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[57] ABSTRACT 
A technique for collecting changes to working memory 
objects made by rule execution in an artificial intelli 
gence production system avoids frequent use of a 
matching algorithm by delaying the match processing 
of the collected changes to a memory object until com 
pletion of an executing rule. A change to an object 
wrought by execution of a rule is signi?ed in a control 
block for that object. Once a ?rst change has occurred, 
subsequent changes caused before execution of the rule 
is complete will be made to the object and indicated by 
the change block. When execution of the rule is com 
plete, the changes coalesced in the object itself are reg 
istered in the system by introduction of the changed 
object into the matching algorithm.’ This avoids match 
processing the object each time it is changed during 
execution of the rule. 

8 Claims, 3 Drawing Sheets 
34 

RULE 
a“: INFERENCE 

32 ENGINE 

wonxmc 
MEMORY 

at 

‘L J 
50 
/ 

0o EXECUTE 
COALESCED setecreu comm“ 49 
causes RULE __._,i_ ._ __. 

, AccuMuLAte. 

|_ COALESCE 
--—| _ cnauses 

' CLASS A’ W755 canes CARED FOR RUN n 
, (so STACK cusses STACKME /74 

FIRST LAST RES 1 
4 PTR PTRl FTR 73\ 7/3“ 73" ' 

\soo \eon \eoc NEXT ces MAKE UPD cnuc ' 
PTR PTFI PTR PTR PTR l 

3 , 
I500 15o» \SOaIEOh 73° 73° 73' 

e0 1 \ 
5, n-rsa uexr en uexr 

PTR PTR PTR PTR 12 

r 52 __ mo 1' \ 
ml 

69 a I51 70 ‘ 
CA HS , 162 a l L PTR PTR J 52 ‘ 

—‘| e: L FE i 
64 woemus l,‘ MAK UPDATE ‘ 

MEMORY ‘ no CHANGE ‘ 
_, , J 12 I30 

323 1 H r 
l 

r—'——i MAKE PTR m. I00 '2' m 
I000 100a I001: I001 ,-——-/ I00! / 

| hpEl?tse cm RTSB RTSB met 50 PTR PTH PREV NEXT Next ‘ 

I 432 r H2 H3 
MAKE PTR INFERENCE ENGINE 



US. Patent Dec. 26, 1989 Sheet 1 Of3 4,890,240 

/'4 l INEERENOE ENGINE flo 
RULE ' 1 

BASE _: MATCH /2O 
_ CYCLE 

WORKING ‘ 
MEMORY CONFLICT /22 

sET 

>"REOOONI2E— 
27 ACT" 

24 / 
CONFLICT / 

REsOLuTION 

+ /26 
ExEcuTE 
SELECTED <—-— . 

RUILE CONTINUE‘ a I 
CH‘ELGE To - PRIOR ART 
WORKING MEMORY 

RULE 34 I 
- MATcI-I /40 INFERENCE 

BASE _" CYCLE ENGINE 
/32 > 

WORKING * 42 
/ MEMORY CONFLICT 

51/ sET 

I 30 44 
._1__ _ CONFLICT / 

r- RESOLUTION 
5O / + /‘"S 

00 EXECUTE CONTINUE 
COALESCED SELECTED 49 
CHANGES RULE / 

. CHANGE ACCUMULATE, 
L wM COALESCE 

CHANGES 

FIO.2I ‘*8 I 





US. Patent Dec. 26, 1989 Sheet 3 of3 4,890,240 

SUBROUTINE Y 

/32o SUBROUTINE- ROUTINE X 
PROLOGUE 200 

PARENT 
3%‘ + /330 ROUTINE 
WORKING P38523376 
MEMORY 

k——— MATCH 1 3|Q /34O 
RULE RECOGNIZE-ACT 220K + 

_- —ROUTINE 
BASE CONFLICT 

+ we DO-RETE- 230 + 
PROCESSING 

RESOLVE 
360 

N0 24o\ + 
EX EiUTE 

YES ""—'. CALLY 
370 I — ; 

SUBROUTINE- / '--_ _____1 

EPILOGUE 25o\ 
+ /3eo oo- RETE - 

"FLUSH" RETE PROCESSING 
NETWORK 

‘ 39o 
RETURN 



4, 890,240 
1 

COALESCING CHANGES IN 
PATTERN-DIRECTED, RULE-BASED ARTIFICIAL 

INTELLIGENCE PRODUCTION SYSTEMS 

BACKGROUND OF THE INVENTION 

This invention relates to arti?cial intelligence pro 
duction systems, and more particularly, to a method for 
uniting a sequence of changes to working memory ob 
jects of such a system, while deferring matching of the 
working memory to system rules. 

Rule-based arti?cial intelligence production systems 
signify computer programs written in a production 
system language. A production system generally in 
cludes working memory including a set of elements, a 
set of rules de?ned in terms of the elements, and a con 
trol mechanism, or inference engine, which executes the 
rules with reference to the elements. The control mech 
anism matches the rules with the elements to produce a 
con?ict set consisting of rules associated with matched 
elements. The control mechanism resolves the con?ict 
set by selecting the order with which the rules are exe 
outed, and “?res” the rules. 

Rule-based arti?cial intelligence production systems 
are known, as are languages which support their con 
struction. Reference is given to: Brownston et al. “Pro 
gramming Expert Systems in OPSS”, Addison-Wesley, 
copyright 1985; Jackson, “Introduction to Expert Sys 
tems", Addison-Wesley, copyright 1986; Forgy, “OPS5 
User’s Manual”, CMU-CS-8l-l35, copyright 1981; and 
Forgy, “RETE: A Fast Algorithm For the Mini Pat 
tern/Mini Object Pattern Match Problem”, Arti?cial 
Intelligence, Vol. [9, copyright 1982. 

Brownston describes a rule-based arti?cial intelli 
gence production system ("production system”) based 
upon a cycle of three states including matching-rule, 
select-rule, execute-rule. Brownston points out that the 
matching of elements to rules is the primary inefficiency 
in the operation of a production system. The speed of 
the inference engine of any such system is enhanced by 
a reduction in the matching phase of the operation. 
The matching phase in a language such as OPSS is 

performed by a patterned network which systematizes 
the association of system elements with the system rules 
to select which rules are ready for execution. The 
matching algorithm utilized in OPSS is called the 
RETE method. The RETE matching procedure is well 
known, having been described, for example, in Forgy’s 
Artificial Intelligence article. Rules (or “productions” or 
“production rules”) have two parts, the LHS (left-hand 
side, or if-part) and the RHS (right-hand side, or then 
part). Relatedly, a rule can be considered an if-then 
statement of the form: 

lf conditions A, B, C are true, then take actions X, Y, 
Z. 

