

# ZTE中兴

# ZTE Corporation's ME3000\_V2 Module Hardware Design User Manual

Version: V1.0

This manual is applicable for ME3000\_V2 module.

### **Copyright Statement**

Copyright <sup>©</sup> 2010 by ZTE Corporation

All rights reserved.

No part of this publication may be excerpted, reproduced, translated or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without the prior written permission of ZTE Corporation.

### ZTE中兴

**LICHX** is the registered trademark of ZTE Corporation. All other trademarks appeared in this manual are owned by the relevant companies.

ZTE Corporation reserves the right to make modifications on print errors or update specifications in this manual without prior notice.

ZTE Corporation keeps the right to make the final explanation to this manual.

1.0-TY, March 2010

# ZTE中兴

With strong technical force, ZTE Corporation can provide CDMA/GPRS module customers with the following all-around technical support:

- 1. Provide complete technical documentation;
- 2. Provide the development board used for R&D, test, production, after-sales, etc.;
- 3. Provide evaluations and technical diagnosis for principle diagram, PCB, test scenarios;
- 4. Provide test environment;

ZTE Corporation provides customers with onsite supports, and also you could get supports through telephone, website, instant communication, E-mail, etc.

The module website module.ztemt.com.cn provides the relevant industry information and module technical documentation. The authorized module customers could download the latest technical documentation for our website. If you have more requirements, you could send an E-mail to module@zte.com.cn. You can also call us at 0755-86140899 for more supports.

### Preface

### Summary

This manual is applicable for ME3000\_V2 module. It takes ME3000\_V2 module for example to give the reference to the relevant hardware design and instruct the users how to quickly and conveniently design different kinds of wireless terminals based on this type of module. ME3000\_V2 modules are the replacement of ME3000 modules and their technical parameters are basically identical.

### **Target Readers**

The manual is suitable for the following engineers:

- System designing engineers
- Mechanical engineers
- Hardware engineers
- Software engineers
- Test engineers

### **Brief Introduction**

This manual contains 6 chapters. See the table below:

| Chapter                 | Contents                                                         |  |  |
|-------------------------|------------------------------------------------------------------|--|--|
| 1 General description   | Introduces ME3000_V2 module's basic technical specification, the |  |  |
|                         | relevant documents for reference and the acronyms.               |  |  |
| 2 Product introduction  | Introduces ME3000_V2 module's principle charts and relevant      |  |  |
|                         | standards of the module.                                         |  |  |
| 3 PIN definitions       | Introduces ME3000_V2 module's Pin name and functions.            |  |  |
| 4 Description of        | Introduces the design of the hardware interface on each part of  |  |  |
| hardware interfaces     | ME3000_V2 module.                                                |  |  |
| 5 Mechanical design     | Introduces ME3000_V2 module's appearance diagram, assembly       |  |  |
|                         | diagram, PCB layout diagram and fixing method.                   |  |  |
| 6 Summary of peripheral | Introduces the peripheral components.                            |  |  |
| components              |                                                                  |  |  |

### **Update History**

The update history records the document's update descriptions every time. The updates of all previous versions will be contained in the latest version.

### Document Version V1.0 (2010-03-15)

The document is formally released on Mar. 15, 2010.



## Contents

| 1 | General Description               | 7  |
|---|-----------------------------------|----|
|   | 1.1 Technical Specification       | 7  |
|   | 1.1.1 Module's Specification      | 7  |
|   | 1.1.2 Basic Functions             | 7  |
|   | 1.1.3 Module's Interface          | 7  |
|   | 1.1.4 Technical parameters        | 8  |
|   | 1.2 Relevant Documents            | 8  |
|   | 1.3 Acronyms                      | 9  |
| 2 | Product Introduction              | 12 |
| 3 | PIN Definitions                   | 13 |
|   | 3.1 40PIN Connector               | 13 |
|   | 3.2 10PIN Connector               | 16 |
| 4 | Decription of Hardware Interfaces | 17 |
|   | 4.1 Summary                       | 17 |
|   | 4.2 Power and Reset               | 17 |
|   | 4.3 COM Port                      | 19 |
|   | 4.4 SIM Card Interface            | 20 |
|   | 4.5 Audio Interface               | 20 |
|   | 4.6 Antenna Interface             | 21 |
| 5 | Mechanical Design                 | 23 |
|   | 5.1 Appearance Diagram            | 23 |
|   | 5.2 Assembly Diagram              | 24 |
|   | 5.3 PCB Layout Diagram            | 25 |
|   | 5.4 Fixing Method                 | 26 |
| 6 | Summary of Peripheral Components  | 27 |

