
Chapter F

Final MPX

This is an adapted version of portions of the Project Manual to accompany A Practical Approach to

Operating Systems (2nd ed), by Malcolm Lane and James Mooney. Copyright 1999 by Malcolm Lane and

James D. Mooney, all rights reserved. For use only by students of CS 256 at West Virginia University in

Fall 1999. Modified 11/1/2008

F.1 INTRODUCTION

This module is the final step in the MPX project. In this module you will build a

complete MultiProgramming eXecutive by integrating the required and optional project

modules that you have previously completed, along with other modules that your

instructor may provide.

The basic elements of MPX are the user interface, process management, dispatching and

interrupt handling, character device management, and I/O management. All of the basic

capabilities except I/O management have been covered by previous required modules. In

this module we will add I/O management by implementing an I/O request handler and

scheduler to process I/O requests by test processes, using the MPX device drivers which

you have developed or which your instructor will provide.

Another important element of the Final MPX is a new, more realistic philosophy for

dispatching processes. In previous modules, the MPX main program and command

handler were implemented as static, standalone programs. Dispatching of processes was

carried out by command for a short time interval, after which the command handler

resumed control. Only the simple test programs were executed by processes.

In the Final MPX, dispatching is continuous, and the command handler itself is a process.

This means that execution of the command handler is interleaved with execution of other

processes under the continuous control of the dispatcher. Each process, including the

command handler, executes until it performs an MPX system request (call to sys_req) or

until an interrupt occurs. System requests or interrupts may cause a new process to be

scheduled by a context switch. Most system calls will be I/O requests. In the final MPX

all requests for keyboard input or terminal (screen) output are intercepted and handled by

MPX, even though they may be invoked by standard C functions. Interrupts are caused

by I/O events.

After implementing the final MPX, you will demonstrate its capabilities by loading and

activating an assortment of test processes using Load and Resume commands (all loaded

processes are initially suspended). These processes will then be dispatched on a

continuous basis, alternating with the command handler itself. Process priorities may be

adjusted, leading to different relative execution rates. The command handler will always

have the highest priority.

The test processes supplied assume that your PC is connected to a remote “terminal” (via

one of the serial ports), or running the serial port simulator provided by your instructor,

and that you have implemented the appropriate interrupt-driven device handlers.

Adjustments should be made to the test processes if you have a different configuration.

Every process but one (the IDLE process) outputs regular messages, either to the display

screen or to another device. One process besides the command handler accepts input

(from a remote device). Some processes will be CPU bound, that is, they will compute a

relatively long time between output messages. Other processes are I/O bound and

generate messages continuously. Finally, some processes will run indefinitely until

manually terminated, while others will run for a fixed number of repetitions and then

terminate themselves.

Devices are not exclusively allocated in MPX, so process output will be intermixed on

each device. The output pattern should reflect the relative priority and characteristic

behavior of each process. This pattern should change as processes are started and stopped

and as priorities are adjusted.

This chapter provides details for the structure and organization of MPX-PC. Section F.2

discusses the key concepts introduced in this module: Continuous Dispatch and I/O

Management. Section F.3 presents a detailed description of the organization of MPX-PC

and of the new components that must be implemented to complete the system structure.

Section F.4 discusses the support software applicable to the final module. The principal

addition to the support environment is a collection of test processes. In addition, a

substitute terminal driver is provided to route ordinary terminal I/O from the command

handler through the MPX system call handler. The purpose of this is to allow the

command handler to be interrupted by other processes while terminal input and output

are underway.

As usual the remaining sections of the chapter cover test procedures, documentation

requirements, possible extensions, and hints and suggestions. The documentation for this

module is of special importance, since it should constitute the final, comprehensive

documentation package for the entire MPX project.

F.2 KEY CONCEPTS

Continuous Dispatch

Previous modules which dispatched processes have done so only when requested by a

specific command, and only for a limited period of time. Most of the time MPX was

executing the command handler, which was not considered to be a process.

In a realistic multitasking operating system, however, almost all programs (except the

operating system resource managers) are viewed as processes. This includes command

handlers. Execution of the command handler should be interleaved with other processes

running on behalf of the same user or other users.

MPX is a single-user system, since there is only one terminal, but it is a multiple process

system. In its final form the OS must permit a user to initiate many processes and keep

them executing even as the command handler is running. This is the approach we take in

this module; under normal execution the command handler is a process, and it competes

for processor time and other resources along with any other processes that may be ready.