In a production system, the working memory (WM) 
forms the universal data base of the system. Characteris 
tically, the WM is segmented into classes, the classes 
consisting of elements, or members, each member being 
referred to as a class member (CM). Each rule of the 
rule set has the two parts described above: LHS and 
RHS. The LHS is a logical expression referring to 
working memory classes, and the RHS is a list of opera 
tions to be performed on CMs. 
The inference engine is the control mechanism that 

selects rules to fire and then executes the actions of the 
RHS of a selected rule, repeating the cycle. The satis 
fled rules are called instantiations. An instantiation con 
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2 
sists of the rule and list of CMs that satisfy the rule’s 
LHS. The inference engine “?res” an instantiation by 
executing the RHS of the rule, using the list of CMs in 
the instantiation. The set of all instantiations available 
for ?ring is called the con?ict set. The inference engine 
conducts a procedure called con?ict resolution to select 
the instantiation from the con?ict set to tire next. The 
?ring of a rule by execution of its RHS can create, 
change, or delete elements in WM and lead to changes 
of the con?ict set. The inference engine of a rule-based 
production system repeatedly executes, in a cycle, the 
step of recognizing all instantiations in the con?ict set, 
the step of resolving which instantiation of the step to 
?re, and the set of firing the selected instantiation. The 
cycle is called the “recognize-act” cycle. 
Upon the firing of each rule, the inference engine 

again determines the conflict set by computing using the 
RETE algorithm. The RETE algorithm is expressed as 
a sorting network. The LHS conditions of all rules in 
the rule set are compiled into a sorting network includ 
ing nodes, most of which are associated with tests. Use 
of the network to recognize instantiations is called 
“RETE” or “match" processing. In RETE processing, 
tokens are passed through the network. Tokens that 
traverse through the network represent instantiations in 
or for the con?ict set. RETE processing is computa 
tionally expensive, amplifying the importance of pro 
duction system techniques that reduce it. 

Early rule-based production systems supported only 
a ?xed sequence of actions in the RHS of a rule. This 
restriction led to very short RHSs. This rudimentary 
form of the RHS resulted in rules which rarely would 
make more than one change to the same CM during one 
firing. The increasing use of high-level procedural lan 
guage techniques for writing rules has led to the incor 
poration of procedures such as subroutines, functions, 
and coroutines in rule RHSs. In these cases, during the 
execution of a rule RHS where a high-level procedural 
language is used, the execution of a procedure, and the 
nesting of these frequently result in repeated changes to 
a single CM in the execution of one RHS. As an exam 
ple, suppose that in executing a RHS, a subroutine is 
called. It is asserted that the program language allows 
for the subroutine to be written using rule-based pro 
duction system techniques. During execution of the 
subroutine many rules may fire, and in completing the 
subroutine’s computations, many CMs may be created, 
changed repeatedly, and then deleted from working 
memory before return is made to the parent routine and 
execution proceeds for the RHS that called the subrou 
tine. 

Customarily, it is standard to undertake RETE pro 
cessing immediately upon the making of any change to 
a CM. Therefore, the computational intensity--and 
expense-of a production system will only be ampli?ed 
by elaboration of RHS capability which permits com 
pound actions and supports hierarchical routine execu 
tion. 

SUMMARY OF THE INVENTION 

Classically, RETE processing is undertaken follow 
ing any change to a CM. Unexpectedly, it was observed 
by the inventors that changes to class members could be 
‘uncoupled from the corresponding RETE processing 
and delayed. It was found that the delay practiced ac 
cording to the invention frequently can reduce the total 
amount of RETE processing. 
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According to the invention, at the time a change is 
made to a class member, a control block is created that 
records the requirement for RETE processing. If an 
other change is made to the same class member prior to 
execution of the RETE processing, then only one con 
trol block is needed to record both changes. Further, 
the two changes can be united to effect one, possibly 
larger change. Since the expense of the RETE algo 
rithm is essentially independent of the size of the 
change, total RETE processing can be substantially 
reduced by reducing the two previously required passes 
through the RETE network to one. 
A further point observed in the operation of rule 

based subroutines is that repeated changes to a class 
member may cancel each other out completely. Thus, 
postponement of RE'I'E processing in a calling routine 
in response to change of a CM in a called routine might 
obviate the need for any RETE processing for that CM 
in the calling routine. Meanwhile, in the called routine, 
RETE processing is attenuated by postponement of 20 
RETE processing for the changed CM. 
When processing an action which does not call or 

contain a set of rules, the coalescing of changes will 
provide an ef?ciency gain proportional to the number 
of operations on a given CM. For an action calling or 
containing a rule set, the efficiency gain can be arbitrar 
ily good. The improvement is proportional to the num 
ber of changes to given CMs, but there can be an arbi 
trarily large number of changes while processing the 
called or embedded routine. 

Accordingly, our invention is a method for coalesc 
ing changes to objects (CMs) in a working memory, the 
method being invoked prior to processing these changes 
through a working memory matching structure used in 
con?ict set resolution, where such resolution occurs 
during the pattern match, rule select, rule execute cycle 
of a rule-based arti?cial intelligence production system. 
The production system includes a memory for storing 
rules, and an inference engine cooperating with the 
working memory and the memory for storing the rules 
for executing each cycle, each rule having pattern indi 
cation and action specifying parts, the action specifying 
part of a rule including procedures for effecting changes 
to working memory objects. The method includes the 
steps of: 

responsive to a ?rst change to an object resulting 
from execution of a ?rst rule, creating a control block 
(CB) internal to the inference engine and recording that 
?rst change in the created control block (CB); 

enqueueing the control block; 
in the event of a second change subsequent to the ?rst 

change to the working memory object prior to selection 
of the next rule following the ?rst rule, coalescing the 
net effect of the ?rst and second changes in the queued 
control block; and 
upon completing execution of the ?rst rule, passing 

the change recited in the control block through the 
matching mechanism. 

This method reduces match processing, with the 
reduction magni?ed by the degree of nesting of rules 
and commonality of referencing to working memory 
objects by the pattern indication portion of the rules. 

It is therefore an object of this invention to reduce the 
amount of match processing required in a rule-based 
arti?cial intelligence production system. 

It is a further object of this invention to postpone 
conduction of all matching procedures in a rule-based 
arti?cial intelligence production system until the com— 

25 

40 

50 

55 

60 

65 

4 
pletion of a recognize-act cycle, while accumulating 
and uniting changes made to working memory objects 
during that recognize-act cycle. 
Other objects and attendant advantages of this inven 

tion will become evident when the following detailed 
description is read with reference to the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a procedural flow diagram illustrating the 
essential sequence of steps in the prior art, recognize-act 
cycle of a rule-based production system. 
FIG. 2 is a flow diagram illustrating the procedural 

sequence of a recognized-act cycle according to the 
invention. 
FIG. 3 is an illustration showing the set of control 

structures and control structure interconnections re 
quired for practice of the invention. 
FIG. 4 is a flow diagram illustrating the procedural 

sequence of the invention in a rule-based production 
system in which routine calls are made during rule 
execution. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

In the speci?cation, the terms “make” and “create”, 
“modify” and "update”, “remove” and “delete”, and 
“class member”, “working memory element", and “ob 
jec ” are used interchangeably. Further, the inference 
engine of a rule-based arti?cial intelligence production 
system includes a looping control mechanism termed 
the “recognize-act cycle" whose fundamental opera 
tional cycle includes the sequence match, select, exe 
cute. See, for example, the Brownston reference at pp. 
4-9. 

