Computing

Software Devel opment

[INTERMEDIATE?Z]

David Bethune

(Adapted for True BASIC by Alan Patterson)

Acknowledgements

AlanPatterson acknowledges that he has only changed the original work by David Bethune where
it was necessary to convert any references to Visual Basic into the equivalent for TrueBASIC.
Every effort has been made to secure all copyright permissions prior to publication. The publishers
will be pleased to rectify any inadvertent omissions at the earliest opportunity.

Learning and Teaching Scotland gratefully acknowledge this contribution to the Nationa
Qudlifications support programme for Computing.

First published 2004

© Learning and Teaching Scotland 2004

This publication may be reproduced in whole or in part for educational purposes by educational
establishments in Scotland provided that no profit accrues at any stage.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING i f

INTRODUCTION

Contents
INTRODUCTION

Tutor guide
Student guide

SECTION 1

1.1 Software

1.2 Thedevelopment process

1.3 A danceinthedark every Monday
1.4 Analysis

1.5Design

1.6 Implementation

1.7 Testing

1.8 Documentation

1.9 Evaluation

1.10 Maintenance

SECTION 2

2.1 Computer languages

2.2High and low level languages
2.3 Trandators

24 nterpreters

2.5 Compilers

2.6 Text editors

2.7 Scriptinglanguage and macr os

SECTION 3

3.1Introducing TrueBASIC

3.2 Input and output — example

3.3 Input and output — tasks

3.4 Enhancing our output

3.5Usingvariables

3.6 Working with number s— example
3.7Using Clear

3.8Arithmetical expressions

3.9 Working with numbers—tasks

3.10 Pre-defined numericfunctions
3.11Workingwith wordsand numbers — example
3.12 Pre-defined string functions

3.13 Exampleprogram using CHR$and ORD

SECTION 4

4.1 Making choices

421f ... Then ... Else
4.3 Multiplelfs
4.4Using AND —example
4.5Using AND —task

4.6 Complex conditions

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

o oo o Ol o W W

10
11
12
12
13
13
14
15
15
15
18
18
18
19
20
25
25
26
31
32
33
35
39
39
40
40
42
44
49
52
52
52
54
57
59
60

INTRODUCTION

4.7 Repetition

4.8 Repetition using For ... Next

4.9 Countingusing For ... Next

4.10For ... Next tasks

4.11 Using theloop counter

4.12 Do ... Loop Until

4.13 Random numbers

4.14 Arithmetic tester
4.15Moreexamplesusing Do ... L oop Until
4.16 Other formsof conditional loop

SECTION 5

5.11nput validation

5.2 Input validation tasks
5.30ther standard algorithms
5.4 Usingarrays

5.5 Examplesusing arrays

ANSWERS

Section 1.1

after Section 1.10
after Section 2.1
after Section 2.5
after Section 2.7
after Section 3.1
after Section 3.12
Section 4.9
Section 5.3

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

60
61
64
68
69
70
72
73
75
78
80
80
82
83
85
88
90
90
90
91
91
91
92
92
92
92

INTRODUCTION

INTRODUCTION

Tutor guide

Thisteaching and learning material isdesigned to cover all the content needed by alearner to
pass the Software Devel opment unit of Intermediate 2 Computing. However, itisthe
responsibility of the tutor to check the content coverage against the SQA unit specification.

The pack coversthe knowledge and understanding required for Outcome 1 assessment, and
the practical skillsrequired for Outcome 2. There are many opportunitiesthroughout the unit
(especialy in Sections 3, 4 and 5) for studentsto demonstrate the practical skillsrequired, and
generatetherequired evidence.

For unit assessment, use should be made of the NAB assessment materials provided by SQA
(multiple choicetest and practical skillschecklist).

Note that |earners completing this unit as part of the Intermediate 2 Computing course should
be given opportunitiesto devel op the higher order problem solving skillsrequired for the
external course assessments (examination and practical coursework tasks). This can be done
by providing past exam paper questions, and further programming tasks, such asthe specimen
coursework task provided by SQA.

The pack has not been designed for a student to use unsupported, although it might be
possible to useitinthisway. Studentswill need significant tutor support, particularly while
attempting the practical programming sectionsof the unit. Thissupport would include giving
hel p with the complexities of the True BASIC environment, providing extraexample
programswhere astudent needs reinforcement activities, and emphasising key teaching and
learning points asthey occur.

All the examples provided are exemplified in True BASIC Silver Edition on aPC. Minor
amendments might be required to run the programs in other versions, either earlier or later
versionsor the Apple Mac versions. This software devel opment environment and
programming language has been chosen, asit is one in common use in Scottish schools at
present. However, the SQA unit specification does not require any particular language or
environment, so the examples could be adapted and/or substituted by examplesin any other
structured procedural high level language. Tofacilitatethis, the examplesavoid where
possible constructionsthat are very specific to True BASIC, and that are not easily converted
into other languages.

Answersto questions are provided at the end of the pack, but not answersto programming

tasks, asmany possible correct answers are possible, and syntax may vary depending on the
version of TrueBASICinuse.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

INTRODUCTION

Student guide

Thisteaching and learning material isdesigned to cover al the skills, knowledge and
understanding that you need to passthe Software Devel opment unit of Intermediate 2
Computing.

To achieve this unit, you must devel op and demonstrate knowledge and understanding of:
o theprinciplesof software development (Section 1)

o softwaredevel opment languagesand environments (Section 2)

¢ highlevel language constructs (Sections 3 and 4)

e standard algorithms(Section 5).

At the end of the unit, you will be tested on this by sitting a short 20-question multiple choice
test.

However, it isnot only about passing atest. Y ou must also devel op practical skillsin software
devel opment using asuitable high level language. Almost any programming language can be
used, but these notes (especially Sections 3 to 5) assumethat you areusing True BASIC. If
you are using adifferent programming language, your tutor will need to supply you with other
materialsfor some parts of the unit.

Y our tutor will complete apractical skillschecklist for you asyou work through the practical
exercisesin these notes. Y ou should keep afolio of evidence; this should include
documentation of all the stages of the software devel opment process.
F,z Y ou will see the following icons throughout these notes.
i = \,' Computer-based practical task — you will need access to acomputer with
“==-4' TrueBASICingtalledfor thistask.

Questionsfor you to answer —you can check your own answers against
the sample answers given at the end of this pack.

Activity (non-computer -based) —thiswill usually require somewritten
work.

Y ou should ask your tutor to check your work whenever you compl ete acomputer-based
practical task or a non-computer-based activity.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

SECTION 1
1.1 Software

Thisunit is about softwar e.

What is software? Y =
Y ou should already know that any computer system ismade up of har dwar e and softwar e.

Theterm hardwar e isfairly easy to understand, because you can seeit. It isall the pieces of
equipment that make up the system — the processor, monitor, keyboard, mouse, printer,
scanner and so on.

Softwar e isnot so obvious. It isall the programs, instructions and datathat allow the
hardwareto do something useful and interesting.

Think about all the different items of softwar e that you have used in the last week or so.
Hereisthelist of programsthat | have used recently.

e Microsoft Word (theword processing program that | use — | regularly use three versions
of it: Word 2000, Word 98 for MacOS 8, Word v.X for MacOS X)

e Microsoft Excel (spreadsheet used to keep charity accountsfor which | am thetreasurer)
ClarisWorks4 (integrated package — | mainly useitsword processor and simple
database sections)

Internet Explorer (both PC and Mac versions — for browsing the web)

Safari (web browser for MacOS X)

three different e-mail clients (Netscape Communicator, M S Outlook and Mail)
iPhoto (for organising my digital photographs)

iMovie (for editing digital movies)

Adobe Photoshop (for editing digital photographs)

Citrix ICA thinclient (allows meto connect to my work computer from home)
Toast (for burning CDs)

Print to PDF (ashareware program for creating PDF files)

AdobeAcrobat and Preview (for viewing PDF files)

M acromedia Flash (for developing animated graphics)

Home Page (an ancient but reliable web page editor)

some game programs

Symantec Anti-virus suite.

But that’ snot al! On each computer that | have used, a program (or group of programs)
called the oper ating system must have been running. So | must add the following to my list.

Windows 97 (on the ancient laptop | am using to type these notes)
Windows XP (on another |aptop)

Windows 2000 (on acomputer at school)

MacOS8.1 (on my trusty old Mac clone)

MacOS X.2 (on my iMac).

Thirdly, afull list would include all the actual documents, files, web pages, e-mails and so
on, that | had accessed, asthese are also software. That would betoo long alist, soI’ll ignore

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

it here.
Activity

How about you? Make alist of al the software (programs and operating systems) that you
have used over the last few days.

The point about all theseisthis: they didn’t grow on trees! They are availablefor usto use
because they have been designed and created by teams of software developers. In thisunit, we
are going to learn about the process of devel oping software, and to apply this processto

devel op some (simple) programs of our own.

1) What isthe meani ng of theterm har dwar e?
2. Givethree examplesof software.
3. ldentify each of the following as either hardware or software.

Item hardware software
monitor

database
Windows 97
scanner

an e-mall

Internet Explorer
mouse

modem
acomputer game
aword processor
digital camera

1.2 Thedevelopment process

Before we think about how softwareisdeveloped, it isworth
considering how any product isdevel oped, becausethe processis
essentially the same. For exampl e, think about the process of
developing anew model of TV.

Stage 1. Analysis

Before anew product is devel oped, someone within the company, probably in the marketing
department, analyseswhat peoplewant. They consider which productsare selling well, look
at what rival companies are producing, and maybe even carry out asurvey to find out what

people want. From thisthey can work out which features are required in their newest model,
including itssize, target price range and varioustechnical requirements.

They usethisinformation to produce a specification for the new model of TV. This states
clearly al the featuresthat it must have.

Stage 2: Design

The next stageisto turn the specification into adesign. Designerswill get to work, aloneor in

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

groups, to design various aspects of the new TV. What will it look like? How will the controls
be laid out? Sketcheswill be drawn up and checked against the specification. Another team of
designerswill be planning theinternal circuitry, making sureit will allow the TV todo al the
things set out in the specification.

Stage3: Implementation

Oncethe design phaseisover, engineerswill get to work to actually build a prototype. Some
will build the case according to the design, while otherswill devel op the electronicsto go
inside. Each part will betested on its own, then the whole thing will be assembled into a
(hopefully) working TV set.

Stage 4: Testing

Before the new model can be put on sale, it will bethoroughly tested. A wide range of tests
will be carried out.

It might betested under ‘normal’ conditions. It could be put in aroom at normal room
temperature, and checked to seethat all the controlswork correctly, thedisplay isclear, itis
nice and stable and so on.

If it passesthistype of testing, it might next be tested under ‘ extreme’ conditions. For
example, doesit still work if the temperatureis below freezing, or very hot and humid, if it
used for long periods of time, or with the volume or the brightness or contrast set to their
maximum val ues?

Finally, it could be tested under ‘ exceptional’ conditions. What happensif a2-year old picks
up the remote and presses all the buttons at once? What happensif thereisapower cut, or a
power surge?

If it failsany of thesetests, it might be necessary to go back to the

implementation (or even design) stage and do some further work, beforere-

testing.

If it passes all thetests, then the new TV can go into production.

Stage5: Documentation

T
However, thedevelopment isn’t yet complete! Some documentation (:..
will be needed to go withthe TV —aUser Manual containing all the "
instructions about how to work the new TV, and probably a Technical \ -
Manual for repair engineers. :

Stage 6: Evaluation

Oncethe model isin production, the company will want to evaluateit. Doesit dowhat itis
supposed to do?Isit easy to use? And, from the engineer’ s point of view, isit easy to repair?

Stage 7: Maintenance

Stage 6 should be the end of the story, but in the real world, there needsto be stage 7 —
maintenance. There are different kinds of maintenance: fixing faultsthat turn up onceitis
being used regularly, improving the design to make it even better, or making changesfor
other situations (like making aversion that will work in another country).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

These seven stages are an essential part of the production process.

DiE@!

FAN

\7
o\ Al Activit
ANZ Y
OK, let'sseeif you have got theidea ...
Choose any type of manufactured object —it could be a car, anitem

of clothing, areadymade meal, atoy, apiece of furniture, abuilding
or....

Now copy and completethistable, writing one sentenceto describe
each of the seven stagesin the production of your chosen object.

Object chosen:

Stage Description
Anaysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

No g ~wDdbPR

1.3 A dancein thedark every M onday

Exactly the same process goesinto the production of a piece of software. The software
engineersand their colleagues carry out all the stages of the software development processin
order —analysis, design, implementation, testing, documentation, eval uation, maintenance.

I

e
GA

Consider the production of anew game program by asoftware company.

Activity

Here are descriptions of the seven stages, but they arein the wrong order.

Copy and complete another table like the one below, and dl ot the stagesinto the correct
places:

A. Writing auser guide and technical guidefor the software.

B. Deciding what type of game you want to create, and what features you want it to have.
C. Adapting thegameto run on adifferent type of computer.

D. Actually writing all the program code.

E. Checking that the program doeswhat it is supposed to do, iseasy to use, and can be fixed
if thereisaproblem.

F. Working out the details of what the screenswill look like, what menus and functions

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

therewill be, and other detailed aspects of the program.

G. Getting usersto try out the program to make sure it works under most conditions.

Stage Description
Anaysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

No g ~MWDNE

Check your answers on the next page.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

Y ou should have the following.

Stage Description

1. Anayss B. Deciding what type of game you want to create, and what
features you want it to have.

2. Design F. Working out the details of what the screenswill look like,
what menus and functionstherewill be, and other detailed
aspects of the program.

3. Implementation D. Actually writing al the program code.

4. Testing G. Getting usersto try out the program to make sureit works
under most conditions.

5. Documentation A. Writing auser guide and technical guide for the software.

6. Evauation E. Checking that the program doeswhat it is supposed to do, is
easy to use, and can befixed if thereisaproblem.

7. Maintenance C. Adapting the gameto run on adifferent type of computer.

Inthiscourse, especially from Section 3 onward, you will be putting this softwar e
development process into practice when you produce some simple programsin ahigh level
computer programming language.

For the moment, it isworth trying to learn the stepsin the correct order. | usually useasilly
mnemonic for this:

A Danceln TheDark Every M onday Analysis

... which helpsmeremember ADITDEM: \)
Anaysis Design
Design \

Implementation ;
Testing Implementation

Documentation \ _
Evaluation Testing
M aintenance. \

Y ou might be able to make up a better Documentation
mnemonic than thisone — so long asiit \

helps you, then it's OK! Evaluation

Next, wewill take acloser ook at each of \
the stages. Maintenance

1.4 Analysis

The main purpose of the analysis stageisto be absolutely clear about what the programis
supposed to do. Often, anew program will start from arough idea. Before getting started, itis
important to turn the rough ideainto an exact description of how the program will behave.
What will it do? What are the inputs and the outputs? What type of computer isit to run on?
All these questions, and many more, must be asked and answered at this stage.

Theresult of thisisthe production of a program specification, agreed by both the customer

(whoever wantsthe program written) and the developer (the person or company who are
developing the program).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

SOFTWARE DEVELOPMENT PROCESS

1.5 Design

I nexperienced programmers are often tempted to jump strai ght from the program specification
to coding, but thisisnot agood idea. It isworth spending time at the design stage working out
some of theimportant details, including how the program will ook on the screen, how the
user will interact with the program, and how the program might be structured. Program
designersuseavariety of methodsfor describing the program structure. Two common ones
are called pseudocode and structur e diagrams. There are many others, but we will only
consider these two.

Itiseasy to understand theseif we think about an everyday example, rather than acomputer
program.

Think about making tea. Hereisalist of instructions for thistask.

Get amug out of the cupboard.

Put ateabaginit.

Boil the kettle.

Pour boiling water from the kettle into the mug.
Stir.

grupdE

Thisisan example of pseudocode. Itisanumbered list of instructionswrittenin normal
human language (in this case, English). It doesn’t gointo all the details, but it givesthemain

steps.

Another way of showing thisisasastructurediagram. It could look like this:

Making tea
! \ \ |
Get mug Put teabag Boil kettle Pour water Stir
from in mug from kettle
cupboard into mug

Each instruction goesinto a separate box. Y ou read pseudocode from top to bottom. Y ou
read a structurediagram from left to right.

N RERN
BV

Now try acouplefor yourself. Here are some simple tasks.

Activity

Going to school
Going to New Y ork

Having a shower

Phoning afriend

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

11

SOFTWARE DEVELOPMENT PROCESS

Becoming amillionaire

Choose any two, and write apseudocodeinstruction and draw astructure diagram for each
one.

Don't makeit too complicated. In the teaexample, | broke making teadown into five steps.
Y ou could have broken it down into many more detailed steps. For example, getting amug
out of the cupboard could be broken down into smaller steps —walk across to the cupboard,
open the door, choose amug, lift it out, close the door, walk back acrossthe room. Try to
break the task down into between four and eight steps.

Wewill use pseudocode in Section 3 when we start to devel op our own computer programs.
There are other graphical methods of representing the structure of aprogram. Theseinclude

structure chartsand flowcharts. Some use avariety of ‘boxes’ to represent different types of
instruction. For example, you might see:

[: to represent arepeated action

Q to represent a choice

to represent a step which will be broken down into smaller steps.

1.6 Implementation

In software devel opment, implementation isthe process of converting a program design into a
suitable programming language.

There arethousands of different programming languages out there, all with their own
advantages and disadvantages. For the purposes of this course, you only need to know about
two main groups: machine code and high level languages. Y ou will learn more about these
in Section 2.