# Diagrams

| Figure 2-1 Principle diagram                                | 12 |
|-------------------------------------------------------------|----|
| Figure 4-1 Power and reset circuit design principle diagram | 17 |
| Figure 5-1 Module's Appearance Diagram                      | 23 |
| Figure 5-2 Module's Assembly Diagram                        | 24 |
| Figure 5-3 Relevant PCB Layout Diagram (top side)           | 25 |
| Figure 5-4 Module's Fixing Methods                          | 26 |

# Tables

| Fable 1-1 Table 1-1 Module's specification          | 7  |
|-----------------------------------------------------|----|
| Fable 1-2 Basic functions                           | 7  |
| Fable 1-3 Interfaces of the modules                 | 7  |
| Fable 1-4 Technical parameters                      | .8 |
| Figure 3-1 PIN definitions                          | 13 |
| Table 3-1 40PIN connector definitions               | 13 |
| Fable 3-2 10PIN connector PIN definitions           | 16 |
| Fable 4-1 Voltage features                          | 17 |
| Fable 4-2 Power on/off ciruict time characteristics | 18 |
| Fable 6-1 Summary of Peripheral Components          | 27 |

### **1 General Description**

This manual is applicable for ME3000\_V2 modules. Refer to this manual to make your hardware, mechanical design completely compatible with GSM/GPRS applications except for antenna design. ME3000\_V2 module could be widely applied in data transmission, wireless POS, security, lottery terminals, intelligent metering, wireless fax, branch exchange, tobacco network, campus network, wireless AD, wireless media, medical surveillance, relay station surveillance, railway terminals, intelligent home appliances, vehicle-mounted surveillance, etc.

Taking ME3000\_V2 module for example, this manual describes the module's logic structure, hardware interface & major functions, and provides references to the hardware and mechanical design.

### **1.1 Technical Specification**

#### 1.1.1 Module's Specification

Please refer to table 1-1 for ME3000\_V2 module's specification.

| Table 1-1 Table 1-2 Module's Specification | Table 1-1 | Table 1 | -2 Module's | specification |
|--------------------------------------------|-----------|---------|-------------|---------------|
|--------------------------------------------|-----------|---------|-------------|---------------|

| Models    | Format   | Frequency(MHz)               |
|-----------|----------|------------------------------|
| MG3000_V2 | GSM/GPRS | Dual Band: EGSM 900/DCS 1800 |

**Remarks**: Except for work frequency band, the modules are completely compatible on hardware and mechanical design. Below is just an example of ME3000\_V2 module.

#### 1.1.2 Basic Functions

Please refer to Table 1-3 for the basic functions.

Table 1-3 Basic functions

| Basic      | Descriptions                                                            |
|------------|-------------------------------------------------------------------------|
| Functions  |                                                                         |
| Voice call | EVRC and 13kQCELP high quality voice call                               |
| SMS        | Support TEXT and PDU                                                    |
|            | Support embedded TCP/IP                                                 |
| Data       | Support virtual online                                                  |
|            | <ul> <li>GSM uplink rate 42.8 kbps, downlink rate 85.6 kbps.</li> </ul> |

#### **1.1.3 Module's Interface**

Please refer to Table 1-4 for the module's interfaces.

Table 1-4 Interfaces of the modules

| Module's       | Descriptions                                                        |  |
|----------------|---------------------------------------------------------------------|--|
| interfaces     |                                                                     |  |
|                | <ul> <li>Software download upgrade;</li> </ul>                      |  |
| UART interface | Data communication;                                                 |  |
|                | <ul> <li>Up to 921.6kbps data rate provided by COM port;</li> </ul> |  |



| Audio interface    | Double audio I/O channel.       |
|--------------------|---------------------------------|
| SIM card interface | Standard SIM card interface     |
| Antenna interface  | 50 Ohm input resistance control |
| RTC                | Real time clock interface       |

### 1.1.4 Technical parameters

Please refer to Table 1-5 for the module's technical parameters.