When dispatching is continuous, it may happen that no process is ready. In order to

simplify the dispatcher and avoid dealing with this special case, we introduce an idle

process which is always ready. This process has the lowest possible priority, but it will

run when no other process is ready, thus assuring that there is always some process to

run. In particular, the idle process will run while the command handler is waiting for a

command, if no other processes have been loaded and activated.

If continuous dispatching is the normal situation, a more complicated initialization

procedure must be carried out to activate an initial set of processes. When a multitasking

OS is first initiated, it executes an initialization program which is not a process. This

program sets up the initial processes and calls the dispatcher for the first time. Similarly,

a special procedure may be required at termination.

In the final MPX structure, the main program begins by calling the usual initialization

procedures. Among other responsibilities, these procedures set up the PCBs and initialize

the process management system. The main program then activates two processes: one for

the command handler, and one for the idle routine. The command handler, like the

processes of Module R3, is already present in memory; The idle process, like those of

Module R4, must be explicitly loaded. Both processes are set to the ready, not suspended

state, but the command handler has the highest possible priority and the idle process has

the lowest.

The main program then calls the dispatcher to begin interleaved execution of these two

processes. Command handler commands may now be used to explicitly load and activate

other processes, which will proceed to share the resources with the original two. All

processes except the command handler and idle process may be modified and terminated

under user control.

The command handler terminates when a quit command is received. Its final action is to

remove itself and idle as active processes. When the dispatcher detects that no processes

are active, it returns to the main program (which in MPX has been allowed to remain in

memory). This program performs the final cleanup and exits from MPX.

I/O Management

In previous modules you have developed a device handler for a device. This handler

provides low-level procedures to open and close devices and to transfer blocks of data to

or from the device. This transfer could be performed without interrupts, but to maximize

concurrency we have implemented interrupt-driven device control and included interrupt

handlers which are activated after each character is transferred, in order to begin transfer

of the next character, or to terminate the operation if the entire block has been processed.

A set of drivers such as you have implemented forms an important part of a complete I/O

management system, but only a part. In your initial implementation these drivers were

called directly by test programs. In a complete multitasking operating system they must

be called in an orderly way in response to requests that are generated by running

processes. This requires an I/O management and scheduling strategy, as described in the

Device Management chapter of your textbook.

A key element of an I/O management system is an I/O Control Block (IOCB) for each

device or channel. This data structure has a role complementary to that of the Device

Control Block (DCB) which you have embedded in the driver itself, but it is not the same

structure. The IOCB contains information allowing higher-level software to access the

device driver.

Some of the information in the IOCB describes permanent characteristics of the device:

name, channel number, etc. This information also specifies the interrupt IDs and interrupt

vectors associated with the device, and the address of each procedure in the device driver.

This latter information must be kept current in case the driver is loaded as needed into

transient areas of memory.

Additional information in the IOCB identifies the current operation, if any, that is

underway for this device. The ID of the process which requested the transfer is recorded

in the IOCB. Finally, the IOCB includes an event flag, as introduced in Module R5, that

can be used by an interrupt handler to report back to the system about the current status

of the I/O transfer.

A typical I/O device can process only one transfer at a time, but additional requests may

be received before the current transfer is completed. For this reason there must be a

waiting queue for each device which may contain pending I/O requests. Each entry in this

queue describes an I/O request by identifying the process making the request, the buffer

location, and the type of transfer to perform. Additional information is required in the

case of an addressable device such as a disk; these cases are not included in MPX-PC.

Requests for I/O transfers are initiated by processes using system calls, and passed to an

I/O scheduler. This routine examines the IOCB to see if the device is busy; if so the

request is placed in the waiting queue. This queue is normally organized in a simple first-

come, first-served order.

If the device is not busy, the request may be passed to the read or write procedure in the

appropriate device driver. This procedure initializes the buffer, enables the appropriate

interrupt, and (if the transfer is a write) outputs the first byte to the device's output port.

In either case, the process is moved from the ready state to the blocked state (unless non-

blocking I/O was requested). A context switch is performed, and another ready process is

dispatched.

