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Preface

FortSP is a large scale stochastic programming (SP) solver, which processes linear scenario-
based SP problems with recourse. It also supports scenario-based problems with chance
constraints and integrated chance constraints. Implementation of stochastic mixed integer
programming algorithms is available to a limited extent - enhancements are planned for
a future release. Several different SP algorithms are available for the solution, statistical
measures such as expected value of perfect information (EVPI) and value of the stochastic
solution (VSS) may be calculated, and it can use FortMP, CPLEX or CLP as its embedded,
underlying solver engine.
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1 Introduction to FortSP

1.1 The Problem

FortSP is a solver for stochastic linear, and stochastic linear mixed integer programs. In such
a problem the decision variables are governed by linear constraints, with a linear expression
for the objective. To a limited extent some decision variables may be of binary or integer
type. Certain data values will be unknown precisely, and only represented by a discrete range
with a probability given for each set of uncertain values. Knowledge of the random values
will become known in a stage-by-stage progression, and in recourse problems there will be
decision variables reserved for each stage which adapt the solution to unfolding events. User
may add a rider to some constraints that they need only hold with a certain probability.

Recourse Problems

A recourse problem is one in which only some decision variables must be fixed immediately.
Other variables are fixed in stages - those of one period taking into account the scenario
values that have become known in current and in previous stages, but with future stages
still unknown. These postponed decisions are known as recourse variables.

Single Stage

When there are no recourse variables, and all decision variables must be fixed without
knowing the random values, this is then a single-stage model.

Chance and Integrated Chance Constraints

These appear as normal constraints, but whether satisfied or not is subject to the uncertainty.
Chance constraints need only hold with a certain probability in the final solution. Integrated
chance constraints limit the expected violation of the underlying inequalities. The expected
violation can be either expected shorfall or surplus depending on the type of the underlying
constraint. FortSP allows these types of constraints in single and two-stage problems only.

1.2 Data Provision

Information on the model and controls on the execution may be presented on data files
either in SMPS (Stochastic MPS) form, or in SAMPL (Stochastic AMPL) form. These
methods involve use of the stand-alone version of FortSP. It is also possible to use FortSP as
a callable library with entries at which the data is passed internally using SIR (Stochastic
Internal Representation).

SMPS Format

FortSP uses a subset of SMPS (Birge et al., 1987), which is the original standard for stochastic
data provision. In this method three separate data-files are provided:

• Core file: a generic presentation of the variables and constraints in MPS (MPSX)
layout. Data values need not feature any particular scenario, but every random data
element must be represented.

• Time file: Specifying the subdivisions of the core file that belong to each stage.
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• Stoch file: specifying every scenario, the values of random data, and probabilities. The
layout of stoch-file data lines corresponds to that of the core file. Only discrete forms
of random distributions are considered.

SAMPL Format

AMPL is an algebraic modelling language for mathematical programming problems without
any random component. SAMPL (Valente et al., 2009) is an extension of AMPL able to
specify stochastic components in the appropriate staging. It allows to represent SP problems
using syntax similar to the algebraic notation which is more economical and intelligible
compared to SMPS. Unlike SMPS the whole problem can be specified in one file or divided
into several files according to user requirements. Solver options can be also specified in the
input files, as well as commands to generate an output report from the solution.

FortSP Library Input

When FortSP is used as a subroutine library, input data is entered via subroutine calls over
the argument interface. This interface closely resembles the form of internal data storage,
and may be termed ’Stochastic Internal Representation’. SIR as a file format does not exist
at present, but may be added in future as a medium for saving problem data.

SIR is employed by the SPInE (SP Integrated Environment) system (Valente et al., 2008)
with SAMPL modelling. In SPInE all features of SAMPL are present while FortSP currently
supports a limited subset.

1.3 Solution Methods

A variety of stochastic algorithms are available and these can obtain solutions in one of the
following forms:

• ’Here and Now’ (HN) solution

• ’Wait and See’ (WS) solution

• ’Expected Value’ (EV) solution

HN solution provides the most exact answer to the original SP problem (also the most
difficult) and to solve it there are the following SP algorithms:

• Deterministic Equivalent (DEQ)

• Cutting Plane (CP): either Benders Decomposition for recourse problems, or a special
cutting plane algorithm for single-stage problems with integrated chance constraints

• Stochastic Decomposition (SD), using a random sampling technique. This is limited
to 2-stage recourse problems, with other restrictions to be described later

The following statistical measures may be derived from the solutions of HN, WS and EV
problems:
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• The expected value of perfect information (EVPI)

• The value of the stochastic solution (VSS).

1.4 External Solvers

Most of the algorithms prepare sub-problems for solution in the form required by the solver
FortMP, which has all the necessary capabilities, but other solvers may also be employed
through the Open Solver Interface (OSI) of the COIN-OR (Lougee-Heimer, 2003) system.
So far the following solvers have been made available:

• FortMP (Ellison et al., 2008), which is the ’natural’ solver

• CPLEX

• CLP

Currently CLP and CPLEX can only be used for solving deterministic equivalent problems.

1.5 Options and Controls

Controls to steer the system by selecting the desired features are to be provided with the
data input. With SAMPL input the option statement can be used to set any option. In the
case of SMPS input either SAMPL script that imports SMPS and set the necessary options
or a separate option file must be provided. The decision between SAMPL script or option
file is made with the command for execution - for example:

fortsp mysp.opt

names the option file to be used by having the extension opt. Any other extension, such
mod in the command

fortsp mysp.mod

invokes the SAMPL translator.

The default input name is fortsp.opt (originally spinesol.opt, but now revised), and
any other name can be specified on the command line that invokes stand-alone FortSP. For
example the command fortsp D:\SPfolder\Myoptions.opt would invoke execution with
data input specified in the named file together with all other controls and options that are
detailed later in this manual.

On this file one control is entered on each line. A list of all options is given in Appendix A.

Each option comprises a keyword followed by a value that is not necessarily numeric. Values
are of the following types:
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Text For example, a filename
Switch This is either ON or OFF
Option A keyword
Value An integer or real numeric value.

Keywords may be given in uppercase or in lowercase, and with or without the underlines
used below purely for spaces in compound keywords.

The format of an option specified by OPT-file is as follows:

<option-keyword> <value>

where the values may be text-strings, switch-settings (ON or OFF), or numeric according
to the specific option. Blank lines may appear anywhere in the opt-file, and comment lines
are indicated by an asterisk (*) in position 1.

In SAMPL it is possible to specify one, two or more options separated by commas in the
same statement. The keyword option is used - the layout being as follows:

option <name> <value>, <name> <value>, ... ;

Option names in SAMPL are closely equivalent to option keywords in an opt-file, but some
differences will appear. Values are either text-strings or numeric, all switches being indicated
with 1 - ON, or 0 - OFF.

An example on the opt-file is as follows:

* Opt-file option example

MODEL_HN ON

HN_ALGORITHM DETEQI

The same example in SAMPL would be:

# SAMPL option example

option SolveHN 1, SPAlg DetEq;

1.6 System Summary

Figure 1 gives a view of the FortSP system from the user perspective. According to the
choice of the inner solver - that is FortMP, CPLEX of CLP - user must have that DLL and
also the DLLs above it in the hierarchy, together with the prime executable fortsp.exe.

Figure 2 is a simplified summary of the SP algorithm structure. The actual path taken by
execution depends on a variety of indications - for example:

• The model-types chosen for solution (one or more of HN, EV, WS)

• The model-types needed for statistical measures (EVPI and VSS)

• The algorithm to solve the HN model
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fortsp.exe

FortSP.dll

OsiCpx.dll

cplex*.dll

OsiFmp.dll

FortMP.dll

OsiClp.dll

Figure 1: FortSP system

However there are various limitations to bear in mind

• The special cutting plane algorithm applies only to single-stage problems with ICC.
Other problems with chance and integrated chance constraints must be solved using
deterministic equivalent approach.

• Stochastic decomposition applies only to two-stage recourse problems with no random
objective values, and with no random elements in the second-stage columns of the core
matrix (that is vector c2 and matrix A22 named below in section 2.2, model 2).

• It is not as yet possible to combine SD for the HN model with the EV model or the
WS model (and therefore with calculating EVPI or VSS). Hence the SD box in figure
2 leads out only to the end of execution.
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Figure 3: Scenario tree example

2 Mathematical Description of the Problem

Refer to Introduction to Stochastic Programming (Birge and Louveaux, 1997) for a detailed
problem statement and mathematical background.

2.1 Scenario Tree

Stochastic programming can handle large numbers of decision variables and capture their
complex interrelationships stated as constraints in algebraic form. The essence of SP is the
confluence of optimum decision-taking model with the modelling of the random parameter
behaviour. In order to model the behaviour of random parameter values we consider a
limited, discrete sample of the events that may occur between any two stages of the decision-
taking process, and this gives rise to a tree-like branching illustrated in figure 3.

Figure 3 illustrates the scenario tree of a 4-stage decision problem. Each node represents
an optimisation problem for the decisions to be taken there, and the bundle of arcs leading
from the node represents the sampled behaviour in that situation. By scenario is meant
the unfolding of all events (arcs) connecting the current (first) decision (root node) to some
decision in the final stage (leaf node). In general, decision tree analysis can handle only
small data sets, so for realistic problem sizes there is a need for multi-stage SP.

2.2 Two-stage Recourse Models

A two-stage planning horizon is one where immediate (Here and Now) decisions (x1) have to
be taken before all the problem elements have become known. Once this happens there are
further, second-stage decisions (x2) to be taken according to the newly discovered events.
After splitting the problem into known and unknown (uncertain) elements we have a first-
stage problem as follows:
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Minimize cT
1 x1 + θ(x1)

Subject to g1 ≤ A11x1 ≤ h1

l1 ≤ x1 ≤ u1

(1)

where the function θ is the expectation of second-stage utility, given the decisions x1 in the
first stage.

If we select a particular scenario, this utility function will be expressed as follows:

Minimize cT
2 x2

Subject to g2 ≤ A21x1 + A22x2 ≤ h2

l2 ≤ x2 ≤ u2

(2)

without any further θ-function. Now since x1 is known, the second-stage problem for all
scenarios can be solved, from which we can derive the expectation of utility (probability-
weighted average of the minima), and this defines the θ-function in the first-stage objective.

To express this more exactly we assume the (hypothetical) existence of separate second-stage
decision variables x2s for each scenario s = 1, 2, . . . , S. Couple these with corresponding
values for the uncertain data, and the second-stage model for each scenario becomes:

Minimize cT
2sx2s

Subject to g2s ≤ A21sx1 + A22sx2s ≤ h2s

l2s ≤ x2s ≤ u2s

(3)

So for the expectation we combine the probability-weighted minima of all the second-stage
models, and the entire problem becomes:

Minimize cT
1 x1 +

∑S
s=1 ps(c

T
2sx2s)

Subject to g1 ≤ A11x1 ≤ h1

g2s ≤ A21sx1 + A22sx2s ≤ h2s,∀s = 1, . . . , S
l1 ≤ x1 ≤ u1

l2s ≤ x2s ≤ u2s,∀s = 1, . . . , S

(4)

where ps is the probability of scenario s. This formulation of the problem is known as the
Deterministic Equivalent (DEQ).

It was observed in the 50’s that the form (4) is precisely the form solvable with the dual of
Danzig-Wolfe decomposition, also known as Benders’ decomposition or the L-shaped method.
In this method a solution x1 to the model (1) allows dual-solutions of model (3) to be
calculated and applied to form an aggregated ’cut’, which is a constraint added to model (1)
- thus giving a new solution x1, and so an iterative process is developed. Theory shows that
the iterations converge to precisely the solution of the deterministic equivalent model (4).

It would seem simpler just to solve the DEQ model (4) were it not for the greatly increased
size of the problem. However, the DEQ is useful if the number of scenarios is fairly small.
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There is a second form of the DEQ that is obtained by postulating separate stage 1 decision
variables for each scenario, and equating them by adding explicit constraints

x1s1 = x1s2

for all pairs of scenarios s1 and s2 (enough pairs to make all scenario-values the same). This
is known as DEQ with Explicit Non-Anticipativity (NA). The original form (4) is known as
DEQ with Implicit NA. For these large problems Interior Point Method (IPM) is usually
chosen in the solution. However, Implicit NA formulation may give difficulty with IPM
owing to column density, and this can be overcome in some cases by using Explicit NA.

