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F.1 INTRODUCTION 

 

This module is the final step in the MPX project. In this module you will build a 

complete MultiProgramming eXecutive by integrating the required and optional project 

modules that you have previously completed, along with other modules that your 

instructor may provide. 

 

The basic elements of MPX are the user interface, process management, dispatching and 

interrupt handling, character device management, and I/O management. All of the basic 

capabilities except I/O management have been covered by previous required modules. In 

this module we will add I/O management by implementing an I/O request handler and 

scheduler to process I/O requests by test processes, using the MPX device drivers which 

you have developed or which your instructor will provide. 

 

Another important element of the Final MPX is a new, more realistic philosophy for 

dispatching processes. In previous modules, the MPX main program and command 

handler were implemented as static, standalone programs. Dispatching of processes was 

carried out by command for a short time interval, after which the command handler 

resumed control. Only the simple test programs were executed by processes. 

 

In the Final MPX, dispatching is continuous, and the command handler itself is a process. 

This means that execution of the command handler is interleaved with execution of other 

processes under the continuous control of the dispatcher. Each process, including the 

command handler, executes until it performs an MPX system request (call to sys_req ) or 

until an interrupt occurs. System requests or interrupts may cause a new process to be 

scheduled by a context switch. Most system calls will be I/O requests. In the final MPX 

all requests for keyboard input or terminal (screen) output are intercepted and handled by 

MPX, even though they may be invoked by standard C functions.  Interrupts are caused 

by I/O events. 

 

After implementing the final MPX, you will demonstrate its capabilities by loading and 

activating an assortment of test processes using Load and Resume commands (all loaded 



processes are initially suspended). These processes will then be dispatched on a 

continuous basis, alternating with the command handler itself. Process priorities may be 

adjusted, leading to different relative execution rates. The command handler will always 

have the highest priority. 

 

The test processes supplied assume that your PC is connected to a remote “terminal” (via 

one of the serial ports), or running the serial port simulator provided by your instructor, 

and that you have implemented the appropriate interrupt-driven device handlers. 

Adjustments should be made to the test processes if you have a different configuration. 

 

Every process but one (the IDLE process) outputs regular messages, either to the display 

screen or to another device. One process besides the command handler accepts input 

(from a remote device). Some processes will be CPU bound, that is, they will compute a 

relatively long time between output messages. Other processes are I/O bound and 

generate messages continuously. Finally, some processes will run indefinitely until 

manually terminated, while others will run for a fixed number of repetitions and then 

terminate themselves. 

 

Devices are not exclusively allocated in MPX, so process output will be intermixed on 

each device. The output pattern should reflect the relative priority and characteristic 

behavior of each process. This pattern should change as processes are started and stopped 

and as priorities are adjusted.  

 

This chapter provides details for the structure and organization of MPX-PC. Section F.2 

discusses the key concepts introduced in this module: Continuous Dispatch and I/O 

Management. Section F.3 presents a detailed description of the organization of MPX-PC 

and of the new components that must be implemented to complete the system structure. 

Section F.4 discusses the support software applicable to the final module. The principal 

addition to the support environment is a collection of test processes. In addition, a 

substitute terminal driver is provided to route ordinary terminal I/O from the command 

handler through the MPX system call handler. The purpose of this is to allow the 

command handler to be interrupted by other processes while terminal input and output 

are underway. 

 

As usual the remaining sections of the chapter cover test procedures, documentation 

requirements, possible extensions, and hints and suggestions. The documentation for this 

module is of special importance, since it should constitute the final, comprehensive 

documentation package for the entire MPX project. 

 

F.2 KEY CONCEPTS 



 

Continuous Dispatch 

 

Previous modules which dispatched processes have done so only when requested by a 

specific command, and only for a limited period of time. Most of the time MPX was 

executing the command handler, which was not considered to be a process. 

