
VEDIT 5.21
Fully Configurable

Multiple File Text Editor
Universal File Editor

User’s Manual

Greenview Data

VEDIT
Universal File Editor

For Text, Program, Database, Binary
And Mainframe File Editing

Version 5.21

Manual Written By:
Theodore Green & Charles Scott

Programmed By:
Theodore Green & Thomas Burt

Greenview Data, Inc.
2773 Holyoke Lane
Ann Arbor, MI 48103

Telephone: (734) 996-1300
Sales: (800) 458-3348
Fax: (734) 996-1308

E-Mail: support@vedit.com
Website: www.vedit.com

Copyright (C) 1990 - 2002 by Greenview Data, Inc. All rights reserved
worldwide. No part of this publication may be reproduced, in any form
or by anymeans, for any purposewithout the express written permission
of Greenview Data.

DISCLAIMER

Greenview Data, Inc. and the authors make no claims or warranties with
respect to the contents or accuracy of this publication, or the product it
describes, including any warranties of fitness or merchantability for a
particular purpose. Any stated or expressed warranties are in lieu of all
obligations or liability for any damages, whether special, indirect, or
consequential, arising out of or in connection with the use of this
publication or the product it describes. Furthermore, the right is reserved
to make any changes to this publication without obligation to notify any
person of such changes.

Last Full Manual Revision: June 22, 1999
(Minor Revision: Jan. 17, 2002)

ACKNOWLEDGEMENTS

We would like to thank the following people for their assistance.

Christian Ziemski for the exceptionally thorough beta-testing of
new versions and assistance in setting up the Discussion Conference
on our Web site.

Scott Lambert for the numerous suggestions, for supporting other
users in the Discussion Conference, and for running his own “VEDIT
macro” Web site.

Maxim Glukhov for writing the new BOX-DRAW.VDM and
ASCII2.VDM macros supplied with VEDIT.

Wayne Barrett, for donating many hours to editing and enhancing
this manual and for his helpful feedback over many years.

Peter Freed of Data Base Management Systems, Inc. for writing the
CMD-CONV.VDM, DBASE.VDM and WS6.VDM (enhanced
WordStar emulation) macros supplied with VEDIT.

This manual was created using Corel Ventura in conjunction with
VEDIT PLUS. V-SPELL was used for spelling correction.

TRADEMARKS

VEDIT, V-SPELL and V-PRINT are trademarks or registered trade-
marks of Greenview Data, Inc.

Microsoft, MS-DOS, Windows, Windows NT and Internet Explorer
are trademarks or registered trademarks of Microsoft Corporation.

Netscape and Netscape Communicator are registered trademarks of
Netscape Communications Corporation.

UNIX is a registered trademark of The Open Group.

Linux is a registered trademark of Linus Torvalds.

IBM, IBM PC/AT, PS/2 and OS/2 are trademarks or registered
trademarks of International Business Machines.

Corel, WordPerfect, Paradox and Ventura are registered trademarks
of Corel Corporation.

dBase and Brief are trademarks or registered trademarks of Borland
International.

All other trademarks and copyrights referred to are the property of
their respective owners.

TABLE OF CONTENTS

Chapter 1 - Introduction... 9
Welcome to VEDIT..9
Main Features ...11
Ready-To-Use Macros..13
V-SPELL ..16
System Requirements ...17
Using this Manual...18
Notation ..19
Product Support ..20

Chapter 2 - Getting Started.. 21
Installation ..21
Windows Installation..22

Un-installing VEDIT ...24
DOS Installation ...25

DOS Automated Installation..25
DOS Manual Installation ...25
Hardware Configuration (DOS Version).....................................26
Installing DOS VEDIT in Windows ...27
Installing DOS VEDIT in IBM OS/2 ...28
Testing the VEDIT DOS Installation ..29

CONFIG.SYS and AUTOEXEC.BAT Files ..30
Network Installation ...31
Initial Configuration ..33
Description of Files ..34
Keyboard Layout ...38

Chapter 3 - Quick Tutorial... 43
Starting VEDIT ...44
Entering New Text ...45
Deleting Text ..46
Moving the Cursor ...47
Undo and Redo ...49
Repeating Operations ..50
“Cut and Paste” a Block ...50
Printing Text ...53
Saving Your Work..54
Exiting VEDIT ..54
That’s It! ...54

3

Chapter 4 - Editing Guide...55
Starting (Invoking) VEDIT ... 55

Starting VEDIT for Windows ... 55
Starting VEDIT for DOS .. 57
Invocation Options (All Versions) .. 57
“VEDIT” Environment Variable ... 60
Loading Multiple Files ... 60
Read-only (Browse-only) Mode .. 61
Overwrite-Only Mode... 62

Exiting VEDIT... 63
Edit Session Restore ... 64
Backup Files .. 65
Auto-file Save.. 66

The Status Line .. 67
User Interface... 69

Selecting Display Fonts (Windows version) 69
Shortcuts and Suggestions... 69
DOS, UNIX and QNX Versions ... 70

Scrolling the Screen ... 71
Vertical Scrolling .. 71
Horizontal Scrolling .. 71
Wrapping Long Lines on the Screen .. 72

Screen Display & Keyboard Characters .. 73
Entering Control and Graphics Characters 73
Control and Graphics Character Display 74
Display Modes... 74
The <Tab> Key and Tab Characters ... 75
Lower and Upper Case Conversion .. 76
Key Emulation Modes... 77
Other Keyboard Input Options (DOS Only - Technical)............ 78
Other Screen Display Issues (DOS Only - Technical)................ 78

Hex Mode Editing (and Octal) ... 79
Searching in Hex, Decimal or Octal ... 80
Entering Numbers in Hexadecimal ... 80

Undo and Redo .. 81
File Types - Win/DOS, UNIX, Mac, Binary .. 82

Windows/DOS and UNIX Text Files ... 83
Macintosh Text Files ... 83
Binary/Data Files (Record Mode) .. 84
Database Files With Headers ... 85
Editing Very Long Lines (Technical) ... 85

Keystroke Macros .. 86
Recording Keystroke Macros.. 87
Adding Keystroke Macros ... 88

Adding Keystroke Macros from KEY-MAC.LIB 89

4

Modifying an Existing Keystroke Macro.............................90
Deleting Keystroke Macros ...90

Editing the Keyboard Layout ..91
Adding a Keystroke Macro from KEY-MAC.LIB92
Loading a New Keyboard Layout ...93

Block Operations ...94
Marking (selecting) a Block of Text ..94

VEDIT’s Blocks are Persistent...96
What exactly does the block include?96

{BLOCK, Copy / Move to cursor} ...97
Text Registers and the “Scratchpad” ..98

The “Scratchpad” Text Register ...98
Accessing Other Text Registers ..99
Block options - Fill and Overstrike99
Emptying a Text Register ..100
Text Register Usage..100

Cut & Paste Huge Blocks ...103
The Windows Clipboard ...103
Block Indenting..104
Columnar Blocks ...105

Translating a Block or File ..110
Translating between EBCDIC and ASCII...................................110
Translating between ANSI and ASCII ..111
Creating Your Own Translation Table ..111

Sorting Lines in a Block / File..112
Sorting by multiple fields (major and minor keys)112

Printing in VEDIT ..113
Basic Operation..114
Printer Margins ..115
Using the PRINT.VDM Macro ..115
Print Display Mode..116

EBCDIC and other Translate Tables....................................116
Print “Jobs” and [Finish/Eject] ..117

Print Job Start/Finish Strings ...118
Search and Replace ..120

Pattern Matching..120
Matching the “Newline” - with “|L” and “|N”122
Matching the Beginning/End of a Line with “|<” and “|>”..123
Matching Multiple Characters with “|M” and “|Y”..............123
Pattern Sets ...124
Using Text Registers in Search Strings................................125

Regular Expressions ..126
Regular Expression Basics ...126
Special Matching Characters ..129
The “OR” Operator...129

5

Groups and Replacement Strings... 130
Complete Examples ... 131
Matching the “Newline” .. 131
Maximize Regular Expression Matching 132

Word Processing Functions ... 133
Definition of “Word” and “Paragraph” 133
Indenting Text (Left Margin) .. 134
Word Wrap (Right Margin) ... 135
Formatting and Justifying Paragraphs .. 136

Offset Paragraphs... 136
Justification .. 137
Format Paragraph Options ... 137

Editing Multiple Files ... 138
{FILE, Open (More)} Sub-menu.. 139
Switching Between Files (Edit Buffers) 140
Closing Files and Windows ... 140
Copying Text From One File to Another 141
Starting (Default) Directory for File-Open 142
Edit Buffer Details ... 143

Windows .. 144
Introduction ... 144

Windows are attached to buffers .. 144
How window names are displayed 144

Switching Between Windows ... 145
Zooming A Window .. 145
“Full-Size” Windows
(Windows version) .. 146
Editing One File in Two Windows .. 146

Chapter 5 - Advanced Topics ...147
STARTUP.VDM File .. 147

Changing Configuration with STARTUP.VDM 149
Using a different startup file ... 149
Name of STARTUP.VDM and VEDIT.INI 150

{USER} and {TOOL} Menus ... 151
File-type Configuration .. 153
Color Syntax Highlighting... 155

Automatic syntax highlighting for C .. 155
Automatic syntax highlighting for HTML.................................. 156
Automatic syntax highlighting for other languages.................... 157
Creating your own “.SYN” syntax definition file....................... 157

Template Editing ... 158
Manual Setup... 158
Automatic template editing for C and HTML 158

HTML Editing Features .. 160

6

Command Macros ...161
VEDIT PLUS Macro Language ...161
Command Macros and Text Registers...162

Loading and Executing Command Macros163
Auto-Execution ..164
PRINT - Print Macro ..165
WILDFILE - Multi-file Processing ...166

Auto-executing the WILDFILE.VDM macro167
COMPARE - Compare Files ...168
COMPDIR - Compare Directories ...170
SORT - Sorting Macro ...171

Running SORT.VDM via Windows “Run” command172
DBASE.VDMMacro ...173

Optional “Hot-key” for xBase Files ..174
CFUNC - C Program Outliner ..175
RUNSHELL - Run other programs ...176
“ctags” Symbol Lookup ..GS 178

Setup...178
Usage..179
Advanced Usage Notes ..179

Integrated Compiler Support ..180
Overview..180
Compiler Support Installation..181
Enable Compiler Support ..181
Configuring COMPILE.CNF (or JAVA-SDK.CNF)182
Running the Compiler Support ...183

Chapter 6 - Menu Reference .. 185
File Menu..186
Edit Menu ...196
Undo (Sub-menu) ...203
Scratchpad (Sub-menu) ..206
Delete (Sub-menu)..208
View Menu ..211
Block Menu ..218
Edit/Translate (Sub-menu) ...227
Convert Newlines (Sub-menu)...233
Goto Menu..235
Misc Menu..241
Search Menu ..249
Window Menu ..258
Config Menu ..263
Keyboard Layout (Sub-menu)..296

Display unused keys ..299
Help Menu ..302

7

Escape Menu .. 307
Mouse Right-Click Menu ... 310

Chapter 7 - Edit Function Reference ...311

Chapter 8 - Configuration ..317
Basic Configuration ... 318
How VEDIT Configures Itself... 318
Troubleshooting .. 320
VEDIT.KEY Layout File ... 322

Modifying the VEDIT.KEY file .. 323
Configuration Commands in “.KEY” Files 323

VEDIT.CFG Configuration File.. 324
List of Config() Parameters .. 325

Config_String() Parameters ... 337
Config_Tab() Parameter... 338

Chapter 9 - Messages ...339

Appendices - ..351
A - File Management ... 351

Basic File Handling... 351
Automatic File Buffering .. 352
Maximum File Size .. 352
Networking and Multi-Tasking... 353

B - Search Modes Summary ... 354
Pattern Matching Codes .. 354
Regular Expressions.. 355

C - Application Notes .. 357
D - Troubleshooting (DOS) ... 361
E - IBM PC Keyboard Layout .. 363
F - IBM PC Color Chart .. 367
G - ASCII Table... 368

8

Chapter 1

Introduction

Welcome to VEDIT
Purpose of Program

VEDIT is an editor designed not only for text preparation and program
development, but also for editing large database, mainframe and binary files.
It can edit in ASCII, EBCDIC, Hexadecimal and Octal, and supports variable
length and fixed length database records.

VEDIT lets you perform near-miracles on data files. If you have ever had to
patch a corrupted database file, convert a huge mainframe file to a DOS/Win-
dows text file, translate between ASCII, EBCDIC, ANSI and custom character
sets, examine a Postscript file, perform a last minute search/replace on a 400
Megabyte file, or search/replace a thousand files, you probably wished for the
kind of speed and capability that only VEDIT offers.

As a text editor, VEDIT is intended for both program development and text
preparation. It is ideal for writing programs (e.g. C, Pascal, Basic, Assembler),
HTML and lengthy documents such as reports or manuscripts. It is also well
suited for the preparation of text files being used with Desktop Publishing
packages such as Corel’s Ventura Publisher (tm).

Since VEDIT can efficiently edit any file you will ever encounter, including
binary/data files and huge files up to 2 Gigabytes (2000 Megabytes) in size, it
is ideal for editing and translating files downloaded fromMainframe comput-
ers and CD-ROM data files. It effortlessly handles database (e.g. xBASE
.DBF), postscript, plotter output, and other non-standard files. And VEDIT is
the fastest editor available for huge multi-megabyte files.

VEDIT can process entire groups of files automatically, even thousands of
files. The same edit changes, e.g. a search and replace, can be applied to all
files in a directory, or even in all subdirectories.

Advanced features include multi-file, multi-window editing, template editing,
syntax highlighting, search/replace with pattern matching or regular expres-
sions, and a full range of block operations by character, line, or column. The
entire keyboard layout and over 200 options are fully configurable.

Programming features include parentheses matching, smart indenting, and
language specific color syntax highlighting and template editing for C, Basic,
Assembly language, HTML and others. Additional features implemented as

Welcome to VEDIT Chapter 1 Introduction 9

macros include “Ctags” lookup, C/Pascal program outlining, and integrated
support for numerous compilers, linkers, debuggers and Make.

Simple, Yet Powerful
VEDIT is simple enough to learn and use for the novice, yet has the speed,
flexibility and power to satisfy the most demanding computer professional. It
offers a rich assortment of editing capabilities, simple menu operation, com-
plete on-line help facilities, and the ability to edit text and binary files up to 2
Gigabytes in size.

VEDIT’s multi-mode editing and display capabilities let you effortlessly edit
any file in the most efficient manner possible. Edit in ASCII, EBCDIC (used
by IBMmainframes), Hexadecimal or Octal modes, or split the screen for any
combination of modes. File modes support Windows/DOS text, UNIX text,
Macintosh text, binary and many fixed-length record data formats.

A block or entire file can be translated between ASCII and EBCDIC, ASCII
and ANSI graphics characters, or with a custom translation table. Text files are
easily converted between Windows/DOS, UNIX and Macintosh “newlines”
(Carriage- Return and/or Line-Feed). Fixed-length records can be converted
into normal text files and vice versa.

A file/block can be sorted using any desired columns (fields) as the sort key(s).
A Sort macro is supplied for sorting multi-line mailing lists.

Totally Configurable, Yet Instant Startup
The comprehensive configuration lets you completely determine your own
keyboard layout and precisely configure VEDIT to your particular hardware,
applications and personal preferences. Over 200 configuration options are
available. By using the available options and “keystroke macros”, VEDIT can
very closely emulate other editors and word processors.

VEDIT starts up instantly; with its speed, almost every operation is performed
instantly.Writtenmostly in 32-bit assembly language, VEDIT is exceptionally
small and uses no overlays or .DLLs. TheWindows version 32-bit VPW.EXE
is only 420K; the DOS version VEDIT.EXE is only 135K.

VEDIT Family of Editors
VEDIT is one of the VEDIT Family of Editors which also includes VEDIT
PLUS and VEDIT Jr. The VEDIT family is available in both Microsoft
Windows and DOS versions. VEDIT PLUS is also available for SCO UNIX
and QNX.

Attractive pricing is available for additional site licensing and networks. A cost
effective software subscription program is available.

10 Chapter 1 Introduction Welcome to VEDIT

Main Features
� Multiple file editing. Simultaneously edit up to 32 files, each up to 2

Gigabytes (2000 Megabytes) in size. Efficiently edits huge text and
binary/data files.

� Multi-mode editing. Filemodes support DOS,UNIX andMac text, IBM’s
EBCDIC, binary and many fixed-length-record formats.

� Flexible windowing. (Windows version uses “MDI” type windows; DOS
version simulates it.) Any file can be viewed in any window, or different
parts of one file can be displayed in separate windows. Windows can be
tiled, cascaded or zoomed.

� Multi-mode display. Each window can display in five different ASCII
modes, hexadecimal, octal or EBCDIC. Or split the screen to view any
file in multiple modes at once.

� File translating. Each character in a block or an entire file can be translated
according to a custom translate table. Tables for translating between
ASCII and EBCDIC, and between IBM PC and ANSI (Windows) graph-
ics characters are supplied.

� File conversion. All newlines (Carriage-Return and/or Line-Feed) in a
block or file can be converted between the type use for DOS/Win, UNIX
and Macintosh text files. Fixed-length record files can be converted into
text files and vice versa.

� Stream, column and line blocks. VEDIT has every type of block operation
imaginable. Blocks may be moved or copied directly, or 100 scratch-pad
buffers can be used for extensive “cut and paste” operations. Blocks can
be copied from one file to another. Clipboard is used to exchange blocks
with other Windows programs.

� More block functions. Switch blocks to upper/lower case, fill blocks,
insert empty blocks, strip high bits and much more.

� Powerful search and replace. Supports sophisticated pattern matching,
regular expressions, reverse searching, selective and global replace. Also
incremental searching, search all open files, open all files containing a
search string, or compare two files.

� WILDFILE macro permits search/replace in large groups of files in a
directory or all subdirectories. Can even perform numerous search/replace
on all files.

� Undo and Redo. Up to 1000 of the most recent edit changes can be
reversed either step by step or line by line. Deleted text can be re-inserted
in its original position or anywhere else.

� Auto-save of files. Automatically saves all modified files after a config-
urable number of minutes. Helps prevent losing your work due to power
failures, etc.

Main Features Chapter 1 Introduction 11

� Automatic indenting simplifies editing of structured programs; advanta-
geous for word processing. Block indent/undent permits quick restructur-
ing. Parentheses matching aids C programming.

� Execute single DOS commands (DIR, compilers, V-SPELL, etc.) or enter
DOS and return later.

� Flexible printing with variable margins and page size. Print a block of text
or the entire file with variable spacing. Windows version supports a
selectable printer font and size. PRINT macro adds a convenient header
(file name, date and page number).

� ASCII table. Pop up the ASCII table or insert any desired control, printer
or graphic character into the text.

� Horizontal scrolling for editing long lines. Optionally, long lines can be
wrapped onto multiple screen lines.

� Word processing. Word wrap, paragraph formatting between adjustable
margins, optional justification, printing. (Does not enter any special
control characters into the text.) Can read/write WordStar compatible
files.

� Integrated compiler support. Popular compilers, assemblers, linkers, de-
buggers and Make programs can be run from within VEDIT. The cursor
will be automatically positioned on source code lines containing compi-
lation errors.

� Color syntax highlighting displays different logical parts of a program in
different colors. For C, HTML, Pascal, Basic, Perl, Clipper, Systat and
others. Users can set up syntax highlighting for other languages or
applications.

� Template editing performs shorthand expansion by recognizing a key-
word and expanding it to the full string of characters. For C and HTML.

� The “Normal” keyboard is very similar to Win95 Microsoft products. Or
chose a very compatible WordStar, Word Perfect or Brief layout. The
keyboard layout can be modified at any time.

� Unlimited keystroke macros. Allows single-key access to menu functions
and creation of custom editing functions. Keystroke macros may be built
into VEDIT, saved to and loaded from disk.

� Fully adjustable tab stops. The <Tab> key can enter a tab character or,
optionally, spaces to the next tab position.Configurable tab-fill, “newline”
and “null” display characters.

� Word processor emulation. VEDIT can closely emulate other editors and
word processors. Contains options for emulating common cursor position-
ing modes, other block operations, various styles of searching, functions
performed by the <Tab> and <Enter> keys and much more.

� Totally configurable with over 200 parameters. VEDIT can be configured
using menus or with easily edited vedit.cfg and vedit.key files.

12 Chapter 1 Introduction Main Features

Ready-To-Use Macros
VEDIT runs most “macros” written in the VEDIT PLUS programming lan-
guage. Although the VEDIT manual does not document this programming
language, many useful macros are supplied with VEDIT and can be used
without understanding their internal workings.

These macros are easy to use and are fully documented in Chapter 5. Most of
them can be run from the {MISC} or {MISC, More macros}menus. You can
also create Windows icons or DOS batch files to automatically run macros
when VEDIT is started.

The following macros are supplied with VEDIT:

� CFUNC - This C program outlining macro lists each C program routine
declaration in a separatewindow; as youmove through the list, the original
window moves through the C program.

� PFUNC - Similar macro to CFUNC, but for Pascal programs.

� COMPARE - This file comparison macro displays the differences be-
tween two files on the screen and lets you merge or edit them in any way
desired. After displaying a difference, the macro can re-align the files and
continue looking for further differences. For example, after finding where
revisionsweremade, you can copy blocks of text fromone file to the other.

� COMPDIR - This directory comparison macro compares all files in two
directories and displays a list of which files are different. It also lists those
files that are in one directory and not in the other.

� COMPILE - The integrated compiler support macro is described below.

� DISPLAY - This simple file display macro permits a computer user with
no VEDIT experience to browse through a file. (It is used during the
automated installation.)

� CTAGS - The “ctags” facility is useful when working on a program with
many files. Once setup, placing the cursor on any function name and
pressing a hot-key opens the file in which the function is declared, with
the cursor on the function declaration.

� PRINT - This simple print formatting macro can be accessed from the
normal Printing dialog box or can immediately be executed when VEDIT
starts up. It adds the filename, date and page number at the top of each
page. VEDIT PLUS users can enhance it for fancier print formatting.

� SORT - Sorts multi-line records, such as a typical mailing list of names
and addresses. (Other sorting is built into VEDIT.)

� WILDFILE - This very useful multiple file processing macro lets you
perform a search, search and replace, or run another macro on an entire
group of files. The group of files may be specified using the wildcards “?”
and “*”. These files will be searched in the current directory and, option-
ally, in all subdirectories. (WILDFILE performs a superset of the UNIX
“grep” command.)

Ready-To-Use Macros Chapter 1 Introduction 13

Custom Macros and {USER} Menu
VEDIT comes with a library of additional “keystrokemacros” that can be built
into the editor and assigned to a “hot-key”.

� KEY-MAC.LIB - Keystroke macro library. Includes selecting window
color from a color chart, duplicating characters and lines, moving the
cursor by sentence, listing lines containing a text string, transposing
characters, counting words and much more.

A set of custom editing functions can be added to the main menu; they appear
in the special {USER} menu. The default {USER} menu includes some
popular functions from KEY-MAC.LIB. As with all menu functions, the
custom functions can have hot-keys assigned to them.

The editing functions in the {USER}menu are implemented using the VEDIT
PLUS macro language. Although VEDIT PLUS is needed to fully realize its
potential, VEDIT users can modify the existing functions or add new ones by
copying macros from KEY-MAC.LIB.

14 Chapter 1 Introduction Ready-To-Use Macros

Integrated Compiler Support
The integrated compiler support lets you run popular compilers, assemblers,
linkers, debuggers and Make programs from within VEDIT. If compilation
errors occur, VEDIT automatically loads the correct source file and positions
the cursor on the error. You can then make corrections and press a key to move
to the next error, or recompile.

The compiler support automatically adjusts to the needs of different programs
in different directories, e.g. one program may be compiled as “large model”
while another is compiled as “small model”. Compiler and other options can
also be changed easily via menus.

The compiler support works with “make” programs and “makefiles” to further
automate program development. It even tracks compilation errors reported by
different compilers run within one Make script.

The following “make” programs are supported:

� Microsoft NMAKE

� Borland MAKE

� Avocet MAKE

� Other UNIX style Make programs

VEDIT supports these and other compilers:

� Microsoft: C/C++,QuickC,QuickBasic,BasicCompiler, Fortran,Cobol,
MASM Assembler

� Borland: C++, Turbo C, Turbo Assembler, Turbo Pascal

� Sun: Java SDK

� Lahey: Fortran 77, Personal Fortran 77

� Metaware: High C

� Micro Focus: Cobol

� Microrim: Rbase Compiler

� Nantucket: Clipper Compiler

� Realia: Cobol

� SDS C/C++ CrossCode Compiler

� Watcom: C/C++ Compiler

� Whitesmith: 68HC11 C Compiler

� Zortech: C++

� Others: 2500 A.D., Acucobol, Avocet, Microtec, SVS, etc.

We can assist customers in adding support for new and custom compilers.

Ready-To-Use Macros Chapter 1 Introduction 15

V-SPELL
V-SPELL Spelling Corrector

This is the ultimate spelling corrector that proofreads 50 pages (100 Kbytes)
of text in under 10 seconds, displays misspelled words in context and can
instantly suggest corrections for any misspelling. Since it automatically cor-
rects the words in the document, there is no need to go back to the word
processor. The 70,000 word main dictionary is expandable — you can have
your own supplemental dictionaries and/or merge them into the main diction-
ary. You can even create your ownmain dictionary. Not only VEDIT, butmost
popular word processors are supported.

For typesetting, desktop publishing and other applications, V-SPELL can
perform file hyphenation by inserting “soft hyphens” in all words of a docu-
ment. Since the hyphenation points are built into the dictionary, you can be
sure it is 100% correct — no error-prone algorithms are used! List price $79.
Registered VEDIT users may purchase V-SPELL with manual for $49 or
without manual for $25. (The text of the manual is on disk.)

16 Chapter 1 Introduction V-SPELL

System Requirements
The Microsoft Windows version requires:

� Windows 95/98/ME or Windows NT 4.0/2000/XP or later.

� VEDIT PLUS works well with minimal memory.

� 3 Megabytes of free disk space.

The DOS version requires:

� MS-DOS or PCDOS version 3.1 or later, or a compatible DOS such as
OS/2 or DR DOS. The DOS version works very well under Windows.
Windows 95/98/ME long filenames and OS/2 extended attributes are
supported.

� An IBM PC compatible computer with an 80386 or better processor.

� At least 640 Kbytes of memory.

� A hard disk is highly recommended, but VEDIT can be installed on, and
will run from, a floppy disk. A full installation with the compiler support
requires about 2 Megabytes of disk space.

� Amonochrome, CGA,MCGA, EGA,VGAor compatible display adapter
and display.

� A special “Telnet” MS-DOS version supports most CRT terminals on the
market including terminals externally connected to an IBMPC via Telnet,
serial ports and/or modems.

System Requirements Chapter 1 Introduction 17

Using this Manual
This manual assumes that you have a working knowledge of your computer
and its basic operation. It is organized into the following chapters:

Introduction (Chapter 1)
Introduces VEDIT and lists the main features and system requirements.

Getting Started (Chapter 2)
Explains how to install VEDIT and make sure that it is working correctly.
It lists the files on disk and the “Normal” keyboard layout.

Quick Tutorial (Chapter 3)
This short tutorial familiarizes youwith the basic aspects of usingVEDIT.
It describes useful “shortcuts” and special features unique to VEDIT.

Editing Guide (Chapter 4)
This chapter covers the operation and main features of VEDIT in detail.
It is the most important chapter and we hope you will find time to read it.

Advanced Topics (Chapter 5)
The startup macro startup.vdm, {USER} menu, color syntax high-
lighting and template editing are covered in detail. Describes how to use
the “command macros” supplied with VEDIT.

Menu Reference (Chapter 6)
Describes each item in the Menu system in detail. It includes many
step-by-step directions for using the features of VEDIT.

The {CONFIG} menu described here lets you configure VEDIT and
fine-tune it to your personal preferences and applications.

Edit Function Reference (Chapter 7)
Describes each basic edit function in detail.

Configuration (Chapter 8)
For the most part, you can configure VEDIT with the {CONFIG} menu.
Alternatively you can change the keyboard configuration by directly
editing the vedit.key and vedit.cfg files described in this chapter.

Messages (Chapter 9)
Lists and explains all error messages and common prompting messages.

Appendices
Topics include technical descriptions of VEDIT’s file handling, network
support and memory management.

Also includes a summary of search pattern matching, regular expressions,
and additional keyboard layout information.

Troubleshooting.

18 Chapter 1 Introduction Using this Manual

Notation
<Ctrl-x> A control character, such as <Ctrl-U>, which is typed

by holding down the “Ctrl” (Control) key and typing
the letter, in this case “U”.

<Alt-x> A control key, such as <Alt-E>, which is typed by
holding down the “Alt” key and typing the letter, in
this case “E”. “Alt” keys are frequently used to directly
access menus, in this case the {EDIT} menu.

<Alt-Bksp> This is an abbreviation for <Alt-Backspace>. Other
abbreviations used are <Ctrl-Bksp> and
<Shft-Bksp>.

<Enter> The “Enter” key. Also labeled “Return” or “CR” on
some keyboards.

<key> Any other individual key such as <Esc>,
<Backspace> , <Space bar> or <F2>.

<F1> The default key for the [HELP] function. The actual
key is displayed on the left side of the status line.

<F10> The default key for accessing the main menu.

[function] A basic editing function such as [CURSOR UP] or
[ERASE LINE]. Each edit function name is usually
followed with the keypress corresponding to the “Nor-
mal” keyboard layout. However, the keyboard layout
is user configurable. The actual key assignments are
displayed by selecting {HELP, Keyboard layout}.

{menu, menu-item} x Menu system selections are shown within braces op-
tionally followed by “x” to indicate variable parame-
ters. The main menu is selected with the [MENU]
function (<F10>). For example, {GOTO, Line #} 71
denotes that you select “Goto” from the main menu,
select “Line #” from the “Goto” menu, and then enter
the value “71” at the line number prompt.

File_Open(“file”) Describes the prototype for a macro language com-
mand. Items in italics are arguments.

File_Open(“myfile.txt”) An example of an actual command. Commands
can be entered in any combination of upper and
lower case. The “_” is optional and is used to
improve readability. Our convention is to capital-
ize each word of a command.

Search(“|D|D”) The Search() command uses pattern matching. The
“|” is the<Shift-\> keyboard character. (This character
is also used as the “OR” operator and is sometimes
called the “pipe” character or “vertical bar”.)

Notation Chapter 1 Introduction 19

Product Support
Greenview Data provides free technical support for VEDIT to all registered
users for 3 months. Should you have any problems that are not covered in this
manual, please contact us, preferably by e-mail (support@vedit.com). Or call
us. Please provide the following information when requesting support:

� VEDIT’s exact version number. This is displayed on the status line when
VEDIT starts up. It is also available in the main menu under {HELP,
About}. We need both the version number and following date.

� Operating system and version number. Particularly whether it isWindows
95/98/ME, Windows NT/2000/XP or DOS.

� We will often ask for copies of your VEDIT.CFG, VEDIT.KEY,
STARTUP.VDM and USTARTUP.VDM files. You can “zip” them up
and attach them to the e-mail message.

Web site: http://www.vedit.com
The following services are currently available on our extensive Web site:

� Free updates. During the 3 months of support, you can download newer
versions. After the 3 months, you can purchase individual updates or the
18-month Software Subscription Plan.

� User Discussion Conference. Interact and share ideas and macros with
other users.

� FAQ - the “Frequently Asked Questions” section contains common tech-
nical support questions and their answers.

� Detailed list of all enhancements and bug fixes. This helps you decide if
an update is worthwhile.

� News and general marketing/sales information about VEDIT.

Return the Registration Card!
Registering your copy of VEDIT helps us support you. Please take a moment
to fill out the enclosed registration card and drop it in the mail. You can also
register on-line at www.vedit.com/register.htm.

Registered users receive these benefits:

� Technical support for 3months bymail, telephone or FAX.Or send e-mail
to support@vedit.com. Most questions are answered within 24 hours.

� Newsletters to keep you abreast of added features, new releases and
helpful hints from other users.

� Discounts on future releases.

We welcome your comments and suggestions.

20 Chapter 1 Introduction Product Support

Chapter 2

Getting Started

Installation
The exact steps for installation depend uponwhich version ofVEDIT you have
— Windows or DOS.

NOTES: If you received a damaged CD, please contact us directly (and not
your dealer). You can download the software from our Web site.
Your serial number will activate the downloaded software as the full
product.

Be sure to read the file README.TXT (DOS: README.BAT)
before installing VEDIT. This file may contain last minute installation
instructions.

Refer to Appendix D (Troubleshooting) if you have any trouble
running VEDIT.

The Windows and DOS versions are supplied with an automated installation
procedure that is both easy and flexible to use.

If you wish to install both the Windows and DOS versions, you must follow
each installation procedure. We highly recommend installing both versions
into the same directory; they will then have the same keyboard layout and
configuration.

The automated installation performs the following operations:

� Installs the VEDIT files in the default c:\vedit or any other desired drive
and directory.

� Selects whether the optional compiler support files are installed.

� Selects the initial keyboard layout, color scheme and other common
configuration parameters.

-OR- If a previous VEDIT is found, optionally transfers the current
keyboard layout and configuration to the new version. Alternatively, the
previous version can be archived (moved) to another directory.

� The Windows version creates the “VEDIT” program group and creates
the initial icons in it. It creates the file vedit.ini in the VEDIT
directory.

Installation Chapter 2 Getting Started 21

TheWindows version is optionally installed into theWindows “Registry”.
This is highly recommended, but optional. It allows file types to be
associated with VEDIT.

� The DOS version configures VEDIT to the specific operating system
being used: DOS, Windows 3.1, Windows 95/98/ME, Windows
NT/2000/XP or OS/2.

Once installed, VEDIT can immediately be used; there is no need to reboot the
computer.

GOOD
NEWS:

The VEDIT installation does not modify your CONFIG.SYS,
AUTOEXEC.BAT, WIN.INI or any other system files. Although we
recommend installing VEDIT into the Windows registry, even that
is optional and is only needed to associate file types with VEDIT.
Also, since VEDIT does not use any .DLL files, installing (or
un-installing) it will not affect other programs.

QNX: The Supplemental manual supplied with the QNX version of VEDIT
PLUS describes the installation and configuration in detail. If this
supplement is not available, first install VEDIT PLUS with the
command “/etc/install /dev/fd0”. Then print the supplemental text
file /qnx4/vedit/readme.doc.

Windows Installation

NOTE: Be sure to read the file README.TXT before installing VEDIT. This
file may contain last minute installation instructions.

22 Chapter 2 Getting Started Windows Installation

� To install the Windows version of VEDIT:
1. Insert the VEDIT CD-ROM into your computer. The VEDIT installation

will normally start automatically. If it does not start automatically, navi-
gate to the “setup.exe” file on the CD-ROM and double-click it.

2. A pop-up dialog box will inform you that you are about to install VEDIT.
Select [Ok] to continue.

3. VEDIT will then start! Instead of using a traditional installation program,
VEDIT installs itself using a very flexible “macro”.

4. You are then given the option of performing a detailed [Product] installa-
tion or a [Quick] installation. [Product] explains the installation step-by-
step and gives you many options. [Quick] uses the default options and lets
you install (or update) with a minimum number of steps.

5. One of the first selections is the destination directory into which to install
VEDIT. This will later be referred to as the VEDIT Home Directory.
The default is c:\vedit, but you can select any other directory such as
c:\program files\vedit. If you are installing both the Windows and DOS
versions, we highly suggest installing them both into c:\vedit. This will
later be referred to as the VEDIT Home Directory.
If this directory already exists, the installation assumes it contains a
previous version of VEDIT. You are then given the option of archiving
the entire directory by moving it to another directory, transferring the
configuration from the previous VEDIT to the new one, or simply over-
writing the previous VEDIT. Even if you choose overwriting, all configu-
ration related files are first copied to the .\OLD subdirectory.

6. To activate VEDIT as the full product you should enter the serial-regis-
tration number when the installation prompts you. If you purchased
VEDIT as a download, you should have received the serial number by
email. If you purchased VEDIT with printed manuals, the serial number
should be printed on the CD-ROM envelope. Otherwise, you can enter the
serial number later by selecting {HELP, Register VEDIT}.

7. Follow the remaining prompts on the screen. It is easy to later change any
configurations that you now select, such as the color scheme, without
having to re-install.

We highly suggest selecting the “Normal” keyboard layout which closely
follows Microsoft conventions. Otherwise, commonly used VEDIT functions
will often not be accessible via a “hot-key”.

� Skip down to the topic “Initial Configuration” below. Please also read the
“Keyboard Layout” topic before using VEDIT.

Windows Installation Chapter 2 Getting Started 23

Un-installing VEDIT
If VEDIT was installed into the Windows Registry, you can select “Add/Re-
move Programs” in the Control Panel to uninstall VEDIT. (This is the normal
way to uninstall Windows programs.)

Alternatively, you can select the “Uninstall VEDIT” icon from the VEDIT
Program group.

VEDIT will then startup and give you the following un-install options:

Besides completely uninstalling VEDIT, experienced users may find it useful
to be able to only remove VEDIT from the Windows registry, or only remove
(delete) the VEDIT files.

For example, if you think that VEDIT has somehow gotten corrupted, youmay
want to uninstall and re-install VEDIT. By leaving VEDIT in the registry, your
file associations will not be lost.

It is also easy to manually uninstall VEDIT, e.g. the DOS version.

� To manually remove (uninstall) VEDIT:
1. Delete all files from the directory into which you installed VEDIT, by

default c:\vedit. Also delete all subdirectories.
2. Remove the VEDIT directory, e.g. c:\vedit.
3. Delete all icons from the “VEDIT” program group; then delete the group.

4. If you configured VEDIT to create backup files by copying the original
file to a backup directory, e.g. c:\backup, you may wish to delete this
directory too.

24 Chapter 2 Getting Started Windows Installation

DOS Installation
NOTES: Be sure to refer to the file README.BAT before installing VEDIT

— give the DOS command readme. This file may contain last
minute installation instructions.

The DOS version is fully compatible with MS-DOS or PCDOS 3.0
or later, DR-DOS and OS/2. It also works very well under Windows
95/98/ME and has long filename support. Although it will run, we
do not recommend using it with Windows NT/2000/XP; for one thing
it does not have long filename support under these OS.

Be sure to read the following sections in this chapter:
“CONFIG.SYS and AUTOEXEC.BAT Files”, “Path Command”,
“VEDPATH Environment Variable”, “V-SWAP Installation” and
“Hardware Configuration”.

DOS Automated Installation
1. Insert the VEDIT CD-ROM into your computer. Start the installation by

running the “install.bat” file which is in the root of the CD-ROM. For
example, if your CD-ROM is drive “d:” and you are running from a DOS
prompt, give the following commands:

d: <Enter>
install <Enter>

2. VEDIT will then start! Instead of using a traditional installation program,
VEDIT installs itself using a very flexible “macro”.

3. Continue with Step 4. above under “Windows Installation”.

� Skip down to the topic “CONFIG.SYS and AUTOEXEC.BAT Files” for
further important installation instructions.

Then refer to the topic “Testing your Installation” below.

DOS Installation Chapter 2 Getting Started 25

Hardware Configuration (DOS Version)
In order for the DOS version of VEDIT to run reliably and satisfy your needs,
you should be aware of several important configuration options:

� Setting the Keyboard Typematic Rate

� Disabling Keyboard Polling for Windows NT and OS/2

Setting the Keyboard Typematic Rate
The rate at which the keyboard repeats keyswhen you hold themdown is called
the “typematic rate”. The default rate of about 10 keys per second is slow for
editing and should be speeded up.

VEDIT can optionally speed up the keyboard typematic rate inside VEDIT.
However, this interferes with a faster rate you may have already set. It also
causes problems with some machines resulting in slow startup, slow exiting or
a “frozen” keyboard on exit. To disable having VEDIT change the typematic
rate, set {CONFIG, Misc, Keyboard typematic rate} to “0”. Then select
{CONFIG, Misc, Save into VEDIT.EXE}.

NOTE: The DOS automated installation disables the features (sets it to “0”)
if you specify that your Operating System (OS) is Windows
95/98/ME/NT/2000/XP.

With DOS 5.0 and later and OS/2 we highly recommend that you set VEDIT’s
“Keyboard typematic rate” to “0” and instead set the desired typematic rate in
your OS.

The DOS command “MODE CON RATE=xx DELAY=2” will set the rate to
‘xx’. You could add the following command to your AUTOEXEC.BAT file
to set a very fast typematic rate:

MODE CON RATE=32 DELAY=2

Disabling Keyboard Polling (Technical, DOS only)
VEDIT normally polls the keyboard constantly. This is the most compatible
mode with DOS and won’t interfere with other programs. However it wastes
CPU resource in a multi-tasking environment such as Windows.

Setting {CONFIG, Misc, Keyboard polling} to “1” turns off the constant
polling. This is desirable with Windows and OS/2. However, it may cause
conflicts with other programs and may not work on some systems.

Technical: To operate without polling, VEDIT must “hook” various
hardware interrupts and set up mouse and timer handlers
that directly modify the BIOS keyboard buffer. This can
cause conflicts with memory-resident programs (TSRs).

The DOS automated installation disables keyboard polling (sets it to “1”) if
you specify that your Operating System (OS) is Windows or OS/2.

26 Chapter 2 Getting Started DOS Installation

Installing DOS VEDIT in Windows
The DOS version of VEDIT is designed to work very well with Microsoft
Windows. It can be installed with the supplied VEDIT.ICO icon.

Installing DOS VEDIT in Windows 95/98/ME
� To install DOS VEDIT icon as a Windows 95/98/ME “shortcut”:

1. From Explorer or the Desktop, select the folder (group) to which to add
VEDIT’s icon. It can also be added to the top-level Desktop.

2. Right-click in any empty area of the folder or desktop and select “New”;
then select “Shortcut”.

3. The “Create shortcut” wizard will then prompt you.

For “Command Line:”, enter the full pathname to the VEDIT.EXE file.
E.g. enter “c:\vedit\vedit.exe”.
For “Select a name for the shortcut”, enter the program name you want to
see under the icon, e.g. “VEDIT (DOS)”.

For “Select an icon”, just press [Finish]; the VEDIT icon cannot be
selected from here.

4. Right-click the new icon and select “Properties”. Then select the
“Program” tab.

Be sure “Close on exit” is not enabled.

5. Select [Change Icon...].
For “File name:” enter the full pathname to the VEDIT.ICO file, e.g.
c:\vedit\vedit.ico. Select the [Ok] buttons twice.

Notes:

From within VEDIT, press <Alt-Enter> to switch VEDIT between a full
screen application and a windowed application. It works well in either mode.

The topic “Changing the VEDIT Icon Properties” in Chapter 4 describes how
to set any desired startup invocation options.

Installing DOS VEDIT in Windows 3.1
VEDIT runs best from withinWindows 3.x with the supplied VEDIT.PIF file.
A “.PIF” file contains parameters on how to optimally run a program, e.g. how
much memory to give it. Experienced users can use theWindows “PIF Editor”
to change any desired parameters.

� To install VEDIT into Program Manager with an icon:
1. From inside Microsoft Windows, select the “Program Manager”.

2. Select the Group to which you want to add the VEDIT icon. The “Main”
group is a good choice.

3. Select the menu item {FILE, New}. Then select “Program Item”.

DOS Installation Chapter 2 Getting Started 27

4. Fill in the dialog box. For “Description,” enter the programname youwant
to see under the icon, e.g. “VEDIT”.

For “Command Line”, enter the full pathname to the VEDIT.PIF file. E.g.
enter “c:\vedit\vedit.pif”.
For “Working Directory”, enter the full pathname of the VEDIT Home
Directory, e.g “c:\vedit”.
Leave “Shortcut Key” set to “None”.

5. Select the [Change Icon] button. Windows warns you that no icon is
available for VEDIT. Select the [Ok] button.

6. For “File name”, enter the full pathname to the VEDIT.ICO file, e.g.
“c:\vedit\vedit.ico”. VEDIT’s icon should be displayed. Select [Ok].

7. You should now be back at main dialog box. Select [Ok].
The “VEDIT” icon should be displayed in your current Windows group.

8. Select the “VEDIT” icon. VEDIT should start up in full screen mode.

Installing DOS VEDIT in IBM OS/2
VEDIT can be installed under OS/2 as a normal DOS application. It can be run
from the “C>” prompt in a normal DOS box or from its own icon.

We suggest making two configuration changes to VEDIT for use with OS/2:

� Set {CONFIG, Misc, Keyboard Polling} to “1” to turn off VEDIT’s
constant polling of the keyboard.

� Set {CONFIG, Misc, Keyboard typematic rate} to “0” and set the
desired typematic rate with OS/2’s “Keyboard Setup”.

Remember to select {CONFIG, Misc, Save into VEDIT.EXE} to make any
configuration changes permanent.

The default OS/2 “DOS Settings” work quite well with VEDIT and none are
critical. However, the following settings may help VEDIT run better:

Background_Execution Should be turned “Off” unless you set {CONFIG,
Misc, Keyboard Polling} to “1”.

DOS_Files Should be set to “80” or more since VEDIT needs
three handles for each file being edited.

Idle Sensitivity Setting this to “100” gives more CPU time to DOS
programs at the expense of multi-tasking. Some
DOS programs work dramatically better with a
setting of “100”; VEDIT runs a little better. It
probably doesn’t matter if {CONFIG, Misc, Key-
board Polling} is set to “1”.

VEDIT automatically detects when it is running as a DOS application within
OS/2 (2.1 and later including Warp); it then maintains the “Extended Attrib-
utes” when editing OS/2 files. Please note that newly created files will not be
given any extended attributes.

28 Chapter 2 Getting Started DOS Installation

Testing the VEDIT DOS Installation
After installing VEDIT, start it up to make sure that everything is working.

1. Assuming that your PATH command includes the directory containing
VEDIT, you can start up VEDIT from any directory by typing:

vedit <Enter>

VEDIT will start up and display its signon message on the bottom line.
There should also be a (flashing) cursor in the upper-left corner.

2. Press the <Esc> key to display the {ESCAPE}menu in the middle of the
screen.

If you cannot read the menu, cannot tell which item is currently selected,
or cannot tell which letter in each item is highlighted, your screen colors
are not set correctly. If you have amonochrome (black andwhite) display,
you may need to start up VEDIT with the “-m” option. Then refer to
{CONFIG, Colors} in Chapter 6 (Menu Reference) on how to configure
VEDIT for a monochrome display.

3. Press the [HELP] key. With the “Normal” keyboard layout it is <F1>.
The key assigned to the [HELP] function is displayed on the status line.
You should now see a “pop-up” window that displays help information
about the {ESCAPE} menu.
If you get the error message “FILE NOT FOUND:”, VEDIT could not
find its on-line help file vphelp.hlp. Change {CONFIG, Misc,
VEDIT Home Directory} to the directory into which you installed
VEDIT andwhich should containvphelp.hlp. Then select {CONFIG,
Misc, Save into VEDIT.EXE} to make the change permanent.
Press <Esc> to exit the on-line help window.

4. Exit VEDIT by selecting “Exit” from the {ESCAPE} menu. You should
now be back in DOS.

Refer to Appendix D (Troubleshooting) if you encounter any trouble running
VEDIT.

If you encounter any problems with the keyboard or mouse, or VEDIT appears
to crash on startup or exit, you should change the following configuration
settings to their most compatible settings:

� Set {CONFIG, Misc, Keyboard typematic rate} to “0”.
� Set {CONFIG, Misc, Keyboard polling} to “0”.
� Set {CONFIG, Misc, Mouse cursor} to “65” or “66”.
If necessary, you can force the first two configuration settings on startup with
the “-j” and “-k” invocation options:

vedit -j -k

Then select {CONFIG, Misc, Save into VEDIT.EXE} to make these con-
figuration settings permanent.

DOS Installation Chapter 2 Getting Started 29

CONFIG.SYS and
AUTOEXEC.BAT Files

This topic applies only if you are running:

� VEDIT for DOS.

� VEDIT for DOS under Windows 3.1.

With DOS and Windows 3.1, you should check the CONFIG.SYS file in the
root directory of your hard (boot) disk. It should contain the two lines:

FILES=80
BUFFERS=10

It is OK if the numbers are larger than these!
To simultaneously edit as many files as possible (32), we recommend that your
CONFIG.SYS file contain “FILES=99”. VEDIT gives the error “TOOMANY
FILES” if you attempt to edit more files than the “FILES=xx” statement
allows.

The “BUFFERS=10” statement is not really necessary, but speeds up not only
VEDIT, but virtually every other program. No DOS computer should be
without it.

PATH Command
To run the DOS VEDIT, DOS must know where to find VEDIT.EXE. We
suggest simply copying VEDIT.EXE to a directory, typically “\DOS” or
“\BIN”, that DOS already searches for its other programs. Alternatively, add
the VEDIT Home Directory, e.g. “C:\VEDIT”, to the PATH command in your
AUTOEXEC.BAT file.

V-SWAP Installation
Wehighly recommend that all DOSVEDITusers install the suppliedV-SWAP
program via their AUTOEXEC.BAT file. V-SWAPworks in conjunctionwith
VEDIT to swap out not only the editor but any desired memory resident
programs (TSRs) when running DOS programs from within VEDIT.

Although V-SWAP is primarily intended for running compilers from within
VEDIT, almost all VEDIT users will find V-SWAP useful. V-SWAP is very
small and unlikely to cause conflicts with other programs.

The on-line help topic “VSWAP” describes V-SWAP and its installation in
detail, including how to use V-SWAP with Microsoft Windows (tm).

30 Chapter 2 Getting Started CONFIG.SYS and AUTOEXEC.BAT Files

Network Installation
Customers that have purchased two or more licenses of VEDIT (such as the
5-User Pack) can simply install VEDIT on each licensed user’s workstation.

Alternatively, some network administrators may prefer to install VEDIT on
the network server. This makes it easier to update the software and monitor
license usage. The network installation is designed so that each user only needs
“Read” access, and not “Read/Write” access, to the VEDIT files on the server.

When VEDIT is installed on a network server, each user can still have their
own personal configuration and keyboard layout. Each user can also set up
their own color syntax highlighting, template editing, a {USER} menu, etc.

� To install VEDIT on a network server:
1. Install VEDIT on the server, following the normal installation instruc-

tions. Let’s assume it is installed into the directory “h:\apps\vedit”. This
will be the VEDIT Home Directory.

2. Create the same directory (folder) on each user’s local hard disk. Let’s
assume it is c:\vedit. This will be the User Config Directory. It will
only contain the startup.vdm, ustartup.vdm, vedit.cfg and
vedit.key files. TheWindows version will also contain vedit.ini.

3. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “backup”, e.g. create the subdirectory
c:\vedit\backup. Users can optionally configure VEDIT to save a
backup copy of each edited file in this directory.

4. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “temp”, e.g. create the subdirectory
c:\vedit\temp. Some macros supplied with VEDIT use this direc-
tory.

5. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “file-cfg”, e.g. create the subdirectory
c:\vedit\file-cfg. This will be used for the file-open configura-
tion feature (in the new VEDIT version 6.0).

(VEDIT version 6.0) The \FILE-CFG subdirectory can be left empty, but
it may help users get started if you copy the .CFT files from VEDIT’s
\FILE-CFG subdirectory on the server to each user’s local hard disk. E.g.
on each user’s machine copy all files from h:\apps\vedit\file-
cfg to c:\vedit\file-cfg.

6. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “user-mac”, e.g. create the subdirectory
c:\vedit\user-mac. Experienced users can save their own custom
VEDIT macros here.

Network Installation Chapter 2 Getting Started 31

7. Edit thevedit.ini file on the server to reference the correct directories.
For example, it should contain the lines:

HomeDir=h:\apps\vedit
MacroDir=h:\apps\vedit\macros
BackupDir=c:\vedit\backup
UserCfgDir=c:\vedit
UserMacroDir=c:\vedit\user-mac
FileCfgDir=c:\vedit\file-cfg
VeditTempDir=c:\vedit\temp
Startup=startup.vdm

8. Copy the modified vedit.ini file from the server to each user’s local
directory e.g. copy it to c:\vedit\vedit.ini.

9. Copy the startup.vdm, ustartup.vdm, vedit.cfg and
vedit.key files from the server to each user’s local directory e.g. copy
them from h:\apps\vedit to c:\vedit.

On startup, VEDIT looks for thestartup.vdm file first in the “current”
directory, then in theUser Config DirectoryI, and last in the VEDIT Home
DirectoryI.

10. Create a VEDIT icon on each user’s workstation. Set the VEDIT icon’s
properties “Target” to:

h:\apps\vedit\vpw.exe

See also:

The topic “Configuration” in Chapter 8.

The topic “Startup.vdm File” in Chapter 4.

32 Chapter 2 Getting Started Network Installation

Initial Configuration
Just about every aspect of VEDIT’s operation is configurable. As you become
more familiar with VEDIT, you will probably configure VEDIT more and
more to your needs and personal preferences. This manual describes configu-
ration in three places:

� Most configuration changes are made with the {CONFIG} menu, as
described in Chapter 6 (Menu Reference).

The keyboard layout can be changed with the {CONFIG, Keyboard
layout} sub-menu.

� The configuration and keyboard layout can alternatively be changed by
directly editing the vedit.cfg and vedit.key files as described in
Chapter 8 (Configuration). Experienced users often prefer this method.

� More advanced configuration topics such as the changing the {USER}
menu and setting up color syntax highlighting are described in Chapter 5
(Advanced Topics).

Optional “File-type specific configuration” configures the editor accord-
ing to the filename extension for each file opened. VEDIT supports
different configurations for each open file. For example, with a “.c” file,
auto-indenting is enabled, while with a “.txt” file, word wrap is enabled.
This is also covered in Chapter 5.

Here are some non-default configuration changes youmay want to make soon.

� Set {CONFIG, File handling, Auto-save interval} to “15” to have
VEDIT auto-save your changes every 15 minutes.

� Set {CONFIG, Programming, File-type specific config} to to “7” to
configure VEDIT according to a file’s type, e.g. filename extension.

� By default, VEDIT creates backup files by renaming the original file with
a “.BAK” filename extension. Alternatively, set {CONFIG, File han-
dling, Backup files} to “2” to create backup files by copying the original
file to the VEDIT Backup Directory, by default c:\vedit\backup.

Saving Configuration Changes
By default, {CONFIG, Auto-save config} is enabled. Any changes you make
in the {CONFIG} menus are then automatically saved for the next time you
run VEDIT, just as if you had manually selected {CONFIG, Save config}.
As you become more experienced with VEDIT, you may want to disable
{CONFIG, Auto-save config}. You can then make temporary configuration
changes that are not automatically saved, i.e. they are lost when you exit
VEDIT. To make changes permanent, you must then explicitly select {CON-
FIG, Misc, Save config}.

Initial Configuration Chapter 2 Getting Started 33

Description of Files
Windows Version

README.TXT Last minute notes to read before getting started.

SETUP.EXE Installation program. It starts up VEDIT with the
INSTALLW.VDMmacro to perform the actual instal-
lation and initial configuration.

VPW.EXE Executable VEDIT (32-bit) for Windows
95/98/ME/NT/2000/XP.

INSTALLW.VDM VEDITmacro that controls the automated installation.

VEDIT.INI VEDIT for Windows file which stores startup and
configuration information. It is fully commented.

VEDIT.FON VEDIT font file for Windows provides attractive and
useful fixed-width display fonts in various sizes in
both the “ANSI” and “OEM” character sets.

VPW-FILS.CAB The installation expands this file to create the Win-
dows version specific files, in particular the on-line
help file VEDITPW.HLP and the .PIF files.

The following files are placed into the VEDIT directory during installation by
expanding the VPW-FILS.CAB file.

VEDITPW.HLP The VEDIT for Windows on-line help file.

MSDOS95.PIF A .PIF file used to shell out to a maximized (large)
DOS box in Windows 95/98/ME with {MISC, DOS
Shell}.

MSDOS95I.PIF A .PIF file used to shell out to a minimized (invisible)
DOS box in Windows 95/98/ME.

MSDOS95W.PIF A .PIF file used to shell out to a windowed DOS box
in Windows 95/98/ME with {MISC, Run DOS pro-
gram}.

MSDOS95C.PIF A .PIF file used to shell out to awindowed, self-closing
DOS box in Windows 95/98/ME.

MSDOSNT*.PIF Similar files for Windows NT/2000/XP.

Windows and DOS Version (Common Files)
VP-FILS.CAB The installation expands this file to create many addi-

tional files, in particular the .VDM macro files.

VCS-FILS.CAB The installation optionally expands this file to create
the compiler support files in the .\COMPILE subdirec-
tory.

