Applications of software in the compilation of corpora
Raymond Hickey, Department of English, University of Munich
Abstract

An attempt is made here to sketch some of the applications to which corpus pro- cessing software
can be put in the compilation of corpora. The emphasis is on the one hand on the automation of
many standard processes, such as text collation and the provision of header information for each file
of a corpus, while one the other hand the additional possibilities offered by dedicated corpus
software are described. Among the latter special emphasis is put on the transfer of textual data to a
database environment for further processing. Further matters such as the use of special fonts for
older stages of English and the option of organising the text files of one's corpus for potential users
in advance are also discussed.

0 Introduction

Given the nature of the contributions to this volume, the present author thought it
appropriate to discuss the uses to which corpus processing software could be put in the
compilation and distribution of corpora, especially ones with a diachronic orientation.

Assuming that the compilers of a corpus have reached basic agreement on what periods
are to be covered and what texts are to be included, software can be used gainfully from
this point onwards. To illustrate possible applications the software system Lexa developed
by the present author will be used for the ensuing discussion. This programme suite and the
three volumes of documentation are available from the Norwegian Computer Centre for the
Humanities in Bergen, Norway. Each of the following sections is intended to illustrate a
typical situation in which software is useful in the preparatory stage of corpus building.
The list is not exhaustive but it does cover the main areas of concern in this phase of text
collection and organisation.

1 Text collation

It is safe to assume that more than one individual will be involved in the compilation of a
text corpus. Texts will either be scanned or keyed in directly. In either case it is more the
exception than the rule to find that a text turns up error-free in the computer. This banal fact
increases the status of the individual who is responsible for text correction. Again it is
commonplace for more than one version of a text to exist in some intermediary stage of
compilation. Sooner or later in such a situation doubts arise as to whether a particular
version of a text is the more accurate or the better corrected. The need arises quite quickly
for a reliable means of comparing two versions of a single text. Of course the time and date
stamp of a file on the operating system level will tell you which of two is the more recent,
but age is not a guarantee for correctness.

To resolve this dilemma a programme has been included in the Lexa suite which will

Raymond Hickey Applications of software Page 2 of 15

compare two files with each other byte for byte and report the differences on screen and
write these to a file if required. With Lexa Compare one loads two text files from a
directory listing and then on pressing a dedicated key, the programme begins a comparison
of the two. In the following screen print-outs two versions of the opening line of Chaucer's
Canterbury Tales are displayed. The version CHAUC 1.TXT contains four errors, what
is written for whan (twice), kouthe for kowthe and season for Chaucer's spelling of seson.
These errors are highlighted on the screen and the user can immediately recognize which of
the versions is the more correct. Errors will be detected anywhere, up to the end of the
files chosen. If these are identical you are informed of this.

Less correct version of text

UAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA, *[File 1: CHAUC 1.TXT 35,071
06/15/93 12:47 Offset: 893 131 : Whan that Aprill with hise shoures soote
332 : the droghte of March hath perced to the roote, 3
33 : And bathed euery veyne in swich licour 334 : Of which vertu
engendred is the flour; 335 . What Zephirus eek with his sweete
breath 336 : Inspired hath in euery hold and heeth
337 . The tendre croppes; and the yonge sonne 338 : Hathin the
Ram his half cours yronne; 339 : And smale foweles maken
melodye, 3310 : That slepen al the nyght with open eye,
3311 : (So priketh hem nature in hir corages,) 3312
Thanne longen folk to geen on pilgrimages, 3313 : And Palmeres for to
seken straunge strondes, 3314 : To ferne halwes kouthe in sondry
londes. 3315 : And specially fram euery shires ende
3316 : Of Engelond to Cauntenbury they wende, 3317 :The
hooly blisful martir for to seke, 3318 : That hem hath holpen what

that they were seeke. 3319 : »Bifil than in that seeson on a day

3320 : In Southwerk at the Tabard as I lay, 3321
Redy to wenden on my pilgrymage 3322 : To Caunterbury with
ful deuout corage, 3
3<77>3 3 Space: Txtl - Txtz
Tab: Split Screen Menu: Shift-Tab 3
AAA

More correct version of text

UAA
yainfononfanfafafan o o oo oo oo e e e e e e i "(', S[File 2: CHAUC 2 .TXT 35071