1.7 Testing

Welooked at testing at the start of this section. Whether we are talking about anew TV, a
new item of clothing, or anew computer program, the manufacturerswill spend agreat ded
of timeontesting. Thiswill be carefully planned to test awide range of conditions. We can
divideit up into three types of testing.

e Testingnormal conditions
Making surethe program doeswhat it should do when used ‘ normally’.

e Testingextremeconditions

Making sure the program can handl e situations that are at the edge of what would be
considered normal.

e Testingexceptional conditions
Making sureit can handle situations or inputsthat it has not been designed to cope with.

Y ou will see examplesof all of thesein Section 3.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 12

SOFTWARE DEVELOPMENT PROCESS

1.8 Documentation

When you buy a product, whether it isacomputer program or
anything else, you usually get somekind of User Guide with
it. Thistellsyou how to use the product. It might also contain a
tutorial, taking you through the use of the product step by step.

Some software comeswith abig fat book called User Guide or Manual; others come with the
User GuideonaCD.

Aswell asdocumentation for the user of the software, there should also bea Technical
Guide of some sort. Thisgivestechnical information whichisof littleinterest to most users,
except that it will usually includeinformation about the specification of computer required,
including how much RAM it needs, how fast a processor it must have, and which operating
system isrequired. The Technical Guide should also includeinstructions on how to install the
software.

gf W‘fv"::i
3 Activit
LG Y

Get hold of asoftware package that has been bought by your school or college, or oneyou
have bought yourself at home, open it up and take alook inside the box that it camein. Make
alist of al theitems of documentation that you find there.

1.9 Evaluation

Thefina stagein the process before the software can be distributed or sold isevaluation.
Evaluation involves reviewing the software under various headingsto seeif it isof the quality
required.

Inthiscourse, wewill review software under three headings: fitnessfor purpose, user
interface and readability.

Isthe software fit for purpose? The answer is‘yes' if the software doesall thethingsthat it
issupposed to do, under all reasonable conditions. This means going back to the program
specification (produced at the analysis stage) and checking that all the features of the software
have been implemented. It al so means considering the results of testing, and making sure that
the program works correctly and isfree from bugs.

The user interface should aso be evaluated. Isthe program easy to use?Isit clear what all
the menus, commands and options are supposed to do? Could it beimproved in any way?

Thethird aspect of evaluation that wewill consider is readability. Thisis of no direct
concern to the user of the software, but isimportant for any programmer who may need to
understand how the program works.

Itisto do with the way that the coding has been implemented. Isit possiblefor the program
code to beread and understood by another programmer, perhaps at alater date when the
program is being updated in someway? Wewill look in Section 3 at some techniquesfor
improving thereadability of aprogram.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

13

SOFTWARE DEVELOPMENT PROCESS

1.10 M aintenance

Thisfinal phase happens after the program has been put into use.
Therearedifferent types of maintenance that might be required.
These are called corrective maintenance, perfective maintenance
and adaptive maintenance. Y ou don’t need to know these names
until Higher level, but it isuseful to think about what they mean.

Correctivemaintenance meansfixing any bugsthat appear oncethe programisin use. Of
course, these should al have been discovered during testing. However, most programs (but
not the ones you will bewriting) are so huge and complex that some bugs are bound to slip
through unnoticed. If the bugs are seriousin nature, the software company might issue afree
‘patch’ onitswebsite, so that users can download the patch, and install it with the software, so
fixing the bug. If it isaminor bug, they may not bother.

Per fectivemaintenance isadding new featuresto the software. These might be suggested as
aresult of the evaluation stage, or they might be suggested by users. These new featureswill
then be added to the software, and re-issued asanew version. That’ swhy software often has
version numbers. Each version resultsfrom corrective and perfective maintenance of the
earlier versions. So (for example), BloggProg 3.2 will be similar to BloggProg 3.1, but with
bugsfixed, and some new features added.

The third type of maintenanceis adaptive maintenance. Thisiswhere the software hasto be
changed to take account of new conditions. The most obvious exampleiswhen anew
operating system comes out. Perhaps BloggProg 3.2 was designed to run under Windows
2000. When Windows X P came along, changes had to be made to BloggProg so that it would
work under the new operating system.

Questions

1. Match up these descriptions of the stages of the software devel opment processwith the
correct names (one has been donefor you).

Stage Description
Evaluation Writing auser guide and technical guide for the software.
Testing Working out the details of what the screenswill look like, what menus
and functionstherewill be, and other detailed aspects of the program.
Implementation Deciding what type of game you want to create, and what featuresyou
want it to have.
Design Actually writing al the program code.
Documentation Adapting the gameto run on adifferent type of computer.

Analysis Checking that the program doeswhat it is supposed to do, iseasy to
use, and can befixed if thereisaproblem.

Maintenance Getting usersto try out the program to make sure it works under most
conditions.

2. What three criteriawill be used for evaluating softwarein thisunit?

3. What istherelationship between pseudocode and astructure diagram?

4. Nametwo items of documentation usually provided with asoftware package, and
describe what you would expect each oneto contain.

5. What three types of testing should be applied to any software?

6. Describetwo examplesof maintenancethat could be required on agame program.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

LANGUAGES AND ENVIRONMENTS

SECTION 2

2.1 Computer languages

Just asthere are many human languages, there are many computer programming languages
that can be used to devel op software. Some are named after people, such Ada and Pascal.
Some are abbreviations, such as PL/1 and Prolog. All have different strengthsand
weaknesses. FORTRAN wasdesigned for carrying out mathematical and scientific
calculations. Prolog isgood for developing programsin artificial intelligence. COBOL isfor
devel opingcommercial dataprocessing programs.

Bpszl Activity: Makealist of six or so programming languages (you can find these
VAN Al intextbooksor on websites). For each one, write down whereit getsits name
@;@ 4l from andwhat it is‘good’ for.

Here are some examplesto get you started:

Name Sour ce of name Used for

Ada after CountessLovelace USmilitary systems
Logo Greek for ‘thought’ education

FORTRAN FORmulaTRANSlation early scientificlanguage

All these languages are what we call high level languages. That isto distinguish them from
low level languages! What do we mean?

2.2 High and low level languages

Inside every computer, thereisaprocessor. Thisisachip containing digital electronic
circuits. Thesecircuitswork with tiny pulsesof electricity and electronic components. The
pulses of electricity can be represented by the digits 1 and 0. Every item of dataand every
instruction for the processor is represented by agroup of these binary digits.

Processorsonly ‘understand’ these binary digits. The only inputsyou can make to a processor
aregroups of binary digits. The only output that a processor can makeisagroup of binary
digits.

Instructions and commands made for processors in thisbinary digital form are known as
machine codes.

Here are afew machine codes for a6502 processor:

10101001 00000001
10000101 01110000
10100101 01110000

I’'m sureyou’ll agreethat they are not very easy to understand.

Thereare several problemswith machine code:

machine codesfor different processorsare different
they arevery hard for humansto understand and use
they take up alot of spaceto write down
itisdifficult to spot errorsin the codes.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

LANGUAGES AND ENVIRONMENTS

Unfortunately, processorsdon’ t understand anything el se, so machine code hasto be used.
Theearliest computers could only be programmed by entering these machine codes directly.
It wasaslow process, easy to get wrong, and it was very difficult to track down and fix any
bugsin the programs. Machine codes are an example of low level languages, understood by

thelow level components of the computer system (the processor and other electronic circuits).

Toget round these difficulties, computer scientistsinvented high level languages.

High level languages are similar to human languages. Instead of using binary codes, they use
‘normal’ words. For example, the computer language BASIC useswordslike PRINT, IF,
THEN, REPEAT, END, FOR, NEXT, INPUT and so on. That meansthat high level
languages are easier to understand than machine code, and are more ‘readabl€e’, that is, it is
easier to spot and correct errors.

On the next page isasimple program written in anumber of high and low level languages.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

16

LANGUAGES AND ENVIRONMENTS

10 Number:=1

20 Answer:= Number + 1
30 PRINT Answer

40 END

make ‘number 1
make ‘answer ‘number + 1
say ‘answer

PROGRAM adder;
VAR answer,number: real;

Thefirst three are all examplesof highlevel languages
(BASIC, Logo and Pascal). All usewordsthat are
understandabl e to humans.

BEGIN
Number:=1,
Answer:=number+1;
WRITELN(answer);
END.
Thisisalow level language called 6502 LDA #1
assembler — not so easy to understand! STA 1000

LDA 1000

ADC

STA 1001

JSR OSWRCH

RTS
10101001 00000001 And thisfinal oneis 6502 machine code, whichis
10000101 01110000 completely unintelligible to (most) humans.
10100101 01110000
01101001 00000001 Infact, all five of these programs do more or lessthe
10000101 01110001 samejob! | think you will agreethat high level languages
0010000011101110 are much more practical for writing programsthan
1111111101100000 machine code!

Questions

1
2.
3.
4.
5.
6.

It looks asthough high level languages have all the advantages compared to machine code.
However, thereis one major problem — processorsdon’t understand high level languages at
al! To get round this problem, computer scientists have devel oped transl ator programswhich
cantrand ate high level languages (written by humans) into machine code (understood by

Processors).

Which type of language (high or low level) is easier to understand?
Which typewould be easier to correct if it had amistakeinit?
Nametwo low level languages.

Name two high level languages.

Explainthe main differences between high and low level languages.
List two advantages of high level languages.

high level language @ machine code

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

LANGUAGES AND ENVIRONMENTS

2.3Trandators

There aretwo main types of translator program that you need to know something about.
These are called inter pretersand compilers.

To understand the difference, it isuseful to think about an

analogy from the * non-computer’ world. Ty -

Imaginethat you are theworld expert in some obscure subject, - B,
like *the anatomy of the microscopic tubeworms of the steppes of S
Kazakhstan'. Y ou have beeninvited to present alecture on this). 4 i
subject at aconferenceto be held in Japan. Most of the delegates

at the conference do not speak or understand English, and you do

not know any Japanese. How are you going to communicate?

There aretwo options.

24 Interpreters

Option 1isto go to the conference yourself, and deliver your speech in English one sentence
at atime. After each sentence, aprofessional translator (who can understand English and also
speaks fluent Japanese) will turn your sentencein Japanese. Thiswill continueright through
your lecture, with theinterpreter trand ating each sentence asyou go along.

Computer interpreter programswork inthe sameway. Theinterpreter takes each line of high
level language code, trandates it into machine code, and passesit to the processor to carry out
that instruction. It worksitsway through the high level language program one line at atime
inthisway.

Thisworksfine, but it has a couple of important disadvantages.
Think about the analogy again. Y our one-hour lecture will take two
hoursto deliver, as each sentenceis spoken by you in English, then
by theinterpreter in Japanese. The other disadvantageisthat if you
are then asked to deliver your lecture again in another Japanese city,
you will need to haveit translated all over again asyou are
delivering it the second time.

The same problemistrue of computer interpreters. The process of translating the high level
language (HLL) program slowsdown the running of the program. Secondly, the HLL
program needs to be trandated every timeit isused. Thisisawaste of computer resources
and meansthat the user must always have an interpreter aswell asthe HLL program (often
called source code).

2.5 Compilers

An adternative approachisto useacompiler.

Going back to the Japanese | ecture example — instead of using atrand ator at the conference,

you could write down the text of your lecturein English, and get atrandator to trandateit all
into Japanesein advance. Y ou could then send the transl ated | ecture script to the conference,
and haveit read out by a Japanese speaker there.

The advantages are obvious — your lecture can be delivered in the one hour allowed inthe

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

18

LANGUAGES AND ENVIRONMENTS

conference programme, and it can be used as often as required without it needing to be
trandated over and over again.

A compiler program worksin the sameway. It takesyour HLL program, and trans atesthe
whole program into machine code once. This machine code can then be saved and kept. Once
translated, it can be used over and over again without needing to betranslated every time. The
compiled program therefore runs more quickly, and the user doesn’t need to have atranslator
program on their own computer.

Software that you buy, such as agames program or an application, will have been compiled
into machine code before being distributed and sold. What you get onthedisk or CD isa
machine code program that can run on your computer without needing to be translated.

Questions

Name the two main types of translator program.

Which onetranslates awhole program into machine code beforeit is executed?
Which onetranglates aprogram line by line asit is being executed?

Why do machine code programs run more quickly on acomputer than high level
language programs?

pODNDPE

2.6 Text editors

During the devel opment of ahigh level language program, after the analysisand design
stages, the programmer (or team of programmers) has to implement the design by codingitin
asuitable high level language.

Hereisan example of aVisual BASIC program.

Private Sub cmdOK _Click()
* coding for the OK command button
* displays an appropriate message for each possible number entered
* written by A. Programmer on 29/12/03

Dim Number as Integer
Number = txtNumber.text

If Number = 1 Then MsgBox Number & “ wins you a colour TV”
If Number = 2 Then MsgBox Number & “ wins you a mobile phone’
If Number = 3 Then MsgBox Number & “ wins you a holiday in Spain”
If Number = 4 Then MsgBox Number & “ winsyou 10p”
If Number =5 Then MsgBox Number & “ wins you aday at the beach”
If Number < 1 Then MsgBox Number & “ istoo small”
If Number > 5 Then MsgBox Number & “ istoo large’
End Sub

Y ou can seethat ahigh level language hasfeaturesthat makeit similar to ahuman language —
the use of ordinary words, for example. This meansthat the implementation is often carried
out using similar tools to those used for writing an essay or report. For example, cut and paste
would be useful when typing the program shown above. To write an essay or report, you
would normally use aword processing package. High level language programs can aso be
written using aword processing package. The sour ce code can be saved as atext file, which
can then be translated into machine code by a compiler.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 19

LANGUAGES AND ENVIRONMENTS

However, some software devel opment environmentsprovideatext editor which incorporates
many of the usual features of aword processor. The most useful of theseisprobably the
ability to cut and paste sections of code.

Activity: Consider the software development environment you are using for
the programming section of thisunit.

Doesit have atext editor, or do you use a separate word processing package? What useful
text editing featuresdoesit incorporate?

2.7 Scripting language and macr os

Most of thisunit isconcerned with the process of devel oping programswrittenin ahigh level
language to create stand-al one applications.

However, small programs called macros can be devel oped within some existing application
packages.

Example1: creating an Excel spreadsheet macro

Set up asmall spreadsheet likethis:

@ File Edit Wiew Insert Format Tools Data Window Help

EeEdS & BR o- Z A2 3 7

.] =
A B C D
1 Drientgll'fng Course 1
2
3 Control |ldentifier | Terrain Distance (m)
4 1H gate in walk 140
] 24 carner of track 200
2] 3B in woods 120
7 41 stream crossing 185
d 5T top of slope 210
d B F bend in path 240
10 7|C hollow 120
11 8 F tap of hill 175
12 9 W junction of fences 200
13 | 100k end of house 185

Saveit as cour sexls

Save a second copy of the same spreadsheet as course_copy.xls

From the Tools menu, select M acr o, then Record New M acr o.

Thefollowing dialogue box should appear (Note: date and name after ‘Macro recorded’ will
be different):

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

20

LANGUAGES AND ENVIRONMENTS

Record Macro ? E|
Macro name:
e .
Shortcut kew: Skore macro in;
Ctrl+|_ |This Warkbook j
Descripkion:

Macro recorded 13/05/2004 by D Mainland

Ik | Cancel

Enter the name (tidy_up_SS)

And the shortcut key (Ctrl + Shift + K)

Then click OK

War ning: follow theseinstructionsvery car efully — all your actions

arebeingrecorded!

The spreadsheet should now

ook likethis:

Select cell Al (thetitle of the spreadsheet)
Changeitsfont to 18pt Bold

Select A3to D13 (al the data)

Centreit all using the centre button on the menu bar
Select row 3 (the column headings)

Make them bold.

File Edit ‘iew Insert Format Tools Data Window Help

D%@EQE T A 2 b3

A3 | = | Control

2 course2.xls

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

A B C D
1 Orienteering Course 1
2
3 | Control |dentifier Terrain Distance [m}!
4 1 H gate in wrall 150
4] 2z A, corner of track 200
a] 3 B in waods 120
7 4 J stream crossing 185
d 5 T top of slope 210
2] B F bend in path 240
10 7 c hollow 120
11 a F tap of hill 175
12 9 W' Junction of fences 200
13 1a K end of house 185
14

21

LANGUAGES AND ENVIRONMENTS

Click on Stop Recording a | B

Savetheimproved spreadsheet as cour se2.xIs

All the series of actionsthat you applied to cour se.xlIs to turn it into cour se2.xIs have been

recorded and stored as a macr o.

To seethe macro you have created:
e gototheTools menu

e select Macro

° Sel ect M acros. Macro namne:

Macro

A dialogue box like this should
appear, with your named macro
listed under the name you gaveit.

Click on Edit.

Descripkion

=l
Macros in: |.ﬁ.ll Open 'Workbooks j

Macro recorded 13/05/2004

ddddddi).

Cancel

Step Into

Edit

Delete

opkions. ..

Another window will open, which displaysthe code of the macro you haverecorded, likethis.

|(Genera|} ﬂ |tid].r_up_55

|

Sub tidy up S50

' tidy_up 35 Macro
' Macro recorded 13705720

' Eevhoard Shortcout: Ctrld4Shift+E

With Selection.Font

Range ("A1™) .Select «—

/You should be able to \
recognise the actions you

took.

