font requires approximately 35 Kb of memory.

Example

This routine is a simple interface for training on a subset of the characters in a
font. A window is displayed in the Vision display window overlaying live video
S0 you can position the text inside it. After you press Enter, a picture is taken and
the characters in the window are processed. To stop training, type any character
before pressing the Enter key.

.PROGRAM train(S$Sstr)

; ABSTRACT: Initiate font training on an input text string. The font must have
; already been defined.

; INPUT PARAM: S$str — the text to train on

280

AUTO ang, cam, cx, cy, dx, dy, font, vlun
AUTO ans, SSfont
LOCAL datal]

; Define these for your specific needs:

cam = 1 ;Virtual camera number
font 1 ;Font number: 1 to 99

cx = 256 ;Center of the window

cy = 242

dx = 350 ;Width of the window

dy = 50 ;Height of the window

ang = 0 ;Orientation of the window
model.ibr = 3001 ;Define aoi variable

VDEF.ACTI model.ibr = 1, c¢cx, cy, dx, dy, ang

$font = "FONT "+SENCODE (/IO0, font) ;Compose name of the font

VDISPLAY (cam) 2, 1 ;Display binary image with overlay
VPICTURE (cam) 2 ;Do quick frame grab

ATTACH (vlun, 4) "GRAPHICS" ;Attach to the vision window
FOPEN (vlun) "Vision /MAXSIZE 640 480"

GTRANS (vlun, 1) ;Select scaling in real-world mm
VWINDOWI datal] =, c¢x, cy, dx, dy, ang

AdeptVision Reference Guide, Rev A

Program Instruction VTRAIN.MODEL

"

TYPE /Cl, "Place sample text in window. Press Enter to train, type ", /S
TYPE "any character and Enter to halt training." /C1

WHILE TRUE DO
VDISPLAY (cam) 0, 1
GTYPE (vlun) 50, 100, S$str
PROMPT "Press Enter to train on "+Sstr+": ", $ans
IF Sans <> "" GOTO 10
VPICTURE (cam) 2
VITRAIN.MODEL (cam) S$font, S$str, model.ibr

END

10 RETURN
.END

Related Keywords

VDEEAOI (program instruction)

VCORRELATE (program instruction)

VDEEFONT (program instruction)

VDELETE (monitor command and program instruction)
VOCR (program instruction)

VSHOW.MODEL (program instruction)

AdeptVision Reference Guide, Rev A 281

VWAIT Program Instruction
Syntax

VWAIT (type) ibr
Function

Delay program execution until processing of a VPICTURE or VWINDOW opera-
tion is complete.

Usage Considerations
VWAIT is not considered during vision model training.
Parameters
type Optional integer expression having one of the following values:

0 Wait for the vision system to become idle (default)
1 Wait for the acquire into the frame specified in “ibr ”” to complete
2 Wait for the acquire into the frame specified in “ior ” to start

ibr Optional integer value specifying an image buffer region. Only the
frame store element of the image buffer region is used (see the
description of VDEF.AOI). This parameter is ignored for type #0
VWAITS.

Details

A type #0 VWAIT waits for the vision processor to become idle following a
VPICTURE or VWINDOW operation.

A type #0 VWAIT is necessary before executing any of the following instructions:

VDEF.FONT VDEF.MORPH VGETPIC
VHISTOGRAM VPUTCAL VPUTPIC
VSHOW VSHOW.MODEL VSUBPROTO

VTRAIN.MODEL
VDELETE (monitor command only)

A type #2 VWAIT is essentially a wait for a strobe light or camera shutter to
operate.

282 AdeptVision Reference Guide, Rev A

Program Instruction VWAIT

Example
VPICTURE (cam) ;Take a picture using virtual camera "cam”
VWAIT ;Wait until vision processor is idle

Related Keywords

VDEEAOI (program instruction)
VSTATUS (monitor command)
VSTATUS (program instruction)

AdeptVision Reference Guide, Rev A 283

VWINDOW Program Instruction

Syntax
VWINDOW!(cam, type, dmode, how_many) ibr
VWINDOW(cam, type, dmode, how_many) shape , CX, ¢y, width, height , ang

Function

Perform processing (blob finder, prototype recognition, or ObjectFinder) within a
rectangular window in the image.

Usage Considerations

The VWINDOW program instruction does not suspend program execution while
the image is being processed. In other words, program execution continues with
the next instruction while the vision system processes the window image.

NOTE: Some vision instructions cause an error if they are executed
while window processing is still active. You can use the VWAIT
program instruction to suspend program execution until the vision
processor is idle.

Adept recommends the first syntax.

Parameters
cam Optional real-valued expression that specifies a virtual camera
number (see below). The default is 1.
type Optional real-valued expression indicating the type of the window.
Currently, the only choice is 1.
dmode Optional real-valued expression specifying the display mode to use

when displaying the border of the window: -1 = no draw, 0 = erase,
1 = draw solid, 2 = complement, 3 = draw dashed. The default is 1
(draw solid).

how_many Optional real-valued expression that specifies the maximum
number of objects the vision system should try to recognize in the
window. (See the description of VPICTURE for a detailed
explanation.)

Locate as many objects as possible (the default)
Locate none (V.RECOGNITION effectively disabled)
Locate only one object

Locate at most two objects.

Locate at most n objects

S NDNEFP, OB

284 AdeptVision Reference Guide, Rev A

Program Instruction VWINDOW

NOTE: The parentheses in the instruction syntax can be omitted if
all four of the above parameters are omitted.

ibr Integer value specifying the image buffer region for the window.
Image buffer regions specify both a size and a frame store (see the
description of VDEF.AOI). The image buffer region’s AOI must
specify a rectangular shape.

shape Optional real-valued expression indicating the shape of the
window. Currently, the only choice is 1, for rectangular.

CX, Cy Real-valued expressions specifying the center coordinate of the
rectangular window, in millimeters.

width Real-valued expression specifying the width of the window, in
millimeters.

height Real-valued expression specifying the height of the window, in
millimeters.

ang Optional real-valued expression specifying the orientation of the

window, in degrees. The default is 0 degrees.
Details

VWINDOW performs image processing within an area-of-interest called a
window. A window is a rectangle of any size and orientation in the image.
Multiple windows in the same image may be processed. Windows may overlap or
even be nested inside each other. Many small windows in an image may be
processed in less time than it would take to process the entire image.

The virtual camera parameter (“cam”) selects the group of prototypes, system
switches, and system parameters to use when processing the window. This also
selects the calibration array to be accessed.

The VWINDOW instruction is essentially a repicture ("VPICTURE 0”) inside a
window. Almost all of the system switches and parameters apply. Thus,
recognition may be performed in one window, connectivity statistics computed in
another, etc.

However, some system features are applied only during the actual acquisition of
an image (that is, when a VPICTURE instruction acquires an image). The
following system switches and parameters are not referenced by VWINDOW:
V.GAIN, V.OFFSET, V.BINARY, V.THRESHOLD, and V.2ND.THRESH.

The V.BORDER.DIST parameter is considered only with orthogonal windows. It
is ignored for rotated windows.

AdeptVision Reference Guide, Rev A 285

VWINDOW Program Instruction

A VPICTURE operation must be initiated before window processing so that an
image is available for analysis. Any VPICTURE mode may be used, except for
future frame grab (mode #1). Quick frame grab (mode #2) is the recommended
mode. Either of the two frame stores may be used (see the VSELECT program
instruction).

Like VRULER and VWINDOW!I, VWINDOW instructions queue on the vision
processor. Thus, an application program does not have to wait for picture
processing to complete before executing a VWINDOW instruction.

The values of the parameters V.FIRST.COL, V.FIRST.LINE, V.LAST.COL, and
V.LAST.LINE are used to clip the window to the image. That is, the vision system
ignores any portion of the window that is outside these boundaries.

Type #0 rulers and finders and clear-grip tests are clipped to the bounds defined
by the latest VWINDOW instruction. Only transitions within those bounds are
found. Rulers and finders other than type #0, and inspection (VWINDOWI)
windows are not limited by the bounds defined by the latest VWINDOW.

Example

Perform a quick frame grab and process two windows. The first window is
centered at the point (140,260), 20mm x 30mm, and rotated 45 degrees. The second
one is centered at (300,330), 40mm x 40mm, with no rotation. The virtual camera
for the first window is 2, and the virtual camera for the second window defaults
to 1.

VDEF.AQOI 2000 = 1, 140, 260, 20, 30, 45
VDEF.AOI 3000 = 1, 300, 330, 40, 40

VPICTURE (cam) 2

VWINDOW (2) 2000
VWINDOW 3000

Related Keywords

VDEEAOI (program instruction)

VPICTURE (monitor command and program instruction)
VWINDOWSB (program instruction)

VWINDOWI (program instruction)

286 AdeptVision Reference Guide, Rev A

Program Instruction VWINDOWB

Syntax
VWINDOW (cam, mode, dm ode) data] index]= ibr

Function
Extract image information from within a rotatable, rectangular window.
Usage Considerations

All bounded regions in the image buffer region are considered one blob. The
statistics returned are for all bounded regions regardless of whether they are
disjoint.

The perimeter calculations for this instruction are less accurate than for
VWINDOWI and are available only with the AdeptVision Enhanced VXL
Interface option.

Parameters

cam Optional real-valued expression that specifies a virtual camera
number. The system parameters V.THRESHOLD and
V.2ND.THRESH and the system switch V.BACKLIGHT for this
virtual camera are used during processing. The default is 1.

mode Optional real-valued expression that specifies what image statistics
are to be computed and returned in the data array, as follows:
1 Default. Computes the area, bounding box, and centroid.
(Time=17ms)
2 For EVI board option only. Computes all of the above, plus
perimeter (Time=25ms)

dmode Optional real-valued expression that specifies the display mode to
use when displaying the border of the window:
-1 Nodraw
0 Erase
1 Default. Draw solid
2 Complement
3 Draw dashed
4 Complement dashed

NOTE: The parentheses in the instruction syntax can be omitted if
all three of the above parameters are omitted.

datal] Variable name specifying an array into which the image information
is to be placed. The amount of information depends on the “type”
parameter, as described below.