06/15/93 12:45 Offset: 893 1?31 : Whan that Aprill with hise shoures soote
332 : the droghte of March hath perced to the roote, 3
33 : And bathed euery veyne in swich licour 334 : Of which vertu

engendred is the flour; 335 : Whan Zephirus eek with his sweete

Raymond Hickey Applications of software Page 3 of 15

breath 336 : Inspired hath in euery hold and heeth
337 . The tendre croppes; and the yonge sonne 338 : Hathin the
Ram his half cours yronne; 339 : And smale foweles maken
melodye, 3310 : That slepen al the nyght with open eye,
3311 : (So priketh hem nature in hir corages,) 3312
Thanne longen folk to geen on pilgrimages, 3313 : And Palmeres for to
seken straunge strondes, 3314 : To ferne halwes kowthe in sondry
londes. 3315 : And specially fram euery shires ende
3316 : Of Engelond to Cauntenbury they wende, 3317 :The
hooly blisful martir for to seke, 3318 : That hem hath holpen whan
that they were seeke. 3319 : »Bifil that in that seson on a day
3320 : In Southwerk at the Tabard as I lay, 3321 :Redy
to wenden on my pilgrymage 3322 : To Caunterbury with ful
deuout corage, 3
3<77>3 3 Space: Txtl - Txtz’
Tab; Split Sereen Menu: Shifi-Tab > U

This comparison facility does not allow you to alter the contents of a text. Should you wish
to check on and edit two texts at once then you can use the similar comparison option in the
Lexa suite text editor Lexa Text.

2 Normalisation

While the critical editions of texts in printed form strive to be accurate in the inclusion of
variants, e.g. in the edition of a work attested in different manuscripts, for the electronic
form of a text, a normalised version may have very definite advantages in terms of
readibility not to say accessibility particularly with older texts or those representing a
dialectally divergent language variety.

In essence the process of normalisation consists of replacing variants of a grammatical
form by a single form by external consensus, e.g. as the latter is the input to a later standard
form or indeed this itself, or by a justifiable decision of the corpus compilers. Despite the
almost ideological dislike of normalisation, particularly on the part of medieval scholars,
there are obvious advantages to it as it allows later readers to approach a text or texts
without undue linguistic difficulty, to see the wood for the trees so to speak.

In contradistinction to printing, in the compilation of corpora no a priori decision has to
be made about whether to distribute a normalised text or not. Instead the corpus should
include an original unaltered form of a text along with the means for users of the corpus to
normalise the text later if they so wish. Just what these means are should be explained
briefly.

To begin with recall that the process of normalisation consists of replacing variant
forms of a word by some standard or normalised form. What one needs then is software
which will recognize every occurrence of a variant form as an instantiation of a normal
form. This is realised by creating a list of normal forms and of all forms which represent
variants of these. Technically this is achieved by generating a database. For each variant

Raymond Hickey Applications of software Page 4 of 15

form there is a single record which at the very least consists of two fields. The first is that
for the variant and the second is for the normal form with which the variant is associated.
The database will have as many records as there are variant forms to be replaced by
normal forms. The extent of the normalisation is thus dependent solely on the number of
substitutions which the compiler wishes to carry out. The net result of this procedure is an
unaltered and non-normalised version of a file or files along with a database or databases,
one per text file, with which the user of a corpus can, if he or she so wishes, generate a
normalised version of a text. The programme to use here is called Database Translate
(DBTRANS) as it translates an input text into an altered output text on the basis of a
database. Here is a simply example of how this actually works. A database is created
entitted NORMAL.DBF. This contains two fields per record labelled MID ENG (Middle
English) and MOD_ENG (Modern English) respectively. There are six records with
forms of the verb 'have' which occur in Middle English. The programme DBTRANS now
examines any input text or texts and if it finds any instances of Middle English forms of
'have' it replaces these by the modern forms specified in the database NORMAL.DBF.

UAA
AARAAAARAAAAAAARAAAARAAAARAAAA; * Lexa uility: DbTrans

_(c) Raymond Hickey *
SAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA? 3 Terminology database :

NORMAL.DBF [6] Only words: Yes 33 Input language field : MID ENG
Open ended : No 33 Output language field : MOD ENG Ignore
case : No 33 Template for files : NORM INP.TXT Input files : ASCII
33 Current input file : NORM_INP.TXT Manual oper.: Yes 33 String
to be located : had 33 String to be inserted : HAD
33 No. of replacements : 7 [6] Matching files[1]
] 3

SAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA®36 : asimple example. The verb
'HAVE' used to show two forms in the 3313 : HAS, has

3313 : HAS, HAS 3319 : HAVE,
have 3319 : HAVE, HAVE

3322 : HAD, had Offfffiiiiifiii i iiiifiiiif it iiiitis, 3322

: HAD, HAD 3 3 33 3 DbTrans
successfully executed! 3 33 3 3

rrrrrrrrrrrrrrrrrrrrrrr

33 OIfffiffififii Press any key! IIIITIITTII%4 33

33

33 Press <Escape> to abort operation...
30 3
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Needless to say, any normalisation procedure of any reasonable extent will require far
more records specifying many more substitutions. This is, however, not a matter of
principle but of arranging a suitable database. Again the advantage of normalisation via a
translation programme is that the original version of a text is left unimpaired. Furthermore

Raymond Hickey Applications of software Page S of 15

the normalisation can in fact be carried out by the user of the corpus if he or she so wishes,
thus releasing the compiler from the arduous task of generating comprehensive databases
for normalisation tasks.