As the transfer of each byte is completed, an interrupt occurs, generated by the device's

hardware interface. This type of interrupt-driven I/O was developed in Module R5. The

interrupt handler in the device driver checks to see if more data is to be transferred. If so,

it processes the next byte and returns to the interrupted process. Note that in general this

is not the process that requested the data transfer.

When the interrupt handler detects that the final byte has been transferred, it must set the

event flag in the IOCB. This flag is a signal to the perform an I/O completion sequence.

This typically involves returning the requesting process to the ready state and setting an

event flag to notify that process that the transfer is complete. The waiting queue for the

device must also be checked, and if there are requests waiting, the next transfer must be

initiated by a new call to the device driver. Finally, either the interrupted process may be

resumed, or a new process (possibly the one which had requested the I/O) may be

scheduled instead.

F.3 DETAILED DESCRIPTION

General Structure

This section presents the general organization and flow of control in the complete MPX-

PC system. The elements of the system include the following:

 Main program

 Command handler

 Processing routines for each command

 Dispatcher and system call handler

 Device drivers

 I/O scheduler

 I/O completion handler

 System data structures

 Storage area for the loaded processes.

Initial operation begins with an initialization procedure which is different from that of

previous MPX versions. The key responsibility of the initialization procedure is to set up

two initial processes. One of these is a special IDLE process which runs only when there

is no other process; the second is the command handler itself. The initialization procedure

creates PCBs for each of these processes. Each is a system process; the command handler

has the highest possible priority, and the idle process has the lowest. The processes are

installed on the ready queue, and the dispatcher is started. Since the command handler is

now the highest priority ready process, it will immediately be dispatched. The command

handler will perform its own initialization and wait for a command. To receive command

input an MPX system call is invoked for data transfer from the "terminal" (i.e., the

keyboard). This request places the command handler in a blocked state, so other

processes may be dispatched.

Using the usual commands, various test processes can then be loaded and made ready to

run. When placed on the ready queue, they will automatically be dispatched when their

turn comes. Most of these processes will make input and output requests, invoking the

I/O management facilities which are to be implemented for this module.

A typical data transfer operation begins with a request such as READ or WRITE issued

from within the normal program code of an application process. This request specifies the

transfer of a block of data (typically a line of text) from a program buffer to a specified

device, or vice versa. In MPX such a request is made using int60h which invokes the

support routine sys_req. This in turn invokes the system call handler provided by your

program.

The call handler must process READ and WRITE requests in the same manner that it has

previously processed IDLE and TERMINATE operations. In principle, each request

invokes a call to the appropriate routine in one of the I/O drivers. But it is not quite this

simple. There are multiple processes, and we must be sure that another process is not

currently accessing the same device. Although devices are not allocated to processes on a

long-term basis, we must ensure that the transfer of each block (i.e., line of characters) is

completed before a new transfer begins.

To resolve competition for devices, the system call handler passes each request to the I/O

scheduler. This scheduler maintains a record (in the form of a set of queues) of which

processes are currently using, or waiting to use, each device. If the requested device is

busy, the request is placed in the appropriate waiting queue.

If the device is not currently in use, the request can be honored immediately. In this case

a call is made to the appropriate device driver procedure (e.g., com_write,

com_read). This procedure sets up the transfer information in the IOCB, enables the

appropriate interrupts, and begins transfer of the first byte.

In either case the process is placed in the blocked state. The dispatcher is called, and a

new process is dispatched.

As each byte is transferred, an interrupt occurs which invokes the interrupt handler in the

device driver. This handler determines whether there is more data to be transferred. If so,

it processes the next byte and returns to the point of interruption. If not, it sets the event

flag, signaling that the device has completed a transfer. This flag will be detected during

the next system call, and cause activation of the I/O completion sequence.

The completion sequence has several responsibilities. It must return the process which

was performing the I/O to the ready state, remove it from any waiting queue, and reinstall

it in the ready queue. In addition, the handler must determine if there are requests

pending in the waiting queue for the device. If so, it must setup the transfer and call the

device driver as described above.

This cycle continues until MPX is terminated by an explicit command. The remainder of

this section describes these components and operations in more detail.

Data Structures

The principal data structures to be added for this module are the IOCBs which record

information about the current transfer and any other requested transfers for each device.

While it is possible to maintain a combined waiting queue, we recommend a separate

queue for each device.