2.3 Multi-stage Recourse Models

In a multi-stage (multi-period) planning horizon with more than two stages decisions must
be taken at each stage with knowledge only of the uncertainty in that stage and in previous
stages. We can easily extend the modelling shown in (1) and (3) by considering a θ-function
in all stages except the last. Thus stage 1 is:

Minimize cT
1 x1 + θ1(x1)

Subject to g1 ≤ A11x1 ≤ h1

l1 ≤ x1 ≤ u1

(5)

The stages are now given by subscript t where t = 1, . . . , T , and so for an intermediate stage
t < T we can say:

Minimize cT
t xt + θt(x1, x2, . . . , xt)

Subject to gt ≤ At1x1 + At2x2 + . . . + Attxt ≤ ht

lt ≤ xt ≤ ut

(6)

with variables x1, x2, . . . , xt−1 known already. For the last stage we have:

Minimize cT
T xT

Subject to gT ≤ AT1x1 + AT2x2 + . . . + ATT xT ≤ hT

lT ≤ xT ≤ uT

(7)

with variables x1, x2, . . . , xT−1 known already. Note that each θ-function depends on the
decisions in that stage and in previous stages, up until the last stage, which has no θ-
function. The constraints of the t-th stage involve xt, xt−1, . . . , x1 (see 1).

The solution of such a model requires ’nesting’. A specific model corresponds to a specific
node of the scenario tree (exampled in figure 3). Hence to solve the sub-model for a given
node we need the values of decisions along the path leading up to that node, and all the
solutions to the sub-tree of nodes leading from it. Given a proposed solution for everything
up to stage T − 1, we can adjust the solution of stage T − 1 by applying 2-stage Benders to
each bundle of paths leading from stage T − 1. The same process applies to stage T − 2 by
nesting the last-stage 2-stage Benders inside to form a 3-stage Benders solver. And so on for

1In a ’Markovian’ situation the t-th stage involves only xt and xt−1. FortSP handles non-Markovian as
well as Markovian situations
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the whole tree. Actually the multi-stage Benders algorithm is much faster, using the ’Fast
Forward, Fast Back’ algorithm described in (Birge and Louveaux, 1997) chapter 7.

Solving multi-stage problems with Deterministic Equivalent also involves nesting, and here
the nesting is in the formulation. Consider the (hypothetical) existence of scenario decision
variables for every sub-path on the scenario tree connecting one node to its parent, and
remember that the probability of that path is the sum of the probabilities of all paths leading
through it. Assemble the constraints for all the scenarios and combine in the objective the
sub-path-probability-weighted sum of all scenario objectives (too complicated to express
here in mathematical terminology). This gives the implicit NA version of the DEQ. For the
explicit NA version we consider separate variables for every scenario in every stage, and add
all the constraints needed to equate all the variables for different scenarios that lie along the
same sub-path everywhere in the tree.

2.4 Chance and Integrated Chance Constraints

In addition to multistage recourse problems described above, FortSP supports single and
two-stage problems with individual chance constraints and integrated chance constraints
(ICC). By a singe-stage SP problem we mean the one in which all decisions take place in the
first stage and then the random parameters realise. The difference from a two-stage problem
is that the latter has also a recourse action.

A probabilistic or chance constraint is a constraint that must hold with some minimum prob-
ability level. In the framework of model (2) an individual chance constraint corresponding
to i-th row (1 ≤ i ≤ m2) can be formulated as:

P{gi
2 ≤ Ai

21x1 + Ai
22x2 ≤ hi

2} ≥ α, (8)

where 0 < α < 1 is a reliability level, gi
2 and hi

2, denote i-th elements of vectors g2 and h2;
Ai

21 and Ai
22 denote i-th rows of matrices A21 and A22.

The chance constraint constraint (8) has the following deterministic equivalent form:

gi
2s ≤ Ai

21sx1 + Ai
22sx2s + Mvs (s = 1, . . . , S)

Ai
21sx1 + Ai

22sx2s −Mws ≤ hi
2s (s = 1, . . . , S)

vs ≤ zs (s = 1, . . . , S)
ws ≤ zs (s = 1, . . . , S)

S∑
s=1

pszs ≤ 1− α,

where M is a suitably chosen large constant, vs, ws and zs are additional binary variables.

Similarly, below is the formulation of an individual ICC if gi
2 is infinite for all realisations of

random parameters:

E[(hi
2 − Ai

21x1 − Ai
22x2)

−] ≤ β, (9)

where β ≥ 0 and (a)− := max{−a, 0} is a negative part of a ∈ R.
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The ICC (9) has the following deterministic equivalent form:

Ai
21sx1 + Ai

22sx2s − ws ≤ hi
2s (s = 1, . . . , S)

S∑
s=1

psws ≤ β,

where ws are additional variables. Note that in the case of integrated chance constraints
introduced variables are continuous which makes deterministic equivalents of ICCs compu-
tationally more tractable than those of chance constraints.

If hi
2 is infinite for all realisations of random parameters the constraint will look like:

E[(Ai
21x1 + Ai

22x2 − gi
2)
−] ≤ β,

The case of both gi
2 and hi

2 finite results in a special case of a joint ICC and is not currently
supported.
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3 Data Provision in SMPS

3.1 SMPS Input Format

Whereas MPSX defines the format for LP data input, Stochastic MPS (SMPS) defines the
input format for stochastic programming problems. FortSP implements the most important
provisions of SMPS which is described by Birge et al. (1987). Since the solver is initially
designed for use within the SPInE system its stochastic input fulfils the requirements of
models generated by SPInE, and other provisions of SMPS are not supported in full. SPInE
generates solver stochastic data in the form of discrete scenarios, and FortSP supports this
form and also discrete blocks form and discrete independent form.

The stochastic items time-stage, block and scenario are all to be identified by an index with
optional prefix for readability, although SMPS standard calls for identification by the full
name (prefix plus index). FortSP ignores every prefix, but nevertheless user should adopt
the same prefix for the same item throughout, in conformity with the SMPS standard. A
future version of FortSP may be upgraded to identify by name rather than by index.

Three input files are required in order to specify a stochastic problem:

• Core file which is the fundamental problem template in the form of an LP problem
using the MPSX standard

• Time file specifying which rows and columns of the core-file belong to which time stage

• Stoch file specifying the alternative values taken by each random parameter value in
the core file

The user may specify precise names for the input files or may give the basename - or ’Generic’
name - of these files so that extensions are appended automatically. Denoting a base name
by <problem> the resulting filenames are:

<problem>.cor for core file
<problem>.tim for time file
<problem>.sto for stoch file

3.2 Core File and Random Parameter Values

The core file expresses a linear programming problem or linear mixed integer problem in the
format known as MPSX, familiar to the users of LP solvers and described in the manuals
of many of such system, for example, FortMP (Ellison et al., 2008). In this format the file
is divided into ROWS, COLUMNS, RHS, RANGES and BOUNDS sections, and data records have a
fixed format as follows:

Field 1. Positions 2-3 (code)
Field 2. Positions 5-12 (1st name field)
Field 3. Positions 15-26 (2nd name field)
Field 4. Positions 30-37 (1st numeric field)
Field 5. Positions 40-47 (3rd name field)
Field 6. Positions 50-61 (2nd numeric field)
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This layout is also used for data in the time and stoch files described below.

In the stochastic model a number of scalars will have uncertain values - they are denoted
here as random parameter values. They may be anywhere in the core file other than in the
ROWS section. Each random parameter value must have a representative, finite value assigned
to it in the core model, and this value must be recognisable by the input. It may not be zero
in the COLUMNS or the RANGES section, or left as infinite in the BOUNDS section. However it
does not have to be a value corresponding to any particular scenario.

Both constraints and variables must be grouped according to the stage at which they apply.
These separate groups are to be in the order of time stage in the core file (constraints in
the ROWS section and variables in the COLUMNS section). As a result of this ordering the
constraint matrix should have a lower block triangular form, with blocks for each stage.

MIP in the form of binary or integer descriptions may be applied to any decision variable
(SOS and semi-continuous are not supported). However if it applies to variables other
than the first here-and-now stage then the HN model must be solved using Deterministic
Equivalent methods - Benders’ decomposition would not be suitable.

In the stochastic data (stoch file) the above data-line format is employed without the headers
such as COLUMNS, RHS etc that are used in the core file. For this reason certain names are
reserved as keywords for stochastic data and should not be used either as row or column
names, or as the leading characters of row or column names. These are:

RHS BOUND OBJ

LHS BND COST

RIGHT RANGE

LEFT RNG

Included are any variants of these keywords with lower case lettering. The following are
examples of illegal names:

rhs BOUNDSET objective

Rhside bnd1 costrow

LeftHS RANGEABC

An exception is made for OBJ and COST, which may be used in the name of the actual
objective row (but not in any other row).

3.3 Time File

The time file specifies the first member of each stage grouping in the constraints and variables
of the core model (hence the need to group these items by stage). The first line is as follows:

Positions 1-4 Keyword TIME

Field 3 (15-22) Problem name

This is followed by the period header line as follows:

Positions 1-7 Keyword PERIODS

Field 3 (15-22) Keyword IMPLICIT (optional)

After this one line is included for each stage as follows:
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Field 2 (5-12) Starting variable name
Field 3 (15-22) Starting constraint name
Field 5 (40-47) Stage name

Time stages are indexed 1, 2, . . . with stage number 1 being the first, here-and-now stage.

Finally the data ends with the following line:

Positions 1-6 Keyword ENDATA

The following is an example:

TIME EXAMPLE

PERIODS IMPLICIT

C1 R1 STAGE1

C6 R3 STAGE2

C8 R19 STAGE3

ENDATA

Note that in place of R1 it is possible to use the objective row name. The objective row is
moved by the input into the first row position, wherever it is found in the data.

3.4 Stoch File

All random data and the discrete distributions are specified in the stoch file. The first line
is as follows:

Positions 1-5 Keyword STOCH

Field 3 (15-22) Problem name

This is followed by a header line that specifies the form of data input as follows:

Positions 1 onwards Keyword defining the data form as one of
INDEP BLOCKS SCENARIOS

CHANCE ICC

Field 3 (15-22) Keyword DISCRETE

After this header line there are data-lines as described below and the file is terminated as
before:

Positions 1-6 Keyword ENDATA

Sample values for random parameter values are presented in the stoch file in the same form
as they appear in the core file, that is:

Random parameter value in section:

Field COLUMNS RHS RANGES BOUNDS

1: 2-3 Bound type
2: 5-12 Column name Vector name Vector name Vector name
3: 15-22 Row name Row name Row name Column name
4: 25-36 Sample value Sample value Sample value Sample value
5: 40-47 2nd row name 2nd row name 2nd row name
6: 50-61 Sample value Sample value Sample value
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Fields 5 and 6 have a different use for INDEP-form data (see below), and otherwise can only
be used for random parameter values with the same description in fields 1 and 2.

Any value greater or equal to 1.7×1038 (less or equal to −1.7×1038) used as a row or column
bound is treated as a positive (negative) infinity.

Stochastic data form INDEP

INDEP is used when each separate random parameter value has an independent distribution.
Scenarios are built by selecting one possibility for each random parameter value, the set of
all scenarios is then formed by taking all combinations of possible selections.

Each INDEP data line can describe only one random parameter value as follows:

Fields 1-4 As described above
Field 5 (40-47) Stage name
Field 6 (50-61) Probability value of the sample (must sum to 1 for each random

parameter value)

Sequence should be according to time stage, and with separate samples of the same random
parameter value collected into consecutive lines. The following is an example:

STOCH EXAMPLE

INDEP DISCRETE

C6 OBJ 2.5 STAGE2 0.5

C6 OBJ 3.0 STAGE2 0.5

C6 R3 5.0 STAGE2 0.33

C6 R3 5.5 STAGE2 0.67

C8 R19 1.0 STAGE3 0.25

C8 R19 2.0 STAGE3 0.25

C8 R19 3.0 STAGE3 0.5

ENDATA

The above example has 12 (2× 2× 3) scenarios, illustrated in the following table:

Base Value of

Scen Scen Stage (C6,OBJ) (C6,R3) (C8,R19) Probability

1 core 2 2.5 5.0 1.0 0.04125
2 1 3 - - 2.0 0.04125
3 1 3 - - 3.0 0.08250
4 1 2 - 5.5 1.0 0.08375
5 4 3 - - 2.0 0.08375
6 4 3 - - 3.0 0.16750
7 1 2 3.0 5.0 1.0 0.04125
8 7 3 - - 2.0 0.04125
9 7 3 - - 3.0 0.08250

10 7 2 - 5.5 1.0 0.08375
11 10 3 - - 2.0 0.08375
12 10 3 - - 3.0 0.16750
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Here the Base Scen column is the scenario containing the default values for any unstated
random parameter values. The first scenario is always based on the core problem and
specifies values for all random parameter values. The Stage column states the stage at
which a difference appears from the base.

