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ABSTBACT

The design of a sixteen-bit pipelined adder CMOS inte-

grated circuit is presented. The adder is designed to

maximize throughput and to provide for testability.

Tutorial material on CMOS design is also presented.
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For several years the ability of systems engineers to

design custom digital integrated circuits has been growing.

The Mead and Conway design methodology described in

Intr o duction to VLSI System s [ Eef . 1

]

# permits the systems

engineer to be his own logic circuit designer. A prolifera-

tion of computer-aided design (C&D) systems such as the

MacPitts silicon compiler [Eef. 2], the chip layout language

(CLL) [ Ref . 3], the graphics editor Caesar [Ref. 4], and the

Burlap hierarchical layout language [Ref. 5] make it

possible for the engineer to rapidly carry the Mead and

Conway design methodology through to a final design. This

includes iterative simulation and redesign to provide justi-

fiable confidence in the final design submitted for

fabrication.

Many of the techniques utilized in the Mead and Conway

methodology and most of the CAD tools are based on having

the final design implemented in a technology that uses only

one type of doping for the semiconductor material in the

active region of the transistors. Because of their higher

switching speed, negatively doped metal oxide semiconductor

(NMOS) transistor technologies are generally used.

Selection of an NMOS implementation technology does

provide the systems engineer with a complete and proven

methodology for the design of a very large scale integrated

(VLSI) circuit and allows the use of many extensively tested

CAD tools. Like any other design decision, selection of

NMOS iiplementation brings with it some limitations. There

are two primary problems associated with NMOS digital

circuits.



The first is the ultimate switching speed limitation.

Though many NMOS VLSI circuits operate at clock rates in the

8 to 10 MHz range, there are many applications requiring

higher clock rates. The second problem is the dissipation

of the relatively large amount of power consumed by NMOS

digital circuits. State of the art, commercially available

NMOS VLSI circuits commonly have power consumptions in the

vicinity of 3 to 5 watts. Considerable design effort is

required to insure that the dissipation of this much energy

by a chip measuring approximately 5 millimeters on a side

does not alter the performance of the micron sized features

on the chip.

One group of technologies that offers both increased

switching speed and greatly reduced power consumption is

complementary metal oxide semiconductors (CMOS) . CMOS

circuits also offer the benefits of greater radiation hard-

ening and increased noise margin. In this thesis investiga-

tion, much of the Mead and Conway methodology was utilized

in the design of a CMOS circuit. A general purpose color

graphics CAD tool called Caesar that has been frequently

used in the design of NMOS circuits was employed. In

carrying out the design of the 16 bit pipelined high speed

adder in CMOS two separate goals were pursued. The first,

of course, is speed and the seccnd is verifiability. A high

speed adder implies not only a high clock rate of operation

but also a small latency between input of operands and

output of the sum.

A discussion of CMOS technologies and the implementation

of logic circuits in those technologies follows in Chapter

2. Chapter 3 presents a description of the CAD tools used

to construct and simulate the layout for the adder. The

logic and layout design of the adder is covered in Chapter 4

and is followed by a test plan for the fabricated chip in

Chapter 5.



II. CMOS CIBCaiTS

Before the design of CMOS digital circuits can be

attempted, an understanding of how to best implement logic

functions in CMOS is necessary. It is also important to be

aware of the advantages and disadvantages of the different

CMOS iiiplementation technologies. In this chapter the oper-

ation of CMOS digital circuits is explained using similar

NMOS circuits as a benchmark for comparison. The different

methodologies for assembling the CMOS pieces to produce the

desired logical results are reviewed and the selection of

the CMOS-Bulk p-well implementation technology is explained.

A. CCMPAEISON WITH NMOS

In NMOS digital circuits there is only one type of

switching device, namely the n-channel enhancement mode

metal oxide semiconductor (MOS) transistor. The other prin-

cipal device utilized in NMOS circuits is the depletion mode

n-channel MOS device which acts as a load resistor. In CMOS

there are both n-channel and p-channel enhancement mode

transistors available. As in NMOS, the n-channel device can

be considered on when Vdd (typically +5 Volts DC) , a logical

1, is present on its gate. The p-channel device can be

considered on when ground (GND) , a logical 0, is present on

its gate. In Figure 2. 1 are the symbols that will be used

for the n-channel and p-channel transistors in this thesis.

The basic differences between NMOS and CMOS technologies

can be demonstrated by comparing their application to some

basic digital circuits.
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Vdd^

gate c n-channel g ate p-channel

1
-GND

Figure 2. 1 CMOS Transistor Symbols.

1 The Inverter

Figure 2.2 (a) shows an NMOS inverter. Whenever

there is a logical 1 on the input, the voltage drop across

the lead resistor is approximately Vdd and the output is a

logical 0. This results in steady state power consumption.

When the input switches to a logical 0, before the output

can assume a logical 1, the lead capacitance (CI) on the

output must be charged to Vdd through the load resistor with

a resistance of several kilohms. This results in a much

longer transition frcm to 1 , where the load capacitance is

charged through the load resistor, than from 1 to where

the load capacitance is discharged through the switched on

NMOS enhancement transistor. The reason for this asymmetry

is that the pull-down transistcr's on resistance is typi-

cally only one fourth or less that of the on resistance of

the pull-up load depletion mode transistor. The technique

of prechar^ing circuits, where all outputs are set to

logical 1 during one clock cycle and then selectively forced

to on the opposite (evaluation) clock cycle has proven

helpful in gaining control over the unsymmetric switching

times. This longer switching time from to 1 must still be

accounted for, however, and represents the primary limita-

tion to the speed of NMOS circuits.
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Figure 2.2 (a) HMOS Inverter (b) CMOS Inverter.

In the CMOS inverter of Figure 2.2 (b) the input is

applied to the gates of both devices. An input of logical 1

causes the n-channel device to switch on and the p-channel

device to switch off, resulting in an output of logical 0.

Similarly, an input of results in an output of 1. In both

cases, one device is fully off, representing a resistance on

the order of gigaohms. Thus, the steady state power

consumption is essentially zero. In operation the only

power consumption of consequence occurs during the tran-

sition when neither transistor is fully on or off.

Additionally, since the output load capacitance is both

charged and discharged through a turned on transistor, the 1

to and to 1 switching delays are theoretically the same.

Actually the switching delays depend on many parame-

ters. The n-channel and p-channel device dimensions are

frequently not the same, the lobility of the electrons in

12



the n-channel is greater than the mobility of the holes in

the p-channel. Also, the capacitive load seen by the

p-channel device in CMOS p-well (CMOS-pw) is greater than

the load seen by the n-channel device because of the highly

doped p-well. Typically/ the result in CMOS-pw is a

slightly longer transition time of the to 1 output tran-

sition- Some designers attempt to compensate for this by

consistently making the p-channel transistors wider than the

n-channel transistors.

Unlike NMOS, the output of a CMOS digital circuit

makes a full excursion between Vdd and GND. This makes CMOS

circuits less sensitive to noise than NMOS circuits. CMOS

should also benefit more from future reductions in feature

size. NMOS is more restricted in ultimate feature size

because the power dissipation requirements of the depletion

mode devices will create more problems as feature sizes

shrink. In Figure 2.3 the relative sizes of minimum dimen-

sion inverters implemented in currently available 3 micron

feature size CMOS-PW and NMOS technologies are shown.

2- The NOR Gate and Trans mission Gate

Figure 2.4 shows the circuit diagrams and layouts of

a two-input NOR gate implemented in both CMOS-PW and NMOS.

From Figures 2.3 and 2.4 it is evident that static 1 CMOS

gates are more complex and area consuming than their NMOS

counterparts. In these fully complementary circuits a

redundancy in the structures is evident. The pull-up only

or pull-dcwn only would be sufficient to implement the

logic. In the CMOS circuits of Figures 2.3 and 2.4 the

inputs must perform two tasks. A logical 1 on an input

causes both a connection between the output and ground and a

1 Static logic circuits continuously evaluate their
inputs and produce their specified logic output. Dynamic
circuits periorm logical evaluation of the inputs only when
directed to do so by control signals and/or clock signals.

13
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Figure 2.3 Minimua Dimension Inverters.

disconnection between the output and Vdd. Logically these

two actions are equivalent, therefore only one action should

be necessary to implement the logic. Design methodologies

to accomplish this are described in section B of this

chapter. The parallelism of the CMOS transmission gate of

Figure 2.5 and the NMOS pass transistor is evident. The

major difference lies in the bilateral nature of the CMOS

transmission gate. It is made up of both n-channel and

p-channel devices and requires both polarities of the

control signal for operation. The reason for this bilateral

requirement is that the p-channel device does not transmit

low voltages well and the n-channel device does not transmit

14
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high voltages well. The resulting unpredictable voltage

drops make it necessary to utilize both types of transis-

tors. This increase in complexity over its NMOS counterpart

is partially offset by the absence of the level restoring

circuitry NMOS requires following a pass transistor. 2

2 In NMOS digital circuits the length to width ratio of
the pull down transistor is usually four times that of the
depletion mode transistor load. This ratio is required to
insure sufficient excursion of the output voltage. However,
after a pass transistor is used, a ratio of 8:1 rather than
4: 1 must be used to restore the 1GS threshold voltage drop
across the pass transistor.
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Figure 2.5 CMOS Transmission Gate.

In general CMOS technolcgies are ratioless. The use

of "improper" ratios will not affect the logical operation

of most CMOS gates, it will only affect the speed of opera-

tion of the gates.

B. CMOS DESIGN METHODOLOGIES

Static gate CMOS circuits have three serious deficien-

cies when compared to static NMOS gates. First, they are

more area consuming. Second, they can be slower. Though

the individual gates can be faster in CMOS, the p-channel

and n-channel gates are in parallel, thus, the fanout 3 and

the output load capacitance of each circuit are doubled

Third, a CMOS static gate is redundant, duplicating its

functionality in both the pull-up and pull-down section.

One approach to remedy these deficiencies is to use a

static NMOS-like style of design as in Figure 2.6 Here the

p-channel device is always on and the pull-up to pull-down

dimension ratio is relied upon to produce the proper output

voltage. This introduces power consumption problems and

takes away the full excursion on the output. Another

3 Fanout represents the number of transistors that the
output of a logic gate must drive.

16



Figure 2.6 NMOS-like CMOS Static Gate [Ref. 6].

approach is to make extensive use of transmission gates to

build up logic functions. Using transmission gates means

both polarities of all control signals are required- The

resulting large number of wires required to route these

control signals can become very area consuming, especially

if only one metal layer is available.

A third and more effective solution is to use dynamic

logic. Figure 2.7 contains three different implementations

of a dynamic three- input NAND gate. In each, the output is

meaningful (i.e. represents the value of the boolean expres-

sion in1 in2 in3) only when elk is high and elk is low. The

circuits of Figure 2.7 (a) and (b) depend on the pull-up to

pull-down ratio to produce the proper output. As with the

NMOS-like style of design, full excursion on the output is

17



lost and there is steady state power consumption during the

evaluation cycle. The circuit in Figure 2.7 (c) is prec-

harged when elk is low and evaluation of the inputs takes

place when elk is high. This configuration allows only one

change of the output from 1 to 0, so the inputs must be

stable at the time elk goes high. A change of one of the

inputs from 1 to after elk has gone high cannot cause the

output to return to 1.

In general dynamic CMOS eliminates the redundancy of

static CMOS by applying all inputs to one type of device and

r

ClkJ

/ \
/ \

elk
Q

|—

1

inl

'

l

inl in2 in3
inl- in2 • in3

inl
—_

inlc

in2

in2

L.

*

in3

.

inl in2 in3

elk

i

elk

in3
l_

—

—

i-=~

Figure 2.7 Dynamic, HAND Gates [Ref. 6].

a control signal to the other type of device. The most

popular dynamic CMOS logic design technique is domino CMOS

[Ref. 7], illustrated in Figure 2.8 Here the output is the

18



logical AND of the boolean function (in1 in2 + in3) to be

implemented and a control (clock) signal. When the clock is

low, the circuit is precharged, and when the clock is high

inl

in2

3

clock

4\ A

±aX

* C

inl- in2 + in3

Figure 2-8 Domino CMOS Structure [Ref. 6].

evaluation occurs. With a common clock shared by all the

domino gates on a chip, during the evaluation cycle the

signals ripple through the chip as though the logic were

purely static. The follow on inverter insures that the

output of each gate is low when evaluation begins. This

prevents the outputs of all gates from changing unless

driven lew by the inputs. Domino CMOS is not always the

answer though. If the logic of Figure 2. 9 were implemented

in domino CMOS it would be more area consuming than the same

circuit implemented in static CMOS. Dynamic CMOS is more

19



area consuming in this case because these are simple gates

with only a few inputs. Each NCR gate if implemented stati-

cally would need two n-channel devices and two p-channel

devices. If implemented dynamically, each NOR gate requires

three transistors of one type (one for each input and one

for the control signal) and one transistor of the other type

(for the control signal again) . The number of transistors

needed remains the same but the dynamic logic requires the

designer to keep three inputs electrically isolated instead

of just two. And if the dynamic design technique is domino,

six additional inverters will be needed. As can be seen in

Figure 2.4, in CMOS a NOR gate can be constructed from just

one stage. Adding the follow-on inverter of the domino

design results in an OR gate. Thus a second inverter is

required to return the logic to that of a NOR gate.