3 Pre-tagging texts

A major decision which the compilers of a corpus have to take is whether the texts of their
corpus are to contain any kind of grammatical information. If this decision is made in
favour of including such information then a considerable amount of additional work beyond
the collection of texts has to be undertaken.

Grammatical information is normally included in corpora by tagging word forms, i.e.
by adding a label to words identifying them grammatically. If tagging is to be done then it is
only sensible if it is done completely. Quite apart from the actual work of tagging,
agreement must be reached in advance on the system of classification to be used. The
advantage for users of a corpus is obvious: the retrieval of grammatical information from a
text or texts is vastly facilitated if grammatical affiliation has already been specified via
tagging.

Given the size of the task, it is imperative to use every resource available for
accelerating the process. In effect this means employing tagging software for the purpose.
In the Lexa suite the main programme, called simply Lexa, is designed to tag texts
automatically. The operator of the programme, be he or she a compiler or user of a corpus,
must specify what words are to be tagged in what way by creating one or more lemma
definition files. The programme takes note of these definitions and then examines any set of
input texts, adding tags to words it deems as representing the grammatical classes for
which tags exist in the definition file or files. The programme runs in an automatic,
semi-automatic or manual mode. Tagging can be done cumulatively, tags can be exchanged
or updated and particularly frequent words (prepositions, articles, etc.) can be excluded
from the tagging process.

The result of a tagging operation on two input texts (the opening lines of Beowulf and of
Chaucer's Canterbury Tales) produced the following results. Note that for the purposes of
illustration only a selection of tags were specified which means that only a small number of
word forms are actually tagged.

Opening of Beowulf in a tagged form

UAARAAARAAAAAAAARAAARAAAAAAAARAAARAAARAAAARARARAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA;C:\LEXA\DEMO\BEOWULF.LEM
Line 58§ Coll Pagel Textl?

\\

uu]?® *Hw-+at INTERROG. 33We Gardena in
geardagum, +teodcyninga, +trym gefrunon, hu CONJUNC +da 3 3+a+ttelingas ellen
fremedon. 33<R 4>

330ft Scyld Scefing [{scea+tena{] +treatum, monegum m+ag+tum, 3
*meodosetla ofteah, egsode eorlas. 33<R 6>

33Sy+d+dan CONJUNC +arest [{wear+d{] feasceaft funden,
he +t+as frofre 3 3gebad, weox under wolcnum, weor+dmyndum +tah, o+d-+t+at

Raymond Hickey Applications of software Page 6 of 15

*3him INFL PRO +aghwylc +tara ymbsittendra ofer LOCATIVE hronrade

hyran 33scolde, gomban gyldan. 3R 11>
33+t+at w+as BE PAST god cyning.

33<R 12> 3 3+d+am eafera
w+tas BE PAST +after TEMPORAL cenned, geong in geardum, +tone god * *sende folce
to frofre; fyrent+dearfe ongeat +te hie 3 3+ar drugon [{aldorlease {] lange
hwile. 33<R 16> 3
*Him INFL PRO +t+as liffrea, wuldres wealdend, woroldare forgeaf; 3
*Beowulf w+as BE PAST breme bl+ad wide [{sprang{] , Scyldes 3 3eafera
Scedelandum in. 33<R 20>

33- - Alt-1 Alt-2 Alt-3 Alt-4 F7=End F10=Save

— 3
[Sh-Tab=Menus]