AdeptVision Reference Guide, Rev A 287

VWINDOWB Program Instruction

inde x Optional array index that identifies the first element to be defined in
“data[]”. The default is 0. If a multiple-dimension array is specified,
only the right most index is incremented as the values are assigned.

ibr Optional integer value specifying the image buffer region for the
inspection window. Image buffer regions specify both a size and a
frame store (see the description of VDEF.AOI). A VWINDOWSB tool
must be an orthogonal rectangle, so the image buffer region’s AOI
must use a rectangular shape, and any angle specifications are
ignored. Default is current frame, full size (image buffer region =
1000).

Details

288

This instruction quickly calculates basic window statistics. Since all regions are
considered as one blob, execution time is independent of scene complexity.

When calculating perimeter, VWINDOWAB counts any foreground pixel as a
perimeter pixel if it has one or more background pixels as neighbors in a 3x3
neighborhood.

A VPICTURE instruction must be issued before window processing, so that an
image is available for analysis. Any VPICTURE mode may be used, except future
frame grab (mode #1). Quick frame grab (mode #2) is the recommended mode.

The window types are:

1 Returns the area, bounding box, and centroid of a blob.

2 Returns the area, bounding box, centroid, and perimeter of a blob
(perimeter available only with the AdeptVision Enhanced VXL Interface
option).

The statistics returned are for all bounded regions within the area-of-interest. The
“data” array returns the following information:

data[i] Is the area of interest clipped by the field of view

(-1 =yes, 0 =no)?
data[i+1] Area of blobs (in pixels)
data[i+2] X component of the blob centroid (in millimeters)
data[i+3] Y component of the blob centroid (in millimeters)
data[i+4] X component of closest point on blob perimeter (in millimeters)
data[i+5] X component of furthest point on blob perimeter (in millimeters)
data[i+6] Y component of closest point on blob perimeter (in millimeters)
data[i+7] Y component of furthest point on blob perimeter (in millimeters)
data[i+8] Perimeter of all bounded areas (type #2 window only)

(in millimeters)

AdeptVision Reference Guide, Rev A

Program Instruction VWINDOWB
Related Keywords

VDEEAOI (program instruction)
VPICTURE (program instruction)
VWINDOWI (program instruction)

AdeptVision Reference Guide, Rev A 289

VWINDOWI Program Instruction

Syntax
VWINDOWI(cam, type, dmode, sample) data] index]=ibr
VWINDOWI(cam, type, dmode, sample) data] index]=
shape, cx, cy, dx, dy , ang
VWINDOW!I (cam, type, dmode, sample) data] index]=
shape, cx, cy, or , ir, ang0, angn
Function

Extract image information from within a window with any of the following
shapes: rectangle, circle, pie cut, ring, or ring segment.

Usage Considerations

The frame store currently selected or the image buffer region specified must
contain a valid picture. Otherwise, an error results.

Adept recommends the first syntax.
Parameters

cam Optional real-valued expression that specifies a virtual camera
number. The system parameters and switches for this virtual camera
are used during some modes of processing (see below for details).
The default is 1.

type Optional real-valued expression that specifies what image statistics
are to be computed and returned in the data array. The default type
is 0. See the details below.

dmode Optional real-valued expression that specifies the display mode to
use when displaying the border of the window: -1 = no draw, 0 =
erase, 1 = draw solid, 2 = complement, 3 = draw dashed, 4 =
complement dashed. The default is 1 (draw solid).

sample Optional real-valued expression that specifies the sampling density,
either 1 or 2. If the value is 1, every pixel in the window is
considered. If the value is 2, every other pixel on every other line is
considered. The default is 1.

NOTE: The parentheses in the instruction syntax can be omitted if
all four of the above parameters are omitted.

datal(] Array into which the image information is to be placed. The amount
of information depends on the “type ” parameter, as described
below.

290 AdeptVision Reference Guide, Rev A

index

ibr

shape

cx, ¢y

dx, dy

ang

or

ang0, angn

Details

Program Instruction VWINDOWI

Optional array index that identifies the first element to be defined in
“data[] . The defaultis 0. If amultiple-dimension array is specified,
only the right-most index is incremented as the values are assigned.

Integer value specifying the image buffer region for the inspection
window. Image buffer regions specify both a size and a frame store
(see the description of VDEF.AOI).

Optional real-valued expression indicating the shape of the
window: 1 = rectangular (the default), 2 = circular or ring-shaped.

Real-valued expressions specifying the (x,y) position of the center of
the window, in millimeters.

Real-valued expressions specifying the width (dx) and height (dy)
of a rectangular window, in millimeters.

Optional real-valued expression specifying the orientation of the
window, in degrees. The default is 0 degrees.

Real-valued expression specifying the outer radius of a circular or
ring-shaped window, in millimeters.

Optional real-valued expression specifying the inner radius of a
ring-shaped window, in millimeters. The default is 0, meaning that
the window is not ring-shaped (that is, it has no inner circle).

Optional real-valued expressions specifying the angular range of a
circular or ring-shaped window, in degrees. Each parameter
defaults to 0. A full circle or ring is indicated when both values are
0.

A VPICTURE instruction must be issued before window processing, so that an
image is available for analysis. Any VPICTURE mode may be used, except future
frame grab (mode #1). Quick frame grab (mode #2) is the recommended mode.

The information that VWINDOWI returns in its array parameter is determined by

the “type

parameter. The table below lists the value each array element holds for

each window type (the actual index for a data item is “index ” plus the item’s
“relative index” shown).

AdeptVision Reference Guide, Rev A 291

VWINDOWI

Program Instruction

Relative Array Index
Window
Type 0 1 2 |3 4 5 6 7 8 9
0 clipped? | width | ht area | count | O 0 0 0 0
1 clipped? | width | ht area | avg 0 0 0 0 0
2 clipped? | width | ht area | avg min | max | 0 0 0
3 clipped? | width | ht area | avg min | max | object | bkgd | 0
4 clipped? | width | ht area | avg min | max | object | bkgd | stdev
5 clipped? | width | ht area |ecount| 0 0 0 0 0
6 (128 histogram pixels counts—see below)
where:
clipped? TRUE if the window extended past the edge of the image. FALSE
otherwise.
width, ht The actual pixel width and height of the window after
millimeter-to-pixel conversion and compensation for any
nonsquareness of pixels.
area The actual number of pixels considered in the window. If “sample ”
is 2, this value is close to 174 the total number of pixels in the
window.
count The number of nonzero pixels in the window of the binary frame
store (as seen in VDISPLAY #2). This is only for type-0 windows.
See below.
avg Average graylevel in the window.
min,max The minimum and maximum graylevel in the window.

object, bkgd

stdev

ecount

These are the numbers of pixels that are part of an object or part of
the background (bkgd).

The standard deviation of the graylevels in the window from the
mean (avg).

The number of edge points in the window.

A type #6 window returns histogram data in its array parameter. The array is
filled with the pixel counts for each of the possible intensity values, 0 to 127.

292

AdeptVision Reference Guide, Rev A

Program Instruction VWINDOWI

All the other types of windows return the boolean “clipped?”, indicating whether
or not the window was completely in the image. Nonrectangular windows
(circles, rings, etc.) that are clipped are not evaluated. That is, zeros are returned
in the array elements for all the items other than “clipped?”. Rectangular
windows that are clipped are still evaluated, but the fact that part of the window
was out of the image could invalidate usage of the window information.

All windows (except type #6 windows) also return their width, height, and area in
pixels. For windows orthogonal to the image boundaries, the area is simply width
times height. If the “sample” parameter is 2, however, the area is approximately:

(width Dheight)/4

You may notice that a window defined to be square in millimeters does not have
equal width and height in pixels. This happens because the pixels are not square
or there is some tilt to the camera. The vision system compensates for this so that
the window covers a square area in the scene. For “shape ” = 2 windows, the
width and height are the X radius and Y radius, respectively, of the outer edge, in
pixels. This reflects the millimeter-per-pixel ratio and the X/ ratio in the
calibration.

Type #0 windows differ from all the other types in that they are applied to the
frame-grabbed binary image that you see in VDISPLAY mode #2. Type #0
windows simply return a count of the white pixels in the window. If the
V.BINARY system switch is enabled, this is the number of background or
foreground pixels, depending on the physical lighting setup. If V.BINARY is
disabled, this is the number of edge pixels in the window.

All windows except type #0 are applied to the frame-grabbed grayscale image
you see in VDISPLAY mode #1. Window types #1, #2, #3, and #4 return the
average graylevel for the pixels in the window. Types #2, #3, and #4 also return
the minimum and maximum graylevels found in the window. For types #3 and
#4, you also get a count of the background and foreground pixels, as determined
by the V.THRESHOLD and V.2ND.THRESH system parameters and the
V.BACKLIGHT system switch for the virtual camera specified. The criterion for
classifying a pixel as being background or foreground is the same as that used
during a VPICTURE operation (see the descriptions of V.THRESHOLD and
V.BACKLIGHT).

For type #4 windows, the standard deviation of the graylevels from their mean is
returned. This is the most time-consuming value to compute. However, it
provides a more reliable measure of graylevel distribution (or “edginess’) than
the minimum and maximum graylevel values that are returned.