~ For example, the first
section records the

key.

Selection.Font.bold = True
Range ("A23:D13") .Select

Dame = "Arial" .
gize = 15 ¢ Next<_:omestheact|0nof
LABtrikethrough = False sdamngcdlAgcimngng
T the font to 18 point, and so
LSubscript = False \\ST'“
.outlineFont = False
.2hadow = False
Jaderline = x1lUnderlinestylelone
LColorIndex = xliutomatic

End With

macro’s name and shortcut

The macroisactually coded in ascriptinglanguage called Visual BASIC for Applications,

or True BASICA for short.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

22

LANGUAGES AND ENVIRONMENTS

What use is amacro?

e keep course 2.xlsopen
e Open course_copy.xls
e hold down Ctrl + Shift + K.

Thefile course_copy.xls should be automatically formatted by the macro to be the same as
cour se2.xls.

If the user had several similar unformatted spreadsheets and wanted them all formatted in this
way, he could save agreat dea of time by using the macro.

A macro is atime-saving program written in ascripting language which can be activated by a
seriesof key strokesfor repeated use. A macro cannot exist alone — it only workswith an
application program (in thiscase, Excel). In this example, we have seen amacro being used
with aspreadsheet. Macros can be used with many other application packages.

Example2: creating aword processing macro

open any word processing document

as before, from the Tools menu, select M acr o, then Record New Macro
namethe macro bold red text

assign ashortcut key combination (perhaps Ctrl + Alt + R)

click OK (Now the macro is being recorded)

select bold and text colour red from the menu bar

click to stop the macro recording.

Now you can use the macro.

e select any block of text
e activatethe macro by using the shortcut key combination.

Y ou can al so activate the macro by selecting it from Tools, Macro, Macros.

Thismacro would be useful if you have several documentsto work through, in each of which
you have been asked to change the main heading to bold red text.

If you needed to change al the sub-headingsto italic blue text, you could set up another
similar macro to do that. Alternatively, you could edit the macro directly by changing the
True BASICA codeinthe edit window. Try editing the above macro to make it produce blue
italic text.

The examples above are very simple ones. Macros can be used to automate any task within an
application program. For example, they can be used to activate long and complex data

mani pul ations within adatabase application, or specialised formatting within any type of
document.

Some applications, such as AppleWorks, allow you to record macros, but don’t allow you to

edit the code asyou canin MS Office. If you have time, you could explore any other
applicationsthat you use, to seeif they haveamacro facility.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

LANGUAGES AND ENVIRONMENTS

Questions

What isamacro?
What type of language is used to write macros?
What are the advantages of using macros?

1
2.
3.
4.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

Describe two examples where amacro could be useful.

24

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

SECTION 3
3.1Introducing TrueBASIC

In this section of the course, you are going to learn to develop programs using ahigh level
language called True BASIC.

Beforeyou start writing any programsit would be agood ideato create anew folder
wherever you save your work, home drive on anetwork, on your hard disk or wherever. |
have called my new folder My Programs.

Thefirst stageisto become familiar with the True BASIC environment. Hereiswhat you see
when True BASIC starts up.

File Hame: Directornies:

c:ithsilverymy programs

Me

- = ch -
[= TBSILYER Quit
= My Programs

List Files of Type: Dnives:

TS = ~| Mework...

[i

Navigate to your folder and open My Programs and your programs should save
automatically into it. Make sure All filesis selected otherwise you may not be ableto find
your programs.

Click on New and thefollowing screen will appear.
: At thetop is the menu
U =I8IXI} har | with the usual
Fil= Edit Bun Windmy Settings Help for True BASIC ! . .
menus (File, Edit) and
| some specialised menus.

Thereisasothe Run
menu, which you will
use most often.

At the bottom of the
screen isthe Command
Menu. We will not use
thisfor quiteawhile
except to examine
occasionaly to see what
has happened to our
program.

No source in window.

We aregoing to learn to develop True BASIC programs, using the steps of the software
devel opment processthat you have already met.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

25

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Hereisareminder of theseimportant steps.

Analysis making sure you know what the program has to do

\

Desig n deciding ontheform layout, theinputs, outputs and processesrequired

\

Implementation creating the form and writing the code for any actions

\

Testing making surethe program workscorrectly

\

Documentation writingauser guide and atechnical guide

\

Evaluation reviewing how well the program solvesthe original problem

Maintenance makingany upgradesrequired
3.2 Input and output — example
Almost every program that has ever been written follows apattern called | PO. This stands for
input — process — output. Most programs are designed to take in some data, to processitin
someway, then to give out some data.
First TrueBASIC program
Tokeep thingssimplefor your first True BASIC program, we are going to devel op one which
misses out the middle step! It will ssimply takein someinformation, and giveit out again. It's

not very useful, but it will teach you some of the basics of programming.

We start with the progr am specification.

Design, implement and test a program which will prompt the user to enter hisor her
name. The program should then display the name and awelcome message.

Stage 1 — Analysis

Start by thinking about what data goesin and what data comes out of the program whileitis
running. A dataflow diagramisagood way of analysing this.

Start by representing the program asa ©
‘blob’ ...

Think ... what information comes out

Name and
message
Show thisas an arrow coming out of

theblob ...

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 26

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Now think ... what information needs Name and
to gointo the programto givethis wecome

out put? Name ©ﬂ»
—

Show thisas an arrow going into the
blob

Copy thisdiagram —you have drawn your first dataflow diagram.
Stage 2 — Design — user interface
Next we need to think about what we want the program to look like.

We can write out how we want the output to look.

Enter your name?
James

Hello James

Our output has:

e aquestion and aquestion mark
e aresponse (James)

e anoutput (Hello James).

If you' rewondering where the message is going to appear, when we Run the program it will
appear in aseparate output window.

Stage 2 — Design — pseudocode

Pseudocodeisjust afancy namefor alist of stepsthat the program should carry out every
timeyou runit. Youwriteit in asort of cross between English and computer language. It lets
you think about the steps carefully without getting bogged down in the actual coding. Another
advantage of pseudocodeisthat it can then be easily converted into almost any high level
language you want — in our case, True BASIC.

Hereisalist of stepsfor our program (pseudocode).

1. ask for the name
2. enter thename

3. display themessage.

That'sit! That isall our program is supposed to do.

Stage 3 — Implementation — coding

Now we are ready to start coding.

Start up True BASIC on your computer and select New. In the source

window typethefollowing exactly asit written here, except for your name
and date where you should type in your name and today’ s date.

I First Program
! Your name

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 27

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

! Date

print “Enter your name
input name$

print

print

print “Hello “;name$
end

Y our program should really have capital lettersfor wordslike PRINT, INPUT and END
becausethese are keywords. True BASIC will do thisautomatically for you.

Choose Do Format from the Run menu and the keywordswill be put into capitals.

I First Program
I Your name
I Date

PRINT “Enter your name “
INPUT name$

PRINT

PRINT

PRINT “Hello “;name$
END

Itisagood ideaat this stage to save your work.

e select Save from the File menu
e navigatetoyour My Programsfolder if necessary
e givetheprogram asensible namelike Welcome, then click Save.

Now you can try to run your program.

To dothis, choose Run from the Run menu.

(Note: True BASIC usesa built-in interpreter to translate your programinto machine code
line by line asit executes the program. Some versions of True BAS C also have a compiler,

which letsyou convert completed True BAS C programsinto stand-al one executable files.)

Y ou should see the following output screen appear.

., True BASIC Silver Edition--Finished. Click mouse or press any keyp.
Eile

Enter vour name

? James

Hello Jame=

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 28

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Now let us have alook at what we have done and what the keywords have done.

I —all text following ! isignored. It isused for comments.

PRINT — causes everything on the line to be output on the screen.

INPUT — puts aquestion mark on the screen and allows usto typeinformation in.
END — Every program needs an end statement.

PRINT —on itsown printsablank line.

We also used avariable and some other punctuation.

name$ — isavariable containing text. The $tellsusitisfor text or astring of characters. If
you run the program several timesyou can enter adifferent name each time. The name varies
and so we call name$ avariable. Now we can call name$ astring variable.

“ and ; are used with PRINT. Everythinginside* “ isdisplayed and ; isused to separate items
on aprint line so we can print several items, amix of variables and text, on the sameline.

Errors

If you mistyped almost anything you will haveerrors. If | had missed out the ; on the print
line (avery common error) | would see ascreen likethisone.

. Emors lﬂ

Errors

ntitled 1:9: 15 legal expression.

-

If I click onthe highlighted line | will be taken to the error. The messageis not very helpful as
illegal expression could mean one of many thingswerewrong. The Untitled 1:9:15 is a bit
more helpful asit tellsusthat the error ison line 9 and 15 charactersin. We can then see that
the; ismissing from the print line.

If your program worked perfectly removethe; and runit and follow the error message
through and correct the program then run it again.

If your program hasits own errorsthen follow the error message and line numbers and try and
correct it.

When the program runs without errorsthen we can go on to the next stage, which isto test it
thoroughly.

Stage 4 — Testing
The next stage isto make sure the program works correctly.

As before, Run the program.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 29

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

e enter your name when prompted
e theword Hello should appear with the appropriate nameinit!

If it doeswork, well done!

Would you buy a piece of softwarethat had only been tested once? Probably

@\ not

Onetest is hot enough!
We need to test the program systematically.

S0 ... run some more tests — some normal tests, like the one above — but also try some more
extreme testing. For example, what happensif you enter anumber instead of aname, or if you
enter adouble-barrelled name? Doesit matter or doesthe program just print out ‘ Hello’” and
whatever you typein?

Stage 5 — Documentation

First, you might want some hard copy evidence of your program —it’syour first True BASIC
program, so you may feel justifiably proud of it!

Printingyour program

Select Print from the File menu. A print dialogue box does not usually appear and your
program printsout on the currently selected printer. Do you see now why it isimportant to put
your name as acomment? If thewhole class prints at once you can at |east identify your
program.

There are two waysto print the output.

1. Thereisafileoption on the output screen and you can select Print from it. Thiswill print
the output screen.

2. Inthebox at the bottom of the Command Window you can type RUN >> and everything
that isdisplayed will be printed.

Thereisasubtledifference between the two and when working with simple programsin
which al output fits onto the screen use option 1 — File Print.

Saving your program
Choose Save from the File menu to save any changes you have made.

When you exit, you will be prompted to save changesto thefile. Click Y es to both of these.

”?:v‘rwa User Guide User Guide
\ Start the program by opening First Program.
el
A
Click on the Run menu and then choose Run.

Write a couple of sentences

describing how to use your program: Enter your name when prompted.

A message should appear.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 30

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Technical Guide Technical Guide

ngv;f";i Hardware used:
@j@; Dell Inspiron 3500 laptop

Operating System:
MS Windows 97

Write anote of the types of hardware

and software you have used: Software used:

True BASIC Silver
Stage 6 — Evaluation

The evaluation of your program should answer the following questions.

1. Istheprogram fit for purpose? (Doesit do what isrequired by the specification?)

2. Istheuser interface good to use? Could it be improved?

3. Istheprogram coding readable (so that another programmer could understand how it

works)?

Y our answers might look like this:

Evaluation
e The program fulfils the specification. If you enter a name, it responds with an appropriate
message.

e The user interface is easy to use — it prompts for input, and the command button is clearly

labelled.
e The coding has comment lines and uses sensible variable names to make it readable.

Stage 7 — Maintenance
M ai ntenance might involve making the change suggested by the person who asked for the

program, or adapting the program to run on adifferent type of computer system. Y ou don’t
need to do either of these for Intermediate 2!

3.3Input and output — tasks

Task 1 —adapt the program

Adapt the program you have already written to output a personalised Happy
Birthday message. Obtain hard copies of the output and code for your new
program (if your teacher/lecturer wantsyou to).

Instead of writing:

PRINT “What isyour name”
INPUT name$

we can use INPUT PROMPT and our two lines become
INPUT PROMPT “What isyour name*“:name$

Notethe use of the colon (:) in INPUT PROMPT and the semi-colon (;) inaPRINT
statement. Again confusion of theseisagreat source of errors.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

31

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Task 2 —develop a new program

Develop anew program which asks the user to enter their name, first line of
address, town, postcode and phone number, then produce an address card on
the screen.

Hintsfor Task 2:

(a) Work through the stages of the softwar e devel opment process following the example on
the previous pages asa model.

(b) Thedata flow diagramwill look something like this (incomplete).

name
address \
Address card
\ with name,
N address, town,

postcode and
phone number

(¢) Youwill need five string variables on your form, onefor each of theinputs, and each with
a different name.

Y our code will look abit like this.
INPUT PROMPT “Please enter your full name*:name$
INPUT PROMPT “Please enter thefirst line of your address“:address1$

INPUT PROMPT “Please enter your phone number “:telno$
Note we use telno$ because even though it is telephone number it contains a space which
makesit astring.

And then to output the name and address print lineswill look likethis.

PRINT name$
etc.

Now enter your program and correct the errorsuntil it works properly.
Now amend the program slightly so that the output appears as.

Name: John Smith

TeI ephone Number: 01342 452345

3.4 Enhancing our output

Inthe‘First Program’ program, the output message appeared in a Print statement. Thiswas
quite simple and thereis not alot we could do to enhance the outpui.

However the amended address program could betidied up so that all the labelswere lined up
under each other and the first line of the datalined up aswell such as:

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 32

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED
Name: James Smith

TeI ephone Number: 01342 452345

We can usethe TAB statement to achievethis. TAB(30) for example printsthe next |etter at
position 30 acrossthe screen. Our print lines now become:

PRINT “Name:”; TAB(30);name$
etc.

Amend your program so that the dataislined up under column 20.

3.5Usingvariables

The programsin Sections 3.2 and 3.3 were designed to process wor ds— like your name or
address. The program in Task 2 aso handled aphone number, but it treated this as a string of
characters.

If aprogram hasto process numbers, then we haveto ‘tell’ the computer to expect a number
rather than a‘string’.

Thereason for this (asyou probably know from the Computer Systems unit) isthat computers
storedifferent types of datain different ways. It isgood programming practiceto consider all
the datathat will need to be stored while the program isrunning. We do this at the design
stage. A dataflow diagram isauseful tool for doing this, althoughiit only tells usthe data that
goesin and out of the program. There may also be other data which needsto be stored during
the processing between input and output.

Wewill consider two types of datain this course.

gggv‘fwﬂ Activity
< “@
@i\\;—— fﬁ Look at theseitems of datain the box below. Can you group them into two

basic types?
120 1.05 699
book 29.5 Int2
5.7 A. Einstein -100
TD7 5700 -15.3
Monaco 0.006 9999

Y ou might have grouped them into these two lists.

List 1: 120 699 -100 5700 9999
295 5.7 0.006 1.05 -15.3
List 2: Int 2 book A. Einstein TD7 Monaco

List 1isal numbers—we cal them numeric. So does True BASIC.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 33

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

List 2 isall groups of characters — True BASIC callsthese strings.

Activity: Classify each of thefollowing as string or numeric.

(b) Bob the Builder (c) 49.99 (d) EH16 1AB
(f) 500 (g) 5S3 (h) 123
(i) Albert (j) —99.99 (k) 0.00006 () 5High Street

True BASIC does not need to know what type of datait will be storing and processing in
advance. We can use variables aswe need them in the program.

Thefirst timeanumeric variableisused it hasthe value zero (0).
Thefirst timeastring variableisused it hasthe value null string (“”).

Assoon asyou assign avalueto avariableit takesthat value and we can assign valuesin
different ways.

LET wage = 200 assigns 200 to the variable wage

LET name$="“Fred” assigns Fred to the variable name$

INPUT wage whatever valueistyped inisassigned to wage

INPUT name$ whatever string istyped in is assigned to name$

READ wage avauefor wageisheldinaDATA statement and isassigned when

the READ statement is executed

When the True BASIC system executes these statements during aprogram, it sets up astorage
space of the appropriate type, in the computer’ sRAM, and labelsit with the variable name
given. Of course, these are ' electronic’ storage locations, but it isuseful to imaginethem as
labelled boxesin which datacan be stored, likethis:

/18
A numeric variable, called no_in_class, storing WV
value 18
no_in_class
/ﬂlbeﬁ
A string variable, called name$, storingvalue /' v
Albert
nagne

/2?.99

A string variable, called price, storing value / ¥
£27.99

pHce

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

These‘ storage boxes' are called variables, because the actual value of the datathey store can
vary or change during the running of aprogram.

It isimportant to make surethat al variables are correctly used — the right type (string or
numeric) — and with sensible, readable variable names.

Variables can have amost any name, but each variable name:

e must begin with aletter

e must not beaTrue BASIC keyword (like END or PRINT or INPUT)
e must not contain spaces (no_in_classisOK, but noin classisnot).

Note: there are several other types of variable, but wewill use only these two in this unit.
3.6 Working with numbers—example

The programsin Section 3.3 were designed to process wor ds— like your name or address. In
this section, wewill devel op programsto process numbers.

Thefirst exampleiscalled Belinda' s Slab

Calculator! / Belindaworksin agarden centre, selling \

paving stones. Customerscomeinwith

the plansfor their patio, and ask how

many slabsthey will need, and how much

they will cost. For example, Mr Mclnally

says hisback garden is 35 slabswide and

16 dabs deep. He wantsthe pink granite

slabsat £2.99 each. How many slabswill
\he need, and what will they cost? J

Here isthe problem.