In the prior art represented by FIG. 1; a rule-based 
production system (production system) includes an 
inference engine 10, a working memory 12, and a rule 
memory or rule base 14. The structures, interconnec 
tions, and functions of these elements are well explained 
in the prior art references cited above. In the produc 
tion system of FIG. 1, a set of rules in the rule base 14 
is presented to a computer (not shown) in the form of an 
application program written in a language such as OPSS 
(adapted for production system operation). The rules 
apply to objects in the working memory 12 which rep 
resent things or facts upon which the production system 
operates. The inference engine 10 relates the set of rules 
to the objects in working memory to determine the set 
of all rules whose conditional (LHS) portions are satis 
?ed by objects in working memory. Preferably, this 
matching is accomplished by means of a matching pro 
cedure based upon an ordered structure, such as a 
RETE network. The RETE network for each rule is 
established when the application program is compiled. 
Hereinafter, this matching process will be synonymous 
with “RETE processing". Parenthetically, it is asserted 
that structures and procedures other than RETE net 
works can be used for matching. In this regard, vectors, 
lists, schemas, and frames are all matching constructs 
utilized in prior art production systems for relating 
working memory objects with the conditional parts of 
rules. 
The matching procedure of an inference engine pro 

duces a conflict set. consisting of a set of rules all of 
whose conditional parts are satis?ed by objects in the 
working memory. The inference engine selects for exe 
cution one rule from the con?ict set, and executes the 
selected rule. Rule execution involves taking the spe 
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ci?c action or actions enumerated in the RHS of the 
selected rule. Most frequently, execution of the rule 
requires modi?cation or creation of working memory 
objects. In an OPSS-based production system, for exam 
ple, rule execution adds, modi?es, or deletes one or 
more memory elements in the working memory. In this 
description, addition, modi?cation, and deletion are all 
considered to “change” a working memory object. 
Thus, if an object is made, updated, or deleted by execu 
tion of a rule, the object is considered to be “changed”. 

In FIG. 1, the recognize-act cycle of the inference 
engine is understood in greater detail to include a match 
cycle 20 which develops a con?ict set of rule instantia 
tions 22, following which a con?ict resolution step 24 
selects one of the con?ict set instantiations for execution 
(“?ring”). In step 26 of the recognize-act cycle, the 
selected rule is executed, usually resulting in changes to 
working memory objects, represented by the line 27 
originating at the execute step 26 and terminating at the 
match cycle 20, indicating the match processing that 
follows a change to working memory. 
As pointed out on page 230 of Brownston et al., the 

prior art inference engine 10 will conduct a match cycle 
in response to each working memory change resulting 
from rule execution. Thus, several match cycles may be 
conducted during the execution of the single rule. The 
RETE processing required during the match cycle is 
expensive and time consuming. Therefore, any reduc 
tion in such processing will enhance the effectiveness, 
efficiency, and value of a production system. 

In FIG. 1, the potential for conducting multiple 
match cycle steps 20 is represented by the decision 
block 28. In this regard, assume that the production 

system of FIG. 1 has been initialized, and an match cycle conducted resulting in an con?ict set 

prior to the ?ring of the ?rst rule. In this case, the nega 
tive exit will be taken from decision block 28, and a rule 
will be selected in step 24 and ?red in 26. Now assume 
that the rule being executed results in a change to a 
working memory object before all of the actions speci 
?ed in the RHS of the selected rule have been com 
pleted. The working memory object change is recog 
nized, and, as represented by line 27, the match cycle is 
conducted, the con?ict set is updated, and the positive 
exit 29 is taken from the decision 28, permitting execu 
tion of the selected rule to continue. Here, it is asserted 
that the decision block 28 is meant to represent an im 
plicit feature of the inference engine of FIG. 1, and may 
be undetectable in the code. Nevertheless, each work 
ing memory change resulting from the execution of the 
selected rule will result in the match cycle being per 
formed, even if rule execution has not completed. 
FIG. 2 is a conceptual illustration of how an inference 

engine constructed using the teachings of this applica 
tion can be distinguished in its operation from the prior 
art inference machine of FIG. 1. In FIG. 2, a rule-based 
production system incorporating the invention de 
scribed below includes an inference engine 30, a work 
ing memory (WM) 32, and a rule base (RB) 34. A 
matching construct of the form of a compiled RETE 
network is indicated by reference numeral 40. The 
match construct 40 produces a con?ict set 42 of instanti 
ations, and a conflict resolution procedure 44 selects 
one of the con?ict set 42 for ?ring. The rule selected in 
step 44 is executed in step 46. A decision 48, implicit to 
the execution step 46, responds to changes to working 
memory objects by asking whether the execution step is 
completed. If not, step 49 accumulates and coalesces the 

20 

25 

35 

45 

55 

65 

6 
changes to working memory objects while the execu 
tion of the selected rule proceeds. When the execution 
of the rule is complete, the positive exit is taken from 
decision 48, the accumulated coalesced changes are 
introduced to the working memory 32 by performing 
the matching step 40. Again, as with FIG. 1, the deci 
sion 48 is representational and corresponds to the post 
ponement of RETE processing to alter the con?ict set 
42 in response to the coalesced changes made during the 
execution of the last-selected rule. Although the match 
ing step 40 is implicit for each working memory object 
which is changed, the advantage of the inference engine 
illustrated in FIG. 2 is that multiple changes to a single 
working memory object will require now only a single 
response by the matching step 40. In contrast, in the 
inference engine of FIG. 1, if, for example, two succes 
sive modi?cations were made to the same object, each 
change would initiate a match cycle. However, in the 
inference engine 30 of FIG. 2, successive changes to the 
same data objects are coalesced, with the result that the 
match cycle is undertaken only once for the changed 
working memory object. It is to be understood, further, 
that the inference engine 30 has the capability to co 
alesce changes and postpone change processing for 
each object changed in execution of the selected rule. 

In its industrial embodiment, the invention assumes 
the existence of appropriate computer system hardware 
which can be programmed with an application defining 
a rule-based production system. The rules of the pro 
duction system are compiled into a RETE network 
structure for constructing and updating a con?ict set of 
rules whose left hand sides are satis?ed by working 
memory objects. 

In the description which follows, the working mem 
ory objects are segregated into classes, with the objects 
in a class referred to as class members (CMs). Accord 
ing to our invention, whenever, in the course of rule 
execution, a class member is changed, the indicated 
actions are taken, in that the object is changed, but the 
corresponding match processing is delayed. The re 
quirement for match processing is recorded by the cre 
ation of a control block. If additional changes are made 
to the class member during execution, then no addi 
tional control block is created. The ?rst control block 
suf?ces to re?ect the net of all the accumulated 
changes. In this regard, it is said that the ?rst control 
block “coalesces” the accumulated changes to a class 
member during execution of a selected rule. 
For example, assume that the execution of a rule 

requires, ?rst, creation of a CM. This change is memori 
alized in the creation of a CB, and the CM is “made”. 
However, as rule execution is not complete, no RETE 
processing is done in response to the “make”. The CB is 
enqueued in a “make” queue. Next, assume the CM is 
updated by changing one of its attributes. The second 
change is undertaken by altering the attribute. Now, 
however, no additional CB is created. Instead, when 
rule execution is complete, the “make" CB results in the 
updated CM being RETE processed. In this respect, the 
"make” CB suf?ces to signify the “make” and “update” 
changes, and its existence has “coalesced” the changes 
in its single self. Now, only a single "make” RETE 
process is required to match the updated CM with the 
rule base. In the prior art, a “make” RETE process 
would have been conducted at the creation of the CM, 
followed by an “update” RETE process when the CM 
was changed. Thus, the invention, in this example, re 
duces the RETE processing by half. 
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In our invention, control objects are declared when 
the application containing the production system is 
compiled. It is understood that the objects in the work 
ing memory are segregated into classes. Each class is 
de?ned by a class anchor. At initialization of the appli 
cation, the following declaration speci?es the class an 
chor (CA) where ‘7"’ on any line delimits a comment: 

Declare CA. 
t0p__RTSB_pointer, /' points to top RTSB in a stack of 

RTSBs 
/' points to Cared-for Clus queue 
/' points to ?rst class member in 
queue 
1' points to last class member in 
queue 

CCB_staclt_p0inter, 
?rst_CM__pointer. 