 

In a realistic multitasking operating system, however, almost all programs (except the 

operating system resource managers) are viewed as processes. This includes command 

handlers. Execution of the command handler should be interleaved with other processes 

running on behalf of the same user or other users. 

 

MPX is a single-user system, since there is only one terminal, but it is a multiple process 

system. In its final form the OS must permit a user to initiate many processes and keep 

them executing even as the command handler is running. This is the approach we take in 

this module; under normal execution the command handler is a process, and it competes 

for processor time and other resources along with any other processes that may be ready. 

 

When dispatching is continuous, it may happen that no process is ready. In order to 

simplify the dispatcher and avoid dealing with this special case, we introduce an idle 

process which is always ready. This process has the lowest possible priority, but it will 

run when no other process is ready, thus assuring that there is always some process to 

run. In particular, the idle process will run while the command handler is waiting for a 

command, if no other processes have been loaded and activated. 

 

If continuous dispatching is the normal situation, a more complicated initialization 

procedure must be carried out to activate an initial set of processes. When a multitasking 

OS is first initiated, it executes an initialization program which is not a process. This 

program sets up the initial processes and calls the dispatcher for the first time. Similarly, 

a special procedure may be required at termination. 

 

In the final MPX structure, the main program begins by calling the usual initialization 

procedures. Among other responsibilities, these procedures set up the PCBs and initialize 

the process management system. The main program then activates two processes: one for 

the command handler, and one for the idle routine. The command handler, like the 

processes of Module R3, is already present in memory; The idle process, like those of 

Module R4, must be explicitly loaded. Both processes are set to the ready, not suspended 

state, but the command handler has the highest possible priority and the idle process has 

the lowest. 



 

The main program then calls the dispatcher to begin interleaved execution of these two 

processes. Command handler commands may now be used to explicitly load and activate 

other processes, which will proceed to share the resources with the original two. All 

processes except the command handler and idle process may be modified and terminated 

under user control. 

The command handler terminates when a quit command is received. Its final action is to 

remove itself and idle as active processes. When the dispatcher detects that no processes 

are active, it returns to the main program (which in MPX has been allowed to remain in 

memory). This program performs the final cleanup and exits from MPX. 

I/O Management 

 

In previous modules you have developed a device handler for a device. This handler 

provides low-level procedures to open and close devices and to transfer blocks of data to 

or from the device. This transfer could be performed without interrupts, but to maximize 

concurrency we have implemented interrupt-driven device control and included interrupt 

handlers which are activated after each character is transferred, in order to begin transfer 

of the next character, or to terminate the operation if the entire block has been processed. 

A set of drivers such as you have implemented forms an important part of a complete I/O 

management system, but only a part. In your initial implementation these drivers were 

called directly by test programs. In a complete multitasking operating system they must 

be called in an orderly way in response to requests that are generated by running 

processes. This requires an I/O management and scheduling strategy, as described in the 

Device Management chapter of your textbook. 

 

A key element of an I/O management system is an I/O Control Block (IOCB) for each 

device or channel. This data structure has a role complementary to that of the Device 

Control Block (DCB) which you have embedded in the driver itself, but it is not the same 

structure. The IOCB contains information allowing higher-level software to access the 

device driver. 

 

Some of the information in the IOCB describes permanent characteristics of the device: 

name, channel number, etc. This information also specifies the interrupt IDs and interrupt 

vectors associated with the device, and the address of each procedure in the device driver. 

This latter information must be kept current in case the driver is loaded as needed into 

transient areas of memory. 

 

Additional information in the IOCB identifies the current operation, if any, that is 

underway for this device. The ID of the process which requested the transfer is recorded 

in the IOCB. Finally, the IOCB includes an event flag, as introduced in Module R5, that 



can be used by an interrupt handler to report back to the system about the current status 

of the I/O transfer. 