Table 1-5 Technical parameters

| Technical     | Descriptions                 |
|---------------|------------------------------|
| parameters    |                              |
| Working       | -20°C ~ +70°C                |
| temperature   |                              |
| Input voltage | 3.3V-4.25V                   |
| Maximum       | 1800mA @ -102 dBm            |
| current       |                              |
| Idle current  | 10mA @ -75 dBm               |
| Call current  | 150mA @ -75 dBm              |
| Rx            | 102dBm                       |
| Sensitivity   |                              |
| Tx power      | GSM850, EGSM900: Class4(2W)  |
|               | GSM1800, PCS1900: Class1(1W) |
|               | GSM850                       |
|               | Tx.: 824~849 MHz             |
|               | Rx.: 869~894MHz              |
|               | EGSM900                      |
|               | Tx.: 880~915 MHz             |
| Frequency     | Rx.: 925~960MHz              |
| range         | DCS1800                      |
|               | Tx.: 1710~1785MHz            |
|               | Rx.: 1805~1880MHz            |
|               | PCS1900                      |
|               | Tx.: 1850~1910MHz            |
|               | Rx.: 1930~1990MHz            |

### **1.2 Relevant Documents**

- 《AT Command Manual for ZTE Corporation's ME3000\_V2 Modules》
- 《ZTE MG815+ Module Development Board User Guide》
- 《FAQ for ZTE Corporation's GSM/GPRS Modules》
- 《Wireless Modules' Test References》

### 1.3 Acronyms

| Α     |                                         |
|-------|-----------------------------------------|
| ADC   | Analog-Digital Converter                |
| AFC   | Automatic Frequency Control             |
| AGC   | Automatic Gain Control                  |
| ARFCN | Absolute Radio Frequency Channel        |
|       | Number                                  |
| ARP   | Antenna Reference Point                 |
| ASIC  | Application Specific Integrated Circuit |
|       |                                         |
| В     |                                         |
| BER   | Bit Error Rate                          |
| BTS   | Base Transceiver Station                |
|       |                                         |
| С     |                                         |
| CDMA  | Code Division Multiple Access           |
| CDG   | CDMA Development Group                  |
| CS    | Coding Scheme                           |
| CSD   | Circuit Switched Data                   |
| CPU   | Central Processing Unit                 |
|       |                                         |
| D     |                                         |
| DAI   | Digital Audio interface                 |
| DAC   | Digital-to-Analog Converter             |
| DCE   | Data Communication Equipment            |
| DSP   | Digital Signal Processor                |
| DTE   | Data Terminal Equipment                 |
| DTMF  | Dual Tone Multi-Frequency               |
| DTR   | Data Terminal Ready                     |
|       |                                         |
| E     |                                         |
| EDGE  | Enhanced Data Rate for GSM Evolution    |
| EFR   | Enhanced Full Rate                      |
| EGSM  | Enhanced GSM                            |
| EMC   | Electromagnetic Compatibility           |
| EMI   | Electro Magnetic Interference           |
| ESD   | Electronic Static Discharge             |
| ETS   | European Telecommunication Standard     |
|       |                                         |
| F     |                                         |
| FDMA  | Frequency Division Multiple Access      |
| FR    | Full Rate                               |
|       |                                         |