34 Chapter 2 Getting Started Description of Files

TUTORFIL.CAB The installation expands this file to create the tutorial
files in the .\TUTOR subdirectory.

USER-MAC.CAB The installation expands this file to create the user
suppliedmacros placed in the .\USER-MAC subdirec-
tory. ERRATA.TXT describes the files.

EBCDIC-T.CAB The installation optionally expands this file which
contains a trial version of our EBCDIC Level-2 con-
version software. This can convert EBCDIC (main-
frame) files with packed, signed, zoned and other
special fields into ASCII. A COBOL “copy-book” can
control the conversion. See the file EBCDIC-T.TXT
(in the VEDIT directory) for details.

ERRATA.TXT Contains errata to this manual and describes recent
enhancements that are not documented in the manual.
Please note that the on-line help is always completely
up-to-date.

WHATSNEW.TXT Description of new features added to this release of
VEDIT; primarily oriented to previous VEDIT users.

NEW-CMDS.TXT A summary of recently added, changed or enhanced
macro language commands; primarily oriented to
technical users.

The following files are placed into the VEDIT directory during installation by
expanding VP-FILS.CAB.

KEY-MAC.LIB Library of useful keystroke macros that can be added
to VEDIT. View the beginning of this file for more
information. The topic “KeystrokeMacros” inChapter
4 (Editing Guide) contains a step-by-step example.

BRIEF.KEY Keyboard layout file to emulate Brief (tm). Described
in BRIEF.DOC.

WORDSTAR.KEY Keyboard layout file to emulate WordStar (tm). De-
scribed in WORDSTAR.DOC.

WORDPERF.KEY (DOS only) Keyboard layout file to emulateWordPer-
fect (tm). Described in WORDPERF.DOC.

USER.MNU The default {USER} menu; it is loaded by the
STARTUP.VDM file.

TUTOR.MNU The default {TOOLS} menu is used as the {TUTO-
RIAL}menu; it is loaded by the STARTUP.VDM file.

ANSI.TBL Translation table for converting between IBM PC
Graphics characters and ANSI (Windows) graphics
characters.

EBCDIC.TBL Translation table for converting between the ASCII
and EBCDIC (IBM mainframe) character sets. Note
that EBCDIC.TBL is built into VEDIT.

Description of Files Chapter 2 Getting Started 35

USER.TBL A prototype translation table that can be used to create
a custom translation table.

*.SYN Color syntax highlighting files are supplied for C,
Clipper, Cobol, Folio, HTML, Java, MBasic, Pascal,
Perl, Rexx, SQL, Systat and others. They can bemanu-
ally loaded with {MISC, Load syntax file} or auto-
matically loaded by the STARTUP.VDM file.

*.VTM Template editing macros are supplied for C, HTML,
Java and VEDIT. They can be manually loaded with
{MISC, Load template file} or automatically loaded
by the STARTUP.VDM file.

*.VDM VEDIT is supplied with many macros which have a
.vdm filename extension. Some are automatically run
by menu functions while others are run from {MISC,
More macros} or {MISC, Load and execute macro}.
See the on-line help topic “Description of Files” (DOS:
“FILES”) for a description of most of the macros.

STARTUP.VDM This special macro that is executedwhenVEDIT starts
up. A copy of the original macro is supplied as
STARTUP.ORG. Extensively described in Chapter 5.

DOS Version Only
READ-DOS.TXT Last minute notes to read before getting started.

INSTALL.BAT Batch file to start up the automated installation using
VEDIT.EXE and INSTALL.VDM.

INSTALL.VDM VEDITmacro that controls the automated installation.

EXTRACT.EXE The program to expand (similar to “unzipping”) the
.CAB files. It is used only during installation.

VEDIT.EXE Executable VEDIT program for DOS.

VEDIT.ICO “Icon” file for installing the DOS version of VEDIT
into Windows.

VEDIT.PIF “Program Information File” for running the DOS ver-
sion of VEDIT under Microsoft Windows 3.x.

VPD-FILS.CAB The installation expands this file to create the DOS
version specific files, in particular the on-line help file
VPHELP.HLP.

The following files are placed into the VEDIT directory during installation by
expanding the VPD-FILS.CAB file.

VPHELP.HLP VEDIT PLUS for DOS on-line help file.

P.BAT Batch program to start up the PRINT.VDM macro.

VV.BAT A batch file for loadingV-SWAP and runningVEDIT.
See the on-line help topic “VSWAP” for details.

36 Chapter 2 Getting Started Description of Files

WILD.BAT Batch file to start up the WILDFILE.VDM macro.

VGA34.COM Tiny program that puts a VGA into 34 line mode by
switching into 480 scan-line mode. This may also
reduce flicker on some monitors. Use the DOS “mode
co80” command to return to normal 25 line mode.

VSWAP.EXE Program for swapping the DOS version of VEDIT out
of memory during a “DOS Shell”.

VPLUSOS2.ICO VEDIT PLUS icon for OS/2.

Compiler Support File Names
The following files make up VEDIT’s Compiler Support. See “Integrated
Compiler Support” in Chapter 5 for more information.

COMPILE.VDM This macro is executed by {MISC, Load compiler
support} to load the compiler support items into the
{TOOLS} menu.

COMPILE.CNF Configuration file that is edited by the user to specify
the default Compiler, Linker, Debugger and Make
commands.

COMPILE.MNU This file sets up the Compiler support items in the
{TOOLS} menu. It can be loaded by {MISC, Load
compiler support} or by the STARTUP.VDMmacro.

C-*.VDM These macro implement each of the compiler support
items in the {TOOLS}menu. These files reside in the
.\COMPILE subdirectory.

JAVA-SDK.CNF Configuration file that is edited by the user to specify
the default Java SDK commands.

JAVA-SDK.MNU This file sets up the Compiler support items in the
{JavaTools}menu. It can be loaded by {MISC, Load
compiler support} or by the STARTUP.VDMmacro.

*.VCS Compiler specific macros; there is a file for each
supported compiler. These files reside in the .\COM-
PILE subdirectory.

GENERIC.VCS Generic macro for running any compiler. It only dis-
plays the compiler’s output, it does not automatically
track errors.

SAMPLE.VCS This sample compiler specific macro is heavily com-
mented and can be used as a model for developing a
custom support for other compilers.

Description of Files Chapter 2 Getting Started 37

Keyboard Layout
VEDIT’s keyboard layout is completely configurable. The automated instal-
lation lets you select the initial keyboard layout. You can latermodify the initial
layout with {CONFIG, Keyboard layout, Edit/view layout} or by directly
editing the VEDIT.KEY file.

Unless you have a very strong personal preference, we recommend you start
with the “Normal” keyboard layout. It is very compatible with modern Mi-
crosoft and other Windows programs. Additional keys have been carefully
chosen to work well with VEDIT’s special features.

All examples in this manual list the name of the edit function or menu item
and the corresponding keystroke in the “Normal” keyboard layout. Examples
are: [HELP] (<F1>) and {FILE, Print} (<Ctrl-P>).
The initial Windows and DOS keyboard layouts are:

� NORMAL. The recommended layout.

� WORDSTAR. Emulates WordStar using control, cursor and function
keys. It is fully described in the file WORDSTAR.DOC.

� WORDPERF. (DOS Version Only) Emulates Word Perfect. Since it has
few menu “hot-keys”, it helps to access menu functions with a mouse. It
is fully described in the file WORDPERF.DOC. It is incompatible with
Windows conventions and therefore not supplied with the Windows
version.

� BRIEF. Emulates the Brief editor. It is fully described in the file
BRIEF.DOC.

Why <Ctrl-S> is different in VEDIT
Most Windows programs assign <Ctrl-S> to {FILE, Save}, but VEDIT does
not. By default, the key is unassigned because it is too easy to press bymistake.

Our experience is that you may be making temporary editing changes during
a complicated “cut and paste” operation that you don’t want to save. Also,
when editing a huge multi-megabyte file, an unneeded file save can waste
several minutes. (It take several minutes to copy a 100 Megabyte file and it
takes VEDIT just as long to save the file.)

Sometimes saving unwanted editing changes can be disastrous. For the same
reason, VEDIT’s “auto file save” feature is disabled by default.

If you don’t like our reasons, you can assign <Ctrl-S> to {FILE, Save}. (See
“Keyboard Layout” in the index.)

Otherwise, youmaywant to assign<Ctrl-S> to {GOTO, Set marker} in place
of the default <Ctrl-D>.

38 Chapter 2 Getting Started Keyboard Layout

Notes on the “Normal” Layout
� The “<Numpad>” keys are on the very right-hand side on the IBM PC

keyboard. VEDIT treats the <Numpad> keys as function keys.
If desired, they can be assigned as keystroke macros to the displayable
characters “+”, “-”, “*” and “/”.

� The “Normal” layout redundantly assigns [T-REG INSERT] to <Num-
pad*> and<F11>, [T-REG COPY] to <Numpad+> and <CTRL-F11>,
and [T-REG MOVE] to <Numpad-> and <Alt-F11>. Although we
suggest using the <Numpad> keys, many laptop computers do not have
<Numpad> keys, but do have <F11>. If desired, you can un-assign one
set of keys; this is described under “Keystroke Macros” in Chapter 4
(Editing Guide).

NOTE: The following pages list the “Normal” layout in alphabetic order by
function name and the keystroke macros in alphabetic order by key
name. Appendix E lists the entire layout in alphabetic order by key
name. The layout is available on-line via {HELP, Keyboard layout}
and {CONFIG, Keyboard layout, Edit/view layout} , from which
you can also print the layout. The status line always displays the
current key assigned to the [HELP] function.

Keyboard Layout Chapter 2 Getting Started 39

“Normal” IBM PC Keyboard Layout
[RETURN <Enter>
[BACKSPACE] <Backspace>
[BACKTAB] <Shft-Tab>
[CANCEL] <Ctrl-\> or <Ctrl-Break>
[CURSOR UP] <Up Arrow>
[CURSOR DOWN] <Down Arrow>
[CURSOR RIGHT] <Right Arrow>
[CURSOR LEFT] <Left Arrow>
[DELETE]
[DEL PREV WORD] <Ctrl-Bksp>
[DEL NEXT WORD] <Ctrl-Del>
[ENTER CTRL] <Ctrl-Q> or <Ctrl-Shift-^>
[ERASE BOL] <Ctrl-J>
[ERASE EOL] <Ctrl-K>
[ERASE LINE] <Ctrl-L>
[ESCAPE] <Esc>
[HELP] <F1>
[INSERT TOGGLE] <Ins>
[LINE BEGIN] <Home>
[LINE END] <End>
[MENU] <F10> or just tap <Alt>
[NEXT LINE] <Ctrl-Enter>
[NEXT PARAGRAPH] <Ctrl-Down Arrow>
[NEXT TAB STOP] Not assigned
[NEXT WORD] <Ctrl-Right Arrow>
[PAGE UP] <PgUp>
[PAGE DOWN] <PgDn>
[PREV PARAGRAPH] <Ctrl-Up Arrow>
[PREV WORD] <Ctrl-Left Arrow>
[REPEAT] <Ctrl-R>
[REPEAT LAST] <Alt-R>
[SCREEN BEGIN] <Ctrl-PgUp>
[SCREEN END] <Ctrl-PgDn>
[SCROLL UP] <Alt-Up Arrow>
[SCROLL DOWN] <Alt-Down Arrow>
[SCROLL RIGHT] <Alt-Right Arrow>
[SCROLL LEFT] <Alt-Left Arrow>
[TAB CHARACTER] <Tab>
[T-REG COPY] <Numpad+> or <Ctrl-F11>
[T-REG MOVE] <Numpad-> or <Alt-F11>
[T-REG INSERT] <Numpad*> or <F11>
[VISUAL ESCAPE] <Alt-F10>
[VISUAL EXIT] <Ctrl-E> or <Ctrl-F10>

40 Chapter 2 Getting Started Keyboard Layout

“Normal” Built-in Keystroke Macros (Hot-keys)
<Alt-A> Add a new keystroke macro
<Alt-D> Toggle current window through display modes
<Alt-I> Set a “column” type block marker
<Alt-J> Toggle between window colors
<Alt-K> Start/stop recording a new keystroke macro
<Alt-L> Set a “line” type block marker
<Alt-O> Open a new file in same (current) buffer
<Alt-Q> Toggle File-selector window on and off.
<Alt-X> Exit VEDIT. Same as <Alt-F4>.
<Alt-Y> Open another file in a horizontal window
<Alt-Z> Zoom or de-zoom windows
<Alt-=> Toggle binary/text display mode
<Alt-\> Toggle hex mode split
<Alt-/> Create (remove) command mode window
<Alt-[> Goto the beginning of the block
<Alt-]> Goto the end of the block
<Alt-Bksp> Undo last edit operation (keystroke)
<Alt-Enter> Display file properties and VEDIT status
<Alt-F1> Display the current basic keyboard layout
<Alt-F2> Start a new search & replace
<Alt-F4> Exit VEDIT - save/abandon file(s)
<Alt-F5> Switch to the selected window (file)
<Alt-F9> Highlight, move block to cursor position
<Alt-F12> Save current file; continue editing
<Ctrl-A> Select entire file as a block
<Ctrl-B> Format the current paragraph
<Ctrl-C> Copy to Windows clipboard
<Ctrl-D> Set a text marker
<Ctrl-F> Start a new search
<Ctrl-G> Goto a text marker
<Ctrl-H> Start a new search & replace
<Ctrl-I> Start a new incremental search
<Ctrl-N> Open a new (empty) buffer.
<Ctrl-O> Open another file in new buffer; full window
<Ctrl-P> Print current file or highlighted block
<Ctrl-U> Undo current/previous line
<Ctrl-V> Insert (paste) the Windows clipboard
<Ctrl-W> Close current window
<Ctrl-X> Move (cut) to Windows clipboard
<Ctrl-Y> Redo last undo operation
<Ctrl-Z> Undo last edit operation (keystroke)
<Ctrl-]> Goto matching parenthesis - () < > [] { }
<Ctrl-End> Goto the end of the file
<Ctrl-F1> Help - search for a keyword
<Ctrl-F2> Start a new search of all open buffers (files)
<Ctrl-F3> Compare any two open buffers (files)
<Ctrl-F4> Close current window
<Ctrl-F5> Toggle to the previous window
<Ctrl-F6> Toggle to the next window

Keyboard Layout Chapter 2 Getting Started 41

<Ctrl-F7> Load a macro in a text register and execute it
<Ctrl-F8> Execute the command macro in a text register
<Ctrl-F9> Highlight, copy block to cursor position
<Ctrl-Home> Goto the beginning of the file
<Ctrl-Ins> Copy to the clipboard. Same as <Ctrl-C>.
<Ctrl-Shift-C> Copy to register 0 (the “scratchpad”)
<Ctrl-Shift-O> Open another file; use simple (quick) prompt
<Ctrl-Shift-P> Play back the quick macro
<Ctrl-Shift-R> Record a quick macro
<Ctrl-Shift-V> Insert (paste) register 0 (the “scratchpad”)
<Ctrl-Shift-X> Move (cut) to register 0 (the “scratchpad”)
<Ctrl-Shift-Z> Undo current/previous line
<Ctrl-Tab> Toggle to next window; same as <Ctrl-F6>
<F2> Start a new search
<F3> Search/replace again for next occurrence
<F4> Switch to the selected buffer (file)
<F5 Toggle to the previous buffer (file)
<F6> Toggle to the next buffer (file)
<F7> Undent left margin or highlighted block
<F8> Indent left margin or highlighted block
<F9> Set a “stream” type block marker
<F12> Perform a “ctags” lookup of the current symbol. (See

“Ctags Symbol Lookup” in Chapter 5 for more infor-
mation.)

<Numpad+> Copy block to selected text register
<Numpad-> Move (cut) block to selected text register
<Numpad*> Insert (paste) selected text register
<Shft-Del> Move (cut) to the clipboard. Same as <Ctrl-X>.
<Shft-F3> Search/replace again for previous occurrence
<Shft-F9> Remove (cancel) any block markers
<Shft-Ins> Insert (paste) the clipboard. Same as <Ctrl-V>.

Optional Keys assigned in STARTUP.VDM
Thestartup.vdm file can optionally set up the following keystrokemacros.
See the comments in startup.vdm for details.

<Alt-0> Open the file mynotes.txt for editing personal
notes.

<Alt-F12> Configure VEDIT to a xBase “.DBF” file.
<Ctrl-F11> Run the V-SPELL spelling corrector.
<Numpad/> Toggle {CONFIG, Programming, Lower/Upper

case key conversion} on and off. Useful for assembly
language programming.

<Numpad.Enter> Alternative key for [VISUAL EXIT]. Useful with
WILDFILE macro to search for next occurrence.

42 Chapter 2 Getting Started Keyboard Layout

Chapter 3

Quick Tutorial

Let’s take a quick tour of VEDIT. This chapter covers the basics of opening,
editing, printing and saving a file. In short, you will know all that’s required
to really use VEDIT!

Each basic editing function in VEDIT has a name that we normally show such
as [HELP] and [CURSOR RIGHT]. We also show which key to press to
perform these editing functions: <F1> and <Cursor Right>.
To keep things simple, this quick tutorial often just lists which key to press to
perform various editing operations. However, the rest of VEDIT’s documen-
tation and on-line help is oriented towards the names of the editing functions.

NOTE: Since this quick tutorial is specific on which keys to press, it
assumes that you have installed the Windows or DOS version of
VEDIT and selected the “Normal” keyboard layout.

If you notice something about VEDIT’s behavior that you don’t like, don’t
worry. As you will see, just about everything about VEDIT is configurable.
For example, you can easily configure common keys like <Enter>, <Tab>,
<Begin>, <End> and the cursor “arrows” to emulate any other editor.

VEDIT Chapter 3 Quick Tutorial 43

Starting VEDIT
� To start VEDIT and begin editing a file:

1. Double-click the VEDIT icon with the mouse.

2. Select {FILE, Open}. This notation means that you select “File” from the
main menu and then select the “Open” item.

As a convenience, this function can be used both to open an existing file
or to create a new file.

Alternatively, just press<Ctrl-O>which is the “hot-key” for this function.
The menu displays what the hot-keys are.

Alternatively, press the “Open” icon on the toolbar.

3. You are now in the File-Open dialog box. At the “Filename:” prompt,
enter the desired filename, e.g. “news.txt”. If the file does not exist, it will
be created.

To edit an existing file, you can also use the typical Windows “Point &
Shoot” to select the file.

If possible, select an existing file which you can safely experiment with.

You can now edit the new or existing file as desired. Note the “status line” at
the bottom of the screen.

Notes:

You can also open existing files by using “drag and drop” to drag the desired
file(s) to the VEDIT icon, or onto a running VEDIT.

If the toolbar is not displayed, select {VIEW, Toolbar} to enable it.

44 Chapter 3 Quick Tutorial VEDIT

Entering New Text
If you didn’t select an existing file, you should enter one or two short
paragraphs of text.

By default, VEDIT starts up in “Insert” mode — text you type is inserted at
the cursor position instead of overstriking existing text. Note the “INS” on the
status line. If you do not see “INS” on the status line, press<Ins> once. VEDIT
is usually configured to have distinctive cursors in Insert Mode and Overstrike
Mode.

When entering lines of text, press the <Enter> key at the end of each line.
Pressing the <Enter> key moves the cursor to the beginning of the next line.
Pressing <Enter> while in Insert mode, or at the end of the file, inserts a
“newline” character. Every text line ends in a (invisible) “newline” character.

Therefore, pressing <Enter> in the middle of a line splits the line into two
lines. (You must be in Insert mode.)

Now try typing a very long line. When you go past the right window edge,
VEDIT will horizontally scroll the window to handle the long line.

To simplify entering text for word processing, you can enable “word wrap”.
VEDIT then automatically wraps words to the next line when you reach the
right edge of the window or a configurable “right margin”.

� To enable “word wrap” to simplify word processing:
1. Enable {CONFIG, Word processing, Enable word wrap and format-

ting}. This notation for configuration parameters means:
1a. Select {CONFIG} menu and then the “Word processing” item.
1b. Select the item “Enable word wrap and format paragraph”.

1c. Select the [Close] button to exit the configuration dialog box.
2. The default right margin is the edge of the window. Alternatively, you can

select a specific right margin. For example, a right margin of “70” is often
good for printing.

If desired, select a specific right margin with {CONFIG, Word process-
ing, Right margin}.

Now try entering a long line of text and notice how words are wrapped to the
next line when you reach the right margin.

Unlike word processors, VEDIT never adds strange control characters to your
file, even when using word wrap. VEDIT simply inserts the “newline” char-
acter to start a new line, just as if you had pressed <Enter>.

Notes:

The “newline” character is usually two characters - <CR>Carriage-Return and
<LF> Line-Feed. Technically, it depends upon whether you are editing a
DOS/Windows, Unix or Macintosh file. See “File Types” in Chapter 4 for
details.

VEDIT Chapter 3 Quick Tutorial 45

The “newline” character(s) is normally invisible, but you can configure it to
be visible with {CONFIG, Characters/Cursors, Newline display charac-
ter}.
VEDIT does not automatically reformat paragraphs when you change the right
margin, e.g. resize the window. You can reformat paragraphs with {EDIT,
Format paragraph} (<Ctrl-B> or toolbar).
Instead of using horizontal scrolling, VEDIT can also wrap long lines onto
multiple screen lines. This is independent of word wrap. See the topic “Wrap-
ping Long Lines on the Screen” in Chapter 4.

Another popular way to handle long text lines is to wrap them onto multiple
lines at word boundaries. This option can be selected with {VIEW, Word
wrap display} (or toolbar).

Deleting Text
As is typical of most editors, pressing deletes the character at the cursor;
pressing <Backspace> deletes the character just before the cursor.
When the cursor is at the end of a line, pressing deletes the “newline”
character, effectively appending the following line.

Similarly, when the cursor is at the beginning of a line, pressing <Backspace>
deletes the previous “newline”. This appends the current line to the end of the
previous line.

In short, when you’re at the beginning of a line and want to append it to the
previous line, press <Backspace>. When you are at the end of a line and want
to append the following line, press .
(The behavior with respect to deleting “newlines” is configurable.)

Deleting Lines
VEDIT has three functions for deleting partial or entire lines:

<Ctrl-J> [ERASE BOL] Erase to beginning-of-line
<Ctrl-K> [ERASE EOL] Erase to end-of-line
<Ctrl-L> [ERASE LINE] Erase (delete) entire line

Press <Ctrl-L> to delete an entire line; any following lines will then move up.
Press <Ctrl-K> to delete text from the cursor position to the end of the line.
You can “blank out” the current line by first pressing <Home> and then
<Ctrl-K>. This is different from <Ctrl-L> in that it changes a line of text to
a blank (empty) line instead of erasing it entirely.

46 Chapter 3 Quick Tutorial VEDIT

Deleting Words
VEDIT can delete the word before or after the cursor position.

<Ctrl-Bksp> [DEL PREV WORD] Delete previous word.
<Ctrl-Del> [DEL NEXT WORD] Delete next word.

Pressed once, it deletes the characters that make up the word; pressed again, it
deletes the space(s) between the words. Therefore, you must press these
functions twice for each word to be deleted.

Moving the Cursor
VEDIT has a full range of cursor movement functions in addition to the four
basic “arrow” keys. You can move the cursor by words, paragraphs, pages and
to the beginning or end of a line or screen. Other movements using the
{GOTO} menu are described in Chapter 6.

Moving past the beginning/end of a line
Pressing <Cursor Left> at the beginning of a line, moves the cursor to the end
of the previous line. Similarly, pressing <Cursor Right> at the end of a line,
moves to the beginning of the following line. (This behavior is configurable.)

You can configure how VEDIT handles the cursor when it is past the end of a
line, e.g. what happens when you press <Cursor Down> from a long line past
a short line. By default, VEDIT allows the cursor past the end of a short line,
but as soon as you type, it zips the cursor left to the “real” text. Alternatively,
VEDIT can pad the short line with enough spaces to reach the cursor position.

See {CONFIG, Emulation, Cursor position mode} in Chapter 6 for a more
detailed description.

Moving by Words
You can move forwards and backwards by words:

<Ctrl-Right Arrow> [NEXT WORD]
<Ctrl-Left Arrow> [PREV WORD]

Moving to the Beginning or End of a Line
To move the cursor to the end of the current line, press:

<End> [LINE END]
If the cursor is already at the end of a line, <End>moves the cursor to the end
of the next line.

To move the cursor to the beginning of the current line, press:

<Home> [LINE BEGIN]
If the cursor is already at the beginning of a line, <Home> moves the cursor
to the beginning of the previous line.

VEDIT Chapter 3 Quick Tutorial 47

NOTE: Once they are used to it, most users like having <End> move the
cursor to the ends of successive lines. If you don’t, you can change
this behavior with {CONFIG, Emulation, [LINE BEGIN/END] emu-
lation mode}.

Moving by Pages
Well, actually just less than a screen “page”. VEDIT shows some overlap
between “pages” for easier reading. This overlap is about two lines in a typical
20 line window. The overlap is larger for bigger windows; there is no overlap
for very small windows.

<PgDn> [PAGE DOWN]
<PgUp> [PAGE UP]

Even though these functions refer to “pages”, they bear no relation to printed
pages of a document. They are simply “screen” pages and their size depends
on the number of lines in the current window.

Moving by Paragraphs
What is a paragraph? Unlike most word processors, VEDIT does not use
unseen control characters to mark where one paragraph ends and the next
begins. Instead, it simply considers a blank line as a break between paragraphs.
(See “Word Processing” in Chapter 4 for some exceptions.)

<Ctrl-Down Arrow> [NEXT PARAGRAPH]
<Ctrl-Up Arrow> [PREV PARAGRAPH]

[PREV PARAGRAPH] first moves the cursor to the beginning of the current
paragraph. Pressed again, it moves to the beginning of the previous paragraph.
[NEXT PARAGRAPH] alsomoves the cursor to the first character of the next
paragraph.

48 Chapter 3 Quick Tutorial VEDIT

Undo and Redo
VEDIT offers you the luxury of changing your mind. Perhaps you changed
some text, then decided it was better before the change. Rather than deleting
and retyping, you can have VEDIT “undo” those changes.

To undo your last action press:

<Ctrl-Z> or <Alt-Backspace>
Each press of <Ctrl-Z> undoes the next previous action. Actions that can be
“undone” in this way include inserting or overwriting characters, deleting
characters and cursor movements. Up to the last 1,000 of these actions can be
undone by repeatedly pressing <Ctrl-Z>.
To try it, first delete a line of text by pressing <Ctrl-L>. Then press <Ctrl-Z>
and the line comes back. Go ahead and make some other changes — deleting,
overwriting and inserting text. Repeatedly pressing <Ctrl-Z> will reverse
these changes step by step.

To undo all changes to the current line press:

<Ctrl-Shift-Z>
Pressing <Ctrl-Shift-Z> again just moves the cursor to the last line you were
on. Pressing it again then undoes the changes to that line, and so on. This is a
quick way to undo the changes you just made line-by-line. Pressing <Ctrl-
Shift-Z> is equivalent to pressing <Ctrl-Z> several (or many) times.
Sometimes when you use Undo you accidentally go too far and remove
changes you wanted to keep. Or you simply change your mind and want to
“undo” the undo. This capability is called “Redo”.

To redo your last undo press:

<Ctrl-Y>
To try it out, enter a few short lines of new text. Then repeatedly press
<Ctrl-Shift-Z> (the undo line function) until the new text is gone. Now
repeatedly press (or hold down) <Ctrl-Y>; your text should come back
character by character.

Since each <Ctrl-Y> will redo one <Ctrl-Z>, it usually takes several (or
many) <Ctrl-Y>’s to redo one <Ctrl-Shift-Z>.

VEDIT Chapter 3 Quick Tutorial 49

Repeating Operations
It is often desirable to repeat an editing operation such as inserting the same
character many times. With the [REPEAT] function (<Ctrl-R>), you can
perform these operations a specified number of times without having to press
the same key over and over again.

For example, if you needed to enter 50 “*” (asterisk) characters into your text,
you could press the “*” key fifty times, counting very carefully. However, the
better way is to use the [REPEAT] function.

� Example - To enter 50 “*” characters into your text:
1. Press <Ctrl-R>. The status line will prompt you with:

Enter repeat count:

2. Type “50” and press <Enter>. The status line now prompts:
Press key to repeat:

3. Press “*”. Fifty “*” (asterisk) characters will be entered into your text.

At the “Enter repeat count” you can enter any number up to 256. (This
maximum of 256 is configurable up to 65,535.)

After the repeat count is entered, you can press any text character or press any
editing function such as [ERASE LINE].
For example, to delete 75 lines, press <Ctrl-R>. At the prompt type “75” and
<Enter>. Then press <Ctrl-L> (the [ERASE LINE] function).
You can also repeat the last editing operation by pressing [REPEAT LAST]
(<Alt-R>). Each successive [REPEAT LAST] repeats the last editing opera-
tion one more time.

VEDIT also lets you repeatedly perform a sequence of editing steps over and
over again. This is done using “keystroke macros” which are extensively
covered in their own topic in Chapter 4 (Editing Guide).

“Cut and Paste” a Block
VEDIT has an exceptionally wide range of block operations. You can seemost
of them in the {BLOCK} and {BLOCK, Edit/translate} menus.
Probably the most common block operation is to “cut” a block from one
location and “paste” it into another location. Most Windows editors give you
just one way. VEDIT gives you at least three ways:

� You can “cut and paste” using theWindows “clipboard”. This is identical
to other editors.

� You can “cut and paste” using any of VEDIT’s 100 “text registers”. For
simplicity, one text register is reserved as the “scratchpad”.

� You can directly copy or move a highlighted block to the current cursor
position.

50 Chapter 3 Quick Tutorial VEDIT

We suggest using VEDIT’s “scratchpad” or other text registers instead of the
Windows “clipboard” for copying blocks within VEDIT.

Marking (highlighting) a Block
VEDIT gives you three main ways to mark a block of text:

� Use the mouse to “drag” over the selected text.

� Hold down the <Shift> key while moving the cursor.
� Select {BLOCK, Set stream marker} in the menus, or press the equiva-

lent hot-key <F9>, or select it from the toolbar.
Since you probably already know how to highlight a block with the mouse or
<Shift> key, let’s highlight a block using the hot-key for {BLOCK, Set
stream marker}.

� To highlight a block using a “hot-key”:
1. Position the cursor on the first character to be included in the block.

2. Press <F9> to set the first block marker. Or select “Set stream marker”
from the toolbar. Note the message “1-END” on the status line.

3. Move the cursor to the end of the block; any desired method can be used.
For example, you could search for text at the end of the block.

Position the cursor just past the last character of the block. To include the
“newline” at the end of a line, position the cursor at the beginning of the
next line.

4. Press <F9> again to set the second block marker. Note the message
“BLOCK” on the status line.

For most block operations, you do not have to explicitly set the second block
marker. The cursor position is used as the second block marker.

After marking a block of text, you will notice that VEDIT’s blocks are
“persistent”. A block remains marked until you process it or explicitly remove
the markers. One advantage is that you can directly copy the block to another
location using {BLOCK, Copy to cursor}.
If you decide not to use a marked block, you have to explicitly remove the
markers. VEDIT makes this as easy as possible:

� Simultaneously press both mouse buttons.

� Double-press the <Ctrl> key.
� Press [CANCEL] (<Ctrl-\>).
� Select {BLOCK, Remove markers} (<Shift-F9> or toolbar) or

{ESCAPE, Remove block markers}.

VEDIT Chapter 3 Quick Tutorial 51

Directly copying a block
After marking a block, you can directly copy or move it to the current cursor
position without using the clipboard or a text register.

� To directly copy/move a block.
1. Highlight the block to be copied. Use any method desired. For example,

follow steps 1. through 4. above.

2. Move the cursor to the destination for the block.

3. Press <Ctrl-F9> to copy the block to the cursor position.
Alternatively, press <Alt-F9> to move the block.

“Cut and Paste” with the VEDIT “Scratchpad”
Since you probably already know how to “cut and paste” using the Window’s
clipboard, let’s use the VEDIT “scratchpad” instead.

� To “cut and paste” with the “scratchpad”:
1. Highlight the block to be “cut”. Use any method desired. For example,

follow steps 1. through 4. on the previous page.

2. Press <Numpad-> or <Alt-F11>, the equivalent hot-keys for {BLOCK,
Move to register}.
At the “Move to register” dialog box, simply press <Numpad-> again to
select the default register “0”, also called the “scratchpad”.
Once you get used to it, you simply double-press <Numpad->.
Alternatively, press <Numpad+> to copy the block.

3. Move the cursor to the destination for the block.

4. Similarly, double-press <Numpad*> or <F11>, the hot-keys for
{BLOCK, Insert register}.

HINT: If you double-press <Numpad+> or <Numpad-> when no block is
highlighted, it copies/moves the current line to the scratchpad. Then
move the cursor and double-press <Numpad*> to insert the line.
This makes it very easy to copy or move a single line.

Notes:

You may have noticed that there is also an {EDIT, Scratchpad} sub-menu
and scratchpad icons on the toolbar.Wewanted to demonstrate the text register
selection dialog box and how easy it is to select the scratchpad.

As you become more familiar with VEDIT, you will probably use additional
text registers. For example, registers “1” through “9” can be used to store small
blocks of text that are inserted over and over again.

52 Chapter 3 Quick Tutorial VEDIT

Printing Text
You can print the entire file or just a highlighted block.

� To print the entire file:
1. Select {FILE, Print} (default: <Ctrl-P>).
2. Assuming a block of text is not highlighted, “All” is automatically

selected; otherwise manually select “All”.
If you prefer to have the filename, page number and date printed at the top
of each page, select “PRINT.VDM macro” instead.

3. If needed, select [Setup] to select a different printer or change its proper-
ties.

If desired, select [Font] to select the font used to print the entire file (or
block).

4. Select the [Ok] button or press <Enter>. The entire file should print.
You can change VEDIT’s top, bottom and left margins for printing with
{CONFIG, Printer}. You can also select single, double or triple spacing.

Notes:

The [Font] button lets you print the text in any desired font and size.
The “[] Raw” option lets you print a file without margins or other processing
by VEDIT.

Disabling the “[] Auto-close print job” option lets you print two or more
blocks on the same page.

The topic “Printing” in Chapter 4 describes printing in more detail.

VEDIT Chapter 3 Quick Tutorial 53

Saving Your Work
You should periodically save your work to disk. This protects you against
power failures, system “crashes” and mistakes on your part.

� To save your work and continue editing:
1. Select {FILE, Save} (default: <Alt-F12>).

-OR-
1. Select {FILE, Save all} if you are editing multiple files and want to save

all of them,.

Notes:

You can also let VEDIT automatically save your work, say every 20 minutes
by setting {CONFIG, File handling, Auto-save interval}. This is described
under “Auto-file Save” in Chapter 4.

Exiting VEDIT
� To save your work and exit VEDIT:

1. Select {FILE, Exit} (<Alt-F4> or <Alt-X>).
-OR-

1. Press the <Esc> key to bring up the {ESCAPE} menu and select “Exit
(save/abandon)”.

2. If any modified files are open in VEDIT, you will be prompted whether
to save or abandon them. A typical prompt would be:
Save NEWS.TXT? [Yes] [No] [Save-all] [Quit-all]

Select [Yes] to save this file
Select [No] to abandon (quit) this file without saving changes.
Select [Save-all] to save all remaining files and exit VEDIT.
Select [Quit-all] to abandon all remaining files and exit VEDIT.

Notes:

See the topic “Exiting” in Chapter 4 for more information.

That’s It!
That’s all you need to create and edit text files. Obviously there is much more
VEDIT can do for you. Take some time to get comfortable with basic editing,
then read the more detailed chapters that follow.

We have enjoyed creating VEDIT and sincerely hope it serves you well.

54 Chapter 3 Quick Tutorial VEDIT

Chapter 4

Editing Guide

Starting (Invoking) VEDIT
The details of startingVEDIT are different for theWindows and non-Windows
(DOS, UNIX, QNX) versions. However, several aspects are the same for all:

� VEDIT can be startedwithout an initial filename. All files are then opened
with {FILE, Open}.

� VEDIT can also be started with one or more initial filenames. Each of the
files is opened for immediate editing.

� Various invocation options can be selected. For example, you can start
VEDIT in read-only mode, skip loading the configuration files, or auto-
execute a macro such as WILDFILE.VDM.

Starting VEDIT for Windows
There are many ways to start VEDIT under Windows.

� Like all Windows programs, you can start VEDIT by double-clicking its
icon with the mouse. If {FILE, Enable edit restore} was enabled, this
starts VEDIT with the previously loaded files; otherwise, it start VEDIT
without any open files.

� Using “drag and drop”, drag the desired file(s) to the VEDIT icon.
In Windows, you can also right-click on a file and select “Copy”, then
right-click on the VEDIT icon and select “Paste”. This is an alternative to
“drag and drop” when the file icons and the VEDIT icon are not visible
at the same time.

� In Windows, you can double-click on files whose “type” or filename
extension is associated with VEDIT.

� Select the “Run” command and enter the name of the executable VEDIT,
any desired invocation options and any desired filenames. This is one way
to start up VEDIT with invocation options. (You typically must specify
the full pathname to the executable VEDIT.)

� InWindows 95/98/NT, you can start VEDIT from theMS-DOS command
prompt “C:” in the same way as with the “Run” command above. You can
start either the Windows or the DOS version.

Starting (Invoking) VEDIT Chapter 4 Editing Guide 55

Changing the VEDIT Icon Properties
The VEDIT icon properties can be changed to select invocation options.
Typically, you would copy the main VEDIT icon and then change the new
icon’s properties.

The following example demonstrates how to create a new VEDIT icon which
uses the “-e” invocation option to ignore any previously saved “edit session
restore”, i.e. if you just double-click the icon, VEDIT will start without any
open files. (Otherwise it may start with the last files you were editing.)

The icon properties can also set the default directory for the first File-open
dialog box, in this example “c:\projects\webs\cafe”.

� To create a custom VEDIT icon:
1. Select the VEDIT program group (or folder) which contains the main

VEDIT icon.

While holding down the <Ctrl> key, make a copy of the VEDIT icon by
dragging it to a new location within the same group.

2. Open the icon’s properties dialog box. In Windows 95/98/NT, right-click
the icon and select “Properties”.

3. Change the “Target” to include any desired invocation options, in this
example “-e”.

4. Change the “Start in” directory to the default directory that the first
File-open dialog box will start in.

5. If desired, select “Change icon” to pick a different icon.

6. In Windows 95/98/NT, close the dialog box. If desired, right-click the
icon, select “Rename” and give it a new name.

56 Chapter 4 Editing Guide Starting (Invoking) VEDIT

Starting VEDIT for DOS
Begin editing by typing the name of the VEDIT program; this is normally
“vedit”. Although not necessary, this is normally followed by the name of the
file or files you want to edit or create. For example:

vedit letter.txt
vedit chapter1.txt chapter2.txt
vedit *.c *.h

When creating a new file, the message “New file” is temporarily displayed on
the status line.

To see a summary of all DOS version invocation options, give the command:

vedit /?

Invocation Options (All Versions)
VEDIT supports numerous invocation options. The syntax is:

vpw +options -options filename -a outfile

(VEDIT PLUS for Windows 3.1 is “veditpw”. VEDIT PLUS for DOS is
“vedit”.)
In the Windows version, invocation options can be specified by changing the
icon’s properties or by using the “Run” command.

In addition to the filename(s), one or more invocation options can be specified
(in upper or lower case) when you start up VEDIT:

-b Puts VEDIT into “browse-only” mode. All files are opened in
Read-only mode; you can view them, but cannot alter them.

-c command Executes the VEDIT PLUS macro language commands
‘command’. The ‘command’ may be delimited with quotation
marks (“); otherwise it ends on the first space. The commands
are executed after the startup.vdm file.

+c command Same as “-c”, except that the commands are executed before
the startup.vdm file.

-d Disables Windows 95/98/NT long filename support. VEDIT
will only recognize the short 8.3 names.

-e Disables the edit session restore feature. Only needed when
invoking VEDIT without any filenames and when VEDIT
was last exited with {FILE, Enable edit restore} enabled.

-g Disables auto-configuration; the vedit.cfg and
vedit.key files are not loaded during startup.

-g n (DOS version only) Overrides the value of {CONFIG, Misc,
Auto-load config} built into VEDIT with the value of ‘n’.
“-g3” therefore forces auto-configuration.

Starting (Invoking) VEDIT Chapter 4 Editing Guide 57

-i execfile ‘execfile’ is executed in place of thestartup.vdm file. The
option “-i xxx”, where xxx is a non-existent file, can be used
to start VEDIT without any startup file.

-j (DOS version only) Enables VEDIT’s normal keyboard poll-
ing. Same as setting {CONFIG, Misc, Keyboard polling} to
“0” for maximum compatibility with other DOS programs
(TSRs). Only needed if the keyboard polling has been set to
“1” and VEDIT crashes on startup.

-k (Windows version only) Disables reading the vedit.ini
file on startup and saving a new vedit.ini file when
exiting. A default size and font are used on startup; the final
size and font are not saved.

(DOS version only) Disables the keyboard repeat (typematic)
rate speedup. Same as setting {CONFIG, Misc, Keyboard
repeat rate} to “0”. This setting is needed if VEDIT appears
slow to startup, slow to exit, or appears to “lockup” the
computer on exit. See “Setting theKeyboard TypematicRate”
in Chapter 2 (Getting Started).

-kinifile ‘inifile‘ is used as the Windows parameter file in place of the
normal vedit.ini file. The full pathname should be speci-
fied.

NOTE: There must not be a space between the “-k” and the
filename.

-m (DOS only) VEDIT uses the monochrome (Black/White)
screen attributes. (You can configure both a set of color
attributes and a set of monochrome attributes.) This is only
needed ifVEDITwas installed (configured) for a color display
and you have a monochrome display connected to a color
(VGA) adapter.

-n nnn Passes the numeric value ‘nnn’ to a command macro as an
option. For example, the SORT.VDMmacro uses this option.
(VEDIT PLUS: This value is accessed with the N_Option
command.)

-o (DOS version only) VEDIT writes to the screen via the
“BIOS” instead of directly to the screen memory. This over-
rides the value set by the configuration parameter Con-
fig(H_USE_BIOS) (Chapter 8). Same as “-o1”.

-o2 VEDIT writes to the screen via the “BIOS” on non-IBM type
machines. This is necessary for VEDIT to work on the Tandy
2000 and other “near” compatibles.

-p Prints the specified file and immediately exits. This is equiva-
lent to selecting {FILE, Print} and then “All - entire file”.

-q RunsVEDIT in “quiet” (minimized)modewithout displaying
it on the screen. It is typically followed by the “-x” or “-c”

58 Chapter 4 Editing Guide Starting (Invoking) VEDIT

options to execute a macro. When the macro is done, it
automatically saves all files and exits.

-r Restricted: only the file(s) specified on startup can be edited.
All editing operations can be performed, but additional files
cannot be opened. Useful when shelling to VEDIT from
another program where you don’t want the user to be able to
edit any files other than the specified ones.

-s nnn (DOS,QNX,UNIX only) Restricts VEDIT to use amaximum
of ‘nnn’ Kbytes of memory for all data areas. See the on-line
help for details about this rarely used option.

-v Start up VEDIT PLUS at the “COMMAND:” prompt.

-x execfile ‘execfile’ is loaded into text register 100 and executed as a
VEDIT PLUS command macro. If no filename extension is
given “.VDM” is assumed. ‘execfile’ is executed after the
startup.vdm file. This is the normal way to auto-execute
command macros.

+x execfile Same as “-x”, except that ‘execfile’ is executed before the
startup.vdm file.

— Signals the end of the options. This is only needed when the
filename being edited begins with a “-”.

filename The name of the file or files to edit. The wildcard characters
“*” and “?” may be used to load a group of files. Long
filenames containing spaces or commas must be enclosed in
double-quotes. All filenames may include full drive and path
specifications. Each single filename may be followed by the
following two options:

-a outfile The preceding file being edited will be saved under the name
‘outfile’. This is similar to using the {FILE, Save as} function.

-l nnn Start editing the preceding file on line ‘nnn’. If there are fewer
than ‘nnn’ lines in the file, it will start at the end of the file.
You can specify a numeric expression such as “-l(7890/3)”.

NOTE: When opening just one file, you can also use the
following syntax to open the file on line ‘nnn’:

vpw -nnn filename

Notes:

All options beginningwith “+”must be specified before any options beginning
with “-”. Thestartup.vdm file, if enabled and found, will be executed after
any “+” options and before any “-” options.
DOS users who need as much memory as possible for running programs such
as compilers fromwithinVEDIT should install the suppliedV-SWAPprogram
into memory before starting up VEDIT.

Starting (Invoking) VEDIT Chapter 4 Editing Guide 59

See Also:

“Exiting VEDIT” and “Backup Files” later in this chapter.
“Auto-execution” in Chapter 5 (Advanced Topics).
{MISC, DOS shell}, in Chapter 6 (Menu Reference).

Examples:

To edit the file “CONFIG.SYS” in the root directory:

vpw c:\config.sys

After you have modified and saved CONFIG.SYS, you will have both an
updated copy called CONFIG.SYS and the original copy called
CONFIG.BAK.

To edit the file with the long filename “a long filename” use double-quotes:

vpw “a long filename”

To edit the file “PROGRAM.C” and have the cursor start up on line 984, type:

vpw program.c -l 984

-OR-

vpw -984 program.c

To load the existing file “FAXSHEET.SAV”, make changes to it and save it
as the file “TOMJONES.292”:

vpw faxsheet.sav -a tomjones.292

VEDIT Environment Variable
If you use the same invocation options over and over again, you can set up the
environment variable “VEDIT” with any desired default options.

Any options specified by this environment variable are processed by VEDIT
before those given on the command line. Therefore, the options specified by
the environment variable should usually be preceded with “+”.
For example, if you always want VEDIT to use toms.vdm as the startup file
instead of the default startup.vdm, you could add the following line to
your AUTOEXEC.BAT file:

SET VEDIT=+I C:\VEDIT\TOMS.VDM

Loading Multiple Files
You can start up VEDIT with up to 32 files. The wildcards “*” and “?” can
also be used.

The first file is loaded into the main edit buffer #1, the second into buffer #2,
the third into buffer #3, etc. {FILE, Previous buffer} (<F5>) and {FILE, Next
buffer} (<F6> or toolbar) will toggle between the files.

60 Chapter 4 Editing Guide Starting (Invoking) VEDIT

Examples:

To load the files “FILE1”, “FILE2” and “FILE3”, type:

vpw file1 file2 file3

To load the same files, but save “FILE2” as “NEWFILE2”, type:

vpw file1 file2 -a newfile2 file3

The “-a” option may be used with multiple files. For example, to load the file
“CHAP1.TXT” and save it as “CHAP1.NEW”, and load “CHAP2.TXT” and
save it as “CHAP2.NEW”, type:

vpw chap1.txt -a chap1.new chap2.txt -a chap2.new

To load all files in the current directory with extensions “.C” and “.H”, type:

vpw *.c *.h

You can also load multiple files from the {FILE, Open} dialog box. In the
Windows 3.1, DOS and QNX versions, you can load multiple files using
wildcards by selecting the “[] Load multiple files” box.

VEDIT PLUS: You can load multiple files from Command Mode with the
File_Open() command. For example:
File_Open(“chapter*.txt”).

Read-only (Browse-only) Mode
To view a file you don’t want to accidently alter, enable the “[x] Read-only”
option in the file open dialog box. This has the added benefit of letting you
navigate through the file more quickly. {GOTO, Beginning of file}, {GOTO,
End of file} and relative jumps using the mouse will then work instantly on
even multi-megabyte files.

Files opened in read-only mode are indicated with a “!” preceding their
filename on the status line.

CD-ROM and other “read-only” files are automatically opened in read-only
mode and can be quickly navigated.

If VEDIT is invoked with the “-b” option, all files are opened in read-only
mode and the “[x] Read-only” option is always enabled.
You can temporarily prevent making any changes to a file by selecting {FILE,
Browse mode}. The current file then cannot be altered any further. However
this is not quite the same as read-only mode, because navigating is not as fast;
you can also disable browse mode when desired.

Notes:

You cannot disable browse mode if you invoked VEDIT with “-b” or opened
the file in read-only mode.

VEDIT does not always know the current line number when navigating a
read-only file; the line number is then displayed as “?????”. If you must know
the line number in a browsed file, set {CONFIG, File Handling, Enable fast

Starting (Invoking) VEDIT Chapter 4 Editing Guide 61

browse mode} to “No”. Browsing will be slower, but the correct line number
will always be displayed.

See Also:

{FILE, Browse mode} in Chapter 6 (Menu Reference).

Overwrite-Only Mode
When editing some types of files, particularly binary (e.g. .EXE) and database
(e.g. .DBF), it is important not to change the size of the file or the file would
become corrupted and unusable.

In “overwrite-only” mode, deletions and insertions that would change the file
size are not allowed. Only character overstriking, block overwrites, and other
editing operations that don’t change the file size are allowed. Search/replace
operations are allowed, but only when the replacement text is the same size as
the search text.

Overwrite-only mode is controlled with {CONFIG, File handling, Over-
write-only mode}. It has three settings:
0. Disabled

1. (Default) Record mode. Overwrite-only mode is only enabled if the “File
type” is set to 8 or greater for binary or database file editing.

2. Enabled for all file types.

The default value of “1” only enables overwrite-only mode when {CONFIG,
File handling, File type} is set to “8” or greater. This is the normal setting for
editing binary and data files, which are precisely the types of files whose size
should not be changed.

Therefore, by default, VEDIT selects overwrite-only mode when editing
binary/data files.

Notes:

In Overwrite-only mode, {BLOCK, Copy to cursor}, {BLOCK, Move to
cursor} and {BLOCK, Insert register} always overwrite the existing text at
the cursor.

Similarly, {BLOCK, Move to cursor} and {BLOCK, Move to register} fill
the original source block with the configurable “block fill” character, typically
spaces. {EDIT, Delete} also fills the block instead of deleting it.
If you disable {CONFIG, Config all buffers}, you can have overwrite-only
mode enabled for some of the files you are editing and not for others.

(VEDIT PLUS DOS version only) Disk sector editing is always in overwrite-
only mode.

See Also:

The topic “File Types” later in this chapter.

62 Chapter 4 Editing Guide Starting (Invoking) VEDIT

Exiting VEDIT
VEDIT gives you a great deal of flexibility when exiting, especially when you
are editingmultiple files. You can selectively save or abandon each file (buffer)
that has been modified, or save or abandon all files at once.

� To exit VEDIT and save or abandon the current file(s):
1. Select either {FILE, Exit} or {ESCAPE, Exit}.

If nomodified files are open inVEDIT, thiswill immediately exit VEDIT.
Otherwise it displays each modified file and prompts whether it is to be
saved or abandoned. It repeats this for each file and exitsVEDIT.A typical
prompt would be:

2. Select [Yes] to save this file. If the file has no assigned filename, you are
prompted for one.

Select [No] to abandon (quit) this file; the changes are not saved.
Select [Save-all] to save all remaining files and exit VEDIT. (Note: it only
saves those buffers that have assigned filenames!)

Select [Quit-all] to abandon all remaining files and exit VEDIT. If there
are additional modified files open, you are prompted for confirmation.

Notes:

If {FILE, Enabled edit restore} is set, VEDIT saves the names of the files
being edited, so that the files can automatically be reloaded later. Files which
you now abandon will be reloaded with their previous contents. Files which
you now save will be reloaded with their current contents.

When you abandon a file, you only discard any changes made to the text since
the last time you saved the file (e.g. with {FILE, Save and continue}) or the
auto-save feature saved all files.

VEDIT checks to see if any changes have been made since the file was opened
or last saved, and only prompts for modified files.

If there is insufficient disk space to save the modified file, VEDIT displays an
error and aborts the request to exit. If this happens, you have several options.
You can quit and abandon any changes made or delete unneeded files from
your disk. Or you can use {FILE, Save as} to save the file on another drive.

Exiting VEDIT Chapter 4 Editing Guide 63

{MISC, DOS shell} and {MISC, Run program} let you execute DOS
commands for deleting files. Be careful not to delete any files that start with
the same name as the file(s) you are editing. VEDIT may be using these files
for temporary storage.

See Also:

“Starting VEDIT” earlier in this chapter.

{FILE, Exit} in Chapter 6 (Menu Reference).

Edit Session Restore
When {FILE, Enable edit restore} is set, VEDIT saves its entire status when
you exit. Subsequently invoking VEDIT without filenames resumes your
previous edit session, just as if you had never exited.

However, if you invokeVEDITwith filenames, the previous edit session status
is not used. To invoke VEDIT without filenames and without restoring the
previous edit session, use the “-e” option, e.g. “vpw -e”.
VEDIT’s status is saved in the files veditsav.env and veditsav.dat.
Depending upon the setting of {CONFIG, File handling, Save session in
current directory}, these two files are either stored in the current directory or
in the User Config Directory, typically c:\vedit.
When the edit session is saved in theUser Config Directory, only one (the last)
session can be saved. If you then invoke VEDIT (without filenames) from
anywhere, you will be switched to the last directory you were in and the files
you were last editing. This is the default setting.

When the edit session is saved in the current directory, you can save multiple
sessions, each in a different directory. If you then invoke VEDIT without
filenames, it will restore the last edit session you had in that directory.

WhenVEDIT starts up, it searches for the filesveditsav.env andvedit-
sav.dat first in the current directory and then in the User Config Directory
regardless of how {CONFIG, File handling, Save session in current direc-
tory} is set. Once the files are found, they are loaded and then immediately
erased.

Notes:

Files that you abandon during {FILE, Exit} will be reloaded with their
previous contents. Files which you save will be reloaded with their current
contents.

Your entire configuration is saved/restored including changes that you did not
make permanent with {CONFIG, Save into VEDIT}. This includes any
changes to the keyboard layout. (Exception: The setting of {FILE, Enable edit
restore} is not saved/restored.)
The only status not saved is the history of previously entered filenames, search
strings, i.e. the character strings you can recall with [CURSOR UP].
The status save is performed by the macro veditsav.vdm.

64 Chapter 4 Editing Guide Exiting VEDIT

Backup Files
When you edit and modify an existing file, VEDIT can optionally create a
backup of the original file in one of two ways:

� (Default) Rename the original file to have a “.BAK” filename extension.
Any existing “.BAK” file is deleted during this process.

� Move the original file to the VEDIT Backup Directory, typically
c:\vedit\backup or c:\backup. Any existing backup file by the
same name is deleted during this process.

Backup files take up additional disk space but provide important data protec-
tion. They provide a backup in case you make a major editing mistake that you
may not notice until days later. They also provide some protection against the
accidental deletion of files— themost recent revisions may be lost, but at least
the previous revisions are still there.

Which backupmethod you use is amatter of personal preference. Eachmethod
has its advantages and disadvantages:

Rename Method Advantages:
� If you edit two files with exactly the same name in two directories, you

will have a backup of each.

� You can easily view the backup files in the current directory.

� Always fastest.

Rename Method Disadvantages:
� If you edit files in one directory with the same name, but different

extensions, e.g. “prog.c”, “prog.inc” and “prog.h”, you will only have a
backup of one of them, and you cannot predict which one.

� You end up with .BAK backup files all over the disk.

Move Method Advantages:
� If you edit files in one directory with the same name, but different

extensions, e.g. “prog.c”, “prog.inc” and “prog.h”, you will have a backup
of each one.

� All backup files are in one directory where they can easily be deleted.

Move Method Disadvantages:
� If you edit two files with exactly the same name in two directories, you

will only have a backup of the last one saved.

� When editing files on other drives, file saving is slower because the
original file must be copied to the Backup directory. (The move is
instantaneous on the same drive.)

If desired, you can delete the backup files when you are sure that you do not
need them anymore. With the move method, you can simply delete all files in
the Backup directory. With the rename method, you must delete all “*.BAK”
files in each directory.

Exiting VEDIT Chapter 4 Editing Guide 65

� To choose the backup method (or turn backups off):
1. Select {CONFIG, File handling, Backup-file mode}. Enter the value:

0 - turn off backup files entirely
1 - create backups by renaming original file with “.BAK” extension
2 - create backups by moving original file to the VEDIT Backup directory

2. Skip this step if you want to use the default VEDIT Backup Directory of
“c:\vedit\backup”. However, youmay prefer to use “c:\backup” or another
directory.

(DOS version) Set the desired VEDIT Backup Directorywith {CONFIG,
Misc, Change VEDIT Backup directory}. To make these changes
permanent in VEDIT, select {CONFIG, Save config}. It is a good idea
to also select {CONFIG, Misc, Save into VEDIT.EXE}.
(Windows version) Set the desired VEDIT Backup Directory by editing
the file vedit.ini. Change the item “BackupDir” to the desired direc-
tory.