1m_cM __pointer, 

Each class member (CM) has a header (CMH) which 
is permanently associated with its class member. The 
CMH is created and initialized with its CM. The ad 
dress of the CM immediately yields the address of the 
CMH, and vice versa. Speci?cally, the following define 
the CMH: 

Declare CMH, /‘ declaration of a class member header 
CA__pointer, /' points to the anchor for the class of CM 
HIST0RY_stack_pointer-, /' points to the history stack of 
CHBs for CM 

A control block termed a run-time stack block 
(RTSB) satis?es the following declaration: 

Declaration RTSB, 
next_RTSB__pointer, /' points to next RTSB in 

stack 
/‘ points to Cared-for 
Classes queue 
/‘ points to ?rst CHB of 

CCB_queue__pointer, 

MAKE_queue_pointer, 
type 'malte' 

UPDATE_queue_pointer, /' points to ?rst Cl-IB of 
WW '“Pdlm' 

CHANGED_queue-pointer; /' points to ?rst CHB of 
typed 'changed’ 

Change information regarding a CM is recorded in a 
change block (CH8). The CHBs are the control blocks 
which coalesce changes to class members. A change 
block is given by: 

Declare Cl-IB, /' change block declaration 
type /' ‘make. 'update’, or ‘changed’ 
RTSB_pointer, /' points to RTSB 
CM _poiuter, /‘ provides access to CM 

and CMH 
RTSB_next_pointer, /’ next CHB in queue off 

RTSB 
RTSB_prev__pointer, I‘ previous CHB in queue 

off RTSB 
HISTORY_stack_neat; /‘ next CHF in stack 

(HISTORY stack) oil‘ CMH 

Next, a control object termed a run-time stack 
“cares” block (RCB) is declared by: 

Declare RCB, 
next_RCB_in_stack; /‘ points to next RCB in RTSB 

Cares stack off CA 
RTSB_pointer~, /‘ points to an RTSB that cares 
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8 
-continued 

about class 

Last, an entity called a care-for class block (CCB) is 
declared by: 

Declare CCB, 
neat__CCB__pointer, /' points to next CCB in queue 
CA__pointer, /' points to anchor of a class that 

cares 

All of the just-de?ned objects are understood to com 
prise addressable locations in storage, which are desig 
nated by well-known syntactic elements called “point 
ers”. 

If a rule RHS includes a call to a subroutine, function, 
or coroutine, these control entities enable the applica 
tion to coalesce CM changes made during a call so that 
the calling routine will be enabled to process these 
changes. At the time a change is made to a CM, a CI-IB 
is created that records the fact of required RETE pro 
cessing. If another change is made to the same CM 
before the RETE processing is executed, then only one 
CHB is needed to record both changes. During a sub 
routine, a CM can be created, altered, and then de 
stroyed before a return to the calling routine occurs. By 
the time the flow of control returns to the caller, there 
is no trace of the CM. The invention enables RETE 
processing for the calling routine to be delayed until 
control returns to the caller. To simplify the portion of 
the discussion which follows, a de?nition is adopted. If 
a routine has a rule whose LHS mentions a class, then 
the RETE algorithm for that routine must process all 
changes to members of that class before conflict resolu 
tion for that routine can be done. In this case, it is said 
that the RETE network for the routine “cares about" 
the class if some LHS in the routine mentions the class. 

In FIG. 3, the interconnections between the control 
objects necessary for the practice of this invention are 
illustrated. In FIG. 3, the working memory 32 includes 
a set of objects, separated into classes, one class of 
which is termed class A. A CA 60 anchors a doubly 
linked circular queue consisting of all of the CMs in 
cluded in class A. The queue of class A include CMs 
61-64. CA 60 includes at least three ?elds 60a, 60b, and 
60¢, each including a pointer. Field 600 includes a 
pointer to the ?rst CM 61 of class A. The ?eld 60b 
points to the last CM 64, while the ?eld 60c points to the 
top RCB in a queue entitled the RTSB CARES stack. 
Each of the CMs 61-64 includes a class member 

header (CMH). The CMH of CM 63 is indicated by 
reference numeral 69. The CMH 69 has a pointer (CA 
PTR) to the CA 60 for the class A. The CMH 69 also 
has a pointer (HS PTR) to a “HISTORY" stack of 
CHBs for CM 63. It is understood that the detailed 
structure illustrated for CM 63 describes also the struc 
ture of the CMs 61-64, and every CM in the working 
memory 32. Thus, every CM has a pointer to its own 
private HISTORY stack, and every class anchor has a 
pointer to its own private RTSB CARES stack. 

In FIG. 3, it is presumed that the production system 
has a hierarchical structure in that the RHS of any rule 
can contain a “call” to a subordinate routine or func 
tion. The subordinate routine is considered to be on a 
lower level of the hierarchy than the calling routine. In 
FIG. 3, a stack termed the “RUN—TIME STACK" is a 
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linked list of data blocks which is pushed when a sub 
routine is called and popped when the subroutine re 
turns to the caller. The blocks in this stack are the 
RTSBs. The run-time stack of FIG. 3 includes four 
RTSBs 70-73. The RTSB 70 is the RTSB of the pri 
mary routine, that is the one first called in the hierarchy. 
The routine owning RTSB 70 has called a routine own 
ing RTSB 71, which, in turn has called a routine owning 
RTSB 72. The routine owning RTSB 72 has called the 
routine “PROCESS” 74 which owns the RTSB 73. The 
RTSB 73 has a structure which is identical with the 
structures of RTSBs 70-72. The RTSB 73 points to the 
next RTSB (72) by a pointer (NEXT PTR) 73a. The 
?eld 73b contains a pointer (CCB PTR) to a CARED 
FOR CLASSES stack. Last, are three pointers 73c, 73d, 
and 73e, which point, respectively, to a MAKE stack, 
an UPDATE stack, and a CHANGED stack. 
The MAKE, UPDATE, and CHANGED stacks are 

queues in which control blocks are stored that record 
requirements for RETE processing. The control blocks 
in these queues are referred to as changed blocks 
(CHBs). The MAKE, UPDATE, and CHANGED 
queues are conventional linked lists whose members are 
connected by pointers. For example, the MAKE stack 
includes CHBs 110, 111, and 100. The UPDATE stack 
includes CHBs 120-122, and the CHANGED stack 
includes CHBs 130-132. Each RTSB has its own set of 
these queues, and does not share them with any other 
RTSB. 
A CHB can be any one of three types: "make”, "up 

date”, or “changed”. A record that a “make” must be 
pushed through the RETE algorithm is kept with a 
“make” CHB; a record of an “update” is kept in an 
“update” CHB; and a record that the class member was 
changed and that the appropriate RETE processing has 
been completed is kept in a "changed" CHB. Exem 
plary of the CHBs in the MAKE, UPDATE, and 
CHANGED stacks is the CHB 100 having ?elds 
1000-100f1 The ?eld 1000 contains a code (TYPE) that 
indicates which type of CHB this one is. For example, 
?eld 100:: of the CHB 100 will contain a code indicating 
that it is of the "make” type. A pointer to the RTSB 
which owns this CHB is in ?eld 1006. In this case, the 
CHB is owned by the RTSB 73. Next, the CM to which 
this CHB pertains is pointed by a class member pointer 
(CM PTR) in ?eld 1000. The previous and next CHBs in 
the MAKE queue off of the RTSB 73 are pointed to by 
?elds 10% and 100e, respectively. Last, it is asserted 
that the CM PTR ?eld of each CHB associates each 
CHB with one, and only one, CM in the working mem 
cry 32. Further, a HISTORY queue is maintained for 
each CM to which the CHBs of the CM belong. Thus, 
each CHB belongs to two queues: the MAKE, UP 
DATE, or CHANGED stack of the RTSB owning the 
CHB, and to the HISTORY stack of the one CM with 
which it is associated. In FIG. 3, the CHB 100 is thus a 
member of the MAKE stack linked to the RTSB 73, and 
also a member of the HISTORY stack for the CM 63. 
The HISTORY stack of the CM 63 consists of the CHB 
100 and CHBs 140 and 141. 