 

A typical I/O device can process only one transfer at a time, but additional requests may 

be received before the current transfer is completed. For this reason there must be a 

waiting queue for each device which may contain pending I/O requests. Each entry in this 

queue describes an I/O request by identifying the process making the request, the buffer 

location, and the type of transfer to perform. Additional information is required in the 

case of an addressable device such as a disk; these cases are not included in MPX-PC. 

 

Requests for I/O transfers are initiated by processes using system calls, and passed to an 

I/O scheduler. This routine examines the IOCB to see if the device is busy; if so the 

request is placed in the waiting queue. This queue is normally organized in a simple first-

come, first-served order. 

If the device is not busy, the request may be passed to the read or write procedure in the 

appropriate device driver. This procedure initializes the buffer, enables the appropriate 

interrupt, and (if the transfer is a write) outputs the first byte to the device's output port. 

 

In either case, the process is moved from the ready state to the blocked state (unless non-

blocking I/O was requested). A context switch is performed, and another ready process is 

dispatched. 

As the transfer of each byte is completed, an interrupt occurs, generated by the device's 

hardware interface. This type of interrupt-driven I/O was developed in Module R5. The 

interrupt handler in the device driver checks to see if more data is to be transferred. If so, 

it processes the next byte and returns to the interrupted process. Note that in general this 

is not the process that requested the data transfer. 

 

When the interrupt handler detects that the final byte has been transferred, it must set the 

event flag in the IOCB. This flag is a signal to the perform an I/O completion sequence. 

This typically involves returning the requesting process to the ready state and setting an 

event flag to notify that process that the transfer is complete. The waiting queue for the 

device must also be checked, and if there are requests waiting, the next transfer must be 

initiated by a new call to the device driver. Finally, either the interrupted process may be 

resumed, or a new process (possibly the one which had requested the I/O) may be 

scheduled instead. 

 

F.3 DETAILED DESCRIPTION 

 

General Structure 



 

This section presents the general organization and flow of control in the complete MPX-

PC system. The elements of the system include the following: 

 Main program  

 Command handler  

 Processing routines for each command  

 Dispatcher and system call handler  

 Device drivers  

 I/O scheduler  

 I/O completion handler  

 System data structures  

 Storage area for the loaded processes.  

 

Initial operation begins with an initialization procedure which is different from that of 

previous MPX versions. The key responsibility of the initialization procedure is to set up 

two initial processes. One of these is a special IDLE process which runs only when there 

is no other process; the second is the command handler itself. The initialization procedure 

creates PCBs for each of these processes. Each is a system process; the command handler 

has the highest possible priority, and the idle process has the lowest. The processes are 

installed on the ready queue, and the dispatcher is started. Since the command handler is 

now the highest priority ready process, it will immediately be dispatched. The command 

handler will perform its own initialization and wait for a command. To receive command 

input an MPX system call is invoked for data transfer from the "terminal" (i.e., the 

keyboard). This request places the command handler in a blocked state, so other 

processes may be dispatched. 

 

Using the usual commands, various test processes can then be loaded and made ready to 

run. When placed on the ready queue, they will automatically be dispatched when their 

turn comes. Most of these processes will make input and output requests, invoking the 

I/O management facilities which are to be implemented for this module. 

 

A typical data transfer operation begins with a request such as READ or WRITE issued 

from within the normal program code of an application process. This request specifies the 

transfer of a block of data (typically a line of text) from a program buffer to a specified 

device, or vice versa. In MPX such a request is made using int60h which invokes the 

support routine sys_req. This in turn invokes the system call handler provided by your 

program. 

 

The call handler must process READ and WRITE requests in the same manner that it has 

previously processed IDLE and TERMINATE operations. In principle, each request 

invokes a call to the appropriate routine in one of the I/O drivers. But it is not quite this 



simple. There are multiple processes, and we must be sure that another process is not 

currently accessing the same device. Although devices are not allocated to processes on a 

long-term basis, we must ensure that the transfer of each block (i.e., line of characters) is 

completed before a new transfer begins. 