Be sure to set the drive too; otherwise you will receive an error when a
directory, such as “\vedit\backup”, does not exist on the current drive.

DOS: You can override the configured VEDIT Backup directory with the
environment variable “VBACKUP”.

Auto-file Save
VEDIT can optionally auto-save all modified files after a configurable number
of minutes. By default, this feature is turned off.

� To enable auto-save:
1. Select {CONFIG, File handling, Auto-save interval} and enter the

desired number of minutes. A typical value is “20”.

2. To ensure that the configuration change is permanent, select {CONFIG,
Save config}.

VEDIT will auto-save after the configured number of minutes from the time
of the last auto-save -or- you manually selected {FILE, Save all}.
We highly recommend that you enable auto-save set to around 20 minutes!
Just be careful not to accidentally alter files you don’t want to alter, or VEDIT
may auto-save the undesired alteration. You should open files you don’t want
to alter in “read-only” mode. (See “Read-Only Mode” earlier in this chapter.)

66 Chapter 4 Editing Guide Exiting VEDIT

The Status Line
VEDIT provides a wide variety of information on the “Status Line”. The left
side of the status line is used as a message area. When there is no message to
display, the current key assignment to the [HELP] function is displayed.
Additional status information is available by selecting the menu item {HELP,
Status display}.
The Status Line may include the following information:

#r The “#” is followed by the number of the active edit buffer.

BLOCK Indicates that both blockmarkers have been set. The block
markers can be removed by pressing [CANCEL]
(<Ctrl-\>) or <Ctrl-Break> or by selecting {BLOCK,
Remove markers} (<Shft-F9>). They can also be re-
moved via the toolbar, by pressing both mouse buttons or
just double-pressing the <Ctrl> key.

BYTE: Indicates which byte from the beginning of the line/record
is being editing. “COL:” changes to “BYTE:” when
{CONFIG, File handling, File type} has been set to “8”
or greater for editing binary and data files, or when editing
in hexadecimal or octal mode.

C-N-S The status of the Caps/Num/Scroll Lock is displayed on
the status line with the single letters “C”, “N” and “S”.
(Windows and DOS only)

COL: xxxx Indicates in which column of the text the cursor is.
Changes to “BYTE:” during record mode or hex/octal
editing.

Command Mode Indicates that VEDIT is running a “command macro” (a
macro written in theVEDIT PLUSmacro language). Only
the edit buffer number and filename are displayed on the
status line in “Command Mode”.

DISK The disk is full — this requires immediate attention since
the file currently cannot be saved to disk. See the topic
“Exiting VEDIT” earlier in this chapter for more informa-
tion.

EBCDIC The current window’s display mode is set to EBCDIC.
ASCII text will display as gibberish.

Note: If another translation table has been loaded, its name will
be displayed in place of “EBCDIC”.

filename Indicates the name of the file you are currently editing.
The full pathname is displayed on the window’s title bar.
If the filename is extremely long, use {HELP, Status
display} to display the full pathname.

The Status Line Chapter 4 Editing Guide 67

The filename is preceded with “*” when the file has been
altered since the last time it was saved to disk.

The filename is preceded with “!” when the file was
opened in read-only mode. The file cannot be altered, but
you can browse through it more quickly.

INS Indicates that you are in “Insert”mode.Any typed textwill
be inserted and not overwrite the existing text. Otherwise,
you are in “Overstrike” mode.

LINE: xxxx Indicates on what line of the file the cursor is. When the
message is all in capital letters the entire file is in memory.
Otherwise the message is displayed as follows:

LIne: The beginning of the file is currently in memory, but the
end of the file is on disk.

liNE: The end of the file is currently in memory, but the begin-
ning of the file has been written to disk.

line: Only the middle of the file is in memory, the remainder is
on disk.

POS:yyyy:xxxx Displays the cursor’s offset into the file when editing in
hexadecimal.

RM: xx Right margin value — only displayed if the right margin
is set with {CONFIG, Word processing, Right margin}.

1-END Indicates that only one block marker is set. The block of
text is highlighted as you move the cursor. The block
marker can be removed as described above for the
“BLOCK” message.

<< Indicates that the window is horizontally scrolled. The
following number indicates how far it is scrolled.

68 Chapter 4 Editing Guide The Status Line

User Interface
The Windows version works in the usual “Windows” manner with regard to
menus, scroll bars, dialog boxes, mouse support, the toolbar and on-line help.
The “normal” keyboard layout is very similar to most Microsoft and other
products. However, the keyboard layout is completely configurable.

HINTS: Right click the mouse to pop-up a menu of common functions.

If the toolbar is not displayed, select {VIEW, Toolbar}. To display
the toolbar on startup, select {CONFIG, Display options, Enable
toolbar}.

Selecting Display Fonts (Windows version)
The display font used in the editing windows can be changed with {View,
Font}. This displays the standard font selection dialog box; however, only
“fixed width” fonts are listed and supported by VEDIT.

The fonts “VEDIT Oem”, “VEDIT Ansi”, “Fixedsys” and “Terminal” look
and work best with VEDIT; each comes in several sizes. The True-Type font
“Courier New” can be set to any desired size, but is of lower quality and slows
down screen updates.

Fonts either display the “OEM” character set, in which character values 176 -
223 display the IBM PC line-drawing graphics, or the “ANSI” character set,
in which character values 160 - 255 display non-english and special characters.
The fonts “VEDIT Oem” and “Terminal” use the OEM character set. “VEDIT
Ansi”, “Fixedsys”, “Courier” and most other fonts use the ANSI character set.

The custom “VEDIT Oem” font is the default. Instead of displaying control
characters with the standard IBM PC “smiley face” and arrows, it displays
more useful “^A”, “CR”, “LF”, etc. Also values 0 and 255 are displayed as
“Nul” and “FF Hex”, instead of as spaces.

It is best to experiment to find a font you like; then select {MISC, ASCII table}
to see how all characters are displayed. The font selection is saved into the
vedit.ini file for the next time you run VEDIT.

By editing the vedit.ini file directly, you can display extra space between
lines. OEM fonts tend to be tight; ANSI fonts tend to be looser. Change the
“LineSpace” parameter from “0” to “1”, “2” or more.

Shortcuts and Suggestions
VEDIT includes some unique shortcuts that save a few keystrokes and there-
fore speed your editing.

� As usual, you can mark a block of text with the mouse or with the <Shift>
key. However, large blocks are more easily marked with {BLOCK, Set
stream marker} (<F9> or the toolbar).

User Interface Chapter 4 Editing Guide 69

� Only use theWindows clipboard to transfer text betweenVEDIT and other
programs. Use the VEDIT “scratchpad” and other text registers for cut
and paste operations within VEDIT.

� The default text register is “0”, also called the “scratchpad”. In text register
selection dialog boxes, you can immediately press <Enter> or simply
double-press the function’s hot-key to select the scratchpad.

� When no block is highlighted, {BLOCK, Copy to register} (<Num-
pad+> or the toolbar) copies the current line. Therefore, double-pressing
<Numpad+> copies the current line to the scratchpad. Similarly, double-
pressing <Numpad*> inserts the scratchpad at the cursor position. This
is a fast way to copy an entire line.

� In the “File Open” dialog box, you can open several files at once by
entering the filenames one after another, separated by commas. You can
open a file on any desired line number with the “-L” option.

� At most prompts for a “number”, e.g. {GOTO, Line number}, you can
enter numeric expressions, such as (12345+4589)/13 and hexadecimal
numbers, such as 0xF47B9.
Variables and “internal values” from the VEDIT PLUS macro language
can also be used. For example, to go to the exact middle of a file, select
{GOTO, File position} and enter “File_Size/2”.

DOS, UNIX and QNX Versions
TheDOS,UNIX andQNXversionswork very similar to theWindows version.
The primary exceptions are that the on-line help works differently and there is
no mouse Right-Click menu.

These versions have some special “shortcuts” not available in the Windows
version. They are primarily designed to save keystrokes while navigating the
menus and selecting default values in the dialog boxes.

� The on-line help topic “MENUS” describes the menu operation in detail.
VEDIT has several special menu features including “sub-menu preview”.

� The on-line help topic “DIALOG” describes the operation of the dialog
boxes in detail. “Terse” or “Full” dialog boxes can be selected. Each dialog
box also has its own on-line help.

� The on-line help topic “MOUSE” describes the DOS and QNX version’s
extensive mouse support. The right mouse button implements unique
features such as variable-speed scrolling, quick jumps within the file, and
“stealth” scroll bars.

70 Chapter 4 Editing Guide User Interface

Scrolling the Screen

Vertical Scrolling
The screen scrolls automatically as the cursor is moved towards the very top
or bottom of the current window. By default, VEDIT scrolls when the cursor
reaches about the third line from the top or bottom of a 24-line window. This
ensures that you always see a few lines before and after the line you are editing.
(VEDIT automatically adjusts this value according to the size of the current
window.)

You can also use [SCROLL UP] (<Alt-Up Arrow>) and [SCROLL DOWN]
(<Alt-Down Arrow>) to scroll the screen without having to move the cursor.
This lets you view lines that are just off the screen.

Configuration Options:

The configuration parameters Config(S_PG_OVERLAP), Config
(S_TOP_MARG) and Config(S_BOT_MARG) determine how many lines
of overlap you will see with [PAGE UP] and [PAGE DOWN], and how close
to the top/bottom of the window the cursor can get before the window scrolls.
These parameters can only be changed by editing the vedit.cfg file as
described in Chapter 8 (Configuration).

{CONFIG, Emulation, Special emulation modes} can change [SCROLL
UP] and [SCROLL DOWN] to leave the cursor in the current screen line
instead of in the current text line.

Horizontal Scrolling
VEDIT can deal with long lines in two different ways:

� (Default) Long lines can be viewed with horizontal scrolling. Each dis-
played line corresponds to one text line (or record).

� Long lines can be wrapped onto multiple window lines. An entire long
line can be viewed at one time.

Horizontal scrolling is typically used for editing documents that are wider than
the display, such as spreadsheets or structured programs.

Similar to vertical scrolling, the screen automatically scrolls as the cursor is
moved toward the beginning or end of long lines. You can also scroll the screen
horizontallywith [SCROLL RIGHT] (<Alt-Cursor Right>) and [SCROLL
LEFT] (<Alt-Cursor Left>).
When scrolling sideways, the screen normally jumps 20 columns at a time. If
desired, this can be changed with {CONFIG, Display options, Horizontal
scroll increment}.
When editing extremely long lines, you can quickly move the cursor to any
desired column with {GOTO, Column #}.

Scrolling the Screen Chapter 4 Editing Guide 71

Wrapping Long Lines on the Screen
Long lines normally extend off the right side of the screen. Alternatively, you
can have them wrap onto multiple screen lines. This lets you see an entire long
line at once.

� To wrap long text lines onto multiple screen lines:
1. Select {CONFIG, Display options, Horizontal scroll margin}.
2. At the prompt enter a new value of “1”. This uses the current width of the

window as the horizontal scroll margin.

Alternatively, you can enter a value, such as 80 or 132, to only wrap lines
longer than this value.

The horizontal scroll margin (independent of the word processing “right
margin”) determines at which column VEDIT wraps long lines.

Lines longer than the horizontal scroll margin are wrapped to the next window
line. These additional screen lines are called continuation lines and are indi-
catedwith a special continuation character, typically a reverse video “-” (dash)
in the leftmost column.

The horizontal scroll margin can be set to values up to 2048which is obviously
wider than your screen. In this case, only lines longer than the scroll margin
are wrapped, and normal horizontal scrolling is used to view columns up to
the scroll margin. Since continuation lines stand out on the screen, this lets you
flag lines longer than a specified length, e.g. lines that are too long for your
application.

HINT: For example, your compiler may not support lines longer than 132
characters. In this case, set the horizontal scroll margin to 132 and
any longer lines will be obvious on the screen.

Configuration Options:

The continuation character can be changed with the configuration parameter
Config(S_CONT_C) (see Chapter 8).

Notes:

Due to the continuation character, continuation lines display one character per
line less than the first line.

UNIX and QNX versions: To reduce the amount of unwanted side to side
scrolling, especially on slow CRT terminals, [LINE END] can be configured
with {CONFIG, Emulation, Line emulation mode} to only go to the end of
the window line instead of the end of the text line.

72 Chapter 4 Editing Guide Scrolling the Screen

Screen Display & Keyboard
Characters

VEDIT lets you display control and graphics characters in several different
ways. You can also display and edit any file in hexadecimal (or octal). This is
particularly useful for editing binary files.

EBCDIC (IBM mainframe) files can also be directly edited; they do not have
to be translated to/from ASCII.

VEDIT allows complete flexibility in determining the desired keyboard layout.
You can assign the basic edit functions to any function and control keys, and
build in as many keystroke macros (“hot-keys”) as desired.

Function and control keys which are not assigned to either edit functions or
keystroke macros are usually ignored.

Entering Control and Graphics
Characters

A computer’s basic memory unit, called a “byte”, allows 256 possible values
for each character. The first 32 characters are called “control characters” and
have decimal values 0 through 31. The normal displayable characters have
decimal values 32 through 127. The characters with values of 128 through 255
are called “graphics characters” or “high bit characters”.
To enter a control character into your text, you must precede it with [ENTER
CTRL] (<Ctrl-Q>). This technique also lets you enter control characters into
search strings. [ENTER CTRL] is fully described under the equivalent
{EDIT, Enter CTRL char} in Chapter 6 (Menu Reference).
In Windows and DOS, control and graphics characters can be entered directly
by holding down the <Alt> key, typing the decimal value of the desired
character on the keypad, and releasing the <Alt> key. All character values
except “00” (the “Null” character) can be entered in this way. Control charac-
ters entered this way do not need to be preceded with [ENTER CTRL].
Alternatively, you can enter control and graphics characters into your file using
{MISC, ASCII table}. The “Null” character can be entered this way.

WINDOWS: To enter graphics (non-english) characters using the <Alt>
key, you must precede the true decimal value with “0”, to
prevent Windows from translating the character from the
IBM-PC (OEM) to the ANSI character sets; e.g. to enter the
character with value 198, type <Alt> 0198.

DOS: You can enter the “Null” character (value 00) by pressing
[ENTER CTRL] (<Ctrl-Q>) and then <Ctrl-Shift-2>.

Screen Display & Keyboard Characters Chapter 4 Editing Guide 73

Control and Graphics Character Display
Most control characters are normally displayed literally (i.e. the “smiling face”
on an IBM PC). Alternatively, they can be displayed as a “^” followed by the
corresponding letter, i.e. <Ctrl-G> displays as “^G”.
Graphics characters are normally displayed literally, but can alternatively be
displayed as a decimal value in the format <nnn>.
<Ctrl-I> the Tab character is normally displayed as spaces to the next tab stop.
Alternatively, the Tab character can be displayed with any other character by
setting the configuration parameter {CONFIG, Characters/Cursors, Tab
display character}.
<Ctrl-J> the Line-Feed character is the true “newline” character at the end of
each line for Windows/DOS and UNIX style text files. The “newline” charac-
ter is normally displayed as a space, effectively making it invisible. Alterna-
tively, a visible “newline” character can be chosen with {CONFIG,
Characters/Cursors, Newline display character}. WithWindows/DOS text
files, a Line-Feed not preceded by the normal Carriage-return character is
displayed as “<LF>”. With Mac text files, a Line-Feed is always displayed as
“<LF>”.
<Ctrl-M> the Carriage-Return character normally occurs just before the
Line-Feed in Windows/DOS text files; in this case it is considered part of the
“newline” and not displayed. With UNIX text files, a Carriage-Return charac-
ter is displayed as “<CR>”. With Mac text files, a Carriage-Return is the true
“newline” character at the end of each line.

<Ctrl-@> the Null character is normally displayed as any other control
character. However, when displayed literally, it is indistinguishable from a
space. Alternatively, a visible “Null” character can be chosen with {CONFIG,
Characters/Cursors, Null display character}. For example, a good value
might be “7”. Of course, Null would then display the same as Ctrl-G (value 7),
but this is usually better than displaying it as a space.

Display Modes
The configuration parameter {CONFIG, Characters/Cursors, Screen dis-
play options} determines how control and graphics characters are displayed.
It can also enable theHexadecimal, Octal and EBCDIC/customdisplaymodes.

Although this parameter has many possible values, these nine values are the
most useful:

0 (Default) Display graphics and control characters literally. “Null”
(value 00) characters are displayed according to {CONFIG, Char-
acters/Cursors, Null display character}.

1 Display graphics characters literally, but display control characters in
the “^x” format.

2 Display control characters literally, but display graphics characters
as decimal values in the format <nnn>.

74 Chapter 4 Editing Guide Screen Display & Keyboard Characters

3 Display graphics characters in the “<nnn>” format and control char-
acters in the “^x” format.

4 Display all characters literally, including <Tab>, <CR>, <LF> and
<Null>. (This mode is used in the ASCII window following {VIEW,
Toggle Hex-mode split}).

8 Display all characters in hexadecimal. (This mode is used in the
Hexadecimal window following {VIEW, Toggle Hex-mode split}).

16 Display all characters in octal.

64 Process characters with ANSI/OEM translation.

128 All text characters are processed by the EBCDIC or custom transla-
tion table; the resulting characters are displayed literally. The default
translation table is EBCDIC — instead of displaying each byte as a
normal ASCII character, it is displayed as the equivalent EBCDIC
character. The text in EBCDICmainframe files will then be readable.
However, normal ASCII files will display as gibberish.

The default EBCDIC table can be replaced with a custom translation
table via {BLOCK, Edit/translate, Load translate table}.

As a convenience, {VIEW, Toggle display mode} (<Alt-D> or toolbar)
toggles the current window through these nine modes.

In hexadecimal or octal mode, new text must also be entered in the samemode.
For example, in hex mode, only hexadecimal digits are valid.

In EBCDIC mode, the ASCII keyboard characters will be translated to the
EBCDIC equivalent and entered into the file. Therefore, when you type “A”,
you will see “A” on the screen, even though the EBCDIC equivalent was
entered into the text.

See Also:

The topic “Hex Mode Editing” later in this chapter.
The topic “Translating a Block or File” later in this chapter.

The <Tab> Key and Tab Characters
The <Tab> key is almost always assigned to the [TAB CHARACTER]
function. In “Insert” mode, the <Tab> key normally inserts a “Tab” character
into the text. Tab characters are displayed using spaces to the next tab stop,
even though these spaces do not exist in the text. As a convenience, you do not
have to be in Insert Mode to insert text on top of a Tab character; the Tab
character will not be overwritten until you reach its last displayed position.

When the cursor is within a highlighted block, the operation of [TAB CHAR-
ACTER] and [BACKTAB] changes to indent and undent the entire block.
Because of the importance of the <Tab> key and Tab characters, several
configuration options are available:

Screen Display & Keyboard Characters Chapter 4 Editing Guide 75

� The tab stops are normally set to every eighth column, but can be changed
with {CONFIG, Tab/fill, Tab stops}. Tab stops can be set at any desired
columns, e.g. at 7, 20, 30 and 73. Tab characters past the last tab stop are
displayed as normal control characters, i.e “^I”.

� VEDIT can be configured to insertmultiple spaces (up to the next tab stop)
instead of a Tab character when <Tab> is pressed. Although this uses
more disk space, it is useful in applications whose tab stops are not the
same asVEDIT’s. This option is also handywith FORTRANandCOBOL
programs. It is selected with {CONFIG, Emulation, Expand <Tab> key
with spaces}.

� Instead of displaying Tab characters using spaces, you can select another
character with {CONFIG, Characters/Cursors, Tab display charac-
ter}. A suitable value on an IBM PC is “07”. This can make it easier to
distinguish between Tab characters and spaces in your file.

� The operation of the <Tab> key according to “insert” mode and within
highlighted blocks can be changed with {CONFIG, Emulation, [TAB
CHARACTER] emulation mode}.

Lower and Upper Case Conversion
This topic is primarily applicable to assembly language programmers.

Several modes are available for converting between lower and upper case
letters as they are typed on the keyboard. These modes are selected with the
parameter {CONFIG, Programming, Lower/upper case key conversion},
which can take these values:

0 (Default) No conversion takes place.

1 All lower case letters are converted to upper case. This is similar to
the “Caps Lock” on a keyboard.

2 Conditional key conversion — lower case letters are converted to
upper case only when the cursor is to the left of the “key conversion
character” which is typically “;”.

3 Similar to (2) except that characters are reversed instead of being
forced to upper case.

4 All upper case letters are converted to lower case.

5 Similar to (2) except that characters are converted to lower case.

Modes “2” and “3” are specifically designed for assembly language program-
mers who prefer having the Label, Opcode and Operand in upper case and the
comment in upper and lower case.

In Mode “2”, lower case letters are converted to upper case if they occur to the
left of the key conversion character, typically “;”. To the right of the “;” they
are not converted. In this mode an assembly language program can be entered
with all lower case letters and VEDIT will automatically convert the labels,
opcodes and operands to upper case while leaving the comment fields alone.

76 Chapter 4 Editing Guide Screen Display & Keyboard Characters

The “key conversion character” may be changed with{CONFIG, Program-
ming, Key conversion character}.
Mode “3” is similar to Mode “2”; however, it reverses the case of letters
appearing before the “;”. This makes it easier to enter lower case strings into
a program (hold down the <Shift> key to enter lower case letters).

NOTES: This case conversion option does not affect any existing text; use
the {BLOCK, Edit/Translate} menu to convert existing text.

These modes only affect characters entered in Visual Mode, they
do not affect characters entered into dialog boxes.

(DOS Only) {CONFIG, Misc, Keyboard input options} permits
reversing the case of all typed letters. This affects Visual Mode,
dialog boxes and Command Mode.

Key Emulation Modes
Not only can you assign the basic edit functions to any desired function or
control keys, but you can change how the commonly used edit functions work.
This lets you emulate other editors and word processors and/or fine tune
VEDIT to your preferences. The “emulation modes” can be changed with the
{CONFIG, Emulation} sub-menu. They are fully described in Chapter 6
(Menu Reference) and in the on-line help for that sub-menu.

The emulation modes include:

� Cursor positioning modes— control how the cursor keys move the cursor
past the ends of lines.

� [TAB CHARACTER] emulation mode — controls how <Tab> and
<Shift-Tab> work in “Insert” and “Overstrike” modes. Also whether
these keys perform Indent/Undent when the cursor is within a highlighted
block.

� <Enter> key emulation mode— controls how the <Enter> key works in
“Insert” and “Overstrike” modes.

� [BACKSPACE] emulation mode — controls whether this function is
destructive in Overstrike/Insert mode, and how it behaves at the beginning
of a line.

� Line emulation mode — controls how the [LINE BEGIN] and [LINE
END] functions (<Home> and <End> keys) work when the cursor is
already at the beginning/end of the line.

� Special emulation modes — control how the [SCREEN BEGIN],
[SCREEN END], [SCROLL UP], [SCROLL DOWN], [SEARCH]
and [DELETE] functions work.

A little experimentation is best for understanding these modes and deciding
which you like best.

More sophisticated emulation can be performed with the use of keystroke
macros and the VEDIT PLUS macro language.

Screen Display & Keyboard Characters Chapter 4 Editing Guide 77

Other Keyboard Input Options
(DOS Only - Technical)

Configuration parameter Config(H_KEY_IN) (Chapter 8) controls whether
VEDIT reads the IBM PC keyboard via “ROM BIOS” or “System”. The
default is “ROM BIOS” and is only very rarely changed.

The parameter {CONFIG, Misc, Keyboard input options} controls several
rarely changed options:

� The “8th” bit can be enabled or stripped when reading the keyboard; you
always want it enabled on an IBM PC. Note that this has no effect on 8-bit
characters already in the file.

� 8-bit characters are normally treated as text (graphics) characters. Alter-
natively, they can be treated as function keys. This is not desirable on an
IBM PC; it is desirable when running VEDIT on external CRT terminals
(UNIX version).

� Unassigned function/control keys can enter their codes directly into the
text. This is not desirable on an IBMPC; itmay be of usewith some foreign
language CRT terminals.

� The case of all letters can be flipped — e.g. typing “a” gives you “A” and
typing “A” gives you “a”. (We are not exactly sure why you would want
this, but many years ago some users asked for it.)

� In a key-sequence, the 2nd and following Ctrl character can be converted
to the equivalent letter. This is useful for the WordStar emulation key-
board layout so that e.g. ^K ^V is equivalent to ^K V. Since this does not
affect other layouts, it is the default.

Other Screen Display Issues
(DOS Only - Technical)

On the IBM PC, you can select from seven different cursor types — four
“software” cursors and three “system” cursors. VEDIT is typically configured
to have a different cursor appearance in “Insert” versus “Overstrike” mode.
For the software cursors, you can select the blink rate or a non-blinking cursor
and a specific cursor color. For the system cursors, you can choose a thin,
mediumor full-height cursor. These options are amatter of personal preference
and are configured with the {CONFIG, Characters/Cursors} sub-menu.
(VEDIT cannot change the appearance of the cursor on CRT terminals.)

VEDIT will interrupt screen updates when you are performing rapid screen
changes. Operations such as [PAGE DOWN] require updating the entire
screen. If you press another [PAGE DOWN] while the screen is updating,
VEDIT interrupts the unwanted update and restarts to display the most current
screen.You aremost likely to notice this if you hold down the [PAGE DOWN]
key.

78 Chapter 4 Editing Guide Screen Display & Keyboard Characters

Hex Mode Editing (and Octal)
For some types of editing, particularly “binary” files, it is easiest to display
and edit the file in hexadecimal. Octal editing is also available.

You can switch to hexadecimal (or octal) editing in three ways:

� Select {VIEW, Toggle hex mode split} (<Alt-=>). This is usually the
preferred way.

� Select {VIEW, Toggle display mode} (<Alt-D> or toolbar) several times
until the window is in hexadecimal or octal.

� Set {CONFIG, Characters/Cursors, Screen display mode} to “8” (or
“16” for octal).

{VIEW, Toggle hex mode split} lets you edit a file in two windows; one
displays in hexadecimal, the other in normal ASCII. (You can also display in
EBCDIC.) The ASCII window initially uses display mode “4” in which all
characters, including the “newline” <LF>, <CR> and <Tab> characters are
displayed literally (using the IBM PC character set). The cursors in both
windows are synchronized and will move together.

HINT: When editing in hexadecimal, you may find it easier to treat the file
as a binary file with a uniform 16 or 64 characters displayed per
screen line. You can easily enter Binary-16 mode by selecting
{VIEW, Toggle hex-mode split} again. {VIEW, Toggle bi-
nary/text mode} (<Alt—>) toggles between Binary-16, Binary-64
and the normal file types.

NOTE: By default, selecting a binary file type will only let you overstrike
characters and not insert or delete characters. If you need to
insert/delete, change {CONFIG, File handling, Overwrite mode}
to “0”.

Use {WINDOW, Next window} (<Ctrl-F6>), {WINDOW, Switch}
(<Alt-F5>) or the mouse to switch between the windows. If desired, use
{VIEW, Toggle display mode} (<Alt-D>) to toggle either window to a
different display mode. For example, you can toggle the ASCII window to
EBCDIC so that you can edit in hex and EBCDIC at the same time.

� To edit a file in split-screen Hex and ASCII with 16 characters per line:
1. Select {VIEW, Toggle hex mode split}, default: <Alt-=>.
2. Select it again to toggle to Binary-16 mode.

In a hex-mode window, new characters must be entered in hexadecimal, i.e.
by entering “00” thru “FF”. Other characters cause an error beep. Similarly, in
octal-mode, new characters must be entered in octal, i.e. by entering “000” thru
“377”.

When the current window is displayed in hexadecimal, the status line changes
to display the cursor’s hexadecimal offset into the file.

Hex Mode Editing (and Octal) Chapter 4 Editing Guide 79

Searching in Hex, Decimal or Octal
You can search for hexadecimal, octal or decimal values. With normal pattern
matching use “|Hhh” to search for hex value ‘hh‘ Similarly, use “|Oooo” to
search for octal value ‘ooo‘. Use “|ddd” to search for decimal value ‘ddd‘.
|Hhh Match the character with hex value ‘hh‘. Both digits must be

present. Each hex value must be preceded with “|H”
|Oooo Match the character with octal value ‘ooo‘. All three digits must

be present.

|ddd Match the character with decimal value ‘ddd‘.

Examples:

|h74|h68|h65 Search for the word “the” in hex.
|o164|o150|o145 Search for the word “the” in octal.

NOTES: “|” is the “pipe” character, which is <Shift>-\ on the keyboard.

When you enter a letter in hex, decimal or octal, the search
automatically becomes case sensitive.

Since it is tedious to precede hex values with “|H”, you can alternatively select
the “() Hex” search mode. In this mode, all search characters are entered as
two-character hex codes, “00” thru “ff”, followed by a space. This is identical
to the way characters are displayed in VEDIT’s hex mode. For example, to
search for “ABC123”, enter:

41 42 43 31 32 33

Alternatively, hex words, double-words and quad-words can be entered with-
out spaces, but with an optional “:”. The most significant byte is entered first.
Therefore, the following are equivalent:

0a496e79 23fa45e8
0a49:6e79 23fa:45e8
79 6e 49 0a e8 45 fa 23

NOTE: In Hex mode, only simple searches, without pattern matching, are
supported. The search is also case sensitive.

See Also:

On-line help for the Search dialog box.

Entering Numbers in Hexadecimal
At any prompt for a number, e.g. {GOTO, Line #}, you can enter a hexadeci-
mal value by preceding it with “0x” or “0h”. Enter an octal value by preceding
the octal digits with “0o”. You can also enter numeric expressions and
mixed-radix expressions.

Example of a mixed-radix numeric expression:

(0x3A6FF + 1000) / 2

80 Chapter 4 Editing Guide Hex Mode Editing (and Octal)

Undo and Redo
VEDIT remembers each edit operation performed and can quickly undo them
in reverse order, including cursor movements, insertions, deletions and
search/replace. You can undo these operations keystroke-by-keystroke, line-
by-line or deletion-by-deletion. This not only lets you back out of mistakes,
but also lets you try out changes and “undo” them if they don’t work out.

Sometimes when you use Undo, you accidentally go too far and remove
changes you wanted to keep. Or you simply change your mind and want to
“undo” the undo. This capability is called “redo”.

VEDIT normally remembers the last 1000 edit operations in EACH file being
edited. As you continue to work and exceed the maximum number of edit
operations VEDIT can remember, oldest operations are forgotten. Because of
this, you can only go as far back as 1000 keystrokes.

Notes:

Each basic edit operation uses one “undo level”;VEDIT is typically configured
for 1000 undo levels. Therefore, VEDIT could undo the last 1000 cursor
movements, characters typed in, or single characters deleted. However, some
editing functions consume many undo levels. Therefore, you can undo far
fewer of these. These functions (and the number of undo levels used) include:
columnar block operations (3 levels per line), paragraph formatting (3 levels
per line), search and replace (3 levels per replacement). Obviously, keystroke
macros can also consume many undo levels.

In extreme cases, a single editing operation, e.g. a keystroke macro, may be so
complex that it consumesmore than the available undo levels. Such operations
cannot be undone.

Two configuration parameters Config(U_UNDO_MAX) and Con-
fig(U_UNDO_MIN) determine how many undo levels are available to each
file. When sufficient memory is available, 1000 levels are typically available.
Asmemory becomes tight asmore files are opened, new buffersmay only have
the minimum number of levels available; this is typically 100.

When deleting large blocks of text, VEDIT must save this text in memory in
case you want to “undo” the deletion. VEDIT allocates at most 256K (64K for
16-bit DOS version) for deleted text. If you delete either a single large block
of text or successive smaller blocks of text which exceed VEDIT’s undo
storage, you will get the following confirmation prompt:

Cannot undo this operation! Proceed anyway?
[Yes] [No]

This is a warning that VEDIT won’t be able to undo the deletion if you go
ahead and confirm the deletion. This also resets the undo system.

See Also:

{EDIT, Undo} menu in Chapter 6 (Menu Reference).

Undo and Redo Chapter 4 Editing Guide 81

File Types - Win/DOS, UNIX,
Mac, Binary

VEDIT can edit both text files and binary/data files. A program source code
file or the chapter of a manual are typical text files, while executable files
(.EXE) database files (.DBF) are typical binary/data files.

With VEDIT, the file type ismostly amatter of the “newline” character(s) used
in the file. ForWindows/DOS and UNIX text files, VEDIT expects Line-Feed
characters to end each text line; for Mac text files, Carriage-Return characters
end each text line. If the Line-Feed characters in a text file are preceded with
Carriage-Return characters, VEDIT considers the file to be a Windows/DOS
text file, otherwise it’s a UNIX text file. If only Carriage-Return characters are
found, it’s a Mac text file.

If no or very few “newlines” are found, e.g. the lines are more than 2000
characters long, VEDIT considers the file to be a binary/data file.

The difference betweenWindows/DOS, UNIX andMac text files is important
in the way that “newline” characters are displayed, deleted and inserted.

When opening a file for editing, VEDIT examines the file to automatically
determine the file type. Sometimes VEDIT will choose the wrong file type.
For example, since a typical executable file (.EXE) contains randomLine-Feed
characters, VEDIT will usually treat it as a text file.

If you set {CONFIG, File handling, Enable auto-file type} to “No”, VEDIT
will not automatically determine the file type when it opens a file.

Binary/data files are displayed with a uniform number of characters per line.
This also handles “fixed-length record” database files. For these files, {CON-
FIG, File handling, File type} sets the number of characters displayed per
line, i.e the “record size”. “64” is the default for binary files; you may want to
change it to “16” when editing in hexadecimal.

{CONFIG, File handling, File type} lets you see and/or change the current
file’s type. Each file opened can have its own setting.

0=CR+LF Each text line ends in both a CR (Carriage-Return) and LF
(Line-Feed). Typical for Windows/DOS.

1=LF Each text line ends in just a LF. Typical for UNIX/QNX.

2=CR Each text line ends in just a CR. Typical for Macintosh.

n=recsize Record Mode. Values of “8” through “2048” correspond to
the record length used for fixed-length-record data files. In-
stead of assuming that lines end in a “newline” character,
VEDIT treats each line (record) as simply ‘n’ characters.
Word processing operations are not available inRecordMode.

82 Chapter 4 Editing Guide File Types - Win/DOS, UNIX, Mac, Binary

Windows/DOS and UNIX Text Files
Each line in aWindows/DOS text file normally ends in both a Carriage-Return
and Line-Feed character; this <CR><LF> pair is considered the normal
“newline” character even though it really is two characters. Pressing
[DELETE] once at the end of a line deletes the <CR><LF> pair. Similarly,
pressing <Enter> (in Insert Mode) inserts a <CR><LF> pair.
If a text line ends in just a Line-Feed when the file type is set to “0=DOS text”,
“<LF>” is displayed at the end of the line. Such a line may be corrected by
deleting the lone <LF> with [DELETE] and then inserting the <CR><LF>
pair with <Enter>.
UNIX text files normally have lines ending in just a Line-Feed character,which
is therefore the “newline” character. Pressing <Enter> inserts only the Line-
Feed character. Carriage-Return characters have no special meaning and are
displayed as “<CR>”.
VEDIT does not automatically convert a Windows/DOS file to UNIX or vice
versa.However, you can easily convert an entire file or just a highlighted block.

� To convert a Windows/DOS file into a UNIX file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {BLOCK, Convert newlines, DOS to UNIX}. The block/file is
now converted.

� To convert a UNIX file into a Windows/DOS file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {BLOCK, Convert newlines, UNIX to DOS}. The block/file is
now converted.

Macintosh Text Files
Mac text files use a single “Carriage-Return” as the “newline” character at the
end of each line. Therefore, pressing<Enter> (in InsertMode) inserts a<CR>.
Line-Feed characters have no special meaning and are displayed as “<LF>”.
You must use additional care when editing Mac files. In particular you must
be very careful with cut/paste operations between Mac and Windows/DOS
files. For example, a multiple line block cut from a Mac file will become a
single long line when pasted into a Windows/DOS file.

NOTE: Because “regular expressions” were originally designed for UNIX
text files with Line-Feed “newline” characters, you may have some
trouble searching Mac files using some regular expressions.

VEDIT does not automatically convert from one file format into another.
Therefore, before performing cut/paste between Mac andWindows/DOS files
you may want to convert the Mac file into a Windows/DOS file.

File Types - Win/DOS, UNIX, Mac, Binary Chapter 4 Editing Guide 83

� To convert a Mac file into a Windows/DOS file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {BLOCK, Convert newlines, Convert macro}. The macro will
display a menu of conversion choices.

3. Select the “Mac to DOS” conversion by typing the number for this choice.
The block/file is now converted.

Binary/Data Files (Record Mode)
VEDIT treats files that do not have any “newline” characters in them as
binary/data files. Files with text lines longer than about 2000 characters are
also treated as binary/data files.

Binary/data files are usually edited in “Record Mode” in which a uniform
number of characters are displayed per line or “record”. This defaults to 64,
but can be changed with {CONFIG, File handling, File type}. Selecting a
value of “8” - “2048” selects RecordMode and selects the number of characters
displayed per line. The number of characters per line is referred to as the
“record size”.

Setting the desired record size also handles files with “fixed-length records”.
For example, files downloaded from IBM mainframes often have records of
80 or 256 characters. Most database files also have fixed-length records.

The record size is often greater than the width of the current window. The
record can be viewed using horizontal scrolling or by wrapping the record onto
multiple screen lines. {CONFIG, Display options, Horizontal scroll mar-
gin} controls how long lines are displayed.
In Record Mode, any Line-Feed and Carriage-Return characters are no longer
treated as “newline” characters. However, they may display as “<LF>” and
“<CR>”. Similarly, control and graphics characters are displayed according to
the current display mode. Repeatedly selecting {VIEW, Toggle display
mode} (<Alt-D> or toolbar) will let you find the desired display mode.

NOTES: When editing a binary/data file, you may want to use {VIEW,
Toggle display mode} (<Alt-D> or toolbar) to select “ASCII-4”
which displays any Line-Feed, Carriage-Return, Tab and other
control characters as a single character instead of as <LF>, etc.

Binary/data files are often most easy to edit with a split window
displaying hexadecimal and ASCII. This can be selected with
{VIEW, Toggle hex-mode split} (<Alt-=>).

By default, you can only overstrike characters in “Record mode”;
you cannot insert or delete characters. However, full editing can be
enabled by setting {CONFIG, File handling, Overwrite-only
mode} to “0”.

84 Chapter 4 Editing Guide File Types - Win/DOS, UNIX, Mac, Binary

Database Files With Headers
Some data files, particularly database files, consist of fixed-length records that
follow a variable length header. As described above, to edit these files {CON-
FIG, File handling, File type} should be set to the length of the records.
However, since the header is usually not the same length as the records, the
beginning of each record will not be displayed at the beginning of a screen line
and the fields in the records will not be lined up.

You can make these files easier to edit by setting {CONFIG, File handling,
Record header size} to the size of the header in bytes. Each following record
will then start on a new screen line and the fields in the records will be aligned
on the screen.

The status line displays a line number of “0” when the cursor is in the header.
This makes the line number correspond to the record number.

xBASE
Files:

VEDIT can configure itself to dBase and xBase database files by
selecting {MISC, More macros, DBASEKEY}. This macro reads
the header size and record size from the current “.DBF” file and
configures VEDIT accordingly.

A more elaborate DBASE.VDM macro is described in Chapter 5.

Editing Very Long Lines (Technical)
VEDIT cannot always handle text “lines” longer than about 2500 characters.
Specifically, the first character displayed in the window through the last
character of the last line of thewindow cannot exceed the size of the edit buffer.
Therefore, assuming a 24 line window, a typical buffer size of 60,000 bytes
and uniform length lines, the maximum line length is 60,000/24 = 2666.

For this reason,VEDIT automatically sets the file type to “RecordMode”when
it encounters lines longer than 2000 characters at the beginning of a newly
opened file. In Record Mode, VEDIT can handle lines of any length, even
millions of characters long.

Other than editing in RecordMode, you can also get around the 2500 character
line length limitation for text files in several ways:

� If most lines are short and only a few are very long, VEDIT should have
no trouble editing the file in text mode. Even a few lines up to 30,000
characters can be edited.

� Use {CONFIG, Display options, Horizontal scroll margin} to wrap
very long lines ontomultiple screen lines. For example,with themaximum
suggested value of 2048, a 10,000 character long line would be wrapped
onto five screen lines.

� Edit the file in a smaller window. For example, a 12 line window could
edit uniform length lines of 5332.

NOTE: The upcoming 32-bit version of VEDIT 5.2 will be able to directly
edit much longer text lines.

File Types - Win/DOS, UNIX, Mac, Binary Chapter 4 Editing Guide 85

Keystroke Macros
You can assign a frequently typed sequence of keystrokes to a single func-
tion/control key. Pressing the single function/control key then performs the
equivalent of typing the entire sequence of keys. This saves time, effort and
reduces the chance of error. These stored keystroke sequences are called
“keystroke macros”. You can define numerous keystrokemacros and eachmay
contain up to several hundred keystrokes.

Keystroke macros have several purposes:

� The most common use of keystroke macros is as “hot-keys” for directly
accessing items within the menu system. Many such “hot-keys” are built
into the “normal” and other supplied keyboard layouts. Themenus display
any “hot-keys” that directly access each item.

� Keystroke macros can access the VEDIT PLUS macro language. Al-
though this manual does not describe the macro language in detail,
Appendix C and the file KEY-MACRO.LIB list many useful macros.

� Since new keystroke macros can easily be added at any time, you can
define one whenever you find yourself typing the same sequence over and
over again. For example, you could define the key <Alt-Q> to type out
the phrase “attached and included herein by reference” each time it was
pressed.

You can add new keystroke macros at any time. Each new keystroke macro is
normally assigned to a function or control key that is not already in use; these
available function/control keys can be displayed with {CONFIG, Keyboard
layout, Display unused keys}.
Keystroke macros can be added in several different ways:

� {CONFIG, Keyboard layout, Record keystroke macro} lets you record
a new keystroke macro as you edit the file.

� {CONFIG, Keyboard layout, Add Keystroke macro} lets you define a
new keystroke macro using a dialog box which records your keystrokes
without making any edit changes. Limited editing is provided.

� {CONFIG, Keyboard layout, Edit/view layout} lets you edit the entire
keyboard layout, including any keystroke macros, as a normal text file.
You can cut and paste between layouts, etc. These changes can be
temporary, or can be permanently saved in the vedit.key file.

The topic “Editing the Keyboard Layout” describes this in detail.

� You can directly edit thevedit.key file andmake any desired changes.
This is similar to {CONFIG, Keyboard layout, Edit/view layout}.
Chapter 8 (Configuration) describes this in detail.

NOTE: VEDIT forgets new keystroke macros when you exit unless you
make them permanent with {CONFIG, Keyboard Layout, Save
layout}.

86 Chapter 4 Editing Guide Keystroke Macros

Recording Keystroke Macros
You can record a new keystroke macro while you perform a multi-step editing
operation. Afterwards, you only have to press the hot-key to repeat (play back)
the entire editing operation.

The following (contrived) example demonstrates how to use {CONFIG,
Keyboard layout, Record keystroke macro} to record a keystroke macro. It
performs the following steps:

1. Go to the beginning of the current line and type “Begin:”.

2. Go to the end of the line and type “:End”.

3. Advance to the next line.

� Example of recording a keystroke macro:
1. Select {CONFIG, Keyboard layout, Record keystroke macro}

(<Alt-K>). You will see the following dialog box:

2. At the “Assigned hot-key:” prompt, press the desired “hot-key” for the
keystroke macro. For this example, press <Alt-Q>.
If you make a mistake, press <Backspace> to delete the keystroke.
Press <Tab> to accept “Alt-Q”. If the key is already in use, you will be
prompted for confirmation to overwrite it.

3. Assuming the “Normal” keyboard layout, press the following keys to go
to the beginning of the current line and type “Begin:”.

<Home> B e g i n :

Then press the following keys to go to the end of the current line, type
“:End” and advance to the next line.

<End> : E n d <Ctrl-Enter>

4. Turn off (stop) the Record Macro mode by pressing the key indicated on
the status line.With the “Normal” layout it is<Alt-K>. The new keystroke
macro is now fully defined.

5. Test the new keystroke macro by pressing its hot-key <Alt-Q>.
6. To make new keystroke macro permanent, select {CONFIG, Keyboard

layout, Save layout} to save the layout into the vedit.key file.

Keystroke Macros Chapter 4 Editing Guide 87

Adding Keystroke Macros
{CONFIG, Keyboard layout, Add Keystroke macro} lets you define a new
keystroke macro using a dialog box that records your keystrokes without
making any changes to the files being edited. Experienced VEDIT users will
prefer it over “Record keystroke macro” for two reasons:

� It provides simple editing in case you make a mistake.

� You can add keystroke macros that access the VEDIT PLUS macro
language. The supplied KEY-MAC.LIB provides many examples.

The following example creates the same keystroke macro as above.

� Example of adding a keystroke macro:
1. Select {CONFIG, Keyboard layout, Add keystroke macro} (<Alt-A>).
2. At the “Assigned hot-key:” prompt, press the desired “hot-key” for the

keystroke macro. For this example, press <Alt-Q>.
Press <Tab> to accept <Alt-Q>. If the key is already in use, you will be
prompted for confirmation to overwrite it.

3. At the “Edit sequence:” prompt, enter the same sequence of keys as for
the previous example.

Notice that when you press <Home>, “[LINE BEGIN]” is displayed.
VEDIT records edit functions by name and not by their currently assigned
keys. (See Notes: below.)

If you make a mistake, press <Backspace> to delete the keystroke.
Finally, press <Enter> to accept the edit sequence.

4. Test the new keystroke macro by pressing its hot-key <Alt-Q>.
5. To make new keystroke macro permanent, select {CONFIG, Keyboard

layout, Save layout} to save the layout into the vedit.key file.

88 Chapter 4 Editing Guide Keystroke Macros

Notes:

{CONFIG, Keyboard layout, Edit/view layout} displays and lets you edit
all active keystrokemacros. The <Alt-Q> defined in the example above would
display as:

Alt-Q [LINE BEGIN] Begin:[LINE END] :End[NEXT LINE]

You can then select {FILE, Print} to create a printout of the entire keyboard
layout.

VEDIT records the edit functions in a keystroke macro by name and not by
their currently assigned keys. This lets you change the keyboard layout without
having to re-enter existing keystroke macros. In the example assignment to
“<Alt-Q>” above, if you redefined the <Home> and <End> keys, the key-
stroke macro would still work.

See Also:

{CONFIG, Keyboard layout} in Chapter 6 (Menu Reference).

Adding Keystroke Macros from KEY-MAC.LIB
The file KEY-MAC.LIB includes many keystroke macros that you may find
useful. Although the VEDIT PLUS macro language is used in the keystroke
macros, they will also work in VEDIT.

NOTES: Keystroke macros that use the VEDIT PLUS macro language can
be added with “Add keystroke macro”, but not with “Record key-
stroke macro”.

In practice it is easier to cut & paste keystrokes from KEY-MAC.LIB
into the keyboard layout with {CONFIG, Keyboard layout,
Edit/view layout}. The topic “Editing the Keyboard Layout” gives
a step-by-step example.

� Example - Add a keystroke macro from KEY-MAC.LIB:
This example shows how to add a typical keystroke macro from KEY-
MAC.LIB to VEDIT. In this case, the macro that inserts the current date and
time will be assigned to <Ctrl-F12>.
In practice, you can open the file KEY-MAC.LIB in VEDIT and scroll the
screen until the desired macro is visible in the lower half of the screen. The
macro is listed in KEY-MAC.LIB as:

[VISUAL EXIT]
Out_Ins() Date(NOCR) Ins_Text(“ ”) Time(NOCR)
Out_Ins(CLEAR)

1. Select {CONFIG, Keyboard layout, Add keystroke macro} (or press
<Alt-A>).

2. At the “Assigned hot-key:” prompt, press <Ctrl-F12>. Then press <Tab>
to accept <Ctrl-F12>.

3. At the “Edit sequence:” prompt, first press the key that is currently
assigned to [VISUAL EXIT]; this is typically <Ctrl-E>. The screen will

Keystroke Macros Chapter 4 Editing Guide 89

echo “[VISUAL EXIT]”. DO NOT type the characters “[VISUAL
EXIT]”.

DO NOT PRESS <Enter>. KEY-MAC.LIB lists the macros on multiple
lines for clarity and because some of them are quite long. Keystroke
macros are entered as one long line. The only exception is if the macro
contains a “[RETURN]”; in its place first press [ENTER CTRL]
(<Ctrl-Q>), then press <Enter>.
Enter the rest of the keystroke macro just as it appears in KEY-MAC.LIB.
If you make a mistake, press [BACKSPACE] to delete the keystroke.
Finally, press <Enter> to accept the edit sequence.

4. To make new keystroke macros permanent, select {CONFIG, Keyboard
layout, Save layout} to save the layout into vedit.key.

Modifying an Existing Keystroke Macro
While it is usually better to use {CONFIG, Keyboard layout, Edit layout}
to modify a keystroke macro, it can also be done with the “Add keystroke
macro” function.

� Modifying an existing keystroke macro
1. Select {CONFIG, Keyboard layout, Add keystroke macro}.
2. Press the “Function/Control Key” assigned to the keystroke macro you

want to modify. Press <Tab>.
3. In response to “Redefine existing key? [Yes] [No]”, select [Yes].
4. For the “Edit Sequence”, press the same function/control key as you

pressed in step 2 above. The original macro sequence will be inserted for
you. Then use [BACKSPACE] to erase part of the macro and/or type in
additional keystrokes. When finished, press <Enter>.

In effect, VEDIT does not “forget” the keystroke macro until you are done
defining the new one. This is helpful, not only for editing existing macros, but
also for building a larger keystroke macro from smaller ones.

Deleting Keystroke Macros
Unused keystroke macros can be deleted by selecting {CONFIG, Keyboard
layout, Edit/view layout} and deleting the corresponding line. Or you can use
the “Add keystroke macro” function.

� To delete a keystroke macro (or assignment to an edit function):
1. Follow steps 1 - 3 above for “Modifying an Existing Keystroke Macro”.

2. At the “Edit Sequence:” prompt immediately press <Enter>. Since the
key is now assigned to “nothing”, it is removed from the list of assigned
keys.

90 Chapter 4 Editing Guide Keystroke Macros

Editing the Keyboard Layout
{CONFIG, Keyboard layout, Edit/view layout} lets you edit the current
keyboard layout as a normal text file. When done, the new layout is automat-
ically loaded, and can optionally be made permanent by saving it as the
vedit.key file.

� To edit the keyboard layout:
1. Select {CONFIG, Keyboard layout, Edit/view layout}.

This saves the current keyboard layout into the file “veditkey.tmp” and
opens the file for editing.

2. Edit the keyboard layout as desired. Follow these guidelines:

A. Do not move or alter the first line which assigns the <Enter> key to
the function [RETURN].

B. Notice that all lines have the same format. Each line begins with the
key or keys that you press to perform an editing function. This is
followed by one or more spaces/tabs. Then comes the entire editing
sequence on one line.

C. As long as each line has the correct format, you can add new lines,
delete lines and modify lines. Wherever you need a “tab” character
enter “[TAB CHARACTER]”; wherever you need a “newline” (i.e.
a “Carriage-Return, Line-Feed”) enter “[RETURN]”.

3. Press [VISUAL EXIT] or <Ctrl-E> when done to save or abandon your
changes.

4. At the prompt, select whether you want to ignore (abandon) or save your
changes:

[I]gnore, [T]emporary, [S]ave layout into VEDIT.KEY?

[I] - Your changes are ignored. The layout is not changed.

[T] - The layout takes effect, but is temporary - it will be lost when you
exit VEDIT.

[S] - The layout takes effect and is saved as the vedit.key file, just
as if you selected {CONFIG, Keyboard layout, Save layout}.

After your selection, you are returned to your original file.

If VEDIT detects an error in the edited keyboard layout, it reports an error with
the line number and gives you a choice of editing the layout again or quitting
the function.

NOTE: A common error is to forget a “newline” on the last line of the
keyboard layout.

See Also:

{CONFIG, Keyboard layout, Edit/view layout} in Chapter 6 (Menu Refer-
ence).

Editing the Keyboard Layout Chapter 4 Editing Guide 91

Adding a Keystroke Macro from
KEY-MAC.LIB
NOTE: This topic assumes you already know how to open and close files,

edit multiple files, and cut and paste blocks of text.

The file KEY-MAC.LIB is a library of useful keystroke macros that can be
added to VEDIT. Included are macros for moving the cursor by sentences,
counting words in a file, a window color selection chart and much more.
Although the VEDIT PLUS macro language is used in the keystroke macros,
they will also work in VEDIT.

� To add a keystroke macro from KEY-MAC.LIB:
1. Select {CONFIG, Keyboard layout, Edit layout} so that you can edit

the current keyboard layout as the file “veditkey.tmp”.

2. Open the file “key-mac.lib” for editing. It should be in the VEDIT Home
Directory.
E.g. use {FILE, Open} (<Ctrl-O>) to open the file c:\vedit\key-
mac.lib

3. Highlight the macro to be added. Most macros begin with “[VISUAL
EXIT]”. Then copy the macro to the scratchpad (text register “0”).

4. Toggle back to the file “veditkey.tmp”. You can use {FILE, Next buffer}
(<F6> or toolbar).

5. Go to the end of the keyboard layout and insert the scratchpad (text register
“0”) containing the keystroke macro.

Edit it so that the entire macro appears on one line. Use other entries in
the layout as a guide. Be sure the line ends in a “newline” and that there
are no extra blank lines in the file.

6. At the beginning of the line, type the name of the key to which the macro
is assigned, e.g. “Ctrl-F12”.
You may want to perform a search for the key name to be sure it is not
already assigned to something else.

7. Press [VISUAL EXIT] or <Ctrl-E> when done editing the layout.
8. At the prompt, select whether you want to ignore (abandon) or save your

changes.

9. If desired, switch back to the file “key-mac.lib” and close it.

Notes:

A keystroke macro must begin with [VISUAL EXIT] (<Ctrl-E>) to enter
Command Mode. When done, the keystroke macro will automatically return
to normal editing. (VEDIT PLUS users: a final “V” command is not needed
and should even be avoided.)

The upper limit for the length of a single keystroke macro is 4000 characters.
Complex macros that display menus, etc., should be loaded into text registers.

92 Chapter 4 Editing Guide Editing the Keyboard Layout

Macro language commands can also be mixed with normal edit functions and
Menu selections. Use [VISUAL EXIT] to switch to CommandMode. VEDIT
automatically switches back (to “Visual Mode”) when any edit function, e.g.
[MENU] or [CURSOR UP], is encountered.When necessary, [ESCAPE] can
be used to force the switch back.

Loading a New Keyboard Layout
You can easily load a different keyboard layout, e.g. WordStar or a custom
layout, without re-installing.

In general, you can change the entire keyboard layout “on the fly” and load
different sets of keystrokemacros for different editing tasks. This is also useful
when several people use a computer andwould like different keyboard layouts.
This is described under {CONFIG, Keyboard Layout, Load layout} in
Chapter 6 (Menu Reference).

� Example - Load the WordStar keyboard layout:
1. Select {CONFIG, Keyboard layout, Load layout}.
2. Change the default filename of “vedit.key” to “wordstar.key” and press

<Enter>. Alternatively, change the filename to “*.key” for point and
shoot file selection. The new keyboard layout will be loaded.

3. To make the new keyboard layout permanent, select {CONFIG, Key-
board layout, Save layout} to save the layout into the vedit.key file.

Notes:

You could also change the keyboard layout by simply copying “wordstar.key”
or “brief.key” to “vedit.key”.

You can load a keyboard layout when you start up VEDIT. For example, the
command to load the WordStar keyboard layout on startup is:

vedit -c"key_load(‘wordstar.key’)"

Therefore, you could create different VEDIT icons, each with a different
keyboard layout. (See the topic “Changing the VEDIT Icon Properties”.)

The startup.vdm file shows how to define custom keystroke macros at
startup; these will override any assignments in the vedit.key file.

Editing the Keyboard Layout Chapter 4 Editing Guide 93

Block Operations
VEDIT has an exceptionally wide range of block operations. Not only can you
copy, move and delete blocks, you can also translate blocks, fill blocks with
any desired character, indent blocks and insert an empty block between two
columns. A “block” can be any amount of text from one character to an entire
file.

VEDIT supports three types of blocks:

� Stream block. This is a block of contiguous characters. You precisely
determine the characters in the block. For example, it can be all characters
from the middle of one line to the middle of another line.

� Line block. This block consists of entire lines including the “newline” at
the end of each text line. (For fixed-length records, it includes all charac-
ters in the record.)

� Columnar block. This block is a rectangle of characters in your text, i.e.
only those characters that are within the specified columns.