AdeptVision Reference Guide, Rev A 293

VWINDOWI Program Instruction

A type #5 window finds omnidirectional edge points in the grayscale image and
counts them. The edge detection method used is the same as that used by
VPICTURE when the V.BINARY system switch is disabled. (However, the setting
of V.BINARY has no effect on this window operation.) The V.EDGE.STRENGTH
system parameter is the threshold criterion used. As V.EDGE.STRENGTH is
reduced, more edges are found in the window. As it is increased, fewer edges are
found. The edge points in an image may be viewed in VDISPLAY mode #2 after
performing a VEDGE operation of type 1 for cross gradient.

Rectangular, nonrotated windows (that is, ones with sides parallel to the sides of
the image) are processed faster than circular windows or rotated, rectangular
windows.

Examples

Using the system switches and parameters for virtual camera #14 during the
processing, ask for all the information possible about a type #4, rectangular
window centered at the point (230,340), 20 millimeters wide and 10 millimeters
high, with a 15-degree rotation. Draw the window boundary in the Vision display
window (dmode = 1):

VWINDOWI (14,4,1) xx[] = 1, 230, 340, 20, 10, 15

Use a type #5, ring-segment (shape-2) window (with the system parameters for
virtual camera #1) to perform an inspection of a half-eaten doughnut, looking for
debris (edge points). The center of the doughnut’s circle is located at the point
(25.2,37). The outer and inner radii are 50 millimeters and 18 millimeters,
respectively. The doughnut is oriented so that its angular range is 0 to 180
degrees:

VWINDOWI (, 5, 1) xx[] = 2, 25.2, 37, 50, 18, 0, 180

Related Keywords

294

VDEEAOI (program instruction)

VHISTOGRAM (monitor command and program instruction)
VRULERI (program instruction)

VWINDOW (program instruction)

V.2ND.THRESH (system parameter)

V.BACKLIGHT (system switch)

V.BINARY (system parameter)

V.THRESHOLD (system parameter)

AdeptVision Reference Guide, Rev A

AdeptVision Quick Reference

V.2ND.MOMENTS [camera]
Enable computation of the best-fit ellipse for each
region in the image.

V.2ND.THRESH [camera]
Set a second threshold for use during binary image
processing.

VABORT task_id
Abort any active vision processing and all pending
vision operations associated with the given task
number.

VADD (cam, type, dmode) dest_ibr =
srcl_ibr, src2_ibr

Add two binary or grayscale images.

VAUTOTHR (dmode, start,end)array[index]=

ibr
Determine good thresholds for binary image
processing based on the gradients in a grayscale
frame store.

V.BACKLIGHT [camera]
Define which color (black or white) is to be
considered the background.

V.BINARY [camera]
Enable or disable automatic edge-image generation
at VPICTURE time.

V.BORDER.DIST [camera]
Define an image border reduction (in pixels) to mask
out regions clipped by the image border.

V.BOUNDARIES [camera]
Enable or disable boundary analysis by the vision
system.

V.CENTROID [camera]
Enable computation of the centroid of each region in
the image.

VCONVOLVE (cam, type
src_ibr
Perform an image convolution on a grayscale frame,
possibly storing the result in a different frame store.

, dmode) dest_ibr =

VCOPY (cam, scale, dmode, lut) dest_ibr =

src_ibr
Copy the image from one image buffer region to
another.

AdeptVision Reference Guide, Rev A

VCORRELATE (cam, mode, dmode, max_depth,

accept, give_up) data] i], act depth =

tplnum , ibr

VCORRELATE (cam, mode, dmode) data[i] =

tplnum, shape, cx, cy, dx, dy, ang
Perform a normalized grayscale or binary
correlation, comparing a predefined template with a
rectangular image window, or searching for a closest
match within the window to a predefined template.

VDEF.AOI aoi = shape, diml, dim2, dim3 ,
dim4, angl, ang2
Define an area-of-interest (AOIl). Areas-of-interest
are used by most vision tools to specify the tool
placement within an image.

VDEF .CONVOLVE type = arrayli, il
Define an image convolution.

VDEF .FONT (Op)

black_chars
Define, replace, or modify an Optical Character
Recognition (OCR) font.

VDEFGRIP $proto, grip, mode, num_fngrs,

trans[il,w[jl.h[K]

VDEFGRIP $proto, O
Define the shape and position of a robot gripper for
clear-grip tests.

font_num, $chars , height,

VDEF.LUT lut.num = lut[]
Define a grayscale and binary “look-up table” for
mapping graylevel and binary values during a
VCOPY operation.

VDEF .MORPH (mode) type = array[], dx, dy
Define a binary morphological operation.

VDEF . SUBPROTO proto:subname, first_edge,
last_edge
Define a subprototype.

VDEF.TRANS (mode) dx, dy, angle, scale
Define a transformation to apply to the location of all
vision tools placed until the next VDEF.TRANS
instruction.

VDELETE model_name
Delete a specified prototype, subprototype, Optical
Character Recognition (OCR) font, or correlation
template in the vision system.

V.DISJOINT [camera]
Determine whether or not prototypes may be
matched to multiple disjoint regions.

295

VDISPLAY

VDISPLAY (camera)
ypan, zoom
Select the current vision display mode or the display
mode to be used when the vision system performs its
normal image processing functions.

mode, overlay, xpan,

V.DRY.RUN
Enable graphics-only mode for various vision
operators.

VEDGE (cam, type, dmode) dest_ibr = src_ibr
Compute edges in the grayscale image and threshold
the edges, replacing the binary image, using either a
cross-gradient or Sobel algorithm.

VEDGE.INFO data] i]= proto_nam , edge_num
Retrieve information about the edges and corners of
a prototype or of a region in the image.

V.EDGE.INFO [camera]
Enable saving of information about edges in the
image for recall via the VEDGE.INFO instruction.

V.EDGE . STRENGTH [camera]
Set the edge threshold for grayscale image
processing and fine-edge rulers.

V.EDGE.TYPE [camera]
Determine the type of edge operator to use,
cross-gradient or Sobel, when a VPICTURE
instruction is performed.

VFEATURE (index)
Return specified information about the object most
recently VLOCATEd or the prototype most recently
displayed by the VSHOW program instruction.

VFIND.ARC (cam, mode, dmode, effort, type)
data[i]=ibr
VFIND.ARC (cam, mode, dmode, effort, type)
data[i] = 1, xc, yc, r, rr, ang0, angn
Fit a circular arc to an image edge bounded by a

window that is shaped like a ring or a ring segment.

VFINDER (cam, type, dmode, how_many_total
{, times[]}) ibr

VFIND.LINE (cam, pos, dmode, effort, type)
data] i]=ibr

VFIND.LINE (cam, pos, dmode, effort, type)
data[i] = 1, xc, yc, length, width, angle

Fit a straight line to an image edge within a window.

VFIND.POINT (cam,pos,dmode,effort,type)

data] i]=ibr

VFIND.POINT (cam,pos,dmode,effort,type)

data[i] = 1, xc, yc, length, width, angle
In a search window, find the edge point that is
nearest to one side of the window.

V.FIRST.COL [camera]
Set the number of the first column of pixels to be
processed.

V.FIRST.LINE [camera]
Set the number of the first line of pixels to be
processed.

296

Appendix A - AdeptVision Quick Reference

V.FIT.ARCS [camera]
Enable or disable the fitting of circular arcs when
performing boundary analysis.

V.GAIN [camera]
Set the gain for the incoming video (camera) signal.

VGAPS data] i] = proto_name, edge_num
Find the unverified gaps in a match with a prototype
or subprototype.

VGET.AOI array[i]=aoi
Return the definition of an area-of-interest.

VGETCAL (cam) scalers[

pix.to.pmm[l,m], to.cam
Ask the system to fill in arrays with the previously
defined vision calibration data for a given virtual
camera.

i], pmm.to.pix[j,K],

VGETPIC (cam, type, s_rate, s_mode)
$pic[r, c] =shape, x0, y0, dx, dy
Read all or part of an image into a string array.

VGET.TRANS array[i]
Return the value of the current vision
transformation.

VHISTOGRAM (dmode) array[index] = ibr
Compute the histogram for a grayscale frame store.

V.HOLES [camera]
Enable or disable the accounting of interior features
in all objects.

V.IO.WAIT [camera]
Enable the synchronization of taking pictures
(VPICTURES) with an external event that triggers
the fast digital-input interrupt line.

VISION
Enable the entire vision system.

V.LAST.COL [camera]
Set the number of the last column of pixels to be
processed.

V.LAST.LINE [camera]
Set the number of the last line of pixels to be
processed.

V.LAST.VER.DIST [camera]
Enable an extra verification of prototype-to-image
matches and specify the pixel tolerance to use when
determining boundary coincidence.

VLOAD file_spec
Load vision models (ObjectFinder models,
prototypes, Optical Character Recognition fonts, or
correlation templates) from a disk file.

VLOAD (lun) $file_spec
Load vision models (ObjectFinder models,
prototypes, Optical Character Recognition fonts, or
correlation templates) from a disk file.

VLOCATE (camera, mode, order) $name,
trans_var
Identify and locate an object in the scene.

AdeptVision Reference Guide, Rev A

Appendix A - AdeptVision Quick Reference

V.MAX.AREA [camera]
Set the maximum area above which the vision
system ignores regions.

V.MAX.PIXEL.VAR [camera]
During a VFIND.LINE or VFIND.ARC operation,
this parameter specifies the maximum pixel distance
from the fit edge beyond which edge points may be
filtered out.

During boundary analysis, this parameter sets the
maximum pixel deviation allowed when fitting lines
and arcs to region edges.

V.MAX.SD [camera]
Set the distance (in units of standard deviation) from
the fit line or arc beyond which edge points should
be filtered out.

V.MAX.TIME [camera]
Set the maximum time allowed for the vision system
to analyze a region during object finding, prototype
recognition, or OCR. A value of 0 means that there is
no time limit.

V.MAX.VER.DIST [camera]
Set the pixel tolerance for determining boundary
coincidence during the verification of
prototype-to-image matches.

V.MIN.AREA [camera]
Set the minimum area below which the vision
system ignores regions.