Stochastic data form BLOCKS

The nature of this form is very similar to INDEP, except that individual independent random
parameter values give place to independent blocks (or sets) of random parameter values.
The stage number and probability distribution become properties of the block rather than
the individual random parameter value. Each new block and each new set of block values is
introduced with a header line as follows:

Field 1 (2-3) Keyword BL

Field 2 (5-12) Block name
Field 3 (15-22) Stage name
Field 4 (25-36) Probability value of the sample (must sum to 1 over the samples

of each block)

Blocks with the same name should be grouped together.

Values for the members of each block are entered in a way similar to INDEP data, except
that fields 5 and 6, not being required for stage and probability, may contain a second data
entry for fields 3 and 4 as tabled above in the general stoch file description.

The following is an example:

STOCH EXAMPLE

BLOCKS DISCRETE

BL BLOCK1 STAGE2 0.5

C6 OBJ 2.5 R3 5.0

BL BLOCK1 STAGE2 0.5

C6 OBJ 3.0 R3 5.5

BL BLOCK2 STAGE3 0.25

C8 R19 1.0

RHS R19 100.0

BL BLOCK2 STAGE3 0.25

C8 R19 2.0

RHS R19 200.0

BL BLOCK2 STAGE3 0.5

C8 R19 3.0

ENDATA

This example gives rise to scenarios in the same manner as before, illustrated as follows:
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Value of

Scen Base Stage (C6,OBJ) (C8,R19) Probability
Scen (C6,R3) (RHS,R19)

1 Core 2 2.5 1.0 0.125
5.0 100.0

2 1 3 - 2.0 0.125
200.0

3 2 3 - 3.0 0.250
-

4 1 2 3.0 1.0 0.125
5.5 100.0

5 4 3 - 2.0 0.125
200.0

6 5 3 - 3.0 0.250
-

Note that block samples do not have to restate values in the block if they duplicate the
previous sample (SMPS standard). Hence the base for samples other than the first of a
block is the previous sample. So in the above example scenarios 3 and 6 assign value 200.0
to (RHS,R19).

Stochastic data form SCENARIOS

Scenarios have been introduced in the examples above. It may be observed that the branching
of scenarios from each other (i.e. the base scenario connection) forms an event tree in which
decisions may be taken at the nodes. The tree for the INDEP example above looks as follows:

Stage 1 Stage 2 Stage 3 Scenarios

12

11

10

9

8

7

6

5

4

3

2

1
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In this diagram each scenario is represented by a full path through the nodes from left to
right.

Scenario-form data is prepared from such a tree, which should be known directly or implicitly.
For each scenario it is only necessary to enter the information that differs from its base
scenario - that is the earlier scenario from which it branches. Where several branches issue
from one node (to the right) the later scenarios may be considered as branching from any
earlier scenario in that bundle. Thus for example:

Scenario 10 could branch from 1, 4 or 7

Scenario 6 could branch from 4 or 5

Scenario 1 must always branch from the core model (and provide values for all the random
parameter values).

Each scenario is preceded in the stoch file by a scenario header line as follows:

Field 1 (2-3) Keyword SC

Field 2 (5-12) Scenario name
Field 3 (15-22) Should contain ROOT for scenario 1. For other scenarios enter the

name of the base scenario
Field 4 (25-36) Probability value of the scenario (must sum to 1 over all scenar-

ios)
Field 5 (40-47) Stage index with optional prefix

Data lines for scenarios follow the layout tabled in the general stoch file description.

Here is how the BLOCKS example can be presented in SCENARIOS form:

STOCH EXAMPLE

SCENARIOS DISCRETE

SC SCEN1 ROOT 0.125 STAGE1

C6 OBJ 2.5 R3 5.0

C8 R19 1.0

RHS R19 100.0

SC SCEN2 SCEN1 0.125 STAGE3

C8 R19 2.0

RHS R19 200.0

SC SCEN3 SCEN2 0.250 STAGE3

C8 R19 3.0

SC SCEN4 SCEN1 0.125 STAGE2

C6 OBJ 3.0 R3 5.5

C8 R19 1.0

RHS R19 100.0

SC SCEN5 SCEN4 0.125 STAGE3

C8 R19 2.0

RHS R19 200.0

SC SCEN6 SCEN5 0.250 STAGE3

C8 R19 3.0

ENDATA
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3.5 Chance and Integrated Chance Constraint Data

Data for chance constraints and ICC are are presented on the STOCH file in additional
sections preceding the random data.

CHANCE section

Chance constraints can be represented in the stoch file using the CHANCE section where the
reliability parameters α are supplied (see section 2.4). The constraints themselves are defined
in the core file and the distributions of their stochastic elements are defined in extra sections
of the stoch file.

After a section header consisting of a single keyword CHANCE in position 1 each line describes
a single chance constraint and has the following structure:

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field 2 (5-12) Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Reliability parameter α, see section 2.4

Example:

CHANCE

G CC1 R1 0.95

L CC1 R2 0.10

The CHANCE section allows one or more groups of chance constraints to be defined. In the
above example, the name of the group is CC1. FortSP uses the first group and ignores all
others.

ICC section

The ICC section is very similar to the CHANCE section. It starts with the keyword ICC followed
by the lines in the form described below:

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field 2 (5-12) Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Parameter β for ICC, see section 2.4

Example:

ICC

L ICC1 R8 10.0

The ICC section allows one or more groups of ICCs to be defined. In the above example, the
name of the group is ICC1. FortSP uses the first group and ignores all others.
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3.6 Options and Controls for SMPS Data

FortSP gives two possibilities of controling solver execution together with SMPS input. One
is through a separate option file which is described in Section 1.5. Another is through
SAMPL and its SMPS import feature described in Section 4.2.

The following is a table of the options relevant to SMPS input.

Opt-file Name GENERIC FILENAME

Description Specifies a stub or generic name for input and output files (i.e. file-
name without any extension). A standard extension is added for each
actual filename.

Value String
Default SPmodel

Opt-file Name CORE FILE

Description Actual name of the core file
Value String
Default

Opt-file Name TIME FILE

Description Actual name of the time file
Value String
Default

Opt-file Name STOCH FILE

Description Actual name of the stoch file
Value String
Default

Opt-file Name OPT DIR

SAMPL Name SmpsObjSense

Description The sense of optimisation for SMPS problems
Value MIN or MAX
Default MIN

Opt-file Name SPS WORKING DIR

Description Name of the folder to which the current working directory is trans-
ferred immediately after input of the option-file has completed, and
before any other input.
All I/O files are located in the local working directory except where a
different path is given with a specific file-name command. Files not so
named take the generic name followed by a standard extension, and
so are located in this directory. In the option-file (not in SAMPL) the
local working directory can be changed by setting this option before
opening any other I/O file.

Value String
Default
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4 Data Provision in SAMPL

The primary input format accepted by FortSP when used in the SPInE system is Stochastic
AMPL, or SAMPL, which is described in details in SAMPL/SPInE User Manual (Valente
et al., 2008). SAMPL is an extension of the AMPL modelling language for stochastic pro-
gramming. It has the advantage of being easier to understand and more compact than
SMPS. As an experimental feature this release of a standalone FortSP solver provides a
limited support for SAMPL input.

4.1 SAMPL Input Format

Current version of the SAMPL translator used in FortSP accepts only two-stage SP problems
expressed in a subset of the language. The syntax can be inferred from the example in
Section 4.9. Details of modelling with SAMPL can be found elsewhere (Valente et al., 2008),
this section only describes the scripting features that can be used to control FortSP and
present the results.

4.2 SMPS Import

FortSP provides a special form of the read statement for importing SMPS problems into the
SAMPL environment. It allows to work with problems in both formats in a uniform way.

Syntax

read-stmt :
read smps ( basename ) ;
read smps ( core-filename, stoch-filename, time-filename ) ;

The first form can be used if the names of the SMPS input files differ only in extension which
is cor for the core file, sto for the stoch file and tim for the time file. The basename is
then their common filename without extension. The second form allows to specify all three
filenames.

SMPS doesn’t specify the direction of optimisation (objective sense) and FortSP assumes
minimisation by default. It can be changed by setting the SmpsObjSense option before
importing the problem. Possible values for this options are Minimize and Maximize.

During the import the name of the SAMPL problem is derived from the SMPS problem name
with all spaces and characters not allowed in SAMPL identifiers replaced with underscores,
e.g. problem-1 is changed to problem 1. The objective name is transformed in the same
way. Two sets called SMPS ROWS and SMPS COLS are introduced which contain the names
of the first-stage rows and columns. SMPS variables and constraints can be accessed using
names smps var and smps con respectively. The variable smps var is indexed over the
set SMPS COLS and the constraint smps con is indexed over SMPS ROWS.

4.3 The solve Statement

The solve statement instantiates the current problem and solves it.

Syntax

solve-stmt :

24



solve ;

4.4 The print Statement

The print statement evaluates each expression in the list and prints the result to the stan-
dard output.

Syntax

print-stmt :
print [indexing :] expr-list ;

expr-list :
expr
expr-list , expr

Example: print {c in SMPS COLS}: smps var[c];

4.5 The write Statement

The write statement writes the current problem in the SMPS form.

Syntax

write-stmt :
write mfilename ;

Example: write mout;

4.6 The model and data Statements

The model and data statements have two forms. The one without arguments switches the
current mode. For example the statement data; enters the data mode. The second form
which takes a filename argument translates the specified file.

Syntax

model-stmt :
model [filename] ;

data-stmt :
data [filename] ;

4.7 The option Statement

The option statement sets and/or prints the option values.

Syntax

option-stmt :
option option-list ;

option-list :
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option
option-list , option

option:
name [expr]

Here name is an option name and expr is an optional expression of compatible type. If the
expression is not specified the option value is printed. Otherwise the expression is evaluated
and the result is assigned to the option. Example: option Solver OsiClp, LPAlg Dual;

4.8 Built-in Names

SAMPL recognizes the following built-in names.

Name Description

Infinity The value for representing an infinite bound
evpi The expected value of perfect information
vss The value of the stochastic solution

Both evpi and vss apply to the current problem.

In addition to the builtin names the following suffixes are supported.

Suffix Description

.rc Reduced cost of a variable

.body Current value of constraint body

.ev Current value in the EV problem

.ev rc Reduced cost of a variable in the EV problem

.ev body Current value of constraint body in the EV problem
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4.9 Example

As an example let’s consider the farmer’s problem from Introduction to Stochastic Program-
ming (Birge and Louveaux, 1997).

A European farmer has 500 acres of land where he plans to grow wheat, corn, and sugar
beets. He wants to decide how much land to devote to each crop in order to maximize profit
and produce enough grain to feed his cattle. The farmer knows that at least 200 tons (T)
of wheat and 240 T of corn are needed for cattle feed. All that remains after satisfying the
feeding requirements is sold. Selling and purchase prices as well as planting costs are given
in the following table.

Wheat Corn Sugar Beets

Planting cost ($/acre) 150 230 260
Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T
Purchase price ($/T) 238 210 -
Min. requirement (T) 200 240 -

Note that sugar beet has two selling prices because the European Commission imposes a
quota on its production. Any amount above the quota is sold at a lower price.

The uncertainty in the problem comes from the weather conditions that affect yields. In this
problem three possible scenarios are considered. The yields in tons per acre are given below
for each crop and scenario.