Stream blocks are the default and most commonly used type of block. You can
think of line blocks as simply a shortcut way of selecting a stream block that
consists of entire lines. However, columnar blocks are quite different from
stream blocks and VEDIT has many special columnar block features.

A block is selected (marked) by setting beginning and ending block markers.
VEDIT highlights this area so that you can see what you have selected.

Block editing functions such as {BLOCK, Write to disk} are not available
until you have selected a block of text.

Selecting a block of text changes the operation of some editing functions (the
cursor must also be within the block):

� [DELETE] deletes the entire block of text. (This is configurable.)
� {EDIT, Indent} and {EDIT, Undent} functions indent/undent all lines

in the block.

� [TAB CHARACTER] and [BACKTAB] are equivalent to {EDIT,
Indent} and {EDIT, Undent}. (This is configurable.)

� {SEARCH, Search} and {SEARCH, Replace} by default are restricted
to the characters in the block. This can be selected in the Search and
Replace dialog boxes.

Marking (selecting) a Block of Text
There are three main ways to mark a block of text:

� Select the {BLOCK} menu items or the equivalent “hot-keys” to mark
the desired type of block. Stream and columnar blocks can also be set from
the toolbar.

94 Chapter 4 Editing Guide Block Operations

� Hold down the <Shift> key while moving the cursor to mark a stream
block. You can use the cursor keys and almost any cursor movement
function. For example, <Shift><Ctrl-End>marks from the current posi-
tion to the end of the file.

� Use the mouse to “drag” over the desired stream block. By also holding
down the <Alt> key, it marks a columnar block.
To highlight a large block, first highlight a small section at the beginning
of the block; then go to the end of the block; finally, hold down the<Shift>
key and finish highlighting the entire block. Holding down the <Shift>
key lets you expand the size of a highlighted block.

Small block are easily marked with the <Shift> key or mouse. It sets both the
beginning and ending block markers; all block operations are then available.
However, the {BLOCK} menu items or equivalent hot-keys give you more
flexibility and make it easier to mark a very large block.

� To mark a large block of text (assuming no block markers are set):
1. Position the cursor on the first character to be included in the block. (Or

you can mark the end of the block first.)

2. Set the first block marker with {BLOCK, Set stream marker} (<F9> or
toolbar). Note the message “1-END” on the status line.

Alternatively, select a columnar block with {BLOCK, Set column
marker} (<Alt-I> or toolbar).

3. Move the cursor to the end of the block; any desired method can be used.
For example, you can search for text at the end of the block.

For stream blocks, the cursor should be positioned just past the last
character of the block. To include the “newline” at the end of a line,
position the cursor at the beginning of the next line.

4. Set the second marker by again selecting {BLOCK, Set stream marker}
or {BLOCK, Set column marker}. Note the message “BLOCK” on the
status line.

After marking a block, you can change its size and/or the type of block. Move
the cursor to the desired end of the block and then select “Set stream marker”,
“Set column marker” or “Set line marker” from the {BLOCK} menu.

NOTE: The “normal” keyboard layout assigns <F9> as a “hot-key” for
{BLOCK, Set stream marker}. If your layout does not have an
assignment for this function, you can alternatively press {BLOCK,
Copy to cursor} (<Ctrl-F9>) to mark a block. Until both block
markers are set, “Copy to cursor” only sets the block markers;
when both block markers are set, it copies the block to the current
cursor position.

Block Operations Chapter 4 Editing Guide 95

VEDIT’s Blocks are Persistent
VEDIT’s blocks are “persistent”; after marking a block, it remains marked
until you process it or explicitly remove themarkers. Simplymoving the cursor
doesn’t remove the markers. Persistent blocks offer flexibility you otherwise
can’t have:

� After marking a block, you can move the cursor anywhere and then
directly copy/move the block to the new position without using a scratch-
pad/clipboard; this saves keystrokes.

� After marking a block, you can easily change its size.

� After marking a block, you can restrict a search/replace to just the block.

Most block operations remove the markers after the operation is completed.

The disadvantage of persistent blocks is that you sometimes have to explicitly
remove the markers. VEDIT makes this as easy as possible.

You can remove the block markers in many ways:

� Double-press the <Ctrl> key. This assumes {CONFIG, Emulation,
Alt/Ctrl/Shift key shortcut modes} is enabled.

� Simultaneously press both mouse buttons.

� Press [CANCEL] (<Ctrl-\>).
� Select {BLOCK, Remove markers} (<Shift-F9> or toolbar).
� Select {ESCAPE, Remove block markers}.
� (DOS) Press <Ctrl-Break>.

What exactly does the block include?
For “stream” blocks you must mark the end of the block with the cursor one
character PAST the last character to be included in the block. In other words,
the character just before the cursor is the last character included in the block.

Therefore, if you end a stream block at the end of a line, the (invisible)
“newline” character will not be included. If you end the block at the beginning
of the next line, the preceding “newline” character will be included. When
marking entire lines, you may find it easier to select “line” blocks.

This exclusion of the character at the cursor position may not make sense at
first, but once you are used to it, it simplifies block operations.

However, whenmarking columnar blocks, it is muchmore intuitive and useful
to include the character at the cursor position when marking the end of a
columnar block.

96 Chapter 4 Editing Guide Block Operations

{BLOCK, Copy / Move to cursor}
{BLOCK, Copy to cursor} and {BLOCK, Move to cursor} save steps when
performing the common operations of copying ormoving a block of textwithin
your file.

Instead of having to first copy or cut the block to the scratchpad/clipboard, you
can simply copy/move a highlighted block to the current cursor position. This
is possible because VEDIT’s blocks are persistent — after highlighting a
block, you can move the cursor and the block remains highlighted.

{BLOCK, Copy / Move to cursor} can also be used to set block markers.
Their operation depends upon how many block markers are set; see the table
below. In this way, only a single key is needed to copy a block of text.

� To directly copy/move a block using a single key:
1. Move the cursor to the first character of the block. Press <Ctrl-F9> (the

hot-key for {BLOCK, Copy to cursor}).
2. Move the cursor past the last character of the block. Press <Ctrl-F9>

again. The block is now highlighted.

3. Move the cursor to the destination for the block. Press <Ctrl-F9> for the
third time. The text will be copied in front of the cursor.

Alternatively, use <Alt-F9> to move the block.

Block Function Key Behavior
Function Key No Marker Set 1st Marker Set 2nd Marker Set

Copy to cursor <Ctrl-F9> Set 1st Marker Set 2nd Marker Copy to cursor

Move to cursor <Alt-F9> Set 1st Marker Set 2nd Marker Move to cursor

Notes:

The “normal” VEDIT keyboard layout assigns<F9> to {BLOCK, Set stream
marker}. Alternatively you could assign<F9> to {BLOCK, Copy to cursor}.
<F9> would then perform a convenient combination of setting block markers
and copying a block of text. (Earlier versions of VEDIT did this.)

Copying a block of text to two or more places in your file or into another file
is best done with the use of a scratchpad (text registers).

Block Operations Chapter 4 Editing Guide 97

Text Registers and the “Scratchpad”
VEDIT has over 100 text holding areas called “text registers”, each of which
is similar to the “scratchpad” or “clipboard” in other editors. The text registers
are numbered from “0” to “100”. (Some additional registers above 100 are only
accessible in the VEDIT PLUSmacro language.) By convention, registers “0”
through “9” are reserved for “cut and paste” operations.

The text registers are accessed with {BLOCK, Copy to register}, {BLOCK,
Move to register} and {BLOCK, Insert register}. These functions prompt
for the register’s number. If you simply press <Enter> or double-press the
function’s hot-key, it selects the default register “0”, which is also called the
“scratchpad”.

The “Scratchpad” Text Register
Text register “0” is also called the “scratchpad”. It is the default “cut and paste”
text register when no other is explicitly selected. The scratchpad can also be
accessed from the {EDIT, Scratchpad} menu. Therefore, {EDIT, Scratch-
pad, Copy to scratchpad} is identical to {BLOCK, Copy to register} and
selecting the default register “0”.

The scratchpad is used for simple cut and paste operations, especially for
repeatedly inserting the same block of text into a file or for copying a block
from one file to another.

Remember, you can directly copy/move a block within a file without a text
register by using {BLOCK, Copy to cursor} and {BLOCK, Move to cursor}.

Scratchpad Functions
Function Key Operation

{EDIT, Scratchpad, Cut} <Shft-Del> Move or “cut” to the scratchpad

{EDIT, Scratchpad, Copy} <Ctrl-Ins> Copy the block to the scratchpad

{EDIT, Scratchpad, Paste} <Shft-Ins> Insert or “paste” the scratchpad

The “normal” hot-keys for the scratchpad are the old-style clipboard keys,
before the new-style <Ctrl-X>, <Ctrl-C> and <Ctrl-V> assignments. If you
don’t know them (we never could remember them!), there is no reason to learn
them because there are easier ways to use the scratchpad.

HINTS: The scratchpad functions can be accessed from the toolbar. For
cut and paste operations within VEDIT, it is better to use the
scratchpad instead of the Windows clipboard.

It is also easy to use the scratchpad by double-pressing the
hot-keys for the text register functions. These are normally the
<Numpad+>, <Numpad-> and <Numpad*> on the numeric pad.

98 Chapter 4 Editing Guide Block Operations

Double-press <Numpad+> or <Numpad->, when no block is high-
lighted to copy/move the current line to the scratchpad. Then
double-press <Numpad*> to insert the line somewhere else. This
is a quick way to copy/move a single line.

When a block is copied to the scratchpad (or text registers), VEDIT remembers
what type of block (stream, column or line) it is. When the scratchpad is
inserted into the text, it is inserted in the manner appropriate for that type of
block. For example, a line block is inserted at the beginning of the current line.
This is the primary advantage of using the scratchpad instead of the Windows
clipboard.

Accessing Other Text Registers
To copy a block of text into a text register, highlight the block of text and select
{BLOCK, Copy to register} (<Numpad+>). Alternatively, to move (or
“cut”) the block to a text register, select {BLOCK, Move to register}
(<Numpad->).
VEDIT then prompts for the register’s number. Enter the desired number “0”
through “100”; “0” is the default.

HINT: When prompted for a text register number, you can easily select
the default “scratchpad” register “0” by pressing any function/con-
trol key. For example, with the normal keyboard layout, to copy to
register “0”, simply press <Numpad+> twice.

DOS:
UNIX:
QNX:

The non-windows versions have an optional “terse” method of
selecting register numbers. To select from the first ten registers
simply press “0” through “9”; you don’t need to press <Enter>. To
select other registers, first type “.” (period), type the number and
then press <Enter>. For example, to select register 20, enter “.20”.
This is convenient, because in practice, you rarely use more than
the first ten registers.

The text register selection dialog box gives you the option of appending the
block to the existing contents of a text register or inserting the block at the
beginning of the existing contents.

You can insert the contents of a text register anywhere in your file or in another
file. Place the cursor at the desired location and select {BLOCK, Insert
register} (<Numpad*>). The register contents can optionally overwrite the
existing text.

Block options - Fill and Overstrike
When a block of text is moved (cut) to a text register with {BLOCK, Move
to register}, the original block is normally deleted. Optionally, the block can
be filled with spaces or a configurable character. In the “Move to register”
dialog box, select the “[] Fill buffer text” option.
Both character and columnar blocks can be filled. The fill character can be
changed with {CONFIG, Tab/Fill, Block fill character}.

Block Operations Chapter 4 Editing Guide 99

NOTE: An option in {CONFIG, Emulation, Expand <Tab> with spaces}
fills a columnar block with the optimal number of Tab characters
and spaces. The default is to fill only with spaces.

When a block of text is inserted (pasted) from a text register with {BLOCK,
Insert register}, you can optionally overwrite the existing text. In the “Insert
register” dialog box, select the “[] Overwrite buffer text” option.
Since block operations using the “Fill” and “Overwrite” options do not change
the size of the file, these options are automatically selected when editing in
Overwrite-only mode. This mode is selected with {CONFIG, File handling,
Overwrite-only mode}. To prevent file corruption, binary and database file
editing should normally be done in overwrite-only mode.

In Overwrite-only mode, {BLOCK, Copy / Move to cursor} also overwrite
the existing text at the cursor. {BLOCK, Move to cursor} also fills the original
block.

NOTE: A highlighted block can simply be filled (e.g. with spaces) by
selecting {BLOCK, Edit/Translate, Block fill}.

Emptying a Text Register
If you receive the error message “NOT ENOUGH MEMORY FOR OPERA-
TION” when attempting to copy/move a block to a text register, you may be
able to perform the operation successfully if you first empty any text registers
that are no longer needed.

Unless you receive this error message, it is usually not worth while to empty
text registers.

� To empty text registers that are no longer needed:
1. Use {HELP, Text registers} to see how much is stored in each register

and the first few bytes of their contents. Note which register(s) you want
to empty; only worry about registers that have 1000 ormore bytes in them.

2. Select {BLOCK, Set marker} and then immediately {BLOCK, Copy to
register}. It does not matter where the cursor is. Select the register to
empty.

Repeat this step for any other registers to be emptied.

Text Register Usage
The 100+ text registers serve two primary purposes:

� For “cut and paste” operations, where they temporarily hold a block of
text.

� To hold sequences of commands in the VEDIT PLUS macro language
which may be executed as “command macros”.

In all cases, the registers are holding textual material; only themanner in which
the text is used is different.

100 Chapter 4 Editing Guide Block Operations

With over 100 text registers available, it is easy to forget what each register
contains. Several text registers are also reserved for special purposes. We
recommend the following organizational scheme for using registers:

0 This is the default “scratchpad” register.

1 - 9 These are used as additional “cut and paste” registers fromVisual
Mode.

10 - 99 These are used to hold command macros or as string variables in
command macros. However, they can also be used for “cut and
paste” operations.

100 This register is used by thestartup.vdm file and any auto-exe-
cutionmacros. It is also the default register for {MISC, Load and
execute macro}. It should be reserved for the “main” macro that
is running.

101 - 127 These registers are reserved for use by the VEDIT PLUS macro
language and are described below. They cannot be accessed from
Visual Mode.

Usage (Technical)

101 Should be reserved for the “subroutine” macros used by the main
macro executing in register 100.

102 Should be reserved for the “locked-in” macro used by the main
macro executing in register 100.

103 - 106 Temporary registers used as needed by keystroke macros. This
prevents keystroke macros from interfering with command mac-
ros that may be running.

107 - 109 Reserved for use by the “File open/close macros”, “Buffer switch
macro” and the “Template editing macro”. This prevents these
special event macros from interfering with other macros that may
be running.

110 The “File open event macro”. It is executed immediately after
each file is opened, when {CONFIG, Programming, File-type
specific configuration} or the equivalent CON-
FIG(PG_F_AUTO_CFG) is enabled.

111 The “File close event macro”. It is executed just before each file
is closed.

112 The “File pre-open event macro”. It is executed just before each
file is opened.

113 The “File post-close event macro”. It is executed immediately
after each file is closed.

114 The “Buffer switch eventmacro”. It is executed immediately after
each buffer switch in Visual Mode or due to the macro language
command Buf_Switch(r,EVENT).

115 The “Template editing macro”. It is executed for each character
entered in Visual Mode when {CONFIG, Programming, En-

Block Operations Chapter 4 Editing Guide 101

able template editing} is enabled. It can be loaded with {MISC,
Load template file}.

116 - 117 Reserved for use by future event macros.

118 Internally used text register. It is used by and emptied by many
block commands.

119 Should be reserved for “subroutine”macros set up within a “.key”
file.

120 Internally used text register. It is emptied with each keystroke and
by many block commands.

121 Internally used register that holds the filename from the File
selection dialog boxes.

122 Internally used to load the PRINT.VDM, SALLBUFF.VDM,
SRCHINCR.VDM, LOADSYN.VDM, KEYEDIT.VDM and
VEDITSAV.VDM macros.

123 This register holds the custom editing functions for the {TOOL}
menu. Otherwise it must be empty.

124 This register holds the custom editing functions for the {USER}
menu. Otherwise it must be empty.

125 Internally used to hold the keyboard layout in a binary format. It
MUST NOT be altered. (125 - 127 are accessible for use by the
VEDITSAV.VDMmacrowhich saves the entireVEDIT environ-
ment.)

126 Internally used to hold the current window structure. It MUST
NOT be altered.

127 Internally used to hold the last command line entered at the
“COMMAND:” prompt. (It has a constant size.) It MUST NOT
be altered.

To protect users from unintentionally overwriting text registers, the Visual
Mode can only access registers 0 through 100. TheReg_Prot() command can
also be used by a command macro to write-protect the text registers it uses.

More Text Register Notes
The description for {BLOCK, Copy to register} in Chapter 6 (Menu Refer-
ence) gives step by step examples for using the text registers.

All text register contents are lost when you exit VEDIT unless you are using
the “Edit Session Restore” feature. When an edit session is restored, all text
registers are restored.

Command macros have the ability to “write-protect” text registers used by the
macro so that you do not inadvertently alter them.

102 Chapter 4 Editing Guide Block Operations

Cut & Paste Huge Blocks
Many “Cut & paste” operations are currently limited to a maximum block size
of about 250,000 bytes for the Windows 32-bit version and 60,000 bytes for
other versions. However, by writing a block out to disk with {BLOCK, Write
to disk} and then inserting it with {EDIT, Insert file} you can cut & paste
huge multi-megabyte blocks.

This limitation occurs because the text registers are currently limited in how
much they can hold. The “scratchpad” is one text register. The functions
{BLOCK, Copy/move to cursor} use an internal text register. If you have
other blocks or macros stored in the text registers, the maximum cut & paste
block size may be much smaller than 250,000. If the block is too large to fit
into a text register, you will receive the error message “BLOCK TOO LARGE
FOR TEXT REGISTER”.

� You can cut & paste blocks of any size:
1. Highlight the block and select {BLOCK, Write to disk}. Both non-co-

lumnar (stream and line) and columnar blocks can be written to disk.

Choose a filename such as “temp”.

2. Move to the destination for the block. It can be in the same file or a
different file.

3. Select {EDIT, Insert file}. Enter the same filename, e.g. “temp”.
If you wrote a columnar block to disk in step 1., be sure to select
“[] Columnar (block) insert”. This will insert the file as a columnar
block in the same way that {BLOCK, Insert register} does.

(The 32-bit Windows version supports multi-megabyte clipboard operations,
and 250,000 bytes in the text registers.)

The Windows Clipboard
Blocks of text can also be copied/moved to theWindows clipboard and inserted
from the clipboard. It is similar toVEDIT’s scratchpad.Although the clipboard
is the only method for “cut and paste” with most other programs, we highly
suggest using VEDIT’s scratchpad and other text registers for all cut and paste
operations within VEDIT.

The clipboard should only be used for exchanging text with other Windows
programs. The clipboard does not handle columnar blocks as well as the text
registers, and does not support binary data.

You can cut or copy the currently marked (highlighted) block to the clipboard,
or paste the clipboard into the file being edited. You can paste the clipboard as
either a “stream” or “columnar” block. Selecting “Paste clipboard” inserts the
entire clipboard at the cursor position. Selecting “Paste columnar clipboard”
inserts each line of the clipboard into successive lines of your file, each time
starting at the current column.

Block Operations Chapter 4 Editing Guide 103

See Also:

{EDIT, Clipboard} functions in Chapter 6 (Menu Reference).

Block Indenting
You can easily change the indentation of an entire block of text. This is
especially useful when editing structured programming languages such as C
and Pascal. When the cursor is within a highlighted block of text, {EDIT,
Indent} and {EDIT, Undent} indent/undent all lines in the block by the current
“indent increment”, typically 4 columns. The indent increment can be changed
with {CONFIG, Programming, Indent increment}.

HINT: With the default keyboard layout and configuration, the keys <Tab>
and <Shift-Tab> are equivalent to {EDIT, Indent} and {EDIT,
Undent} when the cursor is within a highlighted block.

� To change the indentation of an entire block of text:
1. Highlight the lines that need re-indenting. Be sure the cursor is within the

highlighted block or immediately after it.

2. Press {EDIT, Indent} (<F8>) and {EDIT, Undent} (<F7>) until the
block is correctly indented.

-OR-
Press <Tab> and <Shift-Tab> to correctly indent the block.

3. Use any desired method to remove the block highlighting. E.g. press
[CANCEL] (<Ctrl-\>).

Notes:

The file KEY-MAC.LIB contains several keystroke macros that can also
perform block indenting. One aligns the left edge of the current line with the
cursor and advances to the next line. Another aligns the current line with the
previous line and advances to the next line.

See Also:

{EDIT, Indent} in Chapter 6 (Menu Reference).

104 Chapter 4 Editing Guide Block Operations

Columnar Blocks
VEDIT can manipulate columns of text. A columnar block is a rectangle of
characters in your file. It can be anywhere from 1 character wide to the full
width of the text being edited. It can also extend from as little as one line to
many pages in length. All of VEDIT’s block operations work with columnar
blocks. You can also restrict a search/replace operation to the columnar block.

Columnar blocks are especially convenient for editing tabular data such as a
spreadsheet or a database. For example, you could copy a table of numbers,
say between lines 10 and 20 and between columns 30 and 40 to a text register.
This columnar block of numbers can then be inserted anywhere else.

To make columnar block operations appear as natural as possible, VEDIT
performs some additional manipulations on your text.

� It ensures that the columnar block being copied has a flush right margin.
If any lines being copied are shorter than the block’s right margin, they
are padded with spaces to make them flush. This ensures that when the
columnar block is inserted, it does not destroy the alignment of the
following text.

� Similarly, when inserting a columnar block, spaces are added to pad short
text lines which do not reach the insertion column. This keeps the inserted
text aligned.

� Any tab characters in the columnar block being copied are converted to
spaces. (This is necessary for columnar operations to work as expected.)
When the columnar block is inserted, you can select with {CONFIG,
Tab/Fill, Expand <Tab> with spaces} whether these spaces (and adja-
cent spaces in the existing text) are converted back to Tab characters.

In some cases, such as inserting a columnar block at the end of text lines, these
extra padded spaces become trailing spaces. These extra spaces are trimmed
by default, but this can be changed with {CONFIG, Tab/Fill, Trim spaces
after columnar operation}.

NOTE: This trimming and tab/space conversion applies only to the inserted
text and adjacent spaces. It DOES NOT affect the entire file and
only applies when working with columnar blocks.

Columnar Block Examples
To perform columnar block operations mark the desired block with {BLOCK,
Set column marker} (<Alt-I> or toolbar). After setting the first blockmarker,
the highlighting shows precisely which characters are included in the block.
You should immediately notice the difference in theway the text is highlighted
in Column Mode.

NOTE: When columnar markers are set, [CURSOR RIGHT] will move past
the end of short lines (similar to cursor positioning mode 4). This
lets you set the right column past short lines.

Block Operations Chapter 4 Editing Guide 105

The following screen shows a columnar block highlighted. Note that the cursor
is in the lower right corner of the block.

After copying this block to a text register, the register will contain:

000000000
000000000
000000000
00000000.
000000...
0000.....

The “.” are padding spaces that were added to the register in order to give it a
flush right margin.

Now consider the following text before inserting this register.

106 Chapter 4 Editing Guide Block Operations

After inserting the register, the screen will display:

This shows the importance of the added extra spaces when the block was
initially copied to the text register.

Now consider the following text before inserting the same text register. Note
that text lines 6 and 7 do not reach the insertion column.

After inserting the same register, the screen will display:

By padding text lines 6 and 7 with spaces, the inserted block also remains
aligned.

Block Operations Chapter 4 Editing Guide 107

Notice that the extra spaces added to the text register are now trailing spaces
on lines 6 and 7 above and serve no alignment purpose. When {CONFIG,
Tab/Fill, Trim spaces after columnar operation} is enabled (the default),
these extra spaces are trimmed following the insertion.

To demonstrate this trimming, consider the following text register. Note that
it contains a blank line consisting of spaces.

000000000
000000000
.........
00000000.
000000...
0000.....

Consider the following text which contains three trailing spaces on lines 4, 6
and 8. (Remember that trailing spaces are invisible unless you change {CON-
FIG, Characters/Cursors, Newline display character} to display the loca-
tion of the “newline” at the end of each line.)

With {CONFIG, Tab/Fill, Trim spaces after columnar operation} enabled,
inserting the text register will change the screen to:

The trailing spaces, including the existing ones on lines 4, have been trimmed.
However, the trailing spaces on line 8, which was not involved in the insertion,
still remain.

108 Chapter 4 Editing Guide Block Operations

As explained earlier, Tab characters in a columnar block operation are first
converted to spaces and can optionally be converted back to Tab characters.
However, a single space is never converted to a Tab character. Also, the first
two spaces following a “.” (period), “!” and “:” are not converted to a Tab
character. This makes columnar block operations more compatible with the
needs of word processing.

The above discussion also applies to columnar block copy/move performed
with {BLOCK, Copy to cursor} and {BLOCK, Move to cursor}. These are
implemented with an internal text register and therefore operate identically.

Notes:

Use {BLOCK, Edit/translate, Detab} to convert Tab characters in a file
to spaces.
Use {USER, Remove trailing spaces} to remove all trailing spaces from a
file.

Block Operations Chapter 4 Editing Guide 109

Translating a Block or File
Amarked block or entire file can be translated using the built-in EBCDIC table,
the supplied ANSI table or with a user-created table. When a block/file is
translated, each byte is simply converted to another byte according to the
current table; the size of the file does not change.

Translating between EBCDIC and ASCII
For example, to translate anEBCDIC file downloaded froman IBMmainframe
into ASCII for use on a PC:

� Translate a file from EBCDIC to ASCII:
1. Open the EBCDIC file in the normal manner, e.g. with {FILE, Open}.
2. Select {BLOCK, Select all} to mark the entire file as a block.
3. Select {BLOCK, Edit/Translate, Translate from EBCDIC} to translate

the file to ASCII.

If the original EBCDIC file consisted of fixed-length records without end-of-
record characters, you may want to add an ASCII “newline” (Carriage-Return
and Line-Feed) to the end of each record so that Windows/DOS programs can
more easily read it.

4. Select {CONFIG, File handling, File type} and set the correct record
length. Records should now be nicely aligned on the screen.

5. Select {BLOCK, Convert newlines, Convert macro}. In the macro’s
menu, select “Fixed length records to Newlines”.

You may now want to change {CONFIG, File handling, File type} to
“0” or “1” to recognizeASCII “newlines” andmake the filemore readable
on the screen. This does not affect the translated file itself.

6. Select {FILE, Close buffer} or {FILE, Exit} to save the translated file.
Instead of translating an EBCDIC file, you can also display the file in ASCII
(instead of gibberish) by selecting {VIEW, Toggle display mode} (<Alt-D>
or toolbar) several times to enter “EBCDIC” mode. In this mode, the same
translation table is used, but only for display purposes; the EBCDIC file itself
is not changed.

Similarly, an ASCII file can be translated to EBCDIC with {BLOCK,
Edit/Translate, Translate to EBCDIC}.

IMPORTANT: Since IBM PC ASCII and EBCDIC have somewhat different
character sets, not all characters will translate without prob-
lems. In particular, there is no equivalent of most IBM PC
graphics characters. Therefore, if you translate a file to
EBCDIC and then back again to ASCII, you may not have
the same file again. Some punctuation and most control and
graphics characters will have changed.

110 Chapter 4 Editing Guide Translating a Block or File

The EBCDIC translate table EBCDIC.TBL is built into VEDIT and does not
need to be loaded. However, for custom needs you can modify the
EBCDIC.TBL file and then load the revised EBCDIC table into VEDIT.

NOTE: Conversion packages are available for translating EBCDIC files
with packed (signed) decimal, packed binary, zoned and other
special (COBOL) fields. Please see the “EBCDIC” page on our Web
site for details.

Translating between ANSI and ASCII
ANSI.TBL is supplied for translating between the IBM PC graphics characters
and the ANSI (Windows) character set. This is particularly useful for translat-
ing foreign characters from their IBM PC value to the value needed for most
Windows word processors. For example, the “ü” (small umlaut u) has an IBM
PC value of “129”, but an ANSI value of “252”. ANSI.TBL does not change
any normal characters with values of less than 128. As with most translations,
some characters cause problems because there is no equivalent. For example,
there is no exact equivalent to the IBM PC box-drawing characters.

� To load the ANSI.TBL translation table:
1. Select {BLOCK, Edit/Translate, Load translate table}. At the filename

prompt enter “ansi.tbl”.

After ANSI.TBL is loaded, note that the {BLOCK, Edit/Translate} menu
now displays “Translate from ANSI” and “Translate to ANSI” to reflect the
new translation table’s name. Similarly, when changing display modes with
{VIEW, Toggle display mode}, the status line will read “ANSI” instead of
“EBCDIC”.

Creating Your Own Translation Table
You can easily create a translation table for your own needs. A 521 byte
translation file consists of two 256 byte translation tables (a “to” table and a
“from” table) followed by an eight character name and a Null (00) byte.

The easiest way to create your own translation table is by modifying the
supplied file USER.TBL.

See the on-line help topic “Translating a Block or File” for details. (DOS:
On-line help topic “TRANSLATE”.)

Translating a Block or File Chapter 4 Editing Guide 111

Sorting Lines in a Block / File
VEDIT has both a sort function {BLOCK, Edit/translate, Sort lines} for
sorting lines (single line records), and amacro SORT.VDM for sorting records
consisting of multiple lines. Both support variable-length and fixed-length
records.

The {BLOCK, Edit/translate, Sort lines} function is described here. The
SORT.VDM macro is described in Chapter 5 (Advanced Topics).

{BLOCK, Edit/translate, Sort lines} sorts the selected lines after you high-
light the field to be sorted as a columnar block. This field is the “sort key”; for
example, it could be the Last-name or Zipcode in a database.

� To sort all lines in a block or entire file:
1. Position the cursor on the first line to be sorted and in the left-most column

of the field to be used as the “sort key”.

Select {BLOCK, Set column marker} (<Alt-I> or toolbar) to begin a
columnar block.

2. Position the cursor on the last line to be sorted and in the right-most column
of the field to be used as the “sort key”. To sort an entire file, this must be
the last line of the file.

Select {BLOCK, Set column marker} (<Alt-I> or toolbar) again.
3. Select {BLOCK, Edit/translate, Sort lines}. The lines will be sorted and

VEDIT will display its progress. A 250 Kbyte file with 1000 lines takes
about one minute to sort.

NOTE: VEDIT’s sorting may not be fast enough for multi-megabyte files. It
is only intended as a convenient way of sorting smaller files up to
a few megabytes in size. A dedicated sort program or a database
program may be needed to sort very large files. A much faster sort
is planned for late 1999.

Sorting by multiple fields (major and minor keys)
When VEDIT’s sorting encounters multiple lines (records) with the same
“key”, it leaves them in the same order as they are encountered in the file.
Therefore, to sort by a major key and, within the major key, by a minor key,
first sort the entire file using the minor key field. Then sort the entire file using
the major key field. The file will then be sorted by both keys.

112 Chapter 4 Editing Guide Sorting Lines in a Block / File

Printing in VEDIT
Printing is very flexible in VEDIT. You can print an entire file or just a
highlighted block. Since you have complete control over print jobs, you can
even print several blocks on the same page.

Configurable “margins” are typically used to prevent the text from printing on
the extreme edges of the paper. Text can be printed single, double or triple
spaced. Or you can print a file in “raw” mode— exactly as-is, without adding
any margins.

Advanced options include setting any desired “print mode”, which determines
how control and graphics characters are printed. A file can be printed in
hexadecimal; an EBCDIC file can be printed in ASCII.

Windows Version:

The font used for printing can be selected with {CONFIG, Printer, Printer
font} or in the print dialog box. All characters are printed in the same font and
size.

VEDIT can open a file that was created with “Print to file” in a program that
supports fonts, such asMicrosoftWord (tm). If this file is then printed in “raw”
mode, it will print correctly since all of the font selection information is
embedded within the file.

The optional “Print job start/finish strings” are of limited use since Windows
sends its own strings with each print job.

DOS Version:

VEDIT can print to a local or network printer on any desired parallel or serial
port, to the default DOS “PRN” port, or to a file. When printing to a file, you
can always print to the same filename or be prompted for the filename each
time.

An optional “Print job start string” (initialization string) can be sent to the
printer to select any desired font, pitch, font size and weight (e.g. bold). This
is very technical and requires knowledge of the control sequences needed by
your specific printer. After the text is printed, an optional “Print job finish
string” can be sent to reset the printer.

See Also:

On-line help for the {FILE, Print} dialog box.

Printing in VEDIT Chapter 4 Editing Guide 113

Basic Operation
� To print the entire file:

1. Select {FILE, Print} (default: <Ctrl-P>).
2. Assuming a block of text is not highlighted, “All” is automatically

selected; otherwise manually select “All”.
3. Select the [Ok] button or press <Enter>.

� To print a single block of text:
1. Highlight the desired text as a block.

2. Select {FILE, Print} (default: <Ctrl-P>).
3. If the cursor is within the highlighted block, “Selection (Block)” is

automatically selected; otherwise manually select it.

Leave “Auto-close (Finish) print job” enabled.
4. Select the [Ok] button or press <Enter>.

� To print multiple blocks of text (e.g. on the same page):
1. Highlight the desired text as a block.

2. Select {FILE, Print} (default: <Ctrl-P>).
3. If the cursor is within the highlighted block, “Selection (Block)” is

automatically selected; otherwise manually select it.

4. Disable “Auto-close (Finish) print job”.
5. Select the [Ok] button or press <Enter>.
6. Repeat steps 1. and 2. to highlight and print the additional blocks of text.

They will be printed one after another. Since the print-job has not yet been
closed, a different dialog box is displayed.

114 Chapter 4 Editing Guide Printing in VEDIT

7. Select {FILE, Print} again; then select the [Finish/Eject] button to finish
(close) the print-job and release it to the printer.

Printer Margins
All printing margins can be selected from {CONFIG, Printer}.
A “Top margin” and “Bottom margin” are used to prevent the text from
printing at the very top and bottom of a page. Assuming a “Paper length” of
60 lines with a 3 line margin at the top and bottom of each page, 54 lines of
text are printed on each page.

In theWindows version, {CONFIG, Printer, Paper length} should normally
be set to “0=Auto”. The number of lines printed per page is then automatically
adjusted according to the font size, the paper size and its orientation (portrait
or landscape).

In theDOS version, the “Paper length”must be set to agreewith your particular
printer. Dot matrix printers typically use 66 lines per page (6 lines per inch and
11 inch paper results in 66 lines). Since most laser and ink-jet printer cannot
print on the top and bottom 1/2 inch of the paper, they typically have a default
of 58 to 62 lines per page. However most laser printers can be set to 66 lines
per page — they then print slightly more than 6 lines per inch.

TROUBLE-
SHOOTING:

If every other page is printed with just a few lines of text,
this is usually caused by VEDIT’s “Paper length” being set
too big for your printer. Try a smaller value.

A “Left margin” is used to prevent the text from printing at the very left edge
of the paper. The default value of 5 columns typically gives a one inch margin
on a laser printer.

NOTE: Don’t indent all text in your file for printing purposes; instead, use
{CONFIG, Printer, Left margin} to position your text on the printed
paper.

An optional “Right margin” wraps very long text lines onto multiple printed
lines; otherwise a printer typically truncates long lines. By default, the “Right
margin” is disabled so that each line in your file prints as one line, even though
it may be printed truncated.

Using the PRINT.VDM Macro
Selecting “PRINT.VDM macro” in the {FILE, Print} dialog box causes the
entire file, or just the highlighted block, to be printed with the filename, date
and page number at the top of each page. It is ideal for printing source code
modules and other text files.

The PRINT.VDMmacro uses the configured “Paper length” and printer “Left
margin”, but always uses a top and bottom margin of two lines.

This print function automatically loads and executes the the macro
print.vdm. This macro is not overly complex and simple changes can be

Printing in VEDIT Chapter 4 Editing Guide 115

made to it without having to fully understand the VEDIT PLUS macro
language.

print.vdm documents how to optionally print a ruler at the top and bottom
or each page, or line numbers and/or file positions on the left side of the page.

VEDIT
PLUS:

The operation of print.vdm can easily be modified by anyone
familiar with the VEDIT PLUS macro language. print.vdm is
intended as a macro example which is relatively easy to understand
and expand.

Much more sophisticated custom formatters can be written in the
macro language. If they are named print.vdm, they can be
accessed from the print dialog box.

See Also:

The topic “PRINT - Print Macro” in Chapter 5.

Print Display Mode
Similar to the screen “display mode”, you can determine how control and
graphics characters are printed. You can also print in hexadecimal, octal or
print an EBCDIC file.

Since printers respond to “control sequences” to changes fonts, turn on
underlining and select other features, you have to be careful when printing files
that contain control characters. If these control characters are intended for
controlling the printer, they should be printed as-is. Otherwise, they should be
converted to the “^x” format.
{CONFIG, Printer, Print mode} determines the printing mode. The most
common values are:

0 (Default) Print in the same mode as the current display mode, i.e.
what-you-see-is-what-you-get. Depending upon the display mode,
control characters may be sent as-is to the printer or can be expanded
to the “^x” format.

2 Only expand tab characters with spaces. All other control characters
are sent as-is to the printer. This lets you embed printer control
sequences in your text to control fonts and other features.

274 Safe mode. All control characters are expanded to the “^x” format.
1024 Print all control characters, including tab characters, as-is. This mode

is automatically used when “Raw” is selected in the Print dialog box.

The on-line help for {CONFIG, Printer, Print mode} lists all possible values.

EBCDIC and other Translate Tables
(This is an advanced topic.)

With a print mode of “8192”, VEDIT translates each character that is sent to
the printer. The EBCDIC translate table is built into VEDIT and, therefore,

116 Chapter 4 Editing Guide Printing in VEDIT

you can load an EBCDIC (IBM mainframe) file and print it on your ASCII
printer. (All printers connected to a PC are ASCII.)

Note that this does not modify or translate the file itself, only the characters
sent to the printer are translated.

VEDIT can load custom translation tables and this can be very useful for many
printing applications. Here are some examples:

� Youmightwant to print a filewith some or all control characters translated
to a period “.”.

� Print a file with the high (8th) bit stripped from all graphics characters.

� Only translate one or two characters that are causing trouble, for example
translate the letter “O” to the digit “0”.

Any of these tasks can be done with a custom translation table. Here is an
overview of the steps involved.

1. Create the desired custom translation table. See the topic “Translating a
Block or File” earlier in this chapter. It may take you about an hour the
first time; 15 minutes when you are familiar with the process.

2. Load the custom translation table with {BLOCK, Edit/translate, Load
translate table}.

3. Select {CONFIG, Printer, Print mode} and enter a value of “8192”.
4. Select {FILE, Print} to print the file.

Print “Jobs” and [Finish/Eject]
(This is a moderately technical topic.)

VEDIT gives complete control over print jobs so that you can print several
blocks of text on the same page. (Most other programs only let you print one
block per page.) You will typically only notice the details of print jobs when
printing blocks.

When VEDIT begins printing, it performs the following steps:

1. Opens a new “print job”, which is similar to opening a file. (If you are
printing to a file, it really does open a file.)

2. Optionally sends the configured “Print job start string” to the printer.

3. Sends the desired text to the printer. It will be formatted according to the
current margins unless “Raw” mode is selected.

When printingwith “All - entire file”,VEDIT automatically finishes and closes
the print-job. However with “Block only” you must explicitly select
[Finish/Eject] after you have printed the last block.
When VEDIT finishes printing, it performs the following steps:

1. Sends a “page eject” to the printer, assuming that {CONFIG, Printer,
Page eject on Finish/Eject} is set. It is set by default, but can be disabled
in case your network printing also adds a page eject to each print-job.

Printing in VEDIT Chapter 4 Editing Guide 117

Depending upon {CONFIG, Printer, Enable Form-Feed}, either a
single Form-Feed character or multiple Line-Feeds are sent to perform the
page eject. The default is to send a Form-Feed, which performs a page
eject on (nearly) all printers.

2. Optionally sends the configured “Print job finish string” to the printer.

3. Closes the print-job. This releases the print-job and it should begin
printing. (When printing to a file, it closes the file.)

Nothing will print until VEDIT closes the print-job. Similarly, when printing
to a file, the file will be empty until you close the print-job. (When you exit
VEDIT, any open print-job is automatically closed).

(DOS version: Text may print before VEDIT closes the print-job because
characters are sent directly to a local printer.)

Print Job Start/Finish Strings
(This is a technical topic.)

Windows: Since Windows sends its own print-job start/finish strings
for most printers, attempting to set them within VEDIT will
have no effect.

The only exception is the “Generic text” printer. If you select
this printer, Windows does not send its own print-job
start/finish strings and you can send the strings from VEDIT.
You can easily add the “Generic text” printer from within the
Windows 95/98/NT Printer Control Panel.

Anoptional “Print job start string” can be sent at the beginning of each print-job
to initialize the printer. This is typically used to select a font, pitch, size or
weight. This is particularly useful on network printers where different users
might have different printing preferences.

Similarly, an optional “Print job finish string” can be sent at the end of each
print-job. This typically resets the printer to its default state so that the next
program used is not affected by VEDIT’s printing. The finish-string is not as
useful in the Windows version, because Windows sends it own finish-string
at the end of each print job.

The print-job start and finish strings can be up to 32 characters in length.
However, by specifying a string of “@filename”, an arbitrarily long string can
be sent to the printer. VEDIT searches for the file first in the current directory
and then in the VEDIT Home Directory.

118 Chapter 4 Editing Guide Printing in VEDIT

These example start (init) strings select font features on an HP or other PCL
language compatible printer:

Example Print-job Start Strings
Function Command Decimal Value

10.0 Pitch <Esc>(s10H 27 40 115 49 48 72

12.0 Pitch <Esc>(s12H 27 40 115 49 50 72

Bold <Esc>(s3B 27 40 115 51 66

Normal <Esc>(s0B 27 40 115 48 66

Reset printer <Esc>E 27 69

Because the print-job start/finish strings are not used very often in theWindows
version, they can only be set in the vedit.cfg file. In the DOS version, they
can be changed in the {CONFIG, Printer} sub-menu.

� To enable (or change) print-job start/finish strings:
1. Edit the vedit.cfg file as described in Chapter 8 (Configuration).

2. Change Config(P_E_STRING) to a value of “3”.
3. Near the end of the file, find the items Config_String(PR_START, “”)

and Config_String(PR_FINISH,"").
Enter the desired start/finish strings between the double quotes. To enter
control characters such as <Esc>, precede them with [ENTER CTRL]
(default: <Ctrl-Q>).
For example, to enter “<esc> (s12H” from the above example, place the
cursor between the quotes and type the following keys:

<Ctrl-Q> <Esc> (s 1 2 H

Another way to enter the print-job start/finish strings is to hold down the<Alt>
key and then type each decimal value on the numeric keypad.

Printing in VEDIT Chapter 4 Editing Guide 119

Search and Replace
This topic describes the powerful search and replace capabilities in VEDIT
called “pattern matching” and “regular expressions”.
Searches normally use pattern matching. This is a powerful searching syntax,
unique to VEDIT, that has “wildcard” characters for matching letters, digits
and much more. It is easy to use; only the character “|” has a special meaning.

Searches can alternatively use regular expressions. This is a powerful search
(and replace) syntax from UNIX. It is much more complex and most punctua-
tion characters have a special meaning. It is also slower than pattern matching.

You can also search in Simple mode without any pattern matching or regular
expressions. It is only recommended for very novice users because no “wild-
card” searching is possible. (It is not faster than pattern matching.)

The desired search mode can be selected in the Search dialog box. The default
mode is selected with {CONFIG, Search options, Default search mode}.

Pattern Matching
Pattern matching can search for types of characters such as “any digit”, or for
characters that meet special conditions such as “occurring at the beginning of
a line”.

These generalized searches are performed by using pattern matching codes
within the search string. Each pattern matching code consists of the special
character “|” followed by another character, typically a mnemonic letter.

NOTES: “|” is the “pipe” character, which is <Shift>-\ on the keyboard. All
pattern matching codes begin with this character.

Although the mnemonic letter can be in upper or lower case, for
purposes of clarity, all examples show these letters in upper case.

Most of the pattern matching codes only have a special meaning
in the search string; they have no meaning in the replacement
string. If you need “variable” characters in the replacement string,
you must use regular expressions.

Here are a few examples of search strings using pattern matching:

|D|D Search for two consecutive digits.

|!|D|D|D|!|D Search for next two digit number. (It will notmatch
a three digit number.)

|<note Search for a line beginning with the word “note”.

|W|> Search for “whitespace” (any number of spaces
and tabs) at the end of a line.

t|A|A|An Search for any five letter word beginning in “t” and
ending in “n”.

120 Chapter 4 Editing Guide Search and Replace

|000 Search for the “Null” character (value 000).

The pattern matching codes are:

|A Match any alphabetic letter, upper or lower case. It supports
non-english letters, such as “umlauts”, if {CONFIG, Search
options, Support non-english characters} is enabled.

|B Match a blank - a single Space or Tab. See also “|W” and “|X”.
|C Match any Control Character - a character with an ASCII decimal

value of 0 to 31.

|D Match any numeric digit - “0” through “9”. This code does not
match “.” or “,”.

|F Match any alphanumeric character - a letter or a digit.

|G Match any graphics character - characters with decimal value
greater than 128. (Useful for finding stray graphics (8-bit) char-
acters in a file.) See also “|K”.

|Hhh Match the character with hexadecimal value ‘hh’. Both digits
MUST be present. This code can also be used in the replacement
string.

|I Match any word separator - Space, Tab, any control character, or
one of the additional configurable word separators defined by
Config_String(WORD_SEP).

|K Match any (non-standard) control character other than Tab, Car-
riage-Return and Line-Feed. (Useful for finding stray control
characters in a file.) See also “|G”.

|L Match the “newline” character(s) Carriage-Return and/or Line-
Feed depending upon the file type. WithWindows/DOS files, the
Carriage-Return is optional. Similar to “|N”.

|M Match multiple characters - zero, one or more characters until the
string following the “|M” is satisfied. This code is not meaningful
as the first item in a search string. See also “|Y” and the following
sub-topic “Matching Multiple Characters”.

|N Match the “newline” Carriage-Return and/or Line-Feed depend-
ing upon the file type. With Windows/DOS files, the Carriage-
Return is mandatory. This code can also be used in the
replacement string. See also “|L”.

|Oooo Match the character with octal value ‘ooo’. Three digits MUST
be present. This code can also be used in the replacement string.

|P Match any parenthesis - { }, [], < > and (). (Internally used by
{GOTO, Matching ()}.)

|S Match any separator - a character which is not a letter, a digit or
underscore “_”. Space, Tab and all control characters are separa-
tors. Graphics characters (value 128-255) are not separators.

|T Match the ASCII Tab character (hex 09). This code can also be
used in the replacement string.

Search and Replace Chapter 4 Editing Guide 121

|U Match any upper case letter. This pattern supports non-english
letters, such as “umlauts”, if {CONFIG, Search options, Sup-
port non-english characters} is enabled.

|V Match any lower case letter. See description for “|U”.
|W Match “white space” - one or more Spaces and/or Tabs. See also

“|B” and “|X”.
|X Match extended white space - one or more Spaces, Tabs, Car-

riage-Returns and/or Line-Feeds. See also “|B” and “|W”.
|Y Match zero, one or more characters until the immediately follow-

ing character or pattern matching code is satisfied. This code is
not meaningful as the first item in a search string. See also “|M”.

|ddd Match the character with decimal value ‘ddd’. This code can also
be used in the replacement string.

|000 Match the “Null” character (ASCII 0).

|{set} Match any one item in the “pattern set”.

|[set] Match one optional occurrence of any item in the “pattern set”.
This code is not meaningful as the first item in a search string.

|< Match the beginning of line position — the following matched
characters must occur at the beginning of a line. (See below.)

|> Match the end of line position — the preceding matched charac-
ters must occur at the end of a line. (See below.)

|@(r) Use the contents of text register ‘r’ in this position in the search
string. This code can also be used in the replacement string.

|? Match any single character; this is the simple “wildcard” similar
to “?” in filenames.

|! Match any character except the following character or pattern
code. Use this code to exclude a certain character or type of
character. For example, to search for “exam” or “examiner” but
not “exams”, use “exam|!s”. Think of “|!x” as “not x”.

|| Match the “|” character. You need a double “||” to search for a
single “|” in your text. A double “||” is also needed on the
replacement side.

Matching the “Newline” - Carriage-Return and Line-
Feed - with “|L” and “|N”

The pattern matching codes “|L” and “|N” match the newline character(s)
Carriage-Return and/or Line-Feed depending upon the current file type.

When {CONFIG, File handling, File type} is set to “0” (Windows/DOS text
file), they match a Carriage-Return and Line-Feed pair as the “newline”
characters.When set to “2” (Mac text file) theymatch a single Carriage-Return
character. Otherwise, they match a single Line-Feed character.

122 Chapter 4 Editing Guide Search and Replace

“|L” and “|N” are similar, but not identical. For file type “0” (Windows/DOS
text), “|L” treats a Carriage-Return as optional, while “|N” requires both a
Carriage-Return and Line-Feed. Therefore, “|L” is preferred in search strings
because it handles Windows/DOS text files that might be missing some
Carriage-Returns. For other file types, “|L” and “|N” are identical.
“|N” is equivalent to “|013|010”, “|010” or “|013”, depending upon the file
type. “|N” works slightly faster than “|L”, and “|N” can be used in the
replacement string. Using “|N” is a convenient way to enter a multiple-line
replacement string. In summary:

� “|L” is preferred in search strings.
� “|N” can be used in replacement strings.

Matching the Beginning/End of a Line with
“|<” and “|>”

The code “|<” occurring at the beginning of a search string ensures that the
entire search string only matches text occurring at the beginning of a line.

Similarly, the code “|>” occurring at the end of a search string ensures that the
entire search string only matches text occurring at the end of a line.

Unlike “|L” and “|N”, “|<” and “|>” do not include the newline character(s) in
the matched text. This is an important distinction when performing a replace-
ment - with “|L” and “|N” the newline character(s) will be replaced; with “|<”
and “|>” they are not replaced. With {CONFIG, File Handling, File type} set
to record mode, these codes match the beginning/end of a record.

Matching Multiple Characters with “|M” and “|Y”
The code “|M” is useful for finding text where the beginning and end are
defined, but the middle does not matter. For example, let’s say you want to
check that all quotemarks are properly paired. Select {SEARCH, Search} and
enter the following search string:

“|M” (That’s four characters)
The cursor should be at the beginning of the first quotation. Each time you
press {SEARCH, Next}, the cursor should move to the next quotation. If it
does not, a quote mark is not properly paired.

Besides being useful in searches, the “|M” code can be used to delete large
blocks of text. For example, the following search and replace string would
delete this paragraph:

Search: Besides|Mparagraph:
Replace: (None, just press <Enter>)

The “|M” code often matches too much text. For example, the search string
“|Sa|Mtion|S” will match words beginning in “a” and ending in “tion”.
However, it will also match the next word beginning in “a” followed by any
text until it finds a word ending in “tion”.

The code “|Y” can also match multiple characters, but is more restrictive than
“|M”. “|M” matches ever more characters until the rest of the search string is

Search and Replace Chapter 4 Editing Guide 123

satisfied, or the end of the file is reached. Once that portion of the search string
in front of the “|M” is matched, it is never searched for again; there is no need.
On the other hand, “|Y” matches ever more characters only until the very next
character (or pattern) matches. If the rest of the search string then fails, the
entire search string is re-searched.

For example, in assembly language programming, any text following a “;”
character is a comment. Instructions are often followed by a few tabs (to align
the comments), the “;” and the comment. The following search and replace-
ment strings will delete the tabs (and/or spaces) and the comment which follow
any instruction. However, lines which are entirely comments (i.e. that have a
“;” in the first column) are not deleted.

Search: |W;|Y|>
Replace: (None, just press <Enter>)

As another example, we want to search for the following two lines:
MOV BL,DL ;An arbitrary comment
MOV BH,DH

We want to be certain that the second line immediately follows the first line.
As indicated, the critical part of the first line could be followed by unknown
text. The search string to find these two lines is:

MOV BL,DL|Y|LMOV BH,DH

Notice that substituting “|M” for “|Y” would not be the same — we could no
longer be sure that the second line immediately followed the first line.

Pattern Sets
The pattern matching codes “|{set}” and “|[set]” contain a user-definable
“pattern set”. This is analogous to an “OR” operator— thematch is successful
if the text matches the first item OR the second item OR the third item, etc.
Each item in the pattern set can itself be a search string. The items are separated
from each other by commas “,”. Commas themselves are represented by “|,”.
For example, the search string to find any of the animal names “CAT”, “DOG”,
“LION” or “MOUSE” is:

|{CAT,DOG,LION,MOUSE}

Pattern sets are very useful when searching for alternative words. Unfortu-
nately, pattern sets execute more slowly than other searches— in this example
the pattern set has to be checked for each character in the text.

As another example, we want to search for occurrences of the words “auto-
mation” and “automobile”. We could of course place the entire words into a
pattern set. As an alternative, we will just place the word endings into a pattern
set in the following search string:

auto|{mation,mobile}

Since the pattern set is only checked when “auto” has already been found, this
search will run very quickly.

The following search strings will find a vowel or a consonant:

124 Chapter 4 Editing Guide Search and Replace

|{a,e,i,o,u} (vowels)
|{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z} (consonants)
|!|{a,e,i,o,u,_,|d,|s} (consonants)

The pattern matching code “|[set]” matches one optional occurrence (i.e zero
or one occurrence) of any item in the pattern set. For example, the following
search string:

the |[tall,short,fat,thin] man

matches “the man”, “the tall man”, “the short man”, “the fat man” and “the
thin man”. However, the string:

the |{tall,short,fat,thin} man

would not match just “the man”.

Pattern sets may be embedded within each other for even more sophisticated
searching. For example, the revised search string:

the |{tall|[ish],short|[ish],fat,thin} man

also matches “the tallish man”, “the shortish man”.

The search string:

|{|{foot,basket,base}ball,soccer,golf,hockey}

matches “football”, “basketball”, “baseball”, “soccer”, “golf” and “hockey”.

The following search strings find numbers between 1 and 4 digits in length.
They illustrate that there often are several equivalent ways to use pattern sets:

|{|d|d|d|d,|d|d|d,|d|d,|d}
|{|d|[|d]|[|d]|[|d]}
|{|d|[|d|[|d|[|d]]]}

(Note: Items that are substrings of another item must be placed after the larger
item inside a pattern set.)

Using Text Registers in Search Strings
The contents of a text register can be used as part of a search string. The register
contents are accessed with the pattern matching code “|@(r)” where ‘r’ is the
name of the register. This makes it possible to have “variable” search strings.

For example, assume the following text register contents:

Register 1 contains: “Nice”

Register 2 contains: “a walk”

Then the following three search strings are all equivalent:

Nice night for a walk
|@(1) night for a walk
|@(1) night for |@(2)

Search and Replace Chapter 4 Editing Guide 125

Regular Expressions
Regular expressions are a type of text pattern matching originally developed
in the UNIX environment. They can be used as an alternative to VEDIT’s
normal pattern matching. The UNIX specifications are followed very closely.
To use regular expressions they must be enabled either by setting {CONFIG,
Search options, Default search mode} to “2” or “3”, or by selecting “()
Reg-Exp” in the Search or Replace dialog box.
The choice between normal pattern matching and regular expressions is partly
a matter of personal preference and a consideration of the advantages and
disadvantages of each.

Advantages of Regular Expressions:
� For the most part, regular expressions are more flexible and powerful than

normal pattern matching. Particularly powerful are the constructs “+”
meaning “one or more occurrences of” and “*” meaning “zero or more
occurrences of”.

� During a search and replace, groups of characters matched during the
search can be used as part of the replacement text in very flexible ways.
This is probably the biggest advantage of regular expressions.

� If you already know regular expressions from theUNIX environment, you
don’t have to learn another searching language.

Disadvantages of Regular Expressions:
� Regular expressions can be lengthy and verbose. For example, the pattern

matching code “|A” is equivalent to the regular expression “[a-zA-Z]”.

� Regular expressions are less flexible for searching multi-line patterns.

� Many characters have a special meaning in regular expressions. A special
syntax must be used when searching for these characters.

� For the most part, regular expression searching is slower than normal
pattern matching searching.

� Pattern matching has some capabilities not available in regular expres-
sions. For example, “Pattern sets” can match optional items and any one
of a set of items.

Regular Expression Basics
NOTE: To use regular expressions, be sure that the option “() Reg-Exp”

is selected in the Search/Replace dialog box.

Many characters have special meaning in regular expressions:

^ (caret) Matches the beginning of a line (when it is the first
character in a regular expression).

$ Matches the end of a line (when it is the last character in
a regular expression).

. (period) Simple wildcard that matches any character.