Thefirst step isto be absolutely clear about what the program
must do. Thismust be agreed between the Belindaand the
programmer before starting. The agreed definition of what
the program must do is called the progr am specification.

Stage 1 — Analysis— program specification

Design, write and test a program to:

e input two whole numbers (the number of slabswide and number of slabs deep)
multiply them together (number of slabs needed = number wide * number deep)
input the price of asingle slab

multiply to get the total price

display theresults (number of slabsrequired and total cost).

The program should work for any numbers.

Stage 1 — Analysis— data flow diagram

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Number of slabs
A ‘blob’ for the program ...

What information comes out of the program?

Total cost
What information doesthe program need as
input?

Number of slabs wide Number of slabs

Number of slabs deep

Cost of adlab Total cost

Stage 2 — Design — user interface

Sketch out how we want the form to look.
Belinda s Slab Calcul ator

How many dlabs wide?

How many slabs deep?

Calculate
slabs and

cost

Cost of one dab (£)

Number of slabs required:

Total cost (£)

This program has:

e atitleheading

e threevariablesfor input
e two variables for output.

Stage 2 — Design — pseudocode

Hereisalist of steps (pseudocode) for what this program hasto do:
input and store the number of slabswide

input and store the number of slabs deep At the implementation stage
input and store the cost of one slab we will turn each of these Stéps
calculate the number of slabsrequired into True BASIC code.

grwpdE

calculate the total cost

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

6. display the number of slabsrequired
7. display thetotal cost.

Stage 3 — Implementation — coding

Start True Basic and ask for aNEW program. When you are given the
source window, typein thefollowing code very carefully.

I Belinda' s Slab program

! Your name

I Date

INPUT PROMPT “Please enter the number of dlabswide* :slabs wide
INPUT PROMPT *“ Pl ease enter the number of slabsdeep “:slabs_deep
INPUT PROMPT “Please enter the cost of 1 dab“:cost

LET no_of_dlabs=dabs wide* slabs_deep

LET total_cost=no_of dlabs* cost

PRINT

PRINT

PRINT “Yourequire*;no_of dabs;” dabs.”

PRINT “Thetotal cost is (£)“;total cost

END

If it all looks correct, then:

Run the program to make sureit isworking correctly.
Enter the following data.

dabswide: 4

dabsdeep: 5

cost per slab : 2.99

Thefollowing results should appear below theinpuits.

total number : 20
total cost (£) : 59.8

If it hasworked correctly, saveit in the correct folder (my Programs, for example).

If it doesn’t work, then go back and check for errors. The commonest mistakeisto make a
spelling error in the name of avariable or missing out a semicolon on the print line or acolon
ontheinput line, so always check these carefully!

Stage 4 — Testing

Testing isavery important stage in the software devel opment process. Proper testing of a
commercially produced program may take aslong astheimplementation.

Wewill test this program methodically using normal, extreme and exceptional data.
Normal data is data that you would expect to be input to the program.
Extremedata isdatathat ison thelimits of acceptability — it should work, but you need to

check to make sure. Extreme data could include zero, or very large numbers, or numbers close
to any limit relevant to the program.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 37

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Exceptional data isdatathat shouldn’t beinput under normal use —for example, entering a
letter when asked for anumber. True BASIC will happily accept anumber in atext variable
but you will not be ableto do any arithmetic with it. If you try and enter text into anumeric
variable you will get an error message and be asked to re-enter the data.

Itisbest to draw up atable of testing, choosing suitable test data, as shown below. Fill in the
expected results column (what the program should do). Finally, run the program using your
chosen test data, and compare the actual resultswith the expected results. If they agree, al is
well. If not, you may need to go back and de-bug the program.

Table of testing for Belinda’ s Sab Cal culator

Inputs Expected outputs Actual outputs Comment
Wide Deep Cost of Total Total cost Tota Tota
slab number number cost
Normal 4 5 2.0 20 40.00
data 10 20 1.99 200 398.00
45 59 299 20 59.80
Extreme 10000 9000 2.00 90000000 180000000
data 0 Any Any 0 0
-5 —4 2.50 20 50.00

\7 “Y.‘F"i
5&" :} Activity

AL

Copy thistable either in your word processor or on paper. Add some other exampl es of
normal and extreme datato thetable, then test the program to make sure it handlesthem all
correctly.

Finally, run some exceptional data tests, and note the results (either in the table or as notes
below it).

Summarise your testing.

Theprogramcarriesout all calculationsaccording to the specification when supplied with
sensible data. However, the program does give results when supplied with negative data,
without generating an error message. Also, the programdoes not display thetotal costinthe
standard format (e.g. £59.80isdisplayed as (£) 59.8).

Stage 5 — documentation

Print the output and code as before.

Save your working programinyour correct folder especialy if you have
made changesto it.

”g@gyﬁ Write abrief user guide.
‘ 3
@i\\;—g G Write abrief technical guide.

If you need areminder how to do these, look back to pp. 30—-31.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 38

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Stage 6 — Evaluation

WJ‘ 'V
Asbefore, write a brief report, answering these questions.

. Doesthe program fulfil the specification?
e |stheuserinterface appropriate?
¢ Istheprogram coding readable?

3.7 Using Clear

Y ou may want to clear away the inputs from the screen before displaying the
outputs. The statement we useisCLEAR andin Belinda sslab programiit
would beinserted on aline of itsown beforethe first PRINT statement.

3.8 Arithmetical expressions

In Section 3.6, the exampl e program carried out two simple multiplications, using the lines of
code:

no_of slabs=wide* deep

total_cost=no_of_glabs* dlab_cost

All other calculations can be carried out in asimilar way. Some of the symbols used arethe
sameasin ‘normal’ arithmetic, but some are different.

For adding, use +
Subtraction -
Multiplication *
Division /

Raisingtoapower ** (check your version by referring to the manual)

For complex cal culationsinvolving several operations, multiplication and divisiontake
precedence over addition and subtraction. However, where the order of the operators matters,
it issafest to use brackets.

Here are some examplesin True BASIC.

total = first + second + third

age = 2004 — birth_year
time_in_australia=time_in_scotland + 12

tax = (salary — 4600) * 0.23

years = months/ 12

area of_circle=3.14* (radius” 2)
volume _of sphere=(4* 3.14* (radius”™ 3))/3

Note:
(@ theuse of brackets where the order isimportant
(b) theuseof readable variable names.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

39

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

3.9Workingwith numbers—tasks

Tasksfor you to try.

For each task below, you should:

clarify the specification (analysis)

draw adataflow diagram (analysis)

sketch the user interface (design)

write pseudocode (design)

writethe coding (implementation)

draw up atable of testing

test the program with normal, extreme and exceptional data
writebrief user and technical guides (documentation)
evaluate the program.

CoNogrwdNE

(a) Design, write and test a program to calcul ate the average of six test marks.

(b) Design, writeand test aprogram to cal culate the volume of acylindrical water tank, using

the formula: volume = rtr2h (r = radius of tank, h = height of tank).

(c) Design, writeand test aprogram to cal cul ate the number of points gained by afootball
team, given the number of wins, draws and lost games, assuming awin isworth 3 points,
adraw 1 point, and no pointsfor alost game.

(d) Design, writeand test aprogram to calculate the storage requirementsin megabytesfor a
hit-mapped graphic. Theinputs should be the breadth and height of the graphicininches,
theresolution in dots per inch and the colour depth in bits per pixel.

3.10 Pre-defined numericfunctions
There are some standard mathematical cal culationsthat you may want to usein your
programs. True BASIC (along with most other high level languages) provides pre-defined
functionsto carry these out for you.
We'll take alook at some pre-defined functions provided by True BASIC.
INT takesanumber and removesany fractional part, leaving the whole number part.
ROUND takesanumber and returnsthe nearest whole number.
SQR returns the square root of any number.

and an optional extra one for anyone who has studied some maths.

SIN returnsthe sine of an angle (in radians) — multiply the angle by 3.14128 and
divideby 180 if you want it to work for degrees.

Function tester program

We will use assmple True BASIC program to test these functions.

INPUT PROMPT “Please enter anumber “:number
LET result = INT(number)
PRINT “Theresultis“;result

Run the program several timesto test the INT function.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

40

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Asyou do so copy and complete atable of testing, as shown below.
Testing the INT function
Input Expected output Actual output Comment
25
9.999
9.001
5.5
—-9.001
Testingthe ROUND function
Edit the coding of the program, to change:
result = INT(number)
into
result = ROUND(number).
Run the program again and complete asimilar table of testing to the one above.
Can you summarise the difference between INT and ROUND?
Testing the SQR function
Edit the coding of the program, to change:
result = ROUND(number)
into
result = SQR(number).
Run the program again and complete asimilar table of testing to the one above.
What happenswhen you enter anegative number? Can you explain this?
What happenswhen you enter anumber like 0.00001? What does this mean?
Optional extra:

Testingthe SIN function

Edit the coding of the program, to change:

result = SQR(number)
into
result = SIN(number * 3.14128/ 180)

(the 3.14128/ 180 hit isto make it work for degreesrather than radians).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Run the program again and compl ete atabl e of testing likethis:

Input Expected output Actual output Comment
0 0
90 1
180 0
30 0.5
-30 -0.5

Other pre-defined functions

True BASIC provides many other pre-defined functions, including theother trigonometric
functions (cosine and tangent). If you complete thisunit, then continueto Higher Software
Development, you will also learn to create your own functions, so that you are not limited to
the pre-defined ones provided by True BASIC.

Important!
Make sure you save this function tester program asyou will useit again later in the course!

3.11 Working with wordsand number s — example
The next example program uses both data types — numeric and string.

The problem

A basketball team manager wants a program which will input aplayer’ s name, squad number
and points scored in the first three games of the season. It should then calculate the player’s
average score (to the nearest whole number), and display asummary of the player’ sdetails.

Stage 1 — Analysis— program specification

Design, write and test a program to:

e prompt the user to enter aplayer’ s name, squad number and points scored in games1, 2
and 3

e caculatetheplayer’ saverage score, rounded to the nearest whole number

o display the player’ sname, squad number and average clearly on aform.

Stage 1 — Analysis— data flow diagram

Player's name Player's name
Squad number
Score 1 Squad number
>
Score 2

Averagepoints
Score 3

Stage 2 — Design — user interface
Thistimewe need input linesfor player’ s name, number and each of three scores. We will

need to cal culate the average score (rounded to the nearest whole number). We will need to
output and display (print lines) the player’ sname and number and the average score.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

42

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Basketball Team Manager

Pleaseinput player’ sname?
Please input the squad number?
Please enter the first score?
Please enter the second score?
Please enter the third score?

The Player’ snameisMagic Simpson — Squad number is 34
Average score 56

Stage 2 — Design — pseudocode

prompt for and store the player’ sname

prompt for and storethe player’ s number

prompt for and store each of the three scores

calculate the average score

display the player’ sname and number

display the player’ saverage score (rounded to the nearest whole number).

oukrwdhr

Stage 3 — Implementation — coding

I Basketball Team Manager
! Your Name
! Date

INPUT PROMPT “Please enter the player’ sname* :name$

INPUT PROMPT “Please enter the player’ ssquad number “:squad_number
INPUT PROMPT “Please enter the player’ sfirst score*:scorel

INPUT PROMPT “Please enter the player’ ssecond score” :score2

INPUT PROMPT “Please enter the player’ sthird score*:score3

LET average_score=ROUND((scorel + score? + score3)/3)

CLEAR

PRINT “ Basketball Team Manager”
PRINT name$;squad_number

PRINT “Averagescore”;average score
END

Stage 4 — Testing

Run the program to make sure it works.

Y ou will noticethat the output lookslikethis: Belinda McSporran73
It would be better to makeit look likethis: Name: BelindaMcSporran
Number: 73

To do this, make the following changes:

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 43

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Change:
PRINT name$;squad_number
to:
PRINT “Name " ;:name$
PRINT “Number “;squad_number.

After making these changesto improve the appearance of the output, you should carry out
methodical testing of the program. Assuming that the program displaysthe name and squad
number of the player correctly, you only need to test that it cal cul ates averages correctly.

Draw up atable of testing with some:
e normal data

53*"% @ extreme data
A

e exceptiona data.
If there are any errors, correct them. A common error would be to misspell scorein the
calculation | type ‘scote’ in to begin with and could not understand why the average was very
low. Of course ‘scote’ had avalue of 0 asit wasthefirst timeit was used in the program.

Misspelling variablesisavery common error and can cause very strange answersto
calculations appearing.

Save and print the program.

Summarise your test results by completing these three sentences.
The programgivesthe correct result if ...

The program gives a wrong answer if ... because ...

The program cannot give an answe if ...

Stage 5 — Documentation

725578 Nowthatyour_ program iscomplete, write:
gﬁ@%}; e aUser Guide

e aTechnica Guide.

Stage 6 — Evaluation

533”"‘1 Write a brief evaluation of the program:

¥ \? « . .

£ 8l e isitfitfor purpose?

@@1 e doesit haveagood user interface
e isthe code readable?

3.12 Pre-defined string functions

In Section 3.10, we looked at the pre-defined functions INT, ROUND, SQR and SIN. These
functionsareall designed to work with numbers.

There are also some useful pre-defined functionsfor manipulating strings. We are going to

examine UCASES$, LCASES$, LEN, ORD and CHR$, and away of isolating charactersin a
string.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

44

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Copy thislittleprogramin True BASIC

I String Function Tester

INPUT prompt “ Pleaseenter astring “:string_in$
LET string_out$= UCASE$(string_in$)

PRINT “Output string “; string_out$

END

Savethis program as Function Tester 2.

Testing the UCASE function

Run the Function Tester 2 program.

Record theresultsin atable, like this, adding afew tests of your own.

UCASE pre-defined function

Input string Output string Comment
Hello, world

HELLO, WORLD

123 One Two Three

*2& !

Writeabrief statement summarising the effect of the UCASE function.
Testingthe L CASE function

Edit the coding of the Function Tester 2 program.
Change

LET string_out$=UCASE$(string_in$)

to
LET string_out$=L CASE$(string_in$).

Run the program to test the L CASE function.

Record theresultsin atable, likethis, adding afew tests of your own.

L CASE pre-defined function

Input string Output string Comment
Hello, world

HELLO, WORLD

123 One Two Three

*2& !

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

45

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Writeabrief statement summarising the effect of the L CASE function.

Testingthe LEN function

Edit the coding of the Function Tester 2 program.

Change:

LET string_out$=L CASE$(string_in%)

to

LET length = LEN(string_in$)

and also change the print line to read:

PRINT “Then length of thestringis*;length

Run the program to test the LEN function.

Record theresultsin atable, likethis, adding afew tests of your own.

LEN pre-defined function

Input string Output string Comment
Hello, world

HELLO, WORLD

123 One Two Three

*2& !

A

Writeabrief statement summarising the effect of the LEN function.

Note: the Len function takes a string input, and returns a numeric output, which iswhy we
had to change string_out$ to length or else we would have had a potential error.

Testing string-handlingtechniques

We canisolatelettersin astring. Thereisnot afunction assuchin True BASIC for doing this
but there are string-handling techniques. We can also join stringstogether (concatenate)
whichisalso atechniquerather than afunction.

mid_string$[x:n] returnsthe characters starting at x and going on for n characters. It would be
better to see thiswith an example.

Edit the Function Tester 2 program to read:

I String Function Tester

INPUT prompt “ Pleaseenter astring “:string_in$
LET string_out$ = string_in$[1:2]

PRINT “Output string “; string_out$

END

Run the program and enter Edinbur gh as your input string. The output string should be Ed.

Edit string_in$ so that the numbersare now [3:2]. Run the program again using Edinburgh
and your output should bein.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Run the program several timesto test it. Record theresultsin atable, likethis, adding afew
tests of your own until you are sure you understand how string handling works. Each time,
you will need to edit the numbersin theline of code each time you run the program.

String handlingtechniques

Input string Coding used Output string Comment
Hello, world String_in$[1:1]
Hello, world String_in$[2:1]
Hello, world String_in$[3:1]
Hello, world String_in$[1:2]
Hello, world String_in$[1:3]
Hello, world String_in$[5:4]

Concatenation of strings

In True BASIC we can join two or more stringstogether. This could be useful for taking a
forename and a surname and combining them to make a persons name. The way we do thisis
likethis.

LET name$=forename$& surname$
Assuming auser entered Albert and Einstein the command Print name$ would givethe
output:

AlbertEinstein
It would be more sensible to add in aspace likethis

LET name$=forename$&” “ & surname$
Copy inthissmall program.

I String concatenation program

INPUT prompt "Enter aforename":forename$

INPUT prompt "Enter asurname":surname$

LET fullname$ = name$&" "& add$

PRINT fullname$
END

String concatenation techniques

First input string Second input string Output string Comment
Hello World

Albert Einstein

Y our first name Y our surname

Testingthe ORD function

Edit the coding of the Function Tester 2 program. Like LEN, ORD isanother
function that takes astring asitsinput, and returns anumber, so make the
following changes:

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 47

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Change:
string_out$=String_in$[5:4]
to
number_out=0RD(string_in$).

and change the Print line to:
PRINT " Output number " ; number_out

Y ou will aso have to make sureyou only enter asingle character asyour input string.

Run the program to test the ORD function.

Record theresultsin atable, likethis, adding afew tests of your own until you are sure you
understand what ORD does.

Asc pre-defined function
Input string Output number Comment
A

O T O Ow

Writeabrief statement summarising the effect of the ORD function.