Wheat Corn Sugar Beets

Above 2.0 2.4 16.0
Average 2.5 3.0 200.0
Below 3.0 6.0 24.0

Here is a SAMPL formulation of the model:

set Crops;

scenarioset Scenarios;

probability P{Scenarios};

tree Tree := twostage;

param TotalArea; # acre

param Yield{Crops, Scenarios}; # T/acre

param PlantingCost{Crops}; # $/acre

param SellingPrice{Crops}; # $/T

param ExcessSellingPrice; # $/T

param PurchasePrice{Crops}; # $/T

param MinRequirement{Crops}; # T
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param BeetsQuota; # T

# Area in acres devoted to crop c

var area{c in Crops} >= 0;

# Tons of crop c sold (at favourable price in case of beets)

# under scenario s

var sell{c in Crops, s in Scenarios} >= 0, suffix stage 2;

# Tons of sugar beets sold in excess of the quota under

# scenario s

var sellExcess{s in Scenarios} >= 0, suffix stage 2;

# Tons of crop c bought under scenario s

var buy{c in Crops, s in Scenarios} >= 0, suffix stage 2;

maximize profit: sum{s in Scenarios} P[s] * (

ExcessSellingPrice * sellExcess[s] +

sum{c in Crops} (SellingPrice[c] * sell[c, s] -

PurchasePrice[c] * buy[c, s])) -

sum{c in Crops} PlantingCost[c] * area[c];

s.t. totalArea: sum {c in Crops} area[c] <= TotalArea;

s.t. requirement{c in Crops, s in Scenarios}:

Yield[c, s] * area[c] - sell[c, s] + buy[c, s]

>= MinRequirement[c];

s.t. quota{s in Scenarios}: sell[’beets’, s] <= BeetsQuota;

s.t. beetsBalance{s in Scenarios}:

sell[’beets’, s] + sellExcess[s]

<= Yield[’beets’, s] * area[’beets’];

The data for the farmer’s problem are as follows:

data;

set Crops := wheat corn beets;

set Scenarios := below average above;

param TotalArea := 500;

param P :=

below 0.333333

average 0.333333

above 0.333333;
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param Yield:

below average above :=

wheat 2.0 2.5 3.0

corn 2.4 3.0 3.6

beets 16.0 20.0 24.0;

param PlantingCost :=

wheat 150

corn 230

beets 260;

param SellingPrice :=

wheat 170

corn 150

beets 36;

param ExcessSellingPrice := 10;

param PurchasePrice :=

wheat 238

corn 210

beets 100; # Set to a high value to simplify the objective

param MinRequirement :=

wheat 200

corn 240

beets 0;

param BeetsQuota := 6000;

Finally the script file needs to be provided which loads model and data files, solves the
problem and retrieves the optimal value and solution. Due to the flexibility of the AMPL
language SAMPL is based on, it is possible to combine model, data and script in one file
which can be convenient in some cases. However, in general it is not recommended since it
makes more difficult to use the same model with different data sets.

Let’s assume that the model and data are stored in the files farmer.mod and farmer.dat.
The following script loads these files, solves the problem, computes EVPI and VSS and prints
the results:

# Read the model and data.

model farmer.mod;

data farmer.dat;

# Set the options.

option ComputeEvpi 1, ComputeVss 1, VssFStage 1;

# Instantiate and solve the problem.

solve;
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# Print the results.

print ’Optimal value =’, profit;

print ’EVPI =’, evpi;

print ’VSS =’, vss;

print;

print ’First-stage solution:’;

print {c in Crops}: ’area[’, c, ’] =’, area[c], ’\

’;

print ’totalArea =’, totalArea.body;

Running FortSP with the command fortsp <script filename> will produce the following
output:

Optimal solution found

Optimal value = 108389.5654

EVPI = 7015.64583

VSS = 1149.8943

First-stage solution:

area[ wheat ] = 170

area[ corn ] = 80

area[ beets ] = 250

totalArea = 500
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5 SP Solution Methods

5.1 Deterministic Equivalent

The simplest solution approach is to formulate a deterministic equivalent of the SP problem
and use a linear programming (LP) solver to optimise it. FortSP fully supports automatic for-
mulation of deterministic equivalents either with implicit or with explicit non-anticipativity.
This method is feasible and sometimes advantageous especially if the number of scenarios is
relatively small.

FortSP can also formulate deterministic equivalents of two-stage problems with individual
chance constraints and integrated chance constraints.

5.2 Cutting Plane (Benders)

The following decomposition algorithms are available in FortSP for solving the Here-and-Now
(HN) problem:

• Benders’ decomposition - L-shaped method

• Level decomposition variant

• Nested Benders’ decomposition

The first two methods are applicable for two-stage problems and the last allows solving
multi-stage problems. These algorithms take advantage of a specific structure of stochastic
programming problems and make it possible to solve problems with large number of scenar-
ios. The level decomposition applies a regularisation that is particularly effective for larger
numbers of scenarios.

In addition to finding here-and-now values for decision variables in the first stage the system
may extend this to recourse values for the various scenarios in future stages.

For integrated chance constraints an efficient cutting-plane algorithm (Klein Haneveld and
Vlerk, 2002) is provided.

In certain cases the addition of optimality cuts (refer to Birge and Louveaux (1997)) creates
an unbounded situation as θ is a free variable. As an ad-hoc fix for this a large negative
lower bound is applied to θ, which is retained until no longer needed. If not large enough
then the algorithm may halt prematurely with a cycling status. It may then be possible to
obtain the correct solution by specifying a lower value for θ, for example -100000.

5.3 Stochastic Decomposition

Description of stochastic decomposition is deferred for now.

5.4 Ancillary Algorithms - EV and WS

The system may also evaluate the following special problems:
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• Expected value (EV) problem, which assumes that all data will take their expected
values.

• Wait-and-see (WS) problem, which is obtained by solving a separate sub-problem for
each scenario assuming that all random data is already known. The final WS solution
is the probability-weighted average of these solutions for each scenario.

Each special problem can be evaluated in addition to the main HN problem. When statistical
measures are invoked the EV and/or the WS algorithms will be called as required, whether
or no a corresponding option has been set. see next section 5.5.

5.5 Statistical Measures - EVPI and VSS

The expected value of perfect information (EVPI) is computed as the difference between the
optimal values of the wait-and-see (WS) and the here-and-now (HN) problems. Therefore
the EVPI option implies both options for HN and WS.

In order to calculate the value of the stochastic solution (VSS), we need to know the expec-
tation of the expected value solution (EEV). EEV is calculated by solving the EV problem,
fixing the obtained solution in the WS sub-problems, and computing the probability weighted
objective value. Hence the VSS option implies all three solver options: HN, EV and WS.

5.6 Algorithm Controls and Options

Options for SP algorithms are as follows:

Opt-file Name MODEL HN

SAMPL Name SolveHN

Description Flag specifying whether to solve the here-and-now problem
Value Boolean
Default ON

Opt-file Name MODEL EV

SAMPL Name SolveEV

Description Flag specifying whether to solve the expected value problem
Value Boolean
Default OFF

Opt-file Name MODEL WS

SAMPL Name SolveWS

Description Flag specifying whether to solve the wait-and-see problem
Value Boolean
Default OFF
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Opt-file Name OUTPUT EVPI

SAMPL Name ComputeEvpi

Description Flag specifying whether to compute the expected value of perfect
information (EVPI)
The expected value of perfect information requires the solution of
both HN and WS models. Setting this control ON forces both the HN
switch and the WS switch to be ON. EVPI is the absolute difference
between the HN and WS solution objectives.

Value Boolean
Default OFF

Opt-file Name OUTPUT VSS

SAMPL Name ComputeVss

Description Flag specifying whether to compute the value of the stochastic solu-
tion (VSS)2

Value Boolean
Default OFF

Opt-file Name VSS FIX FSTAGE

SAMPL Name VssFStage

Description Flag specifying whether to fix only the first stage when computing
the value of the stochastic solution2

Value Boolean
Default OFF
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Opt-file Name HN ALGORITHM

SAMPL Name SPAlg

Description Stochastic programming algorithm to be used
Value The possible values for this option are listed in the table below.

Opt-file SAMPL
Name Name Description

Auto The algorithm is chosen automatically
(default)

DETEQI DetEq The deterministic equivalent problem
with implicit non-anticipativity is con-
structed and solved

DETEQE DetEqX The deterministic equivalent prob-
lem with explicit non-anticipativity
constraints is constructed and solved

BENDERS Benders Benders’ decomposition
Level Variant of level decomposition

STDCMP Stochastic decomposition

The default algorithm - Auto - chosen by the system - is Benders’
decomposition for all recourse problems and deterministic equivalent
with implicit nonanticipativity for problems containing chance con-
straints and integrated chance constraints. An exception to this is
single-stage ICC problems, which by default are solved with the spe-
cial cutting plane algorithm. All other CC and ICC problems are
solved only with deterministic equivalent, and any specification for
Benders’ or stochastic decomposition is ignored.

Default Auto

Opt-file Name MAX TIME

SAMPL Name MaxTime

Description Time limit in seconds
Value Nonnegative number
Default 3600

Options for Benders’ decomposition:

2VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this
control ON forces both the HN switch and the EV switch to be ON. In order to calculate VSS we need to know
the EEV - Expected value of the Expected Value solution. EEV is calculated by solving the EV model,
fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a
probability-weighted average value for the objective - which is the VSS. Option VSS FIX FSTAGE can be used
to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the
theoretical result is often meaningless as a complete fix may be infeasible).
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Opt-file Name BEN LEVEL DECOMP

Description Flag specifying whether to use level decomposition. In SAMPL level
decomposition is enabled by setting the SPAlg option to Level.

Value 0 or 1
Default 1

Opt-file Name BEN PREPROC EXP

SAMPL Name BenPPExpVal

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value Boolean
Default ON

Opt-file Name BEN FFFB

SAMPL Name BenFffb

Description Flag specifying whether to use fast forward, fast back method for
multi-stage

Value Boolean
Default OFF

Opt-file Name BEN THLOB

SAMPL Name BenThetaLB

Description Lower bound for θ used when necessary to avoid unbounded situa-
tions.
In certain cases the addition of optimality cuts creates an unbounded
situation as θ is a free variable. As an ad-hoc fix for this, a large
negative lower bound is applied to θ, which is retained until no longer
needed. If not large enough then the Benders algorithm may halt
prematurely with a final condition Cycling (status 6 or larger). It
may then be possible to obtain a correct solution by specifying a lower
value for this option, for example −100000.

Value Number
Default -10000

Opt-file Name BEN CUT FACTOR

SAMPL Name BenCutFactor

Description Maximum cuts per child scenario
Value Integer
Default 20

Opt-file Name BEN MAX ITER

SAMPL Name BenMaxIter

Description Iteration limit for Benders’ decomposition
Value Nonnegative integer
Default 10000

Options for stochastic decomposition:
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Opt-file Name SD MAX ITER

SAMPL Name SDMaxIter

Description Maximum iterations
Value Integer
Default 10000

Opt-file Name SD MAX SCEN

SAMPL Name SDMaxScen

Description Maximum scenarios
Value Integer
Default 1000

Opt-file Name SD MAX DVD

SAMPL Name SDMaxDvd

Description Maximum dual vertex - deterministic
Value Integer
Default 1000

Opt-file Name SD MAX DVS

SAMPL Name SDMaxDvs

Description Maximum dual vertex - stochastic
Value Integer
Default 10000

Opt-file Name SD MAX INFEZ

SAMPL Name SDMaxInf

Description Maximum infeasibility cuts
Value Integer
Default 5

Opt-file Name SD EXP VAL

SAMPL Name SDExpVal

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value Boolean
Default ON

Opt-file Name SD INPUT LOBND

SAMPL Name SDInputLo

Description Flag specifying whether to input θ lower bound (if not then auto-
calculated)

Value Boolean
Default OFF
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Opt-file Name SD LOBND

SAMPL Name SDLoBnd

Description Lower bound for θ
In the SD algorithm a probable lower bound is calculated when
SD INPUT LOBND is OFF. If SD INPUT LOBND is ON, or if the calcula-
tion fails, then SD THLOB may supply the missing value.

Value Number
Default
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Figure 4: FortSP Algorithms and Solvers

6 Solver Options

6.1 Solvers Available

FortSP has a powerful plug-in system that allows to connect it to different LP solvers through
the COIN-OR (Lougee-Heimer, 2003) Open Solver Interface. On the Windows platform
a plug-in is a dynamically linked library (DLL) that provides access to a single solver.
Currently there are 3 plug-in DLLs: OsiClp.dll for CLP, OsiCpx.dll for CPLEX and
OsiFmp.dll for FortMP. The current solver plug-in can be selected using the Solver option
which takes on the plug-in filename with optional extension as a value.