| G    |                                         |
|------|-----------------------------------------|
| GPRS | General Packet Radio Service            |
| GSM  | Global Standard for Mobile              |
|      | Communications                          |
|      |                                         |
| н    |                                         |
| HR   | Half Rate                               |
|      |                                         |
| I    |                                         |
| IC   | Integrated Circuit                      |
| IMEI | International Mobile Equipment Identity |
| ISO  | International Standards Organization    |
| ITU  | International Telecommunications Union  |
|      |                                         |
| L    |                                         |
| LCD  | Liquid Crystal Display                  |
| LED  | Light Emitting Diode                    |
|      |                                         |
| М    |                                         |
| MCU  | Machine Control Unit                    |
| ММІ  | Man Machine Interface                   |
| MS   | Mobile Station                          |
| MTBF | Mean Time Before Failure                |
|      |                                         |
| Р    |                                         |
| РСВ  | Printed Circuit Board                   |
| PCL  | Power Control Level                     |
| PCS  | Personal Communication System           |
| PDU  | Protocol Data Unit                      |
| PLL  | Phase Locked Loop                       |
| PPP  | Point-to-point protocol                 |
|      |                                         |
| R    |                                         |
| RAM  | Random Access Memory                    |
| RF   | Radio Frequency                         |
| ROM  | Read-only Memory                        |
| RMS  | Root Mean Square                        |
| RTC  | Real Time Clock                         |
| ļ    |                                         |
| S    |                                         |
| SIM  | Subscriber Identification Module        |
| SMS  | Short Message Service                   |
| SMT  | Surface Mount Technology                |
| SRAM | Static Random Access Memory             |

# ZTE中兴

| Т    |                                               |  |  |  |  |  |
|------|-----------------------------------------------|--|--|--|--|--|
| ТА   | Terminal adapter                              |  |  |  |  |  |
| TDMA | Time Division Multiple Access                 |  |  |  |  |  |
| TE   | Terminal Equipment also referred it as<br>DTE |  |  |  |  |  |
|      |                                               |  |  |  |  |  |
| U    |                                               |  |  |  |  |  |
| UART | Universal asynchronous                        |  |  |  |  |  |
|      | receiver-transmitter                          |  |  |  |  |  |
| UIM  | User Identifier Management                    |  |  |  |  |  |
| USB  | Universal Serial Bus                          |  |  |  |  |  |
| USIM | Universal Subscriber Identity Module          |  |  |  |  |  |
|      |                                               |  |  |  |  |  |
| V    |                                               |  |  |  |  |  |
| VSWR | Voltage Standing Wave Ratio                   |  |  |  |  |  |
|      |                                               |  |  |  |  |  |
| Ζ    |                                               |  |  |  |  |  |
| ZTE  | ZTE Corporation                               |  |  |  |  |  |

# **2 Product Introduction**

Please refer to Figure 2-1 for the principle diagram of ME3000\_V2 module.

Figure 2-1 Principle diagram



# **3 PIN Definitions**

The main connectors used for ME3000\_V2 module include 40-PIN connector and 10-PIN connector. The distance between the pins is 1.27mm. Refer to figure 3-1 below for PIN definitions.



### 3.1 40PIN Connector

See the definitions of 40PIN conbector in table 3-1.

Table 3-2 40PIN connector definitions

| Function | Pin<br>No. | Signal name | I/O | Basic functions                      | Remarks                                       |
|----------|------------|-------------|-----|--------------------------------------|-----------------------------------------------|
| Audio    | 39         | MIC_1P      | I   | 1 <sup>st</sup> audio input anode    | Default audio input/output as 1 <sup>st</sup> |
|          | 37         | MIC_1N      | I   | 1 <sup>st</sup> audio input cathode  | channel. Usually 1 <sup>st</sup> used for     |
|          | 34         | SPK_1P      | 0   | 1 <sup>st</sup> audio output anode   | handset, 2 <sup>nd</sup> userd for earpiece.  |
|          | 32         | SPK_1N      | 0   | 1 <sup>st</sup> audio output cathode |                                               |
|          | 40         | MIC_2P      | I   | 2 <sup>nd</sup> audio input anode    |                                               |
|          | 38         | MIC_2N      | I   | 2 <sup>nd</sup> audio output cathode |                                               |
|          | 33         | SPK_2P      | 0   | 2 <sup>nd</sup> audio output anode   |                                               |
|          | 35         | EAR_AN_D    | I   | Earpiece key detection               | Internal pull-up, valid at low level          |
|          |            | ET          |     |                                      |                                               |
|          | 36         | EAR_DET     | 1   | Earpiece insert                      | Internal pull-up, valid at low level          |
|          |            |             |     | detection                            |                                               |
| COM 1    | 12         | /CTS        | 0   | Clear to send                        | Valid at low level                            |
|          | 14         | /RTS        | Ι   | Request to send                      | Valid at low level                            |
|          | 13         | TXD         | 0   | Transmit data                        |                                               |
|          | 11         | RXD         | Ι   | Receive data                         |                                               |