Opening of the Canterbury Tales in tagged form
UAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA *C:\LEXA\DEMO\CHAUCER.LEM
Linel Coll Pagel Textl?
uu]?® *Whan that Aprill with hise shoures PLURAL soote 33the ART
droghte of PREP March hath HAVE perced to the ART roote, 3 3And bathed
euery IND PRO veyne in PREP swich licour 330f PREP which vertu
engendred is the ART flour; 3 3What Zephirus eek with
his POSS PRO sweete breath 3 3Inspired hath HAVE in PREP
euery IND PRO hold and heeth 33The ART tendre croppes PLURAL; and
the ART yonge PAST PART sonne *3Hath HAVE in PREP the ART Ram
his POSS PRO half cours yronne PAST PART; ?3And smale foweles PLURAL
maken melodye, 3 3That slepen al the ART nyght X PHON with
open eye, 33(So priketh hem nature in PREP hir POSS PRO
corages PLURAL,) * 3Thanne longen folk to geen on PREP
pilgrimages PLURAL, *3And Palmeres PLURAL for PREP to seken
straunge strondes PLURAL, 33To ferne halwes PLURAL kowthe in PREP
sondry londes PLURAL. 3 3And specially fram euery IND PRO
shires PLURAL ende 330f PREP Engelond to Cauntenbury they wende,
33The ART hooly blisful martir for PREP to seke,
3 3That hem hath HAVE holpen what that they were COPULA seeke. 33

Bifil that in PREP that seson on PREP a_ ART day 33In_PREP Southwerk
at the ART Tabard as I lay, 3 3Redy to wenden on PREP
my POSS PRO pilgrymage ROMANCE 33To Caunterbury with ful
deuout corage ROMANCE, 3. - Alt-1 Alt-2 Alt-3 Alt-4 F7=End
FL1O=Save o ISheTabeMenus] b

Tagging texts before their distribution is something which later users may view as a

Raymond Hickey Applications of software Page 7 of 15

linguistic straightjacket as it imposes the grammatical classification scheme of the
compilers on the user. Seeing that there is tagging software available, many compilers may
now prefer to leave this work to the corpus users, or to some sub-group, such as
researchers in another university who would be prepared to carry out this task. As
universities have to economise on resources, tagging by the compilers is likely to become
less likely in future, especially as partial tagging is not viewed as a sensible course of
action. You either tag completely or not at all. If you decide to do so you may bind your
capacities in a manner which you come to regret later.

This would appear at least to be the case for major projects like the Helsinki corpus.
With the arrival of smaller more specialised corpora, tagging may become feasible
particularly if it is directly connected with the research interests of the corpus compilers.

4 Using Cocoa headers

Independent of the question of whether to tag or not to tag, compilers of a corpus should
consider whether it would be of avail to future users to include some information on the
nature of the texts before distributing these. This decision has fortunately been made in
favour of supplying such information by the compilers of the Helsinki corpus. The format
they have chosen for the inclusion of text-relevant information is what is commonly known
as the Cocoa header. Note that header information is placed at the top of a file and has
nothing to do with grammatical classifications included in the body of a text.

Parameters of the Cocoa header

1: <B ='name of text file'> 2: <Q = "text identifier'>

3: <N ='name of text™ 4: <A ="'author™>

5: <C ="part of corpus™ 6: <O = 'date of original'>

7: <M ='date of manuscript> 8: <K ='contemporaneity™

9: <D ='dialect'> 10: <V ='verse' or 'prose'

11: <T ="text type'> 12: <G ="relation to foreign original™
13: <F ="foreign original"> 14: <W = 'relation to spoken language'>
15: <X ="sex of author™ 16: <Y ="age of author™

17: <H ="social rank of author™ 18: <U ='audience description™
19: <E ="participant relation™ 20: <J = 'interaction™

21: <I="setting™> 22: <Z ="prototypical text category™
23: <S ='sample"™> 24: <P ='page™
25: <L ="line"> 26: <R ='record>

Although providing headers is not comparable to the task of tagging a corpus, it nonetheless
requires an additional amount of work to specify the values for these parameters for the
texts of a corpus. The advantages, however, are considerable.

With the Lexa suite the contents of a Cocoa header can be accessed by the information
retrieval software. This is realised as follows: a programme (called Cocoa) extracts the
header information from any set of input files and deposits this in a database. Then with the
database manager of the suite (called DbStat) one can load the database just created and
impose a filter on it. By this is meant that only those records remain visible which match a

Raymond Hickey Applications of software Page 8 of 15

certain user-specified condition.

Assuming that one generates a database of the Cocoa header information in the files of
the Helsinki corpus and loads the database manager then one could specify a filter to which
only those records (i.e. file headers in database form) correspond which represent
translations (Item 13) of Middle English (Item 6) prose (Item 10) texts. A list of the files
for which this header information obtains can be generated by creating a list from the field
information for Item 1 (name of text file). The list file created by these steps can in its turn
be used as the source of the file names for an information retrieval operation with other
parts of the Lexa suite so that only Middle English prose translations from the corpus are
examined. In addition the user can specify with the retrieval programmes from the set (such
as the pattern matcher Lexa Pat and the programme for locating syntactic contexts Lexa
Context) that the Cocoa information of the files examined be enclosed in the output file of
statistics generated during a search.