Figure 4 illustrates which combinations of algorithms and plug-ins are supported in FortSP.
Compatible modules are connected by arcs so, for example, it is possible to solve deterministic
equivalent problems with any solver and LP algorithm while for Benders’ decomposition only
FortMP is currently supported.

6.2 Solver Options and Controls

Options for LP or QP solver execution are as follows:

Opt-file Name
SAMPL Name Solver

Description Solver plug-in filename
Value String
Default OsiFmp
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Opt-file Name DEQ ALGORITHM

SAMPL Name LPAlg

Description This option specifies which LP algorithm should be used to solve
a deterministic equivalent problem and all linear programming sub-
problems that are constructed in the course of solving the SP prob-
lem. When using the option-file, option DEQ ALGORITHM applies only
to deterministic equivalent, while USE IPM applies more generally.

Value The possible values for this option are listed in the table below.

Opt-file SAMPL
Name Name Description

Auto The algorithm is chosen automatically
(default)

SSX Primal Primal simplex method
Dual Dual simplex method

IPM Ipm Interior point method

Default Auto

Opt-file Name USE IPM

Description Flag specifying whether to use interior-point method
Value Boolean
Default OFF

Opt-file Name BASIS RESTART

SAMPL Name WarmStart

Description Flag specifying whether to use warm start
Value Boolean
Default ON

Opt-file Name SOLVER CPLEX

Description Flag specifying whether to use CPLEX
Value Boolean
Default OFF
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Opt-file Name USE FORTMP SPECS

SAMPL Name UseFortMPSpecs

Description Flag specifying whether to use extra SPECS-command file (only with
the FortMP solver.)
A SPECS command file with the name fortmp.spc may be used to
refine the options when FortMP is the solver in use. See the FortMP
manual (Ellison et al., 2008). Commands are to be provided in sec-
tions corresponding to the type of sub-problem that is being solved,
according to the following table:

Section ID Description

ALL Section that applies to every call to the solver.
Must appear first in the SPECS file.

DeqImna Section to handle Deterministic Equivalent -
Implicit NA

DeqExna Section to handle Deterministic Equivalent -
Explicit NA

ExpVal Section to handle Expected Value solutions
Wsprob Section to handle Wait and See scenario sub-

problems
BendRoot Section to handle Benders root-node sub-

problem solutions (multi-stage)
BendNode Section to handle Benders node sub-problem

solutions other that root or leaf (multi-stage)
BendLeaf Section to handle Benders leaf sub-problem so-

lutions with no warm restart (multi-stage)
BenRLeaf Section to handle Benders leaf sub-problem so-

lutions with warm restart (multi-stage)
Ben2Mast Section to handle Benders master-problem so-

lutions (two-stage)
Ben2Sprb Section to handle Benders sub-problem solu-

tions (two-stage)
LevelQP Section to handle Benders Level-method QP

solutions (two-stage)

The section ID is named in a BEGIN line - e.g. BEGIN (DeqImna) -
which is followed by the SPECS commands for that section. Each
section is terminated with a line END.

Value Boolean
Default OFF

On the option-file the solver is named in the keyword - to be ON or OFF - while in SAMPL the
corresponding name of the plug-in DLL is to be named. Default in either case is FortMP,
whose plug-in name is OsiFmp. Other possibilities are OsiCpx for CPLEX and OsiClp for
CLP. In the former case CPLEX DLL has to be available.
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7 Output Files and Logging

Filename for the output file makes use of the generic name (or basename) unless specifically
given by the OUTPUT FILE option. The form of default output filename is as follows

<basename>.sol

7.1 Output and Log Filenames

Outputs from the system comprise two files as follows

• Solution-file:- Giving the model-type solutions that are requested with status and val-
ues for both primal and dual solutions. This is limited by default to values for the first
stage only, extendable to further stages by option.

• Log-file:- Giving the outline of processing carried out and diagnostics of any unusual
events or errors occurring.

Filename for these files make use of the ’generic’ name (or basename), as in the case of
default input files. With this name referred to as <model> the output filenames are:

• <model>.sol

• <model>.log

In SAMPL the logging is turned off by default. It can be turned on by setting the LogFile

option.

7.2 Output Controls and Options

Options for solution output and logging are as follows:

Opt-file Name OUTPUT FILE

Description Actual name of the output file
Value String
Default

Opt-file Name LOG FILE

SAMPL Name LogFile

Description Actual name of the log file
Value String
Default

Opt-file Name LAST STAGE OUTPUT

SAMPL Name LastStageOutput

Description Last stage for which scenario values are required
Value Integer
Default 1
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Opt-file Name BEN LOG PRINT

SAMPL Name BenLogPrint

Description Code for items to be logged (Benders multi-stage only)
Additional logged output can be generated with the option
BEN LOG PRINT. This should be used with caution as the log-file can
easily be swamped. Certain values of use are:

• 3 - for solution status of each node (plus the default)

• 19 - for details of the node tree (plus the above)

• 95 - for description of every cut applied (plus the above)

with option 3 the output volume may be reduced by specifying
BEN LOG FREQUENCY - that is the interval to leave between node
solution-status logs.

Value Integer
Default 1

Opt-file Name BEN LOG FREQUENCY

SAMPL Name BenLogFreq

Description Logged every this number of passes (Benders multi-stage only)
Value Integer
Default 1
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APPENDICES

A Option and Control Summary

A.1 Principle Options and Controls

The following is a complete table of controls and options. References to the notes that follow
the table are given in parenthesis.

Smps Input Options

Opt-file Name GENERIC FILENAME

Description Specifies a stub or generic name for input and output files (i.e. file-
name without any extension). A standard extension is added for each
actual filename.

Value String
Default SPmodel

Opt-file Name CORE FILE

Description Actual name of the core file
Value String
Default

Opt-file Name TIME FILE

Description Actual name of the time file
Value String
Default

Opt-file Name STOCH FILE

Description Actual name of the stoch file
Value String
Default

Opt-file Name OPT DIR

SAMPL Name SmpsObjSense

Description The sense of optimisation for SMPS problems
Value MIN or MAX
Default MIN

Opt-file Name SPS WORKING DIR

Description Name of the folder to which the current working directory is trans-
ferred immediately after input of the option-file has completed, and
before any other input.
All I/O files are located in the local working directory except where a
different path is given with a specific file-name command. Files not so
named take the generic name followed by a standard extension, and
so are located in this directory. In the option-file (not in SAMPL) the
local working directory can be changed by setting this option before
opening any other I/O file.

Value String
Default
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Algorithm Options

Opt-file Name MODEL HN

SAMPL Name SolveHN

Description Flag specifying whether to solve the here-and-now problem
Value Boolean
Default ON

Opt-file Name MODEL EV

SAMPL Name SolveEV

Description Flag specifying whether to solve the expected value problem
Value Boolean
Default OFF

Opt-file Name MODEL WS

SAMPL Name SolveWS

Description Flag specifying whether to solve the wait-and-see problem
Value Boolean
Default OFF

Opt-file Name OUTPUT EVPI

SAMPL Name ComputeEvpi

Description Flag specifying whether to compute the expected value of perfect
information (EVPI)
The expected value of perfect information requires the solution of
both HN and WS models. Setting this control ON forces both the HN
switch and the WS switch to be ON. EVPI is the absolute difference
between the HN and WS solution objectives.

Value Boolean
Default OFF

Opt-file Name OUTPUT VSS

SAMPL Name ComputeVss

Description Flag specifying whether to compute the value of the stochastic solu-
tion (VSS)3

Value Boolean
Default OFF

Opt-file Name VSS FIX FSTAGE

SAMPL Name VssFStage

Description Flag specifying whether to fix only the first stage when computing
the value of the stochastic solution3

Value Boolean
Default OFF
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Opt-file Name HN ALGORITHM

SAMPL Name SPAlg

Description Stochastic programming algorithm to be used
Value The possible values for this option are listed in the table below.

Opt-file SAMPL
Name Name Description

Auto The algorithm is chosen automatically
(default)

DETEQI DetEq The deterministic equivalent problem
with implicit non-anticipativity is con-
structed and solved

DETEQE DetEqX The deterministic equivalent prob-
lem with explicit non-anticipativity
constraints is constructed and solved

BENDERS Benders Benders’ decomposition
Level Variant of level decomposition

STDCMP Stochastic decomposition

The default algorithm - Auto - chosen by the system - is Benders’
decomposition for all recourse problems and deterministic equivalent
with implicit nonanticipativity for problems containing chance con-
straints and integrated chance constraints. An exception to this is
single-stage ICC problems, which by default are solved with the spe-
cial cutting plane algorithm. All other CC and ICC problems are
solved only with deterministic equivalent, and any specification for
Benders’ or stochastic decomposition is ignored.

Default Auto

Opt-file Name MAX TIME

SAMPL Name MaxTime

Description Time limit in seconds
Value Nonnegative number
Default 3600

3VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this
control ON forces both the HN switch and the EV switch to be ON. In order to calculate VSS we need to know
the EEV - Expected value of the Expected Value solution. EEV is calculated by solving the EV model,
fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a
probability-weighted average value for the objective - which is the VSS. Option VSS FIX FSTAGE can be used
to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the
theoretical result is often meaningless as a complete fix may be infeasible).
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Options for Benders’ Decomposition

Opt-file Name BEN LEVEL DECOMP

Description Flag specifying whether to use level decomposition. In SAMPL level
decomposition is enabled by setting the SPAlg option to Level.

Value 0 or 1
Default 1

Opt-file Name BEN PREPROC EXP

SAMPL Name BenPPExpVal

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value Boolean
Default ON

Opt-file Name BEN FFFB

SAMPL Name BenFffb

Description Flag specifying whether to use fast forward, fast back method for
multi-stage

Value Boolean
Default OFF

Opt-file Name BEN THLOB

SAMPL Name BenThetaLB

Description Lower bound for θ used when necessary to avoid unbounded situa-
tions.
In certain cases the addition of optimality cuts creates an unbounded
situation as θ is a free variable. As an ad-hoc fix for this, a large
negative lower bound is applied to θ, which is retained until no longer
needed. If not large enough then the Benders algorithm may halt
prematurely with a final condition Cycling (status 6 or larger). It
may then be possible to obtain a correct solution by specifying a lower
value for this option, for example −100000.

Value Number
Default -10000

Opt-file Name BEN CUT FACTOR

SAMPL Name BenCutFactor

Description Maximum cuts per child scenario
Value Integer
Default 20

Opt-file Name BEN MAX ITER

SAMPL Name BenMaxIter

Description Iteration limit for Benders’ decomposition
Value Nonnegative integer
Default 10000
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Options for Stochastic Decomposition

Opt-file Name SD MAX ITER

SAMPL Name SDMaxIter

Description Maximum iterations
Value Integer
Default 10000

Opt-file Name SD MAX SCEN

SAMPL Name SDMaxScen

Description Maximum scenarios
Value Integer
Default 1000

Opt-file Name SD MAX DVD

SAMPL Name SDMaxDvd

Description Maximum dual vertex - deterministic
Value Integer
Default 1000

Opt-file Name SD MAX DVS

SAMPL Name SDMaxDvs

Description Maximum dual vertex - stochastic
Value Integer
Default 10000

Opt-file Name SD MAX INFEZ

SAMPL Name SDMaxInf

Description Maximum infeasibility cuts
Value Integer
Default 5

Opt-file Name SD EXP VAL

SAMPL Name SDExpVal

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value Boolean
Default ON

Opt-file Name SD INPUT LOBND

SAMPL Name SDInputLo

Description Flag specifying whether to input θ lower bound (if not then auto-
calculated)

Value Boolean
Default OFF
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Opt-file Name SD LOBND

SAMPL Name SDLoBnd

Description Lower bound for θ
In the SD algorithm a probable lower bound is calculated when
SD INPUT LOBND is OFF. If SD INPUT LOBND is ON, or if the calcula-
tion fails, then SD THLOB may supply the missing value.