I hope you realised that the numbers produced by the ORD function are the ASCII codes for
the charactersyou input. Asyou should know from the Computer Systemsunit, all characters
(letters, numerals and punctuation marks) are stored in acomputer system in anumeric code
called ASCII (American Standard Codefor Information Interchange). The ORD pre-defined
function returnsthis code.

True BASIC also provides a pre-defined function to do the oppositetrick. CHR$ takes any
number, and returnsthe character which this ASCII code represents.

Testing the CHR$ function

Edit the coding of the Function Tester 2 program. CHR$ isafunction that
takesanumber asitsinput, and returns astring, so make thefollowing
changes:

change ... to...

I String Function Tester ! String Function Tester

INPUT prompt " Please enter a string INPUT prompt " Please enter a number
":string_in$ ":number_in

LET number_out = ORD(string_in$) LET string_out$ = CHR(number_in$)
PRINT " Output number "; number_out PRINT " Output string " ; string_out$
END END

(Note: When testing this programrestrict the numbers to between 1 and 255 asthese are
ACII codes.)

Run the program to test the CHR$ function.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 48

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Record theresultsin atable, likethis, adding afew teststo check that CHR$ turnsany ASCI|
code into the character it represents.

CHRS$ pre-defined function

I nput number Output character Comment
65

66

97

98

63

20

Write abrief statement summarising the effect of the CHR$ function.

Questions

1. Match these pre-defined functionsto their descriptions (one has been donefor you):

Description Pre-defined function
returnsthe ASCII code of acharacter String$[x:n]
selectsagroup of characters out of astring\> ASC

turns any character into upper case LCASE

takesan ASCII code and returnsthe character it UCASE

represents

changes any character into lower case LEN

countsthe number of charactersin astring CHR$

2. If sentence$ =“What is 25 times8?’, what would be the output from:
(@ sentence$[1:1]
(b) sentence$[1:4]
(c) sentence$[9:2]
(d) sentence$[19:1]

3. Which pre-defined functions are represented by these data flow diagrams?

any letter > © > string
ASCII code > © > character

String> O > n o. of characters

3.13 Example program usng CHR$and ORD

Using these two pre-defined functionsyou can manipulate stringsin all sortsof interesting
ways.

Maybe when you were younger, you tried communicating with your friends using codes.
The simplest code isthe one which replaces each letter with thefollowing letter from the

alphabet, so:

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

49

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

A> B

B> C

Hello > Ifmmp
TrueBASIC> Usvf CBTID
andsoon...

Let’ screate asimple program to generate thistype of code. It only worksfor singleletters.
In Section 4.11 you will see how to code whole words or even sentences.
Stage 1 — Analysis— program specification

Design, write and test aprogram to take any character in the a phabet, and codeit using the
system A > B, etc.

Stage 1 — Analysis— data flow diagram

any letter > © > coded letter

Stage 2 — Design — user interface
Simplecharacter coding

Enter a character
Coded character

Stage 2 — Design — pseudocode

The program must carry out the following steps.
enter and store the input character

convert it to an ASCII code

add 1 to the code

convert it back to acharacter

display the character.

1
2.
3.
4.
5.

Stage 3 —Implementation

The variables needed will be:

e astring variableto hold the input character: uncoded_char$
e astring variableto hold the coded character: coded_char$

e annumeric variablefor the ASCII code of theinput character: ascii_uncoded
e annumeric variablefor the ASCII code of the coded character: ascii_coded

Complete the program by converting each step of the pseudocodeinto True BASIC code.

I Coding Program
INPUT prompt “ L etter please” :uncoded_char$ Step1

LET ascii_uncoded =ORD(uncoded_char$) Step 2
LET ascii_coded =ascii_uncoded + 1 Step 3
LET coded_char$=CHR$(ascii_coded) Step 4
PRINT “Coded Character " ;coded_char$ Step 5
END

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING — GETTING STARTED

Savethe program as AB_code

Stage 4 — Testing

Run sometests using normal, extreme and exceptional data.
Record your resultsin atable.

Stage 5 — Documentation

F’f;f’v‘ Asusual, writeabrief User Guide and Technical Guidefor the program, and
@@ attach ahard copy of the code.

Stage 6 — Evaluation

Bﬁ&i Writeabrief evaluation of the program. Y ou should include a note about the
3 letter(s) whichit codesincorrectly. Youwill learn how to deal with thesein
S %
LA Section 4.3.

3
4]

Congratulations! Y ou have completed Section 3.

Hereisasummary of what you should be ableto do using True BASIC:
analyse aproblem using adataflow diagram

write pseudocode and convert it into True BASIC code

use string and numeric variables

use INPUT and INPUT prompt

use PRINT to output text and variables

use TAB to tidy up your output.

write True BASIC codefor simplecalculations

test aprogram using normal, extreme and exceptional data

use Int, Round, Sgr and Sin pre-defined functions

use UCASE, LCASE, LEN, ORD and CHR$ pre-defined functions
use string handling functions

write brief User Guidesand Technical Guidesfor simple programs

evauate aprogram intermsof fitnessfor purpose, user interface and readability.

b\ L(‘_" /,

Check all theitemson thislist. If you are not sure, look back through this section to remind
yourself. When you are sure you understand all of these items, you are ready to move on to
Section 4.

Note: for the Int 2 softwar e devel opment assessment, you need to know what pre-defined

functions are, but you don’t need to know the particular pre-defined functionswe have
explored in this section.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

51

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

SECTION 4
4.1 Making choices

Sofar, al the programsyou have written follow the
samelist of stepsfrom beginning to end, whatever
data you input. Thislimitsthe usefulness of the
program. |magine agame program that was exactly
the same every time you ran it!

Inthis section, you will learn how to make programs
that do different things depending onthe datathat is
entered. This means that you can write programswith
choicesfor the user, and with different optionsand
branches within them.

Todothisin TrueBASICisvery easy, asyou will see.

Here are some examplesof True BASIC statementsthat use the keywords|F, THEN and

ELSE.

If Number <0 Then PRINT *“That was anegative number!”
If Reply =“No” Then PRINT “Areyou sure?’

If Salary > 5000 Then LET Pay = Salary — Tax Else LET Pay = Salary
If Guess=Correct_Answer Then PRINT “Well Done!” Else PRINT “Wrong —try again!”

Thefirst two examplesfollow asimple pattern:
If condition Then action

Wewill study using this patternin Section 4.2.

Thelast two examplesfollow aslightly more complex pattern:
If condition Then action Else alternativeaction

Wewill study using this pattern in Section 4.3.

Note: we will use the following symbolsin this section.

> greater than

< lessthan

>= greater than or equal to

<= lessthan or equal to

= equd to
<> not equd to

421f ... Then ... Else
Example 1: Credit limit

The problem: When you try to take money out of an ATM
(Automatic Teller Machine, commonly called a‘holeinthewall’),

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

52

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

you are only allowed to withdraw cash up to your credit limit. For example, if your credit
limit is£100, and you try to withdraw £50, then it should work fine.

However, if you try to withdraw £150, you will not be allowed to, and a message will appear

on the screen advising you that thisisover your credit limit.
Stage 1 — Analysis— program specification

Design, write and test a program to:

¢ takeanumber entered by the user

e compareit with acredit limit (100)

e report ‘over thecredit limit’ if the number isover 100.

Stage 1 — Analysis—data flow diagram
‘over credit limit' message
any number on screen if appropriate
T T
Stage 2 — Design — user interface
The user interface should resemble thefollowing:
ATM —credit limit check
How much do you wish to withdraw? 75
Within Credit limit — withdrawal allowed.
OR
ATM —credit limit check
How much do you wish to withdraw? 125
Over Credit limit — withdrawal denied.
Stage 2 — Design — pseudocode
1. prompt for and enter amount
2. if amountisover 100, display the warning message
3. elsedisplay the allowed message.
Thereisonly onevariable required — anumeric variabl e to store the amount entered by the
Stage 3 — Implementation
' ATM Withdrawal Manager

I Your Name
| Date

INPUT prompt "How much do you wish to withdraw ":amount
IF amount > 100 then
PRINT "Over Credit limit - withdrawal denied."
ELSE
PRINT "Within Credit limit - withdrawal allowed."
ENDIF
END

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

53

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

When you have entered the program choose Do Format from the Run menu and not only do
the keywords go into capitals but the IF linesare indented. Thisisvery useful asif for
examplethe END statement wasindented you could seethat ENDIF was missing — another
COmmon error.

Note: you must include an ENDIF statement if you cannot completethe |F... THEN statement
within oneline. As soon asyou use ELSE it will be over oneline and so ENDIF must be used.

Ktz

SRS
LA
Devise sometest data. Thisshouldinclude:
e somenormal data, like
20 (clearly under the limit)
120 (clearly over the limit)
e someextreme data, like
99.99 (just under the limit)
100.00 (exactly on thelimit)
100.01 (just over thelimit)
e someexceptional data, like
-5 (anegative number)
999999.9999 (aridiculously large number)
A (aletter when anumber is expected).

R v

3
Stages 5 and 6 — Documentation and Evaluation

Stage 4 — Testing

Run the program, using your test data, and record theresultsin atable.

Asusua, you should:

e print out hard copies of your program and the output from both runs (over and under)

e saveyour program

¢ writeashort User Guide and Technical Guide

o writeabrief evaluation of the programin termsof itsfitnessfor purpose, user interface
and readability.

Extratask

Modify the program so that it asksyour age, and gives you the message
‘You canlearntodrive’ if you are 17 or over.

Note: you will need to use one of the symbolslisted in Section 4.1.
4.3 Multiplelfs

Example: Lucky Winner

Theproblem: A programisrequired that will select asuitable prize, depending on
which number between 1 and 5 is entered by the user.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 54

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Stage 1 — Analysis— program specification

Design, write and test a program to:
e prompt the user to enter anumber between 1 and 5
e storethe number
e Output an appropriate message:
Enter a1l ->"Youhavewonacolour TV”
Enter a2 ->*“Y ou have won amobile phone’
..., EtC.
(no prizeif the number is not between 1 and 5).

Stage 1 — Analysis— data flow diagram

any number appropriate message on screen
.
Stage 2 — Design — user interface

Prize Draw
Enter a number between 1 and 5

Congratulations you have won whatever prize
OR

Sorry but that number does not win a prize
Stage 2 — Design — pseudocode

Prompt for anumber entered by the user

if thenumber is 1, display “Y ou have won acolour TV”

if the number is 2, display “Y ou have won amobile phone’
..., etc.

pODNDPE

.7. or else display message that you have not won aprize

Thereisonly onevariable required — anumeric variable to store the number entered by the
user.

Stage 3 —Implementation
I Prize Draw

I 'Your name
I Date

INPUT prompt "Enter anumber between 1 and 5":number

IFnumber =1 Then PRINT "Number ";number;" winsyou acolour TV"

IF number =2 Then PRINT "Number ";number;" winsyou amobile phone"

IF number = 3 Then PRINT "Number ";number; " winsyou aholiday in Spain"

IF number =4 Then PRINT "Number ";number;" winsyou 10p"

IF number =5 Then PRINT "Number ";number;" winsyou aday at the beach"

IF number <1 Then PRINT "Number ";number;" Sorry but that number doesnot win aprize
asitistoo small"

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

55

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

IF number > 5 Then PRINT "Number ";number;" Sorry but that number does not win aprize
asitistoo large"
END

W;\l ’V‘

o
@i@ ﬂ

Devise sometest data. Thisshouldinclude:
e somenormal data

e someextremedata

e someexceptional data.

Stage 4 — Testing

Run the program, using your test data, and record theresultsin atable.

W;\l ’V‘

AR
@;@ %

Asusua, you should:

e print out ahard copy of your coding only in thiscase

e saveyour program

e writeashort User Guide and Technical Guide

o writeabrief evaluation of the program in terms of itsfitnessfor purpose, user interface
and readability.

Stages 5 and 6 — Documentation and Evaluation

Practical task —adapt the‘lucky winner’ program tofulfil this
specification

Design, implement and test aprogram that asks the user to enter agrade (A, B, C, D or F),
and givesyou messageslike ‘' A meansyou got over 70%', ‘ B means you got between 60%
and 70%’, and so on.

Asusua, you should:

e print out hard copies of your coding

e saveyour program

e writeashort user guide and technical guide

o writeabrief evaluation of the programin termsof itsfitnessfor purpose, user interface
and readability.

Practical task —adapt the*AB_code' program to code Z and z correctly

Remember the program we devel oped in Section 3.13, for coding lettersusing the A -> B
code. When you tested it, you should have discovered that it works well for every letter,
except Z. The problemisthat if you add oneto the ASCII codefor Z you get the ASCII code
for abracket symbol.

We can correct thisby using two conditional statementsto cover the two special cases —
upper-case and lower-case Z.

e |oad the program AB_code which you should have saved.
e alter thecoding asfollows (changesin bold).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

I Coding Program

INPUT prompt "L etter please":uncoded_char$

LET ascii_uncoded=ORD(uncoded _char$)

LET ascii_coded = ascii_uncoded + 1

LET coded_char$=CHR$(ascii_coded)

I special casefor Z and z

If uncoded_char$="Z" Then coded_char$="A"
If uncoded_char$="2z" Then coded_char$="a"
PRINT "Coded Character ";coded char$

END

¢ runtheprogram, carefully testing that it handles Z and z correctly
e savetheprogram as AB_code v2 =

4.4 Using AND —example

Example: Exam Mark Grader

” 1
Theproblem: A programisrequired that could be used to assign gradesto exam - WL% e
marks automatically. Over 70%isan A, over 60%isaB, over 50%isaC, over =
45%isaD, and lessthan 45% isafail.

Stage 1 — Analysis— program specification

Design, write and test a program to:

e prompt the user to enter the highest possible score for an exam (e.g. 80)
prompt the user to enter a student’ s name (first name and surname)
prompt the user to enter the student’s mark (e.g. 63)

calculate the percentage mark

display amessage displaying the student’ sinitials, percentage and grade.

Stage 1 — Analysis— data flow diagram

exam out of Message on screen including student
initials, percentage mark and grade
student name 5 >
student mark

Stage 2 — Design — user interface

Exam Mark Grader

Enter possible score
Enter student’s first name
Enter student’s surname
Enter student’s score

Student Initials

Percentage
Grade

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 57

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Stage 2 — Design — pseudocode

prompt for and input the possible scorefor the exam
prompt for and input the student’ sfirst name
prompt for and input the student’ s surname
prompt for and input the student’ s mark
calculate the percentage mark

calculatethe grade

extract theinitial letter from the first name
extract theinitial letter from the second name
. display the student initials

10. display the student percentage mark

11. display the grade.

CoNTArWNE

The program will use severa variables. It isuseful to write them down asatable.

Variable name Variabletype usedtostore

Max_mark Numeric What the exam is out of (e.g.80)
First_name$ String Student’ sfirst name (e.g. Albert)
Surname$ String Student’ ssurname (e.g. Einstein)
Mark Numeric Student’ sactual mark (e.g. 63)
Percent Numeric Student’ spercentage (e.g. 53.7)
Grade& String Student’ sgrade (e.g. D)

Initl$ String Student’ sfirstinitial (e.g. A)
Init2$ String Student’ ssecond initial (e.g. E)

Converting the pseudocodeinto True BASIC, we should get the following code.

Stage 3 —Implementation

I Exam Mark Grader

I'Your name

I Date

INPUT prompt "What isthe exam marked out of ":max_mark
INPUT prompt "Please enter your first name":forename$
INPUT prompt " Please enter your second name":secname$
INPUT prompt "What is this student's mark ":mark

LET percent = ROUND((mark / max_mark) * 100)

IF percent >= 70 Then LET grade$ ="A"

IF percent >= 60 AND percent < 70 Then LET grade$="B"
|F percent >=50 AND percent < 60 Then LET grade$="C"
|F percent >= 45 AND percent < 50 Then LET grade$ ="D"
|F percent < 45 Then LET grade$ ="Fail"

LET init1$=forename$[1:1]
LET init2$ = secname$[1:1]

CLEAR
PRINT "Exam Mark Grader"

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

58

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

PRINT "Student";init1$;init2$
PRINT "Percentage"; percent
PRINT "Grade ";grade$

END

Qgﬂ‘é“'ﬁi
A
Devise sometest data. Thisshould include:

e somenormal data
e someextreme data
e someexceptional data.

Stage 4 — Testing

Run the program, using your test data, and record theresultsin atable.

Stages 5 and 6 — Documentation and evaluation

Don’t print out your program or write documentation or an evaluation report yet, asyou are
going to make some minor improvementsto the program first.

Extratask (1): Upper Caselnitials
If you entered astudent’ s name as (for example) “albert einstein”, theinitials

would be displayed as“ae”. It would be better if they were changed
automatically to“AE”. A simple changeinthe coding isrequired.

Hint: you will need to use the Ucase pre-defined function.
Extratask (2): A+ grade
A new grade called A+ has been introduced for marks of 80% and over.

Changethe coding to reflect thisnew grade. Remember to changethe
condition for an A aswell asintroducing anew condition for A+.

Y
B
Asusua, you should:

e print out ahard copy of your coding

e saveyour program

e writeashort User Guide and Technical Guide
[)

write abrief evaluation of the program in terms of itsfitnessfor purpose,
user interface and readability.

Stages 5 and 6 — Documentation and evaluation

4.5Using AND —task

Example: Can | drive?