The example just given is typical inasmuch as it illustrates how different parts of the
Lexa suite link up together. For any prospective operators of the programme package, be
they corpus compilers or users, it is essential to grasp the inter- relationships between
items of software.

5 Word indexes

Among the simplest of tasks to carry out with any corpus processing software is the
production of lists of unique words from source text files. Despite this obvious simplicity
this type of additional file is very commonly demanded by linguists examining a corpus. To
this end the programme Lexa Words in the Lexa suite has been created. The programme
takes any text file or set of files and generates a list of all the words which occur uniquely
in the input. Once this list has been created the user can consult it via a pop-up window in
which a sorted list appears together with the frequency of the words noted when generating
the list in the first place.
UAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA; > BEOWULF.TXT
Offset: 1,342 33337 : Hw+at INTERROG.

23338 : We Gardena in geardagum, +teodcyninga, +trym gefrunon, hu CONJUNC +da

23339 : +a+telingas ellen fremedon. UAAAAAAAAA[145 of280] AAAAAAA 2

40 :<R4> * heold 31 22341 : Oft Scyld Scefing
[{sceat+tena{]* Heorogar *1 2 23342 :meodosetla ofteah, egsode eorla®
heresped 31 223343 <R 6> *Hi 32 2>
344 : Sy+d+dan CONJUNC +arest [{wear+® hie 32 22345 :gebad,
weox under wolcnum, weor?® hildew+apnum *1 22346 :him INFL PRO
+aghwylc +tara ymb® him 311 2 23347 :scolde, gomban gyldan. 3
hine 33 23348 :<R11> 3 his 31 23
349 : +t+at w+as BE PAST god cyning. * hl+aste 31 22350 <R 12>
* holm *1 2 #3351 :+d+ameafera w+as BE PAST -+afte?

hringedstefna 31 2 2352 :sende folce to frofre; fyrent+de* Hro+dgar

31 2 353 :+ar drugon [{aldorlease{] lange* Hro+dgare 21 2 2354

<R 16> * hronrade *1 2 355 :Him INFL PRO +t+as

Raymond Hickey Applications of software Page 9 of 15

liffrea, wul® hu 31 2 2356 :Beowulfw+as BE PAST breme
bl+aAAAAA [Search: U; Abort: Esc] AAAA 2357 : eafera Scedelandum in.

23358 <R 20> 23359
Swa CONJUNC sceal [{geong{] [{guma{] gode gewyrcean, fromum feohgiftum 2* * Index
File: BEOWULF.WDX ?

This type of word index could be created in advance by the compilers of a corpus and
supplied on the distribution medium, thus obviating the need for users to generate such lists
themselves. Given the greatly increased storage capacity of mediums such as CD-ROM
disks the additional space required for such index files should not be a deterrent to offering
them with the primary text files of a corpus.

6 Lexical databases

Closely related to word indexes is another type of file which is useful in analysing texts
lexically. This is what is termed a lexical database. Recall that a database is a type of file
in which information in stored in table-like form. The rows of the table contain different
fields and the columns the contents of these fields. With the main programme Lexa of the
suite under discussion it is possible to derive a database from any input text or texts. By
this is meant that you load or specify an input text and then demand of the programme that it
extract information on each word, storing this in a record with four fields. The first
contains the word form itself; i.e. the token which is found. The second contains the tag, if
any, which has been associated with the word form in question. For the third field the
frequency of the word in the input text has been noted. The frequency is stored cumulatively
which means that if you run the lexical database function on a series of texts, the entry for
FREQUENCY is incremented for every find of a particular word form in each text. Thus if
you, for example, divided Beowulf into six texts and generated a lexical database for each
text, using the same output database, then the frequency field for any given form would
contain the total number of occurrences in all the six texts taken together. In the fourth field
the word is deposited in reverse order of spelling. The idea behind this is to allow the
creation of reverse order dictionaries which would give information on grammatical
endings. If you sort a lexical database alphabetically going on the field REVERSE then you
end up with the records ordered according to the end and not the beginning of the words in
the field TOKEN.
UAA
DB: 1 Field: 1 Col: 1Rec: 119[272}

3<777>[|]3 3TOKEN C 32 hll’le
*3LEMMA C 16 INFL_PRO
33FREQUENCY N 6 3 33REVERSE C
32 enih 33
33 33

33 [-1PgUp [-]PgDn -G=Goto F1=Help Alt-F7=Desktop F10=Browse

Raymond Hickey Applications of software Page 10 of 15

3
[Shift-Tab=Menus]*

Whether compilers of a corpus would feel like including lexical databases for their
primary text files depends on the status of lexical analysis on their own research horizon.
Once more the question of the space which such files would occupy diminishes when one
considers the large capacity of storage mediums nowadays.