To resolve competition for devices, the system call handler passes each request to the I/O 

scheduler. This scheduler maintains a record (in the form of a set of queues) of which 

processes are currently using, or waiting to use, each device. If the requested device is 

busy, the request is placed in the appropriate waiting queue. 

 

If the device is not currently in use, the request can be honored immediately. In this case 

a call is made to the appropriate device driver procedure (e.g., com_write, 

com_read). This procedure sets up the transfer information in the IOCB, enables the 

appropriate interrupts, and begins transfer of the first byte. 

 

In either case the process is placed in the blocked state. The dispatcher is called, and a 

new process is dispatched. 

 

As each byte is transferred, an interrupt occurs which invokes the interrupt handler in the 

device driver. This handler determines whether there is more data to be transferred. If so, 

it processes the next byte and returns to the point of interruption. If not, it sets the event 

flag, signaling that the device has completed a transfer. This flag will be detected during 

the next system call, and cause activation of the I/O completion sequence. 

 

The completion sequence has several responsibilities. It must return the process which 

was performing the I/O to the ready state, remove it from any waiting queue, and reinstall 

it in the ready queue. In addition, the handler must determine if there are requests 

pending in the waiting queue for the device. If so, it must setup the transfer and call the 

device driver as described above. 

This cycle continues until MPX is terminated by an explicit command. The remainder of 

this section describes these components and operations in more detail. 

 

Data Structures 

 

The principal data structures to be added for this module are the IOCBs which record 

information about the current transfer and any other requested transfers for each device. 

While it is possible to maintain a combined waiting queue, we recommend a separate 

queue for each device. 

Each active or pending I/O request must be represented by some type of descriptor. This 

descriptor must identify the process, the device, and the operation. In addition it should 



indicate the location of the transfer buffer and the count variable. Note that, except for the 

process ID, this is the information passed as parameters during a system call. 

 

It is possible to define a special I/O descriptor record type to hold this information. 

Alternately, space for an I/O descriptor may be allocated within each PCB. Note that, in 

MPX, a process may have only one I/O request at a time. 

 

The IOCB must make it possible to locate the current active request for a given device, 

and to select a new one from the waiting queue when necessary. The IOCB must also 

provide the event flag to be used to control I/O for each specific device.  

 

System Initialization and Termination 

 

In previous modules you may have set up your command handler as the main procedure 

for MPX, or you may have provided a separate main procedure which invoked the 

command handler after suitable initialization steps. At this point we recommend that you 

use a separate main program. The details of our discussion here will be based on this 

strategy. 

 

The initial steps of the main procedure must perform all required initialization for the 

various components of your MPX package. In particular this must include a call to 

sys_init (using the parameter MODULE_F plus the code for any optional modules 

included). A call to sys_set_vec is also required to notify the system of the identity 

of your system call handler. 

It is also necessary at this point to call the open procedures for the terminal (console) and 

the other devices you will be using. The terminal driver is supplied with the MPX support 

software; the other drivers were developed in Module R5 or will be supplied by your 

instructor. These procedures include (at least) trm_open,and com_open. No I/O 

operations, including terminal output via printf, should be performed until the 

corresponding drivers are opened. At the same time, the IOCBs and their associated 

waiting queues should be initialized. 

 

The next steps to be performed are those previously carried out by the Dispatch 

command in Module R3. These steps include initialization of the PCB collection, setup of 

two PCBs, and installation of both PCBs on the ready queue. One PCB is assigned to the 

command handler. This PCB is initialized in the same manner as the PCBs for the 

"directly linked" processes of Module R3. Its initial execution address (and the initial IP 

value on the stack) must be set to the entry point of the command handler procedure. This 

process is designated a System process, given the highest possible priority, and placed in 

the ready, not suspended state. Be sure to use the correct segment values for the initial 



context of each of these processes, as in Module R3 and R4. 