1

L>^

Figure 2.9 Circuit Difficult to laplement in Domino CMOS.

C. CMOS IMPLEMENTATION TECHNOLOGIES

One of the principal issues in the design of a process

to implement CMOS digital circuits in silicon is how to

isolate the two types of devices. This can be accomplished

by using a completely insulating substrate or through a more

complex fabrication process.

20



1 . CMOS-SOS

The only process currently offered by Metal-Oxide

Semiconductor Implementation Service (MOSIS) which uses an

electrically insulating substrate is Silicon on Sapphire

(SOS) . In this technology the n-channel and p-channel tran-

sistors are formed on silicon islands left after etching an

epitaxial layer of silicon on a sapphire (Al^O^) substrate.

2 . CMOS-B ulk

The other CMCS processes offered by MOSIS all use

CMOS-Bulk p-well technology. The p-well processes differ in

the number of layers of metal interconnections (1 or 2) and

the presence or absence of capacitors. In CMOS-Bulk p-well

(n-well) the substrate is n-doped (p-doped) and the

p-channel (n-channel) devices are in this substrate. To

isolate the n-channel (p-channel) devices from the substrate

a heavily doped p-well (n-well) is first placed to act as

the back gate. The heavy doping of the p-well (n-well)

degrades the performance of the n-channel (p-channel) device

while the p-channel (n-channel) device is optimized. In

p-well CMOS, though the mobility of electrons in the

n-channel device still exceeds that of the holes in the

p-channel device, the performance difference of the transis-

tors is ninimized. The more uniform performance of the two

transistor types makes the p-well process appropriate for

CMOS random logic.

Figures 2.10 and 2.11 represent the top and side

views of the steps of the CMOS-pw process for the production

of an inverter. These steps are: (1) starting with an

n-type substrate the p-well is patterned, (2) The active

areas in the p-well and on the substrate are established,

(3) the polysilicon is patterned, (4) the two ion implant

masks are placed (the N+ mask is simply the photographic

21



negative of the P+ mask) , (5) contact cuts are made, and

(6) the metal is placed.

a. Latchup in CMOS-pw

One of the main problems associated with

CMOS-Eulk, both p-well and n-well is latchup. Basically

latchup involves generation of a short circuit between Vdd

and GND, and can result in the complete destruction of a

chip. Many researchers have tried to formally define the

conditions [Eef. 8] that cause latchup to occur. This task

is extremely complex because the phenomenon is so dependent

on layout, which is unique to each chip design. Though a

fully quantitative analysis of latchup is still not avail-

able, a qualitative analysis will show what happens on the

chip when latchup occurs.

Looking at the side view of an inverter in

Figure 2.12, parasitic bipolar transistors can be seen. The

base of the npn transistor is the p-well and the base of the

pnp transistor is the n-doped substrate. These parasitic

transistors are connected as shewn in Figure 2.13 . If the

output of the gates goes below GND by a value equal to the

threshold of the npn transistor, its emitter starts to

inject current (electrons) intc the base (p-well) and the

resultant collector current flows to the Vdd node. If the

resistance between the Vdd ncde and the source of the

pull-up p-channel HO S transistor, R1, is large enough, the

voltage drop across E1 will exceed the threshold of the pnp

transistor. The collector current (holes) of the pnp device

flows to the GND node. If the resistance between the GND

node and the source of the pull-down n-channel MOS tran-

sistor, R2, is great enough, the resultant voltage drop

across R2 will increase the base current in the npn tran-

sistor. As is evident, there is positive feedback.

22



n
u

i)

3)

5)

rzszss^1

V« m w m m ii

n

t

[J

•"r-n"1

i[b]i

LIMIJ

111
X]

[
J 3 t'

I[zH

I 1

I p» I

L __ J

poly

area

, .- - *

I p

-ell
'<

t — J

B
contact

2)

4)

r
•*r»*\

lint
j i-

^tSBr^?
Figure 2.10 P-Well Process, Top View [Ref. 6].

23



oxiae

n-type substrate p-well

gate oxide

poly

V

^\
V 1 I

C n /^

J. c

\ I
( T

contact cut

N+

7 Z

s~

metal

4

/ \ I 1—

I

Figure 2-11 P-iell Process, Side View [Eef. 9],

24



The only way to stop this destructive process once it has

started is to disconnect Vdd or GND. Prevention of latchup

must te designed in.

GND

75S

n +

a.wz h
n +

p-well

&
n

A A
Vdd

wy/,

D +

J^
n-substrate

Figure 2.12 Bipolar Transistcrs in CMOS-Bulk [Bef. 6].

Figure 2.13 The Latchup Circuit [ Ref . 6 J.

The MOSIS CMOS-Bulk p-well design rules include

features for the specific purpose of reducing the

25



probability of latchup. The ninimum separation rules for

p-wells and P+ doped active areas exist for this purpose.

Their aim is to reduce the gain of the parasitic bipolar

transistors, thus requiring a larger noise spike of longer

duration to start the latchup sequence. A frequently used

technique is the grounding of the p-well as illustrated in

Pigure 2-14 . Here the effect cf the P+ doped area covering

half of the contact cut for the ground bus is to reduce the

resistance E2 in Figure 2.13 . Another practice is to place

a small capacitor across the Vdd and GND pins of CMOS-Bulk

chips. To provide capacitive filtering of noise spikes on

the chip, Vdd and GND busses are frequently run close

together. Also, Vdd input pads are designed to provide

capacitance between Vdd and GND.

r
-

N+ diffusion —

'

- f-p-well

poly

GND bus

:«:::;

:!::>:.

contact cut"VY
-' -

'. a -

?"

~t_: S

r"v"-" "fv-.-^=^i-" f- — P+ doping

Figure 2. 14 Grounding of the P-Well,

3. Iwin-tub CMOS

This process, also called twin-well, uses both

n-wells and p-wells on a high resistivity N- or P-

26



substrate, or in an epitaxial layer of silicon on a P+ or N+

wafer. Since the well doping does not have to overcome the

substrate doping, both the n-channel transistors in the

p-well and the p-channel transistors in the n-well can be

optimized. Domino CMOS is enhanced by the use of this

process since the optimized n-channel devices can speed up

the complex boolean expression evaluation and the optimized

p-channel devices can speed up the signal drive between

stages (thereby reducing the effect of a given f anout)

.

D. CMOS TECHNOLOGY SELECTION

The CMOS implementation technologies available from

MOSIS are CMOS-Bulk p-well with one metal layer, CMOS-Bulk

p-well with two metal layers, CMOS-Bulk p-well with two

metal layers and capacitors (for analog circuits) and

CMOS-SOS.

The advantages of CMOS-Bulk are: (1) very good noise

margin, (2) faster than NMOS, and (3) a proven reliable

fabrication process. Its disadvantages are: (1) latchup

susceptibility, (2) use of p-well guard rings is needed if

radiation hardening is desired, (3) lower circuit density

than NMOS or CMOS-SOS, and (4) more complex design rules

than either NMOS or CMOS-SOS.

The advantages of CMOS-SOS are: (1) faster than NMOS or

CMOS-Bulk, (2) very good noise margin, (3) intrinsically

radiation hardened, and (4) no latchup. Its disadvantages

are: (1) expensive fabrication process due to the sapphire,

(2) sapphire variability reduces the reliability of the

fabrication process, (3) thermal mismatch between the

sapphire and silicon limits the carrier mobility, and (4) it

is not a viable technology for dynamic memory due to back

channel leakage.
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CMOS-Bulk p-well was selected as the implementation

process for the adder for the following reasons. First,

technology files for this process were available at the

Naval Postgraduate School (NPS) enabling the use of extant

computer aided design (CAD) tools. Second, since this would

be the first CMOS VLSI design at NPS, utilizing the most

reliable process is prudent to prevent design problems from

being clouded by implementation process problems.
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III. DESIGN TOOLS

To employ the Mead-Conway design methodology on a large

scale design, three computer aided design (CAD) tools are

needed- A layout design editor for viewing the circuits as

they are created is the first tcol required. Next, a design

rule checker is necessary to confirm that all the design

rules for the specified technology have been adhered to.

Though not a complex task, the large number of checks that

must be made for even a modest design makes manual design

rule checking highly error prone. Finally, a circuit simu-

lator is needed to verify that the circuit as designed

provides the proper logical output. In the design of the

sixteen-tit pipelined adder, the Caesar layout editor

[Eef. 4], the Lyra design rule checker [ Ref . 10], and C.

Terman's ENL circuit simulator [Ref. 11] were employed.

A. CAESAE

Caesar is a generic layout editor. It is not designed

for any particular VLSI implementation technology. It is

not even limited to designing integrated circuits. Caesar

is a graphics layout editor for the creation and manipula-

tion of rectangles where the user specifies the color, size,

and placement. It is through the user specified technology

file that the rectangles of color take on meaning. At the

Naval Postgraduate School (NPS) there are two technology

files available for use with Caesar. One is for N-doped

metal oxide semiconductors (NBOS) and the other is for

complementary metal oxide semiconductors utilizing a P-doped

well (CMCS-pw) .
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Caesar works with files cf its own special format.

These file are indicated by an appended file type of ca(i.e.

xxxx.ca). On command Caesar will generate a Caltech

Intermediate Format (CIF) file cf the same layout. Again it

is the technology file which tells Caesar which CIF layer

labels to attach to the colored rectangles.

At NPS, Caesar is set up to take commands from any

terminal where the execution of the Caesar program is initi-

ated (usually the ADM-3a console adjacent to the color

graphics display unit) and from a four-button puck on a

graphics tablet attached to the color display device.

Caesar displays its graphics results on an AED 767 color

monitor and displays its menus, messages, and prompts on the

command console. Detailed information on the installation

and operation of Caesar at NPS can be found in Reference 4

and Reference 2.

Caesar is an interactive CAE tool. The results of any

command are rapidly displayed on the AED 767. The results

of a ccmmand may be undone (u) cr repeated (.) with a single

stroke of the specified key on the command console. While

running Caesar, a user may also call upon the design rule

checker, Lyra, to check the area inside and within three

Caesar units* of the current box for design rule violations.

This interactive use of the layout graphics display and the

design rule checker helps to insure that there will not be

any design rule forced changes late in the design cycle when

changes are much more time consuming. With Caesar's level

of interaction with the designer, the design loop consisting

of (1) issue commands to perturb existing circuit, (2)

visual inspection to verify command's generation of desired

A Caesar design is layed out on a grid of Caesar units.
These units do not represent any specific length. When
creating a CIF file from a Caesar file the desired length of
a Caesar unit is specified.
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results, and (3) design rule checking of new circuit, can be

rapidly completed.

Caesar is a hierarchical design tool. With Caesar,

circuits can be created by piecing together cells (other

files of type .ca) which in turn may be made up of other

sub-cells. Theoretically, there is no limit to the number

of levels in the hierarchy. Net only can cells (sub-cells,

etc.) be called upon to fill locations in a circuit, if they

need to be modified to function properly, Caesar provides a

subedit mode to facilitate editing of layouts one level

below the current editing level. Care must be taken when

this subedit feature is used since the changes made to the

cell are global. Everywhere the given cell is used on the

chip, the newly edited version will appear.

B. LIRA

like Caesar, Lyra is a generic design rule checker.

When Lyra is invoked from within Caesar, the actual program

executed to check for design rule errors depends on the

technology file indicated in the header of the Caesar file

being edited. After running, Lyra sends a message to the

command console indicating the number of errors found. On

the graphics display Lyra paints the exact location of each

error and labels each error with the design rule violated.

The error label consists of abbreviations for the layers

involved, followed by an underscore, followed by an abbrevi-

ation for the type of violation detected. Table 1 lists the

abbreviations used by Lyra for CMOS-pw.

The winter 1983 distribution of the University of

California at Berkeley (UC3) CAT tools included two versions

of Lyra. One for the Mead-Conway NMOS design rules and the

other for the Jet Propulsion Laboratory's (JPL) five-micron

feature size CMOS-pw design rules. Since MOSIS no longer
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TABLE 1

Lyra Error Abbreviations

Layer Abbreviation
polysllicon P *
metal m s
p-well w X
n+ diffusion d
cut c
p+ diffusion P

Error
minimum width
minimum separation
malformed transistor

supports fabrication of the JE1 CMOS-pw process, design

rules for the MOSIS supported three-micron CMOS-pw process

were obtained. Professor Marco Annatarone at

Carnegie-Mellon University (CMO) generated the listing of the

three-micron CMOS-pw design rules compatible with Lyra and

has provided NPS with a copy. To generate executable code

from the prototype Lyra program and imbed the specific

process design rules, the program rulec (see Appendix B) is

run with the design rule list file as its argument.

Now, when Lyra is invoked from Caesar while editing a

CMOS-pw technology circuit, the three-micron minimum feature

size CMOS-pw design rules are applied. This version of Lyra

does not check for exceeding any maximum dimensions. The

only maximum size design rule in this technology is for

contact cuts, which may not exceed 3 microns by 8 microns.

Avoidance of improper contact cuts can be accomplished by

utilizing Caesar's hierarchical nature. Contact cuts of all

needed sizes and types are generated once and saved to be

inserted as cells wherever needed.