' Coalescing of changes to working memory objects 
can be further understood with reference to the 
MAKE, UPDATE, and CHANGED queues and the 
CHB of FIG. 3. In the embodiment being discussed, if 
the CM is removed, then the “removed” RETE pro 
cessing is done immediately (ignoring any earlier 
changes that are pending and recorded in CHBs). 
Thereafter, all CHBs for the removed CM are de 
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10 
stroyed. Thus, there are no “removed" CHBs and no 
“removed” queues off of RTSBs. Recalling the example 
given above regarding making and subsequently updat 
ing a CM, if the make of the CM is indicated by creation 
and enqueing of a “make” CHB for the top RTSB on 
the RUN-TIME stack, the subsequent alteration of the 
CM does not require creation of an "update” CHB. 
Further, no additional change is made to the “make" 
CHB. Likewise, if a CM currently existing when a rule 
is executed is updated by the currently-executing rou 
tine and “update” CHB for the top RTSB is created and 
placed in the UPDATE queue RTSB and the history 
stack of the CM. If that class member is changed again 
during the current execution, the created “update” 
CHB records alteration to the CM, and no change is 
required for the CHB, nor is creation of a new “update” 
CHB required. These two facts plus the handling of the 
“removed” described above are the features that “co 
alesce" changes to CMs. 
A “changed” CHB enqueued off of the top RTSB 

records that the pointed-to CM was previously either 
created or altered during the currently executing rou 
tine and that the RETE processing for these earlier 
changes was completed. When the prior RETE pro 
cessing was completed, the previous CHB was removed 
from its make or update queue, the TYPE ?eld was 
altered to “changed" and the CHB was inserted into the 
CHANGED queue. If the CM is changed again, the 
CHB is removed from the CHANGED queue off the 
top RTSB and the CHB is inserted into the UPDATE 
queue for the same RTSB. Concurrently, its TYPE ?eld 
is changed to “.update”. This re?ects that additional 
RETE processing now needs to be done. 
The HISTORY stack for a CM contains every CHB 

built for the CM. Thus, the HISTORY stack of the CM 
may contain different CHBs for different RTSBs. When 
a HISTORY stack contains multiple CHBs, they will be 
enqueued off of di?‘erent RTSBs, giving the HISTORY 
stack of CHBs a one-to-one correspondence with a 
subset of the RTSBs on the RUN-TIME stack. This 
one-to-one correspondence preserves order between 
the RUN-TIME and HISTORY stacks. The RTSBs 
that correspond to CHBs on the HISTORY stacks are a 
subset of those RTSBs whose routines “care about” the 
class in which the CM is contained. However, the CHB 
HISTORY stack for a CM may not have a complete list 
of all the routines which care about the class of the CM. 
For example, suppose the RETE network of routine X 
cares about class A, and X calls routine Y, and a mem 
ber of class A is created in Y. While execution remains 
in Y, there is no history of the new class member in 
routine X’s RETE network and there is no CHB for the 
new class member enqueued off of the RTSB of routine 
X. When routine Y returns to routine X, it could be 
determined (for example by searching) if routine X‘s 
RETE network does indeed care about the new class 
member. However, in the invention, the RTSB CARES 
stack enqueued off of the class pointer record which 
RTSBs “care about" that class. Thus, when routine Y 
returns to routine X, the fact that the RETE network of 
routine X does contain reference to class A can be de 
termined quickly by “walking” the RTSB CARES 
stack of class A. 
The RCS PTR in ?eld 60c of the class anchor 60 

points to the top block in the RTSB CARES stack for 
class A. RCBs are in the RTSB CARES stack. When 
ever the RUN-TIME stack is pushed (that is, whenever 
a subroutine is called), if the RETE network for that 
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subroutine cares about a class, then the RTSB CARES 
stack is also pushed by addition of an RCB to the top of 
that stack, pointing to a new RTSB. In this regard, the 
RTSB CARES stack for class A consists of link-listed 
RCBs 150-152. Each RCB includes at least two pointer 
?elds, corresponding to the ?eld 150a and 1501: of the 
RC3 150. In ?eld 1500 is a pointer to the RTSB of a 
routine which cares about class A. In ?eld 15% is a 
pointer to the next RCB in the RTSB CARES stack. 
As stated above, calling a routine results in pushing a 

RTSB onto the RUN-TIME stack, and an RCB onto 
the RTSB CARES stack for each class that the called 
routine cares about. Fast access to all of the classes that 
the routine cares about is provided in the CARED 
FOR CLASSES stack. In FIG. 3, this stack includes 
CCBs 160-162. Each CCB in this stack includes at least 
two ?elds corresponding to ?elds 160a and 1601; of 
block 160. The ?rst ?eld includes a pointer (CA P’I'R) 
to the class anchor of one of the classes cared for by the 
called routine. The second ?eld points to the next CCB 
(NEXT) in the stack. 

In the discussion of FIG. 3, the terms “list”, “queue” 
and “stack”, have been used interchangeably to indicate 
linked sequences of blocks. Some of these sequences 
have an order corresponding to the hierarchy of rou 
tines in the production system application. It is asserted 
that all of these sequences are generated using conven 
tional means at initialization time for the application, 
and that they are processed using conventional routines 
during execution of the application. The invention is not 
an invention of lists, queues, or stacks, but rather relies 
upon these well-known structures for its practice. 
The practice of the invention is not limited to produc 

tion systems which use routine calls in RHS execution. 
In its simplest application, the invention is useful in 
production system applications which may not use calls 
but which do recognize and execute compound RHSs. 
In this, the simplest case, the structure of FIG. 3 would 
illustrate a single RTSB and a CARED-FOR 
CLASSES stack pointing to all classes of the working 
memory and an RTSB CARES stack with a single RCB 
pointing to the single RTSB. In this fundamental utiliza 
tion, MAKE, UPDATE, and CHANGED queues 
would still serve to, for each rule execution, coalesce 
changes and defer changes until completion of execu 
tion. 
However, when the invention is applied in a produc 

tion system supporting RHS calls to subroutines, a set of 
assumptions are made. First, if any routine in a hierar 
chy of routines has a rule whose LHS mentions a class, 
then the RETE algorithm for that routine must process 
all changes to CMs of that class before con?ict resolu 
tion before the routine can be done. In this respect, it is 
said that the RETE network for this routine “cares 
about” the class if some LHS in the rule base for the 
routine mentions the class. With this, the following 
assumptions apply to the routines: 

1. Each routine has its own, separate RETE network. 
2. There is a separate con?ict set that is created when 

a routine is called, and deleted when the routine returns 
to its caller. 