Value Number
Default
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Solver Options

Opt-file Name
SAMPL Name Solver

Description Solver plug-in filename
Value String
Default OsiFmp

Opt-file Name DEQ ALGORITHM

SAMPL Name LPAlg

Description This option specifies which LP algorithm should be used to solve
a deterministic equivalent problem and all linear programming sub-
problems that are constructed in the course of solving the SP prob-
lem. When using the option-file, option DEQ ALGORITHM applies only
to deterministic equivalent, while USE IPM applies more generally.

Value The possible values for this option are listed in the table below.

Opt-file SAMPL
Name Name Description

Auto The algorithm is chosen automatically
(default)

SSX Primal Primal simplex method
Dual Dual simplex method

IPM Ipm Interior point method

Default Auto

Opt-file Name USE IPM

Description Flag specifying whether to use interior-point method
Value Boolean
Default OFF

Opt-file Name BASIS RESTART

SAMPL Name WarmStart

Description Flag specifying whether to use warm start
Value Boolean
Default ON

Opt-file Name SOLVER CPLEX

Description Flag specifying whether to use CPLEX
Value Boolean
Default OFF
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Opt-file Name USE FORTMP SPECS

SAMPL Name UseFortMPSpecs

Description Flag specifying whether to use extra SPECS-command file (only with
the FortMP solver.)
A SPECS command file with the name fortmp.spc may be used to
refine the options when FortMP is the solver in use. See the FortMP
manual (Ellison et al., 2008). Commands are to be provided in sec-
tions corresponding to the type of sub-problem that is being solved,
according to the following table:

Section ID Description

ALL Section that applies to every call to the solver.
Must appear first in the SPECS file.

DeqImna Section to handle Deterministic Equivalent -
Implicit NA

DeqExna Section to handle Deterministic Equivalent -
Explicit NA

ExpVal Section to handle Expected Value solutions
Wsprob Section to handle Wait and See scenario sub-

problems
BendRoot Section to handle Benders root-node sub-

problem solutions (multi-stage)
BendNode Section to handle Benders node sub-problem

solutions other that root or leaf (multi-stage)
BendLeaf Section to handle Benders leaf sub-problem so-

lutions with no warm restart (multi-stage)
BenRLeaf Section to handle Benders leaf sub-problem so-

lutions with warm restart (multi-stage)
Ben2Mast Section to handle Benders master-problem so-

lutions (two-stage)
Ben2Sprb Section to handle Benders sub-problem solu-

tions (two-stage)
LevelQP Section to handle Benders Level-method QP

solutions (two-stage)

The section ID is named in a BEGIN line - e.g. BEGIN (DeqImna) -
which is followed by the SPECS commands for that section. Each
section is terminated with a line END.

Value Boolean
Default OFF
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Output Options

Opt-file Name OUTPUT FILE

Description Actual name of the output file
Value String
Default

Opt-file Name LOG FILE

SAMPL Name LogFile

Description Actual name of the log file
Value String
Default

Opt-file Name LAST STAGE OUTPUT

SAMPL Name LastStageOutput

Description Last stage for which scenario values are required
Value Integer
Default 1

Opt-file Name BEN LOG PRINT

SAMPL Name BenLogPrint

Description Code for items to be logged (Benders multi-stage only)
Additional logged output can be generated with the option
BEN LOG PRINT. This should be used with caution as the log-file can
easily be swamped. Certain values of use are:

• 3 - for solution status of each node (plus the default)

• 19 - for details of the node tree (plus the above)

• 95 - for description of every cut applied (plus the above)

with option 3 the output volume may be reduced by specifying
BEN LOG FREQUENCY - that is the interval to leave between node
solution-status logs.

Value Integer
Default 1

Opt-file Name BEN LOG FREQUENCY

SAMPL Name BenLogFreq

Description Logged every this number of passes (Benders multi-stage only)
Value Integer
Default 1

Execution command

The execution command may have an argument naming the option file or SAMPL script
file - fully qualified by the path if different from the current path. By default this file is
fortsp.opt in the current working directory.
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Keyword and Name Format

On the option file both keywords and text-type values are not case-sensitive. Underline
separators may be omitted, and in three-part keywords only the first letter of the third part
is significant. In SAMPL the option names and text-type values are case-sensitive and must
be given exactly.

Many controls are simple switches that have values ON or OFF in the option file. In SAMPL
these controls have values 0 signalling OFF and 1 signalling ON.

A.2 Miscellaneous commands

A number of additional commands are available that are designed mainly for research pur-
poses. There are also aliases provided to allow for existing usages of the system. A description
will be given here in forthcoming versions of this manual.
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B Known Weaknesses

1. SMPS fortmat as used by FortSP relies on indices for scenario- block- and stage-names.
An alphabetic prefix is allowed, which makes the great majority of existing SMPS data-
files intelligible, but the prefix is ignored when identifying a name. Indices must be
consecutive, beginning at 1.

2. On the SMPS Stoch-file random values for the objective, RHS, bound-set and range-
set are to be specified with keywords 4. Consequently these keywords may not be used
in the Core-file, and the actual core-file names for these objects are unknown to the
Stoch-file input routine.

3. A free-form capability for Core files that allows 15-character numeric fields is available,
but this does not extend to Time and Stoch files.

4. SAMPL support is experimental and many features are not supported in this release.

5. There is no option in SAMPL for Stochastic Decomposition. This method must be
specified with an option file, and does not so far permit ancillary algorithms or statis-
tical measures to be calculated.

6. Execution time is heavily dependent on the total number of scenarios. If this is very
large the deterministic equivalent solvers become impossible to use and Benders’ solver
may become too lengthy for the user’s satisfaction. Stochastic decomposition can
handle many more scenarios, especially with the INDEP and BLOCKS forms for the
STOCH file, but the accuracy of solution is subject to uncertainty, and the stopping
criteria still need to be verified for many problems.

7. A procedure to select a useful subset of scenarios by importance or by Monte-Carlo
sampling has been programmed but is not yet tested to any extent.

8. The Benders’ solver is designed for Markovian stochastic data in which the interaction
between stages in the constraint matrix forms a stair pattern. This means that any one
stage is constrained directly by the previous stage decisions only and not by decisions
earlier than the previous stage. Two-stage models are Markovian. Non-Markovian
multi-stage models should also be solvable with Benders, but, to our knowledge, no
mathematical proof has been published.

9. In rare cases Benders’ solver may be halted by a cycling status with the true optimum
solution not yet reached (see the note on the BenThetaLB option). Cycling may also
result from attempt to solve a non-Markovian model, or from degeneracy if a feasible
solution is difficult to find.

4The core-file objective name can also be used for random objective values.
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C Examples of Use

C.1 An Example Using the Option File

The following is a simple example of a 4-stage model:

Core File (MYSP.cor)

NAME MYSP (MIN)

ROWS

N Z

G R1

G R2

G R3

L R4

G R5

G R6

L R7

G R8

G R9

L R10

COLUMNS

X1 Z 3.0 R1 1.0

X1 R2 1.0

X2 Z 2.0 R1 1.0

Y1 Z -15.0 R2 -3.0

Y1 R3 1.0 R4 1.0

Y1 R5 2.0

Y2 Z -12.0 R5 -1.0

Y2 R6 1.0 R7 1.0

Y2 R8 3.0

Y3 Z -4.0 R8 -1.0

Y3 R9 1.0 R10 1.0

RHS

RHS1 R3 3.2 R4 4.0

RHS1 R6 3.2 R7 7.0

RHS1 R9 1.0 R10 1.0

ENDATA

Time File (MYSP.tim)

TIME MYSP

PERIODS

X1 R1 STAGE001

Y1 R2 STAGE002

Y2 R5 STAGE003

Y3 R8 STAGE004

ENDATA
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Stoch File (MYSP.sto)

STOCH MYSP

SCENARIOS DISCRETE

SC SCEN0001 ROOT 0.125 STAGE001

RHS R3 3.2

RHS R4 4.0

RHS R6 3.2

RHS R7 7.0

RHS R9 4.0

RHS R10 8.0

SC SCEN0002 SCEN0001 0.125 STAGE004

RHS R9 3.0

RHS R10 6.0

SC SCEN0003 SCEN0001 0.125 STAGE003

RHS R6 4.8

RHS R7 9.0

RHS R9 9

RHS R10 12.0

SC SCEN0004 SCEN0003 0.125 STAGE004

RHS R9 6.4

RHS R10 18.0

SC SCEN0005 SCEN0001 0.125 STAGE002

RHS R3 1.2

RHS R4 4.0

RHS R6 2.2

RHS R7 7.5

RHS R9 3.0

RHS R10 6.0

SC SCEN0006 SCEN0005 0.125 STAGE004

RHS R9 4.0

RHS R10 9.0

SC SCEN0007 SCEN0005 0.125 STAGE003

RHS R6 2.8

RHS R7 6.0

RHS R9 5.2

RHS R10 12.0

SC SCEN0008 SCEN0007 0.125 STAGE004

RHS R9 4.4

RHS R10 8.0

ENDATA

Option File (MYSP.opt)

The following option file causes all forms of output to be generated:

INPUT_TYPE SMPS

OPT_DIR MIN

SPS_WORKING_DIR E:\spine\QA

GENERIC_FILENAME MYSP
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MODEL_EV ON

MODEL_HN ON

MODEL_WS ON

OUTPUT_EVPI ON

OUTPUT_VSS ON

HN_algorithm BENDERS

BEN_FFFB ON

BEN_PREPROC_EXPVAL ON

VSS_FIX_FSTAGE ON

The run may be started with MYSP.opt named as the argument, or with the above file
actually named as fortsp.opt.

Output Solution File (MYSP.sol)

Outputs from the run are as follows:

WS

WS Scenario = 1

Obj -140, Prob = 0.125

STATUS = 3: Optimal LP solution

Variables

Name Index Stage Value D.val Lob Upb

X1 1 1 12 0 0 1e+035

X2 2 1 0 2 0 1e+035

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 2 1 0 12 0 1e+035

END

WS Scenario = 2

Obj -132, Prob = 0.125

STATUS = 3: Optimal LP solution

Variables

Name Index Stage Value D.val Lob Upb

X1 1 1 12 0 0 1e+035

X2 2 1 0 2 0 1e+035

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 2 1 0 12 0 1e+035

END

. . . .

Etc, repeated as above for scenarios 3, 4, 8

. . . .

WS Summary

Obj -149

STATUS = 3: Optimal LP solution

END
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ExpVal

Obj -152

STATUS = 3: Optimal LP solution

Variables

Name Index Stage Value D.val Lob Upb

X1 1 1 12 0 0 1e+035

X2 2 1 0 2 0 1e+035

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 2 1 0 12 0 1e+035

END

HN = BENDERS

Obj -149

STATUS = 3: Optimal LP solution

Variables

Name Index Stage Scen Value D.val Lob Upb

X1 1 1 1 12 0 0 1e+035

X2 2 1 1 0 2 0 1e+035

Constraints

Name Index Stage Scen Value D.val Lhs Rhs

R1 2 1 1 12 0 0 1e+035

END

EVPI = 0

VSS = 0

The output shown above includes only 1st stage values and comprises:

• The WS solution for each scenario

• The WS summary result

• The EV solution

• The HN solution

• Values of the statistical measures EVPI and VSS

The statistical measures EVPI and VSS are both zero in this simple example since the
values of EEV and WS are both equal to the HN objective. Note that if the option
VSS FIX FSTAGE ON had been omitted, then the EEV would in fact have been infea-
sible and VSS would have been infinite. Theoretically V SS = 0 is not correct but this value
is probably more important to a user than V SS = infinity.

Output Log File (MYSP.log)
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INPUT_TYPE SMPS

OPT_DIR MIN

SPS_WORKING_DIR E:\spine\QA

GENERIC_FILENAME MYSP

MODEL_EV ON

MODEL_HN ON

MODEL_WS ON

OUTPUT_EVPI ON

OUTPUT_VSS ON

HN_algorithm BENDERS

BEN_FFFB ON

BEN_PREPROC_EXPVAL ON

VSS_FIX_FSTAGE ON

Specification file read

Current Working directory: E:\spine\QA

FORTMP release version 3.02g, Aug 2002

License expires on (y)2010:(m)01:(d)01.

License expires on (y)2010:(m)01:(d)01.

FORTMP release version 3.02g, Aug 2002

License expires on (y)2010:(m)01:(d)01.