126 Chapter 4 Editing Guide Search and Replace

* Matches zero or more occurrences of the preceding char-
acter (or list).

+ Matches one or more occurrences of the preceding char-
acter (or list).

? Matches zero or one occurrences of the preceding charac-
ter (or list).

Examples:

o.e Matches any text containing “o” followed by any charac-
ter followed by “e”. Will match the word “one” and the
“ome” in the word “some”.

^o.e Matches the same strings, but only if they appear at the
beginning of a line. Will match the word “one” at the
beginning of a line. DOES NOT match “some”.

o.e$ Matches the same strings, but only if they appear at the
end of a line. Will match the word “one” and the “ome” in
the word “some” if they occur at the end of a line. DOES
NOT match the word “something”.

^$ Matches only a blank line.

an*d Matches any text containing “a” followed by zero or more
occurrences of “n” followed by a “d”.Will match the “ad”
in the word “add” and the word “and”.

an+e Matches any text containing “a” followed by one or more
occurrences of “n” followed by an “e”. Will match the
“ane” in the word “cane” and the “anne” in the word
“banned”.

an?e Matches any text containing “a” followed by zero or one
occurrences of “n” followed by an “e”.Willmatch the “ae”
in the word “Caesar”, the “ane” in the word “cane”, but
NOT the word “banned”.

Think of “*” as indicating that one or more occurrences of the previous
character are “optional”. Notice that “ann*e” is identical to “an+e”.
A list of characters within square brackets “[” and “]” matches any one
character in that list. A range of characters can be abbreviated using a hyphen
“-”. However, when the first character in the list is a “^” (caret) or “~” (tilda),
the list matches any character except those in the list.

[abc]d Matches any text containing “a”, “b” or “c” followed by
“d”.

[a-z] Matches all lower case letters.

[z-a] A range may also be specified in reverse order.

[A-Za-z] Matches all letters, upper or lower case.

[A-Z][a-z]* Matches all capitalized words. (It matches an upper case
letter followed by zero or more lower case letters.

Search and Replace Chapter 4 Editing Guide 127

[^a] Matches any character except for “a”.

[^a-z] Matches any character except for a lower case letter.

[~a-z] Same. “[~” is equivalent to “[^”.

[^0-9] Matches any character except for a digit.

\[Matches the “[” character.

\\ Matches the “\” character.
The “[] Case” search option is applicable to regular expressions, but notwithin
bracketed lists. Therefore, “hi” will match “HI”, “Hi”, etc., and the expression
“[a-z]i” will match “hi” and “hI”, but not “Hi”. There is little reason to ever
select the “[] Case” option — you could use the expression “[h][i]” to search
for the lower case word “hi”.

A “\” followed by any character (except a digit or letter) simply matches that
character. This allows searching for those characters which are used as special
symbols in regular expressions.

Although we recommend using the “\” in front of any special symbols you
need to search in the text, the “\” is not needed when there is no possibility of
confusion. For example, the characters “{”, “}”, “|”, “*” and “+” are not special
within the square brackets. The “$” is only special at the very end of the
expression. Even the hyphen “-” is not special immediately following “[” or
preceding “]” or outside of square brackets.

IMPORTANT
NOTES

These characters are special symbols in regular expressions and therefore must
be preceded by “\” in order to search for them in the text:

^ $. * + ? - ~ \ | [] { }

The syntax allows exceptions where the “\” is not needed, but in those cases
the “\” does not hurt either, and we recommend using it in front of all
non-alphanumeric characters.

In the replacement string, only the two characters “\” and “&” are special
symbols.

128 Chapter 4 Editing Guide Search and Replace

Special Matching Characters
The following special matching characters are defined. They can be used in
both the search string and replacement string of a regular expression.

\b Matches the ASCII backspace character (hex 08).

\dDDD Matches the character with decimal value ‘DDD’. All three
digitsMUST be present. “\d010” does not work in the search
string; use “\N” instead.

\e Matches the ASCII <Esc> character (hex 1B).

\f Matches the ASCII Form-feed character (hex 0C).

\hHH Matches the character with hexadecimal value ‘HH’. Both
digitsMUST be present. “\h0A” does not work in the search
string; use “\N” instead.

\n Matches the Line-Feed character (hex 0A). This is the
“newline” character for UNIX type text files. To search for
multiple-line patterns, use “\N” instead.

\N Matches the “newline” character(s) and allows searching for
multiple line patterns. The “newline” depends upon the cur-
rent file type and can be <CR><LF>, <LF> or <CR>. (Cur-
rently, “\N+” and “\N*” are not supported.)

\oOOO Matches the character with octal value ‘OOO’. All three digits
MUST be present. “\o012” does not work in the search string;
use “\N” instead.

\r Matches the ASCII Carriage-Return character (hex 0D).

\s Matches the ASCII space character (hex 20).

\t Matches the ASCII Tab character (hex 09).

\0 Matches the ASCII Null character (hex 00).

\@(r) Use the contents of text register ‘r’ in this position in the search
(or replace) string.

The “OR” Operator
The special character “|” (the “pipe” character, which is <Shift>-\ on the
keyboard) is the “OR” operator which may occur between two sub-expres-
sions. The entire expression then matches any text that is matched by the
preceding sub-expression OR the following sub-expression. Note: “|” cannot
occur within “{ }”; each sub-expression must by itself be a valid expression.

man|woman Matches the word “man” OR the word “woman”.

a+|b+ Matches one or more occurrences of “a” OR of “b”.

Search and Replace Chapter 4 Editing Guide 129

Groups and Replacement Strings
The special symbols “{” and “}” group regular expressions for reference
purposes. They permit the text matched by the expression within “{ }” to be
referenced again in the search string or to be included as part of the replacement
text.

An expression may contain up to 9 groups which are referenced by number—
“\1” through “\9”. The groups are numbered in the order of their opening “{”.
Groups may also be nested. Groups may be referenced in either a latter part of
the regular expression or in the replacement string. This allows portions of the
matched text to be used as parts of the replacement text.

The character “&” has a special meaning only in a replacement string and
references the entire text matched by the search.
Consider the expression “the {man}|the {woman}”. If the matched text is “the
man”, “\1” is “man” and “\2” is empty (null). Now consider the expression
“{the {[a-z]+}} has”. If the matched text is “the woman has”, “\1” is “the
woman” and “\2” is “woman”.

{[a-z][a-z][a-z]}\1 Matches two contiguous occurrences of the
same three letters. Will match “nownow”,
“powpow”, etc.

{.*}\1 Matches any repeating text. Will match “nn”,
“nownow”, “12341234”, etc.

^{.*}\1$ Matches a line consisting of two repeated occurrences
of the same text (identical right and left halves).

The order of precedence of the operators is:

\ Highest

[]

* + ?

{ }

Concatenation

| Lowest

130 Chapter 4 Editing Guide Search and Replace

Complete Examples
These examples show search and replacement strings using regular expres-
sions. They illustrate how groups of matched text can be used as part of the
replacement string. Be sure that the option “() Reg-Exp” is selected in the
Search/Replace dialog box.

Search: [A-Z][a-z]*

Search for the next capitalized word. Note that it will also match
the single letter word “A”.

Search: 0x[0-9a-fA-F]+

Search for the next hexadecimal number in a “C” program. It
searches for “0x” followed by one or more hexadecimal digits.

Search: ^{.+}$\N\1$

Search for a line that is duplicated on the next line.
Search: .*,
Replace: (None, just press <Enter>)

Delete all text up to a comma on the next line which contains a
comma. (Remember that the entire matching text must occur on
one line.)

Search: {[Hh]}ello
Replace: \1i

Searches for “Hello” or “hello” and replaces it with “Hi” or “hi”
respectively.

Search: [Hh]ello
Replace: &~world

Searches for “Hello” or “hello” and replaces it with
“Hello~world” or “hello~world” respectively. The “&” refer-
ences the entire text matched by the search. Note that the grouping
characters “{ }” are NOT needed in order to use “&”.

Matching the “Newline”
Regular expressions CANNOTmatch “newline” sequences at the end of a line.
Therefore, the expression “[^a]” matches any character expect for “a” and a
“newline” (single Line-Feed or Carriage-Return and Line-Feed). Similarly,
the “*”, “+” and “?” operators stop matching when they reach a newline.
[\h00-\h1f] Matches any control characters except “newline”.

a.* Matches the letter “a” and all following characters up to,
but not including, the newline.

The only exception to this is “\N” which explicitly matches the newline
character(s).

end\Nbegin Match “end” at the end of a line followed by “begin” at
the beginning of the next line.

Search and Replace Chapter 4 Editing Guide 131

Maximize Regular Expression Matching
Regular expressions originally came from theUNIX environment andwe have
made every attempt to follow the UNIX definitions as closely as possible.

Another important rule about UNIX regular expressions is that the “*” and
“+” operators always match the longest possible string that still allows the rest
of the expression to match. Consider the rather subtle expression (already used
in an example above):

{.*}\1

and the text line:

a00a abc12231223cba

On the first search, it will match the “00” in “a00a” since it matches any
repeating text. However, on the second search it does not match the “22”, but
rather the entire “12231223” because this is the longer repeating text string
that includes “22”.

Although this is a useful and powerful characteristic of regular expressions, it
is not always desirable. (It is also not intuitive.) VEDIT lets you select either
minimized or maximized regular expression matching in the Search dialog
box. The default can be set with {CONFIG, Search options, Default search
mode}.
When minimized, it would have matched “22” instead of “12231223” in the
previous example. As another example, consider the search string:

a.+b

and the text:

12a3456b7890b

When minimized, it will match “a3456b”; when maximized, it will match
“a3456b7890b”.

Using maximized regular expressions slows down searches significantly —
the search cannot stop on the first match, but must rather keep looking for ever
longer matches. It is probably because of this characteristic that the original
UNIX designers decided to restrict searches to a single text line— amulti-line
search for “{.*}\1” in even a small 1K file can involve over a million
comparisons.

132 Chapter 4 Editing Guide Search and Replace

Word Processing Functions
In addition to its wide range of features for general purpose editing, VEDIT
has features specifically designed to assist with word processing. These
include:

Left Margin for
Indented Text

When a left margin is set, VEDIT indents new lines of text
by automatically adding tabs and spaces (or just spaces)
to reach the left margin. Existing paragraphs and arbitrary
blocks of text can also be indented.

Word Wrap and
Right Margin

When “word wrap” is enabled, words that would exceed
the right margin are instead “wrapped” to the next line
without breaking the word in half. VEDIT performs word
wrap by inserting a normal “newline” character before the
wrapped word — just as if you had pressed <Enter>. By
default, the right margin is the width of the current win-
dow, but any value can be set.

Paragraph
Formatting

If desired, each paragraph can have different left and right
margins. The margins for an existing paragraph can also
be changed and the paragraph then “re-formatted” to fit
the new margins.

Justification When paragraphs are formatted, they can optionally also
be justified. Justification produces a straight right edge to
the text by adding spaces between words on each line.

Center Line Lines of text can quickly be centered between the current
left and right margins with {EDIT, Center line}.

Unlike dedicated word processors, VEDIT’s word processing functions never
insert special “control codes”. Paragraphs are formatted by inserting only
“newline” characters (Carriage-Return and/or Line-Feed depending upon the
file type). Text is indented by using only Tab characters and spaces; if desired
only spaces can be used.

This makes it possible to use text files formatted with VEDIT with almost any
other program.

Definition of “Word” and “Paragraph”
VEDIT considers a “word” to be any sequence of characters separated from
each other by certain characters:

� A space always separates words from each other.

� Any control character including Carriage-Return, Line-Feed and Tab
separates words from each other.

� A space always separates words from each other.

� Any control character including Carriage-Return, Line-Feed and Tab
separates words from each other.

Word Processing Functions Chapter 4 Editing Guide 133

� The characters configured with Config_String(WORD_SEP) separate
words from each other. By default, only the following characters are
configured as separators:

, ; : ()

� The characters “(< [{” are treated as the beginning of a word. Similarly,
“) >] }” are treated as the end of a word.

With the default Config_String(WORD_SEP), the “< [{” and “>] }” char-
acters are treated as part of the word. However since “(” and “)” are word
separators, they are not treated as part of the word. This makes it easy to delete
the words inside parentheses without deleting the parentheses themselves.

� As a special case, numbers with embedded commas, such as “10,000” are
always treated as one word.

� The characters configured with Config_String(WORD_SEP) separate
words from each other. By default, only the following characters are
configured as separators:

By default, words are allowed to have embedded periods in them, as in “i.e.”.
Chapter 8 describes how to change the configuration parameter
Config_String(WORD_SEP) in the vedit.cfg file.
To VEDIT, a paragraph is one or more lines of text separated from other
paragraphs by these rules:

� A blank line always separates paragraphs from each other. The blank line
is allowed to have “invisible” spaces and Tab characters.

� Lines beginning with the characters configured with
Config_String(PARA_SEP) separate paragraphs from each other. By
default, the following characters are configured as separators:

. @ ! \

Lines starting with these configurable characters are assumed to be “print
formatting commands” for programs likeWordStar, Ventura Publisher and our
V-PRINT. Print formatter command lines are not considered part of any
paragraph and are therefore never re-formatted.

Note that just an indented line is not enough to separate one paragraph from
another.

Indenting Text (Left Margin)
There are severalways to indent text so that it does not begin in the first column.
You can, of course, type spaces at the beginning of each line to be indented.
This is the normal way of indenting the first line of a new paragraph. However,
VEDIT can automatically indent each new line of text for you. This is useful
in word processing for indenting entire paragraphs, and for editing programs
written in structured languages such as C, Pascal and Java.

The left margin determines how much newly entered lines will be indented.
Normally the left margin is set to column 1.

134 Chapter 4 Editing Guide Word Processing Functions

You can change the left margin with {CONFIG, Word processing, Left
margin}. However, it is usually easier to change the left margin on-the-fly by
pressing {EDIT, Indent} (<F8> or toolbar), which increases the left margin,
and {EDIT, Undent} (<F7> or toolbar), which reduces the left margin. These
functions change the left margin by the indent increment, typically 4. The
increment is set with {CONFIG, Programming, Indent increment}.
VEDIT indents text by padding lines with Tab characters and spaces. The
optimum number of tabs and spaces will be used depending upon the currently
set tab stops. If you prefer text to be indented using only spaces, set {CONFIG,
Tab/Fill, Expand <Tab> with spaces} to “1”, “3”, “5” or “7”.
VEDIT has another mode of indentation called “auto-indent”. It is primarily
intended for editing structured programming languages such as “C”. In auto-
indent mode, each new line will be indented the same amount as the previous
text line. You can then change the indentation of the new line by pressing
{EDIT, Indent} and {EDIT, Undent}. The main advantage of auto-indent
mode is that you can jump around in a program and newly entered instructions
will automatically fit the indentation of the current block of instructions.

Auto-indent and the indent increment are configurable with {CONFIG, Pro-
gramming, Auto-indent mode} and {CONFIG, Programming, Indent in-
crement}.

HINTS: Do not indent your text to keep it from printing on the left edge of
the paper. {CONFIG, Printer, Left margin} lets you set a separate
printer left margin for this purpose.

Word Wrap (Right Margin)
“Word wrap” is a feature that automatically starts a new line when text reaches
the right margin. The entire word, which would otherwise exceed the right
margin, is wrapped to the next line without breaking the word in half. The new
line will start at the current left margin.

To enable word wrap and {EDIT, Format paragraph}, you must enable
{CONFIG, Word processing, Enable word wrap}. The desired right margin
is set with {CONFIG, Word processing, Right margin}. The default value
of “0” sets the right margin to the current window width, but any desired value
can be set, even values wider than the window.

The right margin is the last column in which a displayable character can occur.
However, spaces, especially the typical one or two spaces following a sentence,
are allowed to exceed this margin.

The right margin can be greater than the window width, in which case VEDIT
will either scroll the window horizontally or display a continuation line before
the word wrap takes place.

As you edit a paragraph, existing text will sometimes extend past the right
margin. This is normal, because word wrap only occurs when new text is
entered past the rightmargin. You can get all the text back between themargins
by reformatting the paragraph with {EDIT, Format paragraph} (<Ctrl-B>
or toolbar).

Word Processing Functions Chapter 4 Editing Guide 135

IMPORTANT
NOTES:

Word wrap should be disabled when editing programs;
otherwise, accidentally selecting {EDIT, Format para-
graph} will generally scramble your program. VEDIT’s
“undo” usually cannot recover the text in this case.

Do not confuse the right margin with the “Horizontal scroll
margin” — the latter only controls how long lines are dis-
played on the screen.

Formatting and Justifying Paragraphs
{EDIT, Format paragraph} formats (or re-formats) a paragraph to fit it
between the current left and right margins.

A paragraph is formatted by placing as many words on each line as possible
without exceeding the right margin. In the process, the number of lines in the
paragraphmay change. VEDIT can optionally add extra spaces betweenwords
to “justify” (straighten) the right edge of the paragraph.

To format a paragraph, first ensure that the left and right margins are set as
desired and that {CONFIG, Word processing, Enable word wrap} is en-
abled. Then place the cursor anywhere in the paragraph and select {EDIT,
Format paragraph} (<Ctrl-B> or toolbar). After formatting, the cursor
moves to the next paragraph. Therefore, you can repeatedly select {EDIT,
Format paragraph} to format one paragraph after another.
{CONFIG, Word Processing, Format paragraph options} controls how
paragraph formatting deals with extra space characters at the ends of lines

NOTES: An indented line is not enough to separate one paragraph from
another; blank lines MUST be used to separate paragraphs. Oth-
erwise, re-formatting paragraphs will combine several paragraphs
into one!

The supplied file KEY-MAC.LIB contains a key-stroke macro for
formatting a columnar block of text. This lets you format just the
words in a range of columns instead of all words on the line.

Offset Paragraphs
An “offset paragraph” is a paragraph whose first line is not indented the same
distance as the rest of the paragraph. VEDIT maintains this difference in
indentation when formatting a paragraph as in the following examples.

This is an offset paragraph. Notice how
the first line is indented 4 character spaces
further than the rest of the paragraph.

When this paragraph is reformattedwith different margins, the second linewill
be aligned with the left margin and the first line will be indented the same four
spaces.

An offset paragraph can also have the first line outdented from the remainder
of the paragraph.

136 Chapter 4 Editing Guide Word Processing Functions

1. This is an offset paragraph. Notice how the
first line is at the left margin while the
remaining lines are indented 4 characters.

When this paragraph is reformatted with different margins, the first line will
be aligned with the left margin.

Justification
When “justification” is enabled with {CONFIG, Word processing, Justify
paragraphs}, VEDIT will adjust the spacing between words to create a
straight right edge to the paragraph.

This is a justified paragraph. Notice how the
spacing is randomly adjusted between words
to maintain a justified right margin. This is
preferable in some, but not all applications.

If you need to edit text after it has been justified, it is easier if you first
“unjustify” the text. This removes the additional spaces betweenwords, leaving
the right margin jagged. To unjustify a paragraph, disable {CONFIG, Word
processing, Justify paragraphs}, set {CONFIG, Word processing, Format
paragraph options} to “0” (or “4”) and reformat the paragraph.

SUGGESTION: Documents justified by another word processor should
first be unjustified for easier editing with VEDIT.

Format Paragraph Options
The default value of “0” for {CONFIG, Word processing, Format para-
graph options} removes all extra spaces from aparagraphwhen it is formatted.
It trims trailing spaces, removes extra spaces from between words and leaves
only a single space following “.”, “!” and “?”. If this is not desirable for your
application, you can select other options.

{CONFIG, Word processing, Format paragraph options} combines three
options into one by having you add “mask”values (setting bits) for each desired
sub-option.

Mask 1 Add a trailing space after each paragraph line except the last. This is
needed for applications that ignore single “newlines” and would
otherwise concatenate the words from two lines together. This extra
space is allowed to exceed the right margin.

Mask 2 Allow any number of extra spaces between words.

Mask 4 Allow two spaces after “.”, “!” and “?”. Use this if you like two spaces
between sentences.

For example, if youwant trailing spaces after each line and two spaces between
sentences, configure this parameter to “5”.

Word Processing Functions Chapter 4 Editing Guide 137

Editing Multiple Files
You can simultaneously edit up to 32 files at a time in VEDIT. It is exception-
ally flexible in how the files are displayed. Although each file typically has a
corresponding window, a file can also be displayed in two or more windows.
This is useful for editing two regions of the file at the same time, or for editing
the file in two modes at the same time, e.g. in ASCII and Hexadecimal.

InWindows, you can start up VEDITwithout any initial files, or you can “drag
and drop” one or more files to the VEDIT icon to start up VEDIT with the files
already loaded. Of course, you can also open and close files from inside the
editor.

It is easiest to edit additional files using these “hot-keys” in the “normal”
keyboard layout.

<Ctrl-O> Opens a new file for (simultaneous) editing in a new buffer.
As a convenience, if the specified file does not exist, it is
created. It also opens a corresponding window. This is the
most commonway of editing additional files and creating new
files. Hot-key for {FILE, Open}.

<Alt-O> Opens a new file for editing in the current (same) buffer. You
are prompted whether the current file is to be saved or aban-
doned. Use this when you are done editing the current file and
want to edit another file. Hot-key for {FILE, Open (More),
Same buffer}.

<Alt-Y> Similar to <Ctrl-O> except that it opens the new window by
splitting the current window horizontally into two windows.
Hot-key for {FILE, Open (More), Horizontal window}.

<F5>
<F6>

These keys toggle, round-robin fashion, to the previous/next
open buffer (file). This is the most common way of switching
between files. Hot-keys for {FILE, Previous buffer} and
{FILE, Next buffer}; they are also available on the toolbar.

<Ctrl-F4> Closes the current window. If it is the last window attached to
the file (buffer), it also closes the file, prompting whether the
file is to be saved or abandoned. However, it does not close
the lastwindowand buffer; it then only closes the file.Hot-key
for {WINDOW, Close}. It is the same as clicking the win-
dow’s “close” button.

HINT: You can open two or more files at once by entering their names in
the “Filename:” prompt in the File-Open dialog box. You can also
specify a “Save as” name or begin editing on any desired line
number. See the on-line help for this dialog box or {File, Open} in
Chapter 6 (Menu Reference) for more information.

138 Chapter 4 Editing Guide Editing Multiple Files

{FILE, Open (More)} Sub-menu
VEDIT has three variations of {FILE, Open} to save you steps when editing
multiple files.

Many times you will edit one file after another without needing to switch back
and forth between them. You can do this in three ways:

� You can simply open each additional file. However, after a while you will
have so many files and windows open that the screen gets cluttered and
things get confusing.

� As you finish with each file, you can close it and then open the next file.
This keeps things simpler.

� Use {FILE, Open (more), Same buffer} (<Alt-O>). It is a shortcut way
of closing the current file and opening the next file. It saves keystrokes
and mouse clicks.

Sometimes you want to see two files side-by-side or one above the other,
perhaps to compare them. You can do this in two ways:

� Open both files with {FILE, Open}. Then resize the windows so that they
are side-by-side or above each other.

� Open the first file with {FILE, Open (more), Same buffer}. By default,
VEDIT displays it in a full-sized window. Open the second file with
{FILE, Open (more), Vertical window} or {FILE, Open (more), Hori-
zontal window}. The screen will be nicely split into two windows, saving
you the time of manually resizing windows.

Once a file has been opened in a window, the window can bemoved or resized
in the usual manner with the mouse or by selecting “Move” or “Size” from the
window’s option menu (click on the window’s icon or press <Alt-Space> and
<Cursor Right>).
Select {WINDOW, Cascade} to display all windows at once with overlap-
ping, or {WINDOW, Tile} to display all windows without overlapping.
Selecting {VIEW, Zoom} is the same as clicking on the Window’s zoom
button. It zooms the current window to it maximum size for easier editing.
Other windows you switch to will also be zoomed. Select it again to restore
the windows to their normal size.

Alternatively, select {VIEW, Full size} to expand the current window to
full-size without zooming all windows. Or select {VIEW, Full size - All} to
expand all windows to full-size. This is convenient if you want to view most,
but not all, windows at full-size.

{VIEW, Reset} resets all windows by restoring their normal color and display
mode. Each open buffer (file) is displayed in just one window; additional
windows are removed. The windows are displayed as cascaded or full-size,
depending upon the setting of {CONFIG, Display options, Auto-create
window style}.

Editing Multiple Files Chapter 4 Editing Guide 139

SUGGESTION: To clean up a cluttered window display, try {WINDOW,
Cascade} or {VIEW, Full size - All}. If the windows are also
in unwanted colors and/or display modes, first select
{VIEW, Reset}.

Optional Configuration

{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially “full-size” and completely overlapping, or are
smaller and cascaded. The default is “cascaded” because this is typical for other
windows programs.

However, most users prefer full-size windows; this lets you edit each file in a
large window; it has some advantages to zooming the window.

See the heading “Full-size Windows” below.

Switching Between Files (Edit Buffers)
You can switch between the files currently being edited by toggling between
them, by switching directly to a particular buffer, or by using “point and shoot”
selection.

� To switch to another file:
1. Select {FILE, Previous buffer} or {FILE, Next buffer} (<F5>, <F6>).

This toggles, round-robin fashion, to the next/previous open edit buffer
and the file (if any) being edited in it.

These functions are also available on the toolbar.

-OR-
1. Select {FILE, Buffer switch} (<F4>). You are prompted for the buffer

number:
Buffer number:

2. Enter the desired buffer number, or select the desired buffer using point
& shoot.

Closing Files and Windows
The easiest way to close a file, without exiting VEDIT, is to double click the
window’s icon; this is the same as selecting {WINDOW, Close} (<Ctrl-F4>).
If this is the only window displaying the file, which is the typical case, it closes
the file and the corresponding buffer.

If a file is displayed in two or more windows, {WINDOW, Close} does not
close the file until you close its last window.

Alternatively, you can select {FILE, Close} to close the current buffer, saving
or abandoning any file in it. It also closes all windows attached to the buffer.
In the typical case where each file is displayed in only one window, {FILE,
Close} and {WINDOW, Close} are identical.

140 Chapter 4 Editing Guide Editing Multiple Files

NOTE: VEDIT always keeps one buffer and window open. If you attempt
to close the last window, it only closes the file. The last buffer and
corresponding window will remain open, but will be empty.

Use {FILE, Exit}when you are ready to exit VEDIT. It will let you selectively
save or abandon each modified file, or save/abandon all files.

� To close the current file (buffer):
1. Select {WINDOW, Close} (<Ctrl-F4>) or double-click the window’s

icon. Alternatively, select {FILE, Close}.
If the current file has been modified and not yet saved to disk you are
prompted with:
Save current file? [Yes] [No-Abandon]

2. If you select [Yes],VEDITwill save the current filewith allmodifications.
If you select [No], VEDIT will abandon changes that have been made
since the last time the file was saved. In either case, it also closes the
current buffer and buffer. (However, VEDIT always keeps one buffer and
window open; they may be empty.)

3. If you select [Yes] to save the text, but no file is open, youwill be prompted
for the name under which to save the file:
No filename specified! Enter “Save As” filename:

Enter the desired name for the file.

MOUSE: You can also close a file by double-clicking the mouse on the
window’s left side icon. This is equivalent to {WINDOW, Close}.

{WINDOW, Remove} lets you close any window without first switching to
it. Its primary purpose is to close (remove) special “commandmode” windows
that were created in the VEDIT PLUS macro language or with {WINDOW,
Split}.

Copying Text From One File to Another
A common reason for editing two files is to copy portions from one file to
another. This requires the use of a text register.

� To copy text from one file to another:
1. Highlight the block in the normal fashion. Either a stream, line or colum-

nar block can be copied. You may want to use {BLOCK, Set stream
marker} (<F9> or the toolbar) to highlight a very large block.

2. Select {BLOCK, Copy to register} (default: <Numpad+>). Enter the
desired text register number; we suggest “0” through “9”. You can
immediately press <Enter> or <Numpad+> again to select register “0”,
also called the scratchpad.

3. Switch to the second file and move the cursor to the desired position.

Editing Multiple Files Chapter 4 Editing Guide 141

4. Select {BLOCK, Insert register} (default: <Numpad*>). Select the
same text register as in step 2.

If the block is too large to fit in a text register, youwill receive an errormessage.
See “Cut & Paste Huge Blocks” earlier in this chapter for a work-around; one
way is to use the Windows clipboard.

Starting (Default) Directory for
File-Open

VEDIT gives you flexibility determining in what directory most file selection
dialog boxes start. Starting in the correct directory can save a lot of time. For
some dialog boxes, VEDIT selects the most likely directory. Others start in the
directory of the current file, or optionally in the “current” directory, which can
be changed.

By default, the starting directory for {FILE, Open}, {FILE, Save as}, {EDIT,
Insert file} and {BLOCK, Write to disk} is the same directory as the file in
the current buffer. If the current buffer has no file open, e.g. following {FILE,
New}, the starting directory is the “current” directory.
These file selection dialog boxes include a [] Change directory option.
Initially, the box is not enabled and the dialog box starts in the same directory
as the file in the current buffer.

If you check the [] Change directory box, the last directory you select in the
dialog box becomes the new “current” directory. Also, these dialog boxes will
then start in the “current” directory.

HINT: When editing multiple files in different directories, first switch to a
file which is in the same directory as the next file you want to open.
{FILE, Open} will then start in the desired directory.

{MISC, Load/Execute macro} starts in the VEDIT Home Directory, e.g.
c:\vedit, because macro files are usually located there. Similarly,
{CONFIG, Save / Load config} starts in the User Config Directory because
the user’s configuration files are located there.

The initial “current” directory for the Windows version of VEDIT is deter-
mined as follows:

1. If VEDIT is started by dragging and dropping a file on its icon, the
directory containing the file becomes the current directory.

2. If VEDIT is started by clicking its icon, the current directory can be
selected by setting the icon properties’ “Start in” field.

However, the first file opened with {FILE, Open} or by dragging and
dropping a file onto a VEDIT window will set the current directory.

3. If theWindows orDOSversion ofVEDIT is started from theDOSprompt,
the “current” directory is the current DOS directory.

142 Chapter 4 Editing Guide Editing Multiple Files

Edit Buffer Details
VEDIT has 32 available edit buffers, each of which can have one file open for
editing. The edit buffers are always in one of three possible states:

� Closed. We also say that a closed edit buffer is “available” or “unused”.
� Open without a file. The edit buffer may or may not contain text. If the

buffer contains no text, we say that it is “empty”.
� Open with a file open. The edit buffer is being used to edit a file.

Edit buffers are normally used to edit files, but can also be used as editable
“scratchpads” that have no file open. You can open an empty edit buffer
without a file by selecting {File, Buffer switch} (<F4>) and entering the
number of an unused buffer. Or you can select {FILE, New} to open the next
available buffer. You can then perform any normal editing operations in this
buffer.

Once an edit buffer is opened, it remains open until you explicitly close it with
{FILE, Close} or {WINDOW, Close}. However, VEDIT always keeps one
buffer and window open. If you attempt to close the last buffer, it only closes
the file. The last buffer and corresponding window will remain open, but will
be empty.

The contents of an edit buffer can be inserted into another buffer (file) just like
a text register. However, a block of text cannot be copied to another buffer —
you cannot change the contents of an edit buffer except when it is the “active”
buffer. This limitation prevents you from accidentally altering any file open
in the buffer.

� To insert another edit buffer into the current buffer (file):
1. Position the cursor at the desired location in your file. The buffer contents

will be inserted just before the cursor.

2. Select {BLOCK, Insert register} (default: <Numpad*>). You will be
prompted with:
Register number:

3. Enter the buffer number followed by “+buffer”. For example, to select
buffer 5, enter “5+buffer”.

NOTES: You should only insert an edit buffer that either has no file open or
is reasonably small. In particular, if the open file is large, only the
portion currently in memory will be inserted.

Use {EDIT, Insert file} to insert another file into the current file.

Editing Multiple Files Chapter 4 Editing Guide 143

Windows
Whilewindows and buffersmay appear to be equivalent during routine editing,
VEDIT’s windows and buffers are actually completely independent of each
other. It is possible to have buffers without windows and windows without
buffers; this is especially true in the VEDIT PLUS macro language.

This advanced topic describes how buffers and windows interact.

Introduction
VEDIT can have up to 32 edit buffers open at once; they are numbered “1”
through “32”. Each buffer can have a file open in it for editing, although it is
not necessary for a buffer to have an open file. In other words, multiple “<<No
name>>” buffers can be open at once. At least one buffer is always open;
although the file in the last buffer can be closed, the last buffer itself cannot be
closed.

When you open additional files with {FILE, Open}, additional buffers are
automatically opened, as needed, to hold the files.

VEDIT can also have up to 32 windows open at once; they have an ID number
between “1” and “32”. These are sometimes referred to as “editing” or “Visual
mode”windows to distinguish them from special “Commandmode”windows.
Command mode windows have a non-numeric name such as “$” or “H”. They
are often created and used by the VEDIT PLUS macro language.

Windows are attached to buffers
To display buffers in windows, VEDIT automatically “attaches” a window to
a buffer. When you display one buffer (file) in two or more windows, multiple
windows are attached to one buffer.

Each time a new buffer is opened in Visual Mode (e.g. when you open a file),
a newwindow is also created and attached to the buffer. Thewindow is initially
full screen in size and overlaps any other windows.

You might assume that buffer 1 is always displayed in window 1, buffer 2 in
window 2 and so on. This is not true! For example, if you initially have one
file open and then select {WINDOW, Split}, buffer 1 will be attached to
windows 1 and 2. When you then open a second file, buffer 2 will be attached
to the auto-created window 3.

Fortunately, it is rarely important to know the window’s ID number.

How window names are displayed
There are two ways of identifying windows:

� Each editing window has a unique ID number such as “1” or “2”. Special
“Commandmode”windows have a non-numeric name such as “$” or “H”.
This ID/name can be displayed in angle-brackets, e.g. <2> or <$>.

144 Chapter 4 Editing Guide Windows

� Each editing window is attached to an edit buffer. The displayed name is
the associated buffer number, e.g. [2]. Multiple windows per buffer are
displayed as e.g. [2:1] and [2:2].

By default, VEDIT displays both the ID number and the buffer number;
however, if they are the same, it only displays the ID number. Therefore:

<3> [2] Indicates this is window “3” which is attached to buffer “2”.

[1] Indicates this is window “1” which is attached to buffer “1”. It
does not display “<1>”, because it is redundant.

<$> Indicates this is the special “CommandMode”window. It is never
attached to a buffer.

To handle special applications and personal preferences, {CONFIG, Display
options, Window name display style} can be changed to always display the
window ID, the buffer number, or both.

The point and shoot for {WINDOW, Switch} displays each window’s ID
number, the buffer number and the filename.

Switching Between Windows
When each buffer (file) is displayed in its own window, select either {FILE,
Next buffer} (<F6> or toolbar) or {FILE, Previous buffer} (<F5> or toolbar)
to toggle round-robin between the files being edited.

Or you can select {FILE, Buffer switch}B (<F4>) or {WINDOW, Switch}
(<Alt-F5>) to switch directly to a desired buffer or window.
When a buffer is displayed in two or more windows, you must use
{WINDOW, Next window} (<Ctrl-F6>), {WINDOW, Previous window}
(<Ctrl-F5>) or {WINDOW, Switch} (<Alt-F5>) to switch to the additional
windows.

You can also switch to any visible window by clicking the mouse anywhere
within the window; however, the desired window will often be covered by
other windows.

Zooming A Window
After you have created several windows, it is often helpful to “zoom” the
current window to fill the entire screen for easier editing.

� To zoom the current window to full screen:
1. Select {WINDOW, Zoom}.
The zooming remains in effect until you select {WINDOW, Zoom} again to
“de-zoom” the screen to redisplay all windows.

MOUSE: You can also zoom a window by clicking the mouse on the “zoom”
button. The button then changes to a “de-zoom” button.

Windows Chapter 4 Editing Guide 145

“Full-Size” Windows
(Windows version)

VEDIT has the useful concept of “full-size” windows. This is similar to you
manually stretching a window’s borders to the maximum possible size. More-
over, a full-size window will remain full size if you change VEDIT’s overall
window size, toggle the toolbar on/off or toggle the command mode window
on/off.

A window remains full-size until you explicitly resize, tile or cascade it.

A full-size window is not the same as a “zoomed” window, even though they
look similar and serve similar purposes. When you zoom a window, each
window you switch to will also be zoomed, until you “dezoom”. In contrast,
some of your editing windows can be full-size, while others are custom sized
or tiled.

{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially full-size or are smaller and cascaded. The default
is “cascaded” because this is typical for other windows programs.

SUGGESTION: We suggest setting {CONFIG, Display options, Auto-
create window style} to “1” to create new windows as
full-size windows. This lets you edit in the largest possi-
ble window without having to zoom all windows.

Once you are familiar with VEDIT, we are confident that you will will use and
appreciate the “full-size” window concept.

Editing One File in Two Windows
VEDIT can display a file in more than one window at a time. You can thereby
view different sections of a file at the same time. For example, you could refer
to definitions listed at the beginning of a file while editing in the middle of the
file.

There are several ways to get a file displayed in two windows at once:

� {WINDOW, Split} splits the current window into two windows. The
current file will initially be displayed in both the current and newwindow.

� {VIEW, Toggle hex mode split} splits the current window vertically; the
left windows displays in hexadecimal; the right window displays in
ASCII. Unlike the other splits, the cursors in bothwindowsmove together.

All windows displaying a common file update together when the text in their
displayed region changes. Each window also displays its own cursor and can
be scrolled independently of the other window(s). Notice that only the cursor
in the active window moves. The cursor(s) in the inactive window(s) indicate
your editing position when you switch to those windows.

146 Chapter 4 Editing Guide Windows

Chapter 5

Advanced Topics

This chapter covers these topics:

� Covers the startup.vdm file in detail.

� Describes how you can add your own custom editing functions to the
{USER} and {TOOL} menus.

� Covers the File-type specific configuration, Color syntax highlighting,
Template editing and HTML editing features in detail.

� Introduces “Command Macros”.

� Gives step-by-step directions on how to use the supplied macros PRINT,
WILDFILE, COMPARE, COMPDIR, SORT, DBASE and CFUNC.

� Explains how to set up and use the “Ctags” symbol lookup feature.

� Introduces VEDIT’s compiler support. The on-line help describes it in
complete detail.

STARTUP.VDM File
The startup.vdm file is a special command macro which VEDIT executes
upon startup. It sets up many of VEDIT’s advanced features, including the
{USER} and {TOOL} menus, file-type specific configuration, template edit-
ing and color syntax highlighting.

The startup.vdm file can easily be modified to optionally set up special
hot-keys and force any desired configuration settings. Having a
startup.vdm file is highly recommended but optional, and no error is given
if the file is not found.

Since startup.vdm is a command macro, it can be modified in any way
desired, especially if you are familiar with the macro language. However, you
don’t need to fully understand the macro language to modify startup.vdm
to your preferences.

NOTE: The best way to understand this topic is to open the supplied
startup.vdm file with VEDIT and examine it.

If you do not have startup.vdm in your User Config Directory
(typically “c:\vedit”), simply copy startup.org to startup.vdm.
We supply startup.org so that you can easily restore our default
startup file.

STARTUP.VDM File Chapter 5 Advanced Topics 147

The startup.vdm file is organized into several sections. It has these
capabilities:

� Set up color syntax highlighting and template editing. Also set up other
file-type specific configuration parameters. These features can then be
enabled with {CONFIG, Programming, File-type specific config}.

� Set up the {USER}menu from the fileuser.mnu. A later topic describes
how to modify this file with your own custom editing functions.

� Set up the {TOOL} menu as the {Tutorial} menu so that you can easily
access tutorial topics. Alternatively, place the Compiler Support functions
into the {Tools} or {JavaTools} menu.

� Set up the hot-key to open the file mynotes.txt in a pop-up window.
The default hot-key is <Alt-0>.

� Optionally enable the hot-key for “ctags” lookup support.

� Optionally add other keystroke macros to the keyboard layout. These will
override any assignments in vedit.key.

� Optionally force any desired configuration settings. These will override
any settings in vedit.cfg.

Most functions performed by startup.vdm are optional; you must edit the
file to enable the function. Typically, you only need to delete some “//” to
enable the function.

For example, startup.vdm contains the following line which, if the initial
“//” are removed, assigns <F12> to execute the “ctags” lookup macro by
selecting {MISC, More macros, UTAGS}.

// Key_Add(F12",’[MENU]MMU’,OK)

It also contains the following line which, if the “//” are removed, enables
VEDIT to auto-save all modified files every 15 minutes:

// Config(F_AUTO_SAVE,15)

The following headings describe the features that can be set up with
startup.vdm in more detail.

UNIX:
QNX:

The UNIX and QNX versions start up by executing the file “veditrc”
in the VEDIT Home Directory. This macro file contains the com-
mands Config_Load(“vedit.cfg”) and Key_Load(“vedit.key”) to
configure VEDIT to the preferences of each user. The documenta-
tion supplied with the QNX and UNIX versions describes this in
more detail.

148 Chapter 5 Advanced Topics STARTUP.VDM File

Changing Configuration with STARTUP.VDM
You can set any desired configuration parameters with Config() commands
in the startup.vdm file. Since the startup.vdm file is executed after
vedit.cfg is loaded, they will override the configuration saved with
{CONFIG, Save config}.
Although this can get confusing, it has some advantages. For example, you
may have configured VEDIT to auto-save your changes every 15 minutes.
However, one day, you temporarily turn off this feature. With {CONFIG,
Auto-save config} normally enabled, this change is saved. You then forget to
turn this feature back on; most likely you won’t notice your mistake until you
lose some work.

This is an example of why you might want to set important configuration
settings in startup.vdm. Any configuration changes you make in VEDIT
will then be temporary, even if you “save” them.

Obviously, this can confuse a novice VEDIT user, because it will appear that
certain configuration settings cannot be saved. For this reason, our supplied
startup.vdm file does not override any configuration settings.

However, the supplied startup.vdm contains this and other configuration
commands that have been disabled by placing “//” in front of the command.
(“//” forces the remaining line to just be a comment.)

You can easily enable any of these configuration commands or add your own.
The on-line help topic “Configuration” lists all of the Config() commands.

� Configure “auto-file save” feature in startup.vdm:
1. Open the file startup.vdm in the User Config Directory for editing.
2. Locate the “// Config(F_AUTO_SAVE,15)” line.

3. Delete the leftmost “//” to activate the command.

4. Save the file and exit VEDIT.

5. Restart VEDIT and notice that {CONFIG, File handling, Auto-save
interval} is set to 15 minutes.

No matter how you change the “Auto-save interval”, each time you start
VEDIT, it will be set back to “15”.

Using a different startup file
You can specify a startup file other than startup.vdm with the “-i”
invocation option. You can start up VEDIT without startup.vdm or any
other startup file with the invocation option “-i xxx”, where ‘xxx‘ is a non-ex-
istent file. No error message will be given.

vpw -i execfile ‘execfile‘ is executed as the startup file in place of
startup.vdm.

vpw -i xxx Invoke VEDIT without any startup file.

HINT: “-i xxx” is useful for debugging startup configuration problems.

STARTUP.VDM File Chapter 5 Advanced Topics 149

Invocation options can be specified in Windows by changing the icon’s
properties, by using the “Run” command, or by invoking VEDIT from the
DOS/NT command prompt. See “Starting VEDIT for Windows” in Chapter
4.

VEDIT looks for startup.vdm first in the “current” directory, then in the
User Config Directory, and finally in the VEDIT Home Directory. Except for
Network and special installations, the User Config Directory and the VEDIT
Home Directory are the same, e.g. “c:\vedit”.
Since VEDIT first looks in the “current” directory, you can set up custom
configurations for different projects by having different startup.vdm files
in each project’s directory. However, this is only practical if you invoke
VEDIT (Windows or DOS version) from the DOS/NT command prompt.

You can create different VEDIT icons for different projects or tasks by using
the “-i” invocation option to specify the desired startup file.Or youmight create
different icons for different users that share one computer. Here are some
examples that could be used as the “Target” in the VEDIT icon’s properties:
(It is called “Command Line” in Windows 3.1)

c:\vedit\vpw.exe -i startup2.vdm
c:\vedit\vpw.exe -i c:\project\startup.vdm
c:\vedit\vpw.exe -i toms.vdm

Name of STARTUP.VDM and VEDIT.INI
We always refer to the name of the default startup file as startup.vdm, but
you can change the name by editing thevedit.iniWindows parameter file.

Furthermore, you can specify a Windows parameter file other than
vedit.ini with the “-k” invocation option:
vpw -kinifile ‘inifile‘ is used as the Windows parameter file in place of

vedit.ini. (There must be no space between “-k” and
the filename.)

This lets you completely customize VEDIT for different tasks. For each task,
create a VEDIT icon which uses the “-k” invocation option to specify a
different Windows parameter file. Each Windows parameter file can then
specify a different startup macro file. One advantage of using this scheme over
the “-i” option described above, is that each task can have a different set of
recently used files in the {FILE} menu and can have different display and
printer fonts.

150 Chapter 5 Advanced Topics STARTUP.VDM File

{USER} and {TOOL} Menus
Two sets of custom editing functions can be added to the main menu as the
{TOOL} and {USER} menus. As with all menu functions, the custom func-
tions can have hot-keys assigned to them.

The suppliedstartup.vdm loads the fileuser.mnu as the {USER}menu.
It also loads the filetutor.mnu as the {TOOL}menu, and renames themenu
to {Tutorial}.
Both the {USER} and {TOOL} menus can have any desired name appear on
the menu bar. In particular the {TOOL} menu is often renamed to reflect its
purpose. The commandsConfig_String(USER_MENU,"&User") andCon-
fig_String(TOOL_MENU,"&Tools") set the menu names, which can be up
to 16 characters long. The “&” indicates which character is underlined in the
Windows version.

The default {USER} menu, loaded from user.mnu, includes some of the
macros listed inAppendix E (ApplicationNotes.) You can delete and add items
to user.mnu as desired to create a custom {USER} menu.
The default {TOOL} menu, loaded from tutor.mnu and displayed as the
{Tutorial} menu, contains over a dozen hands-on tutorial topics.
Different {USER} and {TOOL}menus can also be loaded with {MISC, Load
{USER} menu} and {MISC, Load {TOOL} menu}. Although the default
filename extension is “*.mnu”, it can have any desired name.
The editing functions in the {USER} and {TOOL}menus are implemented as
command macros. Although VEDIT PLUS is needed to fully realize its
potential, VEDIT users can modify the existing functions or add new ones by
copying macros from key-mac.lib into user.mnu.

Examine the user.mnu file and note that each editing function consists of
three parts:

Highlight Number Determines which letter in the “Item name” is
highlighted. This is usually the first letter unless
several Item Names begin with the same letter.

Follow the number with “+128” to display a di-
vider in the menu above this item.

Item Name The function’s name as it will appear in the menu.

Command Sequence The macro language command(s) to be executed
when this item is selected. The commands must be
listed on one line, but can be as long as needed.

The set of all custom editing functions for the {USER} menu is then loaded
into special text register “124” with the command Reg_Load(124,
“user.mnu”). Similarly, the {TOOL} menu is loaded with the command
Reg_Load(123,"tutor.mnu"). These commands are typically included in the
startup.vdm file.

{USER} and {TOOL} Menus Chapter 5 Advanced Topics 151

For example, the following addition lets you run our V-SPELL spelling
corrector from inside VEDIT: (Enter the last two lines as one line!)

5
Run V-SPELL
Reg_Set(103,PATHNAME) File_Close()

Sys(“vs |@(103)”,DOS) File_Open(@103)

Notes:

If the contents of text registers 123 and 124 are not set up properly, the error
“INVALID MENU” is displayed when you attempt to access the main menu.
This also empties register 123 or 124 so that the main menu continues to work.

The command Reg_Empty(124) empties the {USER} menu. Similarly,
Reg_Empty(123) empties the {TOOL} menu.

DOS: When the {USER} or {TOOL} menus are empty, they do not appear
on the main menu bar.

The on-line help topic “USER” describes how to add “Toggle into
VGA 132 Column Mode” and “Toggle to 80 Column Mode” func-
tions to the {USER} menu.

152 Chapter 5 Advanced Topics {USER} and {TOOL} Menus

File-type Configuration
The supplied startup.vdm file sets up “File-type specific configuration”
which configures VEDIT according to common filename extensions. For
example, when you open a “.c” file, auto-indenting is enabled, while with a
“.txt” file, word wrap is enabled. It can also load a “Template Editing” macro
for C or HTML editing and enable color syntax highlighting.

NOTE: The original startup.vdm file is also supplied as startup.org.
If you have no startup.vdm file, simply copy startup.org to
startup.vdm.

By default, this feature is disabled in order not to confuse new users.

� To enable File-type specific configuration:
1. Set {CONFIG, Programming, File-type specific config} to “1”, “3” or

“7”. A value of “3” also enables template editing. A value of “7” also
enables color syntax highlighting.

2. If desired, select {CONFIG, Save config} to ensure that the configuration
change is permanent for the next time you run VEDIT. (This step in not
needed if {CONFIG, Auto-save config} is enabled.)

3. Test the feature by opening a file with a “.c” extension. Check that
{CONFIG, Word processing, Enable word wrap} is off.
Open a file with a “.txt” extension. Check that {CONFIG, Word proc-
essing, Enable word wrap} is on.

-OR-
1. Edit the file startup.vdm in the User Config Directory.

Search for “Config(PG_F_AUTO_CFG,1+2+4)” and delete the preced-
ing “//” to enable the command.
Config(PG_F_AUTO_CFG,1+2+4) //Enable file-type config

2. Save the file and exit VEDIT.

3. Restart VEDIT to process the new startup.vdm file. Check that
{CONFIG, Programming, File-type specific config} is set to “7”.

4. Open a “.txt” file. Check that {CONFIG, Word Processing, Enable
word wrap} is on.
Open a “.c” file. Check that {CONFIG, Word Processing, Enable word
wrap} is off.

Although many of the macro language commands in startup.vdm are
outside the scope of this manual, the following description will help you
modify startup.vdm for your needs. (The documentation supplied with
VEDIT PLUS describes all macro language commands in detail.)

NOTE: This topic will be easier to understand if you are viewing the
startup.vdm file at the same time.

File-type Configuration Chapter 5 Advanced Topics 153

Several blocks of commands configure each edit buffer according to the
filename extension. For example, here are the commands that check for a “.c”
or “.h” file:
// Test if this is a “.C” or “.H” file...
//
BOF()
if (Search(“.C|>”,NOERR)==1||Search(“.H|>”,NOERR)==1){
Buf_Switch(#109)
Config(PG_AUTO_IND,1,LOCAL)
Config(PG_IND_INC,4,LOCAL)
Config(W_LF_MARG,0,LOCAL)
Config(W_RT_MARG,0,LOCAL)
Config_Tab(8;LOCAL)
if (Config(PG_F_AUTO_CFG)&2) {
Config(PG_TEMPLAT,1,LOCAL) //Template editing for C

}
if (Config(PG_F_AUTO_CFG)&4) {
Config(PG_E_SYNTAX,1,LOCAL) //Syntax highlight for C

}
Goto ENDMACRO

}

The Search() command identifies the desired filename extension. The com-
mands between “{” and “}” are then executed.
Notice theConfig() commandswhich set the desired configuration parameters
for this file type. You can add, remove and change these commands as needed.
The on-line help topic “Configuration” describes all Config() commands.
The Config() commands must include the “LOCAL” option so that the
configuration is only changed in the current buffer (file). Most of the configu-
ration parameters found in {CONFIG, Word Processing} and {CONFIG,
Programming} and the Tab stops are “edit buffer dependent”. These parame-
ters have a “(*) ” in their name and can have a different value in each edit
buffer. (See {CONFIG, Config all buffers} in Chapter 6 for more informa-
tion.)

If you change a configuration parameter which is not edit buffer dependent,
such as Config(F_E_BACKUP,"Backup files"), it will affect all files being
edited. Any “LOCAL” option will be ignored.

The last two Config() commands enable template editing and syntax high-
lighting if {CONFIG, Programming, File-type specific config} has these
features selected.

You can add configuration for additional filename extensions by simply
copying an existing block of commands and modifying it as needed. Change
the Search() command to the new filename extension. Then modify the
Config() commands as needed.

See also:

The topic “Startup.vdm File”.
The topic “Template Editing”.
The topic “Color Syntax Highlighting”.
The topic “HTML Editing Features”.

154 Chapter 5 Advanced Topics File-type Configuration

Color Syntax Highlighting
Primarily intended for program and HTML editing, syntax highlighting dis-
plays different logical parts of a program in different colors. For example,
reserved words, comments, string and numeric arguments and special symbols
can each be in colors different from the rest of the text.

The supplied syntax definition files include:

C.SYN For C and C++

CLIPPER.SYN For Clipper

COBOL.SYN For COBOL

FOLIO4.SYN For Folio View Flat File

HTML.SYN For HTML (Web pages)

MASM.SYN For Microsoft MASM Assembler

MBASIC.SYN For Microsoft BASIC

PASCAL.SYN For Pascal and Object Pascal

PERL.SYN For Perl (preliminary)

REXX.SYN For Rexx

SQL-PL.SYN For SQL and PL/SQL

SYSTAT.SYN For Systat product

� To load a syntax highlighting definition file:
1. Select {MISC, Load syntax file}.
2. Enter the desired filename or use point and shoot to select the desired file.

The file selection dialog box defaults to all “ *.syn” files in the VEDIT
Home Directory.

3. If desired, change the colors in {CONFIG, Syntax colors}. Each of
VEDIT’s color schemes has some reasonable colors already set up.

Only one syntax definition file can be loaded into VEDIT at a time. VEDIT
does not (currently) support syntax highlighting for C in one window and
syntax highlighting for HTML in another window. (It’s coming.)

Youmaywant to disable {CONFIG, Config all buffers}. Syntax highlighting
can then be enabled or disabled independently for each file with {CONFIG,
Programming, Enable color syntax highlighting}.

Automatic syntax highlighting for C
The supplied startup.vdm file contains the commands to perform syntax
highlighting (and template editing) for C files. This is part of the “File-type
specific configuration”.When you open a .C, .CPP or .H file, syntax highlight-
ing is automatically enabled; for other file-types it is disabled. This automatic
syntax highlighting must be enabled.

Color Syntax Highlighting Chapter 5 Advanced Topics 155

� To enable automatic syntax highlighting:
1. Set {CONFIG, Programming, File-type specific config} to “5” or “7”.

A value of “7” also enables template editing.

2. If desired, select {CONFIG, Save config} to ensure that the configuration
change is permanent for the next time you run VEDIT. (This step in not
needed if {CONFIG, Auto-save config} is enabled.)

3. Test the feature by opening a file with a “.c” extension. Check that
{CONFIG, Programming, Enable syntax highlighting} is on.
Open a filewith a “.txt” extension. Check that {CONFIG, Programming,
Enable color syntax highlighting} is off.

-OR-
1. Edit the file startup.vdm in the User Config Directory.

Search for “Config(PG_F_AUTO_CFG,1+2+4)” and delete the preced-
ing “//” to enable the command.

Config(PG_F_AUTO_CFG,1+2+4) //Enable file-type config

2. Save the file and exit VEDIT.

3. Restart VEDIT to process the new startup.vdm file. Check that
{CONFIG, Programming, File-type specific config} is set to “7”.

4. Open a “.c” file. {CONFIG, Programming, Enable color syntax high-
lighting} should be on.
Open a “.txt” file. {CONFIG, Programming, Enable color syntax
highlighting} should be off.

Automatic syntax highlighting for HTML
The startup.vdm file is easily changed to support syntax highlighting for
HTML instead of C. Open startup.vdm for editing and follow these steps.

� To enable syntax highlighting for HTML:
1. Disable the `Syntax_Load(“c.syn”)` command by preceding it with “//”.

Enable the `Syntax_Load(“html.syn”)` command by removing the pre-
ceding “//”.

// Syntax_Load(“c.syn”) // Setup syntax highlight for C
Syntax_Load(“html.syn”) // Setup syntax highlight for HTML

3. Find “Config(PG_E_SYNTAX,1,LOCAL)” in the file-type specific con-
figuration section corresponding to .C files. Disable the command by
preceding it with “//”.

// Config(PG_TEMPLAT,1,LOCAL) //Template editing for C

4. Find “Config(PG_E_SYNTAX,1,LOCAL)” in the section correspond-
ing to .HTML files. Enable the command by removing the preceding “//”.

Config(PG_TEMPLAT,1,LOCAL) //Template editing for HTML

5. Follow the steps above to enable automatic syntax highlighting.

156 Chapter 5 Advanced Topics Color Syntax Highlighting

See Also:

See the topic “HTML Editing” for detailed steps on editing the
startup.vdm file to enable syntax highlighting.