V.MIN.HOLE .AREA [camera]
Set the minimum area below which the vision
system ignores holes.

V.MIN.LEN [camera]
Set the minimum length of features to be used for
feature pairs.

V.MIN.MAX.RADII [camera]
Enable the feature that, for each region in the image,
finds the two points on the perimeter that are closest
to and farthest from the region centroid.

VMORPH (cam, type ,dmode,thresh) dest_ibr,
count =src_ibr
Perform a morphological transform on a binary
image frame.

VOCR (cam, op, dmode) data[i], locs[j]
font_num , $expected, ibr
VOCR (cam, op, dmode) datali], locs[j] =
font_num, $expected, shape, cx, cy, dx, dy,
ang
Perform Optical Character Recognition (OCR) or text
verification in a rectangular image window.

V.OFFSET [camera]
Set the offset for the incoming video signal (that is,
program the zero reference for the A/D converter).

V.OVERLAPPING [camera]
Determine whether or not objects may be
overlapping in the image.

AdeptVision Reference Guide, Rev A

V.MAX.AREA

V.PERIMETER [camera]
Enable computation of the lengths of region
perimeters.

VPICTURE (camera, wait, acq_ibr, sel_ibr)

mode, how_many
Acquire an image into a frame store and/or initiate
processing.

VPLAN. FINDER (cam, type, dmode) $fmods]],
$bmods][]
Set up the type of “planning” used by the Finder
when locating models.

VPUTCAL (camera) scalers[i],
pmm.to.pix[j,k], pix.to.pmm][l,m], to.cam

Load vision calibration data from 1 to 3 arrays.
VPUTPIC (camera,type,zoom)
y0

$pic[r, c],x0,

Store into a frame store an image saved previously
with VGETPIC.

VQUEUE (camera)
Display object information for any objects queued in
the vision system awaiting retrieval by VLOCATE
instructions.

VQUEUE (camera, $name)
Return the number of objects in the vision system
queue.

V.RECOGNITION [camera]
Enable or disable prototype recognition by the vision
system.

VRENAME new_name = old_name
Rename a prototype or subprototype.

VRULERI (cam, type, dmode, maxcnt,

edge.dir) data[i], mags[j] =ibr

VRULERI (cam, type, dmode, maxcnt,

edge.dir)datali], magslj] = 1,x0,y0,len,

ang

VRULERI (cam, type, dmode, maxcnt,

edge.dir) data[i], mags[j] = shape, cx, ¢y,

radius, ang0, angn
Obtain edge information or graylevels along a line or
circular arc in the current image.

VSELECT (mode) ibr =camera
Select a virtual frame buffer for processing or display
and, optionally, select a virtual camera and its
calibration to be associated with the frame buffer.

VSHOW proto_name, grip, edge_num
List the defined prototypes or display a vision
prototype, a subprototype, or a specific prototype
edge in the Vision display window. Edge numbers
are optionally shown.

VSHOW mode, $proto_name , trans_var, grip,

edge_num
Display a vision model (ObjectFinder, prototype, or
subprototype) and make information about it

297

V.SHOW.BOUNDS Appendix A - AdeptVision Quick Reference

available through the VFEATURE real-valued
function.

V.SHOW.BOUNDS [camera]
Enable the special display of the lines and arcs fit to
the boundaries of regions.

V.SHOW.EDGES [camera]
Enable the special display of edges—both the
primitive edges that are fit to the boundaries of
regions, and the edge points that are found by the
finders VFIND.LINE, VFIND.ARC, and
VFIND.POINT.

V.SHOW.FEATS [camera]
Enable the special display of features used for
ObjectFinder recognition.

V.SHOW.GRIP [camera]
Enable the special display of clear-grip tests.

VSHOW.MODEL (mode) $chars, datali] =
$model_num
Display a model—either a correlation template or an
Optical Character Recognition (OCR) font—and
return information about it, or return information
about all the defined templates or OCR fonts.

V.SHOW.RECOG [camera]
Enable the special display of the objects recognized.

V.SHOW.VERIFY [camera]
Enable the special display of the verification step in
the recognition process.

VSTATUS
Display vision system status information in the
Monitor display window.

VSTATUS (camera, type) array[index]
Return vision system status information in a real
array.

VSTORE file_spec = =model_name, model_name,
Store in a disk file selected (or all) vision prototypes
(and their subprototypes), Optical Character
Recognition (OCR) fonts, or correlation templates.

VSTORE (lun)

$model_name, ...
Store in a disk file selected (or all) vision prototypes
(and their subprototypes), Optical Character
Recognition (OCR) fonts, or correlation templates.

$file_spec = $model_name,

V.STROBE [camera]
Enable the firing of a strobe light in synchronization
with taking pictures (VPICTURES).

VSUBPROTO Ver_percent, trans_var =

subproto_name, edge_num
Determine the percentage of an edge or
subprototype that was verified during recognition.
Also, this instruction can have the prototype position
refined, based on only a subprototype or a single
edge, producing an adjusted location for the
prototype.

298

VSUBTRACT (cam, type, dmode) dest_ibr =
srcl_ibr, src2_ibr
Subtract two binary or grayscale images.

V.SUBTRACT.HOLE [camera]
Determine whether or not hole areas are to be
subtracted from region areas.

V.SYNC.STROBE [camera]
Select synchronous or asynchronous firing of a
strobe light when a picture is taken (that is, when a
VPICTURE is executed).

VTHRESHOLD (cam, type, dmode) dest_ibr =

src_ibr
Threshold a grayscale image, producing a binary
image.

V.THRESHOLD [camera]
Set the camera grayscale value that separates black
pixels from white pixels.

V.TOUCHING [camera]
Determine whether or not objects may be touching in
the image.

VTRAIN $prototype, shape, cx, cy, width,
height, ang
VTRAIN $prototype, ibr
Initiate training of the prototype whose name is

specified.
VTRAIN (cam, mode, arg) $prototype, ibr =
value
VTRAIN cam, mode, arg) $prototype, shape,
cx, cy, dx, dy, ang =value
Initiate training of the prototype whose name is
specified.

VTRAIN.FINDER (cam,mode,dmode,arg,arg2,
arg3)$model_name, ibr = value, value2,
value3
Initiate training of the finder model whose name is
specified.

VTRAIN.MODEL (cam, plan)

$text , ibr

VTRAIN.MODEL (cam, plan) $model_name,

$text , shape , cx, cy, dx, dy , ang
Train on avision “model”—a correlation template or
an Optical Character Recognition (OCR) font. For
correlation, this instruction defines the template. For
OCR, this instruction trains the vision system to
recognize characters in a font, or causes the vision
system to plan the recognition strategy for a fully
trained font.

$model_name,

VWAIT (type) ibr
Delay program execution until processing of a
VPICTURE or VWINDOW operation is complete.

AdeptVision Reference Guide, Rev A

Appendix A - AdeptVision Quick Reference

VWINDOW (cam, type, dmode, how_many) ibr
VWINDOW (cam,type,dmode, how_many)shape,

CX, ¢y, width, height, ang

VWINDOWB (cam, mode, dmode) data] index]=

ibr
Extract image information from within a rotatable,
rectangular window.

VWINDOWI (cam, type, dmode, sample) da-

ta[index]=ibr

VWINDOWI (cam, type, dmode, sample) da-

ta[index] = shape, cx, cy, dx, dy, ang

VWINDOWI (cam, type, dmode, sample) da-

taJindex] = shape, cx, cy, or, ir, ang0,

angn
Extract image information from within a window
with any of the following shapes: rectangle, circle,
pie cut, ring, or ring segment.

AdeptVision Reference Guide, Rev A

VWINDOW

299

Prototype Recognition
Algorithms

Overview s 302
Connectivity Analysis e 302
Chain Encode Perimeters C 303
Fit Primitive Edgesto Chains 303
Fit Linesand ArcstoEdges o 303
Classify Features e . 304
Propose Prototype-to-image Matches 304
Verify Match o0 305

AdeptVision Reference Guide, Rev A 301

Appendix B Overview

Overview

When AdeptVision VXL processes an image, doing boundary analysis and
recognition, the operations on the image data are performed in sequence. The
camera image is frame grabbed and stored in memory. Then connectivity is
performed on the binary (possibly thresholded edges). The boundaries of the
regions found are then processed.

Image processing involves multiple steps, producing multiple boundary
representations, the last of which is a connected sequence of lines and arcs.
Finally, recognition is performed by comparing boundary features with the
features of the prototype models.

More specifically, there are seven steps to image processing:

Connectivity analysis

Chain encode perimeters

Fit primitive edges to chains

Fit lines and arcs to edges

Classify features

Propose prototype-to-image matches
Verify match

An object is located and properly identified when all seven steps are successfully
completed. At that time, the object’s identification, position, 2-D orientation, and
“goodness-of-appearance” measure (verified percentage) are sent to the main
system processor. This information is then available to application programs
written in the V* language.

N o gk D oE

NOTE: An additional tool, called the ObjectFinder, provides an
alternate method for locating objects in an image. Refer to
Appendix C of the AdeptVision User’s Guide for information on the
ObjectFinder tool.

Connectivity Analysis

302

This is the common technique developed at SRI International for separating
closed regions from the background. The processing is performed in a single pass
across the image. The binary image is scanned and converted into run-length
encodings on a line-by-line basis. This compact image representation is simply a

AdeptVision Reference Guide, Rev A

Appendix B Chain Encode Perimeters

list of the column numbers where there are “color” transitions of black-to-white
or white-to-black. Connectivity analysis groups contiguous horizontal pixels of
the same color into run-lengths and then groups contiguous vertical run-lengths
of the same color, thereby completely segmenting the image into black and white
regions. While processing the run-length encodings, the algorithm also computes
the area and perimeter of each region.