3. Recursive calls to a subroutine of data-driven rules 
will only be supported by creating additional RETE 
networks for the called routine, one network for each 
level of nesting of the routine. 

4. The run-time stack is pushed when a routine is 
called and popped when the routine is returned. 
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5. When a routine is called, upon entry into the rou 

tine, the RETE network for the called routine must 
process all members of all classes that the RETE net 
work of the routine cares about, the processing being 
done as “makes” for all CMs of the cared-for classes. 
When the routine is exited, the routine’s RETE net 
work is ?ushed by "removing” every number of every 
class that the RETE network cares about. 

Utilizing the control block and control block connec 
tions of FIG. 3, the method of coalescing changes ac 
cording to the invention can be described in more de 
tail. 
When a class member is created, a “make” CHB is 

also created. The CHB is enqueued in the MAKE queue 
of!‘ of the top RTSB in the RUN-TIME stack. The CHB' 
is also pushed onto the HISTORY stack anchored in the 
CMH of the class member created. If additional 
changes to the CM precede con?ict resolution for the 
routine, then those changes are coalesced into the make 
operation, and nothing further is done to the CHB until 
the made CM is subjected to RETE processing. 
When con?ict resolution is required, the MAKE 

queue of the top RTSB is walked. In this regard, the 
MAKE queue is traversed in order from top to bottom, 
with the “make” of each CM having a CHB in the 
queue being pushed through the RETE network. Each 
time the CM linked to aCHB in the MAKE queue is 
subjected to a match cycle, the CHB is moved from the 
MAKE to the CHANGED queue. 

If a CM is removed, then the RETE processing for 
removal is done immediately for all active routines 
caring about the class of the class member and having 
RTSBs on the run-time stack. All CI-IBs for the class 
member are removed from their respective queues and 
destroyed. If creation or changes occurred before the 
remove request, but after the proceeding con?ict reso 
lution step, all RETE processing for the creation and 
/or updating is avoided. 

If multiple changes are made in succession to an al 
ready existing CM, then the already existing Cl-IB for 
that CM is moved for the ?rst change from the 
CHANGED queue to the UPDATE queue, with the 
appropriate change being made to the TYPE ?eld of 
the CHB. No CHB modi?cations need occur for those 
changes made after the ?rst update to the CM. When 
con?ict resolution is ?nally required to proceed to the 
next rule to be ?red, the UPDATE queue is ?rst 
walked, the “update” RETE processing done for each 
CM changed in a respective match cycle, and the CI-IBs 
are all moved back to the CHANGED queue. 
The CHANGED queue is maintained principally to 

ensure that termination of a routine will not prevent 
coalesced changes being passed back to the caller for 
processing in the caller’s RETE network. Suppose rou 
tine X called routine Y and that routine Y has run to 
completion. Now, the ?ow of control returns from 
routine Y to routine X. More speci?cally, the RHS of 
some rule (say rule RR) in routine X which contained 
the call to routine Y now must complete execution. 
Other actions can occur subsequent to the return, but 
before execution of rule RR is complete and RETE 
processing initiated in order to begin con?ict resolution. 
For example, the call may be to routine Y in a loop 
where it would be repeated many times. Advantage is 
gained through the practice of the invention if the 
changes made to class members that routine X cares 
about are not immediately processed by routine X’s 
RETE algorithm. Instead, the invention coalesces 
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changes made in routine Y with changes made earlier in 
routine X. 

Coalescing upon return to a calling routine is done by 
walking each of the MAKE, UPDATE, and 
CHANGED queues off of the called routine’s RTSB. 
Given a CHB in one of routine Y’s MAKE, UPDATE 
or CHANGED queues, if that CHB is the only CHB in 
the related CM’s HISTORY stack, then the CM must 
have been created inside routine Y (or in a routine 
called by routine Y). In this case, speedy determination 
can be made as to whether routine X cares about this 
new CM by looking at the RTSB Cares stack for the 
CM's class anchor. If routine X cares about the class 
containing the newly made CM, the CHB goes into the 
MAKE queue for routine X. Similarly, if a routine 
hierarchically positioned between routine Y and routine 
X cares about the class, the CHB goes onto that rou 
tine’s MAKE queue. Otherwise, the CHB is destroyed. 

If the CHB is not the only CHB on the CM’s HIS 
TORY stack, then either the next older CHB is associ 
ated with routine X or it is associated with the routine 
that is hierarchically positioned between routine X and 
routine Y. That is, the routine is positioned before X but 
after Y on the call chain. Which possibility is easily 
determined by comparing the RTSB PTR in the CHB 
with the address of routine X’s RTSB. If routine X 
cares about the class containing the CM, then there 
must be a CHB queued of!‘ of routine X's RTSB because 
of the assumption that all members and all classes that 
routine X cares about would be created (pushed 
through routine X’s RETE network as new CMs) when 
routine X was called. If there is a CHB enqueued for 
routine X, then it is necessary only to move back the 
CHB to routine X’s UPDATE queue if it was formerly 
on routine X’s CHANGED queue. Likewise, if there is 
a CHB enqueued for a RTSB below X on the RUN 
TIME stack, then the CHB in its CHANGED queue 
needs to be moved to the routines UPDATE queue. In 
all cases, the HISTORY stack is popped to eliminate the 
CHB for routine Y. 
When routine Y returns to routine X, the RUN 

TIME stack is popped, and, concurrently, the CARED 
FOR-CLASSES queue is walked to quickly locate each 
class anchor that routine Y cares about. For each of 
these routines, RTSB CARES stack is popped to re 
move the RCB pointing the popped RTSB for each 
such class anchor. 
When routine X calls routine Y, the reverse steps are 

taken. The RUN-TIME stack is pushed. The CARED 
FOR-CLASSES queue is walked, and for each class 
CCB, two actions are taken for the designated class 
anchor. First, the RTSB CARES stack is pushed with a 
new RCB pointing to the RTSB pushed on to the RUN 
TIME stack. Second, each queue of CARED-FOR 
CLASSES is walked to create the CMs used by routine 
Y and each HISTORY stack is pushed with the new 
CHB in that stack also being enqueued in the RTSB’s 
MAKE queue. 
The operating procedure just described is illustrated 

in FIG. 4 where routine X is embodied in a parent rou 
tine 2410 implementing a recognized-act cycle including 
process steps 210, 220, 230, 240, and 250, in sequence. 
RETE processing is implemented in the MATCH step 
210 and to produce the conflict set 220. A rule to ?re is 
selected in RESOLVE step 230 and the rule is executed 
in step 240 by executing the instantiation selected in step 
230. During the course of executing the instantiation, 
the application code will initiate changes to working 
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memory objects which are made, updated, or removed 
as part of rule execution. In addition, the course of 
execution may include a call (call Y) to subroutine Y. 
Assuming no call to routine Y or return of control from 
Y, the match and con?ict set steps 210 and 220 are 
preceded by a call to a routine 250 entitled 
do_RETE_processing. 
The routine do_izgm_processing is illustrated in 