C. SIMULATION

Once a circuit layout has completed this initial design

loop, it matches the designer's conception of how it should

appear and is free of design rule violations. The perform-

ance of the given circuit, though, remains uncertain. To

simulate the performance of the design, programs such as

SPICE [Ref. 11] and ENL [fief. 11] are used.
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1 . SPICE

SPICE is an important simulation tool in the design

of high speed CMOS digital and analog circuits. With its

detailed device modeling, SPICE can provide accurate

predictions of performance once the device parameters of the

implementation technology are known. SPICE provides the

logical output of a circuit based upon the inputs and

describes the transient behavior of the circuit as it

changes to the new logical output. Thus SPICE enables a

designer to optimize transistor dimensions for speed.

Unfortunately, the version of SPICE currently avail-

able en both the Vax 11-780 and the IBM 3033 at NPS (version

2G6) fails when the parameters of the devices fabricated by

the MCSIS three-micron CMOS-pw trocess are used. With these

parameters the transient behavior solutions do not converge.

Engineers at CMU, UCB, and the University of

Washington (UW) are currently employing an experimental

version of SPICE {version 2X. x developed at UCB) which is

successful simulating with the three-micron CMOS-pw device

parameters. This version, however, has other bugs and is

therefore not available for general distribution. The

changes to SPICE 2G6 that enable SPICE 2X.x to simulate the

three-micron CMOS-pw devices will be incorporated into the

next distribution of SPICE {version 2G7)

.

The Naval

Postgraduate School is in the gueue of institutions to

receive SPICE 2G7 once it is ready.

In order to run a SPICE simulation of a CMOS circuit

designed using Caesar, the following steps should be

executed. First, the labeling feature of Caesar is used to

place labels on the electrical nodes of interest in the

circuit (Vdd, GND, input, output, etc.). Second, the Caesar

command

: cif 100 -p
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is issued to generate the baseDame. cif file. The parameter

100 indicates a scale of 100 centimicrons per Caesar unit 5

and must be specified unless the default value of 200

centimicrons per Caesar unit is desired. The -p option

causes entries to be made in the basename.cif file for the

labels assigned- Third, after exiting Caesar and returning

to Unix, the circuit extractor Mextra [Eef. 10] is invoked

using the command

% mextra basename

to create the file basename. sim. To modify the basename. sim

file to a SPICE file (basena me . spice) , the program sim2spice

[Ref. 11] is used- The basenane. spice file contains a list

of transistors and capacitors in the circuit in a SPICE

compatible format.

The basena me. spice file must be edited to add the

model parameters for the transistors, to specify the wave-

forms of the input (s) , to specify the type of analysis to be

performed (usually transient analysis) and to specify the

output to be produced (tables, graphs, etc.). The Spice

User's Manual [Eef. 11] contains the formats of these addi-

tions to basename. spice. Best case and worst case device

model parameters for the MOSIS three-micron CMOS-pw process

as compiled by Dr. M Annaratone of CHO and Dr. L. Glasser

of MIT are found in Appendix A.

2. EN I

ENL is a timing and logic simulator for digital MOS

circuits. It is an event driven simulator which uses a

resistance-capacitance model of a circuit to estimate node

transition times and to estimate the effects of charge

5 Since the minimum dimensions for the 3-micron CMOS-pw
process are specified in microns instead of lambda, CMOS-pw
circuits are usually designed or Caesar using one micron per
Caesar unit.
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sharing. 6 After input values have been assigned by the user,

RNL calculates the effects of those inputs by repeating the

following operations until there are no further node value

changes: (1) when a node is added to the network due to a

transistor being turned on, the charge sharing implications

of the new node's capacitance and logic state on each of its

electrical neighbors is computed, (2) for each node that

might be affected, Vthev and Ethev (the parameters of the

Thevenin equivalent circuit) are calculated and the new

logic state is determined from Vthev (O.OVdd to 0.3Vdd =

logic 0, 0.8Vdd to I.OVdd = logic 1, logic X otherwise), (3)

if the node has changed state, the transition time is calcu-

lated using the node's capacitance, and (4) any changes are

propagated to other nodes. Details of the computation

methods used by RNL can be found in the RNL Version U.2(0W)

User's Guide [Ref. 11]. More important to the user is an

understanding of what information RNL keeps, what it

discards, and how it decides what to do next.

Basic to the operation of RNL is the idea of an

event. The three elements of an RNL event are: (1) a node

in the network, (2) a new logic state for the node, and (3)

the time when the node value changes to the new logic state.

RNL maintains a list of events, sorted by time, that tells

what processing remains to be done. When the user changes

an input, an event is added to the list. RNL sequentially

processes the next event on the list, stopping when (1) the

list is empty, (2) a node the user is tracing changes value,

or (3) when the specified simulation time interval has

elapsed. To process an event, 5NL removes it from the list,

changes the node's state to reflect its new value, and then

6 Charge sharing refers to the capacitive effects that
happen when two or more previously unconnected nodes, each
having seme charge and capacitance, become connected by a
resistor (transistor turning on). .
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calculates any new events resulting from the node's new

value.

In calculating new events, first all nodes that

might be affected by the change are found and marked. This

includes the source and drain cf all transistors for which

the current node is the gate and all nodes connected to

these nodes through turned on transistors. The search

through the network stops when a non-conducting transistor

or an input is reached. For each marked node, two calcula-

tions are made. First, a charge sharing calculation is

performed to model changes of state due to the charging and

discharging of node capacitances. Second, a final value

calculation is done to determine the node's ultimate logical

state.

A given node can have only two events pending: (1) a

charge sharing event describing an immediate change in the

node's state due to charge redistribution among the nodes on

the connection list, and (2) a final value event describing

the final, driven state of the node. RNL observes the

following rules for processing events: (1) when a new charge

sharing event is scheduled, throw away all previously

pending events for the node, and (2) when a new final value

event is calculated, it will be ignored if (a) there is a

pending final event for the same value which is scheduled to

occur sooner, (b) there is a pending charge sharing event

for the same value as the new final event, or (c) there is

no charge sharing event and the new final value event is the

same as the node's current value. These rules are based on

the assumption that the event that was last calculated

reflects the latest configuration of the network and there-

fore should override events calculated earlier. Charge

sharing events discard any pending final value events

because any charge sharing calculation is immediately

followed by a new final value calculation.
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These event rules, however, sometimes lead RNL to

generate incorrect results. This is especially true of

signal driven circuits (circuits where inputs are applied to

the source and drain of a transistor as well as its gate)

and circuits that depend on the analog properties of the

devices to predict the behavior of the circuit. For

example, consider the first exclusive OR gate design for the
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Figure 3.1 CMOS Exclusive OB [ Ref . 6 ]-

pipelined adder in Figure 3. 1 This design has proven to

function correctly at CMU, however, the RNL simulation shows

this circuit failing.

Starting in a state where A=0, B=1, and out=1,

assume that the input A then transitions to 1. Initially

Q1 , Q3 , 0.4, and Q6 are on. When input A goes high, Q3 is

turned off (no events generated) and Q2 is turned on, gener-

ating a charge sharing event and a final value event for
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Abar resulting in Abar going low. When Abar goes low, the

still turned on Q6 is now trying to drive the output node

low and the still turned on Q4 (RNL recognizes that it takes

a finite amount of time for Q4 to turn off but does not

recognize that n-channel transistors do not conduct high

voltages well) is still trying to drive the output node

high. The result is an output of X, the undefined state.

Next, Q4 is turned off. Since turning off Q4 adds no new

nodes to the network, the event list is empty and the output

remains at X. The primary difficulty RNL has with this

circuit centers around the fact that the output node is

controlled by two nodes that can change at different times.

As a result, a charge sharing event due to one input can

eliminate a final value event of the other, with that final

value event being the force which determines the circuit's

actual behavior.

The circuit cf Figure 3.2 is a proven latch design

which also fails in BNL simulation. In Figure 3.2 the frac-

tions next to the transistors represent the length to width

ratios of the devices. This circuit is dependent on these

ratios fcr proper operation. These ratios insure that the

gain of the input signal on the gates of Q5 and Q6 is

greater than the gain of the feedback signal to the same

gates. RNI does not recognize the difference in these gains

to be sufficient to cause the gates of Q5 and Q6 to be at

either logical 1 or when the input signal is the opposite

of the feedback signal. As a result, the circuit becomes

locked up at X. Because of RNI's difficulty with these two

circuits, other designs were employed in the final adder

(see chapter 5) to facilitate testing of the overall design.

To use RNL as installed at NPS, the following steps

should be followed. First latel the circuit and generate

basename.cif as before. Again the program Mextra is used to

extract the circuit, this time with the -o option (Mextra
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Figure 3-2 CMOS Latch Design [ Ref . 6].

basenaie -o) . The -o option causes Mextra not to compute

capacitances. A follow on program in this sequence, Presim,

performs this computation with greater accuracy. It should

be noted that there are three different circuit extraction

programs, each named Mextra. There is the MIT version, the

DCB version and the Ufi modified UCB version. The next tool

to be used in the seguence, Presim, can accept the output

format of the MIT version and the UW modified UCB version.

At NPS, the UCB version is installed and was used. The MIT

and UI modified DCB versions differ in the order of the

parameters in a transistor specification. Professor

Annaratone at CMU developed a program, cformat, to change a

• sim file generated by the UCB version to the MIT format.

However, cformat does not work if the -o option is used with

Mextra. To avoid a loss of accuracy, the .sim file can

manually be changed to the Ufl modified UCB format. The
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first step in this format change is to use the 71 text

editor to add "format: UCB" to the header line of base-

name. sim. The other change that needs to be made is to

change the labels for the n-channel transistors from "n" to

"e". Using the EX editor, the following steps accomplish

this

:

% e basename.sim - invokes the editor

: g/ n/s//e/g - make global change

for all n as first char

in a line, change to e

: w - write back edited file

: g - exit editor

The next step is to create a binary file for RNL

from basename.sim using Presim. This is done by issuing the

command

:

% presim basename.sim basename config

Basename.sim is the edited .sim file and basename is the

file into which presim writes its binary output. Config is

the calibration file used to select other than default

values for the circuit element capacitance and resistance.

A copy of the presim user's guide from the UW/NflC VLSI

Consortium release 2.0 and the calibration file used in

simulating the adder are contained in Appendix C. The

values used in the calibration file are taken from the MOSIS

supplied electrical parameters.

The final step is to run RNL itself. This is done

by entering one of the following two Unix commands:

% rnl or

% rnl cmdfile

where cmdfile is the name of a file containing a seguence of

RNL commands. Entering the first Unix command will cause

RNL to take its commands directly from the console
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interactively. If the second Onix command is used, speci-

fying a command file, RNL first executes all the commands in

cmdfile and upon completion, starts taking commands from the

console. In either case, RNL should be given the following

commands

:

(load "uystd. 1")

(load "uwsim. 1")

(read- network "has ename")

where basename is the file generated by presim. The first

two commands load RNL with several macros which simplify

user interfacing with RNL.

The user interface with RNL is a LISP interpreter.

The interpreter continuously executes the loop: (1) read a

command, (2) evaluate the command and perform the specified

actions, and (3) print the result. There are two formats

for specifying commands to this loop. The first is:

(function argument argument ... argument)

Here the parentheses delimit the command and spaces separate

the elements. The interpreter reads the entire command, up

to the closing parenthesis, then the first element is inter-

preted as a function and all the others as arguments. The

arguments may be of the same command form, (function arg arg

... arg). If the following command were issued to RNL,

(* 12 (+22) (/ 14 7 ))

RNL would respond by typing 96 (12*4*2). The other format

for commands to RNL is

(function ' (argument argument ... argument))

where the " f " indicates the quote special form which keeps

its argument from being evaluated. For example, (+ 2 3)

evaluates to 5, but f (+ 2 3) is a string of three elements.

When this second RNL command format is not used to represent

an argument of another command (i.e. is not contained within
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the parentheses of another command) , it may be written in

the more natural form:

function argument argument .... <newline>

Tutorials on RNL are contained in the University of

Washington/Northwest VLSI Consortium's VLSI Design Tool s

Refe r ence Manual [Ref. 11]- There are two points concerning

the aextra, Presim, RNL simulation cycle a user should be

aware of that are not brought out in the documentation. The

first concerns the use of vectors in RNL commands. As

evidenced in the tutorials of Reference 11 and the adder

Simula lion results in Appendix D, vectors can be used to

make the input and output of RNL less cumbersome and

verbose. After the vector has been defined, a user will

then want to assign values to it. The documentation shows

the format of the vector value assignment command to be:

(invec ' (vecname values))

However, the "values" field has its own specific format.

The first character should be a or a 1 indicating positive

and negative numbers, respectively. The LISP interpreter

will work with negative numbers but RNL will not accept

negative numbers as logical inputs. The second character is

a letter specifying the number base of the input vector (b

for binary, h for hexadecimal) - For example, to assign the

binary value +101010 to the vector vectone, the RNL command

would be:

(invec » (vectone 0b10 1010})

The other point concerns the location of input

labels on the input pads. Ehen the entire chip is being

simulated, the input labels are normally placed on the metal

pads where the off chip leads are attached. Before an input

signal from a bonding pad reaches the interior circuits of a

chip it must pass through a resistor in an overvoltage
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protection circuit. In the extraction and simulation

process this resistor is viewed as an open circuit.

Therefore, on input pads, the input label must he placed

after the resistor in the signal path.