The PCB assigned to the command handler may require a larger stack than the other 

PCBs. This is because the command handler is a full C program which may perform 

complex nested operations including file transfers. A recommended minimum stack size 

for this PCB only is 4K bytes. 

 

The second PCB is assigned to the IDLE process, which must now be loaded. This 

process is found in the executable file IDLE.MPX. It should be loaded into a suitable 

allocated memory area, using the strategy developed for the Load Program command of 

Module R4. This process is also designated a System process, given the lowest possible 

priority, and placed in the ready, not suspended state. 

 

The final action of the initialization sequence is to invoke the dispatcher. This is done as 

in the Dispatch command of Module R3 or R4. The dispatcher will proceed to dispatch 

processes, starting with the command handler. It will return only when the ready queue 

becomes completely empty. 

 

Termination of MPX is invoked in response to the Terminate MPX command, as in 

previous modules. When the command processing loop is exited, the command handler 

should terminate all processes present, including its own process and the IDLE process. 

The dispatcher will detect an empty queue and return to its original caller, the main 

program. 

 

The main program should then perform any necessary final cleanup actions, including the 

closing of all device drivers. This closing is necessary to restore the original interrupt 

vectors. When this is completed, the program may exit. 

 

An outline of the MPX main procedure, as described above, is as follows: 

  

 sys_init(MODULE_F + ...) 

 sys_set_vec(sys_call) 

 open device drivers 

 initialize DCBs and waiting queues 

 initialize PCBs and ready queue 

 install command handler as a process 

 load IDLE and setup a process 

 other initialization as needed 

 call dispatcher 

 close device drivers 

 other cleanup as needed 

 sys_exit() 



Command Handling 

 

The command handler should be organized as in previous modules, except that it no 

longer performs overall system initialization, and it does perform termination as 

described above. The outline for this version of the command handler is: 

 display opening message 

 while not done 

  display prompt 

  read command 

  analyze command 

  execute command 

 end while 

 display closing message 

 terminate all processes 

 

The commands to be used for Module F consist of all of the permanent commands 

introduced in previous required or optional modules. No new commands are required. 

 

Dispatcher 

 

The dispatch procedure for the Final MPX continues to operate as in previous modules. 

No change should be required. 

 

System Call Handler 

The system call handler for the Final MPX should have the same structure as in previous 

modules but expanded functionality. It must now handle READ and WRITE operations 

in addition to IDLE and TERMINATE. These operations will be passed to the system 

call handler by sys_req. 

 

Each time it is invoked, before calling the specific service routines, the system call 

handler should perform two additional functions: 

1. Call the procedure trm_getc, as described in Section F.4. This procedure 

transfers pending keyboard characters from the MS-DOS buffer to the MPX 

buffer.  

2. Determine if any event flags are set, and perform the required IO completion 

sequences as described below.  

 

Each I/O system request should be passed in turn by the system call handler to the I/O 

Scheduler. This procedure will check the state of the device and determine whether to 



initiate I/O or to place the request in a waiting queue. The request parameters (which are 

still on the stack), and the identity of the calling process, must be provided to the I/O 

Scheduler. The Scheduler should check the validity of the parameters, and return an error 

code if the request is invalid. 

 

I/O Scheduler 

 

The I/O Scheduler processes input and output requests. Its first task is to examine the 

system call parameters and ensure that the request is valid. In particular, the operation 

must be READ or WRITE; the device must be a recognized one, and the operation must 

be legal for the specified device. If these conditions are not met, an error code should be 

returned. 

 

The next task is to check the status of the requested device by accessing its IOCB. If there 

is no current process using the device, then the request can be processed immediately. In 

this case the requesting process is made the active one by installing a pointer to its PCB 

in the IOCB. The buffer address and length must also be placed in the IOCB. The 

appropriate driver procedure is then called. (In the first edition of the text, these steps are 

performed by a separate component called the I/O Supervisor.) 