ME3000\_V2 Module



| Function  | Pin<br>No. | Signal name         | I/O | Basic functions              | Remarks                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------------|---------------------|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 15         | RI—GPIO42<br>/EINT2 | 0   | Ringer indication signal     | TTL level. High level when<br>initialized:<br>Low level after receiving ringer<br>signal and the incoming call<br>rings; high level at any other<br>time.<br>No level change upon the<br>receipt of SMS; 1s low level and<br>4s high level as the incoming call<br>rings; the process repeats; high<br>level at any other time. Generate<br>1s low level upon the receipt of<br>SMS. |
|           | 17         | /DSR                | 0   | Data Set Ready               | Valid at low level                                                                                                                                                                                                                                                                                                                                                                   |
|           | 18         | DCD                 | 0   | Data Carrier Detect          |                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 16         | /DTR                | Ι   | Data Terminal Ready          | Valid at low level                                                                                                                                                                                                                                                                                                                                                                   |
| SIM card  | 4          | CARD_DAT            | I/O | Data cable                   |                                                                                                                                                                                                                                                                                                                                                                                      |
| interface |            | А                   |     |                              |                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 6          | CARD_CLK            | 0   | Clock cable                  |                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 8          | V_CARD              | 0   | CARD power supply            |                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 2          | CARD_RST            | 0   | Reset signal                 |                                                                                                                                                                                                                                                                                                                                                                                      |
| COM 2     | 1          | TXD2                | 0   | Transmit data                | The GSM module does not                                                                                                                                                                                                                                                                                                                                                              |
|           | 3          | RXD2                | Ι   | Receive data                 | support USB function, but it                                                                                                                                                                                                                                                                                                                                                         |
|           | 5          | /RTS2               | I   | Request to send              | supports UART2 only. Low level                                                                                                                                                                                                                                                                                                                                                       |
|           | 7          | /CTS2               | 0   | Clear to send                | valid for PIN 5 and PIN 7.                                                                                                                                                                                                                                                                                                                                                           |
|           | 9          | GPIO17              | -   | GPIO                         | Hang up when reserved                                                                                                                                                                                                                                                                                                                                                                |
| LED       | 28         | SMS_LED—<br>—GPIO25 | 0   | Incoming call and SMS<br>LED | Internal pull-down, LED on at<br>high level. Need externally add<br>the driver. 4-5S low level upon<br>the receipt of SMS.                                                                                                                                                                                                                                                           |
|           | 50         |                     |     | NGLWOIN SIGHAI LED           | <ul> <li>Internal pull-up, LED off at high level. Need externally add the driver.</li> <li>Power on status: LED off.</li> <li>Network status: LED flashes.</li> <li>LED is on for 50ms, and off for uncertain time.</li> <li>IDLE status: LED flashes at 1Hz.</li> <li>Traffic status (Call, network): LED flashes at 5Hz.</li> </ul>                                                |
| Reset     | 26         | ON/OFF              |     | Power on/off control         | Internal pull-up, valid at low level. Externally connect with a                                                                                                                                                                                                                                                                                                                      |