With Caesar, Lyra, and ENL, a designer at NPS has

the requisite CAD tools for the complete logical circuit

design loop. With these tools circuits that are free of

design rule errors and produce the desired logical results

can be designed. The lack of SPICE somewhat restricts the

designer's ability to optimize speed, but there are several

design techniques that can be employed to design chips that

run fast. These will be covered in the next chapter.
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IV. DESIGN OF THE ADDER

As stated in the introduction, the primary goals of the

adder design are to maximize throughput and to provide for

testability. The adder is to fce a pipelined adder. Every

clock cycle it should accept as inputs two 16-bit addends

(A 1 , the least significant bit, through A16 and 31, the

least significant bit, through B16) and one carry-in (Cin)

bit. It is desired to produce the 16-bit sum (S 1 ,the least

significant bit, through S16) and the carry-out (Coat) bit

as quickly as possible. Both the number of clock cycles

from input of the addends to the output of the sum and the

duration of each clock cycle are to be minimized. A secon-

dary consideration in the design is expandability. An

expandable design is one that can easily be extended to

produce a 32-bit or 64-bit sum utilizing the same circuit

structures. In this chapter the logical design and layout

design of the 16-bit adder will be presented. The equations

presented in this chapter are taken or derived from equa-

tions found in chapters three through six of The Logic of

Comp uter Arithme tic by Flores [ Eef . 12]. In these equations

concatenation implies the logical AND, the symbol + implies

the logical OR, and the symbol + implies the logical XOR.

A. LOGICAL DESIGN

In considering the speed spectrum of adders from a

logical standpoint, at the fast end there is the table

look-up. With 33 binary inputs and 17 outputs, this would

require an address space of 233 17-bit words. With current

technology this is not feasible- At the other end of the

spectrum is the serial adder. On clock cycle 1 it uses A1,
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B1, and Cin to produce 31 and Clout (carry out of tit one

into tit 2). On clock cycle 2 it uses A2, E2, and Clout to

generate S2 and C2out. Here 16 clock cycles elapse before

the sum is available. An adder can also be implemented as a

ripple carry adder where the duration of each clock pulse is

sufficient to allow a carry into the sum to propagate all

the way through to a carry out. In the case of the 16-bit

adder, this would require a clock duration at least sixteen

times the length of the gate delay of the one bit adder.

The middle ground belongs to the carry look- ahead adder

£Ref. 3]. In carry look-ahead (CIA) addition the carry into

each bit position, C (i) , is generated from the propagate,

/>,,,= A [t)QB {l)
(egn 4.1)

<?(,-)= A[,)B {i)
(ecn 4.2)

P(i), and generate, G (i) , primitives. P (i) =1 implies that

a carry into bit(i) will- be propagated through to bit (i+1).

G(i) =1 implies that A (i) and B (i) will provide a carry

into bit (i+1) of the sum, regardless of the contents of the

<?(,->= £(,-,)+£(,-,)/>(,-,)+ ••• + Cm P [i _ 1yP {7)
P

[1)
(egn 4.3)

5 (.)= c l>)® p (.) ( e ^ n u « 4 )

less significant bits of A and E. The algorithm for the CLA

sum generation is as follows. The first event is the evalu-

ation of equations 4.1 and 4.2 to generate the P (i) and G (i)

primitives. The second event uses the P(i) and G (i) primi-

tives as inputs to eguation 4.3 to generate the C (i) 's. The

final event is the computation of the S (i) •s from equation

4.4 .
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As pointed out by Flores [Eef. 12] and by Conradi and

Hauenstein [Eef. 3], there are several logical implementa-

tions of carry look ahead addition. A principal task of

this thesis investigation was to select a fast logical

design. Without the circuit simulator Spice, the analysis

of each design considered was more qualitative than quanti-

tative. In this qualitative analysis, a turned on tran-

sistor is considered as a resistor with its resistance

proportional to its length and inversely proportional to its

width. All gates driven by such a turned on transistor are

considered to be capacitive loads with capacitance propor-

tional to the area of the gate. The interconnect wiring is

considered to add both parallel capacitive loading and

series resistance as shown in Figure 4.

1
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Figure 4.1 CHOS Output Loading Model.

From this model it is obvious that the amount of inter-

connect wiring and the number of gates driven (fanout)

should be minimized to minimize the output transition time

when the positions of switches SI and S2 of Figure 4.1 are
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reversed. This led to the following guidelines in the

design of the adder:

1) The internal logic of each stage should be accom-

plished with minimum dimension transistors , 3 microns

x 4 microns (length x width)

.

This leads to more

compact circuits with shorter interconnections and

reduces the capacitive load on the preceding stage.

2) Significantly wider transistors (3-micron x 9-micron)

should be used at the output of each stage where the

fanout and interconnect leading is greater.

3) The fanout of any transistor should be kept to less

than five.

This requires a more complete definition of fanout

because the capacitive loading of a gate depends on its

area. A 3-micron x 4-micron transistor driving six other

3-micron x 4-micron transistors has a fanout of six. A

3-micron x 8-micron transistor driving the same load is

considered to have a fanout of three. Though this implies

that a high fanout problem can be solved by merely

increasing the width of the driving transistor, it neglects

the effects of the interconnect wiring. As gates are added

to the load of a transistor, each subsequent addition must

be more remote from the driving transistor. Since the

resistance of the wiring is proportional to its length and

inversely proportional to its width, the resistance of the

wiring will increase unless the width is also increased.

However, since the capacitance of the wiring is proportional

to its area, most of the gain achieved by widening the wire

to reduce resistance is offset by the increase in capaci-

tance. As a result, in the design of the adder, increasing

the width of the driving transistor was not viewed as a

complete fix for a fanout problem.

For the comparison of the different approaches to CLA

addition, the term logical event needs to be defined. The
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most basic definition is a combinational logic circuit

accepting a set of inputs, performing its specified opera-

tions on those inputs and generating a set of outputs.

Therefore, the input of the addends, followed by the compu-

tation and output of the sum can be considered as a logical

event. However, a primary design consideration for the

adder is to provide for testability and a key element of

this provision is the availability of intermediate results

(see section 3 of this chapter). This implies breaking up

the sum generation into several separate events. The first

event takes the addends as inputs, performs some logic oper-

ation (s) on them and stores the results in a register. The

next event takes its inputs from that register and stores

its results in another register. This chain continues until

the last event deposits the sum on the output pads of the

chip. To provide the tester with easily interpreted inter-

mediate results, the equations presented in this chapter

were taken as boundaries for each logical event. The terms

on the right side of the equation determine the inputs and

the left side terms determine the output of a logical event.

Once all the inputs for an equation are generated by

previous events, the logic of the equation becomes part of

the current event.

1 . Zero Level CIA Logic

This logic requires three events to generate the

sum. First, equations 4.1 and 4.2 are used to generate the

P (i) f s and G (i) 's. Second, from equation 4.3 the C (i) f s are

generated. Finally, the sum is derived from equation 4.4

The principal problem with this approach for a sixteen-bit

adder lies in the application of equation 4.3 Here, the

input P (1) has a fanout of 15, which makes this approach

unsatisfactory.
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2- First Level CIA Logic

Noting that a four-bit sum generated using zero

level CIA logic is within the design guidelines suggests

cascading 4-bit slices of the same logic as indicated in

Table 2 Here the sum is available after six events and the

TABLE 2

First Level CLA Logic for a 16-bit Sum

Event
No.

Bits
1-4

Bits
5-8

Bits
9-12

Bits
13-16

1 Compute
P(i) ,G(i)

Compute
P(i),G(i)

Compute
P(i),G(i)

Compu te
P(i) rG(i)

2 Compute
C(i)

Delay
P(i) ,G\i)

Delay
P(i),G (i)

Delay
P(i) ,G\i)

3 Compute
S(i)

Compute
C[i)

Delay
P(l) f G\±)

Delay
P(i) rGli)

4 Delay
S(i)

Compute
S(i)

Compute
c(i)

Deiav
?(i) rGli)

5 Delay
S(i)

Delay
S(i)

Compute
S(i)

Compute
C(i)

6 Delay
S(i)

Delay
S(i)

Delay
S(i)

Compute
S(i)

fanout is reduced by a factor of four. The event cycle time

reduction would more than make up for the event count

increase since cycle time grows faster than linearly with

fanout. The only drawback with this design lies in the cost

of extending it to generate 32-bit or 64-bit sums. For

every 4-bit slice added, another event is required. Thus, a

64-bit add would require 12 events.

3- Second Level CLA Logic

Again the data is divided into 4-bit slices called

blocks. But rather than let the carries ripple through the

blocks, two new primitive functions are introduced. They
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are the block propagate, 3P(i) , and block generate, 3G(i) ,

functions. 3P(i) = 1 implies that a carry into block (i) will

be propagated through to block (i+1) . BG(i)=1 implies that

block (i) will generate a carry into block (i+1). For a 4-bit

block where bit(1) is the least significant bit, The BP and

BG primitives are generated by equations 4.5 and 4.6 respec-

tively, with the P(i)'s and G(i)'s computed as before.

BP[i) = P {i)P (i)P (i)P (i) (egn 4.5)

BG [i) ~ G
(<)
+ G WP («)

+ G WP (*)
P (»)"*" G H)P i*)

PWP (2) (egn 4.6)

Next, the block carry, 3C (i) , which represents the carry

from block (i) into block (i+1), is computed using equation

4.7 which represents the same lcgic as equation 4.3

*<?<o- £
* =

BG i»
} 'ji+1

Bp u (egn 4.7)

So far, after three events, the ? (i) 's, G(i) 's,

BP(i)'s, BG (i) ' s, and BC(i)»s have been generated. If the

same method of generating the final sum as used in zero

level CIA were to be used, two additional events would be

required. The first again applies the logic of equation 4.3

to each 4-bit block to generate the carry into each bit.

Here the Cin for block (i) is given by BC(i-1). The second

cycle is used to generate the sum from the C (i) 's and

P (i) f s. One of these events can be eliminated if, while the

BC(i) 's and their predecessors are being computed, an esti-

mated sum of the 4-bit block is also computed. One method

is to compute two estimated sums for each block, one

assuming an carry into the block of and the other assuming

a carry in of 1. When the correct carry in for block (i) is

generated, it is used to multiplex the correct sum for the

block to the output. This assumed carry method was rejected
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because of the large amount of area consumed by the regis-

ters needed to hold two possible answers. The second method

is to compute the estimated sum of the block assuming a

carry-in of and then correcting the estimated sum once the

actual carry-in to each block is known.

Since the estimated sum, ES (i) , is not needed until

after the third event and computing it as one event again

leads to fanout problems, the computation of £5(4), the most

significant bit, through ES ( 1) is computed in two events as

follows. First, an intermediate estimated sum, IES (i) , is

computed using two-bit slices, each assuming a carry in

(see equations 4.8 through 4.11). At the same time, a carry

from bit (2) into bit (3) (IC23) is computed using equation

4.12 On the next event, ES (i) is computed from the IES(i)'s

and IC23 using equations 4.13 through 4.16 .

IES
{1)

= /»(,,

IESp) = P{2)QG{i)

(eqn 4.8)

(eqn 4.9)

IES {i)
= P {i)

IC2Z = G( 2)+G( 1 )/
>

(
2 )

£5 (I )
= IES (i)

£5( 2 )
= IES ^)

ES {S)
= !C2ZQlES {i)

ES {i)
= [lES {i)IC2z]QlES i4)

(eqn 4. 10)

(eqn 4. 11)

(eqn 4. 12)

(eqn 4. 13)

(eqn 4. 14)

(eqn 4. 15)

(eqn 4. 16)
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Now, after three events, estimated sums for each

4-bit block and the actual carry into each block (Cinb) are

available. From these the sum can be computed using equa-

tions 4.17 through 4.20 .

s [i)
= C<niQ ES {l)

S W = [c^ES^QESp

(egn 4. 17)

(egn 4. 18)

S
{1)

= \c, ni ES (i)ES
{

^QES {i)
(egn 4.19)

S H)
- c,nh ES {l)

ES
[2)
ES (S)

(~)ES {i

(egn 4.20)

Using second level CIA logic, the 16-bit sum is

generated in only four events. Additionally, this design

can easily be extended to the generation of 64-bit sums.

The logic of equations 4.5 and 4.6 which produced the second

level primitives BP and BG can be used again to generate

third level primitives, B3P a cd 33G. These third level

primitives represent the carry propagate and carry generate

properties of 16-bit slices. The carry into each 16-bit

block is provided by implementing equation 4.7 . Thus,

adding one event will provide the carry into each of four

16-bit blocks of a 6 4-bit sum. The logic of equation 4.3 is

then used to generate the carry into each 4-bit block of the

sum and the final sum is computed as before. The final

result is that by adding two events, for a total of six, and

using the same logic as before (i.e. no new circuits need to

be designed), the 16-bit adder can be extended to a 64-bit

adder.
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B. DESIGN FOR TESTABILITY

Another primary objective cf the adder design was to

provide for testability, that is, the ability to logically

detect fabrication errors or circuit malfunctions rather

than visually searching for faults with a microscope.

As the complexity of integrated circuits has grown, the

ability to logically detect faults using only the normally

available inputs and outputs has decreased markedly. As

complexity increases, the number of likely faults to be

tested for and the number of input vectors required to

isolate a specific fault grow rapidly. Unless a design

technique is used which allows the tester to examine the

interior logic of a chip , the order of magnitude of the

number of input vectors required to perform useful logical

testing is prohibitive. Thus, if logical testability is

desired, a design technique that provides for it must be

used.