 

If the device was busy, the request is installed on the waiting queue. The information in 

each queue element must include the PCB pointer, device ID, and operation code. 

 

In either case, the requesting process is switched to the blocked state, and removed (if it 

was still present) from the ready queue. Note that in the case of output to the terminal 

using trm_write, trm_clear, or trm_gotoxy, no imterrupts are used, and the 

output will be completed immediately. Nevertheless, processes using these operations 

should cycle through the blocked state to give other processes a turn to operate. 

 

Finally, the I/O Scheduler returns to the system call handler, which in turn will invoke the 

dispatcher to dispatch the next process. 

 

I/O Processing 

 

I/O processing for the duration of the block transfer is managed by the routines of the 

device driver, primarily the interrupt handler. These drivers should be unchanged from 

previous modules. Note that while the transfer is continuing under interrupt control, 

processes other than the requesting process will be executing. 



 

When the interrupt handler detects that the entire block has been transferred, it sets the 

event flag to request the I/O completion procedure. 

 

I/O Completion 

 

Each time the system call handler is invoked, one of its responsibilities is to examine the 

data structures that represent active I/O transfers, to determine if any of their event flags 

are set. For each flag that is set, the appropriate completion sequence must be performed. 

 

First, the active process must be switched from the blocked state to the ready state. This 

may require both setting of state variables and adjustment of the appropriate queues. 

 

Second, the active data structure must be cleared, signaling that no request is currently 

active for this device. 

 

The routine then searches the waiting queue for another process waiting to use the now-

available device. If such a process is found, the I/O scheduler is called to start the I/O. 

This sequence is repeated for all devices with a just-completed I/O request. 

 

F.4 SUPPORT SOFTWARE 

 

Test Processes 

 

A collection of test processes is provided for MPX in the form of executable program 

files. Each file is provided in the support package with a name extension of .MPX; these 

are actually .EXE files similar to those loaded in Module R4. These programs have been 

written in assembly language (using Borland's Turbo Assembler) to avoid the sizable run-

time framework which is attached to all programs generated using Turbo C (this would 

amount to as much as 10K bytes per process). The assembly language files are included 

for study with the support software. 

 

Twelve test processes are supplied. If you have access to an assembler you may prepare 

additional test processes following a similar model. The supplied processes are: 



 IDLE. The process which is used to ensure that the ready queue is never empty, 

and that the system always has some process to execute. IDLE does nothing but 

wait in a simple loop until an interrupt occurs.  

 CPUTERM. A process which repeatedly displays a message line on the display 

screen. This process is CPU bound; it waits for a while in a loop between 

messages, consuming processor time. It runs continuously until terminated.  

 CPUCOM. Similar to CPUTERM, but this process outputs its messages to the 

communication port. We assume that a standard terminal, or a separate PC or 

workstation running terminal emulation software, is connected to this port.  

 IOTERM. Similar to CPUTERM, but this process includes no delay loop. It 

attempts to continuously output messages, making a new request as soon as the 

last one has been completed.  

 IOCOM. Similar to IOTERM, but this process outputs its messages to the 

communications port.  

 IOTRM25. Similar to IOTERM; however, this process displays its normal 

message exactly 25 times, then requests termination. A special message is 

displayed before the termination request. If the process is dispatched after its 

termination request, an error message is displayed, and the process restarts.  

 IOCOM25. Similar to IOTRM25, but this process outputs all of its messages to 

the serial port.  

 

Each process is provided in both assembly language form (e.g. IDLE.ASM) and loadable 

form (IDLE.MPX). The loadable processes should be copied to your preferred process 

directory, so they can be listed using the Directory command and loaded using the Load 

command. 

 

Terminal Driver 

 

The second component of the support software is a terminal driver. This driver supplies a 

set of routines to invoke terminal (screen) output and terminal (keyboard) input, 

analogous to the routines in the serial port driver. The prototypes for the standard driver 

routines are: 

 int trm_open (int far *eflag_p); 

 int trm_close(void); 

 int trm_read(char far *buf_p, int far *length_p); 

 int trm_write(char far *buf_p, int far *length_p); 

 

The purpose of these routines and the meaning of the parameters is similar to that of  the 

serial driver routines and parameters, as explained in Module R5. 