| Function | Pin<br>No. | Signal name | I/O     | Basic functions   | Remarks                                                                                                                                                                                                                                                                                  |
|----------|------------|-------------|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |            |             |         |                   | switch with Open Collector<br>(Open Drain) . Please refer to<br>4.2 power and reset for details.                                                                                                                                                                                         |
|          | 10         | /RESET      | I       | Reset signal      | Valid at low level. Need<br>externally connect a switch with<br>Open Collector (Open Drain) .<br>Please refer to 4.2 power and<br>reset for details.                                                                                                                                     |
| Power    | 19         | V_MAIN      | I       | Main power supply |                                                                                                                                                                                                                                                                                          |
|          | 21         | V_MAIN      | I       | Main power supply |                                                                                                                                                                                                                                                                                          |
|          | 22         | V_MAIN      | Ι       | Main power supply |                                                                                                                                                                                                                                                                                          |
|          | 23         | GND         | GN<br>D |                   |                                                                                                                                                                                                                                                                                          |
|          | 24         | GND         | GN<br>D |                   |                                                                                                                                                                                                                                                                                          |
|          | 25         | V_MSM       | 0       | Digital power     | Generally, it's recommended to<br>use this pin for pull-up. As the<br>module is powered off, the<br>output voltage of the pin remains<br>unchanged, but the internal<br>resistance is very high.<br>Therefore, it's not recommended<br>to use this pin for any other<br>control purpose. |
| Reserved | 20         | NC          | _       |                   | For module's internal use, need hang up.                                                                                                                                                                                                                                                 |
|          | 27         | NC          | _       |                   | For module's internal use, need hang up.                                                                                                                                                                                                                                                 |
|          | 29         | NC          | —       |                   | For module's internal use, need hang up.                                                                                                                                                                                                                                                 |
|          | 31         | NC          | -       |                   | For module's internal use, need hang up.                                                                                                                                                                                                                                                 |





### 3.2 10PIN Connector

See 10PIN connector definitions in table 3-2.

| Table 3-3 10PIN | connector PIN | definitions |
|-----------------|---------------|-------------|
|-----------------|---------------|-------------|

| Function | Pin No. | Signal name | I/O      | Basic functions            |
|----------|---------|-------------|----------|----------------------------|
| 1        | GND     | GND         | Power    |                            |
| 2        | GND     | GND         |          |                            |
| 3        | GND     | GND         |          |                            |
| 4        | GND     | GND         |          |                            |
| 5        | NC      |             | Reserved |                            |
| 6        | NC      |             |          |                            |
| 7        | NC      |             |          | For module's internal use, |
| 8        | NC      |             |          | need hang up.              |
| 9        | NC      |             |          |                            |
| 0        | NC      |             |          |                            |

# **4 Decription of Hardware Interfaces**

### 4.1 Summary

This chapter introduces each logic function interfaces of ME3000\_V2 module & its operation descriptions, and provides the designing sample.

- Power and Reset Interface
- COM Port
- SIM Card Interface
- Audio Interface
- Antenna Interface

**Remarks:** In the system, the module layout should be far away from high-speed circuit, switch power, power transformer, large power inductor, or single chip microcomputer's clock circuit.

### 4.2 Power and Reset

See the power and reset circuit design principle diagram in figure 4-1.

Figure 4-1 Power and reset circuit design principle diagram



#### Power design

The module is powered by V-MAIN. See the voltage features in figure 4-1.

Table 4-1 Voltage features

| Category       | Min.           | Typical | Max.                             |
|----------------|----------------|---------|----------------------------------|
| Input voltage  | 3.3 V          | 3.9 V   | 4.25 V                           |
| Inpput current | 10mA (average) |         | 2A (depending on network signal) |

D1 is an enabled LDO with 6V~9V input voltage. Through adjusting R31and R41, it could make V\_MAIN at 3.9V to power ME3000\_V2 module, and it's required to place at lease one 1000uF tantalum capacitor at V-Main input pin. The module is very strict with the requirements on power and GND, therefore it's requested that filtering must be performed to power and GND, and the power



ripple must be controlled under 50Mv. Do not use LDO to power any other part in the system because it might affect the RF performance. Finally, select the power cables with at least 80mil traces during the layout and keep the integrality of ground line.

If you use other LDO, make sure the output current is larger than 2A.

#### • Power ON

The module will be turned off after power-on normally. To turn on the module, provide a 2000-5000mS low level pulse to ON/OFF PIN. If connecting to GND at ON/OFF pin with 1K resistance, the module could be automatically powered on.

Note: ON/OFF, /Reset need to connect an open collector or open drain gate.

The /RESET signal is not required when the module is turned on.

#### • Power OFF

To turn off the module, provide a 2000-5000mS low level pulse to ON/OFF PIN or use AT command "AT+ZPWROFF".

#### Reset

The module could be reset by using the method above to "Turn off" and then "Turn on".