One such design technique is level sensitive scan design

(LSSD) £Ref. 13]. level sensitive implies that the output

of any logic element is dependent only on the levels of its

inputs. No logic elements are allowed to depend on a tran-

sition such as in an edge triggered flip flop. Scan design

implies that all memory elements in the design are to have

an auxiliary function where their contents are serially fed

to an output pad for examination. This gives a tester the

ability to examine intermediate results. In applying the

1SSD technique to the adder design, the following steps were

taken.

First, all circuits were designed to respond to the

level of their inputs and not to require a transition to

trigger their operation. Second, to insure that each logic

event worked only with stable, non-fluctuating input levels,

the inputs to each event were gated. The input gates were
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opened only after the inputs were stable (i.e. the outputs

of the previous event were stable) and closed before the

input gates of the previous event were opened. Third, a

dual mode latch was used to stcre the output of each logic

event. In the normal mode cf operation, the register

latches the outputs of one lcgic event in parallel and

stores them to be used as inputs for the next logic event.

In its secondary mode of operation, the register stops

taking its parallel inputs and starts to run as a shift

register, shifting its contents onto an output pad.

One of the conseguences of using the LSSD technique is

the large amount of area consumed by the dual mode regis-

ters. In high speed operation, an inverter pair would be

sufficient to store inter-event results. But to permit low

speed testing where the capacitance of a gate may discharge

during one clock phase, and provide the dual mode feature, a

pair of clocked latches with control circuits is required.

C. LAYOUT DESIGN

With the logic decided upon, the next step was to create

the layout of the adder. The lcgic consisted of four events

to produce the sum. Another event was needed to latch the

input data onto the chip. A two-phase clock was needed to

insure that two adjacent events did not run simultaneously

(insuring stable inputs to each event). To make the output

of the adder compatible with the input to another adder, a

one event delay was added. This insures that the output of

one adder does not change while a second adder is using the

sum from the first as an input. With two 16-bit addend

inputs, one carry-in input, one power supply (Ydd) input,

one reference (GND) input, a 16-bit sum output, one carry-

out output, and two clock inputs, ten pads were left from a

standard 64-pin chip for register mode control input and

register (shift mode) output. Since the design called for
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five registers, one for each logic event and one for

latching the input data, five pads were used for input of

the register mode control signals and five were used for the

registers to serially output their contents. With the

required inputs and output identified, the preliminary floor

plan shown in Figure 4.2 was created.
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Figure 4.2 Preliminary Chip Floorplan.
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The first circuit designed was the dual mode latch of

Figure 4.3 Here the circuit is designed to latch the IN

level when Control is low (Control is high) and phil is high

CON

JL

in

CON

shift
in
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ph£L

A
J phil

—

C

I -l I
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fH I <

'

1 H

T 4
phil
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^
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i r
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phil

—

C

phil

ph

T
^ A

shift
out

i r

phil

4-" 'I <

Figure 4.3 Dual Mode Latch.

(phi 1 is low). When phil goes low, a copy of the input is

also stored in the second latch and becomes available at

shift-out which is connected to shift-in of the next latch.

When control goes high, the IN signal is blocked and the

latch takes its input from the register to the left. The

shift-in of the leftmost latch in a register is tied to

ground. Versatec plots of the actual layouts of this dual

mode latch and the other circuits described in this section

are given in Appendix E.

The ,AND gate used was corstructed from a NAND gate

followed by an inverter as shown in Figure 4.4 Similarly,

the OB gate was constructed frcm a NOR gate followed by an
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inverter (see Figure 4.5). Although logic implemented using

these AND and OR gates is more area consuming than the same

logic implemented in NAND and NCR gates only, the penalty is

not severe because they were used infrequently in the final

design.

Figure 4.4 AND Gate.
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Figure 4.5 OB Gate.

The exclusive OR gate (XOE) was constructed from two

inverters and three NAND gates as shown in Figure 4.6 .
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Thougii this design is considera hly more area consuming than

the XCE gate of Figure 3.1, it was selected because the RNL

circuit simulator could correctly model its operation.

Figure 4.6 Exclusive OR Gate-

More complex logic functions were implemented using

programmed logic arrays (PLA) where the outputs are the

logical sum (OR) of the products (AND) of inputs. A single

phase design was needed. A FLA designed to compute when

phil is high, between the time the preceding event had

produced stable outputs (phi2 gcing low) and the time phil

goes low, had to produce the proper sum-of -products results.

To hold down fanout, a dynamic structure was needed so that

inputs could be applied to a single type of transistor. To

prevent steady state power consumption a precharged dynamic

structure was needed. Because of charge sharing, the prec-

harging must take place while the inputs are present on the

transistor gates of the PLA (see chapter 5, section C, for a

complete explanation of the charge sharing problem in this

PLA structure) . Thus, two distinct events must occur during
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this time period. First, the inputs must be applied and

precharging must take place. Then evaluation must occur.

To cause these two events to occur during a single phase of

the clock, the inter-phase time when both phil and phi2 are

low must be utilized for precharging. The basic structure

of the resulting PLA is shown in Figure 4.7

Figure 4.7 PIA Structure.

deferring back to the flocrplan in Figure 4.2, the

layout of the circuits which perform the logic of each event

are presented in Appendix E. The names assigned to the

layouts are given below. Event 1 consists of a 33-bit dual-

mode latch. Event 2, which computes the P and G primitives

for each bit, is made up of 16 AND gates, 16 XOE gates, and

another 33-bit latch. Event 3, which computes the BP and BG

primitives, The IES (i) f s and the IC23 for each 4-bit block,

is made up of four instances cf PLA82 and a 29-bit latch.

59



The circuit PLA82 is made up of an 8-input, 5-product,

2-output PLA , two XOE gates, ore AND gate, and one OR gate.

Event 4, which computes the ES(i) f s and BC for each 4- bit

block uses four instances of PLA84 to compute the ES(i)'s

and one instance of PLA915 to compute the BC (i) 's and a

21-bit latch. The circuit PLA915 is a 9-input, 15-product,

5-output PLA and the circuit P1A84 is an 8-input, 7-product,

4-output PLA. Event 5 uses four instances of PLA104 to

compute the S (i) f s and a 17 bit latch to store results and

provide the added delay (by taking the output from the shift

out position, the extra clock cycle of delay is generated)

.

The circuit PLA104 is a 10-input, 14-product, 4-output PLA.

With this design, the input to output latency is three full

cycles of a two-phase non-overlapping clock; three cycles of

the clock elapse between the time the addends are presented

to the chip and the time the sum becomes available at the

output. In the first three registers the odd number of bits

is due to the need to store the carry-in value until event

4. In the last two registers the odd number of bits is due

to the need to store the computed value of carry-out.

The resulting final layout of Figure 4.3 shows the

actual on-chip layout locations of each event's logic. In

addition to the logic circuits for each event, the circuits

AMP and AMP5 are also seen. These are driver circuits for

the high fanout control and clcck signals. Each takes as

its input a control signal and produces as outputs the

control signal and its inverse, both driven by 3-micron x

160-micron transistors. This amplifier is the same design

used by the output pads to drive off chip loads.

This final layout represents one implementation of a

pipelined CLA adder designed for testability. The relative

merits of this design and others that may have been imple-

mented can, as yet, only be gualitati vely discussed. The

addition of SPICE 2G7 to the CAE toolbag will provide future
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Figure 4.8 Final Layout.

CMOS designers with the quantitative analysis necessary to

make decisions involving tradeoffs among primary design

objectives.
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This final design, when simulated using RNL, functioned

properly at clock speeds up to 14 megahertz. Testing of the

actual chips produced by MOSIS should give an indication of

the accuracy of RNL's predictions. The following chapter

presents a test plan to check for proper operation of the

adder at low clock rates and to determine the maximum oper-

ating speed.
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7. TEST PLAH

After several iterations of the design-simulate-redesign

loop, a final layout was achieved for the 16-bit pipelined

adder. These iterations provide considerable confidence in

the logical correctness of the layout. Appendix D contains

ENL simulation results for the full adder. In reading these

results it should be kept in aind that the adder requires

three cycles of the two-phase clock to produce the sum. In

the first part of the simulation, the inputs were kept

constant for three clock cycles to facilitate easier reading

of the results. With these steady inputs, simulations were

run to verify the generation of correct sums, concentrating

on those addends that would produce carry propagates and

carry generates across the boundaries of the 4-bit blocks.

The last part of the simulation utilized different inputs

each clock cycle. This was done to test the pipelining

feature of the design, insuring no dependence on repeated

inputs of the addends to produce the proper sum.

After fabrication of the chip, application of similar

inputs to make the same determinations for the actual

circuits will form the initial portion of the test plan. In

this chapter a test plan for the verification of computa-

tional correctness and speed will be presented.

A. INPUTS AND OUTPUTS

The first step in testing the chip will be to connect it

to the required input and output circuitry. To accomplish

this, the identity of the inputs and outputs on each pin

must be determined. Microscopic examination of the chip

will reveal the logo "16-bit Add", located between the GND

and Vdd buses for the pads in the northeast corner (see
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Figure 4.8 which is repeated below for convenience). Using

this landmark, the signals on the pads can be labeled as

follows.

Figure 4.8 (repeated) Final Layout

64



The western edge has sixteen input pads for the addend

A, with the least significant bit, A(1), located at the

northern end. The northern edge of the chip also has

sixteen input pads for the addend B, with the least signifi-

cant bit, B{1), located at the eastern end- The southern

edge has fourteen output pads and two input pads. At its

western end is the GND input pad followed by fourteen output

pads for S(16), the most significant bit of the sum, through

S(3). Following S ( 3) , at the eastern end is the input pad

for Vdd. The eastern edge of the chip has eight input pads

and eight output pads. Starting at the northern end, there

are input pads for phil, phi2, Cin, C0N1 (control signal for

the dual mode register of event 1), C0N2, C0N3, C0N4, and

C0N5. They are followed by output pads' for SREG1 (serial

output from dual mode register of event 1), SREG2, SEEG3,

SREG4, SREG5, Cout, S (2) , and S (1) at the southern end.

To supply power to the chip, +5 volts DC should be

applied to the Vdd pad and volts to the GND pad. All

logical inputs including clocks and control signals should

be either GND for a logical or Vdd for a logical 1.

Simulation with RNL revealed sonie restrictions on the clock

signals. For proper operation, each clock should remain

high for a minimum of 20 nanoseconds and the clock inter-

phase time, when both phil and phi2 are low, must be at

least 10 nanoseconds in duration. For initial testing, to

insure that charge sharing protlems caused by too short an

interphase time, and fanout problems caused by too short a

clock phase duration, are not interpreted as fabrication

errors, the clock speed should be adjusted so that both

above clock parameters are exceeded by one order of

magnitude.

The outputs, like the inputs, are at Vdd to represent a

logical 1 and at GND to represent a logical 0. The circuits

used to measure the outputs should have high input
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impedance, on the order of one megohm. The output pads of

the adder are not designed to handle the current source and

sinx requirements of transistor-transistor logic integrated

circuits. The output measurement circuits should be

constructed using NHOS or CMOS devicesthat are designed to

operate between +5 7clts DC and ground.

B. TESTING FOE CORRECT OPERATION

After connecting the adder to a test harness, the next

step is to verify the generation of correct sums by the

adder. There are several inputs that should be included in

the testing to verify the correct operation of individual

circuits. These are contained i-n Appendix F. In addition

to the test vectors of Appendix F, several randomly selected

input vectors should be tested. If the adder should fail to

generate correct sums, The LSSD features can be employed to

examine intermediate results.

1 . Interm ediate results

With the LSSD design, a tester can leave input

levels constant for a long period of time and use the shift

mode of the internal registers to examine the internal state

of the chip. The rightmost bit of each register is always

available at the output pad for that register. To obtain

the contents of the other bits, the control signal for the

given register is set to and held at logical 1 while the

clock continues to run. For registers 1, 3, and 5 the

serial output will be meaningful and stable while phi2 is

high. The serial output of registers 2 and 4 will be stable

when phil is high. Table 3 lists in order the intermediate

values available at the 5REG (n) output pad when the input

CONn is high.
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TABLZ 3

Register Serial Outputs

Clock
Cycle SEEG1 SHEG2 SREG3 SREG4 SREG

B1 P1 BP1 Cin S.1

1 B2 P2 IES3 BC2 S3
2 B3 P3 IES4 Cout S5
3 B4 P4 BG2 ES2 S7
4 B5 P5 IES5 ES4 S9
5 B6 P6 IES6 ES6 S11
6 B7 P7 IC67 ES8 S13
7 B8 P8 BP3 ES10 S15
8 B9 P9 IES11 ES12
9 B10 P10 IES12 ES14 Cout
10 B1 1 P12 BG4 ES16 S2
11 B12 P12 IES13 BC1 S4
12 313 P13 IES14 BC3 S6
13 314 P14 IC1415 ES1 S8
14 315 P15 BG1 ES3 S10
15 B16 P16 IES1 ES5 S12
16 A1 G1 IES2 ES7 S14
17 A2 G2 IC23 ES9 S16
18 A3 G3 BP2 ES11
19 A4 G4 IES7 ES13
20 A5 G5 IES8 ES15
21 A6 G6 BG3
22 A7 G7 IES9
23 A8 G8 IES10
24 A9 G9 IC1011
25 A10 G10 BP4
26 A11 G11 IES15
27 A12 G12 IES16
28 A13 G13 Cin
29 A14 G14
30 A15 G15
31 A16 G16
32 Cin Cin
33
34

C. TESTING FOR SPEED OF OPERATION

Once the chips containing fabrication errors have been

culled from the chip set returned by MOSIS, the task

remaining is to determine just how fast the adder can run.