Automatic syntax highlighting for other languages
You can add automatic syntax highlighting for other programming languages
or file types to the startup.vdm file. Follow these general steps:

1. As described in the earlier topic “File-type specific configuration”, add
another block of commands for a new filename extension.

2. In the new block of commands, enable syntax highlighting for this
filename extension with the command:

Config(PG_E_SYNTAX,1,LOCAL)

3. In the “Syntax highlighting” section of startup.vdm, load the desired
syntax definition file with the Syntax_Load() command. For example,
to load syntax highlighting for Pascal, use the command:

Syntax_Load(“pascal.syn”)

Be sure that any other Syntax_Load() commands in this section are
disabled. VEDIT can only load one syntax file at a time.

Only one syntax definition file can be loaded into VEDIT at a time. However,
the following “trick” can load different syntax definition files for different
projects:

1. Change the Syntax_Load() command in the startup.vdm file to:

Syntax_Load(“proj.syn”)

2. Copy the desired “.syn” file to “proj.syn” in each project’s directory.
VEDIT first searches the local directory for “proj.syn” before looking in
the VEDIT Home Directory.

Notes:

Screen updating is slower with syntax highlighting enabled, but on Pentium
computers, it is barely noticeable.

Creating your own “.SYN” syntax definition file
Custom syntax highlighting definition files are fairly easy to create for other
languages and even non-programming applications. The on-line help topic
“Color syntax highlighting” (DOS: “SYNHI”) describes this in detail.

Most of the supplied “.syn” files were created by customers and then shared
with us.

Color Syntax Highlighting Chapter 5 Advanced Topics 157

Template Editing
With each normal text character entered in Visual Mode, a “template editing”
event macro can be executed. This requires that the macro is already loaded
and that template editing is enabled.

The template editing macro typically performs some type of shorthand expan-
sion by recognizing a key-word and expanding it to the full string of characters.
For example, if the template macro file c.vtm is loaded, typing “if (”
immediately expands to:

if () {
...

}

The cursor is placed inside the “()”. It similarly expands other common C and
VEDIT PLUS programming language statements.

If you accidentally type a key-word and get an undesired expansion, immedi-
ately select {EDIT, Undo, Edit} (<Ctrl-Z> or <Alt-Bksp>) to undo the
expansion and your last typed character.

To insert the characters of a key-word without getting an expansion, precede
the last character with [ENTER CTRL] (<Ctrl-Q>).

Manual Setup
You can initially try out template editing by loading a template editing macro
from within VEDIT. However, if you regularly want to use template editing,
you should enable it inside the startup.vdm file.

� To setup template editing from within VEDIT:
1. Select {MISC, Load template file}.
2. Select the desired “.vtm” file using Point and Shoot. vedit.vtm is a

combination of c.vtm and html.vtmwhich only works in conjunction
with the startup.vdm file.

3. Enable {CONFIG, Programming, Enable template editing} if neces-
sary. {MISC, Load template file} automatically enables template editing
in the current file.

4. If you loaded c.vtm, try typing “if (” to see the expansion. If you loaded
html.vtm, try typing “.he” which should expand to
“<HEAD><HEAD>” with the cursor in the middle.

Automatic template editing for C and HTML
The suppliedstartup.vdm file contains the commands to perform template
editing (and color syntax highlighting) for C and HTML files. This is part of
the “File-type specific configuration”.When you open a file with a “.c”, “.cpp”
or “.h” filename extension, template editing for C is automatically enabled.
When you open an .html, .htm or .htl file, template editing for HTML is

158 Chapter 5 Advanced Topics Template Editing

automatically enabled. Template editing is disabled for other files. This auto-
matic template editing must be enabled.

� To set up automatic template editing:
1. Set {CONFIG, Programming, File-type specific config} to “3” or “7”.

A value of “7” also enables color syntax highlighting.

2. If desired, select {CONFIG, Save config} to ensure that the configuration
change is permanent for the next time you run VEDIT. (This step in not
needed if {CONFIG, Auto-save config} is enabled.)

3. Test the feature by opening a file with a “.c” extension. Check that
{CONFIG, Programming, Enable template editing} is on.
Open a filewith a “.txt” extension. Check that {CONFIG, Programming,
Enable template editing} is off.

-OR-
1. Edit the file startup.vdm in the User Config Directory.

Search for “Config(PG_F_AUTO_CFG,1+2+4)” and delete the preced-
ing “//” to enable the command.

Config(PG_F_AUTO_CFG,1+2+4) //Enable file-type config

2. Save the file and exit VEDIT.

3. Restart VEDIT to process the new startup.vdm file. Check that
{CONFIG, Programming, File-type specific config} is set to “7”. Test
the feature by opening a “.c” file.

Notes:

Template editing is closely related to the topic “Syntax Highlighting”.

Only one template editingmacro can be loaded intoVEDIT at a time.However,
vedit.vtm in conjunction with startup.vdm demonstrates how two or
more languages can be supported in one macro.

See also:

The topic “Startup.vdm File”.
The topic “File-type Specific Configuration”.
The topic “Syntax Highlighting”.
The topic “HTML Editing Features”.

Template Editing Chapter 5 Advanced Topics 159

HTML Editing Features
VEDIT has several features that simplify editing HTML files, used for Internet
Web pages.

� Template editing lets you enter simple two-letter codes which are auto-
matically expanded to the full HTML codes. For example, typing “.he”
expands to “<HEAD><\HEAD>” with the cursor in the middle.

� Enhanced keyboard layout with many hot-keys for common HTML
codes. For example, pressing <Alt-1> inserts “<H1><\H1>” with the
cursor in the middle.

� Color syntax highlighting for common HTML codes.

� Themacrohtml2txt.vdm strips out all HTML codes to create a simple
text file. The macro txt2html.vdm creates a simple HTML file from
a text file.

� The .\user-mac sub-directory contains user supplied macros for
website development. This includes WebXref.vdm which creates a
cross reference of all files used in a website.

HTML files can be edited using template editing or hot-keys, or both at the
same time. Template editing is performed by the macro files html.vtm or
vedit.vtm. In addition, html.key is the “normal” keyboard layout with
the HTML hot-keys.

VEDIT’s HTML support is oriented towards experienced Web page creators
(Webmasters) that want to create Web pages quickly with as few keystrokes
and errors as possible.

The on-line help topic “HTML Editing Features” (DOS: “HTML”) describes
this in more detail.

160 Chapter 5 Advanced Topics HTML Editing Features

Command Macros
“Command macros” are sequences of commands written in the VEDIT PLUS
macro language. This topic covers everything the casual VEDIT user needs to
know about command macros — primarily how to load and run the supplied
macros. This topic assumes you are familiar with starting VEDIT and under-
stand “text registers”, both covered in Chapter 4 (Editing Guide).

VEDIT PLUS Macro Language
The VEDIT PLUS macro language is a complete text oriented programming
language. It has arithmetic capabilities, numeric, character and string compari-
son, if-then-else decision making, looping, user input, screen output, window
control and much more. Its over 200 commands can perform almost any
conceivable character, line, block or file operation. The DOS version also has
special commands for peeking/poking memory, accessing I/O ports and inter-
facing with low level DOS programming functions.

With VEDIT PLUS you can access themacro language at any time by pressing
a key to enter “Command Mode”. At the “COMMAND:” prompt, you can then
simply enter one or more lines of macro language commands and VEDIT
PLUS immediately executes the commands.

Besides the (technical) “COMMAND:” prompt, command macros can be
executed in three ways:

� “Short” command macros can be executed as keystroke macros. A se-
quence of up to 1024 characters can be executed.

Many keys in the layouts to emulate Brief, Word Perfect and WordStar are
implemented as such keystroke macros.

The supplied file key-mac.lib contains numerous keystroke macros con-
sisting of macro language commands.

� “Longer” command macros are typically stored as disk files. These
command macros can be loaded into the text registers and executed with
{MISC, Load/Execute macro}.

Once a commandmacro is loaded intoVEDIT, it can be executedwith {MISC,
Execute macro}.
A command macro can also be “auto-executed” when VEDIT starts up.

� Command macros can also be executed from the {USER} and {TOOL}
menus. Short macros are typically included in the user.mnu file, longer
macros are typically loaded from a file with the Call_File() command.

Notes:

The main editing mode of VEDIT and VEDIT PLUS is called “Visual Mode”.
The distinction between “Command Mode” and “Visual Mode” is especially
important to VEDIT PLUS users. VEDIT derived its name from “Visual
EDITor”.

Command Macros Chapter 5 Advanced Topics 161

The topic “Keystroke Macros” in Chapter 4 (Editing Guide) gives a step-by-
step example of adding a keystroke macro listed in the key-mac.lib file
with the {CONFIG, Keystroke layout, Add keystroke macro} function.
You may find it easier to add keystroke macros by editing the keyboard layout
with {CONFIG, Keyboard layout, Edit/view layout}. The topic “Editing the
Keyboard Layout - Adding a Keystroke Macro from KEY-MAC.LIB” in
Chapter 4 gives a describes how to “copy and paste” a new keystroke macro
from key-mac.lib directly into your keyboard layout.

Command Macros and Text Registers
Simple command macros can be built into VEDIT as keystroke macros.
However, more complex command macros are stored as files, typically with a
“.vdm” filename extension. There is nothing special about these files — they
are normal text files containing the macro commands and (hopefully) descrip-
tive comments.

All VEDIT command macros are in “source code” format. There are no
compiled macros. Therefore, all macros can easily be viewed. While experi-
enced (and adventurous)VEDITusers couldmake smallmodifications to these
macros, it requires the extensive documentation that comeswithVEDIT PLUS
to fully understand the macro language.

The VEDIT PLUSmacro language has a C-like syntax and a free-form format
— each line can contain just one command or many commands.

Command macro files are run by first loading them into a text register, and
then executing the register. {MISC, Load/Execute macro} performs this
operation. Alternatively, if the macro is already loaded, {MISC, Execute
macro} executes it directly.
These functions load/execute the macro in text register “100” by default.
Although some macros can execute from other registers, you should assume
that macros are to be loaded into register “100 ”. (Theoretically, you could load
multiple macros into different text registers, but that is a VEDIT PLUS topic.)

There is nothing special about the way command macros are stored in text
registers — there is no difference between text registers that contain “cut and
paste” blocks of text and those that contain command macros. To avoid
confusion, we recommend using registers “ 0” through “9” for block opera-
tions. The remaining registers are then available for command macros.

Once a command macro begins running, it often uses additional text registers
for its own use. Some may be used as “subroutine” macros; others as “string
variables”. A command macro can write-protect its registers to prevent you
from accidentally altering them during block operations.

{HELP, Text registers} lists which registers are currently in use.
Some macros must be executed from a particular text register, such as “100”,
while others can be executed from any text register. (The beginning of amacro
should document what registers it uses.)

162 Chapter 5 Advanced Topics Command Macros

This chapter assumes that all command macros are loaded into text register
“100”.

Notes:

Several functions are implemented as command macros that VEDIT automat-
ically loads as needed. Thesemacros are loaded into “hidden” text register 120,
and therefore will not interfere with any macros that you are running.

Loading and Executing Command Macros
� To load and execute a command macro:

Many of our supplied macros can be run from the {MISC, More macros}
menu. Others can be run by loading and executing them with {MISC,
Load/Execute macro}.

� To load and execute a command macro:
1. Select {MISC, Load/Execute macro} (<Ctrl-F7>).
2. At the “Filename:” prompt, either enter the name of themacro, or use point

& shoot file selection. The file selection dialog box defaults to the .vdm
files in theVEDIT Macro Directory, e.g. c:\vedit\macros*.vdm,
for quick macro selection.

3. The dialog box also prompts with “Register number: ”. Although most
macros can be loaded and executed from any text register, others will only
work from register 100. Therefore, it is best to simply select the default
register “100 ”.

NOTES: Although our supplied macros usually preserve your edit changes,
the fate of the files you are editing depends upon the macro. Some
macros will return you to your editing while others have a main
menu from which you must exit VEDIT in order to exit the macro.
Therefore, be sure to save your files before running unfamiliar
macros.

Command Macros Chapter 5 Advanced Topics 163

Auto-Execution
VEDIT’s auto-execution lets you specify a command macro to be run as soon
as VEDIT starts up and has loaded any specified file(s) for editing.

-x execfile ‘execfile‘ is loaded into text register 100 and executed as
a command macro. If no filename extension is given
“.vdm” is assumed. ‘execfile‘ will be executed in addition
to and after the startup.vdm file.

For example, the command to print the file datafile.dat using the
supplied print.vdm macro is:

vpw -x print.vdm datafile.dat

VEDIT first loads and executes startup.vdm as usual. It then loads
print.vdm. It then opens the file datafile.dat. Last, it executes the
print.vdmmacro. The auto-execution file is always loaded into text register
100 and executed from there.

When an auto-execution file is specified,VEDIT looks for it first in the current
directory, then in the User Macro Directory, then in the VEDIT Macro
Directory, and last in the VEDIT Home Directory.
You can also specify a few macro commands to be executed on the invocation
line with the “-c” startup option.
-c command The macro language commands ‘command’ are executed

upon startup. ‘command’ may be delimited with quotation
marks (“); otherwise it ends on the first space.

+c command Same as “-c”, except that the commands are executed
before the startup.vdm file.

For example, the command to start up the editor and position the cursor at the
first occurrence of the string “error” in the file datafile.dat is:

vpw -cSearch(/error/) datafile.dat

-OR-

vpw -c"Search(/error/)" datafile.dat

When using the “-c” and “-x” options, the order in which options are specified
can become important. This is especially true when the “VEDIT” environment
variable is used to specify default options. VEDIT first processes the “VEDIT”
environment options from left to right; then it processes any command line
options from left to right. The startup.vdm file is processed after any “+”
options, but before the first “-” option.
Auto-execution macros can be specified in the Windows version by changing
the “Target” in the icon’s properties, or by using the “Run” command. See
“Starting VEDIT for Windows” in Chapter 4 for more information.

164 Chapter 5 Advanced Topics Auto-Execution

PRINT - Print Macro
The PRINT.VDM macro can be selected as an option in the {FILE, Print}
dialog box. It adds the filename, date and page number at the top of each page.
It also skips page perforations and indents the text from the left paper edge.
This makes it ideal for printing source code modules and other text files.

print.vdm documents how to optionally print line numbers and/or file
positions on the left side of the page. Only trivial editing changes are needed.

� To print a file with PRINT.VDM:
1. Select {FILE, Print}.
2. In the print dialog box select “() PRINT.VDM macro”. Then select [Ok].

The entire file should begin printing. To stop the printing before it is done
press <Ctrl-C>) or <Ctrl-Break>).

Alternatively, PRINT.VDM can be auto-executed when VEDIT is invoked.
This is easily done from a (DOS) command line. In the Windows version, you
can also create a special VEDIT icon that starts up with the PRINT.VDM
macro.

� To print a file with PRINT.VDM from a command line:
1. Give the command:

vpw -x print.vdm filename
(VEDIT PLUS for Windows 3.1 is “veditpw”. VEDIT PLUS for DOS is
“vedit”.)
The entire file should begin printing. To stop the printing before it is done
press <Ctrl-C>) or <Ctrl-Break>).

2. When done, PRINT.VDM gives you the choice of printing another file or
returning to the operating system (OS).

NOTE: PRINT.VDM is intended as a macro example which is relatively
easy to understand and enhance. Much more sophisticated format-
ters can be written in the VEDIT PLUS macro language. If they are
named “print.vdm”, they can easily be accessed from the print
dialog box.

See also:

On-line help for {FILE, Print} dialog box.

PRINT - Print Macro Chapter 5 Advanced Topics 165

WILDFILE - Multi-file
Processing

WILDFILE.VDM is probably the most useful macro supplied with VEDIT. It
lets you perform a search, search and replace or run another macro on an entire
group of files. The group of files may be specified using the wildcards “?” and
“*”. These files will be searched in the current directory and, optionally, in all
subdirectories.

Since VEDIT can edit any file, including binary files such as “.EXE” ex-
ecutables, you can search through all files in a directory by specifying *.*
without worrying about what kind of files they are. *.* will also search any
“hidden” files.

The primary use ofWILDFILE.VDM is to search for all occurrences of a word
(variable name, etc.) in a large group of files. For example, you might want to
view all occurrences of the word “printf” in all the .C files.
The WILDFILE.VDM macro can also be used to run a second macro on a
group of files. For example, the PRINT.VDM macro could be run on all of
your .TXT files.

� Example - To view all occurrences of “printf” in all “.c” files:
1. Select {MISC, WILDFILE macro}.

2. At the filename prompt, enter “*.c” and press <Enter> twice. This will
search for all .c files in the current directory; if necessary, enter the full
pathname.

166 Chapter 5 Advanced Topics WILDFILE - Multi-file Processing

You could search all .c files on the entire drive C: by entering
“c:*.c -s”.

3. At the next prompt, type “S” to select [S]earch. At the prompt for the
search string, enter “printf”.

4. At the next prompt, type “V” to view each occurrence in Visual Mode.
WILDFILE can also perform global replacements on many files. For example,
you might have misspelled “parallel” as “parralel” in a group of .TXT files.

� To correct a spelling error in all *.TXT files:
1. Select {MISC, WILDFILE macro}.
2. At the filename prompt, enter “*.txt” and press <Enter> twice.
3. At the next prompt, type “R” to select [R]eplace. Then enter the desired

search and replacement strings.

4. At the [D]isplay line or enter [V]isual Mode? prompt, type “D” if you
only want to have each altered line displayed on the screen. Or type “V”
if you want to enter the normal “Visual” editing mode after each replace-
ment is made.

Auto-executing the WILDFILE.VDM macro
The Windows version installation creates the “VEDIT Wildfile Macro” icon.
It starts up VEDIT and immediately executes the WILDFILE.VDM macro.

When WILDFILE is done, it gives you the choice of running it again, exiting
the macro but staying in VEDIT, or completely exiting VEDIT.

The DOS version of VEDIT can run the WILDFILE macro by auto-execution
or with the supplied wild.bat file:

vedit -x wildfile.vdm

-OR-

wild

The supplied wild.bat file contains the command “vedit -x wildfile.vdm”.
To use it, wild.bat must be in the current directory or in one of the
directories specified by the “PATH=” command in your autoexec.bat
file.

Notes:

After selecting {MISC, WILDFILE macro}, the files specified for processing
can include any files that are already open inVEDIT.Thisway you can perform
an operation, such as searching through many files, without having to worry
about which files are currently open for editing.

All files on the entire drive can be processed with “c:*.* -s”. (It may take
several minutes to process this command.)

WILDFILE - Multi-file Processing Chapter 5 Advanced Topics 167

COMPARE - Compare Files
The COMPARE.VDMmacro can compare two text files of arbitrary size. You
can edit the files as you are comparing them and copy blocks of text between
them. It is ideal for merging the work done by several people on the same
file(s), or determining the differences between two versions of a file. (The
programmers that develop VEDIT merge their work this way.)

Unlike the {SEARCH, Compare buffers} function, COMPARE.VDM can
automatically re-align the “active” file with the “template” file when you
resume the comparison.

You can start this macro via auto-execution or from within VEDIT:

vpw -x compare.vdm

-OR-
1. Select {MISC, More macros, Compare}.
If you started the COMPARE macro from within VEDIT and buffers 1 and 2
already have open files, it prompts whether you want to save, abandon or
compare these files.

COMPARE then prompts for the window configuration you want. You can
select a vertical split, a horizontal split, or full-sized overlapping windows. It
then prompts for the names of the active and template files. Either enter the
filenames or press <Enter> for point and shoot file selection.
COMPARE then switches to the active file and places the cursor at the position
of the first difference. Assuming that you selected split windows, you will also
see the cursor in the template file. If desired, you can edit either file as desired,
perhaps copying blocks from one file to the other.

To continue the file comparison, switch to the active file (if needed) and
position the cursor where the files are again identical for at least 24 characters.
For example, youmight press [NEXT LINE] (<Ctrl-Enter>).You only need
to position the cursor in the active file, not in the template file. COMPARE
will align the template file itself.

Then press [VISUAL EXIT] (<Ctrl-E>). The cursor will advance to the next
difference. This process is continued until the end of one or both files is
reached.

If desired, you can edit either file as desired, perhaps copying blocks from one
file to the other. You can switch between the files in the normal manner or by
pressing <F12>.
� Select {FILE, Next buffer} (<F6> or {FILE, Previous buffer} (<F5>.
� Assuming that you selected split windows, click the mouse in the desired

window.

HINT: You can switch between the files by pressing <F12>. This is
particularly handy if you are editing additional files and don’t want
to toggle between all of them.

168 Chapter 5 Advanced Topics COMPARE - Compare Files

COMPAREmakes a temporary assignment to <F12> and removes it when the
macro is done.

Pressing [ESCAPE] during the comparison brings up the following menu:

FILE COMPARISON INTERRUPTED! Select from following options:

[1] Examine active file 3) Resume, no alignment
[2] Examine template file 4) Realign template & resume
[5] Stop. Get exit options menu
Enter Option:

Options [1] and [2] switch to the desired file.

Option [4] is the same as pressing [VISUAL EXIT] from the active file.
COMPARE examines the 24 characters following the cursor and attempts to
match them in the template file; if this alignment is successful, it resumes the
file comparison.

Option [3] immediately resumes the file comparison from the current cursor
positions, without attempting any realignment. You can also select this option
by [VISUAL EXIT] from the template file.
When COMPARE is done, it gives you the choice of running it again, exiting
the macro but staying in VEDIT, or completely exiting VEDIT.

Notes:

When comparing identically named files on two drives, you only need to enter
the drive name at the “Template file:” prompt. For example, to compare
“newdoco.txt” in the current directory of default drive “C:” with the same
filename in the current directory of drive “D:”, you could enter:

Enter the name of the active file: newdoco.txt
Enter the name of the template file: d:

The comparison will either be case sensitive or insensitive, depending upon
the setting of {CONFIG, Search options, Default case-sensitive option}.
COMPARE attempts to align the template file with the active file by looking
within the template file for the 24-character string following the active-file
cursor. If it cannot find a match within 20 lines preceding the template cursor
or within 100 lines following the cursor, it gives the error: “Unable to realign
template file”.

Realignment failure is most likely due to the active file cursor being positioned
where the files are not identical for the next 24 characters. It could also be due
to the cursor having been moved too far forward or backward. To continue the
comparison, reposition the active file cursor and press [VISUAL EXIT].
Occasionally, COMPARE will be unable to realign the files. To continue the
file comparison, you must then manually realign the cursor in both files and
select option [3] from the above menu.

COMPARE - Compare Files Chapter 5 Advanced Topics 169

COMPDIR - Compare
Directories

The COMPDIR.VDMmacro quickly compares all files in two directories and
displays which files are different and which are unique to each directory.

COMPDIR first checks each pair of files time/date stamp and size; if they are
the same, it assumes that the files are the same. Otherwise, it compares the files
byte-by-byte to check if they really are different.

COMPDIR.VDM is currently only designed to work with the DOS version of
VEDIT. The COMPDIR.BAT batch file must be used to start the directory
comparison; COMPDIR.VDM cannot be run from within VEDIT.

compdir \direc1 \direc2

When the comparison is done, the top window displays the names of the files
that are different in the two directories. The middle windows display the
filenames that are unique in each directory, i.e. files that are in one directory
and not in the other. The bottom window gives a short description of each
window.

If desired, you can print the contents of each window, by switching to the
desired window and selecting {FILE, Print}.
To exit, select {FILE, Exit}, then select [Quit-all] and confirm with [Ok].

170 Chapter 5 Advanced Topics COMPDIR - Compare Directories

SORT - Sorting Macro
The SORT.VDM macro alphabetically sorts records consisting of multiple
lines. Each record can either consist of the same number of lines, or the records
can be separated by a blank line. The “sort key” is simply the entire first line;
specific columns cannot be selected.

NOTE: Simple lines and single-line records are better sorted with the
{BLOCK, Edit/Translate, Sort lines} function, which lets you sort
according to any specified columns (field).

A simplemailing list consisting of address lines separated by one ormore blank
lines can be sorted by SORT.VDM. The sort is based on the first address line,
assumed to be a name. For example, the following list could be sorted:

Scott, Charles
3219 Space Ct.
Albany, NY 14311
-(305) 321-7654
-Broadcast Producer

Burnett, Tammie
642 Sunset Blvd.
Miami, FL 32103
-Travel Consultant

Mathews, Lee
236 Bluelake Dr.
Marquette, MI 48123
-(313) 123-4567
-Basketball Player

The SORT macro can be started from within VEDIT, or by auto-execution
from the DOS prompt or the Windows “Run” command. However, you must
start SORT from within VEDIT when editing files with fixed-length records
so that you can set the record length before beginning the sort.

� To sort a file already opened in VEDIT:
1. If it is a database file with fixed-length records, be sure that {CONFIG,

File handling, File type} and {CONFIG, File handling, Record header
size} are set correctly.

2. By default, the sorting is not case sensitive. To make it case sensitive,
enable {CONFIG, Search options, Default case sensitive option}.

3. Select {MISC, More macros, Sort}.
If no file is yet open, SORT prompts for the filename of the file to be sorted
and for the name of the file to contain the sorted output.

SORT then prompts for the number of lines in each record; enter the number,
or “0” if the records are separated by a blank line. The entire file will then be
sorted.

SORT - Sorting Macro Chapter 5 Advanced Topics 171

Running SORT.VDM via Windows “Run” command
or from DOS

The SORT macro can also be started from the DOS prompt, the Windows
“Run” command or a Windows icon with the appropriate properties.

vpw -x sort.vdm

(VEDIT PLUS for Windows 3.1 is “veditpw”. VEDIT PLUS for DOS is
“vedit”. VEDIT PLUS for QNX is “vp”.)
SORT prompts for the filename of the file to be sorted and for the name of the
file to contain the sorted output. Just press <Enter> if they are the same.
You can also specify the name of the file to be sorted:

vpw -x sort.vdm filename

Alternatively, you can specify the (input) file to be sorted and the (output) file
to contain the sorted output:

vpw -x sort.vdm infile -a outfile

SORT then prompts for the number of lines in each record; enter the number,
or “0” if the records are separated by a blank line. The entire file will then be
sorted.

Alternatively, you can specify the number of lines in each record with the “-n”
option:

vpw -x sort.vdm -n4 filename
vpw -x sort.vdm -n0 filename

This format sorts a file without any prompts or user intervention.

Notes:

TheSORTmacro can realistically handle files up to a fewmegabytes.A typical
1 Megabyte file with several thousand records will be sorted in about 1 minute
(200mhz Pentium). Multi-megabyte files may take unreasonably long to sort;
however SORT displays its progress and can be interrupted at any time.

HINT: To sort multiple line records according to a specific field (columns),
you may be able to convert the record into a single line, sort it with
{BLOCK, Edit/translate, Sort lines} and then split each line back
into the desired multiple lines.

172 Chapter 5 Advanced Topics SORT - Sorting Macro

DBASE.VDM Macro
The DBASE.VDMmacro simplifies editing dBASE III type “.DBF” database
files. It sets the correct record size and header offset for the dBase III data file
in the current buffer, i.e. it automatically sets {CONFIG, File handling, File
type} and {CONFIG, File handling, Record header size}. This way, the
records will be properly aligned on the screen and the “LINE:” display on the
status line will display the correct record number.

DBASE.VDM also sets up table information in an unused buffer. This lets you
view the field names, field types, field sizes and determine which column each
field begins in. For example, it can create a display such as the following:

Last updated: 2/23/94
Total Records: 20

Record Length: 182
Header Length: 449

Field Field Name Type COL: Width Dec.
==

1 CO Logical 2 1
2 LN_CO Logical 3 1
3 LBL_LINES Numeric 4 1 0
4 HOW_WIDE Numeric 5 2 0
5 TO_LINE Character 7 32
6 ADDR1 Character 39 32
7 ADDR2 Character 71 32
8 ADDR3 Character 103 32
9 CITY Character 135 18

10 STATE Character 153 2
11 ZIP Character 155 10
12 ADD_DATE Date 165 8
13 NOTES Memo 173 10

� To run DBASE.VDM from within VEDIT:
1. Switch to the buffer containing the .DBF file.

2. Select {MISC, More macros, Dbase}.
The .DBF file should now be correctly displayed. You can check the “record
size” and “record header size” in {CONFIG, File handling}.
To view the table information, select {FILE, Next buffer} (default: <F6>)
until you see it.

DBASE.VDM Macro Chapter 5 Advanced Topics 173

Optional “Hot-key” for xBase Files
You can quickly configure VEDIT to an xBase file by selecting {MISC, More
macros, Dbasekey}. This sets the correct “record size” and “record header
size”. All fields will then immediately line up on the screen. However, this
simpler macro does not create the detailed table information display shown
above.

If you often use this function, you may want to set up a hot-key for it. You can
either add the hot-key to your vedit.key file or set it up in the
startup.vdm. The default hot-key is <Alt-F12>.

� To enable the xBase hot-key in startup.vdm:
1. Open the file startup.vdm in the User Config Directory for editing.
2. Locate the line: // Key_Add(“Alt-F12"...

3. Delete the leftmost “//” to activate the command.

4. Save the file and exit VEDIT.

5. Restart VEDIT. Open an xBase file and press <Alt-F12> to confirm that
it works.

174 Chapter 5 Advanced Topics DBASE.VDM Macro

CFUNC - C Program Outliner
The CFUNC macro is a split-screen outliner that lists each C program routine
declaration in a separate window; as you move through the list, the original
window moves through the C program.

� To start the C program outliner:
1. Select {MISC, More macros, Cfunc}.
A typical screen display while the CFUNC.VDM macro is running is:

Use <Cursor Up> and <Cursor Down> to move through the outline. Then
press <Enter> to resume editing at the current location in the outline.
After the macro has been loaded and used, you can easily restart it by selecting
{MISC, Execute macro} (default: <Ctrl-F8>). At the prompt, simply press
<Enter> to select register 100.

NOTES: PFUNC.VDM is the same macro for Pascal.

{USER, Search all and select} performs a similar function for any
search string.

CFUNC - C Program Outliner Chapter 5 Advanced Topics 175

RUNSHELL - Run Other
Programs

The function {MISC, Run program} is only suitable for running other
programs (or DOS commands) that do not access the files currently open in
VEDIT.

The functions {USER, Save and run program 1} and {USER, Save and run
program 2} are designed to run compilers and other programs that need to
access the currently open files.

These functions first prompt for the command to run a program (e.g. compiler).
Enter the full command, including any parameters and options. The command
is saved as the default command for the next time. After all open files are saved
and closed, the command is executed by shelling out, possibly via a DOS box.
When the program is done, any DOS box is auto-closed and all files are
reopened.

To run a Windows program, precede the command with “win:”. Depending
upon which version of VEDIT is running (Win32, Win16 or DOS), and the
operating system (WinNT, Win95/98, Win31, DOS), it may bypass the DOS
box in order to run a Windows program.

NOTES: The program can open and even change the files you were editing
in VEDIT.

The command to run a Windows program should normally be
preceded with “win: ”. Otherwise, VEDIT will continue running and
will immediately re-open the files and lock them, preventing the
program from accessing them.

If a Windows program is not running properly under Windows
95/98, you can try preceding the command with “start /w” instead
of “win:”.

The full pathname of the currently edited file can be passed to the program by
including “##” as a parameter in the command. To illustrate this and how to
run a Windows program, open a small text file, select {USER, Save and run
program 2} and enter the command:

win: notepad ##

This will open the current text file in Notepad for editing. When you close
Notepad, the file will be reopened in VEDIT and you should be able to see any
changes made in Notepad.

If the program is set up to create the special file “vout”, this file is automat-
ically opened in a new window. For example, this can be used to view the
output (error) messages from a compiler.

To illustrate the “vout” file, select {USER, Save and run program 1} and
enter the command:

176 Chapter 5 Advanced Topics RUNSHELL - Run Other Programs

dir > vout

This redirects the directory command into the file “vout” which is then
automatically opened in VEDIT. Before shelling out, any existing “vout”
file in the current directory is deleted. In the unlikely event this is a problem,
a trivial change documented in the runshell.vdm file disables the “vout”
feature.

The {USER, Save and run program 1} and {USER, Save and run program
2} functions are implemented by the runshell.vdm macro. The only
difference between these functions is the “slot” inwhich the command is saved.
The last command is the default command the next time the function is
selected. This makes it easy to run the same compiler command over and over
again, or to change it as needed.

runshell.vdm can actually run and save up to five different commands. If
desired, you can add a 3rd, 4th and 5th command to the user.mnu file by
adding the following lines to it:

22
Save and run program 3
#103=3 CallF(122,"runshell.vdm")
22
Save and run program 4
#103=4 CallF(122,"runshell.vdm")
22
Save and run program 5
#103=5 CallF(122,"runshell.vdm")

If you always use the same commands, you can change the “Save and run
program...” messages in the user.mnu file to something more descriptive.
Users familiar with the VEDIT PLUS macro language can also change the
runshell.vdm macro to better serve specific needs.

RUNSHELL - Run Other Programs Chapter 5 Advanced Topics 177

“ctags” Symbol Lookup GS
The “ctags” facility is useful to programmers that are working on large
programs, particularly programs that consist of many files. Once setup, you
can place the cursor on any function (subroutine) or symbol name and select
{MISC, More macros, Utags} or press a hot-key (default: <F12>) to lookup
the symbol. VEDIT will open the file in which the symbol is declared, with
the cursor on the symbol’s declaration. You can then press the hot-key again
to return to the original file. (Other lookup options can be selected within the
utags.vdm macro).

The “ctags” facility consists of two macro files — ctags.vdm and
utags.vdm. ctags.vdm creates the tags database file with symbol
declarations. utags.vdm performs the lookup function. The lookup can be
performed by selecting {MISC, More macros, Utags}, but as a convenience,
it is usually assigned to a hot-key by the startup.vdm file.

To set up for ctags and create thetags database, select {MISC, More macros,
Ctags}. As supplied, ctags.vdm supports C and Assembly language. You
can either create a newtags database or append to the existing one. It supports
programs consisting of C and assembly language modules.

ctags.vdm also supports a user specified symbol “search” string for other
languages. It could also be useful for non-programming applications.

ctags.vdmworks similar to theWILDFILEmacro. At the filename prompt,
you enter a wildcard specification such as “*.c”, “*.h” and “*.asm”. It then
processes all specified files in the current directory. By adding “-s” to the
filename, e.g. “*.c -s”, it processes all matching files in all subdirectories.
VEDIT’s ctags facility therefore supports the biggest projects, even those with
thousands of files in many subdirectories.

The format of the generated tags file is identical to that produced by the
UNIX “ctags” utility. Therefore, as an alternative to the ctags.vdm macro,
you should be able to produce the tags file with any utility that is “ctags”
compatible.

Setup
To use ctags, you must create the tags database in the main project directory.
(This is the directory you use to edit and compile the program.)

� To create a “tags” database:
1. Start VEDIT and open just one file in the main project directory. This will

set VEDIT’ “current” directory so that the tags database is created in
this directory.

2. Run thectags.vdmmacro by selecting {MISC, More macros, Ctags}.
-OR-

1. At a (DOS/QNX/UNIX) command prompt, switch to the main project
directory. The file tags will be created in this directory.

178 Chapter 5 Advanced Topics “ctags” Symbol LookupGS

2. Run the ctags.vdm macro:

vpw -x ctags

(VEDIT PLUS for Windows 3.1 is “veditpw”. VEDIT PLUS for DOS is
“vedit”.)

3. At the ctags macro’s language prompt, select whether you are working in
C or Assembler, or want to enter a custom symbol recognition search
pattern.

4. At the filename prompt, enter a file specification, typically using the
wildcard characters “*” and “?”. E.g., enter “*.c” or “*.asm”.

Follow the filename with “-s” to process all matching files in all subdirec-
tories. For example, “*.c -s”will process all .C files in the current directory
and all subdirectories.

Enter asmany file specifications as needed; if the files are not in the current
directory, enter the full pathname.

When all files have been entered, immediately press <Enter> again.
5. The ctags macro will then display “Processing <filename>” for each file

processed. (Processing is quite fast - one Megabyte of source code will be
processed in under one minute.)

You can perform a lookup by selecting {MISC, More macros, Utags}, but it
is usually more convenient to set up a hot-key to perform the lookup. This is
easily done in thestartup.vdm (macro) file. The suppliedstartup.vdm
file contains the necessary command. (However, the command has been
disabled by preceding it with “// ” — the comment characters.)

For example, to assign the lookup function to <F12>, add the following line
to your startup.vdm file:

Key_Add(“F12",’[MENU]MMU’,OK)

Usage
Once setup, the ctags facility is trivial to use. Simply place the cursor on a
function name, press the hot-key (default: <F12>) and VEDIT will switch to
the function’s declaration. Then press the hot-key again to return to the original
file and position.

Advanced Usage Notes
You can easily modify utags.vdm to select what it does when the function
declaration is found— simply switch to the file, switch to the file and cascade
the windows, or (default) switch to the file and setup to switch back. View the
utags.vdm file for more information. This macro is not overly complex and
can be modified to your preferences.

utags.vdm only looks for thetags file in the current directory. If necessary,
you could copy utags.vdm to various local directories and modify the
“File_Open()” command to specify the full pathname to the tags file.
(We would appreciate any improvements you might make to these macros.)

“ctags” Symbol Lookup GSChapter 5 Advanced Topics 179

Integrated Compiler Support

Overview
VEDIT’s compiler support can improve a programmer’s productivity by
allowing any desired compiler, assembler, linker, debugger and Make utilities
to be run from within the editor.

The compiler support is implemented as nine items in the {Tools} menu. If
there is no {Tools} menu, e.g. the {Tutorial} menu is displayed, the correct
{Tools} menu can be loaded by selecting {MISC, Load Compiler support}.
Either the “normal” compiler support can be loaded into the {Tools} menu or
Java SDK specific support can be loaded into the {JavaTools}menu. You can
easily switch between Java SDK and another compiler by selecting {MISC,
Load compiler support} again.
The item {TOOLS, Compile} runs the currently selected compiler. If an error
is reported, the correct source code file is loaded and the cursor placed on the
line containing the error; the entire error reported by the compiler is displayed
in a separate window. You can immediately edit the file and with a hot-key
advance to the next error or re-compile the program.

Once your program compiles without errors you can also run your linker and
debugger from within VEDIT.

The normal compiler support also supports several popular Make utilities and
will even track errors reported by different compilers in a Make script.

The compiler support consists of the compile.vdm macro which loads
either compile.mnu or java-sdk.mnu as the new {Tools} menu, the
c-xxxxxx.vdm macros which implement each {Tools} menu function,
compiler specific “.vcs” files, and the compile.cnf and java-sdk.cnf
configuration files.

For each supported compiler there is a corresponding “.vcs” macro file. The
file names correspond to the compiler’s command name, e.g. the Microsoft C
compiler is cl.vcs, the Borland C compiler is bcc.vcs, and the Java SDK
compiler is javac.vcs.

The compile.vdm, compile.mnu, java.mnu, compile.cnf and
java-sdk.cnf files are located in the VEDIT Home Directory, the remain-
ing files are in the \COMPILE subdirectory, typically “c:\vedit\compile”.

The compile.cnf file determines the default Compile, Link, Debug and
Make commands that will be used. You must edit this file to set the default
commands and compiler options. Optionally, you can override the com-
pile.cnf file by creating a compile.vco file in a project’s source code
directory which specifies the Compile and other commands to be used for that
project. For example, you may have a program in one directory which is
compiled as a 32-bit program, and a program in another directory which is
compiled as a 16-bit program.

180 Chapter 5 Advanced Topics Integrated Compiler Support

Similarly, the java-sdk.cnf file determines the default Compile, Com-
pile-with-Debug, Debug and Java-VM commands that will be used when Java
SDK has been selected.

The fully commented sample macro sample.vcs is an excellent guide for
creating your own compiler specific macro. (Of course, we would appreciate
receiving any compiler specific macros that we can add to VEDIT.)

Compiler Support Installation
The installation procedure for theWindows and DOS versions of VEDIT gave
you the option of installing the compiler support files. If you did not initially
select this option, you must reinstall either version of VEDIT. Since the
installation can save your current configuration and keyboard layout, this is a
simple procedure that only takes a few minutes.

Make sure that the compiler is functioning and that all necessary PATH and
SET statements are performed prior to running the compiler support.

Enable Compiler Support
The compiler support is implemented as items in the {Tools}menu. However,
by default the {Tutorial} menu is displayed in place of the {Tools} menu.
You can manually set up the {Tools} menu with the compiler support items
by selecting {MISC, Load Compiler support}. Similarly, you can switch
back to the {Tutorial} menu by selecting {MISC, Load Tutorial menu}.
Assuming you want the compiler support loaded as the default {Tools}menu,
you should make a simple change to the startup.vdm file.

� To enable compiler support as the default {Tools} menu:
1. Edit the startup file startup.vdm.

2. Search for the string “#120 = 0” (without quotes) at the beginning of a
line.

Change it to “#120 = 1” for normal compiler support in the {Tools}menu.
Or, change it to “#120 = 2” for Java SDK support in the {JavaTools}
menu.

3. Restart VEDIT. The {Tools} or {JavaTools} menu should now display
the compiler support items.

NOTES: Enabling the compiler support with {MISC, Load Compiler sup-
port} or in startup.vdm runs the macro compile.vdm which
also changes your keyboard layout!

compile.vdm sets up the hot-keys for the common compiler
support items in the {Tools} menu. These additional hot-keys are
designed for the “Normal” keyboard layout, but might cause con-
flicts with other layouts. In this case, you must change the hot-keys
by editing the compile.vdm file directly.

Integrated Compiler Support Chapter 5 Advanced Topics 181

Configuring COMPILE.CNF
(or JAVA-SDK.CNF)

Thecompile.cnf file specifies the default Compile, Link,Debug andMake
commands to be used. Open this file for editing. You will see the following:
COMPILE.CNF - Default compiler support.

Must be located in VEDIT Home Directory
e.g. C:\VEDIT.

SUPPORTPATH=
DEFCOMPILE=CL /c -proj.ext
DEFLINK=LINK /codeview -proj.obj;
DEFDEBUG=CV /e -proj.exe
DEFMAKE=NMAKE /n

COLORDISPLAY=A // A=Auto; Y=Color; N=B/W; ?=Prompt

The following parameters must be set:

SUPPORTPATH
Specifies the path to the compiler support files, particularly the “.vcs”
files. It does not need to be set if the installed location is used, �i.e. the
“\compile” subdirectory in the VEDIT Home Directory, e.g.
“c:\vedit\compile”.

DEFCOMPILE
This specifies the default Compiler command (e.g. “cl /c -proj.ext” or “bcc
-c -proj.ext”). The name of the compiler must have an associated “.vcs”
file (e.g. “cl.vcs” or “bcc.vcs”).

Typically, a Compiler command will consist of the compiler name, any
desired compiler options and “-proj.ext”. “-proj.ext” specifies where in
the compile command the name of the (project) file being compiled should
appear.

When running the compiler, “-proj.ext”will be expanded to the full project
filename and extension. Alternatively, “-proj” will be expanded to the
project filename without extension.

“-proj” will not interfere with any “-p” option your compiler may have.

You should set DEFCOMPILE to your most commonly used Compiler
command.

DEFLINK, DEFDEBUG, DEFMAKE
These specify the default Linker, Debugger and Make commands. There
are no associated .vcs files.

The Linker command will typically include “-proj” to specify where the
name of the project file should appear. “-proj” is immediately followed
by the filename extension of the object files, typically “.obj” or “.o”.

If you have trouble with the Microsoft “NMAKE”, try adding the “/n”
option. Similarly, with the Borland or Avocet “MAKE”, try adding the
“-n” option.

182 Chapter 5 Advanced Topics Integrated Compiler Support

Java SDK: In the java-sdk.cnf file, DEFLINK actually sets the
“Compile with debug” command and DEFMAKE sets the
“Java VM” command.

COLORDISPLAY, WINDOW ATTRIBUTES...
These specify the colors used by the compiler support. They are docu-
mented in the compile.cnf file.

After editing compile.cnf, the compiler support should now be properly
installed and functional.

� Example COMPILE.CNF for Microsoft C

SUPPORTPATH=
DEFCOMPILE=cl /am /c -proj.ext
DEFLINK=link /codeview -proj.obj;
DEFDEBUG=cv /e -proj.exe
DEFMAKE=nmake

� Example COMPILE.CNF for Borland Turbo Assembler

SUPPORTPATH=
DEFCOMPILE=tasm /zi -proj.ext
DEFLINK=tlink /m/v -proj.obj
DEFDEBUG=td -proj.exe
DEFMAKE=make

Running the Compiler Support
Assuming you have enabled the compiler support and have configured the
compile.cnf (or java-sdk.cnf) file correctly, you are ready to use the
compiler support.

� To run the compiler support:
1. Start VEDIT and open the main file to be compiled. E.g., you want to be

switched to the main “.c” file and not to a “.h” or other “include” file.

The current file will be the “project file”. This is the filename that is given
to the compiler or linker command. (Via the “-proj.ext” expansion de-
scribed above.)

Integrated Compiler Support Chapter 5 Advanced Topics 183

If you are using a “Make” file to compile and link your project, you do
not need be switched to the main project file.

2. Select {TOOLS, Compile} or press its hot-key. The compiler will imme-
diately run; you may temporarily see some output on the screen.

Note: If you do not have a {TOOLS, Compile} item, refer to
the section “Enable compiler support” above.

3. When the compiler is done, the output from the compiler will be displayed
in a VEDIT window.

If there were no compilation errors, or you don’t want to look at them now,
simply press <Enter> or <Esc> to resume editing.
If there were errors and you want to go to the first one now, press “F”. It
will switch to the source code file with the error and position the curson
on the line containing the error. The full error message will be displayed
in a separate window.

To browse the compiler output and optionally select an error, press “B”.
4. Select {TOOLS, Next error} (hot-key: <Alt-N>), {TOOLS, Previous

error} (hot-key: <Alt-P>) to move the cursor to each source code line
containing an error.

Notes: These functions go to absolute line numbers. If you add
or delete lines in the source file, they will go to the wrong
line. If this becomes too confusing, you will probably
want to re-compile.

To remove the error window, either select {TOOLS,
Next/previous error} until you reach the end, or select
{TOOLS, Resume editing}.

5. When all errors are (hopefully) corrected, select {TOOLS, Compile}
again to re-compile.

6. After a successful compilation, you can select {TOOLS, Link} to run the
linker and then {TOOLS, Debug} to run the debugger.
If desired, you can set up “Debug” to simply run the program without a
debugger.

See also:

On-line help for compiler support items.

The on-line help topic “Compiler Support” (DOS: “COMPILE”) contains
complete details on using the compiler support.

You may want to print this topic from the Windows on-line help system.

To print this topic in the DOS version, open the on-line help file vhelp.hlp
(VEDIT PLUS: vphelp.hlp). Since it is a normal text file, you can easily
print portions of it. Search for “\compiler\”.Highlight the entire topic and select
{FILE, Print} to print it.

184 Chapter 5 Advanced Topics Integrated Compiler Support

Chapter 6

Menu Reference

This chapter is a detailed description of theVEDITmenus and provides a quick
reference for specific menu operations.

This chapter lists the menus in the order in which they appear on the top menu
line. Introductory information pertaining to each menu is given. Also included
are the “hot-key” assignments in the “Normal” keyboard layout which may be
used to directly access each menu and many menu items.

The description of each menu item is divided into the following sections:

Menu Item This is the name of the menu item as it appears on
the screen.

Brief Description Read this brief description to determine if you have
found the desired item.

Keystroke
Equivalent:

If the “normal” IBM PC keyboard layout has a
“hot-key” or other keystroke equivalent for select-
ing this item, it is listed here. Many keystroke
equivalents are set up as “keystrokemacros”; other
menu items are equivalent to basic edit functions.
Use {CONFIG, Keyboard layout, Edit/view lay-
out} to view all assigned keys and keystroke mac-
ros. For those itemswithout keystroke equivalents,
you can always create a new keystroke macro.

Full Description: A detailed description of the menu item and how
to use it. This often includes step-by-step instruc-
tions for performing common operations.

Notes: Related comments, suggestions and warnings.

See Also: List of related menu items, edit operations and
other supporting references.

Chapter 6 Menu Reference 185

File Menu
Keystroke Equivalent:

<Alt-F>, This is a keystroke macro.

Introduction:

The File menu includes functions for opening a file for editing, switching
between the multiple files being edited, saving and exiting.

New
Open a new edit buffer without an assigned filename.

Keystroke Equivalent:

<Ctrl-N>, This is a keystroke macro.

Full Description:

“New” opens a new (unused) edit buffer; it will initially be empty and have no
assigned filename. To assign a filename to the new edit buffer, select {FILE,
Save as}.
Experienced users will probably prefer to use {FILE, Open} even when
creating new files.

Notes:

“New” is rarely used in VEDIT; it is provided for compatibility with other
editors and word processors. Some other editors force you to select “New” and
then “Save as” to create a new file. However, VEDIT automatically creates a
new file when the file you select with {FILE, Open} doesn’t already exist.

186 Chapter 6 Menu Reference File Menu

The buffer selected by “New” will be the lowest numbered buffer between #2
and #32 that is currently unused. Buffers that are currently open, but are empty,
are not selected.

You can also open an empty edit buffer with {FILE, Buffer switch}. When
the specified buffer is not already open, it is opened as an empty buffer.

VEDIT can have multiple “<Untitled>” buffers open without assigned file-
names. However, selecting {FILE, Exit} and then “Save-all” does not save
those edit buffers which have no filename.

See Also:

{FILE, Open}, {FILE, Buffer switch}

Open
Open an additional file for editing. If the selected file does not exist, it is
created.

Keystroke Equivalent:

<Ctrl-O>, Keystroke macro for {FILE, Open, New buffer}.

Full Description:

“Open” opens (or creates) an additional file in an unused buffer and displays
it in its own window.

The File-open dialog box optionally lets you open the file in “Read-only”mode
so that you don’t accidentally alter it and can navigate it more quickly. You
can also open binary and fixed-length record files. The on-line help for the
File-open dialog describes these options in detail.

� To simultaneously edit another file in a new window:
1. Select {FILE, Open} (<Ctrl-O>).
2. You are prompted for the name of the file to edit.

If VEDIT does not find a file with the specified name, it will create the file.

The new window will either be full-sized or cascaded, depending upon the
setting of {CONFIG, Display options, Auto-create window style}.
The status line will display the new buffer number; the window border will
display the new filename.

Notes:

VEDIT requires enough disk space to accommodate approximately 2 times the
actual file size. You should always work with at least that amount of disk space
available.

If you select a file which is already open in another edit buffer, “Open” only
switches to that buffer; you cannot have the same file open in two buffers at
once. To display different parts of one file in twowindows, select {WINDOW,
Split}.

File Menu Chapter 6 Menu Reference 187

The new buffer selected by “Open” will be the lowest numbered buffer
between #1 and #32 that is currently unused. Buffers that are currently open,
but are empty, are not selected.

To edit a file in a particular edit buffer (instead of the next available buffer),
use {FILE, Buffer switch} (<F4>) to switch to the desired buffer. Then select
{FILE, Open}.

See Also:

“Editing Multiple Files” in Chapter 4.
{FILE, New}, {FILE, Open (More)}
{WINDOW, Split}, {WINDOW, Switch},
{VIEW, Zoom}, {VIEW, Full size}

Open More (Sub-menu)
VEDIT has three variations of {FILE, Open} to save you steps when editing
multiple files.

Keystroke Equivalent:

<Alt-O>, Keystroke macro for {FILE, Open, Same buffer}.
<Alt-Y>, Keystroke macro for {FILE, Open, Horizontal window}.

Full Description:

{FILE, Open (More), Same buffer} (<Alt-O>) is a shortcut way of closing
the current file and opening the next file. It saves keystrokes and/or mouse
clicks. It is the best way of editing one file after another; it reduces the
confusion of having many unnecessary files and windows open at once.

“Open with Horizontal split window” and “Open with Vertical split window”
simplify opening two files side-by-side or one above the other, perhaps to
compare them.

� To edit a new file (in the same buffer):
1. Select {FILE, Open (More), Same buffer} (<Alt-O>).
2. If the current buffer contains amodified file, youwill be promptedwhether

the file should be saved or abandoned before opening the new one:
Save current file? [Yes] [No-Abandon]

Answer [Yes] to save the current file with all modifications. Answer [No]
to abandon any changes made since the last time the file was saved.

3. You are prompted for the name of the file to edit with the normal File-open
dialog box.

� To simultaneously edit two files in a split window:
1. Open the first file with {FILE, Open} (<Ctrl-O>) or {FILE, Open

(More), Same buffer} (<Alt-O>).
2. You probably will want to expand the window to full size, if not already,

with {VIEW, Full size}.

188 Chapter 6 Menu Reference File Menu

3. Select {FILE, Open (More), Horizontal window} (<Alt-Y>) to display
the new file in the lower half of the current window. Or select {FILE,
Open (More), Vertical window} to display the new file in the right half
of the current window.

4. You are prompted for the name of the file to edit.

The current window will be split into two windows and you will now be
editing the new file in the new window.

Notes:

Since you can later resize, tile, cascade or reset the windows, it is not critical
in which window configuration you open the file.

See the Notes for {FILE, Open}.

See Also:

“Editing Multiple Files” in Chapter 4.

Close
Close the current edit buffer; save or abandon any current file.

Keystroke Equivalent:

(None) Use {WINDOW, Close} (<Ctrl-F4>) instead.

Full Description:

“Close” closes the current edit buffer and all corresponding (attached) win-
dows. If the edit buffer contains modified text that has not been saved, you are
prompted whether you want to save or abandon it.

When closing the last edit buffer, VEDIT keeps the buffer open as an empty
buffer. VEDIT always keeps at least one buffer and window open.

NOTE: It is usually more convenient to use {WINDOW, Close} (<Ctrl-F4>)
or to click the mouse on the window’s “close” button to close both
the window and file. When the buffer (file) is displayed in only one
window, {FILE, Close} and {WINDOW, Close} are identical. There
is only a difference when the buffer is displayed in two or more
windows, e.g. after {WINDOW, Split}.

� To close the current edit buffer and all attached windows:
1. Select {FILE, Close}. If the buffer contains modified text, it prompts

whether the current file should be saved or abandoned:
Save current file? [Yes] [No-Abandon]

2. Answer [Yes] to save the current file. Answer [No] to abandon any
changes that have been made since the last time the file was saved.

3. If you answer [Yes] to save the text, but no filename is assigned, you will
be prompted for the “Save as” filename in which to save the file.

File Menu Chapter 6 Menu Reference 189

Notes:

VEDIT skips confirmation prompts when you abandon unmodified files and
does not re-write unmodified files to disk.

Use {WINDOW, Close} (<Ctrl-F4>) or click the mouse on the window’s
“close” button to close both the window and the edit buffer. However, since
the last window cannot be closed, {WINDOW, Close} is equivalent to {FILE,
Close} when only one window exists.
In most cases {WINDOW, Close} is preferred over {FILE, Close}.

See Also:

“Editing Multiple Files - Closing Files” in Chapter 4.
{FILE, Open}, {WINDOW, Close}

Browse Mode
Enable/disable browse mode for the current file and the next file edited.

Keystroke Equivalent: (None)

Full Description:

When set, the current file cannot be altered any further. If VEDIT was invoked
with the “-B” invocation option, or if the current file was opened in Read-only
mode, this toggle is set and cannot be turned off.

This item is normally disabled so that the current file can be altered. When
enabled, the current file cannot be altered, or if the file has already been altered,
it cannot be altered any further.

CD-ROM and other read-only files are automatically opened in Read-only
mode.

Notes:

Using browse mode is convenient when you want to ensure that a file is not
accidentally altered.

See Also:

“Starting VEDIT - Read-only Mode” in Chapter 4.

Save

Save All
Save the current file or files and continue editing.

Keystroke Equivalent:

<Alt-F12> is a keystroke macro for “Save”.

Full Description:

“Save” saves any changes you have made to the current file so that they won’t
be lost by power failure, system crash or a major editing mistake.

190 Chapter 6 Menu Reference File Menu

“Save all” similarly saves any changes you have made in all currently open
files.

You should select “Save” or “Save all” frequently. It is important and takes
very little time.

Alternatively, you can enable VEDIT’s auto-save feature to save all files at
regular intervals. See {CONFIG, File handling, Auto-save interval}.

� To save the current file and continue editing:
1. Select {FILE, Save}. If you made any changes since the last time you

saved the file, the file will be saved to disk. If you did not make any
changes, VEDIT will not bother to save the file again.

2. Continue editing the file. Remember to regularly save your changes.

Notes:

When editing multiple files, “Save” saves only the current file; this is useful
when the other files are not in a state in which you want to save them.
Otherwise, use “Save all” to save all modified files.