If the external reset function has to be used, one low level pulse lasting at least 500mS should be provided to /RESET Pin within 2 seconds after the module is turned on. Before that, the external I/O signal must be kept at low level. Refer to figure 4-2 Reset circuit design reference.

If the /RESET Pin is not used, hang it up.

See the module's power-on/off time sequence diagram.



Table 4-2 Power on/off ciruict time characteristics

| ta   | t <sub>b</sub> | t <sub>c</sub> | t <sub>d</sub> | t <sub>e</sub> |
|------|----------------|----------------|----------------|----------------|
| 20mS | 10mS           | 3S             | 3S             | 6S             |

#### • V\_MSM

There is a voltage output pin with current adjuster, which can be used to supply external power to the board. The voltage of this pin and the voltage of baseband processor/memory come from the same voltage adjuster. The voltage output is available only when the module is on. The normal output voltage is 2.85V, and the user should absorb the current from this pin as little as possible (less than



10mA). Generally, it is recommended to use this pin to match the level.

When the module is off, the output voltage for this pin remains unchanged, but the impedance is rather high. Therefore, it's not recommended to use this pin for any other control purposes.

#### • Other Advice

In order to make sure the data is saved safely, please don't cut off the power when the module is on. It's strongly recommended to add battery or soft switch like the power key on the mobile phone.

### 4.3 COM Port

The module provides an integrated full duplex UART interface and an accessorial full duplex UART interface, whose maximal data rate is 115200bps. External interface is 2.85VCMOS level signal, their logic functions conform to RS-232 interface standard. These two UART could be used as serial port data interfaces, usually UART1 is used for AT commands, data transmission and updating software of module, UART2 is used to provide test and debug channel.

Note: during the overall unit's design, the customers need lead out UART1 for software upgrade.

The module's output IO level is 2.85VTTL, and it needs to transfer the level when connect with standard 3.3V or 5V logic circuit (such as MCU or RS232 drive chip MAX3238 etc), Figure 4-2 shows the COM port level transfer circuit. The converted signal should connect with MCU or RS232 drive chip directly. Common low power switch triode should be applied as the crystal triode shown in Figure 4-2.

Note: the module won't enter the sleep mode when RxD is at high level. Please pay attention to it during the design.



Figure 4-2 UART Interface Design Diagram

Note: The GSM module supports UART2 (note: including RTS2 and CTS2), but it does not support USB.



### 4.4 SIM Card Interface

ME3000\_V2 supports 1.8V or 3V SIM card, and there are 4 pins at the terminal of the card. V\_CARD is used to supply SIM card. It's strongly recommended to add ESD to protect SIM card in hostile environments. D2 in figure 4-3 is ESD protection device:



Figure 4-4 SIM Card Circuit Reference Design Diagram

NOTE: A 10k resistor is required for DATA pin to be draw up to V\_CARD power, because there are different SIM cards with quite different output currents. The PCB wiring of SIM card should be laid closely around the module as possible as you can, to avoid the interference of reading/writing from other sources.

### 4.5 Audio Interface

The module provides audio input and output. There are 2 speaker interfaces, 2 microphone interfaces and one linear output. Only one pair I/O works at the same time. See the audio interface circuit in figure 4-4.



Figure 4-5 Audio interface circuit design diagram



#### Microphone

The system connector provides two microphone interfaces MIC\_1 and MIC\_2, which are both differential interface and can be used for single ended input. It's recommended to use the differential mode to reduce the noises. These two microphone inputs are coupled in AC domain and added a 2.0V offset voltage inside, and they should directly connect with the receiver.

#### • Speaker

The system connector provides two speakers, SPK\_1 & SPK\_2. The former is differential interface, and the latter is single-ended interface. They both have 32 ohm impedance.

GSM/GPRS module audio interface is designed as below:

• Design of the first channel audio interface

Select the microphone with the sensitivity lower than -51.5dB since the output impedance for SPK\_1 is 32 ohm and the max. gain in MIC\_1 reaches 51.5dB. The level of MIC\_1P PIN is about 2.2V.