TIME TAKEN FOR INPUT MPS = 0.00 SECS, TOTAL SO FAR = 0.00 SECS

**** PROBLEM NAME IS: MYSP , GENERIC FILE: MYSP ****

CORE DIMENSIONS: NR= 11, NC = 5, NNZ = 19

STOCH DIMENSIONS:- ANT = 4, ANS = 8, AND = 28

Stoch representation code :1

Number of Scenarios to process = 8

======================================

Time period 1 has 1 rows 2 columns and 2 nonzeroes

Time period 2 has 3 rows 3 columns and 4 nonzeroes

Time period 3 has 3 rows 2 columns and 4 nonzeroes

Time period 4 has 3 rows 2 columns and 4 nonzeroes

===========================================

ALGORITHM:- WAIT & SEE

**********************

WS Scenario 1, OBJ = -140, STATUS = 3: Optimal LP solution

Contributes -17.5 to final objective

WS Scenario 2, OBJ = -132, STATUS = 3: Optimal LP solution

Contributes -16.5 to final objective

Etc, repeated as above for scenarios 3, 4, 8

. . . .

FINAL WS OBJECTIVE = -149, STATUS = 3: Optimal LP solution

Total time in WS:0

ALGORITHM:- EXPVAL
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**********************

EXPVAL OBJECTIVE = -152, STATUS = 3: Optimal LP solution

Total time in ExpVal:0

ALGORITHM:- WS FOR EEV

**********************

WS Scenario 1, OBJ = -140, STATUS = 3: Optimal LP solution

Contributes -17.5 to final objective

WS Scenario 2, OBJ = -132, STATUS = 3: Optimal LP solution

Contributes -16.5 to final objective

Etc, repeated as above for scenarios 3, 4, 8

. . . .

FINAL EEV OBJECTIVE = -149, STATUS = 3: Optimal LP solution

Total time in WS:0

ALGORITHM:- BENDERS DECOMP

**************************

------------------ NODE DIMENSIONS ------------------

Time-stage 1, Sub-model: NR= 1, NC= 2, NAIJ= 2

Sub-problem: NR= 44, NC= 3, NAIJ= 125

Time-stage 2, Sub-model: NR= 3, NC= 3, NAIJ= 4

Sub-problem: NR= 45, NC= 2, NAIJ= 85

Time-stage 3, Sub-model: NR= 3, NC= 4, NAIJ= 4

Sub-problem: NR= 45, NC= 2, NAIJ= 85

Time-stage 4, Sub-model: NR= 3, NC= 5, NAIJ= 4

Sub-problem: NR= 5, NC= 2, NAIJ= 5

Maximum - Sub-model: NR= 3, NC= 5, NAIJ= 4

Sub-problem: NR= 45, NC= 3, NAIJ= 125

Total node Col-vector size = 31(*2)

Total node Row-vector size = 354(*3)

Total node basis size = 36

=====================================================

ALGORITHM:- EXPVAL

**********************

EXPVAL OBJECTIVE = -152, STATUS = 3: Optimal LP solution

Total time in ExpVal:0

END OF ITER# 1, STAGES 1 TO 4, OBJECTIVE = -112.5

END OF ITER# 2, STAGES 3 TO 3, OBJECTIVE = -112.5

END OF ITER# 3, STAGES 2 TO 2, OBJECTIVE = -112.5

Lower Bound -10000 applied to THETA

END OF ITER# 4, STAGES 1 TO 4, OBJECTIVE = 2526.59

END OF ITER# 5, STAGES 2 TO 2, OBJECTIVE = 2526.59

END OF ITER# 6, STAGES 1 TO 4, OBJECTIVE = -147.364

END OF ITER# 7, STAGES 1 TO 4, OBJECTIVE = -149

NEW BENDERS OPTION: FFSB

END OF ITER# 8, STAGES 1 TO 4, OBJECTIVE = -149

60



FINAL BENDECOMP OBJECTIVE = -149, STATUS = 3: Optimal LP solution

FINAL EVPI = 0

FINAL VSS = 0

===============

Total time = 0

===============

This file records the original options, the events of the run and important dimensions of
the models to be solved. Final results are recorded as on the solution file, together with
run-times.

C.2 Another Example Using the Option File

In the following option file only the HN model is requested, using the alternative Determin-
istic Equivalent (implicit) algorithm. Data is the same as before. Output is requested for
all stages.

Option File (MYSP.opt)

INPUT_TYPE SMPS

OPT_DIR MIN

SPS_WORKING_DIR E:\spine\QA

GENERIC_FILENAME MYSP

MODEL_EV OFF

MODEL_HN ON

MODEL_WS OFF

OUTPUT_EVPI OFF

OUTPUT_VSS OFF

HN_algorithm DETEQI

LAST_STAGE_OUTPUT 4

Output Solution File (MYSP.sol)

HN = DETEQI

Obj -149

STATUS = 3: Optimal LP solution

Variables

Name Index Stage Scen Value D.val Lob Upb

X1 1 1 1 12 0 0 1e+035

X2 2 1 1 0 2 0 1e+035

Y1 3 2 1 4 0 0 1e+035

Y1 3 2 5 4 0 0 1e+035

Y2 4 3 1 7 0 0 1e+035

Y2 4 3 3 8 0 0 1e+035

Y2 4 3 5 7.5 0 0 1e+035

Y2 4 3 7 6 0 0 1e+035

Y3 5 4 1 8 0 0 1e+035

Y3 5 4 2 6 0 0 1e+035

Y3 5 4 3 12 0 0 1e+035

Y3 5 4 4 18 0 0 1e+035
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Y3 5 4 5 6 0 0 1e+035

Y3 5 4 6 9 0 0 1e+035

Y3 5 4 7 12 0 0 1e+035

Y3 5 4 8 8 0 0 1e+035

Constraints

Name Index Stage Scen Value D.val Lhs Rhs

R1 2 1 1 12 0 0 1e+035

R2 3 2 1 0 -3 0 1e+035

R3 4 2 1 4 0 3.2 1e+035

R4 5 2 1 4 4.5 -1e+035 4

R2 3 2 5 0 0 0 1e+035

R3 4 2 5 4 0 1.2 1e+035

R4 5 2 5 4 7.5 -1e+035 4

R5 6 3 1 1 0 0 1e+035

R6 7 3 1 7 0 3.2 1e+035

R7 8 3 1 7 3 -1e+035 7

R5 6 3 3 0 -3 0 1e+035

R6 7 3 3 8 0 4.8 1e+035

R7 8 3 3 8 0 -1e+035 9

R5 6 3 5 0.5 0 0 1e+035

R6 7 3 5 7.5 0 2.2 1e+035

R7 8 3 5 7.5 3 -1e+035 7.5

R5 6 3 7 2 0 0 1e+035

R6 7 3 7 6 0 2.8 1e+035

R7 8 3 7 6 3 -1e+035 6

R8 9 4 1 13 0 0 1e+035

R9 10 4 1 8 0 4 1e+035

R10 11 4 1 8 0.5 -1e+035 8

R8 9 4 2 15 0 0 1e+035

R9 10 4 2 6 0 3 1e+035

R10 11 4 2 6 0.5 -1e+035 6

R8 9 4 3 12 0 0 1e+035

R9 10 4 3 12 0 9 1e+035

R10 11 4 3 12 0.5 -1e+035 12

R8 9 4 4 6 0 0 1e+035

R9 10 4 4 18 0 6.4 1e+035

R10 11 4 4 18 0.5 -1e+035 18

R8 9 4 5 16.5 0 0 1e+035

R9 10 4 5 6 0 3 1e+035

R10 11 4 5 6 0.5 -1e+035 6

R8 9 4 6 13.5 0 0 1e+035

R9 10 4 6 9 0 4 1e+035

R10 11 4 6 9 0.5 -1e+035 9

R8 9 4 7 6 0 0 1e+035

R9 10 4 7 12 0 5.2 1e+035

R10 11 4 7 12 0.5 -1e+035 12

R8 9 4 8 10 0 0 1e+035
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R9 10 4 8 8 0 4.4 1e+035

R10 11 4 8 8 0.5 -1e+035 8

END

Output Log File (MYSP.log)

INPUT_TYPE SMPS

OPT_DIR MIN

SPS_WORKING_DIR E:\spine\QA

GENERIC_FILENAME MYSP

MODEL_EV OFF

MODEL_HN ON

MODEL_WS OFF

OUTPUT_EVPI OFF

OUTPUT_VSS OFF

HN_algorithm DETEQI

LAST_STAGE_OUTPUT 4

Specification file read

Current Working directory: E:\spine\QA

FORTMP release version 3.02g, Aug 2002

License expires on (y)2010:(m)01:(d)01.

License expires on (y)2010:(m)01:(d)01.

FORTMP release version 3.02g, Aug 2002

License expires on (y)2010:(m)01:(d)01.

TIME TAKEN FOR INPUT MPS = 0.00 SECS, TOTAL SO FAR = 0.00 SECS

**** PROBLEM NAME IS: MYSP , GENERIC FILE: MYSP ****

CORE DIMENSIONS: NR= 11, NC = 5, NNZ = 19

STOCH DIMENSIONS:- ANT = 4, ANS = 8, AND = 28

Stoch representation code :1

Number of Scenarios to process = 8

======================================

Time period 1 has 1 rows 2 columns and 2 nonzeroes

Time period 2 has 3 rows 3 columns and 4 nonzeroes

Time period 3 has 3 rows 2 columns and 4 nonzeroes

Time period 4 has 3 rows 2 columns and 4 nonzeroes

===========================================

ALGORITHM:- DETEQ with IMPLICIT NA

**********************************

DETEQI DIMENSIONS: NR=43, NC=16, NAIJ=58

FORTMP release version 3.02g, Aug 2002

License expires on (y)2010:(m)01:(d)01.

ASGNFM: MREQ= 220952(Byte), OFFset= 10223672(Byte)

TIME TAKEN FOR INPUT/SETUP = 0.00 SECS, TOTAL SO FAR = 0.00 SECS
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SCALING IN PROGRESS ...

SCALING COMPLETE

TIME TAKEN FOR SCALE/PRSLVE= 0.00 SECS, TOTAL SO FAR = 0.00 SECS

CRASH(LTSF) ENDED. VARIABLE TYPES:- PLUS BNDD FIX FREE

LOGICALS REMOVED FROM BASIS:- 16 0 0 0

STRUCTURALS ENTERED IN BASIS:- 16 0 0 0

CRASH(ART) ENDED: 1 PASSES: 0 ARTIFICIALS, 0 PIVOTED OUT

TIME TAKEN FOR CRASHING = 0.00 SECS, TOTAL SO FAR = 0.00 SECS

FEASIBLE BASIS REACHED AFTER ITERATION 10

Invert demand: Obj =-149.000 Suminf = 0.00000 ITER# 22

STATUS = 3 -- OPTIMUM SOLUTION FOUND. -149.000 ITER# 22

TIME TAKEN FOR PRIMAL = 0.00 SECS, TOTAL SO FAR = 0.00 SECS

TIME TAKEN FOR OUTPUT = 0.00 SECS, TOTAL SO FAR = 0.00 SECS

FINAL DETEQI OBJECTIVE = -149 , STATUS = 3: Optimal LP solution

===============

Total time = 0

===============

The above log includes logged output from the internal LP solver for the HN model, which is
suppressed in the earlier example owing to the large volume that would be shown otherwise.

C.3 An Example in SAMPL Using SMPS Input

In this section we will solve the STORM problem from the POSTS collection (Holmes,
1995). It is a two-stage problem with stochasticity in the right-hand side. Since SMPS
doesn’t specify how to control the solver and present the output you will need to provide a
script file in another format supported by FortSP which is SAMPL. Below is an example of
such script:

# Set the options.

option SPAlg DetEq, Solver OsiClp;

option ComputeEvpi 1, ComputeVss 1, VssFStage 1;

# Import the problem in the SMPS format.

read smps(’stormG2.cor’, ’stormG2_27.sto’, ’stormG2.tim’);

# Solve the problem.

solve;

# Print the results.

print ’Optimal value =’, OBJ;

print ’EVPI =’, evpi;

print ’VSS =’, vss;

print;

print ’First-stage solution:’;

print {c in _SMPS_COLS}: c, ’=’, _smps_var[c], ’\

’;

print {r in _SMPS_ROWS}: r, ’=’, _smps_con[r].body, ’\

’;
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Note that the SP algorithm is set to DetEq which means that the deterministic equivalent
will be constructed and solved using the current solver. In this example we set the solver to
OsiClp. The deterministic equivalent approach doesn’t scale well with increasing problem
dimensions and the number of scenarios as shown in Appendix D. Therefore, for solving larger
instances of the STORM problem as well as other problems level or Benders’ decomposition
is recommended.