If the current buffer has no assigned filename, you will be prompted to enter
the “Save as” filename.

“Save all” only saves text in the current edit buffer, in the main edit buffer #1
and in those buffers that have assigned filenames. If the current or the main
edit buffer do not have filenames assigned, it will prompt for the “Save as”
filename.

If {CONFIG, File handling, Auto-save} is enabled, VEDIT automatically
performs a {FILE, Save all} at regular intervals.

See Also:

“Exiting VEDIT - Auto-file Save” in Chapter 4.
{FILE, Save all}, {FILE, Save as}, {FILE, Exit}

Save As
Name a file and save contents of buffer.

Keystroke Equivalent: (None)

Full Description:

“Save as” saves the file you are currently editing under a new name. This is
convenient when you want to use an existing file as a template or prototype
for a new file.

“Save As” also lets you save the contents of an edit buffer that currently has
no filename associated with it.

� To save the current file under a new name:
1. Select {FILE, Save as}.
2. You are prompted for the desired filename. You could select an existing

file, but more likely you will enter a new filename.

File Menu Chapter 6 Menu Reference 191

Notes:

You can save steps by entering the “save as” filename when you open the
original file. At the filename prompt enter e.g. “oldfile.txt -a newfile.txt”.

See Also:

{FILE, Save}, {FILE, Exit},

Buffer Switch
Change to a different edit buffer and file.

Keystroke Equivalent:

<F4>, This is a keystroke macro.

Full Description:

“Buffer switch” switches directly to any desired edit buffer. If the specified
buffer is already open, this is similar to using {FILE, Next buffer} or {FILE,
Previous buffer}. If the buffer is not open (i.e. “unused”), it opens the buffer
as an empty buffer, similar to {FILE, New}.
When simultaneously editing multiple files, {FILE, Buffer switch} can be
used to switch directly to a given file. If that file is currently displayed in a
different window, it also switches to that window.

� To switch to a desired edit buffer (file):
1. Select {FILE, Buffer switch} (<F4>).
2. In the dialog box you can either directly enter the desired buffer number

or select a buffer using point & shoot.

The new edit buffer’s number will be displayed on the status line.

Notes:

Selecting {HELP, Edit buffers} also accesses the “point and shoot” style
dialog box which lists each open edit buffer, the name of the attached win-
dow(s) and the associated filename, if any. This display is useful when you
forget precisely what files you are currently editing.

Don’t confuse edit buffer numbers with window ID numbers. Although they
are often the same, they are independent. When you display a buffer in two or
more windows, e.g. with {VIEW, Toggle hex mode split}, the buffer is
attached to additional windows.

Use {WINDOW, Switch} to switch directly to a window.

See Also:

“Editing Multiple Files” in Chapter 4.
{FILE, Open}, {FILE, Next buffer}, {FILE, Exit}
{HELP, Edit buffers}
{WINDOW, Switch}

192 Chapter 6 Menu Reference File Menu

Next Buffer

Previous Buffer
Toggle round-robin style to the next or previous buffer (file).

Keystroke Equivalent:

<F6> is a keystroke macro for “Next buffer”.
<F5> is a keystroke macro for “Previous buffer”.

Full Description:

This is the easiest way to switch to another file when simultaneously editing
multiple files. It toggles you, round-robin fashion, to the next/previous edit
buffer (file). If necessary, select {FILE, Next buffer} (<F6> or toolbar)
repeatedly until you reach the desired file.

You can also switch directly to a given file by switching to its corresponding
edit buffer with {File, Buffer switch}, but usually “Next buffer” or “Previous
buffer” is simpler and quicker.

Notes:

These functions will also switch to empty edit buffers that are in use but have
no file open in them. This can happen after you have used {FILE, New},
{FILE, Buffer switch} or when a command macro sets up additional edit
buffers.

You can close buffers that are no longer needed, e.g. buffers that are empty or
contain files you have finished editing, by switching to the buffer and selecting
{FILE, Close} or {WINDOW, Close} (<Ctrl-F4>).

See Also:

“Editing Multiple Files” in Chapter 4.
{FILE, Open}, {FILE, Buffer switch}
{WINDOW, Next window}, {WINDOW, Previous window}

Print
Select the print dialog box to print the entire file or selected block.

Keystroke Equivalent:

<Ctrl-P>, This is a keystroke macro.

Full Description:

This item selects the Print dialog box. You can print the entire file, just the
highlighted block or select the “PRINT.VDM macro”.

You can select whether the file/block is printed using the currently configured
margins and print mode, or whether it is printed “raw” without margins.

You can also select the font and size used for printing.All characters are printed
in the same font and size.

File Menu Chapter 6 Menu Reference 193

Theprint.vdmmacro, as supplied, adds the filename, page number and date
to the top of each printed page. It can optionally print rulers, line numbers and
file positions (offsets).

Notes:

You can print multiple blocks of text on the same page by disabling the “[]
Auto-close (finish) print job” option which leaves the print job open. You
must then select {FILE, Print} again to print another block or finish and close
the print job.

See Also:

“Printing” in Chapter 4.

Enable edit restore
Save the entire editing status when you exit.

Keystroke Equivalent: (None)

Full Description:

When enabled, VEDIT saves its entire status when you exit. Subsequently
restarting VEDIT resumes your previous edit session, just as if you had never
exited.

If you start VEDIT with files, the previous edit session status is not used. To
invoke VEDIT without filenames and without restoring the previous edit
session, use the “-e” option, e.g. “vpw -e”.

See Also:

“Exiting VEDIT - Edit Session Restore” in Chapter 4.
{FILE, Exit}

Exit (save)
Save or abandon the file or files being edited and exit VEDIT.

Keystroke Equivalent:

<Alt-F4> or <Alt-X>, These are keystroke macros

Full Description:

“Exit” lets you selectively save or abandon eachmodified file, or save/abandon
all files at once. It displays each altered buffer (file) and prompts whether it is
to be saved or abandoned. It repeats this for each buffer and then exits VEDIT.
For example, the prompt might be:

Save ERRATA.DOC ? [Yes] [No] [Save-all] [Quit-all]

[Yes] Saves the specified file (buffer); if the file has no assigned
filename, you are prompted for one. If this is the last altered file,
it exits VEDIT; otherwise it prompts for the next file.

194 Chapter 6 Menu Reference File Menu

[No] Abandons (quits) the specified file; the changes are not saved. If
this is the last altered file, it exits VEDIT; otherwise it prompts
for the next file.

[Save-all] Saves all files currently being edited and exits VEDIT without
any further prompting. Note: it only saves those files (buffers) that
have assigned filenames!

[Quit-all] Abandons all files currently being edited and exits VEDIT. If
additional altered files are open, it prompts for verification.

[Cancel] Cancels the operation; same as pressing <Esc>.

Notes:

The [Save-all] and [Quit-all] selections may seem superfluous when only one
file is being edited. However, they are necessary for a keystroke macro such
as “[MENU] F X S” to work.

Selecting [Save-all] only saves text in those edit buffers that have assigned
filenames. However, if themain edit buffer #1 has no filename assigned, it will
prompt for the “Save as” filename.

Abandoning a file causes VEDIT to “forget” any changes you havemade since
the last time the file was saved. Use this capability with caution!

If {FILE, Enable edit restore} is enabled,VEDIT saves the entire edit session.
Restarting VEDIT then resumes the editing.

{FILE, Exit} is identical to {ESCAPE, Exit}.

See Also:

“Exiting VEDIT” in Chapter 4.
{FILE, Save as}, {FILE, Save}

Recent File List
Recently edited files are listed and can be easily selected for further editing.

Keystroke Equivalent:

<Alt-F> followed by the number of the file.

Full Description:

The {FILE} menu in the Window version contains a MRU (Most Recently
Used) list of recently edited files. Simply selecting a filename from the list
re-opens the file.

Notes:

The number of recently edited files listed in the {FILE} can be changed by
directly editing the vedit.ini file and changing the item “MaxMRU”. The
allowable values are “0” - “10”.

File Menu Chapter 6 Menu Reference 195

Edit Menu
Keystroke Equivalent:

<Alt-E>, This is a keystroke macro.

Introduction:

The Edit Menu provides an assortment of items related to typing and making
quick changes to your file. It provides quick access to theWindows clipboard,
the scratchpad, and lets you insert the contents of another file.

Repeat
Repeat next edit operation.

Keystroke Equivalent:

<Ctrl-R>, identical to [REPEAT]

Full Description:

“Repeat” repeats the following edit operation the specified number of times.
Any edit operation, such as typing in a character, pressing an edit function key,
selecting an item from a menu or even executing a keystroke macro, can be
repeated.

� To repeat an edit operation:
1. Select {EDIT, Repeat} (<Ctrl-R>). You will see the following prompt:

Enter repeat count:

2. Enter the count of howmany times to repeat the upcoming operation. You
can enter a numeric expression such as “(1250+540)/24”.

196 Chapter 6 Menu Reference Edit Menu

3. At the prompt “Press key to repeat:” simply press the edit function or
displayable character you want repeated. You can also repeatedly execute
items from the main menu.

For example, to create the top of a box, you could press [REPEAT], “50”
<Enter> and “*”.

Notes:

The maximum repeat count defaults to 256 but can be changed with {CON-
FIG, Misc, Maximum [REPEAT] count}. This prevents you from acciden-
tally repeating an operation so many times that it cannot be undone.

This menu item is usually only selected with a mouse; from the keyboard it is
usually more convenient to simply press [REPEAT] (<Ctrl-R>).
When repeating menu items, YOU MUST select the items by typing the
appropriate selection letters. Attempting to select items with the cursor keys
will confuse the process and lead to undesirable results.

Because of the way VEDIT updates the screen, only the final screen may be
shown when using [REPEAT]. Since some operations may take a bit of time
to perform, you may notice some delay when they are repeated many times.

To abort a lengthy “Repeat”, press [CANCEL] <Ctrl-\>) or <Ctrl-Break>.

See Also:

[REPEAT], [REPEAT LAST]

Cut to clipboard

Copy to clipboard
Copy or move the marked block of text to the Windows clipboard.

Keystroke Equivalent:

<Ctrl-X>, This is a keystroke macro.
<Ctrl-C>, This is a keystroke macro.

Full Description:

“Copy to clipboard” saves a copy of the marked (highlighted) text in the
Windows clipboard,while “Cut to clipboard” also deletes themarked text from
your file.

� To save (cut or copy) text to the clipboard:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker.

2. Select {EDIT, Cut to clipboard} (<Ctrl-X>) to cut (move) the block.
Select {EDIT, Copy to clipboard} (<Ctrl-C>) to copy the block.

Edit Menu Chapter 6 Menu Reference 197

Notes:

The clipboard should only be used for exchanging data with other programs.
The text registers (scratchpad) should be used for cut& paste operationswithin
VEDIT. (The Clipboard does not handle columnar blocks as well as the text
registers, and does not support binary data.)

TheWindows “clipboard” is a temporary holding area for text to be exchanged
with other programs. Text placed in the clipboard remains there until it is
overwritten or you exit Windows. All Windows programs share the same
clipboard. For example, you can copy a block of text fromVEDIT to an E-mail
program.

While most other editors require that you use the clipboard to cut and paste
blocks within your file, we strongly suggest that you use VEDIT’s text
registers instead. The default text register 0, also called the scratchpad, is just
as easy to use. (The Clipboard does not handle columnar blocks as well as the
text registers, and does not support binary data.)

Technical Notes:

VEDIT always copies data to the clipboard as “text” and can only paste from
the clipboard when it contains “text”, i.e. graphic bitmaps cannot be pasted
into VEDIT. In “text” format, the clipboard cannot contain the “null” character
(value 00). If you copy a block containing a “null” to the clipboard, anything
past the “null” will appear to be truncated. Therefore, the clipboard cannot be
used to exchange binary data between VEDIT and other programs.

DOS version: The Window clipboard is only available in Windows 95 and
when running Windows 3.1 in enhanced mode.

See Also:

“Block Operations - The Windows Clipboard” in Chapter 4.
{EDIT, Scratchpad, Cut to scratchpad}, {BLOCK, Copy to register}.

Paste clipboard

Paste columnar clipboard
Insert the contents of the Windows clipboard as a “stream” or “columnar”
block at the current cursor position.

Keystroke Equivalent:

<Ctrl-V>, This is a keystroke macro for {EDIT, Paste clipboard}.

Full Description:

“Paste Clipboard” inserts the contents of the Windows clipboard when it
contains “text” type data; it does not insert graphical data.

You can paste the clipboard as either a “stream” or “columnar” block. Selecting
“Paste clipboard” inserts the entire clipboard at the cursor position. Selecting
“Paste columnar clipboard” inserts each line of the clipboard into successive
lines of your file, each time starting at the current column.

198 Chapter 6 Menu Reference Edit Menu

Notes:

By default, the cursor will be positioned past the inserted text. Alternatively,
set {CONFIG, Emulation, Advance cursor past block insert} to “No” to
have the cursor remain at the beginning of the inserted text.

See Also:

“Block Operations - The Windows Clipboard” in Chapter 4.
{EDIT, Copy to clipboard}, {BLOCK, Insert register}

Center Line
Center the current line.

Keystroke Equivalent: (None)

Full Description:

“Center line” adds just enough space to the beginning of a line to center the
line between column 1 and the right margin. If no explicit right margin is set,
it defaults to the width of the current window.

� To center a line of text:
1. Make sure that the right margin is set correctly with {CONFIG, Word

processing, Right margin}.
2. Select {EDIT, Center line}. This will center the current line. It also

advances the cursor to the next line so that you can easily repeat this
process to quickly center several consecutive lines.

Notes:

Unlike other functions which indent with the optimal number of tabs and
spaces, “Center line” only adds space characters as needed.

To center a number of lines or an entire paragraph, precede this function with
[REPEAT] (<Ctrl-R>) and the desired count. Alternatively, follow this
function with [REPEAT LAST] (<Alt-R>) to center additional lines.

See Also:

{CONFIG, Word processing, Right margin}

Format Paragraph
Format a paragraph between the left and right margins.

Keystroke Equivalent:

<Ctrl-B>, This is a keystroke macro.

Full Description:

This item (re)formats a paragraph to the current left and right margins.
Optionally, the paragraph can also be “justified” with an even right edge.

Edit Menu Chapter 6 Menu Reference 199

� To format (or re-format) a paragraph:
1. Make sure that {CONFIG, Word processing, Enable word wrap and

formatting} is enabled and that {CONFIG, Word processing, Right
margin} is set correctly.

2. Also set the left margin if you want the paragraph indented. This margin
can be set with {CONFIG, Word processing, Left margin}, but is
typically set with {EDIT, Indent} (<F8>) and {EDIT, Undent} (<F7>).

3. Place the cursor anywhere in the paragraph and select {EDIT, Format
paragraph} (<Ctrl-B>). After formatting, the cursor is advanced to the
beginning of the next paragraph so that you can easily format several
consecutive paragraphs.

Notes:

If {CONFIG, Word processing, Enable word wrap and formatting} is not
enabled, you will be prompted for confirmation to enable it. This can save you
the steps of going to the {CONFIG} menu.
Blank lines MUST be used to separate paragraphs from each other; just an
indented line is not enough. Otherwise, formatting paragraphs will combine
several paragraphs into one! The configuration parameter Con-
fig_String(PARA_SEP) (Chapter 8) determines which special characters at
the beginning of a line also separate paragraphs from each other.

When formatting paragraphs, VEDIT normally trims trailing spaces, removes
extra spaces from between words and leaves only a single space following “.”,
“!” and “?”. If this is not desirable for your application, you can select other
options with {CONFIG, Word processing, Format paragraph options}.

See Also:

“Word Processing - Formatting and Justifying Paragraphs” in Chapter 4.
{EDIT, Indent}, {EDIT, Undent}
{CONFIG, Word processing} sub-menu

Indent (margin/block)

Undent
Change the left margin or indent/undent the entire block.

Keystroke Equivalent:

<F8>, This is a keystroke macro.
<F7>, This is a keystroke macro.

Full Description:

If no block is highlighted, “Indent” increases the left margin by the amount of
the indent increment. Each new line is then automatically paddedwith tabs and
spaces to the left margin. If the cursor is before any text on the current line, the
current line is indented to the new left margin.

200 Chapter 6 Menu Reference Edit Menu

If the cursor is within a highlighted block, it increases the indentation of all
lines within the block by the amount of the indent increment. The left margin
is not changed.

Similarly, “Undent” decreases the left margin or undents a highlighted block.

Notes:

The “indent increment” can be changed with {CONFIG, Programming,
Indent increment}. The default value is “4”.
By default, the indentation uses the optimal number of tabs and spaces. To only
use spaces, set {CONFIG, Tab/Fill, Expand <Tab> with spaces} to “1”, “3”,
“5” or “7”.

See also:

“Indenting Text (Left Margin)” in Chapter 4
{CONFIG, Word processing, Left margin}, {EDIT, Format paragraph}

Enter CTRL Char
Enter the next key press literally into the text.

Keystroke Equivalent:

<Ctrl-Q>, This is identical to [ENTER CTRL].

Full Description:

To enter a control character into the file, you must precede it with [ENTER
CTRL]. Otherwise VEDIT treats a typed control character as an editing
function or hot-key.

Certain control characters can be useful in your text. “Form-Feed” (<Ctrl-L>)
and “Escape” (<Esc>) are frequently used in text files.
For example, printing a file containing Form-Feed characters will cause the
printer to start a new page when each Form-Feed character is encountered.

� To insert a control character into your file:
1. Make sure you are in Insert mode — “INS” should be displayed on the

status line. Otherwise the control character will overstrike any existing
character.

2. Position the cursor where the control character is to be inserted.

3. Select {EDIT, Enter CTRL}or press [ENTER CTRL] (<Ctrl-Q>). You
are prompted for the control character on the status line.

4. Type the desired control character. For example, to insert <Ctrl-L>, hold
down the <Ctrl> key while you type “L”.

HINT: Alternatively, you can enter control and graphics characters any-
where (e.g. in the search dialog box) by holding down the <Alt>
key and then typing its ASCII value on the numeric keypad. Then
release the <Alt> key. This is a function of Windows/DOS and also
works with most other programs.

Edit Menu Chapter 6 Menu Reference 201

Notes:

This item is rarely used because it is usually more convenient to simply press
[ENTER CTRL] (<Ctrl-Q>). However, this is a logical item to have in the
{EDIT} menu for new users.
[ENTER CTRL] also works in the search and replace dialog boxes.
Characters can also be entered by ASCII value with {MISC, ASCII table}.
If you are entering or changing many control characters, it may be easier to
switch to Hex-mode editing.

See Also:

“Screen Display and Keyboard Characters” in Chapter 4.
{MISC, ASCII table}, {CONFIG, Characters/Cursors, Screen display
mode}
[ENTER CTRL] in Chapter 7.

Insert File
Insert an entire file at the cursor position.

Keystroke Equivalent: (None)

Full Description:

“Insert file” inserts an entire file at the current cursor position. This can be used
to merge several files together or to start a newly created file with the contents
of a “template” file.

� To insert the contents of another file:
1. Place the cursor at the location where the file should be inserted. The file

will be inserted just before the cursor.

2. Select {EDIT, Insert file}.
3. You are prompted for the desired filename with the File dialog box.

Notes:

Assuming you have a file open, there is no limit to the size of the file that can
be inserted. This is the reason you should use {BLOCK, Write to disk} and
{EDIT, Insert file}when copying ormoving very large blocks of text between
files. If necessary, use {FILE, Save as} to open the destination file before
inserting a large file.

After inserting a file, the cursor will normally be positioned past the inserted
text. However, if desired, set the configuration parameter {CONFIG, Emula-
tion, Advance cursor past block insert} to “No” to have the cursor remain
at the beginning of the inserted text.

202 Chapter 6 Menu Reference Edit Menu

Undo (Sub-menu)
Introduction:

VEDIT can undo most editing operations including cursor movements, inser-
tions, deletions and search/replace. You can undo operations keystroke-by-
keystroke, line-by-line or deletion-by-deletion. The “redo” capability lets you
“undo” the undo.

See Also:

The topic “Undo and Redo” in Chapter 4.

Edit
Undo a single keystroke or editing operation.

Keystroke Equivalent:

<Ctrl-Z> or <Alt-Bksp>, These are keystroke macros.

Full Description:

Each time “Edit” is used, it reverses the effect of the previous edit operation.
It can be used repeatedly to back up step-by-step.

Notes:

Selecting a menu item or performing a search/replace is considered a single
edit operation even though it may take several keystrokes to perform.

If you undo all the way back to the point where you opened the file, VEDIT
will know that the file has not been altered.

Line
Undo all changes made to the current line.

Keystroke Equivalent:

<Ctrl-Shift-Z>, This is a keystroke macro.

Full Description:

All changes made to the current line of text can be reversed in one step with
this item. Immediately selecting this item again will move the cursor to the
previously modified line, but not yet undo any changes to this line. This lets

Undo (Sub-menu) Chapter 6 Menu Reference 203

you review whether you also want to undo this line. Select this item again to
also undo this line.

Deletion
Insert the last text deletion(s).

Keystroke Equivalent: (None)

Full Description:

Up to five blocks of text deleted with [ERASE EOL], [ERASE LINE] and
{BLOCK, Edit/translate, Block delete} can be re-inserted at any place in
your file using this function. It works independently of other undo operations.
Even if other undo functions have been used to restore these blocks of text
exactly where they originally resided, {EDIT, Undo, Deletion} can re-insert
the same blocks at the current cursor position.

Blocks are re-inserted in the reverse order they were deleted (technically
“popping” the text off a deletion “stack”).

Notes:

Technically, {EDIT, Undo, Deletion} is not an undo function; it is an editing
function that inserts a previously deleted block of text anywhere in the file.
Therefore, you can undo {EDIT, Undo, Deletion} with {EDIT, Undo, Edit}.
When enough memory is available, VEDIT can undo up to 256K of deleted
text. Only the last five deleted lines and blocks can be re-inserted with {EDIT,
Undo, Deletion}. If the last five deletions exceed 256K, it may not be possible
to re-insert more than one or two deleted blocks.

A block deletion giving the confirmation prompt “Cannot undo this operation!
Proceed anyway?” cannot be re-inserted or otherwise undone.

Redo
Redo the effects of the last undo operation.

Keystroke Equivalent:

<Ctrl-Y>, These is a keystroke macros.

Full Description:

Each “Redo” reverses the effects of the previous “undo” operation. This is
useful when you have gone too farwith “undo” andwant to restore your editing
changes.

Redo is only available while performingUndo operations.Once you stop using
Undo and perform normal editing, redo is no longer available. After switching
buffers (files) you can no longer redo changes to previous buffers. You can
Redo as many operations as you can Undo.

Each redo only restores one editing operation at a time — each redo reverses
the effects of one {EDIT, Undo, Edit}. Since {EDIT, Undo, Line} can undo
several (many) edit operations at a time, it may take several (or many) {EDIT,
Undo, Redo} to reverse the effects of one {EDIT, Undo, Line}.

204 Chapter 6 Menu Reference Undo (Sub-menu)

Reset
Reset the undo memory.

Keystroke Equivalent: (None)

Full Description:

“Reset” clears the undo memory (and resets all undo stacks). If you nowmake
additional edit changes, you will not be able to undo any further back than
when you selected this item. You can now try out different editing scenarios
and if they do not work, use [REPEAT] 255 {EDIT, Undo, Line} to quickly
undo back to this point.

Undo (Sub-menu) Chapter 6 Menu Reference 205

Scratchpad (Sub-menu)
Introduction:

The scratchpad is a temporary holding area for cut and paste operations within
VEDIT. It is also referred to as the default text register “0”; VEDIT has over
100 text registers. Text you save stays in the scratchpad until you either save
a different block or exit VEDIT.

The scratchpad is not the same as the Windows clipboard; but you can think
of it asVEDIT’s internal clipboard. The scratchpad’s advantages include being
able to handle columnar blocks better and support for binary files.

� Use the clipboard for exchanging text with other Windows programs.

� Use the scratchpad for cut and paste operations within VEDIT.

Cut to scratchpad

Copy to scratchpad
Copy or cut (move) a single line or the highlighted block of text to the
“scratchpad” — text register “0”.

Keystroke Equivalent:

<Shft-Del>, This is a keystroke macro.
<Ctrl-Ins>, This is a keystroke macro.
Alternatively, double-press the keys assigned to {BLOCK, Move to register}
(default: <Numpad->) and {BLOCK, Copy to register} (<Numpad+>) to
cut/copy to the scratchpad.

Full Description:

“Copy to scratchpad” saves a copy of the highlighted text in the scratchpad,
while “Cut to scratchpad” also deletes the highlighted text from the file.

If no block is highlighted, these functions copy/cut the current line to the
scratchpad. The line is stored as a “line block”; when inserted it is always
inserted at the beginning of the current line.

These functions are used in the same way as {EDIT, Cut/copy to clipboard}.

Notes:

For maximum flexibility, experienced users may want to skip the scratchpad
functions in the {EDIT} menu and use the text register functions in the

206 Chapter 6 Menu Reference Scratchpad (Sub-menu)

{BLOCK} menu instead. With these functions you can optionally append to
a text register and fill the original block with spaces.

The default hot-keys for the scratchpad functions are the “old style” clipboard
keys. (Everyone found them difficult to remember.)

HINT: We highly suggest accessing the scratchpad by double-pressing
the hot keys assigned to the Copy/Move/Insert text register func-
tions in the {BLOCK} menu, e.g. the <Numpad> keys. Double-
pressing the hot-key for any text register prompt selects the default
scratchpad.

The toolbar also has buttons for selecting the scratchpad.

See the “Notes” for {BLOCK, Copy to register}.

See Also:

“Block Operations - Scratchpad and Text Registers” in Chapter 4.
{BLOCK, Copy to register}

Paste scratchpad
Insert the contents of the scratchpad at the current cursor position.

Keystroke Equivalent:

<Shft-Ins>, This is a keystroke macro.
Alternatively, double-press the key assigned to {BLOCK, Insert register}
(default: <Numpad*>) to insert the scratchpad.

Full Description:

This item inserts the contents of the scratchpad - text register “0” - at the current
cursor location. If the scratchpad is empty, this command has no effect.

Notes:

The scratchpad will be inserted as the same type of block as it was saved. A
line block will be inserted before the current line. A columnar block will be
inserted on the current line and at the starting column on successive lines.

This item normally inserts text regardless of the “Insert mode” status for
normal editing. {BLOCK, Insert register} has an option for overwriting the
existing text. However, in “overstrike-only” mode, e.g. when editing bi-
nary/data files, the existing text at the cursor will be overwritten.

By default, the cursor will be positioned past the inserted text. Alternatively,
set {CONFIG, Emulation, Advance cursor past block insert} to “No” to
have the cursor remain at the beginning of the inserted text.

See Also:

“Block Operations - The Scratchpad and Text Registers” in Chapter 4.
{BLOCK, Insert registers}

Scratchpad (Sub-menu) Chapter 6 Menu Reference 207

Delete (Sub-menu)
This sub-menu contains items for deleting text and changing the state of Insert
mode.

Delete (char/block)
Delete the current character or highlighted block of text.

Keystroke Equivalent:

, identical to [DELETE]

Full Description:

Deletes the character at the cursor. At the end of a line, it deletes the “newline”.
(For DOS/Windows text files, the “newline” consists of “Carriage-return” and
“Line-feed”.)

If a block is currently highlighted and the cursor is within the block (or
immediately past it), it deletes the block; same as {BLOCK, Edit/Translate,
Block Delete}.

Notes:

{CONFIG, Emulation, Special emulation modes} controls whether this
command deletes “newlines” and highlighted blocks.

{BLOCK, Edit/Translate, Block Delete} always deletes the highlighted
block, regardless of how this configuration parameter is set.

This menu item is usually only selected with a mouse; from the keyboard it is
usually more convenient to simply press [DELETE] ().

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Edit/Translate, Block Delete}
[DELETE] in Chapter 7.

208 Chapter 6 Menu Reference Delete (Sub-menu)

Delete Previous Word

Delete Next Word
Delete the previous/next word and the space between words.

Keystroke Equivalent:

<Ctrl-Del>, identical to [DEL NEXT WORD]
<Ctrl-Bksp>, identical to [DEL PREV WORD]

Full Description:

“Delete previous word” deletes the word, or portion of a word, or whitespace
to the left of the cursor. Pressing it again deletes the next whitespace or word.

Similarly, “Delete next word” deletes the word, portion of a word, or
whitespace to the right of the cursor.

Notes:

The configuration parameter Config_String(WORD_SEP) (Chapter 8)
specifies which characters, in addition to spaces, tabs, newlines and control
characters, separate words from each other.

See Also:

The topic “Word Processing” in Chapter 4.
[DEL NEXT WORD] in Chapter 7.

Erase Line

Erase EOL

Erase BOL
Erase (delete) a partial or entire line.

Keystroke Equivalent:

<Ctrl-L>, identical to [ERASE LINE]
<Ctrl-K>, identical to [ERASE EOL]
<Ctrl-J>, identical to [ERASE BOL]

Full Description:

“Erase Line” deletes the entire line of text on which the cursor is located. It
also deletes the “newline” character(s) at the end of the line and closes up the
line on the screen.

“Erase EOL” deletes all characters from the cursor position to the end of the
line. It does not delete the “newline” character(s) at the end of the line.

“Erase BOL” deletes all characters from the beginning of the line up to, but
not including, the cursor position.

Delete (Sub-menu) Chapter 6 Menu Reference 209

Notes:

These menu items are usually only selected with a mouse; from the keyboard
it is usually more convenient to simply press the corresponding key.

{EDIT, Undo, Deletion} re-inserts deleted lines in a different location. Up to
five lines can be re-inserted, in reverse order, in this way.

HINTS: If you set {CONFIG, Emulation, Alt/Ctrl/Shift key shortcuts} to
“15”, you can also delete lines by pressing <Ctrl-Shift>.

You can also delete a line by moving it to the scratchpad with
{BLOCK, Move to register}; this assumes no block is highlighted.
Since the “Normal” hot-key is the easy-to-reach <Numpad-> on the
numeric keypad, you can double-press this key to erase lines when
you don’t have anything saved in the scratchpad.

See Also:

[ERASE LINE], [ERASE BOL] and [ERASE EOL] in Chapter 7.

Toggle Insert Mode

Insert Mode

Overstrike Mode
Toggle or set Insert/Overstrike mode.

Keystroke Equivalent:

<Ins>, identical to [INSERT TOGGLE]

Full Description:

<Ins> is usually used to toggle between “Insert” and “Overstrike” modes.
“Insert mode” and “Overstrike mode” explicitly put VEDIT into Insert or
Overstrike mode. The primary purpose for these items is for keystroke macros
that require a particular mode.

Notes:

In Insert mode, characters you type are inserted in front of the character at the
cursor. The message “INS” is displayed on the status line.

In Overstrike mode, characters you type replace any existing text at the cursor
position. The message “INS” is not displayed on the status line.

{EDIT, Delete, Overstrike mode} explicitly puts VEDIT into Overstrike
mode. Unlike [INSERT TOGGLE] (<Ins>), which toggles between Insert
and Overstrike modes, this item can be used in a keystroke macro to ensure
that Insert mode is off.

See Also:

{EDIT, Delete, Insert mode}
[INSERT TOGGLE]

210 Chapter 6 Menu Reference Delete (Sub-menu)

View Menu
Keystroke Equivalent:

<Alt-V>, This is a keystroke macro.

Introduction:

The {VIEW}menu lets you change the window view by zooming/dezooming
a window, resetting all windows, and changing the window text font. You can
also toggle through a wide range of display, binary and hex editing modes.

Zoom
Zoom / de-zoom the current window.

Keystroke Equivalent:

<Alt-Z>, This is a keystroke macro.

Full Description:

“Zoom” expands the current window to its maximum possible size, thereby
displaying more of the file. Each window that you subsequently switch to will
also be zoomed.

Selecting “Zoom” again restores the window to its normal size.

Notes:

Clicking the mouse on the window’s “zoom” button is the same as selecting
this item.

The VEDIT program also has an “overall zoom button” which expands it to
the full screen. Click both VEDIT’s zoom button and the window’s zoom
button to expand a window to full screen size.

View Menu Chapter 6 Menu Reference 211

Some VEDIT macros create special “reserved” windows at the top or bottom
of the screen that always remain visible. They effectively reduce themaximum
size of zoomed windows, just like the status line, toolbar and menu.

See Also:

“Windows - Zooming a Window” in Chapter 4.
{WINDOW, Switch}

Full Size

Full Size - All
Expand the size of the current window or all windows to full-size.

Keystroke Equivalent: (None)

Full Description:

“Full size” is similar to manually stretching a window’s borders to the
maximum possible size. However, a full-size window will change size if you
change VEDIT’s overall window size. A window remains full-size until you
explicitly resize, tile or cascade it.

This lets you edit in the largest possible window without having to zoom all
windows.

“Full size - all” makes all editing windows full-size.

Notes:

“Full size” is not the same as “zoomed”. When “zoomed”, each window you
switch towill be zoomed, until you “dezoom”. In contrast, someof your editing
windows can be full-size, while other are not; they can be custom sized or tiled.

{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially full-size or cascaded.

Some VEDIT macros create “reserved” windows at the top or bottom of the
screen that always remain visible. They effectively reduce the size of full-size
windows.

See Also:

“Windows - Full-Size Windows” in Chapter 4.

Reset
Reset all windows to full-size or cascaded; remove extra windows.

Keystroke Equivalent: (None)

Full Description:

“Reset” initializes the windows, resets the display mode and window colors
(attributes). The buffers (files) are not affected. No text is lost!

212 Chapter 6 Menu Reference View Menu

Following “Reset” each open buffer (file) will have one corresponding win-
dow; it will be either full-size or cascaded, depending upon the setting of
{CONFIG, Display options, Auto-create window style}. All other windows
will be removed.

DOS, UNIX and QNX Versions:

Assuming {CONFIG, Display options, Auto-create window style} is en-
abled (default), each open buffer (file) will have one corresponding window
of full screen size; all other windows will have been deleted. If disabled, only
the main window “1” will exist; all buffers will then share the same window.

Notes:

This function is useful for getting VEDIT back to a reasonable state after you
have split many windows, changed display modes and switched window
colors.

Toggle Display Mode
Toggle the current window through ASCII, Hex and EBCDIC display modes.

Keystroke Equivalent:

<Alt-D>, This is a keystroke macro.

Full Description:

This item toggles the current window through five ASCII display modes,
hexadecimal, octal and EBCDIC. The ASCII display modes let you view
control and graphics characters in different ways.

It is easiest to understand these modes by toggling through all modes while
viewing a file containing some control and graphics characters.

� To toggle the current window through all display modes:
1. Select {VIEW, Toggle display mode} (<Alt-D> or toolbar). This will

toggle to the next mode.

2. With the normal keyboard layout, repeatedly press (<Alt-D>) until you
have toggled through all modes. Alternatively, if the <Alt-D> hot-key is
not defined, you can repeatedly press [REPEAT LAST] (<Alt-R>).

Notes:

If you toggle an ASCII file into EBCDIC mode, it will display as gibberish.
Conversely, an EBCDIC file displays as gibberish in ASCII mode. For this
reason the status line displays “EBCDIC” when in this mode.

The status line temporarily displays a message indicating which mode you are
in.

You can restore the screen to its normal mode by selecting{VIEW, Reset}.
This will also remove extra windows.

You can select a particular display mode with {CONFIG, Characters/Cur-
sors, Screen display mode}. This will affect the current window and all newly
created windows.

View Menu Chapter 6 Menu Reference 213

See Also:

“Screen Display & Keyboard Characters - Display Modes” in Chapter 4.
{VIEW, Toggle Hex-mode split}
{CONFIG, Characters/Cursors, Screen display mode}.

Toggle Binary/Text Mode
Toggle the current file between 16 and 64 bytes per line, and the original file
type.

Keystroke Equivalent:

<Alt—>, This is a keystroke macro.

Full Description:

Toggles the current file’s “file type” to binary (i.e. fixed-length records) with
16 or 64 bytes per line and back to the original file type. This is useful for
editing binary, data and other non-standard files, especially in hexadecimal.

Notes:

This function does not alter the file. Use the {BLOCK, Convert newlines}
sub-menu to translate between different file types or from fixed-length records
to newlines.

The status line temporarily displays a message indicating which mode you are
in.

See Also:

“File Types - Binary/Data Files” in Chapter 4.

Toggle Hex Mode Split
Split the current window into ASCII and Hex-mode windows.

Keystroke Equivalent:

<Alt-=>, This is a keystroke macro.

Full Description:

This item splits the currentwindow into twoverticalwindows. The left window
displays the file in hexadecimal and the right window in ASCII. You can edit
in either window; both windows will update together.

Selected again, it changes the file type to Binary-16 for easier hex mode
editing. Selected again, it toggles back to the original editing mode.

The ASCII window uses display mode “4” in which all characters, including
the “newline” <LF>, <CR> and <Tab> character are displayed literally (using
the IBM PC character set). The hex window uses display mode “8” to display
all characters in hexadecimal.

Use {WINDOW, Switch} (<Alt-F5>), {WINDOW, Next window} (<Ctrl-
F6>) or the mouse to switch between the windows. In the hex-mode window,
new characters must be entered in hexadecimal.

214 Chapter 6 Menu Reference View Menu

Notes:

The ASCII and the hex-mode windows will scroll together as you move about
in the file.

You can change the display mode used in either window by switching to that
window and using {VIEW, Toggle display mode} (<Alt-D> or toolbar).
Therefore, you can easily edit in Hex and EBCDIC.

This function is implemented by the hexsplit.vdm macro.

See Also:

“Hexadecimal and Octal Mode Editing” in Chapter 4.

VGA 25/28/50 Line Toggle (DOS Only)
Switch between 25, 28 and 50 line VGAmodes. (Optionally 30, 34 and 60 line
modes.)

Keystroke Equivalent:

<Alt-T>, This is a keystroke macro.

Full Description:

“VGA 25/28/50 line toggle” switches most VGA compatible display adapters
between 25, 28 and 50 lines of text. If Config(H_VGA_TYPE) is set to “7”,
it also toggles to 30, 34 and 60 line modes.

Upon startup, VEDIT normally adjusts itself to the current size of the display.

If your display adapter and monitor (possibly with additional software) are
capable of displaying more lines or columns of text, VEDIT will take advan-
tage of it.

Notes:

Some systems only support 25 and 50 line modes and may hang when
attempting to switch to 28 line mode. The default VGA text mode uses 400
scan lines; by switching to 480 scan lines, 30, 34 and 60 lines can be displayed.
The allowable modes are selected with {CONFIG, Misc, Enable VGA
28/30/34/50/60}.
Appendix C (ApplicationNotes) lists a keystrokemacro for switching into 132
column mode. This item can only toggle between the standard 80 charac-
ters/line modes.

To force VEDIT to start in 50 line mode, set Config(S_N_LINE) in the
vedit.cfg file to “50”.

Color Toggle
Select the next suggested color combination.

Keystroke Equivalent:

<Alt-J>, This is a keystroke macro.

View Menu Chapter 6 Menu Reference 215

Full Description:

This function toggles the current window’s text color through about twenty
combinations. This provides some variety as youwork and can be used tomake
some windows visually stand out.

The initial text color is set according to {CONFIG, Editing colors, Edited
text}. If only one window is open, this item also changes the configuration
value; however it does not automatically save it.

� To change the window’s text color and save it as the configured value:
1. Ensure that only one window is open. This method only works when only

one window is open.

2. Repeatedly select {MISC, Color toggle} (<Alt-J>) until the text appears
in the desired color.

3. Select {CONFIG, Save config} if you want to make the new color
combination permanent.

Notes:

Additional color combinations can be selected with {CONFIG, Editing
colors, Edited text}. (Non-Windows versions: {CONFIG, Colors, Windows
and editing, Edited text}).
The overall color scheme, including coordinated syntax highlighting colors,
can be selected by running thecolor.vdmmacro via {MISC, More macros,
Color} or by selecting “Color scheme” in the default {USER} menu.

Scroll bars (Windows only)
Toggle the scroll bars in all windows on and off.

Keystroke Equivalent: (None)

Full Description:

Toggles the scroll bars in all windows on and off. Scroll bars are usually
desirable, but if you must see as many columns and lines as possible, you can
turn them off.

To configure whether the scroll bars are enabled when VEDIT starts up, set
{CONFIG, Display options, Enable scroll bars} and then select {CONFIG,
Save config} to save the new setting.

Notes:

The vertical scroll bar is only displayed when the file (buffer) contains enough
lines to require scrolling.

216 Chapter 6 Menu Reference View Menu

Toolbar (Windows only)
Toggle the VEDIT toolbar on and off.

Keystroke Equivalent: (None)

Full Description:

The Windows version of VEDIT normally displays a toolbar with icons. The
toolbar is an easy way to access commonly used menu items with the mouse.
If desired, the toolbar can be turned off to make more screen area available for
editing.

To configure whether the toolbar is enabled when VEDIT starts up, set
{CONFIG, Display options, Enable toolbar} and then select {CONFIG,
Save config} to save the new setting.

Notes:

Clicking the right mouse button also pops up a menu of commonly used items.

Font (Windows only)
Change the display font.

Keystroke Equivalent: (None)

Full Description:

“Font” changes the display font and size used for all editing windows. It
displays the standard font selection dialog box; however, only “fixed width”
fonts are listed and supported by VEDIT.

The fonts “VEDIT Oem”, “VEDIT Ansi”, “Fixedsys” and “Terminal” look
and work best with VEDIT; each comes in several sizes. The True-Type font
“Courier New” can be set to any desired size, but is of lower quality and slows
down screen updates.

The fonts “VEDIT Oem” and “Terminal” use the OEM (IBM PC) character
set. “VEDIT Ansi”, “Fixedsys”, “Courier” and most other fonts use the ANSI
character set.

The custom “VEDIT” fonts display control characters in a useful mnemonic
way, e.g. Ctrl-A is displayed as a small single-character “^A”. Most other
ANSI fonts display control characters as a useless solid block. Other OEM
fonts display control characters as on the original IBM PC, e.g. Ctrl-A is
displayed as the “smiley face”.

The last selected font is saved into the vedit.ini file and the same font will
be used the next time VEDIT is run.

See Also:

“User Interface - Selecting Display Fonts” in Chapter 4.

View Menu Chapter 6 Menu Reference 217

Block Menu
Keystroke Equivalent:

<Alt-B>, This is a keystroke macro.

Introduction:

The Block menu contains items for manipulating blocks of text. These include
marking a block (highlighting the desired text), copying or moving a block,
saving or inserting a block and other related items.

Many of the Block menu items are not usable until one or both block markers
are set.

Set Stream Marker
Mark the beginning and end of a “stream” block of text.

Keystroke Equivalents:

<F9>, this is a keystroke macro. Alternatively, {BLOCK, Copy to cursor}
can be used to set block markers.

Full Description:

Before you can copy, move, delete or otherwise manipulate a block of text,
you need to set block markers to select the area of text.
Small block are often simply marked by dragging the mouse over them or by
holding down the <Shift> key while moving the cursor. However, to mark a
larger block, it is often best to explicitly mark the beginning and end of the
block.

218 Chapter 6 Menu Reference Block Menu

� To mark a block of text (assuming no block markers are set):
1. Position the cursor on the first character to be included in the block. (If

you prefer, you can mark the end of the block first.)

2. Set the first block marker with {BLOCK, Set stream marker} (<F9> or
toolbar). Note the message “1-END” on the status line.

Alternatively, select a columnar block with {BLOCK, Set column
marker} (<Alt-I>) or a line block with {BLOCK, Set line marker}
(<Alt-L>).

3. As you now move the cursor to the end of the block, intervening text will
be highlighted to define the block.

4. Set the second marker by again selecting {BLOCK, Set stream marker}
(<F9>). Note the message “BLOCK” on the status line.

After setting the second marker, you can freely move the cursor anywhere in
the file without affecting the highlighted block, even if doing so moves the
highlighted text off the screen.

After marking a block, you can change its size and/or the type of block. Move
the cursor to the desired end of the block and then select “Set stream marker”,
“Set column marker” or “Set line marker” from the {BLOCK} menu.

� To remove (clear) the block markers at any time:
1. Press [CANCEL] <Ctrl-\>) or <Ctrl-Break>.

-OR-
Select {BLOCK, Remove markers} (<Shift-F9> or toolbar).

-OR-
Select {ESCAPE, Remove block markers}.

-OR-
Simultaneously press both mouse buttons.

Notes:

Many block operations can be performed after setting only the first marker;
the cursor position acts as the second marker.

You must mark the end of the block with the cursor one character PAST the
last character to be included in the block. See “Block Operations” in Chapter
4 (Editing Guide) for a more complete explanation.

Search/replace operations can be restricted to the highlighted block. See
“Searching within a Block” described under {SEARCH, Search} in this
chapter.

The block markers can also be set or removed with the mouse. The block
markers can also be set by holding down the <Shift> key and moving the
cursor.

Block Menu Chapter 6 Menu Reference 219

See Also:

“Mouse Support - Block Operations” in Chapter 4.
“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Copy to cursor}, {BLOCK, Set column marker}

Set Column Marker
Mark the beginning and end of a “columnar” block of text.

Keystroke, Edit Function Equivalent:

<Alt-I>, this is a keystroke macro.

Full Description:

“Set column marker” is similar to “Set stream marker” except that it selects
(and highlights) “columnar blocks”. In a columnar block, only text which is
located within a rectangle whose opposite corners are defined by the first block
marker and the cursor (or second marker) is selected.

Notes:

Selecting {BLOCK, Set column marker} after {BLOCK, Set stream
marker} will change the block from a “stream” to a “columnar” one. The
opposite is also true.

By highlighting a columnar block with both block markers, you can restrict a
search or search & replace operation to the selected columns.

When highlighting a columnar block, the cursor can be moved past the end of
a line. This action is similar to Cursor positioning mode 4 and makes it easier
to select a column of text.

After copying a columnar block to a text register, VEDIT remembers that the
register contains a columnar block and will insert it as a columnar block.

The topic “Block Operations - Columnar Blocks” in Chapter 4 (EditingGuide)
describes columnar blocks in detail. It describes how VEDIT pads and trims
spaces at the ends of lines and deals with Tab characters.

To mark a columnar block with the mouse, hold down the <Alt> key while
dragging the mouse over the desired text.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Set Line Marker
Mark the beginning and end of a “line” block of text.

Keystroke, Edit Function Equivalent:

<Alt-L>, this is a keystroke macro.

220 Chapter 6 Menu Reference Block Menu

Full Description:

“Set line marker” is similar to “Set stream marker” except that it selects entire
lines in the file including the “newline” at the end of each text line.

Notes:

After copying a line block to a text register, VEDIT remembers that the register
contains a line block andwill insert it at the beginning of the current line instead
of exactly at the cursor position.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Select Word
Select the current word as a block.

Keystroke Equivalent: (None)

Full Description:

This item selects and highlights the current word as a block. If the cursor is
between words, the previous word and all whitespace up to the cursor is
highlighted.

Notes:

It is usually easier to select a word by double clicking on it with the mouse.

The configuration parameter Config_String(WORD_SEP) (Chapter 8) de-
termines which characters separate words from each other.

See Also:

“Mouse Support - Block Operations” in Chapter 4.
“Word Processing - Definition of Word and Paragraph” in Chapter 4.
{BLOCK, Set stream marker}

Select All
Select the entire file as a stream block.

Keystroke Equivalent: (None)

Full Description:

This item marks the entire file as a block of text. It is equivalent to using “Set
stream marker” at both ends of the file. It is primarily used when the file is
about to be processed with the {BLOCK, Edit/translate} sub-menu.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Block Menu Chapter 6 Menu Reference 221

Remove Markers
Remove any existing block markers.

Keystroke Equivalent:

<Shft-F9>, this is a keystroke macro. However, [CANCEL] (<Ctrl-\>) or
<Ctrl-Break> are usually used to remove markers.
This function is also on the toolbar.

Full Description:

You can remove (clear) the block markers at any time; this also removes the
highlighting. Normally, most block operations clear the block markers when
completed.

Notes:

It is usually easier to remove the block markers by pressing [CANCEL]
(<Ctrl-\>) or (<Ctrl-Break>) or simultaneously pressing both mouse buttons.
You can also perform [CANCEL] by just double-pressing <Ctrl>; this
assumes {CONFIG, Emulation, Alt/Ctrl/Shift key shortcut modes} is en-
abled.

This item is also available in the {ESCAPE} menu and on the toolbar.

See Also:

“Block Operations - VEDIT’s Blocks are Persistent” in Chapter 4.
{BLOCK, Set stream marker}
[CANCEL]

Copy to Cursor

Move to Cursor
Copy or move the highlighted block of text to the current cursor position,
without using the scratchpad or clipboard.

Keystroke Equivalent:

<Ctrl-F9>, This is a keystroke macro.
<Alt-F9>, This is a keystroke macro.

Full Description:

“Copy to cursor” copies a highlighted block of text from one location in your
file to another. It does not delete or otherwise affect the original block. It
requires fewer steps than using the scratchpad (or clipboard) to copy and paste
a block.

“Move to cursor” is similar except that the original block is deleted after it is
copied to the new location. In more common terms, it’s as if you “cut” the text
out of the original location and “pasted” it into the current cursor location.

222 Chapter 6 Menu Reference Block Menu

If a block is not yet highlighted, these functions set the first and second block
markers, same as {BLOCK, Set stream marker}. Only when both block
markers are set, do they copy/move the block. This lets thembe used as “smart”
keys that both mark the block and copy/move it.

� To directly copy/move a block of text:
1. Highlight the desired text, setting both block markers. If desired, the

hot-keys for these functions can be used to set the block markers.

2. Move the cursor to the location in the file to which you would like the text
copied. The text will be copied in front of the cursor.

3. Select {BLOCK, Copy to cursor} (<Ctrl-F9>) to copy the block.
Alternatively, select {BLOCK, Move to cursor} (<Alt-F9>) to move the
block.

Notes:

{BLOCK, Copy to cursor} performs a convenient combination of setting the
block marker and copying a block depending upon how many block markers
are set:

� If neither block marker is set: Set the first marker.

� If the first marker is set: Set the second marker.

� If both markers are set: Copy the block to the cursor location.

Therefore, {BLOCK, Copy to cursor} can also be used to mark a block of
text for other operations.

These functions normally clear the block markers. However, by setting the
configuration parameter {CONFIG, Emulation, Block marker emulation
mode} to “1” or “2”, the block will be highlighted in its new location.
In “overstrike-only” mode, e.g. when editing binary/data files, “Move to
cursor” causes the original text to be filled (overwritten) with the configurable
“block fill” character, typically spaces. The existing text at the cursor is also
overwritten.

To repeatedly copy the same block to multiple locations in your file or files, it
is easier to copy the block to a text register (scratchpad) and then insert the
register where needed.

You can also directly copy or move blocks using the mouse.

See Also:

“Mouse Support - Block Operations” in Chapter 4.
“Block Operations - Direct Block Copy/Move” in Chapter 4.
{BLOCK, Set stream marker} {BLOCK, Copy to register}

Block Menu Chapter 6 Menu Reference 223

Copy to Register

Move to Register
Save (copy or move) the current line or highlighted block to a text register.

Keystroke Equivalent:

<Numpad+> or <Ctrl-F11>, identical to [T-REG COPY].
<Numpad-> or <Alt-F11>, identical to [T-REG MOVE].

Full Description:

A text register is a temporary holding area for blocks of text. Once text is saved
in a text register, it can be used again and again. Text you save stays in the
register until you either save a different block of text or exit VEDIT.

“Copy to register” saves a copy of the highlighted text in a register while
“Move to register” also deletes the highlighted text fromyour file as it is placed
in the text register.

If no block is highlighted, these functions copy/move the current line to the
selected register.

� To save (copy or move) text into a text register:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker.

2. Select {BLOCK, Copy to register} (<Numpad+>) to copy the block.
Select {BLOCK, Move to register} (<Numpad->) to move the block.
You are prompted for the register number:
Register number:

3. To select the default text register “0” (the scratchpad), just press <Enter>
or press the hot-key again.

Otherwise, enter the desired text register number “0” through “100”.

HINT: When prompted for a text register number, press any function/con-
trol key to select the default “scratchpad” register “0”. For example,
simply double-press the hot-key for [T-REG COPY] to copy the
highlighted block to register “0”.

To append the block to the existing contents of a text register or insert the block
at the beginning of the existing contents, select the () Append or () Insert
option in the dialog box.

Notes:

The <Numpad> hot-keys are usually more convenient, but laptop users can
use <F11> instead.
In “overstrike-only” mode, e.g. when editing binary/data files, “Move to
register” causes the original text to be filled (overwritten) with the configurable
“block fill” character, typically spaces.

224 Chapter 6 Menu Reference Block Menu

Text register contents are lost when you exit VEDIT. However, if you restore
a previous edit session, the text register contents are also restored.

There is a limit to the amount of text that can be saved in the text registers.
This is usually between 40,000 and 60,000 characters, but can be much less if
VEDIThas limitedmemory available to it. If possible, tryworkingwith several
smaller pieces of text.

Huge blocks can be copied by first writing them to disk with {BLOCK, Write
to disk}. Then position the cursor at the destination, perhaps after opening
another file, and insert the block with {EDIT, Insert file}.

DOS, UNIX and QNX Versions:

The text register dialog box has a “terse” selection option. To select from the
first ten registers, simply press “0” through “9”. To select other registers, first
type “.” (period), type the number and then press <Enter>. For example, to
select register 10, enter “.10”.
Note the help line at the bottom of the screen; use the on-line help for more
details. This is controlled with {CONFIG, Misc, Full/Terse dialog box
options}.

See Also:

“Block Operations - Scratchpad and Text Registers” in Chapter 4.
{EDIT, Scratchpad, Cut to scratchpad}
{BLOCK, Set stream marker}, {BLOCK, Copy to cursor}

Insert Register
Insert the contents of a text register at the current cursor position.

Keystroke Equivalent:

<Numpad*> or <F11>, identical to [T-REG INSERT].

Full Description:

“Insert register” inserts the contents of a text register at the current cursor
location. If the text register is empty, this command has no effect.

� To insert the contents of a text register:
1. Position the cursor at the desired location in the file. The register contents

will be inserted just before the cursor.

2. Select {BLOCK, Insert register} (<Numpad*> or <F11>). You are
prompted for the register number:
Register number:

3. To select the default text register 0 (the scratchpad), just press <Enter>
or press the hot-key again.

Otherwise, enter the desired text register number “0” through “100”.

You can optionally have the register overwrite the existing text. Select the “[]
Overwrite” option before entering the register number.

Block Menu Chapter 6 Menu Reference 225

Notes:

The register will be inserted as the same type of block as it was saved. A line
blockwill be inserted before the current line. A columnar blockwill be inserted
on the current line and at the starting column on successive lines.

In “overstrike-only” mode, e.g. when editing binary/data files, the overwrite
option is automatically selected.

You can insert a text register even when a block is currently highlighted.

By default, the cursor will be positioned past the inserted text. Alternatively,
set {CONFIG, Emulation, Advance cursor past block insert} to “No” to
have the cursor remain at the beginning of the inserted text.

You can also insert the contents of an edit buffer. At the prompt enter the buffer
number followed by “+BUFFER”. For example, to insert buffer #5, enter
“.5+buffer”.
See the Hints and Notes for {BLOCK, Copy to register}.

See Also:

“Block Operations - Scratchpad and Text Registers” in Chapter 4.
{EDIT, Scratchpad, Paste scratchpad}
{BLOCK, Copy to register}, {BLOCK, Move to register}

Write to Disk
Write the highlighted block of text to a disk file.

Keystroke Equivalent: (None)

Full Description:

A text block of any size may be saved to disk. You can use this function to
split a large file into smaller files, or to save a text block to disk for future use.

Unlike saving text in a text register, text written to disk will be available after
you exit VEDIT.

� To save a block of text to disk:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker. You can highlight either a “stream”, “colum-
nar” or “line” block.

2. Select {BLOCK, Write to disk}. You are prompted for the desired
filename. Either enter a new filename or select an existing file to be
overwritten.

See Also:

“Block Operations - Cut & Paste Huge Blocks” in Chapter 4.
{EDIT, Insert file}

226 Chapter 6 Menu Reference Block Menu

Edit/Translate (Sub-menu)
Introduction:

This menu processes the currently marked block: change case, fill with spaces,
detab/retab, or translate to/from another character set.

Upper Case

Lower Case

Switch Case
Change the case of the current character (of limited use) or all characters in a
highlighted block (very useful).

Keystroke Equivalent: (None)

Full Description:

If the cursor is in a highlighted block of text, the case of all letters in the block
is changed. Otherwise, these functions simply change the case of the current
letter and advance the cursor to the next character. Non-letters are not affected.