7 Concordance files

Looking at words in isolation is one aspect of lexical analysis. Another which stresses
contextualization is the viewing of words in context. Here one is dealing with a file type
which while not very sophisticated from a computing point of view nonetheless has its
justification is providing valuable information to users of a corpus.

The main programme Lexa can once more be employed to generate the type of file in
question. There are basically two types of concordance, one in which the keyword being
considered is displayed in the centre of a text line with a certain number of words to the
left and right of it included as context; this is known as a KWIC, or 'keyword in context'
file.

Keyword in context, KWIC-file

UAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,
333uua:tut Andumadeuforwarduaerlyuforautoutryse,
334000 0nNaIaaIaauGIIGEIUaTIaaTIaGUG Totttaketoureaweyatheriasuluyowudeuyse.
3 337000 tuauMeuthynkethuitiacordauntiitoturesoun 3
33 Z0ua:uniuaiuaauiuaauaiuaiuaaaauaiua Toautelleuyowtialutheticondicioun
33[aWeln]

33 3

3

33

324000: 10 anaaaiuauanaaaaaiuauanaaat Welutnynetiandatweentytiniaicompaignye

3 3290au: naantantauiauaanaanaaniaauAndauwelauweawereniiesediattetubeste.

33 3 3[GWhant]

33 3
310000 1 aaia i aaaiaauauaaat Whantathati Aprillaw ithtthisetshourestisoot
e ?330aut:auantuiauauaniauiAndushortly, iiwhantuthetsonnetiwasutoureste, 3
3 3 3[0What1]
33 3

350000: 10 aa e iuauanaaaaaiuauauaa Whatia Zephirusueekawithuhisusweetetibrea
th 3 31800a: tuauautu Thatthemihathuholpenutiwhatitthatutheyaweretseeke. 3
340uua: aAniwhicheutheyawere,ianduofauwhatiudegree, 3
*4Lanu:iutanninnianianiiniAnaeekiiniawhatiarrayathatatheyawerealnne;
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

3

Raymond Hickey Applications of software Page 11 of 15

The second major type has the keyword in a separate column to the left with the text line
from which it is taken following it. Here one is dealing with a KWOC or 'keyword out of
context' file. Both file types can be generated quite easily with Lexa. Furthermore the
information of a concordance file can be transferred to a database environment to enable
users to avail of the additional manipulative power of the latter type of file.

Keyword out of context, KWOC-file

UAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL 33 : And made forward erly for

{to} ryse, 3334 : {To} take oure wey ther as I yow deuyse.
3337 : Me thynketh it acordaunt {to} resoun 3338
{To} telle yow al the condicioun 33
33 Wel] 33
3324 : {Wel} nyne and twenty in a compaignye
3329 : And {wel} we weren esed atte beste. 33
33 Whan]
33 331 : {Whan} that
Aprill with hise shoures soote 3330 : And shortly, {whan} the sonne
was to reste, 33 33
What] 33
335 : {What} Zephirus eek with his sweete breath 3318
: That hem hath holpen {what} that they were seeke. 3340 : An whiche they
were, and of {what} degree, 3341 : Aneeckin {what} array that they
were Inne; 3

AAA
es es es e e e e e e e e e e e e e e s e s s e e s s s s s s s \

8 Font considerations

The corpora and corpus projects under construction which are presented in the present
volume all refer to diachronic English. If the time span in a particular instance stretches
back far enough then texts will involve special characters for Middle and Old English. The
practice with historical corpora has been to represent special symbols of historical stages
of the language by using so-called escape sequences. For instance the Old English
character thorn is represented by '+t' in the Helsinki corpus, the eth symbol is indicated by
'+d' and so forth. This encoding has the advantage of portability. The corpus texts only
include characters with numeric values between 32 and 126 in the ASCII set and are
transferrable to and readable on computer systems operating on a so-called 7-bit basis.
The obvious disadvantage is that readability drops drastically with older texts. Something
like Beowulf is undecipherable in the ‘escape-sequence’-form.

A practical solution to this problem, presented in the Lexa suite, is to use a supplied
programme to convert the sequences to single characters with the correct shapes so that an
Old English text on screen looks more or less identical to one in printed form.