Running FortSP with the command fortsp <script filename> will produce the following
output:

Optimal solution found

Optimal value = 15508982.31

EVPI = 32422.97538

VSS = 6004.125768

First-stage solution:

C0011901 = 0

C0012001 = 0

C0012101 = 0

C0012201 = 0

C0012301 = 0

C0012401 = 0

C0012501 = 0

C0012601 = 0

C0012701 = 0.66

C0012801 = 3.34

and 300 more lines...
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D Performance on Test Models

The results presented in this section are taken from the computational study by Zverovich
et al. (2009).

D.1 Experimental Setup

The computational experiments were performed on a Windows XP machine with Intel
CORE2 2.4 GHz CPU and 3 GB of RAM. Deterministic equivalents were solved with CPLEX
11.0 dual simplex and barrier optimisers. Crossover to a basic solution was disabled for the
barrier optimiser, for other CPLEX options the default values were used.

The times are reported in seconds with times of reading input files included. For simplex and
IPM the times of constructing deterministic equivalent problems are also included though
it should be noted that they only amount to small fractions of the total. FortMP linear
and quadratic programming solver described by Ellison et al. (2008) was used to solve mas-
ter problem and subproblems in the implementations of Benders decomposition and level
method.

D.2 Data Sets

We considered test problems which were drawn from four different sources described in
Table 13. Tables 14 – 18 give the parameters of these problems. Columns A and W of
these tables give the dimensions of corresponding matrices in the following formulation of a
two-stage SP problem:

min cT x + EQ(x, ξ)
subject to Ax = b,

x ≥ 0,

where
Q(x, ξ) = min qT y

subject to Wy = h− Tx,
y ≥ 0

and vector ξ is composed of the random components of h, T, W and q.

NNZ denotes the number of nonzero matrix elements. Optimal values reported in column
Opt were obtained using level method. For the WATSON problems the optimal values of
their two-stage approximations are specified in this column.

It should be noted that the problems generated with GENSLP do not possess any internal
structure inherent in real-world problems. However they are still useful for the purposes of
comparing scale-up properties of algorithms.

D.3 Computational Results

The computational results are presented in Tables 19 – 23. Iter denotes the number of
iterations. For Benders decomposition and level method these are the numbers of master
iterations.

Finally we present the results in the form of performance profiles. The performance profile
for a solver is defined by Dolan and Moré (2002) as the cumulative distribution function
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Source Reference Comments

1. POSTS collection Holmes (1995) Two-stage problems from the test set
called POSTS

2. Slptestset collection Ariyawansa and Felt
(2004)

Two-stage problems from the collection
of stochastic LP test problems

3. Random problems Kall and Mayer
(1998)

Artificial test problems generated with
pseudo random stochastic LP problem
generator GENSLP

4. SAMPL problems König et al. (2007),
Valente et al. (2008)

Instances of the SAPHIR gas portfolio
planning model formulated in SAMPL

5. WATSON problems Consigli and
Dempster (1998)

WATSON pension fund management
test problems

Table 13: Sources of test problems

Deterministic Equivalent
Name A W Scen Matrix NNZ Opt

pltexpA2 62×188 104×272
6 686×1820 3703 -9.47935

16 1726×4540 9233 -9.66234

fxm2 92×114 238×343
6 1520×2172 12139 18416.8

16 3900×5602 31239 18416.8

stormG2 185×121 528×1259

8 4409×10193 27424 15535236
27 14441×34114 90903 15508982

125 66185×157496 418321 15512091
1000 528185×1259121 3341696 15802590

Table 14: Parameters of test problems from POSTS collection

Deterministic Equivalent
Name A W Scen Matrix NNZ Opt
AIRL2 2×4 6×8 25 152×204 604 269665
LandS 2×4 7×12 3 23×40 92 381.853

4node 14×52 74×186

16 1198×3028 7743 423.012
32 2382×6004 15231 423.013
64 4750×11956 30207 423.012

128 9486×23860 60159 423.012
256 18958×47668 120063 425.375
512 37902×95284 239871 429.962

1024 75790×190516 479487 434.113
2048 151566×380980 958719 441.738
4096 303118×761908 1917183 446.856
8192 606222×1523764 3834111 446.856

16384 1212430×3047476 7667967 446.856
32768 2424846×6094900 15335679 446.856

Table 15: Parameters of test problems from Slptestset collection

67



Deterministic Equivalent
Name A W Scen Matrix NNZ Opt

rand0 50×100 25×50

2000 50050×100100 754501 162.146
4000 100050×200100 1508501 199.032
6000 150050×300100 2262501 140.274
8000 200050×400100 3016501 170.318

10000 250050×500100 3770501 139.129

rand1 100×200 50×100

2000 100100×200200 3006001 244.159
4000 200100×400200 6010001 259.346
6000 300100×600200 9014001 297.562
8000 400100×800200 12018001 262.451

10000 500100×1000200 15022001 298.638

rand2 150×300 75×150

2000 150150×300300 6758501 209.151
4000 300150×600300 13512501 218.247
6000 450150×900300 20266501 239.720
8000 600150×1200300 27020501 239.158

10000 750150×1500300 33774501 231.706

Table 16: Parameters of test problems generated with GENSLP

Deterministic Equivalent
Name A W Scen Matrix NNZ Opt

saphir 32×53 8678×3924

50 433932×196253 1136753 129506233
100 867832×392453 2273403 129059362
200 1735632×784853 4546703 141473266
500 4339032×1962053 11366603 137871740

1000 8678032×3924053 22733103 133036857

Table 17: Parameters of SAMPL problems

Deterministic Equivalent
Name A W Scen Matrix NNZ Opt

WATSON.I 11×15 324×587

128 41483×75151 188828 -2271.17866
256 82955×150287 377628 -2733.63695
512 165899×300559 755228 -2810.75153

1024 331787×601103 1510428 -2750.48955

Table 18: Parameters of two-stage approximations of WATSON problems
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CPLEX FortSP
IPM Simplex Benders Level

Name Scen Time Iter Time Iter Time Iter Time Iter

pltexpA2
6 0.06 14 0.15 329 0.04 1 0.03 1

16 0.13 16 0.17 810 0.08 4 0.10 4

fxm2
6 0.09 17 0.24 1281 0.29 23 0.35 15

16 0.20 23 0.47 3374 0.39 22 0.53 18

stormG2

8 0.38 28 0.32 3675 0.60 23 0.83 22
27 3.33 27 0.87 13128 1.93 30 1.65 22

125 12.33 57 7.00 71611 8.38 32 4.99 19
1000 189.53 109 305.81 758078 80.20 41 34.46 18

Table 19: Solution times and iteration counts for POSTS problems

for a performance metric. We use the ratio of the solving time versus the best time as the
performance metric. Let P and M be the set of problems and the set of solution methods
respectively. We define by tp,m the time of solving problem p ∈ P with method m ∈ M . For
every pair (p, m) we compute performance ratio

rp,m =
tp,m

min{tp,m|m ∈ M}
,

If method m failed to solve problem p the formula above is not defined. In this case we set
rp,m := ∞.

The cumulative distribution function for the performance ratio is defined as follows:

ρm(τ) =
|{p ∈ P |rp,m ≤ τ}|

|P |

We calculated performance profile of each considered method on the whole set of test prob-
lems. These profiles are shown in Figure 5. The value of ρm(τ) gives the probability that
method m solves a problem within a ratio τ of the best solver. For example according to
Figure 5 level method was the first in more than 30% of cases and solved all the problems
within a ratio 6 of the best time.

The notable advantages of performance profiles over other approaches to performance com-
parison are as follows. Firstly, they minimize the influence of a small subset of problems
on the benchmarking process. Secondly, there is no need to discard solver failures. Thirdly,
performance profiles provide a visualisation of large sets of test results as we have in our
case.

Figure 5 illustrates that, while in most cases the performance of CPLEX barrier optimiser
is better it was not able to solve some of the problems. Several large instances were not
solved due to high memory requirements of constructing and solving deterministic equivalent.
Other failures were caused by numerical difficulties. The performance profiles of pure Benders
decomposition and linear damping are very similar to each other and the level method profile
dominates both of them.
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CPLEX FortSP
IPM Simplex Benders Level

Name Scen Time Iter Time Iter Time Iter Time Iter
AIRL2 25 0.04 11 0.14 145 0.08 10 0.16 16
LandS 3 0.04 9 0.11 21 0.01 8 0.04 9

4node

16 0.19 17 0.20 1461 1.44 102 1.18 47
32 0.65 15 0.37 3244 3.60 130 1.87 66
64 0.70 17 0.88 6847 6.79 135 2.36 54

128 0.71 26 2.48 13498 10.25 115 3.37 45
256 1.53 30 9.88 27743 16.17 101 8.75 60
512 3.38 30 41.74 54861 34.04 109 18.08 67

1024 7.51 32 457.53 130701 69.13 110 36.34 68
2048 17.93 36 1262.75 239159 240.25 184 63.28 59
4096 44.95 45 11733.86 475971 538.26 215 129.57 63
8192 79.73 45 ∗ ∗ 1474.48 286 229.72 56

16384 † † † † 1850.52 194 459.27 58
32768 † † † † 5785.07 279 1029.74 65

Table 20: Solution times and iteration counts for Slptestset problems
∗ Failed to solve due to timeout

† Failed to solve due to insufficient memory
‡ Failed to solve due to numerical difficulties

CPLEX FortSP
IPM Simplex Benders Level

Name Scen Time Iter Time Iter Time Iter Time Iter

rand0

2000 16.71 44 541.78 84571 62.68 80 33.73 42
4000 30.11 40 2632.72 155926 112.91 72 59.41 37
6000 56.90 52 8688.20 257614 287.09 124 137.20 58
8000 83.35 57 ∗ ∗ 341.97 110 171.42 55

10000 142.82 79 ∗ ∗ 831.67 219 293.24 76

rand1

2000 66.92 24 ∗ ∗ 760.06 388 161.81 76
4000 162.20 29 ∗ ∗ 1786.76 496 258.74 69
6000 252.81 30 ∗ ∗ 2010.50 368 316.25 54
8000 386.67 35 ∗ ∗ 3063.53 435 544.61 72

10000 † † ∗ ∗ 4012.57 451 694.83 70

rand2

2000 164.18 22 ∗ ∗ 5821.79 889 427.70 67
4000 † † ∗ ∗ 3881.73 397 451.03 43
6000 † † † † 7555.65 522 901.72 51
8000 † † † † 8678.47 478 883.14 41

10000 † † † † 15984.27 698 1536.32 60

Table 21: Solution times and iteration counts for generated problems
∗ Failed to solve due to timeout

† Failed to solve due to insufficient memory
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CPLEX FortSP
IPM Simplex Benders Level

Name Scen Time Iter Time Iter Time Iter Time Iter

saphir

50 ‡ ‡ 255.03 73918 465.18 113 396.59 76
100 ‡ ‡ 916.04 143194 701.14 120 533.06 60
200 ‡ ‡ 7579.14 385231 ‡ ‡ 2555.47 206
500 † † † † 2556.06 115 2339.76 59

1000 † † † † 4294.47 109 4650.19 78

Table 22: Solution times and iteration counts for SAMPL problems
† Failed to solve due to insufficient memory
‡ Failed to solve due to numerical difficulties

CPLEX FortSP
IPM Simplex Benders Level

Name Scen Time Iter Time Iter Time Iter Time Iter

WATSON.I

128 1.71 33 1.44 7985 0.92 1 0.92 1
256 3.89 38 3.66 15818 1.58 1 1.59 1
512 8.91 47 5.88 30237 2.62 1 2.61 1

1024 20.27 54 14.44 60941 5.12 1 5.31 1

Table 23: Solution times and iteration counts for two-stage approximations of WATSON
problems
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Figure 5: Performance profile in a log2 scale
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