Rather than simply increasing the clock rate until the adder

fails, the duration of the time both phil and phi2 are high,

and the interphase time should reduced separately. RNL

simulation indicates that the circuit which generates S4

within P1A104 is the limiting circuit for clock phase dura-

tion (i.e. it requires the longest time to correctly
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evaluate its inputs). RNL simulation also indicates that

the circuits in PLA 104 which generate S1 and S4 are the

limiting circuits for the clock interphase duration.

Since the PLA is constructed of precharged dynamic

circuits, the evaluation clock phase must be long enough to

allow the inputs to drive the outputs to their proper

values, even if the inputs are the same as those of the

previous evaluation cycle. This allows the tester to use a

constant input as the duration of each clock phase is

reduced until the adder produces incorrect results.

Determination of the clock interphase duration limit is

more difficult. This is because the inputs to a PLA must be

changing to cause charge sharing problems to occur. For

Figure 5. 1 Charge Sharing in a PLA.

example, in Figure 5.1 assume that the first set of inputs

is in1=1, in2=0, and that this is correctly evaluated to
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produce out=0 when phil is high. Now assume that the next

input is in1=0 and in2=1, which should also evaluate to

out=0. However, if the precharge time (when the inputs are

present on the gates of Q2 and £3 and phil is still low) is

insufficient, C2 will not be charged to Vdd when precharging

ends (C2 was discharged to zero volts during the previous

evaluation when in1 was high and phil was high). Now, when

evaluation begins (phil going high) the low voltage across

C2 causes Q5 and Q6 to interpret their input as a logical 0.

As a result the output of the Q5-Q6 inverter pair goes high,

causing Q8 to turn on, discharging C4 and resulting in an

output of logical 1, which is incorrect. Table 4 lists the

proper evaluation seguence when precharge time is sufficient

and the improper seguence due to insufficient precharge

time. In this table, for the inputs, output, and capacitor

voltages a 1 indicates Vdd, indicates GND, and X indicates

somewhere in between. For the transistors, a 1 indicates

on, a indicates off, and an X indicates neither fully on

TABLE 4

PLA Evaluation Sequences

Proper evaluation seguence:

'234
phi in C Q 1 out
1 2 12 1234 T;

1 10 0011 1 1000 10 C0

1

10 00 11 010101 1C01
1 01 0011 010101 1001

01 0111 001101 1C01
1 01 0111 1010010C01

Improper evaluation seguence:
phi in C Q 1

1 2 12 1234 1234567890

1 10 0011 1100010C01
10 0011 010101 1C01

1 01 0011 010101 1C01
01 0X11 0011011C01

1 01 oxxo 1010XX0X10 1
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nor fully off. Subsequent inputs of in 1 = and in2=1 may

produce correct results since with constant inputs, each

precharge time will add more charge to C2 until there is

sufficient charge to allow the output of the Q5-Q6 inverter

to remain low.

Thus, to check for charge sharing problems in the

circuit of Figure 5.1, the inputs must alternate. Likewise,

in PLA104 to check for charge sharing errors in output S1,

its inputs must alternate between ES1=0, BC=0 and ES1=1,

BC=1 as the interphase time is reduced. This can be accom-

plished for all four instances of PLA104 simultaneously by

alternating inputs of

A = 0001 1001 1001 1001

B = 0000 1000 1000 1000

Cin = 1

and

A = 0000 0000 0000 0000

B = 0000 0000 0000 0000

Cin =

To check for charge sharing errors in S4, the inputs to PLA

104 must cycle between BC=1, S4=0, S3=S2=1,S1=0 and

BC=0, S4=0,S3=S2=S1=1 . This may be accomplished for all four

instances of PLA104 simultaneously by alternating inputs of

A = 0110 1 1 10 1110 1110

B = 0000 1000 1000 1000

Cin = 1

and

A = 011 1 0111 0111 0111

B = 0000 0000 0000 0000

Cin =

This maximum speed testing assumes that RNL has correctly

identified the slowest circuits on the chip. RNL
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simulations have indicated that the next slowest circuit

(PLA915) is at least 20% faster than PLA104 (16.0 nsec for

PLA915 vs. 20.1 nsec for PLA1C4). Also, ail other PLA's

functioned properly with a 5 nsec interphase time.

Should PLA104 prove to be the speed limiting circuit for

the chip, the actual failure speeds of the chip can serve as

an indication of the accuracy of the RNL simulation for

future designs.
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VI. CONCLUSIONS

The experience gained in the design of the adder coupled

with the clarity of hindsight leads to the following conclu-

sions and recommendations.

A. THE CMOS TECHNOLOGIES

The CMOS technologies will play a role of steadily

increasing importance in the "VLSI designs of the future.

MOSIS is already offering, on an experimental basis, CMOS

Bulk p-well fabrication with a one-micron minimum feature

size. A scalable set of design rules, to allow initial

fabrication in 3-micron CMOS fcr design verification before

the far more expensive 1-microc process is used, is being

developed.

In the private sector there is considerable research

aimed at finding an insulating substrate material that does

not have the variability and thermal problems of sapphire.

Progress in this area will remove the drawback caused by

latchup tendencies in CMOS Bulk.

B. CMOS CAD TOOLS

Though the design tccls currently available at NPS consti-

tute a complete set for the design of CMOS Bulk p-well

circuits, the recent CAD tool set released by the

University of Washington/Northwest VLSI Consortium, Release

2.0 [Ref. 11 ], coupled with University of California at

Berkeley Winter 1983 CAD tools, represents a more complete

and cohesive set for CMOS design. When sufficient disk

space on the Vax 11-780 beccmes available to load the

Release 2.0, implementation of the Release 2.0 CAD package
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is highly recommended. An added benefit of installing the

Release 2.0 package is the cell library provided. The

library contains several basic standard cells with known

performance characteristics. The library also contains the

standard pad frames used by MOSIS. Though MOSIS does not

require the use of standard pad frames on designs submitted,

their use does speed up fabrication.

As mentioned earlier, as socn as SPICE 2G7 is available,

its addition to the CAD toolbag would be most advantageous

to a CMOS designer.

C. DESIGH OF THE ADDER

If the design of the adder were to be undertaken again,

a different approach to generating the sum would probably

have been used, especially if the new CAD tools mentioned

above were available. The logic approach to the computation

would still involve CLA addition, but it would be accom-

plished using combinational logic and library cells rather

than PLA*s. Testability would probably suffer greatly, but

effort would be made to reduce the sum generation tc two

logical events. Though the level of testability provided by

the current design should provide considerable insight into

CMOS Bulk p-well performance and CAD tool accuracy, there

would be no need to repeat the investigation.
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APPENDIX A

SPICE MODEL CABDS FOE 3-MICRON CMOS-PW DEVICES

CMO* models for MOSIS 3-micron CMOS Bulk p-well devices:

Fast Models

.model n nmos vto=0.4 tox=0-7e-7 lambda=1e-7 ld=1e-6

+xj=1.1e-6 gamma=.3 uo=500 cbd=5e-4 cbs=5e-4

.model p pmos vto=-.4 tox=0. 7e-7 Iambda=1e-7 ld=1e-6

+xj=1.1e-6 gamma=.3 uo=300 cbd=3.5e-4 cbs=3.5e-4

Slow Models

.model n nmos vto=1.0 tox=Q.8e-7 lambda=1e-7 ld=.5e-6

+ xj = 0.6e-6 gamma=1.3 uo=400 cbd=6e-4 cbs=6e-4

.model p pmos vto=-1.0 tox=0.8e-7 lambda=1e-7 ld=.5e-6

xj=0.6e-6 gamma=-9 uo=200 cbd=4.1e-4 cbs=4.1e-4

MIT Models for MOSIS 3-micron CMOS Bulk p-well devices:

Slow - Slow

.model nss nmos level=2 rsh=20 tox=650e-10 ld=.25e-6

+xj=.35e-6 cj=6e-4 cjsw=4e-1C wo=475 vto=1.2

+cgso= 1.3e-10 cgdo=1.3e-10 nsub=1.5e16

+ vmax=5e4 pb=.7 mj=.5 mjsw=. 5

+neff=2.5 ucrit=8e4 uexp=.25

.model pss pmos level=2 rsh=80 tox=650e-10 ld=.25e-6

+xj=.35e-6 cj=4.1e-4 cjsw=2.5e-10 uo=190 vto=-1.2

+cgso= 1.3e-10 cgdo=1.3e-10 nsub=5e15 tpg=-1

+vmax=5e4 pb=.7 mj=.5 mjsw=.5

+neff=2-5 ucrit=8e4 aexp=. 15
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Fast p-type Slov n-type

.model nfs nmos level=2 rsh=30 tox=600e-10 ld=.25e-6

+xj=.35e-6 cj=6.0e-4 cjsw=4. Oe-10 uo=475 vto=1.2

+cgso=1.9e-10 cgdo=1.9e-10 nsub=1.5e16

vmax=5e4 pb=.7 mj = .5 mjsw=.5

+neff=2.5 ucrit=8e4 uexp=. 25

.model pfs pmos level=2 rsh=20 tox=600e-10 ld=.40e-6

xj=.60e-6 cj=2.0e-4 cjsw=1-0€-10 uo=270 vto=-0.6

+ cgso=2.0e-10 cgdo=2.0e-10 nsub=0.3e15 tpg=-

1

+vmax=5e4 pb=.7 m j=. 5 mjsw=. 5

+neff=2.0 ucrit=8e4 uexp=. 15

Past p-type Fast n-type

.model Lff nmos level=2 rsh=10 tox=550e-10 ld=.40e-6

+xj=.60e-6 cj=3.0e-4 cjsw=2. Oe-10 uo=675 vto=0-6

+cgso=2.5e-10 cgdo=2.5e-10 nsub=0.5e16

vmax=5e4 pb=.7 mj=.5 mjsw=. 5

+nef f=2.5 ucrit=8e4 uexp=. 25

.model pff pmos level=2 rsh=20 tox=550e-10 ld=.40e-6

+xj=.60e-6 cj=2.0e-4 cjsv=1.0€-10 uo=270 vto=-0.6

+cgso=2.5e-10 cgdo=2.5e-10 nsub=0.3e15 tpg=-1

vmax=5e4 pb=.7 mj=.5 mjsw=.5

+neff=2.0 ' ucrit=8e4 uexp=. 15
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Slow p-type Fast n-type

.model nsf naos level=2 rsh= 10 tox=600e-10 ld=.40e-6

xj=.60e-6 cj=3.0a-4 cjsw=2.0€-10 uo=675 vto=0.6

+cgso=2.0e-10 cgdo=2.0e-10 D=ub=0.5e16

+vmax=5e4 ph=-7 aij=.5 mjsy=.5

+neff=2.5 ucrit=8e4 uexp=.25

.model psf pmos level=2 rsh=80 tox=600e-10 ld=..25-6

+xj=-35e-6 cj=4. 1e-4 cjsw=2.5e-10 uo=190 vto=-1.2

+cgso=1.2e-10 cgdo=1.2e-10 nsub=5.0e15 tpg=-1

vmax=5e4 pb=.7 mj=.5 rajsw=.

5

neff=2.0 ucrit=8e4 uexp=. 15
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APPENDIX B

DNII MAHUA1 ENTET FOB EOLEC

RULEC (CAD) CAD Toolbox User's Manual RULEC (CAD)

NAME
rulec — Compile design rules for Lyra

SYNOPSIS
rulec [—lo] rules

DESCRIPTION
Rulec is a shell script with the following processing steps:

i) .
The actual Lyra rule compiler is invoked to translate the symbolic rule

description, rules. r, to lisp code, rules.

L

ii) The lisp compiler, Liszt, is invoked to compile rules.l to -rules.

o

iii) rules.o is loaded into Lyra.proto to generate an executable lisp Lyra,

rules.

iv) The intermediate files rulesX and rules. a are deleted.

The following options are supported:

—1 (load 011I7) No compilation is done. Previously compiled rules, rules. o,

are loaded into Lyra.proto to generate an executable Lyra rules. This

option is useful mainly at Berkeley, where Lyra.proto changes frequently.

—o (save object) Name.o is not removed. Enables "rulec 4 rules' in the

future.

FILES

~cad/bin/rulec — rulec shell script.

~cad/lib/lyra/Rulec 1 — lisp rule compiler
~cad/lib/lyra/Lyra.proto — Lyra sans compiled rules code.
^cad/lib/lyra/^r — standard rulesets.

""cad/lib/lyra/DEFAULTS -- gives default rulesets for Caesar technologies.