Finally, as regions close off, they are interrelated via parent, child, and sibling
relationships. A hole in a region is a child of the outer region and the outer region
is a parent of the inner region. Two holes in a region are mutual siblings.

The vision system completes connectivity analysis before proceeding on to the
other processing steps.

Chain Encode Perimeters

Processing proceeds with this step after the outermost region, the region whose
parent is the background, closes off. This step produces a chain encoding
representation of the region perimeter. Using the stored run-length encodings
with their region associations provided by connectivity analysis in step 1, a string
of right, up, left, and down moves are produced that will traverse the region
perimeter.

Fit Primitive Edges to Chains

This step fits straight-line segments to the chain encodings in order to produce a
more succinct representation of the region perimeter. The algorithm used is
efficient, and the edges produced are an accurate approximation of the chain
encoding. In this manual, these are called the primitive edges. A benefit of the
algorithm is that the jagged (quantized) edges represented by the chain encoding
are smoothed. After this step, the chain-encoding data are discarded.

Fit Lines and Arcs to Edges

This processing step fits straight-line and circular-arc segments to the edges
produced in step 3. This step is relatively expensive in processor time, but the
expense is well justified. First of all, lines and arcs are fit to within a user-specified
tolerance (V.MAX.PIXEL.VAR), so image smoothing is controlled. Secondly, the

AdeptVision Reference Guide, Rev A 303

Appendix B Classify Features

result is further data reduction, especially when the parts are circular or have
circular holes. Studies of industrial parts have shown that the majority of parts are
prismatic and rotational in shape, so their 2-D images are naturally represented
by lines and arcs. The final justification for fitting lines and arcs (as opposed to
fitting only lines) is that they provide a greater variety of edge and corner types,
making recognition easier.

Classify Features

This step classifies all connected edge-edge pairs, where the edges are the lines
and arcs from step 4, and associates the pairs with the feature classes of the
known prototypes. The feature classes are chosen during training, based on the
objects the user wants the vision system to recognize. Generically, there are only a
few types of corner classes: line-line, line-arc, arc-line, arc-arc, and circle. In
addition, there are the “wildcard” variations: line-any, any-line, arc-any, and
any-arc. The “any” refers to an edge that may belong to a different object because
two parts touch or overlap.

Although there are only a few generic types of feature classes, each of the feature
classes of a prototype have specific parameterized definitions. An acceptable
minimum and maximum included angle (the angle formed by the two edges) is
associated with each corner class. Also, acceptable minimum and maximum
lengths are associated with each line edge of a feature class. For arcs, there are
acceptable minimum and maximum angular ranges, minimum and maximum
radii, and a convex-or-concave indication.

Each corner and edge in the image is compared with all the feature classes. When
the types correspond and the measures of the corner or edge fall within the
acceptable ranges of the class, the corner or edge is placed on the association list
for the feature class. Some corners and edges in the image may not be associated
with any classes, whereas others may be associated with multiple classes.

Propose Prototype-to-image Matches

304

This step proposes that prototypes are present in the image at specific positions
and orientations. These prototype-to-image match proposals are based on the
feature classifications made in the previous step. During training, the feature
classes are ordered according to uniqueness and “clarity”. At run-time, in this

AdeptVision Reference Guide, Rev A

Appendix B Verify Match

order, each class is considered until all image edges have been accounted for or
until all possible matches have been proposed. Each image feature and prototype
feature associated with a class is a possible match. However, such matches must
be confirmed before an official proposal can be made and step 7 begins.

Confirmation is a partial verification (see step 7 below) that is required when
more than one prototype feature is associated with a feature class. Even if there is
only one feature associated with a class, confirmation will be used if the prototype
is complex, having many edges, so that mismatches will be detected before the
expensive verification step. The need for confirmation is determined during
training when feature classes are chosen. Associated with each prototype feature
is a list of the confirming features that, if present in the image at the same relative
position, would distinguish it from other features.

Nearby features are chosen as confirming features when appropriate because they
are more likely to be visible (not occluded) along with the feature to be confirmed.

Verify Match

Given a single prototype-to-image match proposal, this step verifies the presence
of the prototype in the image. The prototype boundary representation is
transformed to the image via the 2-D translation and rotation proposed in step 6,
and a search is made for image edges that align with the prototype edges. The
close-enough test is to within a user-specified tolerance (V.MAX.VER.DIST).
Although the signs of the edges (black-to-white versus white-to-black) must
correspond, the edge types do not. So lines verify arcs and vice versa. If enough of
the prototype boundary is present in the image, the match is accepted. “Enough”
is defined by a weighted threshold, based on the edge weights and the verify
percentage provided during prototype training.

AdeptVision Reference Guide, Rev A 305

Perspective Distortion

Overview of Perspective Distortion 308
Calibration Arrays o . 309
How to Use the Arrays “pmm.to.mm][,]” and “mm.to.pmm][,]” . 311

AdeptVision Reference Guide, Rev A 307

Appendix C Overview of Perspective Distortion

Overview of Perspective Distortion

The camera calibration programs supplied by Adept relate the pixels (picture
units) of the vision system to millimeters in your workspace. These programs
produce two types of calibration data: “scale transformations” and “perspective
transformations”. The scale transformation is simple and fast. The perspective
transformation is more complex, and a little slower, but more accurate. The vision
system can use both the scale and perspective transformations, or it can use only
the scale transformation.

The scale transformation consists primarily of two scalers for converting pixels to
millimeters. Since the height and width of a pixel are not necessarily the same, the
X and Y components of coordinates are scaled differently. The two scalers are “X
scale” and “Y scale” in terms of millimeters per pixel. If (X,Y) is a coordinate in
pixel units, the corresponding coordinate in millimeters is (XOX.scale, YLY.scale).

The values for “X.scale” and “Y.scale” are stored in the array specified as a
parameter for the VPUTCAL program instruction.

The perspective transformation is a two-dimensional homogeneous
transformation that contains the scaling described above, plus correction for
perspective distortion. Furthermore, the transformation may contain a small
translation and rotation. (Note that the scale transformation is a simplification of
the perspective transformation.)

The Adept camera calibration programs (including the built-in VisionWare
calibration) perform calibrations that correct for perspective distortion. After a
calibration, these programs tell the user how much perspective distortion is
present in the image, and the direction the image plane is tilted, so that the user
can adjust the camera orientation or the workspace to compensate for the
distortion. The user can elect to disable correction for perspective distortion in
order to maximize run-time speed. If enabled, perspective calibration is used to
correct the results of linear and arc rulers, and line, point, and arc finders. All
other vision tools return results based on the scale transformation.

The two V™ instructions that deal with vision calibration are VGETCAL and
VPUTCAL. Normally, you will never need to use these instructions directly. The
calibration programs supplied by Adept pass calibration data to the vision system
with the VPUTCAL instruction. The “load.area” subroutine may be included in
your application program to (1) read calibration data previously saved in a disk
file and (2) perform the VPUTCAL operation.t

1 The “load.area” subroutine for loading calibration data can be found in the file
“LOADAREA.V2” on Adept Utility Disk #2. See the AdeptVision User’s Guide for information
on use of this subroutine.

308 AdeptVision Reference Guide, Rev A

Appendix C Calibration Arrays

Calibration Arrays

The instructions VGETCAL and VPUTCAL have three real-valued array
parameters: “scalers[]”, “pmm.to.pix[,]”, and “pix.to.pmml[,]”.

The one-dimensional array *“scalers[] contains the X-scale and Y-scale
information described earlier. By itself, this array is sufficient for the scale
transformation.

The arrays “pmm.to.pix[,]” and “pix.to.pmm[,]” are optional 3-by-3 arrays. These
arrays contain two-dimensional homogeneous transformations that contain
millimeters/pixel scaling, correction for perspective distortion, and a small
translation and rotation. The array “pmm.to.pix[,]” transforms millimeter
coordinates on a single plane in the workspace into pixel coordinates in the
image. The array “pix.to.pmm[,]” does the reverse transformation. These
transformations have the form:

A B C
E F
H 1

Elements “A”, “B”, “D”, and “E” encapsulate scaling and rotation. Elements “C”
and “F” are the translations in X and Y, respectively. Elements “G” and “H”
correct for perspective distortion—the smaller these numbers, the less perspective
distortion is present.

Using the 3-by-3 transformations instead of just the scale transformation takes
more processing time, so their use is optional. The vision system uses only the
scale transformation if the “G” and “H” elements in the “pmm.to.pix[,]”
transformation are zero.

When shown a square calibration target, the Adept calibration program always
computes the perspective transformation and then derives the scale
transformation from it. The small translation component in the perspective
transformation aligns the perspective and scale transformations in the center of
the screen. The small rotation component aligns the 45-degree lines in millimeter
space and pixel space.

Based on the “pmm.to.pix[,]” and “pix.to.pmm[,]” transformations, the
LOADAREA program derives two additional transformations: “pmm.to.mm[,]”
and “mm.to.pmm[,]”. These are provided to allow V* application programs to
correct for perspective distortion when the vision system does not do so.

In summary, the four transformations are:

AdeptVision Reference Guide, Rev A 309

Appendix C

310

pmm.to.pix[,]

pix.to.pmm][,]

pmm.to.mm][,]

mm.to.pmm][, |

Calibration Arrays

Perspective millimeters to raw pixels. The vision system uses this
transformation to convert user-specified millimeter coordinates (such
as the start of a ruler) to pixels.

This is the inverse of “pmm.to.pix[,]”. The vision system applies this
transformation when returning results to the application program in
millimeter coordinates (for example, the locations of edge transitions
found by a ruler).

Perspective millimeters to “simple” millimeters. This transformation
corrects only for perspective distortion. The user can use this to pre-
cisely place tools in cases where the vision system does not apply the
transformation “pmm.to.pix[,]” (such as VWINDOW and graphics
instructions).