The scheme devised by the present author utilises the ability of personal computers
with colour monitors to display characters with customized shapes on screen. The
programme which makes the alterations inserts the redefined symbols of the screen (which

Raymond Hickey Applications of software Page 12 of 15

have the shapes of the Old and Middle English characters) in any set of input texts at those
points where it encounters an escape sequence, e.g. it inserts the yogh symbol when it hits
on +g'. The conversion is reversible so that texts can be restored to their original form if
desired. The numerical values of the redefined characters with Old and Middle English
shapes are as following.

Escape Actual Letter ASCII numerical value for redefinition

sequencecharactername by Lexa programme Make Symbols
+a x 'ash',L.c. 145 +A
YD 'Ash',u.c. 146 +d
'eth',l.c. 253 +D
'Eth',u.c 252 +g 'yogh',1.c.
243 +G "Yogh',u.c.
242 +t " 'thorn',1.c. 245 +T
" 'Thorn',u.c. 244
+t o 'crossed thorn' 248 +TT —
'crossed Thorn' 246
+e E 'e caudata’ 144 +1 (49
'‘pound sign’ 156

Taking a typical text such as Beowulf and loading it with one's text editor or word
processor leads to one being presented with a text which is convenient for computer
manipulation but hardly readable to the Old English scholar.

Beginning of Beowulf with 'escape-sequence’ coding

[} \BEOWULF\] }] <R 1> Hw+at. We Gardena in geardagum, +teodcyninga, +trym
gefrunon, hu +da +attelingas ellen fremedon. <R 4> Oft Scyld Scefing [{sceattena{]
+treatum, monegum nrtag+tum, meodosetla ofteah, egsode eorlas. <R 6> Sy+d+dan +arest
[{weartd{] feasceaft funden, he +t+as frofre gebad, weox under wolcnum,
weor+dmyndum +tah, o+d+t+at him +aghwylc +tara ymbsittendra ofer hronrade hyran
scolde, gomban gyldan. <R 11> +t+at w+as god cyning. <R 12> +d+am eafera w+as +after
cenned, geong in geardum, +tone god sende folce to frofre; fyren+dearfe ongeat +te hie +ar
drugon [{aldorlease{] lange hwile. <R 16> Him +t+as liffrea, wuldres wealdend,
woroldare forgeaf; Beowulf w+as breme bl+ad wide [{sprang{] , Scyldes eafera
Scedelandum in.

If one takes this text, however, and runs it through the programme Make Symbols which is
supplied in the Lexa suite then a number of substitutions are made and certain high ASCII
characters are inserted where escape sequences were found in an input text. Now under the
important assumption that (i) you are using a computer with a colour monitor, typically a
VGA video adapter based system, and (ii) that you have loaded the supplied Old / Middle
English font of the Lexa suite then the stretch of text printed above should now look like the
following.

Raymond Hickey Applications of software Page 13 of 15

Beginning of Beowulf with Old English characters [} [BEOWULF\] }] <R 1> Hwat. We
Gardena in geardagum, "eodcyninga, "rym gefrunon, hu a &"elingas ellen fremedon. <R 4>
Oft Scyld Scefing [{scea"ena{] "reatum, monegum mzeg"um, meodosetla ofteah, egsode
eorlas. <R 6> Syan @rest [{wear{] feasceaft funden, he "@s frofre gebad, weox under
wolcnum, weormyndum "ah, o"at him @ghwylc "ara ymbsittendra ofer hronrade hyran
scolde, gomban gyldan. <R 11> "@t was god cyning. <R 12> a&m eafera was @fter cenned,
geong in geardum, "one god sende folce to frofre; fyrenearfe ongeat "e hie @r drugon
[{aldorlease{] lange hwile. <R 16> Him "@s liffrea, wuldres wealdend, woroldare
forgeaf; Beowulf wees breme blaed wide [{sprang{] , Scyldes eafera Scedelandum in.

In the interests of a unified system, prospective compilers of diachronic corpora are
advised to keep the encoding system used by the Helsinki corpus for special characters. If
they do then the software already available for the latter corpus can be used without any
alteration in a newer corpus which complies to the original codification scheme. Users of
several corpora will only need one special video font, namely that supplied with the Lexa
suite and can then view any text from a selection of corpora without further system
adjustment. Note this coding scheme is also that used by the present author for the medieval
texts in the Corpus of Irish English (see elsewhere in this volume for details).

8 Organisational considerations

Once a corpus has been completed a practical question arises for its potential users. How
do they gain an overview of just what the corpus contains? The simple answer with many
corpora is to consult the manual. However, given that a corpus is an electronic library of
texts, it is surely natural to expect that this question can be answered electronically. Not
only that, there are bound to be additional advantages to be accrued from looking at the
contents of a corpus on the computer rather than in printed form. To this end the programme
Corpus Manager has been designed and included in the Lexa suite.