SEE ALSO
Lyra (CAD)
Liszt (1)

AOTHOS
Michael Arnold.
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APPENDIX C

PBESIM USEE'S GUIDE

Config file: used to calibrate ENL

capm2a .00000

capm2p .00000

capma .00006

capmp .00000

cappa .00006

cappp .00000

capda .00010

capdp .00060

cappda .00010

cappdp .00060

capga .00057

lambda 1.0
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PRESIM User's Guide

UWINW VLSI Consortium

Department of Computer Science

University of Washington

Seattle. WA 98195

(This document is based on portions of the document 'User's Guide to NET, PRESIM and

RNL/NL,* by Christopher J. Terman, Laboratory (or Computer Science, Mi.T., Cambridge, MA
02139.)

One must first convert the sim file to a network file suitable for use by RNL or NL - to do this

we run PRESIM:

presim foojim foo [config] options...

which converts the file foo.sim into a binary file for RNL/NL called foo.

The -f option:

Suppresses the sum-of-products formation. This may be desired if you think

sum-of-products is formed wrong otherwise the advantages of the transistor and

node reduction make this option unattractive.

The -« option:

•cfile^ninvalue

writes a list of node aames and capacitances to the specified file. Only capacitances larger than min-

value will be included.

The -t option:

•tfllejninvalue

writes a list of transistors and RC values to the specified file - there are two entries for each transis-

tor. The R's come from the size of the transistor, Ct from the source/drain capacitance. Only RC
values larger than minvalue will be included.

The -p option:

-presist .voltage

provides a worse-case estimate of the circuit power consumption by assuming that all the pullups

(DEP or LOWP devices with drain-VDD) are all on simultaneously. "Voltage* specifics the supply

UW/NW VLSI Release 2 - 1 - 1CVV83
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UW/NW VLSI Consortium PRESIM User's Guide

voltage, (or example *-pi* specifies a VDD or 5 volts. The result is printed liter PRESEM completes its

other processing. When figuring the resistance of a pullup device the 'power* characteristic resistance

as set in the coring file is used.

The optional third file (con fig) specifies various electrical parameters. The internal values (the

defaults) are a generic set. They do not reflect any particular fabrication process . (ITW-NW VLSI
NOTE: A configuration file is provided in the source code that duplicates the internal settings as an

example of how this ale could be used. In addition we note that, the resistor values are stored first

sorted by width, then by length not by the ratio. Values not explicitly provided in the configuration

file are estimated by Linear interpolation.) The formal of this file is lines of the form

parameter value comments-.

Lines beginning with '? are treated as all comment. The parameter names and their default values

are:

; configuration 51e for "standard" MFC process

capm2a .00000

eaptnlp JXWOO

capma .00003

captnp .00000

cappa .00004

cappp DOOOO

capda .00010

capdp 00060

cappda .00010

cappdp D0060

capga .00040

lambda 2.5

2nd metal capacitance - area, pf/sq-microu

2nd metal capacitance - perimeter, p£/micron

1st metal capacitance - area, pf/sq-micron

1st metal capacitance - perimeter, pf/micron

poly capacitance - area, pf/sq-micron

poly capacitance - perimeter, pf/micron

n-diffusion capacitance — area, pf/sq-micron

n-diffusion capacitance - perimeter, pf/micron

p-diffusion capacitance - area, pf/sq-micron

p-diffusion capacitance - perimeter, pf/micron

gate capacitance - area, pf/sq-micron

microns/lambda (conversion from .sim file units

to units used in cap parameters)

lowthresh OJ ; logic low threshold as a normalized voltage

highthresh 0.8 ; logic high threshold as a normalized voltage

cntpuilup ; < > means that the capacitor formed by gate of

; pullup should be included in capacitance of output

; node

diffperim ; < >0 means do not include diffusion perimeters

; that border on transistor gates when figuring

; sidewall capacitance (*)

subparea ; < >0 means that poly over transistor region will not

; be counted as part of the poly-bulk capacitor {')

LTW/NW VLSI Release 2 10/1/83
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diffext diffusion extension for etch transistor, ije., each

transistor is assumed to have a rectangular source

and drain diffusion extending diffext units wide and

transistor-width units nigh. The effect of the

diffusion extension is to add some capacitance to

the source and drain node of each transistor —

useful when processing the output of NET to improve

the capacitive loading approximations without adding

explicit load capacitors, diffext is specified in

lambda (it will be converted using the lambda factor

above).

resistance channel context width length resist

this command specifies the equivalent resistance for a transistor

of type channel with the specified width and length. Transistors

matching this entry will have the specified resistance; Linear

interpolation is done if the width and/or length is not matched

exactly.

channel is one of "enh", 'dep', "intrinsic*, low-power",

"puUup*. or "p-chan"

context is one of "static", "dynamic-high", "dynamic-low", or 'power*

width is given in lambda

length is given in lambda

resist is given in ohms

(") These paramters should be 1 only when processing the output of

the node extractor. They cause various corrections to be made
to the interconnect component of a node's capacitance - usually

only extracted sim files have information regarding interconnect

capacitance.

PRESIM uses these parameters in calculating the capacitance for each electrical node and the resis-

tance for each transistor channel.

UW/NW VLSI Release 2 3- 1IVU83
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APPENDIX D

ADDER SIMULATION

The following two listings are; (1) the RNL command file

for the entire chip and (2) the results of running that

command file. In addition to this overall testing, all the

layout of Appendix G were simulated individually. A nice

feature of RNL is the indication of when a watched node

changes state. Thus, by making all the outputs of a circuit

watched nodes, RNL will provide the minimum time duration

for a clock cycle to produce the outputs (the longest time

indicated by the simulation). This can be confirmed by

running the simulation with a faster clock, resulting in

outputs of X (neither 1 nor 0) where insufficient time has

been allowed.

RNL simulation to determine the minimum time for prec-

harging the PLA circuits is only slightly more involved.

For each product term in the PLA, alternating inputs are

selected that will result in maximum amount of N+ diffusion

needing to be charged from vclts to Vdd. Then as these

inputs are alternated, the PIA precharge time is reduce

until the circuit fails to produce correct results. For the

PLA ' s in the adder, visual inspection for the product term

with the longest precharge requirement was done by looking

for the longest N+ diffusion line which must be charged

through the maximum number of transistors. The visual

inspection results were confirmed by ENL simulations.
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aaea=ObOOOOOCOOOOnooOOO
bbbb=0b00000000C0000C00
gumsObO 00 000 00 00000000

Step beains !
i 350 ns

bl6=l a

bl5=J a c

bl4=l a

bl3=l e

bR=l a

b7 = l a

b6=l a o

b5=l a

al2=l a o

all = l a o

10=1 a o

a9=l a o

a4=l a o

a3=l a o

a2=l a o

al=l a o

rhl2=0 a o

87



Pec 6 15:23 1984 chip. loo Pace 4

Step beolns 6 350 ns.
onil=l a

Sten beolns P 395 ns.
pnii = a o

Step bealns a 3^5 ns.
phl?=l »

state Is now:
Current timer 420
clocl<s = 0b01 cln = cout=0
aaas=nbOonoiiiiooooilil
bbbhxObl 11100001 1 1 10000
SUirrObOOOOOOCPOOOOOOOOO

Step beolns a ^20 ns.
oni?=o a o

Ster bealns a 430 ns.
phll=l a n

Step bealns e 455 ns.
DhH=0 a o

5tec beclns a 465 ns.
obl2=l a o

state Is now:
Current tlm*= 490
cloc*s=0fc0l cln=o cout=0
aafla = Cb0000llHOOO0iiii
bbbbactlinooooillioooo
SUn- = Ot00OO00C00OOOOOOO0

Ster beolns a 49C ns.
pni2=0 a o

Ster beolns e 5^0 ns,
phll=i a

Step bealns £ 525 ns.
phll=P e o

Step beolns P 535 ns.
phl2=l e n

slbsl e 14,6
s9=l a 16.7
sll=l a I6.7
sl3=l b 16.7
Sl5=l a 16.7
S7=l B 16.7
s5=l fi 16.7
s3=l e 16.7
sl4=l P 16.8
812=1 e 16.

P

SlO=l e 16.

F
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S8 = l a 16 ."

s6=l e lfc .8

S4=l p 16 .<?

s2=i a 17

Sl = l 3 19,.1

state Is now
Current ti""e = 560
clocKs = 0b01 c 1 n = o c o i; t =

aaaa=0t00001 1 HOOOOi i n
bbDhrCbl 11 100001 11 innoo
sumsOfcOHlll 11 111 ? 1 l ill

Step
b9=l
bl = l

bl6 =

tl5 =

bl4 =

bl3 =

e« =
b7r0
b6 = n

C5 = C

rhi?

tealns ? 560 ns
e

e

C a o

C a o

a o

a o

9 C

a

a

S t e r beclns a 570 ns.
Dhil=l p

SteD beolns ? 59? ns.
nhil=0 a

Stec beolns a 605 ns,
nhl?=l e

state Is now:
Current tiire* 630
clocks=Cb01 c 1 p = n c u t =

aaaa=ObOOOC11110000llll
bbbbsObOOOOOOOlOO'iOOOOi
SumsObOl 1 11 1 1 1 1 1 1 1 1 11 11

Step beains a 630 ns.
nni2=0 a

Step beolns a 6^0 ns.
phll=l a

Stec beclns a 665 ns.
ohil=0 a

Step beclns a 675 ns.
phi2=i a

state Is now:
Current tin>e = 700
clocks=0b0l cin=o coutsO
a«aa = OtCO0Oi 111 00001 in
pbbb=ObOooooon 100000001
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sum = ot«oi 111111111111111

Step beolns a 700 ns.
Dhi2=0 a n

Stec bealns s 710 ns.
Dhllsi e c

Stec beoins ? 735 ns.
Dhil=r> a n

Step beolns e 745 ns.
nnl2=l e n

sl6=0 e 14.2
s9srt e 16.4
sll=0 e 16.4
Sl5=0 a 16.4
S"J = ? 16.4
s3=0 P 16,4
Sl«=0 » 16.5
Sl2=0 g 16.5
Sl0=0 <? 16.5
Sfl=n a 16.5
S6 = (? 16,5
S4=0 s 16.5
S2=0 C lb.7
Sl=0 « 20
state Is now:
Current times 770
clocXssObOl c 1 n = cout=o
aaaa = 0r0OOOHlJ00COllu
bbtbsObOCOOOOOl 00000001
SUfsObOOOOlOOOOOOOlOCOO

Step becins 6 770 ns.
cln=l a o

Dhl?=0 a

Step beolns a 7 q r. ns.
phllsi e o

Stec bealns 9 805 ns,
phllso e o

Step bealns I 815 ns.
Dhl2=l a o

state Is now:
Current times 84u
cloctcssObOl cln = ] cout =
aaaa = Ofc0nooilll0O(i0llll
thbhsObOOOCOCOlOOOOiOOl
SUmsObOOOOlOOOOO 010000

Step beolns a 840 ns,
chi2=0 a o
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Step beoins P P50 r.s.

phll=l »

Step beoins P 875 ns.
phll=0 e

Ster beoins £ 895 ns.
phl2=l a o

state Is no*:
Current tiroes 910
clock-s = ObUl cln = l cout =

aaea = 0b000ruillooocun
bbbb=0b00O0CG01O0O00O01
sum=Ob0000100P000030000

Step begins a 9 1 ns.
phi2 = s>

Step beoins « 920 ns.
phi 1 = 1 9 i

Ster beoins a 9 <j 5 ns.
pnll=0 P

Step beoins a 955 r>s.

phi2=l e o

sl=l a 19.3
state Is now

:

Current tlme= 980
clocks=0b01 cln=l cout=0
aaaa=0b0000111100ncilll
bbbb=0b00nn00010O000001
SUirsObOOOClOOOOO^OlOOOl

Stec beclns a 9R0 ns.
a 1 6 = 1 a

al5=i a

al4=i a o

al3 = l e

a6=l a

a7=l a

a6=l a

a5=l a

b<J = a c

bl=0 a

cln=C a

ohl2=0 a o

Ster beoins a 990 ns.
Dhll=i p o

Step beoins P 1015 ns.
phll=0 a o

Steo beoins e 1025 ns.
ohl?=l a n
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state Is now:
Current tlires 1^50
clccKssOt-Ol cln=o eout=0
*aea=0blllli l 1111111111
bbhbcotoooonoooooooooco
SUmrObCOOOlOOCOOOOlOOOl

Step beqlns 9 1050 ns,
phl2=0 a o

Stec beclns
Dhl1=l a

e 10*0 ns.

Sten beolns 1085 ns.
phll=0 a

Sten becins a 1095 ns.
phl2=l 9

state Is now

:

Current times 112C
clcctcs = Ob01 cln = (* couts"
aaaasOfcll 1111111111 11 11

bbbb = Cc000 00OOOoo0000()
SUmsObOCOOlOOOOOOOlOOOl

Ster beolns e 1120 ns,
Dhi2 = C a r»

Ster bealns a 1130 ns.
chllsl a

Step beolns 9 1155 ns.
Dhll=0 a

Step bealns 9 11*5 ns.
phi2=l »

sl6=l e 14.6
s9=l e 16.7
s 1 1 = 1 e 16.7
Sl5=l f 16.7
s7=l a 16.7
s3=l P 1*.7
Sl4=l a 16.

P

sl2 = l a 16.