Table I. In Table I, the routine, for each CHB in the 
routine RTSB’s UPDATE queue calls the RETE pro 
cessing of steps 210 and 220 with the RETE network of 
the top RTSB and the CM pointed to by the CHB and 
a command to perform UPDATE processing as param 
eters. Next, the CHB is moved to the CHANGED 
queue and its type is set to CHANGED. Then, for each 
CHB in the MAKE queue, the RETE processing rou 
tine of steps 210 and 220 is called using the RETE net 
work of the top RTSB, the CM pointed to by the CHB, 
and the MAKE routine as parameters. Next, the CHB is 
moved to the CHANGED queue and its type is set to 
CHANGED. 
Following the CALL Y from the execute step 240 in 

FIG. 4, the production system routine for subroutine Y 
is entered. Upon entry into subroutine Y, step 320 is 
invoked. Step 320 consists of a called routine sub 
routine-prologue, and is followed by the do_RETE._ 
processing routine 330. The subroutine_prologue step 
320 is illustrated in greater detail in Table II. Sub 
routine_prologue is executed as part of the prologue of 
each called data-driven routine in the production sys 
tem. The primary function is to invoke RETE process 
ing for all members of classes that the routine cares 
about and to push all the stacks needed for coalescing 
changes. When this routine is complete it returns to the 
called routine which then calls the recognize-act cycle. 
As Table II illustrates, an RTSB for the routine is 

built and pushed onto the RUN-TIME stack. A new 
RC8 is created and pushed onto the RTSB CARES 
stack for each CA speci?ed by the CARED-FOR 
CLASSES queue of the routine. Then, for each CM in 
the queue of class members off of the CA speci?ed by a 
CCB in routine Y's CARED-FOR-CLASSES queue, a 
new CHB is created, pushed onto the HISTORY stack 
for the associated CM and enqueued on the MAKE 
queue off of the routines RTSB. The subroutine_. 
prologue routine then calls the do_RETE_processing 
routine of Table l to process all of the “makes” in rou 
tine Y’s MAKE queue. In this manner, Y’s RETE net 
work is with all CMs from WM 301 about 
which Y cares. This is required to initiate production 
system processing by subroutine Y. 

Next, subroutine Y begins its production system oper 
ation by calling a recognize_act._routine 340, illus 
trated in greater detail in Table III. The recognize__ac 
t_routine assumes that the application sets a ?ag to 
indicate when routine is to be passed to the caller, rou 
tine X. Such a flag can take the form of a control ele 
ment such as is used in OPSS programming. The routine 
of Table III initially selects a rule to execute, and then, 
assuming there is an instantiation to tire, ?res the instan 
tiation. Execution of the rule in subroutine Y is carried 
out by the application code which will take actions to 
make, update, and remove CMs during execution. Flag, 
or control element processing is also carried out by the 
application during rule execution in order to inform the 
application when to return control to the caller of sub 
routine Y. 
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During rule execution, the recognize_act_routine 
may be required to execute, update, or remove a CM. If 
these actions are required, they are taken in conjunction 
with the respective routines of Tables IV, V, and VI. 
'I‘hus,whenanewCMismadeduringtherecog 

nize_act_routine 340, the make procedure is per 
formed and the execute_a_make procedure of Table 
IV is called. The procedure of Table IV records the 
need for RETE processing of a “made" CM in a CHB. 
When the CM is made, it isassumed that it contains an 10 
indication of the class to which it is to belong. Using this 
indication, the CA for the class is located, the CA is 
inserted into the class member queue off of the class CA 
and a make “CHB” is created and for the 
CM, pushed onto the CM’s HISTORY stack and in 
serted into the MAKE queue off of the top RTSB. 
When an existing class member is changed by updat 

ing, the change is made and the execute_and_update 
procedure of Table V is called. Recall that, under the 
earlier description, if a routine is currently executing 
and cares about a class, then for each CM in the class 
there must exist a Cl-IB in the MAKE, UPDATE, or 
CHANGED queues of the routine. Thus it is known 
that a CHB must exist in one of these three queues at the 
time the t'rmction of Table V is invoked. Furthermore, if 
the located CHB is not in the CHANGED queue, then 
the need for RETE processing is already recorded, this 
change is thereby coalesced with the already recorded 
change, and there is nothing more to do. 

In this embodiment, "remove” processing is not im 
plemented by the CB strategy. While “remove” could 
be enqueued with the hope that a later "make” could be 
coalesced with a given “remove” to reduce total pro 
cessing, our embodiment preferably eliminates all traces 
of a CM as soon as the application requests a “remove” 
operation. Thus, CHBs are not enqueued for “re 
moves". 
When a “remove" is performed, the ex 

ecute_a_remove procedure of Table V1 is called, the 
CHB in the UPDATE or CHANGED queues are lo 
cated, the CM is removed, the CHB is dequeued from 
the MAKE, UPDATE, or CHANGED queue of the 
current RTSB and the CHB is popped off the CM’s 
HISTORY stack and destroyed. Last, the CM is de 
stroyed and the routine ends. 

Returning to the recognize_act_routine of Table II, 
when the selected instantiation has completed ?ring, the 
do__RETE_processing routine (Table I) is called in 
step 350. When the RETE processing of step 350 is 
completed, if the return ?ag has not been set, (step 360), 
the recognized_act_routine is performed again in step 
340. It‘ the flag has been set, the subroutine-epilogue of 
step 370 is called. 
The subroutine_.epilogue is illustrated in Table VII, 

and is executed as part of termination of each routine, 
including subroutine Y. The epilogue pops the top RCB 
off of the RTSB CARES stack for each class listed in 
the CCB for the current RTSB. Then, for each CI-IB on 
the MAKE, UPDATE, and CHANGED queues 
pointed to by the top RTSB, the CH3 is popped out of 
the HISTORY stack for its associated CM and de 
queued from its RTSB queue. If the HISTORY stack 
for the CM is empty and the RTSB CARES stack for 
the CM’s class is not empty, the CH8 is changed to a 
MAKE and placed on the MAKE queue of the RTSB 
speci?ed by the top RTSB on the RTSB CARES stack 
of the class. Otherwise, the top CHB on the HISTORY 
stack is converted to a CHANGED CHB and moved to 
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the UPDATE queue for RTSB speci?ed by the RC8 
on the classes RTSB CARES stack. Then, the CH8 is 
destroyed for this routine the RUN-TIME stack is 
popped the RETE network for the routine is “?ushed” 
in step 300 by executing a remove for all of the class 
members in the class WM 301 that Y cares about, and 
control is returned (step 390) to routine X. 

TABLE I 

do_RETE_proceasing: 
Do for each CHB in ‘update’ queue; 

Call RETE processing routine with top RTSB‘s 
RETE network and CI-IB’s CM and ‘update’ 
as parameters; 

move CHB to ‘changed’ queue and set CHB's type to 
'changed'; 

End; 
Do for each CI-IB in ‘make’ queue; 

Call RETE processing routine with top RTSB’s 
RETE network and Cl-IB's CM and 'make' 
as parameters; 

move CHB to ‘changed’ queue and set CHB’s type to 

.chmsed'; 
End; 

End do_RETE_processing; 

TABLE II 
subroutine Jrologue: indenti?er of routine is passed parameter, 

push run-time stack, i.e., add and a new RTSB; 
Do for each CC]! on Cared-for Classes queue for routine; 

push a new RCB on RTSB cares queue oil‘ CA 
speci?ed by CCD with RCB pointing 
to the new RTSB; 

Do for each CM in queue of class members o?‘ 
the CA speci?ed by CCB; 

create a CHB for each CM; 
push CH8 onto history stack for CM; 
enqueue CI-IB in 'make' queue otl' top RTSB; 

End; 
End 
Call do_RETE_processing; /‘ to process all the ‘makes’ 
End subroutine_prologue; 

TABLE III 
recognize__act_routine: 

Do until a ?ag is set indicating application wants to return 
to caller; 

Call con?ict-resolution; /' select the best instantiation 
to ?re 

If there is a best instantiation 
Then 

?re the beat instantiation; 
/' Note that during the course of ?ring 
/' the instantiation, the application code 
/' will initiate changes to working memory. 
I‘ The application code will call 
/' execute_a__make, execute_an_update. and 
/' execute_a_rernove as part of its make, 
/' update, and remove actions. 
I‘ A flag will be set by the application 
/' when the application wants to return to 
/' the caller of the currently active, 
/‘ data-driven subroutine. 