Theproblem: A program isrequired that asks the user to enter their age, then
displaysoneof thefollowing messages, asappropriate:

e Sorry, you can't drive (if you are under 16)

e Youcanonly driveamoped (if you are 16)

e Youcanonly drive acar or moped (if you are 17—20)

e Youcandriveany vehicle (if you are 21-74)

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 59

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

e Youneedamedical check (if over 75).

Design, implement and test aprogram to solve the problem given above.

4.6 Complex conditions

In section 4.4, we used aconditional statement withan AND init;
If percent >= 60 AND percent <70 THEN grade$="“B"
Thisisan example of acomplex condition.

Complex conditions use acombination of theterms AND, OR and NOT inlogical
combinations.

Here are some examples:

If age> 60 AND gender =“F’ THEN pension = “true”

If country = “UK” OR country =“USA” THEN language="“English”

If (temp <12 AND heating=“T") OR Heating="“X" THEN turn_heating_on
If Not(password=correct_password) THEN MsgBox “Try again®

If age<50OR Age>85THEN dligible="“No"

If Not(age >=5 AND age <=85) THEN €ligible="“No"

Note: the last 2 examples are equivalent to each other!

If Answer =“Too” OR Answer =“Two” OR Answer =“To” THEN Correct = “True’

Programmingtask — colour chooser

Design, write and test aprogram that asks the user to enter aletter, and prints the word:
e redif RorDisentered

e greenif Gor Nisentered

e Dlueif B or Eisentered

e vydlowifY or Wisentered

e Dblackif C, A or K isentered.

The program should respond to both upper case and lower case inputs.
4.7 Repetition

Sofar, every program you have written starts at the beginning, executes each line once, then
stops at the end. If you want to repeat the program you haveto runit again. It is often useful
in aprogram to be ableto repeat aline or group of lines automatically.

Todothis, you canuseaFOR ... NEXT loop.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Here isasimple example program that would benefit from aFOR ... NEXT loop.

Enter this coding:

I codeto display 10 greetings on the screen

I by anot very good programmer

' who hasn’t been taught about FOR...NEXT loops

Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Haveaniceday!”
Print “Have a nice day!”
END

Now run the program. It should print “Have aniceday!” ten timesonthe
screen.

Hereisasecond version of the program that usesaFOR ... NEXT loop to cut down the
amount of coding required:

I codetodisplay 10 greetingson the screen
I by amuch better programmer
lusinga FOR ... NEXT loop

For counter =1To 10
Print “Haveaniceday!”
Next counter

END

Alter the coding as shown and run the program again. It does exactly the
samething, but takes much less coding.

4.8 Repetition using For ... Next

In thisexample, we will develop aprogram to display arepeated message across the screen.
Stage 1 - Analysis

Program specification

Design, write and test aprogram to display the message:
“Hello, Hello, Hello ... (25times)”.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 61

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Data flow diagram
“Hello, Hello ...”

Q —

Wewant the user interfaceto look likethis:

Stage 2 — Design

HelloHelloHello ... Hello

Next, wedesign thelist of steps (pseudocode) and then the coding.

Pseudocode TrueBASIC coding

1. Do thefollowing 25 times For Counter = 1t0 25

2. Display theword “Hello” inaline Print “Hello “;
Next Counter

Notethat it isusual to indent the code within theloop toimprovereadability. Note also that a
semi-colon (;) at the end a print line suppresses the line feed.

Stage 3 —Implementation

Thisisquiteasimple program so enter it in yourself, runit and makeit error
free and the saveiit.

Stage 4 — Testing

Thereisno need for atable of testing for asimple program likethis.

M odifications (1)

Alter the coding so that it displaysthe message
(@) “Goodbye” 12 times

(b) “I must work harder” 200 times

(c) “Thisisvery easy” 100 times.

M odifications (2)
The program would be much more useful if it was possible to make changesto the message

and the number of timesit was displayed, without having to ater the coding each time. This
can be achieved by using variables.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

62

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Changethe coding asfollows:

I''mproved For ... Next example

Input prompt “M essageRequired ...” :message$ —
I nput prompt “How many repetitions” :how_many

Clear

For counter =1 Tohow_many —]

A string variable called message
will store the message, and a
numeric variable called how_many
will store the number of repetitions.

Print message$
Next counter
End

Testing (continued)

This command clears the screen

Instead of afixed number here,
the loop will continue up to the
number stored in how_many.

Whatever string is stored in the
variable called message will be
displayed in the list box.

Now test the program thoroughly using nor mal, extr eme and exceptional valuesfor both
“message” and “how_many”.

57 “Y“Fﬂa
3l Stages’5 and 6 — Documentation and evaluation
AL S

Asusual, you should:

print out a hard copy of your coding

save your program

write ashort user guide and technical guide
write abrief evaluation of the program in terms of itsfitnessfor purpose, user interface

and readability.

M odifications (3)

Can you adapt the program to produce displayslike:

Tick
Tock
Tick
Tock
Tick
Tock
Tick
Tock
Tick

Left
Right
Left
Right
Left
Right
Left
Right
Left

Go home
Now!

Go home
Now!

Go home
Now!

Hint: you will need two (or three) lines of code within the For

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

At the moment, this program can display any message over and over again,
but it isthe same message on each line.

... Next loop.

63

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

4.9 Countingusing For ... Next

The standard For ... Next loop that we have used so far is of the format:
For counter = 1to maximum

Action

Next counter

Notethat we have called the loop variable‘ counter’ (because that iswhat it does), but it can
be called anything you like. The following versionswould work in exactly the same way:

For silly_ name for_a variable=1tomaximum
Action

Nextsilly name for_a variable

For i = 1to maximum

Action

Next i

Thelast of these (using i astheloop variable) is probably the commonest asit islesstyping
and will become more obviousl|ater.

For ... Next loops are an example of ‘fixed loops'. Thisis because the number of timesthe
action isexecuted isfixed in advance by the programmer, using the value of maximum. Later,
wewill seethat it is possibleto construct loops where the number of timestheactionis
executed isNOT known in advance.

Example4.9.1: Counting program

Stage 1 — Analysis

Program specification

Design, writeand test aprogramtodisplay 1, 2, 3, 4,5 ... 99, 100.

Data flow diagram

1,2,3...99 100

© on the screen

We want the user interfaceto look like this.

Stage 2 — Design

Counting program
1,23, ..., 100

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

64

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Hereisthelist of steps (pseudocode) and then the coding for the command button.

Pseudocode TrueBASIC coding

1. Dothefollowing 100 times For counter = 1 to 100

2. Display the counter on the screen Print counter;
Next counter

3. Instead of ‘message’ being displayed on the
screen the current value of counter is displayed
instead.

Stage 3 —Implementation

I Counting program

FOR counter = 1to 100
PRINT counter;

NEXT counter

END

Stage 4 — Testing

Run the program to make sureit works correctly (it should produce alist of
numbersfrom 1 to 100 on the screen over several lines).

Thereisno need for atable of testing for asimple program likethis.

Y ou are going to use this program as atemplate to experiment with For ... Next loops. In
each case below:

e replacetheline of code For counter = 1 To 100 with the modification suggested

e runthe program
e notetheresultsin atablelikethis.

coding used results
For counter =1 To 100 1234...99100

M odification (1) For counter = 1 To 9999

M odification (2) For counter =1 To 100 Step 2
M odification (3) For counter =2 To 100 Step 2
M odification (4) For counter =0 To 100 Step 10
M odification (5) For counter =—10 To 10 Step 5
M odification (6) For counter = 100 To 1 Step -5

M odification (7) For counter =0 To 5 Step 0.5

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

65

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Questions
Writethe True BASIC coding of aFor ... Next loop to produce each of the following lists of
numbers:

(@ 3,6,9,12,15,18... 33,36

(b) 0,9,18,27 ... 99

(c) 10,9,8,7,6,5,4,3,2,1,0

(d) 0,0.75,1.5,2.25,3,3.75,4.5

(e) 50, 40, 30, 20, 10, 0, —10, —20, —30, —40, =50

(F 1,4,9, 16, 25, 36, 49, 64, 81, 100 (hint: these are all numbers squared)

(9) 2,4,8,16, 32,64, 128, 256, 512, 1024, 2048 (hint: these are powers of 2).

Example4.9.2: General pur posecounting program
Stage 1 — Analysis
Program specification

Design, write and test aprogram to display any list of numbers, given the starting number
(lower limit), thefinal number (upper limit) and the step size.

Data flow diagram (copy and complete ...)

Stage 2 — Design
Sketch a user interface, something likethis.

General counting program
lower limit

upper limit

step size

Hereisthelist of steps (pseudocode). Copy and complete the coding yourself:

Pseudocode TrueBASIC coding
1. storethelower limit entered by theuser Input prompt “Lower Limit “:lower

2. storetheupper limit entered by theuser Input prompt “Upper Limit “:upper
3. storethe step size entered by the user Input prompt “ Step size“:step
4. repeat thefollowing, starting at lower For...=...To... Step ...
limit, and going up to upper limit in steps
of step size
5. display the counter. Print ...
Next ...

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 66

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Stage 3 —Implementation
Enter the code and free the program of errors, then saveit.
Stage 4 — Testing

Carry out systematic testing of the program, completing atablelikethis:

Inputs Expected outputs Actual Comment
outputs
Lower Upper Step
limit limit size
10 20 3 10, 13, 16, 19
Normal 1000 8000 2500 1000, 1250, 1500, 1750
data 10 0 -2 10,8,6,4,2,0

Deviseyour own test data, covering arange of normal, extreme and exceptional data.
Write ashort summary of your testing.

If all the tests results were as expected, move on to stages 5 and 6. If not, go back and correct
your coding until it workscorrectly.

gﬂ%’”"«i . ,
¢ 3| Stages5and 6 — Documentation and evaluation
A4

Asusual, you should:

print out a hard copy of your coding

saveyour program

writeashort User Guide and Technical Guide

write abrief evaluation of the program in terms of itsfitnessfor purpose, user interface
and readability.

Example4.9.3: Multiplication tables
Stage 1 — Analysis
Program specification

Design, write and test a program to display any multiplication table (chosen by the user) in
theform: 1 x 5=5,2%x 5=10and soonasfar as12 x 5 = 60.

Data flow diagram (copy and complete)
O

Sketch auser interface, something likethis:

Stage 2 — Design

It should ask the user to enter atable.

Each line that appears on screen should look likethis (made up of five parts):

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

67

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

1 X 5 = 10
the counter the symbol x the multiplier the symbol = theanswer
(1,2,3..) chosen by the user (counter
x multiplier)

To do this, we need several variables:

e thecounter (numeric)

o themultiplier (anumeric supplied by the user)

¢ theanswer (anumeric calculated by the program).

Theline of codeto print each linewill ook like:
PRINT counter;” X “;multiplier;” =*;answer
Hereisthelist of steps (pseudocode).

Copy and complete the coding yourself:

Pseudocode TrueBASIC coding
1. Storethemultiplier entered by the user Input prompt “What table do you want
“:multiplier
2. Repeat thefollowing from 1 to 12 Step For...=...To...
2.1 calculate the answer answer = counter * multiplier
2.2 display the message Print ...
5. Next Next ...

Stage 3 —Implementation

Enter the code from the table compl eting the linesyourself.

Stages 4, 5 and 6 —Testing, documentation and evaluation

Compl ete the testing, documentation and eval uation of the program inthe
usual way.

4.10 For ... Next tasks

Choose one (or more) of thefollowing program specifications, and design, implement and test
aprogram to fulfil the specification. Work through all the stages of the software devel opment
processfrom analysisto evaluation for your chosen task.

Remember: A Danceln The Dark Every Monday! (Seep. 10.)
Timestables(advanced version)

A primary school teacher wants a program that will allow a pupil to
typein any whole number. The program will then display the relevant

timestable, up to amaximum multiplier set by the pupil. Thedisplay
should bein the format:

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 68

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

5times 1 equals5
5times2 equals 10
5times3equalsl5andsoon...

Cost and weight calculator
A greengrocer needs a program which will allow him to typein the price of 1

kg of any item. The program should then display the cost of 0, 0.1, 0.2 ... up
t0 1.8, 1.9, 2.0 kg of the item. The output might look something likethis:

0 kg costs £0

1.1 kg costs £0.20

1.2 kg costs £0.40

1.3kg costs£0.60 and soon ...

Cubicnumbers

A mathematician wantsalist of cubic numbers(1, 8, 27, 64, 125 ...) starting and
finishing at any point on thelist. The results should be displayed likethis:

2 cubed =8

3 cubed = 27

4cubed=64andsoon ...

Quadraticfunction calculator

A student has been asked to draw agraph of the functiony = 3x*+ 4. She [—r—
needs atable of the values of the function between —5 and +5. Sheisnot sure £5¢ 7
about the step size between points, so wantsthe program to allow her to ¢~

choose any step size. A

The results should be displayed like this:

X=1>>>>>>>>y =7
X=2>>>>>>>>y =16
X=3>>>>>>>>y=3landsoon...

4.11 Using theloop counter

So far, we have only used the loop counter variable to display numbers. However, it can be
used to do other thingstoo. In this example program, the loop counter is used to work itsway
through the word to be coded. In later sections, wewill see how it can be used with *arrays’ to
access numbered items of data.

Example4.11.1 —adaptingthe AB_coder program to codewholewor ds

Version 2 of the AB_coder program from Section 4.3 can code single characters. We can use
aFor ... Next loop to adapt the program to code whole words instead of single characters.

Hereishow it works (in pseudocode):

1. prompt the user to enter aword

2. check how many charactersthere areintheword

3. createanew ‘empty’ coded word

4. repeat thefollowing for each letter in theword
4.1. extract the | etter from theword

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

4.2. codeit

4.3. add it on to the new coded word
5. nextletter
6. display codedword ...

... and here isthe code (new codeisin bold):

I Coding Program - WholeWord converter
INPUT prompt " word please" :uncoded_wor d$
LET length_of _word =L EN(uncoded_wor d$)
LET conded_word$=""
FOR counter =1tolength_of word
LET uncoded_char $=uncoded_wor d$[counter:counter]
LET ascii_uncoded=ORD(uncoded_char$)
LET ascii_coded = ascii_uncoded + 1
LET coded_char$=CHR$(ascii_coded)
IFuncoded char$="Z" ThenLET coded char$="A"
IFuncoded_char$="z" Then LET coded char$="a"
LET coded_word$=coded_word$& coded_char$
NEXT counter
PRINT "Codedword";coded word$
END

Load up the AB_code _v2 program, and alter the coding likethis. Saveit asAB_coder_v3

Test the program thoroughly using normal, extreme and exceptional data.

4.12 Do ... Loop Until

We have used For ... Next loops to repeat asection of program a set number of times. Thisis
fineif we know how many timesthe section of program isto be repeated. What about when
the number of repetitionsisunknown in advance?

For example, aquiz program might give the user repeated chancesto get the answer correct.
The programmer doesn’ t know in advance whether the user will get the question right first
time, or take 2, 3, 4 or more attempts.

Inthistype of situation, the programmer needsto use another kind of loop. True BASIC
provides several other types of loop. Wewill useatypecalled Do ... Loop Until.

The pattern (syntax) for thistype of loop isvery simple.
Do
Line(s) of code

To berepeated
L oop Until condition

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 70

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Hereisasimple example.

I generates a question to the user

I'and waitsfor the correct answer

LET correct_answer =4

DO

INPUT prompt "What is2 + 2 ":user_answer
LOOPUntil user_answer = correct_answer
PRINT "Well done!"

END

Run the program. Does it behave as predicted?

Adapt the program to ask:

(@) adifferent arithmetical question (e.g. What is 100x100?)

(b) agenera-knowledge question (e.g. Who won Big Brother in 2003?).

I mprovementstotheprogram

Thissimple program worksfine, but there are some obvious changes that would improve it!

Improvement 1

When you give thewrong answer, the programdoesn’t tell you. It could beimproved by
presenting a message which told the user to try again.

Todothis, you need to add in the following line of code:
If user_answer <> correct_answer Then PRINT “Wrong, try again!”
Can you work out wherethisline of code should go?

Edit it into your program, and check that it works.

Improvement 2

The programwould beimproved if it told you how many guesses you made befor e you got
the correct answer.

To do this, we need to include a counter in the loop.
Hereisthe pseudocode (the new sectionsarein bold).

1. Set the counter equal to zero

2. Set the correct answer equal to 4
3.Do

3.1. Get the user’ sanswer to the question
(What is2 + 27) The code for thisis

3.2. Addonetothecountery —— | _

3.3. If the answer is not the correct answer, LET counter = counter + 1
display“ Wrong, try again” message

4. Until user’ sanswer isequal to the correct answer

5. Display message (You took counter triesto get that right)

Turn the pseudocode into True BASIC, and adapt your program accordingly.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

71

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Edit the changesinto your program, and check that it works.

Improvement 3

Thethird improvement would beif the program could be made to ask a different question
each time, instead of alwaysasking 2 + 2. To do this, we need to use True BASIC's
random number generator.

4.13 Random numbers

TrueBASIC providesthe programmer with apre-defined function RND to
generate random numbers. RND generates arandom number between 0 and
1inthe same sequence every time. To vary the sequence we use the
command RANDOMIZE at the start of the program. Beforewe useitinthe
arithmetic tester program, we will use asimple program with aFor ... Next
loop to learn how the RND function operates.

Enter thefollowing coding.

I Generates lists of random number

FOR counter =1 To 10

LET number = Rnd

PRINT number

NEXT counter

END

Run this program.