Each active or pending I/O request must be represented by some type of descriptor. This

descriptor must identify the process, the device, and the operation. In addition it should

indicate the location of the transfer buffer and the count variable. Note that, except for the

process ID, this is the information passed as parameters during a system call.

It is possible to define a special I/O descriptor record type to hold this information.

Alternately, space for an I/O descriptor may be allocated within each PCB. Note that, in

MPX, a process may have only one I/O request at a time.

The IOCB must make it possible to locate the current active request for a given device,

and to select a new one from the waiting queue when necessary. The IOCB must also

provide the event flag to be used to control I/O for each specific device.

System Initialization and Termination

In previous modules you may have set up your command handler as the main procedure

for MPX, or you may have provided a separate main procedure which invoked the

command handler after suitable initialization steps. At this point we recommend that you

use a separate main program. The details of our discussion here will be based on this

strategy.

The initial steps of the main procedure must perform all required initialization for the

various components of your MPX package. In particular this must include a call to

sys_init (using the parameter MODULE_F plus the code for any optional modules

included). A call to sys_set_vec is also required to notify the system of the identity

of your system call handler.

It is also necessary at this point to call the open procedures for the terminal (console) and

the other devices you will be using. The terminal driver is supplied with the MPX support

software; the other drivers were developed in Module R5 or will be supplied by your

instructor. These procedures include (at least) trm_open,and com_open. No I/O

operations, including terminal output via printf, should be performed until the

corresponding drivers are opened. At the same time, the IOCBs and their associated

waiting queues should be initialized.

The next steps to be performed are those previously carried out by the Dispatch

command in Module R3. These steps include initialization of the PCB collection, setup of

two PCBs, and installation of both PCBs on the ready queue. One PCB is assigned to the

command handler. This PCB is initialized in the same manner as the PCBs for the

"directly linked" processes of Module R3. Its initial execution address (and the initial IP

value on the stack) must be set to the entry point of the command handler procedure. This

process is designated a System process, given the highest possible priority, and placed in

the ready, not suspended state. Be sure to use the correct segment values for the initial

context of each of these processes, as in Module R3 and R4.

The PCB assigned to the command handler may require a larger stack than the other

PCBs. This is because the command handler is a full C program which may perform

complex nested operations including file transfers. A recommended minimum stack size

for this PCB only is 4K bytes.

The second PCB is assigned to the IDLE process, which must now be loaded. This

process is found in the executable file IDLE.MPX. It should be loaded into a suitable

allocated memory area, using the strategy developed for the Load Program command of

Module R4. This process is also designated a System process, given the lowest possible

priority, and placed in the ready, not suspended state.

The final action of the initialization sequence is to invoke the dispatcher. This is done as

in the Dispatch command of Module R3 or R4. The dispatcher will proceed to dispatch

processes, starting with the command handler. It will return only when the ready queue

becomes completely empty.

Termination of MPX is invoked in response to the Terminate MPX command, as in

previous modules. When the command processing loop is exited, the command handler

should terminate all processes present, including its own process and the IDLE process.

The dispatcher will detect an empty queue and return to its original caller, the main

program.

The main program should then perform any necessary final cleanup actions, including the

closing of all device drivers. This closing is necessary to restore the original interrupt

vectors. When this is completed, the program may exit.

An outline of the MPX main procedure, as described above, is as follows:

 sys_init(MODULE_F + ...)

 sys_set_vec(sys_call)

 open device drivers

 initialize DCBs and waiting queues

 initialize PCBs and ready queue

 install command handler as a process

 load IDLE and setup a process

 other initialization as needed

 call dispatcher

 close device drivers

 other cleanup as needed

 sys_exit()

Command Handling

The command handler should be organized as in previous modules, except that it no

longer performs overall system initialization, and it does perform termination as

described above. The outline for this version of the command handler is:

 display opening message

 while not done

 display prompt

 read command

 analyze command

 execute command

 end while

 display closing message

 terminate all processes

The commands to be used for Module F consist of all of the permanent commands

introduced in previous required or optional modules. No new commands are required.

Dispatcher

The dispatch procedure for the Final MPX continues to operate as in previous modules.

No change should be required.

System Call Handler

The system call handler for the Final MPX should have the same structure as in previous

modules but expanded functionality. It must now handle READ and WRITE operations

in addition to IDLE and TERMINATE. These operations will be passed to the system

call handler by sys_req.