 

One additional terminal driver function is provided, called trm_getc. It has the 

following prototype: 

 void trm_getc(void); 

 

Keyboard input is acquired via interrupts and stored in a ring buffer. The trm_getc 

function echoes stored characters and transfers them to the requestor's buffer. This 

function should be called by the I/O Scheduler just before it calls the dispatcher, if 

terminal input is active. It is not harmful to call this routine when it is not needed, but of 

course it is inefficient. 

 

F.5 TESTING AND DEMONSTRATION 

 

Testing of this project is performed by loading and running as many of the supplied 

processes as possible, but you should build up to this capability a little at a time. First 

ensure that the command handler still works properly now that it has been converted to a 

process. Repeat the testing of various commands from Modules R1 and R2. 

 

Next try to load and resume one process that performs serial output, such as CPUCOM. If 

this process works properly, then (if you have incorporated the necessary driver) try a 

process which accesses the serial port. See if you can run these processes both separately 

and together. 

Loading multiple processes for the same device is usually where it all falls apart. This is 

because until multiple processes request the same device, no process ends up in the 

waiting queue. Don't be surprised if your MPX-PC crashes when you load multiple 

processes that request an I/O operation to the same device. 

 

If your project still survives, the final step is to try to activate as many processes as 

possible at the same time, and to test a full range of commands while these processes are 

running. 

 

F.6 DOCUMENTATION 

 

You must finalize your documentation in this module. Your User's Manual must contain 

documentation on all commands and error messages. The Programmer's Manual must 

include descriptions of all of your procedures and data structures. If you have been 

adding to this manual in each module (as required), you will have only a limited number 

of additions.  



Both of your manuals must have a title page and a table of contents and their pages must 

be numbered. An index in each is desirable. Refer back to section I1.6 for a review of the 

information required in each manual. 

 

F.7 OPTIONAL FEATURES 

 

Since the primary goal of this module is to integrate the required and optional elements 

which you have developed in previous modules, no optional extensions will be specified 

here. 

 

F.8 HINTS AND SUGGESTIONS 

 

The software for this module is more complex than any other, and a great deal of 

concurrent activity must be managed. However, a thoughtful approach will keep you 

from being overwhelmed. The actual amount of new software needed for this module is 

small. Do not make changes to previous components unless absolutely necessary. If this 

rule is followed, you can be sure that any difficulties are localized to a small number of 

routines. 

 

Secondly, follow a careful, incremental testing strategy, as described in F.5. First, ensure 

that the command handler and idle process work properly. At this point you are not using 

any of your own device drivers, and there can be no processes on a waiting queue. Thus 

the debugging process is simplified. 

 

With some care, the Turbo C++ debugger can still be used, and breakpoints can be set. 

However, note that the debugger automatically restores the normal keyboard interrupt 

vector. It is not generally possible to resume MPX execution after a breakpoint unless the 

MPX interrupt vector is explicitly replaced. The Turbo Debugger formerly sold 

separately, and the debugger included with Borland C++, have more comprehensive 

features to enable debugging of interrupt handlers and I/O routines. Note, however, that 

the separate debugger is no longer sold, and existing copies will not work with Turbo 

C++ versions later than 1.0. 

 

When the basic processes are operating, choose new processes to load carefully, to 

exercise one new feature at a time. 

 

Consider very carefully the situations in which interrupts may occur, and the possibly 

conflicting actions which could be taken in response to those interrupts. If an interrupt 



occurs during queue manipulation or memory allocation, and the interrupt handler 

attempts to invoke the same procedures, problems will occur. It may be necessary to 

disable or defer interrupts during certain critical operations. 