Writedown thelist of ten random numbers produced.

The RND function producesrandom numbers between 0 and 1.

To produce random whole number s between 1 and 10, we need to do three things to the
line LET number = RND.

e First, we need to multiply by 10 to produce arandom fraction between 0 and 10.
Thenweneedto ‘chop off’ thefraction part using thefunction INT (see Section 3.10).
Finally, we need to add 1, otherwisethe highest number will alwaysbe9, asit isrounded
down by the INT function.

Edittheline: LET number = RND
To: LET number =INT (RND * 10) + 1

Now run the program again. Write down the list of random numbers.
Thistime they should all be whole numbers between 1 and 10.

Stop the program.

Run the program again. AND again!

Noticethat it always generatesthe same list of ‘random’ numbers. To makethemreally
random, you need to add the keyword RANDOM | ZE at the start of the program (anywhere

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

before the keyword RND). The coding for your random number generator should now look
likethis:

! Generateslists of random number
RANDOMIZE
FOR counter =1 To 10
LET number =INT (RND * 10) + 1
PRINT number
NEXT counter
END

For example, to produce:

random numbers between 1 and 20, changeit to:
LET number =INT (RND * 20) + 1

random numbers between 51 and 60, changeit to:
LET number =INT (RND * 10) + 51

random even numbers between 0 and 10, changeit to:
LET number =2* INT (RND * 6)

Try experimenting with thisline until you understand how it works.
Sometimesit takesalittle thought to work out exactly what numbersto put
in, so that you get the right range and don’t miss out the highest or lowest
number.

Test your program with the following lines of code. In each case, make anote of the results,
and explain what you get.

line of code results explanation

LET number = INT(RND * 200) + 1

LET number =INT(RND * 20) + 1

LET number = INT(RND * 100) + 2000

LET number =2* (INT(RND * 50) + 1)

LET number =2~ (INT(RND * 8) + 1)

Tasks

e Modify your program so that when you runit, it producesasingle
diceroll (arandom number between 1 and 6).

Hint: youwon’t need a For ... Next loop.

e Modify your program so that it produces adouble diceroll, and displaysthe number on
each die and thetotal score.

Hint: you will need to generate two random number s every time you run the program.
4.14 Arithmetictester

We can now combine what we have learned about random numberswith our arithmetic tester
program from Section 4.12.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Hereisthe current version of the program.

I generates aquestion to the user
I'and waitsfor the correct answer
LET correct_answer =4
DO
INPUT prompt "What is2 + 2 ":user_answer
LOOP Until user_answer = correct_answer
PRINT "Well done!"
END

e Modify the coding as shown (changesin bold):

I generates arandom question to the user
I'and waitsfor the correct answer

Randomize

LET first=INT(RND * 10) + 1

LET second =INT(RND* 10)+1 <*+——
LET counter =0

These lines generate
the two random
numbers for the
question.

LET correct_answer = first + second

DO /
PRINT “What is” ; first;“ +” ;second ; “?";

INPUT user_answer

LET counter = counter + 1

If user_answer <>correct_answer PRINT “Wrong, try again!”
LOOPUntil user_answer = correct_answer

PRINT “Well done! Youtook ” ; counter ; “ tries’

End

Onemoremaodification!

Print (rather than
Input Prompt)
displays the value of
the variables first
and second, rather
than the numbers 2
+ 2.

The program only asks one random addition question each timeit isrun. By adding three
lines of code, we can make it give the user aseries of (say) six questions. We can do this by
putting the whol e of the middle section of the programinsideaFor ... Next loop, like this:

I generates 6 random question to the user
I and waitsfor the correct answer

Randomize HereistheFor ...
For question=1T0o6 | Nextloop to repeat the
LET first =INT(RND* 10) + 1 next section six times.

LET second = INT(RND * 10) + 1
LET counter =0

LET correct_answer = first + second
PRINT “Question“;question

DO

PRINT “What is” ; first;“ +” ; second ; “?";

INPUT user_answer

LET counter = counter + 1

If user_answer <> correct_answer Then PRINT “Wrong, try again!”
LOOP Until user_answer = correct_answer

PRINT “Well done! Youtook " ; counter ; “ tries’

NEXT

END

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

74

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Y ou now have aloop within aloop. Thetechnical term for thisis nested loops.
Make the above changes to the coding.
Save the revised program under anew name.

Carry out somethorough testing of your program, using normal, extreme and
exceptional data.

Modify the program so that it:

(8 asksmultiplication questionsrather than addition

(b) usesrandom numbers between 1 and 12

(c) asksfivequestions

(d) displays“Well done—right first time!” if the user getsit right first time

() displays“Keeppractising! Youtook X triesto get it right!” if the user
doesn’t get it right first time.

ggﬂ"ﬂ""«i Test the program using normal, extreme and exceptional data.
PAN @; Write brief User and Technical Guides, and an evaluation report.

4.15Moreexamplesusing Do ... Loop Until

Example4.15.1 - Classlists

Design, write and test aprogram for atutor. The program should prompt the user to enter any
list of names, which will be displayed on the screen. The program should count how many of
these names begin with theletter A, and display thisinformation at the end of thelist.

Stage 1 — Analysis— data flow diagram

Names entered at keyboard Ci List of names
—_—
Number of As

Stage 2 — Design
Wewant the user interfaceto look likethis:

Classlists
Enter a name please

Enter a name please

?? names begin with A
Next, wedesign thelist of steps (pseudocode) and then the coding:
Q: Wewill need to usealoop. Should it bea For ... Next loop, or aDo ... Loop Until?

A: Aswedon’t know in advance how many namestherewill beinthelist, we needto usea
Do ... Loop Until.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

Q: What condition will we use to stop theloop?

A: Ask the user to enter the word END after entering all the names. Theloop can then
continue until name="“END".

Pseudocode TrueBASIC coding
1. set acounter equal to zero counter =0
2. do thefollowing: Do
2.1 prompt the user to enter aname INPUT prompt “ Enter aname (or END)”
:name$
2.2 extract thefirst | etter of the name LET initial$ = name${ 1:1]
2.3if thefirst letterisA, add 1 to the counter If initial$="“A" Then counter = counter + 1
2.4 until the user enters end Loop Until name="“END”
3. display the number of A’s PRINT “Therewere“;counter;” As’

Variablesrequired:
counter (numeric), name(string), initial (string)

Stage 3 —Implementation

Given the above coding seeif you can enter the code yourself, remove any
errorsand save the program.

Stage 4 — Testing

Test the program with the following sets of test data, and add some more of
your own.

test data 1 test data 2 test data 3

test data Andrew Alison Alison
Bill Albert Alison
Cliff Bill End
Doris Bert END
Sarah Ahmed

comment

Y ou should have noticed three problemswith the program:
e itdoesn’t count nameswhich start with alower case‘a
e it doesn’t stop whenyou enter ‘end’ in lower case

e it countstheword END asaname.

Y ou should be able to modify your code to solve these problems.

Hints:
o usethefunction UCASEinstep 2.2
e maketheend of loop condition into acomplex condition using OR.

B I wi
§\§® Stages 5 and 6 — Documentation and evaluation
Asusual, you should:

e print out ahard copy of your program

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

76

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

save your program

e writeashort user guide and technical guide

e writeabrief evaluation of the programin terms of itsfitnessfor purpose, user interface

and readability.

Example4.15.2 — Password protection

Design, write and test aprogram for abank cash machine. The program
should prompt the user to enter their PIN. If the PIN iscorrect, it should
display “Welcometo the True BASIC Bank” (message 1). If not, it
should notify the user that their PIN was entered wrongly (message 2),
and let them try again, but only allow threetries. If the user enterstheir
PIN wrongly threetimes, they should be warned that their card isbeing

kept (message 3).

Stage 1 — Analysis— data flow diagram

PIN entered at keyboard

~_

Stage 2 — Design
Wewant the user interfaceto look likethis:

True BASIC Bank
Please enter PIN

Welcome to the True BASIC bank

The user will be prompted to enter their PIN.

Appropriate message

First, wedesign thelist of steps (pseudocode) and then the coding for the program. We will
useaDo ... Loop Until, asthe number of attemptsthe user makesis unknown in advance by

the programmer.

The condition to end the loop will be that the PIN is correct OR that the user has had three

attempts.

Pseudocode
1. set acounter equal to zero
2. storecorrect PIN
3. do thefollowing:
3.1 prompt the user to enter their PIN

3.2 If PIN is correct display message (1)
Else display message(2)

3.3 add 1 to the counter
4. until the PIN is correct or counter = 3
5. If counter = 3 then display message(3)

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

True BASIC coding

LET counter =0

LET correct_pin = 1347

Do

INPUT prompt “Enter your PIN”:pin

If pin = correct_pin then

PRINT Welcome to True BASIC Bank”
Else

PRINT “PIN entered wrongly — try again”

LET counter = counter + 1
LOOP Until pin = correct_pin Or counter = 3

If counter = 3 Then PRINT “The card is being
kept for security”

77

HIGH LEVEL LANGUAGE PROGRAMMING — BASIC CONSTRUCTS
Variablesrequired:

counter (numeric), pin (numeric), correct_pin (numeric)
Stage 3 —Implementation

Given the above coding seeif you can enter the code yourself; remove any
errors and save the program.

Stage 4 — Testing

Create some suitable test data, and useit to test the program.

test data 1 test data 2 test data 3

test data 1347 9999 1234
8888 4321
1347 9999
comment

3
Stages 5 and 6 — Documentation and evaluation

TS
A
Asusual, you should:

e print out ahard copy of your program

e saveyour program

e writeashort User Guide and Technical Guide
[}

write abrief evaluation of the program in terms of itsfitnessfor purpose, user interface
and readability.

Task

Modify the program to:

e prompt the user to enter a password (which could contain |ettersaswell
as numbers)

o adlow fiveattemptsat guessing the password.

4.16 Other formsof conditional loop

Therearefour variations of conditional loopin BASIC. So far, we have only used the Do ...
Loop Until form of loop. In some high level languages, thisisthe only kind of conditional

loop, and it is possible to manage without the other kinds. However, for completeness, hereis
abrief summary of al four.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 78

HIGH LEVEL LANGUAGE PROGRAMMING - BASIC CONSTRUCTS

type of loop syntax comments

Do ... Loop Until Do always executed at |east
Line(s) of codeto be once, as condition istested
repeated at the end; stops when the
L oop Until condition conditionbecomestrue

Do Until ... Loop Do Until condition only executed if the
Line(s) of codeto be conditionistrue, asitis
repeated tested at the beginning
Loop

Do ... Loop While Do loops while the conditionis
Line(s) of codeto be true, and stops when the
repeated condition becomes false
L oop While condition

Do ... While Loop Do While condition only executed whilethe
Line(s) of code to be conditionistrue, asitis
repeated tested at the beginning
Loop

Question

Do | need to know about all four types?

Answer
No, for thisunit it isenough to be able to use one type of conditional loop!

Congratulations! Y ou havecompleted Section 4.

Hereisasummary of what you should now be able to do using True BASIC:
analyse a problem using a data flow diagram

write pseudocode, convert itinto True BASIC code, and assign it to an event
identify string and numeric variables

use Input and Print statements

test aprogram using normal, extreme and exceptional data

use arange of pre-defined functions

write brief User Guidesand Technical Guidesfor simple programs

evauate aprogramintermsof fitnessfor purpose, user interface and readability
use conditional statementsinvolving If, Then, Elseand End I

use simpleand complex conditionsinvol ving comparison operators, AND, Or and Not
create fixed loopsusing For ... Next

create conditional loopsusing Do ... Loop Until
make use of the loop counter within aloop
create nested loops (aloop within aloop).

Check all theitemson thislist. If you are not sure, look back through this section to
remind yourself. When you are sure you understand all of theseitems, you are ready
to move on to Section 5.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 79

STANDARD ALGORITHMS AND ARRAYS

SECTION 5

5.1 Input validation

Thereisasaying in Computing, which goes.

Garbagein, garbageout! (or just GIGO)

Y ou have probably heard stories about people who have received agasbill for £1,000,000 or
similar. Usually the company will blamethison a‘ computer error’ . However, computersvery
rarely make mistakes! More often, the problem isthat the computer has been fed with the
wrong datato start with. If you feed in wrong data, then the answer that comes out of the
system will be wrong too.

wrong data in ‘/\ wrong data out
A well designed program should prevent (or at |east reduce the likelihood of) wrong data
being entered into a system.

For example, there was aprogram in Section 4.4 which took in astudent’ s exam mark and
worked out their grade. Suppose a student scored 59, so should have been givena'‘B’, but the
tutor wasin ahurry, and the mark was entered as 599 by mistake. The computer doesn’'t have
any ‘common sense’, so it processesthe datait isgiven, and awardsthe studentan‘A’.
Garbage in, garbage out!

Y ou could prevent this sort of error by making it impossibleto enter amark of over 100. We
would describeamark of over 100 asbeing invalid. Invalid datais datawhich couldn’t
possibly be correct, or which doesn’t make sensein the context.

To prevent theinput of invalid data, we can put the coding for input of datainside a
conditional loop, that only proceedsif the dataentered isvalid. A conditional (If) statement
can also beinserted to warn the useif invalid datais entered.

In True BASIC, it could look likethis:

Do

INPUT prompt “Enter amark (up to 100)" :mark
If mark > 100 then PRINT “Too high”

L oop Until mark <=100

e enter the code above
e addtheline
PRINT “Mark “;mark to display the valid mark in the text box on the form.

Run the program to test that it preventsthe user from entering aninvalid mark (i.e. onethat is
over 100).

If you tested the program thoroughly, you might have discovered that it isstill possibleto
enter invalid data. For example, the program would accept a negative number, which would
not be avalid mark in any exam that | know.

We can easily adapt the program to also prevent invalid negative numbers being entered, as
follows (changesin bold), using complex conditions.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

STANDARD ALGORITHMS AND ARRAYS

Do

INPUT prompt “ Enter amark (between 0 and 100)” :mark

If (mark >100) Or (mark <0) Then PRINT “That wasnot avalid mark”
Loop Until (mark >=0) AND (mark <= 100)

PRINT “Vaid Mark ="; mark

Make these changes and test the program again using the following test data:
Normal: 23, 55, 99, 150, —10

Extreme: 0, 100, 0.0001, 99.999, 100.001
Exceptional: A, <spacebar>

Save thisprogram as valid_mark. You will useit asabasisfor thetasksin Section 5.2

Validation or verification?

Noticethat input validation doesn’t prevent wr ong data being entered. For example, if a
student had scored 55 in an exam, and the operator entered the mark as 56 by mistake, the
program would accept thisdata.

The datawould be wrong but still valid!
The process of preventing incorrect data being entered is called verification.

Many commercial data-processing systemsinvolveboth verification and validation. In this
unit, we are only considering validation.

Standard algorithm for input validation

The coding for input validation alwaysfollows astandard pattern. The detailswill vary
depending on the specification of the program, but the same pattern can always be used. This
standard pattern saves programmerstime when designing programs. A patternlikethisis
called astandard algorithm.

Hereisasimpleversion of astandard algorithm for input validation. It involves a conditional
loop and an If statement, like this:

Do

Prompt user for valid input
If input isinvalid, warn user
L oop until input isvalid

Adapting program 4.4

We can use the standard algorithm for input validation to improve the exam grade program
we developed in Section 4.4. Here is the section of code used to input the data.

I storeuser inputs

INPUT prompt " What istheexam marked out of " :max_mark
INPUT prompt " Pleaseenter your first name" :forename$
INPUT prompt " Pleaseenter your second name" :secname$
INPUT prompt " What isthisstudent'smark " :mark

Asit isat the moment, you could enter any mark into the variable mark.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 81

STANDARD ALGORITHMS AND ARRAYS

Let’ salter the coding so that it won't accept the following types of invalid
mark:

e nomarkslessthan 0

e nomarksgreater than the maximum mark for the exam.

All you need to doisreplacethesingleline

INPUT prompt " What isthisstudent'smark " :mark

with an input validation loop, like this:

Do

INPUT prompt " Enter avalid mark " :mark

If (mark > max_mark) Or (mark <0) Then PRINT “That wasnot avalid mark”

L oop Until (mark >=0) AND (mark <= max_mark)

PRINT “Valid Mark “;mark

Test the program to ensure that the input validation isworking.

Extratask:

Changetheline INPUT prompt "What isthe exam marked out of ":max_mark to ensure that

the user cannot enter a maximum mark lessthan O or greater than 200, by replacing it with a
standard input validation loop.

5.2 Input validation tasks

1. Prompt the user to enter their age.
Do not accept ages lessthan O or greater than 120 asvalid ages.

2. Prompt the user to enter a4-digit PIN.
The program should only accept the PIN if itis4 digitslong.
(Hint: make it a numeric; what isthe smallest and largest value?)

3. Prompt the user to enter what year they arein at school.
Only accept 1, 2, 3, 4, 50r 6 asvalid years.

4. Prompt the user to enter their type of membershipin aclub.
Membership codesare J(for Junior), | (for Intermediate) and S (for Senior).

5. Prompt the user to enter Yes or No.
The program should accept ‘' YES', ' Yes', ‘yes, ‘NO’, ‘No’ or ‘no’.

6. Prompt the user to enter aname.
The program should only accept aname beginning with the letter ‘A’
(Hint: use name$[1:1])

7. Prompt the user to enter a password, which can include |etters and numbers.

The program should only accept a password that is at |east six characterslong.
(Hint: use LEN)

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

Adapt thevalid_mark program from Section 5.1 to do each of thefollowing:

82

STANDARD ALGORITHMS AND ARRAYS

5.30ther standard algorithms
Therearemany other standard a gorithmsused by programmers.