Else 
Return to the caller of recognize_act_routine; 

Call do_RETE_processing 
End; 
Return to the caller of recognize_act_routine; 

End of recognize__act_routine; 

TABLE IV 

Execute_a__rnske: CM is passed parameters; 
use class name or other identi?er to locate anchor (CA) for 

class; 
insert CM into class member queue o?' CA; 
create and initialize a CHB for the CM; 
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TABLE IV-continucd 
push CHB onto history stack o?' CM; 
insert CHB in 'make’ queue off top RTSB in run-time stack; 

End execute_a_mnke; 

TABLE V 
execute_an_update: CM is passed parameter; 

If the top CHB on CM‘s History Stack is on 'changed’ queue 
Then move CHB to the ‘update’ queue 

and change type of CHB to ‘update’; 
End execute__an_update; 

TABLE VI 
execute_a_remove: CM is passed parameters; 

Do for each CHB on History Stack anchored at CM; 
If CHB is in an 'update' or ‘changed’ queue 
Then Call RETE processing routine with CHB’s RTSB's 

RETE network and CM and ‘remove’ as parameters; 
dequeue CHB from make, update, or changed queue; 
pop CHB of!’ history stack; 
destroy CHB; 

destroy CM; 
End execut_e_a_remove 

TABLE VII 
subroutine_epilogue: 

Do for each CCB on Cared-for queue of!‘ RTSB; 
pop RTSB cares stack for the CA speci?ed by CCB; 

End; 
Do for each CH1! on make, update, and changed queues 

of!‘ top RTSB; 
pop CHB out of history stack for CM of C83; 
dequeue CHB from mnke/update/changed queue; 
If history stack is empty, and RTSB cares stack is not empty 
Then /' pushing a make thru earlier routines in call 

chain '/ creates CHB on ‘make’ queue of RTSB 
speci?ed by top RCB on the RTSB cares stack; 

Else IF top CHB on history stack is ‘changed’ 
Then move CHB to ‘update’ queue for same RTSB 

and set CHB’s type to ‘update’; 
destroy the CHB; 
End; 

pop run-time stack; 
End subroutine_epilogue; 

Obviously many modi?cations and variations in the 
practice of this invention will occur to the skilled practi 
tioner which do not depart from the spirit and teachings 
of this description. 
We claim: 
1. A method for coalescing changes to objects in a 

working memory, the method being invoked prior to 
processing said changes through a matching structure 
used in con?ict set resolution, said resolution occurring 
during the recognize-act cycle of a rule-based, arti?cial 
intelligence production system, 

said system including a rule set and an inference en 
gine cooperating with said rule set and working 
memory for executing a succession of recognize 
act cycles, each rule having pattern indication and 
action specifying parts thereof, the action specify 
ing part of a rule including procedures for effecting 
changes to said objects, 

said method comprising the steps of: 
responsive to a ?rst change to an object resulting 
from execution of a ?rst rule, creating a control 
block (CB) internal to the inference engine and 
recording said ?rst change in the created CB; 

enqueueing said CB in a queue; 
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in the event of a second change to said object sub 
sequent to said ?rst change and prior to the se 
lection of the next rule following said ?rst rule, 
maintaining said CB unaltered in said queue, 
without passing either said ?rst or said second 
changes through said matching mechanism; and 

upon completing said execution of said ?rst rule, 
passing the change recorded in said CB through 
said matching mechanism. 

2. The method of claim 1, wherein said ?rst change is 
a creation of said object, said enqueueing step including 
enqueueing said CB in a make queue. 

3. The method of claim 1, wherein said ?rst change is 
an update of said object, said enqueueing step including 
cnqueueing said CB in an update queue. 

4. The method of claim 1 wherein said enqucucing 
step includes enqueueing said CB in either a make or an 
update queue. 

5. The method of claim 4, further including the steps 
of: 

responsive to said passing step, enqucueing said CB in 
a changed queue; and, then, 

upon selection of a second rule following said first 
rule, recording a third change to said object occur 
ring before selection of the next rule following said 
second rule by moving said CB from said changed 
queue to said update queue. 

6. The method of claim 5 further including the step 
of: 

in the event of a fourth change to said object subse 
quent to said third change and prior to the selection 
of the next rule following said second rule, main 
taining said CB unaltered in said update queue, 
without passing either said ?rst or said second 
changes through said matching mechanism; and 

upon completing said execution of said second rule, 
passing the change recorded in said CB through 
said matching mechanism. 

7. A method for coalescing changes to objects in a 
working memory, the method being invoked prior to 
processing said changes through a matching structure 
used in con?ict set resolution, said resolution occuring 
during the recognize-act cycle of a rule-based, arti?cial 
intelligence, production system, 

said system including a rule set and an inference en 
gine cooperating with said rule set and working 
memory for executing a succession of recognize 
act cycles, each rule having a pattern indication 
and an action specifying part, the action specifying 
part of the rule including procedures for making 
changes to said objects, 

said method including the steps of: 
creating a ?rst queue for a production system calling 

routine, and selecting and executing a ?rst rule 
during said calling routine; 

in an action-speci?ying part of said ?rst rule, calling 
and executing a rule-driven, production system 
subroutine including a subroutine rule set, a sub 
routine working memory with working memory 
objects which said subroutine cares about, and a 
subroutine matching structure used in subroutine 
conflict set resolution; 

creating a second queue for said subroutine; 
responsive to a ?rst change to an object in said sub 

routine working memory rcsulting from execution 
of a rule in said subroutine working set, creating a 
?rst control block (CB) for said object and record 
ing said ?rst change in said CB; 
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enqueueing said ?rst C13 in said second queue; 
in the event of a second change to said object occur 

ring during the execution of said rule of said sub 
routine working set, maintaining said ?rst CB unal 
tered in said second queue, without passing either 
said ?rst or said second change through said sub 
routine matching structure; 

upon completing said execution of said rule in said 
subroutine rule set, passing said ?rst and second 
changes through said subroutine matching mecha 
nism in response to said CB; and 

alter return to said calling routine: 

5 

15 

25 

35 

45 

50 

65 

20 
ii’said calling routine cares about said object, moving 

said ?rst CB to said ?rst queue if said ?rst queue 
contains no second CB for said object, and passing 
said ?rst and second changes through said match 
ing structure; 

otherwise, dequeueing and destroying said ?rst CB. 
8. The method of claim 7, further including the step 

of creating a third queue for said calling routine, and if 
said ?rst queue includes a second CB for said object, 
moving said second CB from said ?rst to said third 
queue and passing said ?rst and second changes through 
said matching structure in response to the inclusion of 
said second CB in said third queue. 

Q i C I i 