**Note**: if other kind of audio input method is adopted, the input signal should be within 0.5V. If the signal voltage is lower than 0.5V, then the pre-amplifier should be added. If the signal voltage is higher than 0.5V, then network attenuation should be added.

• Design of the second channel audio interface on the earphone

Select the microphone with the sensitivity lower than -51.5dB since the output impedance for SPK\_2 is 32 ohm and the max. gain in MIC\_2 reaches 51.5dB. The level of MIC\_2P PIN is about 2.2V. The receiver's design is just the same as the handset's.

### 4.6 Antenna Interface

The module provides two kinds of external interfaces:

- Directly solder with PCB land
- Antenna testing socket

PCB land is used to connect module with antenna by 50 ohm RF shielding cable to cut down the cost. But it's not a complete way to shield EMI, and RF signal quality may be trivially affected. So if you decide to use this method, intense radiation must keep far away from PCB land. At the same time, you must ensure that core line of RF shielding cable has been jointed to PCB land, and the shielding metal wire netting on the RF cable has been jointed to GND of module. As shown in figure 4-5, the grounding part must be jointed firmly, otherwise, the core cable may be ruptured caused by shielding cable shaking. Proper measures should be taken to reduce the access loss of effective bands, and good shielding should be established between external antenna and RF connector. Besides, external RF cables should be kept far away from all interference sources such as high-speed digital signal or switch power supply.

#### Figure 4-6 Antenna Interface Diagram



The antenna test socket is used for the module's calibration and test. It can easily connect the module to the antenna because of its small contact impedance, good shielding and exclusive  $50\Omega$  connection cable. The antenna test socket's impedance is  $50\Omega$ . The antenna test socket's part number is MM9329-2700B. Please refer to the user manual of socket's supplier and select the relevant antenna connection plug to connect the module. See figure 4-6.



#### Figure 4-7 Antenna Interface Diagram

Proper measures should be taken to reduce the access loss of effective bands, and good shielding should be established between external antenna and RF connector. Besides, external RF cables should be kept far away from all interference sources such as high-speed digital signal or switch power supply.

According to mobile station standard, stationary wave ratio of antenna should be between1.1 to 1.5, and input impedance is 50 ohm. Different environments may have different requirements on the antenna's gain. Generally, the larger gain in the band and smaller outside the band, the better performance the antenna has. Isolation degree among ports must more than 30dB when multi-ports antenna is used. For example, between two different polarized ports on dual-polarized antenna, two different frequency ports on dual-frequency antenna, or among four ports on dual-polarized dual-frequency antenna, isolation degree should be more than 30dB.

# **5 Mechanical Design**

### 5.1 Appearance Diagram

See ME3000\_V2 module's appearance in figure 5-1.

Figure 5-1 Module's Appearance Diagram



- Dimensions (LxWxH): 44.50 mm (length) x 28.50mm (width) x 8.25mm (±0.2mm)
- Weight: 8g

### 5.2 Assembly Diagram

See the module's assembly diagram in figure 5-2.

Figure 5-2 Module's Assembly Diagram



### 5.3 PCB Layout Diagram

See the module's PCB layout diagram in figure 5-3.

Figure 5-3 Relevant PCB Layout Diagram (top side)



### 5.4 Fixing Method

The material of the metal plate used for the module's fixing part is

There are two fixing methods: welding or mounting screws. See the module's fixing methods in figure 5-4.





## **6** Summary of Peripheral Components

See the summary of peripheral components in table 6-1.

Table 6-1 Summary of Peripheral Components

| Part Number          | Location No. | Supplier        | Contact method   |
|----------------------|--------------|-----------------|------------------|
| MIC29302WU           | D1           | MICREL          | www.micrel.com   |
| SPNZ-40S1-VB-030-1-R | X1           | Shenzhen        | www.stwxe.com.cn |
|                      |              | Shentaiweixiang |                  |
| PNY-10S2-VB-028(020) | U1           | Shenzhen        | www.stwxe.com.cn |
|                      |              | Shentaiweixiang |                  |
| C707 10M006 5122     | U05          | AMPHENOL        | www.amphenol.com |
| VC060303A100RP       | ESD3-6       | AVX             | www.avx.com      |