For this unit, you need to:
e beableto recogniseand codethe standard algorithm for input validation
e know about four other standard algorithms, and understand where and when they might
be used.
(YYou don't need to be able to code these other standard algorithms unless you study the
Higher Software Devel opment unit.)

The other standard algorithmsyou need to know about are:
finding aminimum

finding amaximum

counting occurrences

linear search.

All of these algorithms apply to alist of dataitems stored in acomputer system. These could
be lists of names, or lists of numbers (student marks, for example).

Finding a minimum

Thisalgorithm worksitsway through alist of numbers, and finds the number with the lowest
value. For example, hereisalist of daily midday temperatures recorded at aweather station
during February 2003.

date 1 2 3 4 5 6 7 8 9 10 11 12 13 14

temperature 4 6 5 7 11 9 8 5 3 4 3 6 7 4
(O

12 13 14
12 10 11 9 6 11 8 6

date 1 2
temperature 5 6
0

N W
IN
© Ol
oo
-
©
©
S
=

The finding a minimum algorithm would search through all the daily temperaturesinthelist,
and find the lowest one. In this case, it would be 2 °C (on the seventeenth of the month). The
agorithmwould return the value 2 (the actual minimum temperature).

Other examples could include:

o finding the lowest mark in alist of exam marks

o finding thewinner in alist of golf scores

¢ finding the youngest member in aclub membershiplist.

Finding aminimum can also be used to search alist of namesto find thefirst if arranged
aphabetically (thisis possible because strings are stored as ASCI | codes, which are numbers).

Finding amaximum

Thisalgorithm worksitsway through alist of numbers, and finds the number with the
highest value. In the example above, it would find 12 °C (on the twenty first of the month).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

STANDARD ALGORITHMS AND ARRAYS

Counting occurrences

Thisagorithm also worksitsway through alist of numbers. Asit does so, it counts how
many occurrences of agiven valuetherearein thelist. For example, if the counting
occurrences agorithm was applied to thelist of midday temperatures, with asearch value of 9
°C, it would return the answer 2, asthere are two days (the sixth and the twenty fourth) when
the temperaturewas 9 °C.

date 1 2 3 4 5 6 7 8 9 10 11 12 13 14
temperature 4 6 5 7 11 9 8 5 3 4 3 6 7 4
(°O)

date 15 16 17 18 19 20 21 22 23 24 25 26 27 28

temperature 5 6 2 3 8 6 12 10 11 9 6 11 8 6
(°0)

Linear search

Thefinal standard algorithm which you need to know about iscalled linear search. The idea
issimple —it searchesthrough alist looking for a particular item, and reports where the item
isfound.

Inthe abovelist of temperatures, if linear search were given the search value 7 °C, it would
return the answer 13, as 7 °Cisfound at position 13 inthelist.

Q1: Look at these lists of dataitems.

1 27.3 1. 999 1 0.001
2. 15.6 2. 333 2. 0.002
3. 9.93 3. =500 3. 0.010
4. 15.6 4. 0 4. 0.100
5. 1.56 5. 299 5. 0.020
6. 28.3 6. 929 6. 0.111
7. 23.8 7. 922 7. 0.001
8. 2.38 8. 99 8. 0.002
9. 15.6 0. —99 0. 0.200
10. 99.3 10. 299 10. 0.120

What value would each of thefollowing standard algorithmsreturn (numbersin brackets
refer to columns 2 and 3)?

(@ find minimum

(b) find maximum

(c) count occurrence of 15.6 (99) (0.001)
(d) linear searchfor 2.38(929) (0.111).

Q2: Which standard algorithm would be used by the national census organisation to:
(@ find out how many peoplecalled Mary liveinthe UK
(b) find out the oldest person living in the UK
(c) discover whether or not therewasan individual called * Stan D. Ard a-Gorithm'’ in
the UK?

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

84

STANDARD ALGORITHMS AND ARRAYS

5.4 Using arrays

All of the standard algorithmswhich you met in the last section operate on alist of dataitems.

In this section, we will see how acomputer program can storealist of items.

Suppose a program was required which would prompt the user to enter and store the names

and test marksfor five students. Let’stry ...

Stage 1 — Analysis— data flow diagram

five names \

five sets of test marks
Stage 2 — Design

Wewant the user interfaceto look likethis:

Initials and marks displayed on screen

»
»

Next, we design thelist of steps (pseudocode) and then the coding for the command button.

Pseudocode

enter and store the 1st student’s name
enter and store the 1st student’ s mark
enter and store the 2nd student’s name
enter and store the 2nd student’ s mark
enter and store the 3rd student’s name
enter and store the 3rd student’s mark

enter and store the 4th student’ s name and
soon...

8. enter and store the 4th student’s mark
9. enter and store the 5th student’s name
10. enter and store the 5th student’ s mark
11. display the 1st student’s name and mark

No gk~ wbdpRE

12. display the 2nd student’s name and mark

13. display the 3rd student’s name and mark
14. display the 4th student’s name and mark
15. display the 5th student’s name and mark

Variablesrequired:

True BASIC coding

Input prompt “Enter 1st name "first_:name$
Input prompt “and their mark "first_:mark

Input prompt “Enter 2nd name " second_:name$
Input prompt “and their mark ”:second_mark
and so on...

Print “First name “;first_name$;” and mark
“first_mark

Print “ Second name “;second_name;” and mark
“:second_mark

andsoon...

first_name, second_name, third_name, fourth_name, fifth_name (all strings)

first_mark, second_mark, third_mark, fourth_mark, fifth_mark (all numerics).

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

85

STANDARD ALGORITHMS AND ARRAYS

Stage 3 —Implementation

e Start anew True BASIC program

e Enter the code for the program using the variables above
e Savetheprogram.

Stage 4 — Testing

Test the program with some normal test data.

Hereissimpler version using 2 For ... Next loops:

Fori=1to5
Input prompt “ Enter astudent’sname” :student_name$
Input prompt “and their mark ”:student_mark

Next i

Fori=1to5

Printstudent_name$; TAB(20); student_mark
Next i

End

Implement and test thisnew version.

Y ou might well bethinking that thisisa ... and you areright! Y ou should be thinking
very tedious example, and that there should ‘Loop!’ Thisisanideal situationto employ a
be an easier way of implementing the For ... Next loop, as the same action hasto
program ... be repeated five times.

Thereisaproblem! The program hasonly stored the last name and mark we entered. Each
name (and mark) has been stored in the same variable, each time overwriting the previous
value. We need to have different variable namesfor each name and mark, but we can’t do
that within the For ... Next loop.

The answer to our problemisaspecial type of datastructure called an array.

Rather than using five different variablesfor five names, likethis ...

INPUT first_name$

INPUT second_name$

INPUT third_name$

INPUT fourth_name$

INPUT fifth_name$

... wecan set up aname array, likethis:
Dim name$(5)

and rather than using another set of five variablesfor the marks, likethis...

INPUT first_mark
INPUT second_mark

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

STANDARD ALGORITHMS AND ARRAYS

INPUT third_mark
INPUT fourth_mark
INPUT fifth_mark

... we can set up amark array, likethis:

Dim mark(4)

What does Dim name$(5) mean?

Instead of setting up five separately named variablesto hold the five names

firstName

secondName

thirdName

fourthName

fifthName

... True BASIC setsup avariable structure called an array that can store al five names, with

each array element being referred to by itsindex number (1, 2, 3, 4 or 5).

studentName(1)

studentName(2)

studentName(3)

studentName(4)

studentName(5)

Similarly, Dim mark(4) setsup an array that can store five numbers:

mark(0)

mark(1)

mark(2)

mark(3)

mark(4)

Thereally useful thing about an array isthat the program can refer to thewhole array at once,

or to any single element.

Now let’ s see how using arrayslets us simplify the program we have been working on.

Hereisthe version that doesn’t work:

Fori=1to5

Input prompt “ Enter astudent’sname” :student_name$
Input prompt “and their mark ”:student_mark

Next i

Fori=1to5

Print student_name$; TAB(20); student_mark

Next i
End

... and hereisaversion that doeswork, using arrays:

Dim name$(5)
Dim mark(5)

Fori=1to5

I nput prompt “ Enter aname” :name$(i)

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

and so on.

The first time through the loop,
i =1, so the first name and
mark are stored in array
elements name$(1) and
mark(1). Next time, i = 2, so
name$(2) and mark(2) are used,

87

STANDARD ALGORITHMS AND ARRAYS

Input prompt “and their mark " :mark(i)

Next i

Fori=1to5 i
Printnames(); TABQOymark() 4~ | 1 e (g heppens
lelr%t i vaues1, 2, 3. 4and 5in

turn, so each name and
mark is printed on the
screen.

Implement and test thisnew version. It should work correctly now.

Y
@A\Qﬁ Stages 5 and 6 — Documentation and evaluation

Asusual, you should:

e print out hard copies of your form and the coding

e saveyour program

e writeashort User Guide and Technical Guide

o writeabrief evaluation of the programin terms of itsfitnessfor purpose, user interface
and readability.

5.5 Examplesusing arrays
Lucky Prize Draw (version 1)
Stage 1 - Analysis

Program specification

Design, write and test aprogram which prompts the user to enter 10 names, then selects and
displays one chosen at random.

Dataflow diagram

ten names QW;fandom
—

Stage 2 — Design

Wewant the user interfaceto look likethis:

Prize Draw

The lucky winner is ...

The user will enter the ten names using an array and | nput statements.

Next, wedesign thelist of steps (pseudocode) and then the coding for the program.

Pseudocode True BASIC coding
1. Do the following ten times Fori=1To 10

1.1 prompt the user to enter aname and storethe Input Prompt “Enter a name " :name$(i)
namein an array

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 88

STANDARD ALGORITHMS AND ARRAYS

2. Next Nexti
3. Select a random number between 1 and 10 Randomize
Let Number = ...
4. Display the selected array element Print “The winner is “;name$(Number)

Variablesrequired:
i and number (both numeric) name$(10) (array of strings)

Stage 3 —Implementation

Start anew True BASIC project
Enter the code for the program.
Save the program.

Stage 4 — Testing

Run the program to make sure it works correctly, selecting adifferent winner every time. To
savetime, you can enter thenamesasQ, W, E, R, T, etc., from the top row of the keyboard.

Lucky PrizeDraw (version 2)
Program specification
Design, write and test a program which promptsthe user to enter four names and four prizes.

The program should select alucky winner at random, and assign them a prize chosen at
random. The program should then display the name of the winner and the chosen prize.

Work through all the stages of the software devel opment processfor this
program — Analysis, Design, Implementation, Testing, Documentation and
Evaluation.

Congratulations! Y ou have completed Section 5.

Hereisasummary of what you should now be ableto do using True BASIC:
everything from the Section 3 checklist

everything from the Section 4 checklist

write the pseudocodefor theinput validation standard al gorithm

write True BASIC coding for astandard input validation algorithm

use complex conditions (using Or and AND) for input validation
declarearrays

use For ... Next loopsto handle arrays.

Y ou have now compl eted the whol e unit on software devel opment. By working your way
through all the example programs and tasksin this package, you should have
demonstrated all the practical skillsrequired to passthe unit, and have enough evidenceto
support this.

Y ou should also now be ready to sit the multiple-choice NAB test for this unit.

Good luck!

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 89

ANSWERS

ANSWERS
Section 1.1

Q1. Hardwareistheitems of equipment that make up acomputer system.

Q2. Examplesof softwareinclude any application packages (e.g. Microsoft Word), any
operating system (e.g. Windows 97) or any document or file.

Qs.

Item hardware software
monitor v

database v
Windows 97 v
scanner v

an e-mall v
Internet Explorer v
mouse v

modem v

acomputer game v
aword processor v
digital camera v

after Section 1.10

Q1.
Stage Description
Evaluation Writing auser guide and technical guide
for the software
Testing Working out the detail s of what the screenswill ook
like, what menus and functionsthere will be, and other
detail ed aspects of the program.
Implementation Deciding what type of game you want to create, and
what features you want it to have.
Design Actually writing all the program code.
Documentation Adapting the gameto run on a different type of
computer.

Analysis Checking that the program doeswhat it is supposed to
do, iseasy to use, and can befixed if thereisa
problem.

Maintenance Getting usersto try out the program to make sureit

works under most conditions.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

ANSWERS

Q2. Thethree criteriaused to evaluate softwarein thisunit arefitnessfor purpose, user
interface and readability.

Q3. Both show the main stepsin any process. Pseudocode isread from top to bottom; a
structure diagram isread from |eft to right.

Q4. A User guidetellsyou the features of the software, how to useit, and possibly atutorial.
The Technical Guidegivesinformation oninstallation and thetechnical specification of
the computer required to run the program.

Q5. Normal, extreme and exceptional testing.

Q6. A game could have bugsfixed, or new features added.

after Section 2.1

Q1. Highlevel iseasier to understand.

Q2. Highlevel iseasier to correct.

Q3. Machine code and assembler are low-level languages.

Q4. Pascal and BASIC aretwo high-level languages (there are many more).

Q5. HLLsaredesigned to be understood by humans; LL L s are designed to be understood by
computers.

Q6. HLLsaremorereadable, easier to fix bugs, designed for problem solving.

after Section 2.5

QL. Interpretersand compilers.

Q2. A compiler translatesawhol e program before executing it.
Q3. Aninterpreter transateslineby line.

Q4. Compiled programsrun more quickly because they are already in machine code, and so
don’t need to be trandl ated.

after Section 2.7

Q1. A macroisaprogram to automate aprocessin an application; it can be activated by a
combination of keyswhenever it is needed.

Q2. Macrosarewrittenin scripting languagessuch as VBA.
Q3. They alow automation of frequently repeated complicated combinations of actions.

Q4. For automating acomplex set of formatting commandsin aword processor, or
automating acomplex query in adatabase.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 91

ANSWERS

after Section 3.1
Q1. A command button, atext box, alabel.
Q2. The >icon starts the execution of a program.

Q3. Clicking on acommand buttonisacommon True BASIC event.

after Section 3.12

QL
Description Pre-defined function
returnsthe ASCII code of acharacter ><: String$[x:y]
selectsagroup of charactersout of astring ASC
turns any character into upper case LCASE
takesan ASCII code and returnsthe character it represents UCASE
changes any character into lower case LEN
countsthe number of charactersin astring CHR$
Q2.

Sentence$[1:1] - W
Sentence$[1:4] — What
Sentence$[9:2] — 25
Sentence$[19:1 — ?

Q3.

any letter ¢ ASCII code
—_—>
R
string No. of characters
e :: —>

(@ For counter =3To 36 Step 3

(b) For counter =0To 99 Step 9

(c) Forcounter=10ToO Step—-1

(d) For counter =0To04.5 Step 0.75

(e) For counter =50 To —50 Step —10

(f) For counter =1 To 10 with counter"2
(9) For counter =1 To 11 with 2*counter

Section 4.9

Section 5.3

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 92

ANSWERS

Q1.

Column 1
Finding minimum 1.56
Finding maximum 99.3
Count occurrences (15.6) 3
Linear search (2.38) 8
Q2.

(8 count occurrences

Column 2
-922
999
(99) 1
(929) 6

(b) finding maximum (or minimum if searching dates of birth)

(o) linear search.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

Column 3
0.001
0.200

(0.001) 2

(0.111) 6

93

	David Bethune
	INTRODUCTION
	Tutor guide
	Student guide

	SECTION 1
	1.1 Software
	1.2 The development process
	1.3 A dance in the dark every Monday
	1.4 Analysis
	1.5 Design
	1.6 Implementation
	1.7 Testing
	1.8 Documentation
	1.9 Evaluation
	1.10 Maintenance

	SECTION 2
	2.1 Computer languages
	2.2 High and low level languages
	2.3 Translators
	2.4 Interpreters
	2.5 Compilers
	2.6 Text editors
	2.7 Scripting language and macros

	SECTION 3
	3.1 Introducing True BASIC
	3.2 Input and output – example
	3.3 Input and output – tasks
	3.4 Enhancing our output
	3.5 Using variables
	3.6 Working with numbers – example
	3.7 Using Clear
	3.8 Arithmetical expressions
	3.9 Working with numbers – tasks
	3.10 Pre-defined numeric functions
	3.11 Working with words and numbers – example
	3.12 Pre-defined string functions
	3.13 Example program using CHR$ and ORD

	SECTION 4
	4.1 Making choices
	4.2 If … Then … Else
	4.3 Multiple Ifs
	4.4 Using AND – example
	4.5 Using AND – task
	4.6 Complex conditions
	4.7 Repetition
	4.8 Repetition using For … Next
	4.9 Counting using For … Next
	4.10 For … Next tasks
	4.11 Using the loop counter
	4.12 Do … Loop Until
	4.13 Random numbers
	4.14 Arithmetic tester
	4.15 More examples using Do … Loop Until
	4.16 Other forms of conditional loop

	SECTION 5
	5.1 Input validation
	5.2 Input validation tasks
	5.3 Other standard algorithms
	5.4 Using arrays
	5.5 Examples using arrays

	ANSWERS
	Section 1.1
	after Section 1.10
	after Section 2.1
	after Section 2.5
	after Section 2.7
	after Section 3.1
	after Section 3.12
	Section 4.9
	Section 5.3