P

sl0=l a 16.8
«;8=1 a 16.8
s6cl a 16.8
s4=i a i*.s
s2=l a 17
state Is now:
Current tlrre = 1190
cloc<s=0b0l cln=0 cout=o
aaea = Ohlllll 1 l'l 11 11111 1

bbbb=0b0o00000000000000
sui" = 0b01 111111111111111
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S t e n bealns B 1190 ns.
cin=l B

Dhl2=0 e o

Ster bealns B 1200 ns.
onil=l e

SteD bealns fl 1225 ns.
nnll=o a n

St en bealns B 1235 ns,
phi2=l b o

state Is now:
Current tlme = 1260
cloc* s=Oh01 cln=l cout=0
aaap = otllllllllllllll 11
bbbb=0bOOOo0000O000C000
sumsObOllllllllllUltll

Stec beolns e 1260 ns.
oni2=c e

Ster bealns » 127" ns.
ohllsi e

SteD bealns B 12Q5 ns,
pMl = o a o

Ster beolns a 1305 ns.
nhi2=l B o

state Is now:
Current tlme= 1330
clocKs=0b01 cln=l cout =

aaae = 0fcl

H

111111 1111 111
bbbnsObOOOOOOOOOOOOOOno
suf=0b01 111111111111111

Stec bealns & 1330 ns.
nni2=0 B

Ster berins B 1340 ns.
onil=l '

Stec bealns fl 1365 ns.
phll=0 s o

Ster beolns B

ohl2=l P o

SlftsO B 14.2
s9=0 B 16.4
Sll=0 B 16.4
Sl3=0 B 16.4
S15=0 fl 16.4
S7r0 6 16.4
S5=0 o 16.4
S3=0 B 16.4

1375 ns.
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Sl4 = 9 16.5
Sl2=0 b 16.5
610=0 a 16.5
sflsrt a 16.5
sfi=0 « 16.5
S4=0 a 16.5
s2 = o a 16.7
sl=0 9 20
cout=l a 21.1
state is no*:
Current times 1400
clocKs=0b01 cln=l couts]
aaeasotllll 1111111111!)
hbbbsOcOOnooOOOOOOOOOOO
suir =OM n oooonooccooooco

Ster beclns
hl=l a C

cin=0 9

ohl2=0 a

ic 14 n s .

Ster beolns ° M10 ns,
pnii=i a n

Step healns B 1^35 ns.
pnll=C a

Ster bealns ? 1445 ns.
phi2=l b

state Is now:
current times 1470
clocks=0b01 ein = coutsi
aaaa=Orll 1111111111111)
brbb=0bO0O000000000O001
sumsOfclOOnooOOOOG 0000^0

Stec bealns 9 1470 ns.
phl?=0 »

Step peclns * 1^90 ns.
pnll=l a

Step bealns £ 1505 ns.
phll=0 e

Step beolns P 1515 ns.
phl2=l a

state Is nowi
Current time= 1540
cloclcssf'bOl cln = C cout=l
aaaa = Obllllllllll 111111
bbbh=0bO00000O0OO000O01
SUirsOblOOOOOOOOOOOOOOOO

Step bealns a 1540 ns.
nhi?=0 a n
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Step beains P. 1550 ns.
onilsl a o

Step beains a 1575 ns.
onil=0 e

Step beolns 9 1585 ns.
phi?=l e o

state Is new:
Current time? 1610
cloclcs = Ob01 cln = coutsl
aaaa*Oblllll lllllllll 11
bbchsotooonnooooooooooi
SUm=0blO0OO00000O0O0O00

Sten beolns * 1610 ns.
bl = e

ohi7=0 a

Step beolns P 1620 ns,
Dhll=l a o

Step begins a 1645 ns.
DHl1=0 6

Sten reains * 1655 ns.
phl?=l a i

state Is now:
Current tirre = 1680
clocks=0b n l cin=o coutsl
aaae=0bll 11111111111111
bbbbsObOOOOOOOOOOOOOOOO
SUmsOblOOO 000000000000

Step beolns 9 16P0 ns.
al6=0 a o

al5=0 P

al4=n e o

al3=o p o

el2 = C a

all=0 e o

aioro a o

a<*=0 a o

afl=0 a o

a7 = a o

a6=0 a o

a5=0 a

a* = a o

a 3=0 a c

a2=o e c

aleO a

pni2=0 a o

Ster beolns P 1690 ns,
philxi a n
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Steo beolns P 1715 ns.
Dhll=0 P

Ster bealns P 1"?25 ns.
chJ2=l *

state Is no«:
Current tlrre= 1750
cloocssOfOl cln = o coutal
aaae = 0fc00C. 000000 000000
bbbb=0bO00O000C)oocoC00
SUn-sOfclOuOOOCOOOOOOOOOO

Stec beolns f 1750 ns.
b 1 6=1 a

b15=1 e

bl4=l P

bl 3=1 B C

bl2=l 8

bllsl p

blOsi P o

b9 = l e

b8=l s

b7=l a

h6=l e

b5=l B

^4=1 ?

b3=l a

b2=t P

hl=l P

ohl2=o s o

Ster bealns a 1760 ns.
rMll=l p

Steo bealns a 17H5 ns.
onil=0 a o

Ste
chl
sib
s9 =

sll
sl3
sl5
S7 =

s5 =
53 =

s!4
sl2
slO
sfi =

s« =
54 =

s? =

si*

^ecins
= 1 a o

1 a I4.fi

a 16.7
1 a 16.7
1 a 16.7
1 a 16.7
a 16.7
a lb.

7

a 16.7
1 P 16.8
1 P 16.8
1 a 16.

B

a 16.8
a 16.6
a 16.

a

a 17
a 19.1

<? 17Q5 ns
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cout = P 7.2,9

state i s now

:

Current times l a 20
clockssObOl cln=P cout=0
aaaa = 0b00OOC0OOC0OO0<^0O
bbbbaOfcllll] 111 1 11 1111

1

SUffsObOllllll 1111111113

Step beolns P 182^ ns.
al? = l 8

Dni2=o e o

Ster beolns ? 1R30 ns.
nnii=i 9 o

Ster beolns 8 1*55 ns.
Phll=0 8

Stec beains 9 1965 n s,
Dhi?=l 8

Sl6rO E 14.2
s9 = 8 16.4
SllsO 8 16.4
Sl3=0 B 16.4
Sl5r0 8 16.4
S7=0 8 36.4
S5s0 P 16.4
S3=0 « 16."
Sl4=0 e 16.5
Sl2=0 P 16.5
SlO=0 e 16.5
s8=n e H,,5
S6=C 8 16.5
S4=0 6 16.5
S2=0 8 18.7
Sl=C a 20
state Is now

:

Current tirres 1890
clocks=PbOl cir = o cout=o
aaaa=0bCOO0l00OOOOO0O0O
bbbb=Otl 111111111111111
SUirrObOOOOOOOOOOCOCCOOO

Ster beolns a 189n ns.
bl2=0 a

Dhl2=0 e

Step beolns e 1900 ns.
ohll=l a

Ster beolns 9 1925 ns.
chll=0 e

Ster beolns B 1935 rs .

unl?=l e

sl6=l a 14.6
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s9 =

sU
513
sl5
s7 =

s5 =

s3 =

sl4
s!2
slO
sfl =

S6 =

54 =

S?=

sl =

sta
Cur
clo
aaa
hhb
SUff

a 16.7
1 9 16.7
1 16.7
1 » 36.7
a 16.7
e 16.7
B 16.7

1 3 16.

9

1 a 16.8
1 B 16. P

S 16.9
a 16.8
a 16.8
P 17
e 19.1

e Is now

:

ert times I960
Ks=0b01 clnsc cour=o
sobooooiooonoooonoo
sOM 11101 11 11 ill 111
Ohoim i j liiuiiiii

Sttr beains B i960 ns,
cln=l e

pni2so b o

Stec renins P 197 ns
d n 1 1 = 1 P o

Ster beoins
nnilso e

8 1095 ns

Stec peclns fc 200? ns.
Dnl2si e p

SlbsO B 14.2
Sl3=0 B 16,4
Sl5sP B 16.4
Sl4sC B 16.5
Sl2s0 a 16.5
COUtsl 6 21.1
state is no*:
Current timer 2030
cloc*s=0b01 clnsi coutsl
naaesObOOOOlOOOOOOOOOOO
bbbbsnbl 111011111111111
sumsObloOOOOl 1111111111

Ster beains
bl6=0 a

bl5=0
hl4=0 B

bl3s0 P

bllsO P

M0 = P

b9sn e

hB=n » C

2030 ns.
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b7=n 9

b6so e

b5 = a

b4=0 a

b3 = a

b2 = e

blatO a

a 12 = "a n

pni2=o a

Stec hecins a 2040 ns,
Dhilsi a o

S ten benins 6 2 n b 5 ns.
rhil=n a o

Ster beairs a 2075 ns.
phi2=l a o

slb = l a ii.fi

16.7
16.7
16. 9

16."
cout=P a 22.9
state Is now:
Current times 210n
clocics = 0fc01 cln = l cout =

aaaa=0h0000000000000000
nbbb=ObCOOOOOOOnnoCOOOO
SUWaObOllllll 11U11 1111

sn=i e

sl5 = l a

si4=i a

sl2 = l e

Ster beolns a 2100 ns.
cln=0 a o

chl2=0 a o

S t e d beains a 2110 ns.
phll=l a o

Stec beains a 2135 ns.
phll=0 P

Step beains 6 2145 ns.
phl?=l P

sl6 = B 14.2
S9 = 9 16.4
Sll=0 B 16.4
Sl3=0 B 16.4
Sl5=0 e 16.4
S7=0 P 16.4
S5=0 B 16.4
s3=0 e 16.4
Sl4=0 a 16.5
sl?=0 e 16.5
Sl0=n e 16.5
sfl=P P 16.5
s6=0 a 16,5
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S4=0 a 16.5
s2 = a 16.7
S1=0 e 20
cout=l » 21.1
state is now:
Current times 2170
cloci«cs = ObOi cln = cout=l
aaaa=ob0onoocooooooooco
bfcthsOt^O^OOOOOOOOOOOno
sum=0blO000000000OCTO00

Stec beains a 2170 ns,
ohi2=0 a

Stec beclns a 21«n ns.
dM1 = 1 a

Stec becins a 2705 ns,
rhil=0 c

Ster beains f 2215 ns.
Dhi?=l 9

cout=0 B 22.9
state is now;
Current timer 2240
clocKs=0b0l cjn=0 cout=0
aaaasoboooooooooooononn
cobb=ObOOOOioOOOCOOonoo
suirsotooooonooooonooooo

Ster beains fl 2240 ns.
nhl2=0 e

Sten *ealns a 2250 ns.
Dhll=l P

Ster beclns e 2275 ns.
onil=0 «

Stec beains a 22P5 ns.
chi2=l »

sl=0 a 20
state is now:
Current tlire= 2310
cloc»cs = Ob03 cin = cout =

aaaa=0b0OO0OOOOOO00C00O
bbbb=Ob0COO000OO0OOO0OO
SUffcObOOOOOOOOOOOOOOOOO

Stec beclns a 2310 ns.
ohl2=0 a o

Ster becins a 2320 ns.
ohll=l a o

Ster beolns a 2345 ns.
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ohil=0 f

Step beclns £ 7355 ns.
phl2=t a o

state Is now:
Current ti^e* 7380
clcc*s=0b01 cln = c cout = n

aaea=0fc00O0O0000C0C0000
bbbb=0b0O0O1CO000OOOOC0
S'.im = 0b000O0^000n0O000O0

exit
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LAX0U1S

LEGEND

>;-.•-.'

Contact Cut

p-well

P+ doping

polysilicon

Diffusion

Metal
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AND Gate
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A + B

XOR Gate
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TEST VECTORS

Addend A

msb- - - - - 1st)

Addend B Cin

msb- - - - - lsb

Sum

initialize all internal nodes

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

ooooooooooocoooo

test for proper P and G primitives

0000000000000000

1111 1111111111 11

0101010101010101

1010101010101010

test fcr proper IES

0001000100010001

0001000100010001

0101010101010101

0101010101010101

test fcr proper IC23

0101010101010101

0010001000100010

11111111 11 1 11 11

1

0000000000000000

1010101010101010

0101010101010101

0000000000000000

0001000100010001

0001000100010001

0101010101010101

00110011001 1001 1

00110011001 10011

test for carry from block to blcck

00000000000011 11

00000000000011 11

00000000111111 11

0000000000000001

0000000000000000

cooooooooooooooo

msb- lsb

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

00000000000000000

01111 1 1 1111 111 11 1

01111111111111111

01111111111111111

01111111111111111

00001000100010001

00010001000100010

00110011001100110

01010101010101010

01000100010001000

00101010101010101

00000000000010000

1 00000000000010000

1 00000000100000000
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000000001 1111111

0000000011 111111

0000 111111111111

000011 1111111111

0000 111111111111

000011 1111111111

1111111111111111

1111111111111111

1111111111111111

1111111111111111

111 1111111111111

0000000000000001

0000000000010000

0000000000000000 1

0000000000000001

0000000000010000

00000001000COOOO

0000000000000000 1

0000000000000001

0000000000010000

0000000100000000

00O1000O000C0000

00000000100000000

0000000010000111

1

0001000000000000

00001000000000000

00001000000001 11

1

00001000011 111111

10000000000000 000

10000000000000000

10000000000001 111

10000000011 111111

1000011 1111111111
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