Each time it is invoked, before calling the specific service routines, the system call

handler should perform two additional functions:

1. Call the procedure trm_getc, as described in Section F.4. This procedure

transfers pending keyboard characters from the MS-DOS buffer to the MPX

buffer.

2. Determine if any event flags are set, and perform the required IO completion

sequences as described below.

Each I/O system request should be passed in turn by the system call handler to the I/O

Scheduler. This procedure will check the state of the device and determine whether to

initiate I/O or to place the request in a waiting queue. The request parameters (which are

still on the stack), and the identity of the calling process, must be provided to the I/O

Scheduler. The Scheduler should check the validity of the parameters, and return an error

code if the request is invalid.

I/O Scheduler

The I/O Scheduler processes input and output requests. Its first task is to examine the

system call parameters and ensure that the request is valid. In particular, the operation

must be READ or WRITE; the device must be a recognized one, and the operation must

be legal for the specified device. If these conditions are not met, an error code should be

returned.

The next task is to check the status of the requested device by accessing its IOCB. If there

is no current process using the device, then the request can be processed immediately. In

this case the requesting process is made the active one by installing a pointer to its PCB

in the IOCB. The buffer address and length must also be placed in the IOCB. The

appropriate driver procedure is then called. (In the first edition of the text, these steps are

performed by a separate component called the I/O Supervisor.)

If the device was busy, the request is installed on the waiting queue. The information in

each queue element must include the PCB pointer, device ID, and operation code.

In either case, the requesting process is switched to the blocked state, and removed (if it

was still present) from the ready queue. Note that in the case of output to the terminal

using trm_write, trm_clear, or trm_gotoxy, no imterrupts are used, and the

output will be completed immediately. Nevertheless, processes using these operations

should cycle through the blocked state to give other processes a turn to operate.

Finally, the I/O Scheduler returns to the system call handler, which in turn will invoke the

dispatcher to dispatch the next process.

I/O Processing

I/O processing for the duration of the block transfer is managed by the routines of the

device driver, primarily the interrupt handler. These drivers should be unchanged from

previous modules. Note that while the transfer is continuing under interrupt control,

processes other than the requesting process will be executing.

When the interrupt handler detects that the entire block has been transferred, it sets the

event flag to request the I/O completion procedure.

I/O Completion

Each time the system call handler is invoked, one of its responsibilities is to examine the

data structures that represent active I/O transfers, to determine if any of their event flags

are set. For each flag that is set, the appropriate completion sequence must be performed.

First, the active process must be switched from the blocked state to the ready state. This

may require both setting of state variables and adjustment of the appropriate queues.

Second, the active data structure must be cleared, signaling that no request is currently

active for this device.

The routine then searches the waiting queue for another process waiting to use the now-

available device. If such a process is found, the I/O scheduler is called to start the I/O.

This sequence is repeated for all devices with a just-completed I/O request.

F.4 SUPPORT SOFTWARE

Test Processes

A collection of test processes is provided for MPX in the form of executable program

files. Each file is provided in the support package with a name extension of .MPX; these

are actually .EXE files similar to those loaded in Module R4. These programs have been

written in assembly language (using Borland's Turbo Assembler) to avoid the sizable run-

time framework which is attached to all programs generated using Turbo C (this would

amount to as much as 10K bytes per process). The assembly language files are included

for study with the support software.

Twelve test processes are supplied. If you have access to an assembler you may prepare

additional test processes following a similar model. The supplied processes are:

 IDLE. The process which is used to ensure that the ready queue is never empty,

and that the system always has some process to execute. IDLE does nothing but

wait in a simple loop until an interrupt occurs.

 CPUTERM. A process which repeatedly displays a message line on the display

screen. This process is CPU bound; it waits for a while in a loop between

messages, consuming processor time. It runs continuously until terminated.

 CPUCOM. Similar to CPUTERM, but this process outputs its messages to the

communication port. We assume that a standard terminal, or a separate PC or

workstation running terminal emulation software, is connected to this port.

 IOTERM. Similar to CPUTERM, but this process includes no delay loop. It

attempts to continuously output messages, making a new request as soon as the

last one has been completed.

 IOCOM. Similar to IOTERM, but this process outputs its messages to the

communications port.

 IOTRM25. Similar to IOTERM; however, this process displays its normal

message exactly 25 times, then requests termination. A special message is

displayed before the termination request. If the process is dispatched after its

termination request, an error message is displayed, and the process restarts.