Basically what the corpus manager does it to provide one with a table of contents for a
corpus with up to three levels of depth. There is a contents window for each level and the
user can choose any text and view it by selecting it in the current window.

F7=Desktop; F9=Settings] >3 AAAAAAA Level 1 [4of 19] AAAAAA
333 1 :Overview; Cocoainfo | 2 333 2
Beaumont | ARAAAAA Level 2 [1of 2] AARAAA 23 4 : Plumpton
| * 13 : Thomas More | 2333 12: More et al. | 3 17:
Margaret Roper | 2333 19 : Cromwel AAAAAAA Level 3 [1of 3]
AAAAAA | 2333 21 :Cumberl® 14 : Letter to wife 2 | 23
33 26 : Knyvett® 15 : Letter to daughter 2 | 2333 28:Harley?® 16:
Letters to M.Roper 2 | 2333 30: Paston? 2
| 2333 33:Ferrar? 2 | 2333 36: Barring’
2 | 2333 45:Proud ¢ 2 | 233
3 56 : Gawdy * 2 | 2333 58:Haddock®

Raymond Hickey Applications of software Page 14 of 15

2 | 2 333 63:Stryp63 2 | 2 333 65:
Oxinden® 2 | 2333 68:Hatton? 2
| 2333 74:Pinney? 2 | 2333 78:Henry 3
2 | 233 A U=View; Esc=> 2
| 233 3 2 track; - =Forward A 33
AAAAAAA U=View: Esc—Backirack AAAAAAA \s

3

N ee ee ee ee ee ee ee se ee ee ee ee se se se se ee se es es es es es es es es ee es se es ee es es es es es es es es es es es es es es es es es es e
AAA
es es es e e e e e e e e e e e e e e e e e s s e s s s s s s s

Furthermore online searching of texts is possible. Searching can be on a global level
encompassing all texts of a corpus and including unspecified elements in search strings by
the use of wild cards. Texts can be extracted from a corpus and printed separately if
required.

The corpus manager is particularly suitable for those corpora which consist of many
small parts and where there is a hierarchical relation between these. Technically to adapt a
corpus for use with the programme Corpus Manager one must create a single file, then
place level markers at strategic points in this file indicating where the breaks are in the text
so to speak. A special text editor will carry out the task of marker placement quite easily.
The programme then indexes the file which has been prepared in this fashion. Once this has
been done, one can consult the corpus, now in the form of a text database, at will. There is
no restriction on the number of text databases, so that one could conceivably divide a
corpus into several blocks, each with an internal structure determined by the compilers of
the corpus. To illustrate this technique there is a text database of letters from the history of
English included as part of the Lexa suite.

9 Conclusion

The present sketch is intended to offer the interest linguist engaged in corpus compilation
an idea of what can be done to both facilitate the process of compilation for him/herself
and to increase the gainful use to which the corpus can then be put once it is completed. In
all instances, the programmes of the Lexa suite do not have to be altered in any major way,
apart from the operator of the programmes creating his/her own configuration for in some
instances (this is standard procedure). The net result is a greater degree of automation for
many processes which represents a saving in resources which renders in turn many a task
more feasible and brings forward the distribution date for many an interesting corpus.

References

Hickey, Raymond 1993a. Lexa. Corpus Processing Software, 3 Vols. Vol.1: Lexical
Analysis. Vol.2: Database and Corpus Management. Vol.3: Utility Library
Bergen: Norwegian Computing Centre for the Humanities.

Hickey, Raymond. 1993b. "Corpus data processing with Lexa", ICAME Journal 17: 73-96.

Hockey, Susan and lan Marriott 1980. Oxford Concordance Program: Users' manual.

Raymond Hickey Applications of software Page 15 of 15

Oxford: Oxford University Computing Service.

Johansson, Stig 1986. The tagged LOB Corpus: User's manual. Bergen: Norwegian
Computing Centre for the Humanities.

Johansson, Stig and Anna-Brita Stenstrom (eds.). 1991. English computer corpora:
Selected papers and research guide. Berlin: Mouton de Gruyter.

Kyto, Merja, Ossi Thalainen, and Matti Rissanen (eds.) 1988. Corpus linguistics hard and
soft. Amsterdam: Rodopi.

Kyto, Merja 1991. Manual to the diachronic part of the Helsinki corpus of English texts.
Helsinki: Department of English.

Kytd, Merja and Matti Rissanen 1988. The Helsinki Corpus of English Texts: Classifying
and coding the diachronic part. In Corpus linguistics, ed. by M.Kyto et al.
169-180. Amsterdam: Rodopi.