This is the inverse of “pmm.to.mm[,]”. This transformation can be used
to correct for perspective distortion in vision results when the vision
system does not transform the coordinates with the transformation
“pix.to.pmm[,]” (such as with blob or prototype locations).

Figure C-1 shows the three spaces or coordinate systems that have been discussed
above and how the various transformations can be used to convert from one
coordinate system to another.

pmm.to.pix
PMM | MM.to.pmm MM PIX
Perspective- Si_mple % scale Vision
corrected millimeter |« » space
millimeter pmm.to.mm space & y.scale
space -
(mm) (mm) (mm)
pix.to.pmm

Figure C-1. Vision Coordinate Systems

AdeptVision Reference Guide, Rev A

Appendix C

Calibration Arrays

The vision system uses “pmm.to.pix[,]” to place rulers (both linear and circular)
and the centers of arc finders. All the other tools (including line and point finders)
are placed using only the scale transformation. The results of rulers (line and arc)
and finders (line, point, and arc) are transformed to millimeters using the
“pix.to.pmml[,]” transformation. The results of all other vision tools are
transformed using the simpler scale transformation.

If correction for perspective distortion is disabled, the “pmm.to.pix[,]” and
“pix.to.pmml[,]” transformations that VGETCAL returns represent the following
simple scale transformations:

1/X.scale 0
pmm.to.pix[,] = 0 1/Y.scale
0 0
X.scale 0
pix.to.pmm[,] = 0 Y.scale
0 0

(Both of the arrays “pmm.to.mm[,]” and “mm.to.pmm[,]”” contain identity
transformations when correction for perspective distortion is disabled.)

How to Use the Arrays “pmm.to.mm[,]” and “mm.to.pmml[,]”

How do you use “pmm.to.mm[,]” and “mm.to.pmm][,]” to correct for perspective
distortion when the vision system does not automatically do it for you?

The V* routine “tr.point” (see below) transforms a point using the transformation
array provided. Your application program can use this routine as follows:

= Lines are transformed by simply transforming the two endpoints of the line

= Circles transform to an egg shape under perspective projection

NOTE: The effect can be approximated by transforming the center
of the circle. A radius for the transformed circle can then be
computed by transforming some points on the perimeter of the
circle and computing their average distance to the transformed
center point.

AdeptVision Reference Guide, Rev A 311

Appendix C Calibration Arrays

.PROGRAM tr.point(trans[,], pt[], tpt[])

; ABSTRACT: Transform a 2-D point given a 3x3 homogeneous
; transformation.

; INPUT PARAM: trans[,] 3x3 real array containing a 2-D homogeneous

; transform with pixel-to-mm scaling and

; compensation for perspective .

; pt(] 3-element real array containing the X,Y,Z

; coordinates of the point to be transformed
; (the Z value should be 1 unless you are

; scaling)

; OUTPUT PARAM: tpt[]] 3-element real array containing the X,Y,Z
; coordinates of the transformed point
; (normalized so that the Z value is 1)

; Copyright (c) 1992 by Adept Technology, Inc.
AUTO row, col, sum
FOR row

0TO 2 ;Compute transformed point
sum =0
FOR col=0TO 2
sum = sum-+trans[row,col]*pt[col]
END
tpt[row] = sum

END

tpt[0] = tpt[0]/tpt[2] ;Normalize the result
tpt[1] = tpt[1])/tpt[2]
tpt[2] = 1

.END

As an example of how to use the routine “tr.point”, the following instructions
apply perspective correction to the centroid of a blob. (They would be executed
after the blob has been successfully VLOCATEd.)

pt[0] = VFEATURE(2) ;X coordinate in "simple mm space”
pt[1] = VFEATURE(3) ;Y " " " "
pt[2] =1

CALL tr.point(mm.to.pmm[,], pt[], exact_pt[])

After these instructions are executed, the elements “exact_pt[0]” and
“exact_pt[1]” contain the X,Y location of the object centroid with correction for
perspective distortion.

312 AdeptVision Reference Guide, Rev A

Upgrading Program Code

Introduction e 314

Compatibility Summary 314

AdeptVision Reference Guide, Rev A 313

Appendix D Introduction

Introduction

Program code written for systems prior to version 11.0 needs to be upgraded. All
version 11.0- and later-compatible program code will continue to work with
version 12.1 systems.

The following section provides a compatability summary for users that need to
upgrade pre-11.0 program code. This is not a summary of all changes that
occurred prior to version 11.0. It is a summary of operations that have changed
and may require modifications to upgrade pre-11.0 program code so it will
execute correctly in version 11.0 and later systems.

Compatibility Summary

314

Maximum value for V.LAST.LINE is now 480 instead of 484.

The system parameters V.FIRST.COL, V.LAST.COL, V.FIRST.LINE, and
V.LAST.LINE are no longer used as a clipping window for VOCR.

V.FIRST.COL, etc., no longer define the AOI for the following instructions:

VADD VAUTOTHR VCOPY
VCONVOLVE VEDGE VHISTOGRAM
VMORPH VSUBTRACT VTHRESHOLD

The old frame numbers 1 and 2 will no longer be accepted. 1nnn (e.g., 1001 and
1002) must be used.

When a frame number of 1nnn (e.g., 1001) is used, the entire frame is processed as
before.

The default value of V.OFFSET is set to 255 instead of 127 when the system is
loaded.

The maximum physical camera number is 4 instead of 8.

5x5 (and larger) convolutions can not be applied on full frame (640x480 image).
They are limited to 508-pixel-wide AOISs.

Correlation templates and the AOIs of image processing operations are reduced if
necessary to become a multiple of 4 pixels in width. If you need to know the exact
size of a template, use VSHOW.MODEL.

V.SHOW.MODEL now shows templates in the middle of the vision window.

AdeptVision Reference Guide, Rev A

Appendix D Compatibility Summary

VDEF.CONVOLVE must be given a 7x7 array instead of a 5x5 array.

VPUTPIC strips the binary out of averaged images. Type #0 stores both grayscale
and binary images.

Instructions with added arguments that make them incompatible are:

VADD VCONVOLVE VEDGE
VMORPH VSUBTRACT VTHRESHOLD

These incompatibilities are caused by standardizing on the “cam-type-dmode”
argument triples.

VFIND.LINE, VFIND.ARC, and VFIND.POINT have a new “shape” argument
for consistency with the other instructions.

Full-frame and field-only image acquires do not mix well. If you plan to do both
with the same vision system, you experience some delay when switching back
and forth. The reason for this is that full-frame is interlaced and field-only is
noninterlaced, yet all cameras connected to the MUX are being driven by the same
synch signals.

VWINDOW, VOCR, VTRAIN.MODEL (on a font), and VTRAIN automatically do
VSELECT of the specified frame store. This should pose no
backward-compatibility problems, but it was not done in previous versions.

VMORPH, VEDGE, VTHRESHOLD, VCONVOLVE, VCOPY, VADD, and VSUB
operations do not need to wait for the vision processor to be idle. This should
pose no compatibility problems and may allow some applications to run faster.

AdeptVision VXL has a third frame store for live video. Therefore, displaying live
video will not erase a physical frame store. This should pose no compatibility
problems and may provide a useful addition to some applications.

Convolutions larger than 3x3 require the AdeptVision Enhanced VXL Interface
option.

The OCR capability is no longer optional: It is included with the basic system.

AdeptVision Reference Guide, Rev A 315

Numerics

2nd moment data
enabling collection of 20

A

Adept

address, e-mail 15

fax back service 16

web page 16
Adept MV Controller User’s Guide 8
AdeptVision keyword summary 9
AdeptVision User’s Guide 8
AIM 9
AOI

and physical frame store 54

and virtual frame store 54
AOI (see Area-of-interest)
Application questions 15
Applications, Internet e-mail address 15
Arc Finder Shape 111
Arc fitting

enabling/disabling 131
Area-of-interest

defining 50
Arrangement of elements of Convolution

Matrix 60

B

Background
differentiating from foreground 31
Binary
images 9, 10, 12, 13, 22, 26, 28, 29,
33, 69, 70, 80, 85, 146, 167,
168, 180, 181, 183, 198, 207,
253, 260, 262, 280, 293, 302
Binary processing
enabling/disabling 33
Binary threshold
setting second threshold 22
Boundary analysis
enabling/disabling 38

Index

C

Calibration 204, 205, 309
and position
for font training 275
for prototype training 265, 267
for training 271

arrays 140, 203, 309
camera 42, 44, 218, 265, 267, 271,
275, 308
data 218

font training sensitivity to 275
prototype training sensitivity
to 265, 267
training sensitivity to 265, 267,
271, 275
correction for perspective
distortion 116, 124, 213, 218
11, 12, 139, 140, 203, 218, 221,
308
pass 308
read 308
method 204, 205
procedure 139
programs 139, 203, 308
utility 205
status 204
target 309
values
array of 203
virtual camera 12, 220
X/Y ratio inthe 293
Calls, service 14
Centroid data
enabling collection of 39
Chain encode perimeters 303
Classify features 304
Compatibility 8
summary 314
Connectivity analysis 302
Contents of VGETPIC/VPUTPIC header
string 143
Conventions 8

data

AdeptVision Reference Guide, Rev A 317

Index

Convolution matrix 60

Correlation
binary 45, 47, 48, 221
matches 47
matching 47
normalized 10, 47, 49
operation 48
results of the 46
score 46

template 10, 11, 13, 14, 46, 48, 75,
76, 82, 156, 158, 234, 235, 243,
244, 245, 272, 275, 276, 277,

315
number 46
tool 47
Cross-gradient
edge operator 94
Customer service assistance
phone numbers 14

D
Debugging
visiondry run 84
Description of planning types
201
Description of the mode parameter
272
Descriptions of Vision Keywords 17
Disjoint image regions
special processing 77
Display frame store 54