 IOCOM25. Similar to IOTRM25, but this process outputs all of its messages to

the serial port.

Each process is provided in both assembly language form (e.g. IDLE.ASM) and loadable

form (IDLE.MPX). The loadable processes should be copied to your preferred process

directory, so they can be listed using the Directory command and loaded using the Load

command.

Terminal Driver

The second component of the support software is a terminal driver. This driver supplies a

set of routines to invoke terminal (screen) output and terminal (keyboard) input,

analogous to the routines in the serial port driver. The prototypes for the standard driver

routines are:

 int trm_open (int far *eflag_p);

 int trm_close(void);

 int trm_read(char far *buf_p, int far *length_p);

 int trm_write(char far *buf_p, int far *length_p);

The purpose of these routines and the meaning of the parameters is similar to that of the

serial driver routines and parameters, as explained in Module R5.

One additional terminal driver function is provided, called trm_getc. It has the

following prototype:

 void trm_getc(void);

Keyboard input is acquired via interrupts and stored in a ring buffer. The trm_getc

function echoes stored characters and transfers them to the requestor's buffer. This

function should be called by the I/O Scheduler just before it calls the dispatcher, if

terminal input is active. It is not harmful to call this routine when it is not needed, but of

course it is inefficient.

F.5 TESTING AND DEMONSTRATION

Testing of this project is performed by loading and running as many of the supplied

processes as possible, but you should build up to this capability a little at a time. First

ensure that the command handler still works properly now that it has been converted to a

process. Repeat the testing of various commands from Modules R1 and R2.

Next try to load and resume one process that performs serial output, such as CPUCOM. If

this process works properly, then (if you have incorporated the necessary driver) try a

process which accesses the serial port. See if you can run these processes both separately

and together.

Loading multiple processes for the same device is usually where it all falls apart. This is

because until multiple processes request the same device, no process ends up in the

waiting queue. Don't be surprised if your MPX-PC crashes when you load multiple

processes that request an I/O operation to the same device.

If your project still survives, the final step is to try to activate as many processes as

possible at the same time, and to test a full range of commands while these processes are

running.

F.6 DOCUMENTATION

You must finalize your documentation in this module. Your User's Manual must contain

documentation on all commands and error messages. The Programmer's Manual must

include descriptions of all of your procedures and data structures. If you have been

adding to this manual in each module (as required), you will have only a limited number

of additions.

Both of your manuals must have a title page and a table of contents and their pages must

be numbered. An index in each is desirable. Refer back to section I1.6 for a review of the

information required in each manual.

F.7 OPTIONAL FEATURES

Since the primary goal of this module is to integrate the required and optional elements

which you have developed in previous modules, no optional extensions will be specified

here.

F.8 HINTS AND SUGGESTIONS

The software for this module is more complex than any other, and a great deal of

concurrent activity must be managed. However, a thoughtful approach will keep you

from being overwhelmed. The actual amount of new software needed for this module is

small. Do not make changes to previous components unless absolutely necessary. If this

rule is followed, you can be sure that any difficulties are localized to a small number of

routines.

Secondly, follow a careful, incremental testing strategy, as described in F.5. First, ensure

that the command handler and idle process work properly. At this point you are not using

any of your own device drivers, and there can be no processes on a waiting queue. Thus

the debugging process is simplified.

With some care, the Turbo C++ debugger can still be used, and breakpoints can be set.

However, note that the debugger automatically restores the normal keyboard interrupt

vector. It is not generally possible to resume MPX execution after a breakpoint unless the

MPX interrupt vector is explicitly replaced. The Turbo Debugger formerly sold

separately, and the debugger included with Borland C++, have more comprehensive

features to enable debugging of interrupt handlers and I/O routines. Note, however, that

the separate debugger is no longer sold, and existing copies will not work with Turbo

C++ versions later than 1.0.

When the basic processes are operating, choose new processes to load carefully, to

exercise one new feature at a time.

Consider very carefully the situations in which interrupts may occur, and the possibly

conflicting actions which could be taken in response to those interrupts. If an interrupt

occurs during queue manipulation or memory allocation, and the interrupt handler

attempts to invoke the same procedures, problems will occur. It may be necessary to

disable or defer interrupts during certain critical operations.