E

Edge operators
cross-gradient 94
Sobel 94
Edge strength
setting 92
Effect of V.DISJOINT switch 78
Effects of V.MAX.PIXEL.VAR
parameter 168

Elements of VGETCAL/VPUTCAL scaler

calibration array 204
E-mail address 15
Example of V.BORDER.DIST 37

F
Fax On Demand, Adept 16

First column processed in image 129
First line processed in image 130
Fitting lines and arcs to edges 303
Fitting primitive edges to chains 303
Foreground

differentiating from background 31
Frame store

display 54
France, Adept office 15

G
Gain
setting video 132
Grayscale
average 25
averaging 253
camera output 79, 80
correlation
normalized 45
data 142, 215
edges 216
frame buffers
virtual 220

frame store 9, 11, 28, 56, 108, 118,

125, 126, 146, 194, 216
frame-grabbed 79, 80, 293
image processing

edge threshold 10, 92
images 10, 13, 26, 85, 92, 94, 141,
181, 197, 206, 207, 241, 253,
260, 293, 294
and binary 44, 315
edge strength 92
mode 108, 167, 170, 255
precision calculations 219
processing 31, 262
range 22
subtraction 253, 254
summed 25
tool 117
underlying image 26, 253
values
range of 22

H
High speed trigger
waiting for 149
How to use the arrays ‘pmm.to.mm[,]’

318 AdeptVision Reference Guide, Rev A

and 'mm.to.pmm[,]’ 311

I

Image
background vs. foreground 31
Image boundaries
setting bottom edge 153
setting leftedge 129
setting right edge 152
setting top edge 130
Image brightness and contrast 132
Information, training 15
Input parameters using virtual
cameras 115, 202, 273
Instructions for Adept Utility Programs 8
Internet 15
Introduction 7

L

Last column processed in image 152

Last line processed in image 153

Line Finder tool start position and
polarity 119

Line Finder tool, sample 120

M

Match, verify 305

Matrix
color coding of 279
convolution 57
discrimination 279
elements of a convolution matrix 60
millimeter-to-pixel

transformation
pixel-to-millimeter
transformation

Monitor commands
VABORT 24
VAUTOTHR 28
VDEF.MORPH 69
VDEF.SUBPROTO 71
VDELETE 75
VDISPLAY 79
VLOAD 156
VPLAN.FINDER 201
VQUEUE 208
VRENAME 212
VSHOW 222

139, 203

139, 203

Index

VSTATUS 239
VSTORE 243
VTRAIN 265

N

NGC (Normalized Grayscale
Correlation) 47
Normalized grayscale correlation 45, 47

O

ObjectFinder 172, 302
model 156, 158, 225, 243
and get-hole 227
and get-proto/holes and
get-subproto 227
globally storing only 244, 246
name restriction 243
used in planning 103
recognition 10, 13, 114, 115, 232
arc and line-fitting for 232
for multi-instance training 114
tool 222, 302
and find-hole 161
and VLOCATE parameter
restrictions 160, 162
subprototype and gap
information 161
VFEATURE function data for
following VLOCATE 102
following VSHOW 103
OCR fonts 277
Optical Character Recognition (OCR) 10,
11, 12, 13, 14, 62, 75, 182, 234,
243, 245, 275
Overview of perspective distortion 308

P

Perspective 307, 308, 310
calibration 139, 308
distortion 116, 124, 205, 213, 218,
307, 308, 309, 310, 311, 312
commentson 218
correction for 116, 124, 205, 213,
218, 308, 309, 312
distortion, overview of 308
transformation 308, 309
Perspectively
corrected

AdeptVision Reference Guide, Rev A 319

Index

plane 218
distorted

arc 218

circle 218

Program instructions

V.EDGE.INFO 90
VABORT 24
VADD 25
VAUTOTHR 28
VCONVOLVE 41
VCOPY 43
VCORRELATE 45
VDEF.AOI 50
VDEF.CONVOLVE 56
VDEF.FONT 62
VDEF.LUT 67
VDEF.MORPH 69
VDEF.SUBPROTO 71
VDEFTRANS 73
VDEFGRIP 64
VDELETE 75
VDISPLAY 79
VEDGE 85
VEDGE.INFO 87
VFIND.ARC 106
VFIND.LINE 116
VFIND.POINT 124
VFINDER 114
VGAPS 134
VGET.AOI 138
VGET.TRANS 145
VGETCAL 139
VGETPIC 141
VHISTOGRAM 146
VLOAD 158
VLOCATE 160
VMORPH 180
VOCR 182
VPLAN.FINDER 201
VPUTCAL 203
VPUTPIC 206
VRULERI 213
VSELECT 220
VSHOW 225
VSHOW.MODEL 234
VSTATUS 240
VSTORE 245
VSUBPROTO 250
VSUBTRACT 253
VTHRESHOLD 260

320

VTRAIN 267
VTRAIN.FINDER 271
VTRAIN.MODEL 275
VWAIT 282
VWINDOW 284
VWINDOWB 287
VWINDOWI 290
Proposing prototype-to-image
matches 304
Prototype recognition 301
algorithms 301
analyze a region during 12
disable 12, 211
enable or disable 12, 211
normal prototype 186
planning for 197
switches used only with 263
Publications, related 8

Q

Questions, application 15

R

Real-valued functions
VFEATURE 96
VQUEUE 210

Related publications 8

S

Sample Line Finder tool 120
Service calls 14
Shape parameters
for arc-shaped tools 53
for rectangular tools 51
Sobel
edge operator 94
Support
application support 15
Internet E-Mail Address 15
phone numbers 14
training information 15
System parameters
V.2ND.THRESH 22
V.BORDER.DIST 35
V.EDGE.STRENGTH 92
V.EDGE.TYPE 94
V.FIRST.COL 129
V.FIRST.LINE 130

AdeptVision Reference Guide, Rev A

V.GAIN 132
V.IO.WAIT 149
V.LAST.COL 152
V.LAST.LINE 153
V.LAST.VER.DIST 154
V.MAX.AREA 165
V.MAX.PIXEL.VAR 167
V.MAX.SD 170
V.MAX.TIME 172
V.MAX.VER.DIST 173
V.MIN.AREA 175
V.MIN.HOLE.AREA 176
V.MIN.LEN 177
V.MIN.MAX.RADII 178
V.OFFSET 189
V.SYNCH.STROBE 257
V.THRESHOLD 262

System switches

T

V.2ND.MOMENTS 20
V.BACKLIGHT 31
V.BINARY 33
V.BOUNDARIES 38
V.CENTROID 39
V.DISIOINT 77
V.DRY.RUN 84
V.FITARCS 131
V.HOLES 148
V.OVERLAPPING 191
V.PERIMETER 192
V.RECOGNITION 211
V.SHOW.BOUNDS 229
V.SHOW.EDGES 230
V.SHOW.FEATS 232
V.SHOW.GRIP 233
V.SHOW.RECOG 237
V.SHOW.VERIFY 238
V.STROBE 248
V.SUBTRACT.HOLE 255
V.TOUCHING 263
VISION 151

Threshold

setting second binary 22

Training information 15

U

Upgrading program code 313

Index

\"

V" Language Reference Guide 9

V*Language User’s Guide 9
V.2ND.MOMENTS system switch 20
V.2ND.THRESH system parameter 22
V.BACKLIGHT system switch 31
V.BINARY system switch 33
V.BORDER.DIST system parameter 35
V.BOUNDARIES system switch 38
V.CENTROID system switch 39
V.DISJOINT system switch 77
V.DRY.RUN system switch 84
V.EDGE.INFO program instruction 90
V.EDGE.STRENGTH system

parameter 92
V.EDGE.TYPE system parameter 94
V.FIRST.COL system parameter 129
V.FIRST.LINE system parameter 130
V.FIT ARCS system switch 131
V.GAIN system parameter 132
V.HOLES system switch 148
V.IO.WAIT system parameter 149
V.LAST.COL system parameter 152
V.LAST.LINE system parameter 153
V.LAST.VER.DIST system parameter 154
V.MAX.AREA system parameter 165
V.MAX.PIXEL.VAR system

parameter 167
V.MAX.SD system parameter 170
V.MAX.TIME system parameter 172
V.MAX.VER.DIST system parameter 173
V.MIN.AREA system parameter 175
V.MIN.HOLE.AREA system

parameter 176
V.MIN.LEN system parameter 177
V.MIN.MAX.RADII system

parameter 178
V.OFFSET system parameter 189
V.OVERLAPPING system switch 191
V.PERIMETER system switch 192
V.RECOGNITION system switch 211
V.SHOW.BOUNDS system switch 229
V.SHOW.EDGES system switch 230
V.SHOW.FEATS system switch 232
V.SHOW.GRIP system switch 233
V.SHOW.RECOG system switch 237
V.SHOW.VERIFY system switch 238
V.STROBE system switch 248
V.SUBTRACT.HOLE system switch 255

AdeptVision Reference Guide, Rev A 321

Index

V.SYNC.STROBE system parameter 257
V. THRESHOLD system parameter 262
V.TOUCHING system switch 263
VABORT monitor command and program
instruction 24
VADD program instruction 25
VAUTOTHR monitor command and
program instruction 28
VCONVOLVE program instruction 41
VCOPY program instruction 43
VCORRELATE program instruction 45
VDEF.AOI program instruction 50
VDEF.CONVOLVE program
instruction 56
VDEF.FONT program instruction 62
VDEF.LUT program instruction 67
VDEF.MORPH monitor command and
program instruction 69
VDEF.SUBPROTO monitor command
and program instruction 71
VDEF.TRANS program instruction 73
VDEFGRIP program instruction 64
VDELETE monitor command and
program instruction 75
VDISPLAY monitor command and
program instruction 79
VEDGE program instruction 85
VEDGE.INFO program instruction 87
Verify match 305
VFEATURE
function data 96
VFEATURE real-valued function 96
VFIND.ARC program instruction 106
VFIND.LINE program instruction 116
VFIND.POINT program instruction 124
VFINDER program instruction 114
VGAPS program instruction 134
VGET.AOI program instruction 138
VGET.TRANS program instruction 145
VGETCAL program instruction 139
VGETPIC program instruction 141
VHISTOGRAM program instruction 146
Virtual frame store 54
Vision coordinate systems 310
VISION system switch 151
Vision system switch 151
VLOAD
monitor commmand 156
program instruction 158

VLOCATE program instruction 160
VMORPH program instruction 180
VOCR program instruction 182
VPICTURE
monitor command 194
program instruction 194
VPICTURE monitor command and
program instruction 194
VPLAN.FINDER monitor command and
program instruction 201
VPUTCAL program instruction 203
VPUTPIC program instruction 206
VQUEUE
monitor command 208
real-valued function 210
VRENAME monitor command 212
VRULERI program instruction 213
VSELECT program instruction 220
VSHOW
monitor command 222
program instruction 225
VSHOW.MODEL program
instruction 234
VSTATUS monitor command 239
VSTATUS program instruction 239
VSTORE
monitor command 243
program instruction 245
VSUBPROTO program instruction 250
VSUBTRACT program instruction 253
VTHRESHOLD program instruction 260
VTRAIN
monitor command 265
program instruction 267
VTRAIN.FINDER program
instructions 271
VTRAIN.MODEL program
instruction 275
VWAIT program instruction 282
VWINDOW program instruction 284
VWINDOWB program instruction 287
VWINDOWI program instruction 290

W
Waiting for high speed trigger 149

322 AdeptVision Reference Guide, Rev A

Adept User’'s Manual
Comment Form

We have provided this form to allow you to make comments about this manual, to point out any
mistakes you may find, or to offer suggestions about information you want to see added to the
manual. We review and revise user’s manuals on a regular basis, and any comments or feedback
you send us will be given serious consideration. Thank you for your input.

NAME DATE

COMPANY

ADDRESS

PHONE

MANUAL TITLE: AdeptVision Reference Guide, Rev A
PART NUMBER: 00962-01300 PUBLICATION DATE: August 1997

COMMENTS

MAIL TO: Adept Technology, Inc.
Technical Publications Dept.
11133 Kenwood Rd.
Cincinnati, OH 45242

	MANUALS MENU
	Chapter 1: Introduction
	Compatibility
	Conventions
	Related Publications
	AdeptVision Keyword Summary
	How Can I Get Help?
	Within the Continental United States
	Service Calls
	Application Questions
	Applications Internet E-Mail Address
	Training Information

	Within Europe
	France

	Outside Continental United States or Europe
	Adept Fax on Demand
	Adept on Demand Web Page

	Chapter 2: Descriptions of Vision Keywords
	KEYWORD
	V.2ND.MOMENTS
	V.2ND.THRESH
	VABORT
	VADD
	VAUTOTHR
	V.BACKLIGHT
	V.BINARY
	V.BORDER.DIST
	V.BOUNDARIES
	V.CENTROID
	VCONVOLVE
	VCOPY
	VCORRELATE
	VCORRELATE
	VDEF.AOI
	VDEF.CONVOLVE
	VDEF.FONT
	VDEFGRIP
	VDEFGRIP
	VDEF.LUT
	VDEF.MORPH
	VDEF.SUBPROTO
	VDEF.TRANS
	VDELETE
	V.DISJOINT
	VDISPLAY
	V.DRY.RUN
	VEDGE
	VEDGE.INFO
	V.EDGE.INFO
	V.EDGE.STRENGTH
	V.EDGE.TYPE
	VFEATURE
	VFIND.ARC
	VFIND.ARC
	VFINDER
	VFIND.LINE
	VFIND.LINE
	VFIND.POINT
	VFIND.POINT
	V.FIRST.COL
	V.FIRST.LINE
	V.FIT.ARCS
	V.GAIN
	VGAPS
	VGET.AOI
	VGETCAL
	VGETPIC
	VGET.TRANS
	VHISTOGRAM
	V.HOLES
	V.IO.WAIT
	VISION
	V.LAST.COL
	V.LAST.LINE
	V.LAST.VER.DIST
	VLOAD
	VLOAD
	VLOCATE
	V.MAX.AREA
	V.MAX.PIXEL.VAR
	V.MAX.SD
	V.MAX.TIME
	V.MAX.VER.DIST
	V.MIN.AREA
	V.MIN.HOLE.AREA
	V.MIN.LEN
	V.MIN.MAX.RADII
	VMORPH
	VOCR
	VOCR
	V.OFFSET
	V.OVERLAPPING
	V.PERIMETER
	VPICTURE
	VPLAN.FINDER
	VPUTCAL
	VPUTPIC
	VQUEUE
	VQUEUE
	V.RECOGNITION
	VRENAME
	VRULERI
	VRULERI
	VRULERI
	VSELECT
	VSHOW
	VSHOW
	V.SHOW.BOUNDS
	V.SHOW.EDGES
	V.SHOW.FEATS
	V.SHOW.GRIP
	VSHOW.MODEL
	V.SHOW.RECOG
	V.SHOW.VERIFY
	VSTATUS
	VSTATUS
	VSTORE
	VSTORE
	V.STROBE
	VSUBPROTO
	VSUBTRACT
	V.SUBTRACT.HOLE
	V.SYNC.STROBE
	VTHRESHOLD
	V.THRESHOLD
	V.TOUCHING
	VTRAIN
	VTRAIN
	VTRAIN
	VTRAIN
	VTRAIN.FINDER
	VTRAIN.MODEL
	VTRAIN.MODEL
	VWAIT
	VWINDOW
	VWINDOW
	VWINDOWB
	VWINDOWI
	VWINDOWI
	VWINDOWI

	Appendix A: AdeptVision Quick Reference
	Appendix B: Prototype Recognition Algorithms
	Overview
	Connectivity Analysis
	Chain Encode Perimeters
	Fit Primitive Edges to Chains
	Fit Lines and Arcs to Edges
	Classify Features
	Propose Prototype-to-image Matches
	Verify Match

	Appendix C: Perspective Distortion
	Overview of Perspective Distortion
	Calibration Arrays
	How to Use the Arrays “pmm.to.mm[,]” and “mm.to.pm...

	Appendix D: Upgrading Program Code
	Introduction
	Compatibility Summary

	Index
	Help Markers
	V.2ND.MOMENTS-S
	V.2ND.THRESH-P
	VABORT-M
	VABORT-I
	VADD-I
	VAUTOTHR-M
	VAUTOTHR-I
	V.BACKLIGHT-S
	V.BINARY-S
	V.BORDER.DIST-P
	V.BOUNDARIES-S
	V.CENTROID-S
	VCONVOLVE-I
	VCOPY-I
	VCORRELATE-I
	VDEF.AOI-I
	VDEF.CONVOLVE-I
	VDEF.FONT-I
	VDEFGRIP-I
	VDEF.LUT-I
	VDEF.MORPH-I
	VDEF.SUBPROTO-M
	VDEF.SUBPROTO-I
	VDEF.TRANS-I
	VDELETE-M
	VDELETE-I
	V.DISJOINT-S
	VDISPLAY-M
	VDISPLAY-I
	V.DRY.RUN-S
	VEDGE-I
	VEDGE.INFO-I
	V.EDGE.INFO-S
	V.EDGE.STRENGTH-P
	V.EDGE.TYPE-P
	VFEATURE-R
	VFIND.ARC-I
	VFINDER-I
	VFIND.LINE-I
	VFIND.POINT-I
	V.FIRST.COL-P
	V.FIRST.LINE-P
	V.FIT.ARCS-S
	V.GAIN-P
	VGAPS-I
	VGET.AOI-I
	VGETCAL-I
	VGETPIC-I
	VGET.TRANS-I
	VHISTOGRAM-M
	VHISTOGRAM-I
	V.HOLES-S
	V.IO.WAIT-P
	VISION-S
	V.LAST.COL-P
	V.LAST.LINE-P
	V.LAST.VER.DIST-P
	VLOAD-M
	VLOAD-I
	VLOCATE-I
	V.MAX.AREA-P
	V.MAX.PIXEL.VAR-P
	V.MAX.SD-P
	V.MAX.TIME-P
	V.MAX.VER.DIST-P
	V.MIN.AREA-P
	V.MIN.HOLE.AREA-P
	V.MIN.LEN-P
	V.MIN.MAX.RADII-S
	VMORPH-I
	VOCR-I
	V.OFFSET-P
	V.OVERLAPPING-S
	V.PERIMETER-S
	VPICTURE-M
	VPICTURE-I
	VPLAN.FINDER-I
	VPUTCAL-I
	VPUTPIC-I
	VQUEUE-M
	VQUEUE-R
	V.RECOGNITION-S
	VRENAME-M
	VRULERI-I
	VSELECT-I
	VSHOW-M
	VSHOW-I
	V.SHOW.BOUNDS-S
	V.SHOW.EDGES-S
	V.SHOW.FEATS-S
	V.SHOW.GRIP-S
	VSHOW.MODEL-I
	V.SHOW.RECOG-S
	V.SHOW.VERIFY-S
	VSTATUS-M
	VSTATUS-I
	VSTORE-M
	VSTORE-I
	V.STROBE-S
	VSUBPROTO-I
	VSUBTRACT-I
	V.SUBTRACT.HOLE-S
	V.SYNC.STROBE-P
	VTHRESHOLD-I
	V.THRESHOLD-P
	V.TOUCHING-S
	VTRAIN-M
	VTRAIN-I
	VTRAIN.FINDER-I
	VTRAIN.MODEL-I
	VWAIT-I
	VWINDOW-I
	VWINDOWB-I
	VWINDOWI-I