After changing the case of a single character, you can repeatedly press (or hold
down) [REPEAT LAST] (<Alt-R>) to change additional characters.
These functions work with a stream, columnar or line block of any size.

See Also:

{CONFIG, Programming, Lower/Upper case key conversion}

Edit/Translate (Sub-menu) Chapter 6 Menu Reference 227

The file keymac.lib contains a keystroke macro for switching the case of
all letters from the cursor to the end of the line.

Detab (Tabs to spaces)

Retab (Spaces to tabs)
Convert Tab characters in a block to spaces; convert spaces to the optimum
number of tabs.

Keystroke Equivalent: (None)

Full Description:

If a block is marked, “Detab” converts all tab characters in the marked block
to spaces according to the currently set tab stops.

If no block is marked, the entire file is detabbed. However, any tab characters
within single or double quotes are not converted. This is useful when editing
C and other programs; literal tab characters may occur within quoted strings
and should not be converted to spaces.

Similarly, if a block is marked, “Retab” converts sequences of space characters
in the marked block to the optimal number of tabs and spaces according to the
currently set tab stops.

If no block is marked, the entire file is retabbed. However, any spaces within
single or double quotes are not converted. This is better for C and other
programs.

� To convert all Tabs in a file to spaces:
1. If necessary, set the correct tab stops with {CONFIG, Tab stops}. The

default for Windows/DOS is every 8 columns.

2. Select {BLOCK, Select all} to mark the entire file as a block.
3. Select {BLOCK, Edit/translate, Detab}. All tabs will be converted to

the correct number of spaces.

Notes:

To prevent tab characters from being inserted into your file by the <Tab> key
and some columnar operations, set {CONFIG, Tab/Fill, Expand <Tab> with
spaces} to “7”.
These functions are implemented by the macros detab.vdm and
retab.vdm. Users experienced with the VEDIT PLUS macro language can
change them to better suit their needs.

Block Delete
Delete the highlighted block of text.

Keystroke Equivalent:

(None). However, [DELETE] also deletes highlighted blocks.

228 Chapter 6 Menu Reference Edit/Translate (Sub-menu)

Full Description:

A stream, columnar or line block of any size can be deleted.

� To delete a block of text:
1. Highlight the desired text. You can highlight a “stream”, “columnar” or

“line” block of any size.

2. Select {BLOCK, Edit/translate, Block delete}. Or press [DELETE].

Notes:

It is usually simpler to delete a highlighted block by pressing [DELETE].
However if {CONFIG, Emulation, Special emulation modes} is configured
to not allow [DELETE] to delete blocks, this item must then be used.
If the block being deleted is too large for “Undo” to restore it, you will be
prompted for verification whether to still delete the block.

You can also effectively “delete” a (small) block of text by moving it into a
text register.

See Also:

{EDIT, Delete, Delete}, {EDIT, Undo, Deletion}
{BLOCK, Set stream marker}, {BLOCK, Move to register}
[DELETE]

Block Fill
Fill (overwrite) the marked block with any character, usually spaces.

Keystroke Equivalent: (None)

Full Description:

The marked block is filled (overwritten) with the configurable “block-fill”
character, typically spaces. A stream, columnar or line block of any size can
be filled.

This item is primarily used to fill (erase) columnar blocks without affecting
the position of other columns.

See Also:

{CONFIG, Tab/Fill, Block fill character}

Insert Empty Column
Insert an empty columnar block between other columns.

Keystroke Equivalent: (None)

Full Description:

This item inserts an empty block, consisting of the configurable “block-fill”
character, at the cursor position. A block is first marked (highlighted) to
indicate the size and position of the empty block to be inserted. The existing
marked text is then shifted (indented) to the right.

Edit/Translate (Sub-menu) Chapter 6 Menu Reference 229

This item makes it easy to increase the amount of space between two columns
of text.

� To insert an empty columnar block:
1. Move the cursor to the first line and column at which you want the empty

block inserted. Select {BLOCK, Set column marker} (normal: <Alt-I>).
2. Move the cursor to the bottom right corner for the empty block. Existing

text will probably be highlighted. Select {BLOCK, Set column marker}
again.

3. Select {BLOCK, Edit/translate, Insert empty column}. An empty
columnar block will be inserted and any existing text on the selected lines
will be indented to the right.

HINT: This useful (and unique) function is best understood by trying it in
a small test file.

Notes:

This function may seem confusing at first because the highlighted text is not
really processed; the highlighting simply indicates the size and position of the
empty block being inserted. The highlighted text and the text to the right of it
will be indented to make room for the empty block.

You can reduce the space between two columns of text, e.g. newspaper style,
by highlighting one or more columns of spaces and then deleting them. “Insert
empty column” performs the opposite operation of increasing the space
between two columns of text.

This function is most useful with columnar blocks, but it could be used with
stream and line blocks too.

Strip High bit
Strip the “high” (8th bit) from all characters in the marked block.

Keystroke Equivalent: (None)

Full Description:

Some word processors, such as WordStar (tm), set the high bit on some text
characters for internal formatting purposes. These text files are then difficult
to edit in VEDIT because the high bit characters appear as graphics characters
and the words are not readable.

This function strips the high (8th) bit from all characters in the marked
(highlighted) block. {BLOCK, Select all} can be used to mark the entire file
as a block.

Notes:

Use this function with care! It will convert IBM PC graphics characters and
non-english language characters into meaningless text characters.

See Also:

“Screen Display and Keyboard Characters” in Chapter 4.

230 Chapter 6 Menu Reference Edit/Translate (Sub-menu)

Sort Lines
Sort the selected lines according to the marked columns (field).

Keystroke Equivalent: (None)

Full Description:

This function sorts lines (records) into ascending order. You must first high-
light a columnar block consisting of the columns (field) to be used as the “sort
key”. For example, it could be the Last-name or Zipcode in a database. The
columnar block must extend from the first line to be sorted through the last
line to be sorted.

� To sort all lines in a block or entire file:
1. Position the cursor on the first line to be sorted and in the left-most column

of the field to be sorted.

Select {BLOCK, Set column marker} (<Alt-I>) to begin a columnar
block.

2. Position the cursor on the last line to be sorted and in the right-most column
of the field to be sorted. To sort an entire file, this must be the last line of
the file.

Select {BLOCK, Set column marker} (<Alt-I>) again.
3. Select {BLOCK, Edit/translate, Sort lines}. The lines will be sorted and

VEDIT will display its progress.

Notes:

By first sorting according to secondary keys and then sorting according to the
primary key, you can sort according to multiple keys.

This menu item can only be selected after you have marked a columnar block.

See Also:

“Sorting Lines in a Block / File” in Chapter 4.
“SORT.VDM Sort Macro” in Chapter 5.

Translate from EBCDIC

Translate to EBCDIC
Translate a block to/from EBCDIC or use a custom translation table.

Keystroke Equivalent: (None)

Full Description:

Amarked block or entire file can be translated using the built-in EBCDIC table,
the supplied ANSI table or with a user-created table. When a block/file is
translated, each byte is simply converted to another byte according to the
current table; the size of the file does not change.

Edit/Translate (Sub-menu) Chapter 6 Menu Reference 231

� Translate a file from EBCDIC to ASCII:
1. Open the EBCDIC file in the normal manner, e.g. with {FILE, Open}.
2. Select {BLOCK, Select all} to mark the entire file as a block.
3. Select {BLOCK, Edit/Translate, Translate from EBCDIC} to translate

the file to ASCII.

You may need to change {CONFIG, File handling, File type} to “0” or
“1” to recognize ASCII “newlines” and make the file more readable.

4. Select {FILE, Close buffer} or {FILE, Exit} to save the translated file.
Similarly, an ASCII file can be translated to EBCDIC with “Translate to
EBCDIC”.

Notes:

The “EBCDIC” displayed in the menu will change when a custom translation
table is loaded.

You can also display an EBCDIC file in normal ASCII without having to
translate the file. See {VIEW, Toggle display mode}.
The topic “Translating a Block or File” in Chapter 4 describes VEDIT’s
translation capabilities in more detail.

EBCDIC conversion packages are available for translating EBCDIC files with
packed (signed) decimal, packed binary, zoned and other special COBOL
fields into ASCII. Please refer to the “EBCDIC” page on our Web site or
contact us for details.

Load Translate Table
Load a custom translation table to replace the built-in EBCDIC table.

A custom translation table can be loaded to replace the built-in ASCII-
EBCDIC table. ANSI.TBL is supplied for translating between the IBM PC
graphics characters and the ANSI (Windows) character set. USER.TBL is
supplied as a template for creating your own translation table.

� To load a new translation table:
1. Select {BLOCK, Edit/translate, Load translate table}.
2. You are prompted for the desired filename which typically has a “.tbl”

extension.

Each translation table file includes the new name that will replace “EBCDIC”
in the {BLOCK, Edit/translate} sub-menu.

See Also:

{BLOCK, Edit/translate, Translate from EBCDIC}

232 Chapter 6 Menu Reference Edit/Translate (Sub-menu)

Convert Newlines (Sub-menu)
Introduction:

Thismenu converts newline characters to the selected type for DOS/Windows,
UNIX or Macintosh. Also converts between fixed-length (database) records
and normal text files.

DOS to UNIX

UNIX to DOS
Convert all CR+LF in a block to just LF.

Convert all LF in a block to CR+LF.

Keystroke Equivalent: (None)

Full Description:

“DOS to UNIX” converts all “newlines” in the highlighted block from the type
for DOS/Windows (CR+LF) to the type for UNIX (LF only). In other words,
it replaces all “Carriage-Return and Line-Feed” character pairs with just a
Line-Feed character.

If the entire file is highlighted, it converts a DOS/Windows text file into a
UNIX text file. It then also changes {CONFIG, File handling, File type} to
“1”.

“UNIX to DOS” converts all “newlines” in the highlighted block from the type
for UNIX (LF only) to the type for DOS/Windows CR+LF). In other words,
it replaces each Line-Feed character with a “Carriage-Return and Line-Feed”
character pair.

If the entire file is highlighted, it converts a UNIX text file into a DOS/Win-
dows text file. It then also changes {CONFIG, File handling, File type} to
“0”.

For example, “DOS to UNIX” can be used to fix a block which was pasted
from a DOS/Windows file into a UNIX text file.

Notes:

These items runs the convert.vdm macro without any prompts. However,
if there is an error, e.g. no newlines are found, it will return to the
CONVERT.VDM menu.

If you accidentally select “UNIX to DOS” with a DOS text file, you will have
twoCarriage-Returns at the end of each line. This can be corrected by selecting

Convert Newlines (Sub-menu) Chapter 6 Menu Reference 233

“DOS to UNIX”; you may also need to manually change {CONFIG, File
handling, File type} to “0”.
To see what is really at the end of each line, select {VIEW, Toggle display
mode} (<Alt-D> or toolbar) several times until the window displays all
characters in hexadecimal. A Carriage-Return is hex code “0D”, a Line-Feed
is hex code “0A”.

See Also:

“File Types - Win/DOS, UNIX, Mac, Binary” in Chapter 4.
{BLOCK, Convert newlines, CONVERT macro}

CONVERT macro
Convert to/from fixed-length record files. Convert to/from Macintosh files.

Keystroke Equivalent: (None)

Full Description:

This item converts all newlines in the highlight block to the selected type for
DOS/Windows, UNIX or Macintosh. It can also convert between fixed-length
(database) records and normal text files.

For example, it can convert a database file without any newlines into a normal
text file with newlines.

This item displays a simple menu of conversion options.

Notes:

This function is implemented by the macro convert.vdm. Users experi-
enced with the VEDIT PLUS macro language can change it to better suit their
needs. For example, you could easily change all {BLOCK, Convert newline}
functions to convert the entire file if no block if highlighted; as supplied, the
macro gives an error if no block is highlighted.

See Also:

“File Types - Win/DOS, UNIX, Mac, Binary” in Chapter 4.

234 Chapter 6 Menu Reference Convert Newlines (Sub-menu)

Goto Menu
Keystroke Equivalent:

<Alt-G>, This is a keystroke macro.

Introduction:

The Goto Menu gives quick access to a wide variety of locations in your file.
In addition to items in this menu, VEDIT offers numerous edit functions for
moving about your text. If you do not find an expected operation in this menu,
look in Chapter 7 (Edit Function Reference).

Beginning of File

End of File
Position the cursor at the beginning or end of the file.

Keystroke Equivalent:

<Ctrl-Home>, This is a keystroke macro.
<Ctrl-End>, This is a keystroke macro.

Full Description:

“Beginning of file” moves the cursor to the first character in the file.

“End of file” moves the cursor past the last character in the file.

Notes:

These functions may take some time to perform on very large files when the
entire file cannot be kept in memory. If the “LI” of the word “LINE” on the
status line is capitalized, the beginning of the file is in memory. If the “NE” is
capitalized, the end of the file is in memory.

Goto Menu Chapter 6 Menu Reference 235

If you only need to browse a huge file, you should open it in “Read-only”mode.
This function and other cursor movements will then be performed instantly on
even the largest files.

Block-Begin

Block-End
Move the cursor to the beginning or end of the currently highlighted block.

Keystroke Equivalent:

<Alt-[>, this is a keystroke macro.
<Alt-]>, this is a keystroke macro.

Full Description:

These functionsmove the cursor to the beginning or end of a highlighted block.
It is useful when you forget precisely where the beginning of a large block is
after it has scrolled off the screen.

Notes:

To restrict a searchwithin a highlighted block youmust first highlight the block
and thenmove the cursor to the beginning of the block. {GOTO, Block-begin}
is a convenient way of doing this.

If a block is extremely large, these functions may result in some disk activity
and delay.

See Also:

{BLOCK, Set stream marker}
{SEARCH, Search} - Search within a block

Line #
Move the cursor to the beginning of a specific line or record.

Keystroke Equivalent: (None)

Full Description:

Lines are numbered starting from the first line in your file. The current line
number is indicated on the status line. There are no actual line numbers as you
might find in a BASIC language program and the line numbers do not “stick”
to real text lines. If you insert or delete a line in the middle of your file, the line
numbers of all following lines will be changed accordingly.

{GOTO, Line #} is useful whenworking with large files. If you know an exact
or even approximate line number of a particular location in your file, you can
get to it very quickly.

� To go to a specific line (record) in the file:
1. Select {GOTO, Line #}.

236 Chapter 6 Menu Reference Goto Menu

2. You are prompted for the line number. Enter the desired line number and
press <Enter>. You can also enter numeric expressions such as
“(1245+858)/2”.

Notes:

When a file is opened for editing, you can start editing on a particular line
number by following the filename with the “-Lnnn” option.
This functionmay take some time to perform on very large fileswhen the entire
file cannot be kept in memory.

The mouse can also be used to quickly access relative positions in the file.

See Also:

{GOTO, Set Text marker}, {GOTO, Goto text marker}

Column #
Move the cursor to a specific column in the current line.

Keystroke Equivalent: (None)

Full Description:

� To go to a specific column in the current line:
1. Select {GOTO, Column #}.
2. You are prompted for the column number. Enter the desired column

number and press <Enter>. You can also enter numeric expressions such
as “1980/4”.

Notes:

This item is primarily useful when editing very long lines. For example, if you
know that a line is about 2000 characters long and you want to go to themiddle
of it, you could simply go to column 1000.

The mouse and bottom scroll bar can also be used to scroll sideways in long
lines.

File Position
Move the cursor to a specific file position.

Keystroke Equivalent: (None)

Full Description:

This function moves the cursor directly to the ‘n’th character (offset) in a file.
The first character in the file is considered to be the 0’th character. The position
at the end of the file is the same as the file size. (There are good reasons for
counting from 0).

This function is often useful when editing binary and data files.

Goto Menu Chapter 6 Menu Reference 237

� To go to a specific file position (offset):
1. Select {GOTO, File position}.
2. You are prompted for the file position. Enter the desired position and press

<Enter>. You can also enter numeric expressions such as “128000/4”, or
enter numbers in hexadecimal such as “0xF7A43”.

Set Text Marker
Set a text marker at the current cursor location.

Keystroke Equivalent:

<Ctrl-D>, This is a keystroke macro.

Full Description:

Ten invisible “text markers” are available for remembering locations in your
file and returning to them later. These markers “stick” to the character at which
you set them. If you insert or delete text in front of a text marker, the marker
will continue to stick to the same character.

Marker information is not saved in files. As a result, markers are maintained
only until you close the file or exit VEDIT. However, if you restore a previous
edit session, the text markers are also restored.

� To set a text marker:
1. Move the cursor to the desired position.

2. Select {GOTO, Set text marker}. You are prompted with:
Marker number: (0-9)

3. Enter the desired marker number “0” through “9”. As a shortcut, you can
immediately press <Enter>, <Ctrl-D> again (or any function/control
key) to select marker “0”.

Notes:

Text markers are invisible; the only way to determine where, or if, they are set
is by using {GOTO, Goto text marker} to position the cursor at the marker.
{BLOCK, Remove markers} only removes the block markers, it does not
affect the text markers. There is no way (or reason) to remove text markers
once they are set.

If you restore a previous edit session, all text markers are also restored.

Certain editing operations affect both text and block markers:

� Any operation which deletes text at or around a marker leaves the marker
set at the first character past the deleted text. “Undoing” the deletion will
not restore the marker to its original position.

� Moving a block that contains a marker does not move the marker. The
marker behaves exactly as if the original text were deleted.

� Reformatting a paragraph moves any markers located within that para-
graph to the last character in the paragraph.

238 Chapter 6 Menu Reference Goto Menu

See Also:

{GOTO, Goto text marker}

Goto Text Marker
Return the cursor to a previously set text marker.

Keystroke Equivalent:

<Ctrl-G>, This is a keystroke macro.

Full Description:

“Goto Marker” moves the cursor to the location of a desired text marker. The
marker must first be set using {GOTO, Set text marker}. You can have up to
10 markers set at any one time.

� To move back to a previously marked position:
1. Select {GOTO, Goto text marker}.
2. You are prompted for the text marker. Enter the desired marker number

“0” through “9”. As a shortcut, you can immediately press <Enter> or
<Ctrl-G> again to select marker “0”.

Notes:

See the description of {GOTO, Set text marker} for a discussion of text
markers.

When working with a large multi-megabyte file, {GOTO, Goto text marker}
may take a few moments to execute.

See Also:

{GOTO, Set text marker}

Matching ()
Move the cursor to the character which is logically paired with the character
at the cursor.

Keystroke Equivalent:

<Ctrl-]>, This is a keystroke macro.

Full Description:

This item examines the character at the current cursor position and attempts to
locate a logically matching character. The characters which have logical
matches are “(”, “)”, “{”, “}”, “[”, “]”, “<” and “>”. These characters are
frequently used in program source code, arithmetic expressions and other
logical constructs. {GOTO, Matching ()} is designed to help you move from
one end of these logical units to the other and to locate mismatches.

For example, if you place the cursor at the first “(” in the following expression
and select this item, the cursor will be moved to the last “)” instead of the first
one it finds.

Goto Menu Chapter 6 Menu Reference 239

((a/2) + (b/3))

While it is easy to see that all parentheses properly match in the above
expression, some expressions, functions and program source code routines can
be so lengthy and complex that it may not be obvious. {GOTO, Matching (
)} can check for proper matching over thousands of lines of source code.
VEDIT matches these characters in either direction. If the cursor is on an
opening character “(”, “{”, “[” or “<”, VEDIT searches forward for a match.
If the cursor is on a closing character “)”, “}”, “]” or “>”, VEDIT searches
backward for a match.

� To locate a matching character:
1. Place the cursor on the character you would like to match. If the cursor is

not located on such a character when this item is selected, the first of these
eight characters will be found for you.

2. Select {GOTO, Matching ()}. The cursor will be moved to the matching
character if there is one. Otherwise an error is given.

HINT: Here’s a method for checking an entire file for proper character
matching. Place a “(” at the beginning of the file and a “)” at the end.
Place the cursor at one of these two characters and select {GOTO,
Matching ()}. If the cursor moves all the way to the other end of
the file without an error message, everything is properly paired.

240 Chapter 6 Menu Reference Goto Menu

Misc Menu
Keystroke Equivalent:

<Alt-M>, This is a keystroke macro.

ASCII Table
Display ASCII table and optionally enter any desired characters.

Keystroke Equivalent: (None)

Full Description:

“ASCII table” displays a table of all possible characters with their correspond-
ing decimal value. This includes all control and graphic characters.

The ASCII table is particularly useful for entering graphics characters when
you need to first see the characters before deciding which to enter.

� To display the ASCII table and insert a desired character:
1. Select {MISC, ASCII table}. If necessary, scroll the window until the

desired character is displayed.

2. Highlight the character to be inserted with the mouse or the cursor keys.

3. Press the [Insert] button. If desired, additional characters can be inserted.

DOS, UNIX and QNX Versions:

The display is three “windows” long, press <Enter> to toggle to the next
window. Press “I” to insert a particular value — you will be prompted for its
decimal value. Only one character can be entered.

Misc Menu Chapter 6 Menu Reference 241

Notes:

If you already know the decimal value of a character you can enter it (with
Windows or DOS) by holding down the <Alt> key and typing the value on the
numeric keypad; the character will be entered when you release the <Alt> key.
The IBM PC displays the characters with values 00 and 255 as a space,
effectively making them invisible. For this reason, VEDIT can optionally
display the “Null” (value 00) as any other character; this is set with {CONFIG,
Characters/Cursors, Null display character}.
VEDIT can display control and graphics characters in the file in several ways.
This is described under “Screen Display &Keyboard Characters - Control and
Graphics Character display” in Chapter 4 (Editing Guide).

You can also insert control characters using [ENTER CTRL].

See Also:

“Entering Control and Graphics Characters” in Chapter 4.
[ENTER CTRL]

Box Drawing Mode
Draw “graphic” boxes using cursor keys.

Keystroke Equivalent: (None)

Full Description:

Enters a special mode for drawing decorative boxes in the current file using
the cursor keys. The style for vertical and horizontal lines is selected with
{CONFIG, Misc, Box drawing style}.
Press <Esc> to exit this mode and return to normal editing.

Notes:

This function is only available when a font using the “OEM” character set has
been loaded. “ANSI” fonts do not have box drawing characters.

This function is implemented by the box-draw.vdm macro.

DOS Shell
Suspend VEDIT and display the DOS prompt.

Keystroke Equivalent: (None)

Full Description:

“DOSShell” temporarily suspendsVEDIT and “shells out” to aDOSbox.You
can then run any DOS command and/or programs. These commands can range
from simple directory and file management commands (i.e. “DIR”, “COPY”,
“DEL”, “CHDIR”) to running other application programs.

Give the DOS command “exit” to return to VEDIT.

242 Chapter 6 Menu Reference Misc Menu

{MISC, DOS shell} does not affect your files, it merely suspends VEDIT.
When you return to VEDIT, you will find everything exactly as it was when
you left it.

� To temporarily suspend VEDIT and enter DOS:
1. It is a good idea to select {FILE, Save all} to save all file before shelling

to DOS.

2. Select {MISC, DOS shell}. You may now see a copyright notice for your
operating system and the DOS command prompt.

3. You can now execute DOS commands and other software.

4. To return to VEDIT, type “exit” at the DOS prompt.

WARNING: If you forget to return to VEDIT before you shut down your
computer, any changes made since the last time your files
were saved will be lost! Therefore, it is a good habit to save
all files before shelling out to DOS.

DO NOT delete files that are currently open for editing or
have a filename extension of “.r$$” or “.rR$”. These may be
temporary files in use by VEDIT.

DOS Version:

While shelled out to DOS,VEDIT changes theDOS prompt to “pathname>>”.
The double “>>” is a reminder that VEDIT is still loaded. This can be changed
with Config_String(OS_PROMPT) in the vedit.cfg file.
YOU SHOULD NOT load any “resident” (TSR) programs while shelled out
to DOS!

If V-SWAP is installed in memory, VEDIT will use it to swap itself out of
memory before re-entering DOS. V-SWAP can be disabled by setting {CON-
FIG, File handling, Use V-SWAP when entering DOS} to “No”.
If VEDIT has used up all available memory and V-SWAP is not installed or
disabled, you will not be able to shell out to DOS.

Notes:

TheWindows 95/98 version shells to DOS with the MSDOS95.PIF file in the
VEDIT Home Directory. If desired, right-click on it, select “Properties” and
change whether the DOS window is opened full-screen or the size of the
window.

{MISC, DOS shell}will not work unless the DOS “COMSPEC” parameter is
properly set. This is usually set automatically or it may have an override in
your AUTOEXEC.BAT file using a command similar to the following:

SET COMSPEC=C:\COMMAND.COM

Refer to a DOS manual for information on the “COMSPEC” parameter.

See Also:

“RUNSHELL - Run other programs” in Chapter 5.
{MISC, Run program}

Misc Menu Chapter 6 Menu Reference 243

Run Program
Execute a Windows/DOS program and return to VEDIT.

Keystroke Equivalent: (None)

Full Description:

“Run program” executes DOS commands or runs Windows/DOS programs.
Unlike {MISC, DOS shell}, {MISC, Run program} automatically returns to
VEDIT as soon as the requested command or program is completed. Use
{MISC, DOS shell} to run multiple commands or programs and use {MISC,
Run program} to run a single command or program.

� To execute a single DOS command or program:
1. Select {MISC, Run program}. You are prompted with:

DOS command / program:

2. Enter the desired DOS command or program name. You may enter any
valid DOS command or run any program which may be run using a single
command.

Notes:

The functions {Save and run program 1/2} in the default {USER} menu are
often preferable. They have the advantage of saving and closing all files before
running another program; when done, the files are re-opened.

All Notes and Warnings for {MISC, DOS shell} also apply here.
If you frequently run a program which requires a series of commands to
execute, you should consider creating a “batch” file and using {MISC, Run
program} to execute the batch file.

See Also:

“RUNSHELL - Run other programs” in Chapter 5.
{MISC, DOS shell}

WILDFILE Macro
Start up the multiple file processing macro WILDFILE.VDM.

Keystroke Equivalent: (None)

Full Description:

This starts up the wildfile.vdmmacro which is fully described in Chapter
5 (Advanced Topics).

This macro is often used to perform a search and/or replace on entire groups
of files. This can include files currently being edited and/or any other files.

The groups of files to be processed can be specified using the wildcard
characters “*” and “?”. For example, you could perform a search and/or replace
on all .c and .h files in any directory or directories. Optionally, all matching
files in all subdirectories can also be processed.

244 Chapter 6 Menu Reference Misc Menu

See Also:

“WILDFILE - Multi-file Processing” in Chapter 5.
{MISC, Load/Execute macro}

More Macros
Load and execute other supplied macros.

Keystroke Equivalent: (None)

Full Description:

This sub-menu quickly loads and executes many of the macros supplied with
VEDIT. Many of these macros are described in detail in Chapter 5 (Advanced
Topics).

Select this sub-menu and press [HELP] (<F1>) for a short description of each
macro.

Load/Execute Macro

Load/Execute User Macro
Load and execute a command macro.

Keystroke Equivalent:

<Ctrl-F7>, This is a keystroke macro.

Full Description:

These items loads and immediately executes a VEDIT “command macro”. It
is typically used to load and execute macros which are not listed in {MISC,
More macros}, such as macros which you write yourself.
Most macros supplied with VEDIT are installed into the VEDIT Macro
Directory, typically c:\vedit\macros. We suggest that user written macros be
saved in the VEDIT User Macro Directory, typically c:\vedit\user-mac.

� To load and execute a command macro:
1. Select {MISC, Load/Execute macro}.
2. Either enter the desired filename or use the point and shoot filename

selection.

“Load/Execute Macro” defaults to all “.vdm” files in the VEDIT Macro
Directory, e.g. c:\vedit\macros*.vdm.
“Load/ExecuteUserMacro” defaults to all “.vdm” files in theVEDIT User
Macro Directory, e.g. c:\vedit\user-mac*.vdm. We suggest that you
save your own macros in this directory.

3. You are prompted for the text register number in which to load the macro.
By convention, macros are usually loaded into registers 10 through 100.
The default register is “100”.

Misc Menu Chapter 6 Menu Reference 245

DOS, UNIX and QNX Versions:

If “terse” dialog boxes have been selected, press <Enter> at the short filename
prompt for point and shoot file selection.

Notes:

When entering a command macro filename, you can leave off the default
“.vdm” extension.

Don’t confuse “command macros” stored in files and text registers with
“keystroke macros”. Command macros are programs written in the VEDIT
PLUS macro language. Keystroke macros are “strings” of key-presses, possi-
bly including macro language commands, that are assigned to “hot-keys”.

Use {HELP, Text registers} to determine which registers are empty and
therefore available for holding command macros.

If you use a custom macro often, you may want to add it to the {USER}menu
for easier access.

See Also:

“Command Macros” in Chapter 5.
{HELP, Text registers}, {MISC, Execute macro}

Execute Macro
Execute the command macro stored in a text register.

Keystroke Equivalent:

<Ctrl-F8>, This is a keystroke macro.

Full Description:

Once amacro has been loaded into a register, it may be executed using {MISC,
Execute macro}. Except for the operation of loading a macro into a register,
this item is identical to {MISC, Load/Execute macro}.
{MISC, Execute macro} is often used to repeatedly execute a macro after it
is loaded and executed for the first time with {MISC, Load/Execute macro}.

Notes:

You can execute a command macro stored in an edit buffer, but not in the
current edit buffer. To execute a macro in the current edit buffer, you must
first switch to another edit buffer using {FILE, Buffer switch} (<F4>). Then
enter a text register number of “b+buffer” where ‘b’ is the buffer number.

See Also:

{MISC, Load/Execute macro}

246 Chapter 6 Menu Reference Misc Menu

Load Template File
Load a template editing macro and enable template editing

Keystroke Equivalent: (None)

Full Description:

This item loads a new template editingmacro file, such asc.vtm,html.vtm
or a custom macro. It also enables {CONFIG, Programming, Enable tem-
plate editing} in the current file.
You are prompted for the desired filename. The file selection dialog box starts
with all *.vtm files in the VEDIT Home Directory.

Notes:

VEDIT can automatically load a template editing macro during startup, and
enable this feature for all .c and .html files being edited. See the topics
“Template Editing” and “STARTUP.VDM File” in Chapter 5 for details.

{CONFIG, Programming, Enable template editing} is only enabled in the
current file (buffer) regardless of how {CONFIG, Config all buffers} is set.
You may have to manually enable it for other buffers.

Load Syntax File
Load a syntax highlighting definition file and enable this feature

Keystroke Equivalent: (None)

Full Description:

This item loads a new syntax highlighting definition file, such as c.syn,
html.syn or a custom file. It also enables {CONFIG, Programming,
Enable color syntax highlighting} in the current file.
You are prompted for the desired filename. The file selection dialog box starts
with all *.syn files in the VEDIT Home Directory.

Notes:

VEDIT can automatically load a syntax highlighting file forCorHTMLduring
startup, and enable this feature for all .c or .html files being edited. See the
topics “Syntax Highlighting” and “STARTUP.VDM File” in Chapter 5 for
details.

{CONFIG, Programming, Enable color syntax highlighting} is only en-
abled in the current file (buffer) regardless of how {CONFIG, Config all
buffers} is set. You may have to manually enable it for other buffers.

Load Compiler Support
Load the compiler support items into the {Tools} menu.

Keystroke Equivalent: (None)

Misc Menu Chapter 6 Menu Reference 247

Full Description:

This item loads the compiler support items into the {Tools} menu, replacing
any existing {Tools} or {Tutorial} menu.
You can load either the “normal” compiler support which uses the com-
pile.cnf configuration file or the Java SDK specific support which uses
the java-sdk.cnf configuration file and a slightly different {JavaTools}
menu. You can easily switch between Java SDK and another compiler by
selecting {MISC, Load compiler support} again.

Notes:

If the normal compiler support is selected, it loads the compile.mnu menu
file. If the Java SDK compiler support is selected, it loads the java-
sdk.mnu menu file.

For the compiler support to work under DOS, it is usually necessary for
V-SWAP to already be installed in memory.

This function is implemented by the compile.vdm macro.

The original startup.vdmmacro loads the {Tutorial}menu, but can easily
be modified to load the {Tools} menu instead.

See Also:

“Integrated Compiler Support” in Chapter 5.
On-line help topic “Compiler Support” (DOS: “COMPILE”) .

Load {TOOLS} Menu

Load {USER} Menu
Load a new {TOOLS} or {USER} menu.

Keystroke Equivalent: (None)

Full Description:

These items load a newmenu file as the {TOOLS} or {USER}menu. You are
prompted for the desired filename. The file selection dialog box initially
displays all *.mnu files in the VEDIT Home Directory.
Since only user.mnu is supplied with VEDIT and is automatically loaded
during startup, this function’s purpose is to load custom {USER} menus.

Notes:

The topic “{USER} and {TOOL}Menu” inChapter 5 describes how tomodify
the existing {USER} menu or create a custom “.mnu” file.

248 Chapter 6 Menu Reference Misc Menu

Search Menu
Keystroke Equivalent:

<Alt-S>, This is a keystroke macro.

Introduction:

You can easily and quickly search for a particular string of text and optionally
replace it with different text. Just the current file or all open files can be
searched. Any two open files can also be compared.

Search
Search for a string of text.

Keystroke Equivalent:

<F2> or <Ctrl-F>, These are keystroke macro

Full Description:

Starts a new search in the current file for the specified search string. The
flexible search dialog box includes options for searching only for entire words,
making the search case sensitive, or restricting the search to the highlighted
block.

Besides searching for a literal sequence of characters, you can also search using
VEDIT’s powerful pattern matching or regular expressions. These search
modes are fully described under “Search and Replace” in Chapter 4 (Editing
Guide). Pattern matching is the default.

You can search for additional occurrences in the forward or backward direc-
tions. You can also search for additional occurrences in other files.

� To perform a search:
1. Select {SEARCH, Search} (<F2> or <Ctrl-F>).
2. Enter the search string, the sequence of characters to be located.
3. Check that the desired search mode is selected, e.g. “Simple”, “Pattern

matching” or “Regular expressions”. See below or use on-line help.

Search Menu Chapter 6 Menu Reference 249

Select any desired search options.

4. Press <Enter> or the [Next] button to search in the forwards direction
from the cursor position to the end of the file.

Or select [Prev] to search backwards towards the beginning of the file.
If the string is found, the cursor is positioned on its first character and the
entire string is highlighted. If the search string is not found, VEDIT
displays an error message.

5. To search for the next occurrence of the same string, select {SEARCH,
Next} (<F3>) or {SEARCH, Previous} (<Shft-F3>).

HINTS: Previous search strings can be recalled. In the Windows version,
press the recall arrow. (DOS/UNIX/QNX: press [CURSOR UP]).
You can also edit the search string being entered or that you
recalled.

The on-line help for searching is extensive. It explains how to
search for special characters such as “newline”, “null”, control and
graphics characters.

Search Modes:

The dialog box’s initial search mode is set by {CONFIG, Search options,
Default search mode}. The default mode is “Pattern matching”.
Simple A simple search without pattern matching or regular ex-

pressions is performed. There are no special characters;
there is no “wildcard” type searching.

Pattern VEDIT’s “pattern matching” can be used to search for
many types of characters, e.g. “wildcards”. In this mode,
only the “|” (pipe or vertical bar) character is special. For
example use “|013” to search for a carriage return, “|000”
to search for a null. Use “||” to search for a single “|” in the
file.

Reg-Exp UNIX-style “regular expressions” can be used to search
for complex patterns of characters; portions of the
matched text can also be used in the replacement side.
Regular expressions are much more technical than pattern
matching. It is generally not suitable for simple searches
because many characters have a special meaning. To
search for a special character, precede it with “\”.

Reg-Exp (Max) Both “minimal” and “maximized” type regular expres-
sions are supported. See “Maximize Regular Expressions”
in Chapter 4 for a description of this technical topic.

Search Options

Case The search is case sensitive, e.g. a search for “the” will not
match “The”. Otherwise the search is not case sensitive.
The dialog box’s initial value is set by {CONFIG, Search
options, Default Case-sensitive option}.

250 Chapter 6 Menu Reference Search Menu

Word Restricts the search to entire “words”, e.g. a search for
“the” will not find “there”, “other” and similar words. It is
equivalent to entering, e.g. “|Sthe|S” using pattern match-
ing.

Begin of file Start searching from the beginning of the file; otherwise
the search starts from the current cursor position. In a
block search, it starts searching at the beginning of the
block.

Local Restricts the search to the portion of the file currently in
memory. It also causes the “Begin” option to start search-
ing from the beginning of the text currently in memory. It
can be useful when searching in huge files to prevent an
unsuccessful search from wasting time examining the
entire file when you only want to search nearby.

Block Restricts the search to the highlighted block. This option
is selected automatically if the cursor is within, or imme-
diately past the block.

DOS, UNIX and QNX Versions:

The “terse” dialog box only displays some options. Immediately press
<Enter> to switch to the full dialog box.
In the terse dialog box, the button [Again] re-uses the previously entered search
string. It is often used in conjunction with the [] B-O-F option to restart the
search from the beginning of the file, or with the [] Prev option to search again
in the backwards direction.

Searching within a block.

You can restrict the search (or replace) to a highlighted block, even a columnar
block. This is useful for search & replace operations that you only want to
make in a portion of the file.

� To search within a block of text:
1. Highlight the desired text as a stream, line or columnar block. You must

set both block markers. “BLOCK” should be displayed on the status line.
2. Assuming you want to search forwards in the block, we suggest moving

the cursor to the beginning of the block, e.g. with {GOTO, Block-begin}
(<Alt-[>). The search starts at the cursor position, not necessarily at the
beginning of the block. See the rules below.

3. Select {SEARCH, Search} (<F2>).
If the cursor is within the block, the [] Block option will already be
selected; otherwise select this option.

Enter the search string and select any options as usual. Press the button
corresponding to the desired search direction.

Many other editors simply force the search to the beginning of the block after
you highlight the text. However, VEDIT has additional flexibility so that you

Search Menu Chapter 6 Menu Reference 251

can highlight a block and also search outside the block, e.g. search for the
location to which you want to copy the block.

The following rules govern searching within blocks:
1. If the cursor is within the highlighted block when you select {SEARCH,

Search} or {SEARCH, Replace} the [] Block search option is automat-
ically selected. Disable it if you want to search the entire file.

2. The search normally starts at the current cursor position and not automat-
ically at the beginning of the block.

However, if the cursor is not within the block and you select the [] Block
option, a forward search automatically starts at the beginning of the block.
Similarly, a backwards search starts at the end of the block.

3. The entire search string must be found within the highlighted text; this is
especially important when searching within columnar blocks. (In other
words, VEDIT will not locate a word where half of it is highlighted and
the other half is not highlighted.)

Notes:

The search and replacement strings are limited to 260 characters.

The contents of a text register can be used as the entire search/replace string
or as a portion of it. In pattern matching mode, use “|@(r)” to include text
register ‘r’ in the search/replace string. In regular expression mode, use
“\@(r)”. This permits “variable” search/replace strings.
To search for a “newline”, use “|N” in pattern matching mode, or “\N” in
regular expression mode. In the DOS version, you can alternatively press
<Ctrl-N>. This will display the “newline” characters according to the current
file type, e.g. <CR><LF>. (The <Ctrl-N> is not configurable; think “N” for
“newline”.)

To search for control (or other) characters, use “|ddd” in pattern matching
mode, or “\dddd” in regular expressionmode, where ‘ddd’ is the decimal value
of the character. In the DOS version, you can alternatively type [ENTER
CTRL] (<Ctrl-Q>) followed by the control character.
Character values can also be entered in hexadecimal using “|Hhh” in pattern
matching mode, or “\hhh” in regular expression mode.
To search for a null character with decimal value “000”, use “|000” in pattern
matching mode, or “\d000” or “\0” in regular expression mode.
DOS and Windows only: To search for graphics (or other) characters, hold
down the <Alt> key while you type the decimal value of the character on the
numeric keypad. In Windows, precede the decimal value with “0” to prevent
Windows from translating the character from the IBM-PC (OEM) to the ANSI
character sets; e.g. to search for the character with value 132, type <Alt> 0132.

See Also:

“Search and Replace” in Chapter 4.
{SEARCH, Again}

252 Chapter 6 Menu Reference Search Menu

Replace
Locate a text string and replace it with another text string.

Keystroke Equivalent:

<Alt-F2> or <Ctrl-H>, They are keystroke macros.

Full Description:

Starts a new search for the specified search string; and if matching text is
found, replaces it with the replace string.
The replacement can be performed a single time, globally throughout the file
or selectively.

The same search mode and options as for {SEARCH, Search} are used.

� To perform a search and replace operation:
1. Select {SEARCH, Replace} (<Alt-F2>).
2. Enter the “search string” in the same way as for {SEARCH, Search}.
3. Enter the “replacement string” exactly as you want it in the text. Lower

case letters are not converted to upper case, nor do they match the case of
the original text. (If you need this capability, youwill have to use “Regular
Expressions”).

If found, the cursor will be positioned just past the first occurrence of the
located text and you are prompted with:

Select the desired option:

[Yes] Replace the text for this occurrence and immediately search
for the next occurrence.

[No] Don’t replace the text for this occurrence; immediately search
for the next occurrence.

[All] Replace the text for this and all remaining occurrenceswithout
prompting. (Note: “all” occurrences are replaced only if the
operation was started at the beginning of the file.)

[One] Replace the text for this occurrence and return to normal
editing.

[Cancel] Don’t replace the text for this occurrence and cancel the
replace operation; return to normal editing.

Notes:

The description and notes for {SEARCH, Search} apply here too.

Search Menu Chapter 6 Menu Reference 253

With VEDIT’s normal “pattern matching”, located text cannot be part of the
replacement text. However, the “regular expression” search mode has this
capability. For example the regular expression search string “{[Hh]}ello}”will
locate “Hello” or “hello”. The replacement string “\1i” will replace “Hello”
with “Hi” and “hello” with “hi”. Regular expressions are fully described in
Chapter 4 (Editing Guide).

See Also:

{SEARCH, Search}, {SEARCH, Again}

Next

Previous
Repeat the last “Search” or “Replace” operation again in the forwards or
backwards direction.

Keystroke Equivalent:

<F3>, This is a keystroke macro for {SEARCH, Next}.
<Shft-F3>, This is a keystroke macro for {SEARCH, Previous}.

Full Description:

“Next” repeats the last “Search” or “Replace” operation again in the forwards
direction toward the end of the file, starting at the cursor position in the current
file.

Similarly, “Previous” repeats it in the backwards direction toward the begin-
ning of the file.

The same search options will be used that were specified for the original
search/replace. It will only be restricted to the highlighted block of text if the
original search/replace was also so restricted.

If desired, you can switch to another buffer (file) and repeat the search/replace
there.

Incremental Search
Search for text as you enter the search string.

Keystroke Equivalent:

<Ctrl-I>, This is a keystroke macro.

Full Description:

This items prompts for a search string and searches the current file, starting
from the cursor position, for the accumulated search string after each key-
stroke. Press <Esc> when done. This is a convenient way to search without
having to enter more of the search string than is necessary.

Following each keystroke, if matching text is found, it is highlighted. Other-
wise the previously marked text remains highlighted. If desired, you can then
press <Backspace> and change the search string.

254 Chapter 6 Menu Reference Search Menu

The following function/control keys can be used:

<Esc> Finishes the incremental search.

<Backspace> Erases the last entered character and backs up to the
previous cursor position.

<Ctrl-N> Enters the current newline character(s) into the search
string.

[ENTER CTRL] (Default: <Ctrl-Q>) Enters the subsequent control
character into the search string.

<Enter> Searches for the next occurrence.

You can later select {SEARCH, Next} or {SEARCH, Previous} to find the
next/previous occurrence of the string.

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled. The search mode (simple, pattern matching,
regular expressions) is set by {CONFIG, Search options, Default search
mode}.
This function is implemented by the srchincr.vdm macro.

Since incremental searching that fails in huge files can be time consuming, this
macro can be set up to initially perform a “local” search. Seesrchincr.vdm
for details.

Search Block/Word
Search for occurrences of block or word at cursor.

Keystroke Equivalent:

<Shft-F2>, This is a keystroke macro.

Full Description:

This item searches for the next occurrence of the text which is currently
highlighted as a block. The search starts at the cursor position. If no block is
highlighted, it searches for the word at the cursor position; if the cursor is on
a space following a word, it searches for the preceding word and a space.

You can either press the hot-key again or {SEARCH, Next} (<F3>) to search
for additional occurrences.

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled.
This function is implemented by the srchblck.vdm macro.

Search Menu Chapter 6 Menu Reference 255

Search All Buffers
Search all open files for a string of text.

Keystroke Equivalent:

<Ctrl-F2>, This is a keystroke macro.

Full Description:

This items prompts for a search string and then searches all buffers (files)
currently being edited for the specified string. You can then make any desired
editing changes.

For example, you can easily search all modules (files) that make up a complex
program, or all chapters that make up a manuscript.

The search starts with the current buffer and continues with all open buffers.
Assuming the buffer has an open file, the entire file is searched. Pressing
[VISUAL EXIT] (default: <Ctrl-E>) searches for the next occurrence,
switching to another buffer (file) if necessary. Pressing [VISUAL ESCAPE]
(default: <Alt-F10>) ends the search and restores the normal operation of
[VISUAL EXIT].

� To search all open files for a string of text:
1. Select {SEARCH, Search all buffers}.
2. At the prompt, enter the desired search string. Simply press <Enter> to

use the same string as for the last {SEARCH, Search}.
3. When the string is found, you can make any desired editing changes.

4. Press [VISUAL EXIT] (<Ctrl-E>) to search for the next occurrence.
5. Press [VISUAL ESCAPE] (<Alt-F10>) when done searching.

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled. The search mode is set by {CONFIG, Search
options, Default search mode}. Other search options cannot be specified.
(This function will be an option in the search dialog box in a future version.)

This function is implemented by the sallbuff.vdm macro.

TheWILDFILE macro can also search/replace numerous files without having
to simultaneously load them into VEDIT. WILDFILE can search/replace
thousands of files in one operation, e.g. it can search all files in a subdirectory
tree.

See Also:

“WILDFILE - Multi-file Processing” in Chapter 5.
{SEARCH, Search}

256 Chapter 6 Menu Reference Search Menu

Compare Buffers
Perform a byte-by-byte comparison between two buffers (files).

Keystroke Equivalent:

<Ctrl-F3>, This is a keystroke macro.

Full Description:

This function performs a quick comparison of two buffers (files). It compares
the current buffer with the selected one. The comparison starts at the current
cursor position of both buffers, and both cursor positions are advanced over
all matching characters. To continue the comparison, you must first manually
re-align the cursor in both buffers.

As a convenience, if only two files are being edited, this function skips the
selection prompt and immediately compares against the “other” file.

� To compare two buffers (files):
1. If necessary, switch to both buffers and ensure that the cursor in each

buffer is in the correct position for starting the comparison. Remain in
either buffer.

2. Select {SEARCH, Compare buffers} (<Ctrl-F3>). If only two buffers
are open, the comparison starts immediately and you should notice that
the cursor has moved over all matching characters.

If more than two buffers are open, you are prompted for the “other” buffer
number with the buffer selection dialog box.
Buffer number:

3. Enter the desired buffer number and select a buffer using point and shoot.
Simply press <Enter> or any function/control keys to select the main edit
buffer #1.

Notes:

(DOS, UNIX, QNX versions) If “terse” dialog boxes have been selected, erase
the default “1” buffer and then press <Enter> for point and shoot buffer
selection.

To perform a case sensitive comparison, e.g. to compare two binary files,
enable {SEARCH, Config, Default Case-sensitive option}.
The supplied COMPARE file comparison macro is more sophisticated and
often easier to use. It can automatically re-align the files being compared to
continue the comparison.

See Also:

“COMPARE - Compare Files” in Chapter 5.

Search Menu Chapter 6 Menu Reference 257

Window Menu
Keystroke Equivalent:

<Alt-W>, This is a keystroke macro.

Introduction:

The {Window} menu lets you cascade or tile windows, create new (split)
windows, close and remove windows, and switch to any desired window.

Cascade

Tile Horizontally

Tile Vertically
Rearrange the existing windows into a cascading or tiled view.

Keystroke Equivalent: (None)

Full Description:

“Cascade” resizes all windows to the same size; it moves them so that they
partially overlap each other with all filenames on the top border visible. The
most recently used windows will be on top.

“Tile” moves and resizes all windows so that they fit on the screen without
overlapping (the windows may be very small). “Tile horizontally” gives a
preference to full width windows, “Tile vertically” gives a preference to
side-by-side full height windows.

258 Chapter 6 Menu Reference Window Menu

Notes:

Some VEDIT macros create special “reserved” windows at the top or bottom
of the screen that cannot be cascaded, tiled, or resized.

See Also:

“Windows” in Chapter 4.

Arrange Icons
Line up minimized icons at bottom of VEDIT’s desktop

Keystroke Equivalent: (None)

Full Description:

“Arrange Icons” neatly arranges all icons corresponding to minimized editing
windows at the bottom of the VEDIT desktop area.

Notes:

The minimized icons are not visible if the current window is zoomed to
full-size or if any window is otherwise overlaying the icons. You may have to
move windows to see them all.

Split
Split the current window into two horizontal or vertical custom sizedwindows.

Keystroke Equivalent: (None)

Full Description:

This item split the current window into twowindows, each displaying the same
file. This lets you view and edit two regions of the file without having to
manually scroll back and forth. For example, you may want to refer to the
definitions listed at the beginning of a file while you are editing in the middle
of the file.

The dialog box lets you specify the location of the new window in the top,
bottom, left or right half of the current window. You can also specify the
number of lines/columns in the new window. The default value of “0” splits
the window exactly in half.

Use {WINDOW, Next window} (<Ctrl-F6>) {WINDOW, Previous win-
dow} (<Ctrl-F5>), {WINDOW, Switch} (<Alt-F5>) or the mouse to switch
to the newwindow. You can then examine or edit another part of the same file.
Each window on the same file can be scrolled independently. A separate cursor
position is maintained in each window.

Notes:

VEDIT always keeps all windows on the same file up to date. When the
windows display the same region of the file, you will notice your edit changes
occurring in both windows.

You can resize the windows after performing a vertical/horizontal split.

Window Menu Chapter 6 Menu Reference 259

VEDIT supports separate colors for each window. {MISC, Color toggle}
toggles the current window through different colors.

{FILE, Open (More), Horizontal window} internally performs a “Horizontal
split” as it opens a new file for editing. Similarly, {FILE, Open (More),
Vertical window} performs a “Vertical split”.
VEDIT automatically assigns each new window the first unused ID number.
However, for routine editing it is not necessary to knowawindow’s IDnumber.

See Also:

“Windows” in Chapter 4.
{WINDOW, Switch}, {VIEW, Toggle Hex-mode split}

Close
Close the current window and close the buffer (file) displayed in it.

Keystroke Equivalent:

<Ctrl-F4>, This is a keystroke macro.

Full Description:

This item closes the current window; it is the same as clicking the mouse on
the windows’s “close” button. If the window contains an altered file AND is
the only window displaying that file, it closes the file, same as {FILE, Close},
prompting whether the file should be saved or abandoned. Otherwise, it only
closes the window.

When a buffer (file) is displayed in two or more windows, this function closes
(deletes) the additional windows in which it is displayed.

Notes:

We recommend using this function, or (equivalent) clicking the mouse on the
windows “close” button, as the normal way to close files.

See Also:

“Editing Multiple Files - Closing Files” in Chapter 4.
{FILE, Close}

Close all (Windows version only)
Closes all windows and buffers (files).

Keystroke Equivalent: (None)

Full Description:

This item closes all windows and buffers; you can save or abandon each
modified file, similar to {FILE, Exit}.
It should immediately be followed by {FILE, Open} (or toolbar) to open
additional files. Until a window is opened, VEDIT will not respond to any
keystrokes.

260 Chapter 6 Menu Reference Window Menu

See Also:

{FILE, Exit}

Remove
Removes (deletes) the specified window.

Keystroke Equivalent: (None)

Full Description:

This item prompts for the ID number of the window to be removed. It only
closes the window; it does not close the associated buffer (file), if any. This is
sometimes referred to as “deleting” the window. Since windows and buffers
are independent in VEDIT, this function DOES NOT affect any files!
Its main purpose is to close multiple (extra) windows per file created with the
window split functions, or delete special “command mode” windows created
by a “command macro”.

If you remove the only window attached to a buffer (file), VEDIT automat-
ically creates a new window when you switch to that buffer. The current
window cannot be removed. (You may notice a flicker as the current window
is deleted, but then immediately recreated.)

Notes:

VEDIT for Windows users are unlikely to use this (unusual) function
during routine editing.
To remove all extra windows, select {View, Reset}.
It is usually easier to delete extra windows by simply clicking the mouse on
their “close” button.

See Also:

{VIEW, Reset}

Switch
Switch directly to another window.

Keystroke Equivalent:

<Alt-F5>, This is a keystroke macro.

Full Description:

“Switch” prompts for the ID number of the desired window and then switches
to the specified window. If the specified window does not exist, the command
is ignored. The window can also be selected via point and shoot.

If the newwindow contains a different file, it also switches to that file (buffer),
i.e. it also performs {FILE, Buffer switch}. If the new window contains the
same file, the editing position is moved to the cursor position in the new
window. This makes it easy to view and edit two or more regions of one file.

Window Menu Chapter 6 Menu Reference 261

Notes:

{WINDOW, Switch} is not the same as {FILE, Buffer switch}. It is primarily
used when one buffer (file) is being edited in two or more windows, e.g.
following {VIEW, Toggle Hex-mode split}.
You can also switch to awindowby clicking themouse anywhere in the desired
window.However, this function can be used to switch to anotherwindowwhen
windows are zoomed.

It is usually easier to switch to any desired window by toggling to it with
{WINDOW, Next window} (<Ctrl-F6>) or {WINDOW, Previous window}
(<Ctrl-F5>).
When switching to another window on the same file, there may be some delay
while VEDIT brings the new region of the file into memory.

See Also:

{FILE, Buffer switch}
{WINDOW, Next window}.

Next Window

Previous Window
Toggle round-robin style to the next/previous window and its file.

Keystroke Equivalent:

<Ctrl-F6>, This is a keystroke macro.
<Ctrl-F5>, This is a keystroke macro.

Full Description:

“Next window” switches, round-robin style, to the next existing window.
Similarly, “Previouswindow” switches to the previouswindow. If there is only
one window, they have no effect.

If the newwindow contains a different file, it also switches to that file (buffer),
i.e. it also performs {FILE, Buffer switch}. If the new window contains the
same file, the editing position is moved to the cursor position in the new
window. This makes it easy to view and edit two or more regions of one file.

Notes:

You can also switch directly to another window with {WINDOW, Switch}.
See the notes for {WINDOW, Switch}.

See Also:

{FILE, Next buffer}, {WINDOW, Switch}.

262 Chapter 6 Menu Reference Window Menu

Config Menu
Keystroke Equivalent:

<Alt-C>, This is a keystroke macro.

Introduction:

The Config selections let you tailor VEDIT to your applications and personal
preferences. Some less commonly used configuration options cannot be con-
figured from inside VEDIT, but only by changing the vedit.cfg file as
described in Chapter 8 (Configuration).

Parameters marked with “(*)” are buffer dependent - you can have a different
value for each buffer (file). {CONFIG, Config all buffers} explains this in
detail.

DOS:
UNIX:
QNX:

When you browse through the Config Menu using [CURSOR UP]
and [CURSOR DOWN], you will see the contents of each sub-
menu displayed. This lets you see settings available in each
sub-menu before you actually select it. (This assumes {CONFIG,
Display options, Enable sub-menu preview} is set.)

Windows and DOS versions:

By default, all configuration changes (except for the keyboard layout) are
automatically saved for the next time you run VEDIT. Experienced users may
want to turn off this feature with {CONFIG, Auto-save config} so that
configuration changes are temporary unless you explicitly select {CONFIG,
Save config}.

Config Menu Chapter 6 Menu Reference 263

UNIX and QNX versions:

Any configuration changes you make are temporary and are lost when you
exit, unless you explicitly save them to disk with {CONFIG, Save config}.

Notes:

When restoring a previous edit session, all configuration settings are restored,
regardless of whether you made them permanent.

The default settings for VEDIT are the result of years of experience. We
suggest that you at least try our settings before making numerous changes.

Save Config
Save current configuration settings in vedit.cfg or another file.

Keystroke Equivalent: (None)

Full Description:

This item saves all current configuration settings into the vedit.cfg file, or
other specified file. By saving into vedit.cfg, the configuration changes
will be permanent (or until changed again).

VEDIT automatically configures itself at startup by loading the vedit.cfg
file.

� To make configurations changes permanent by saving into vedit.cfg:
1. Select {CONFIG, Save config}. You are prompted with:

Filename: C:\VEDIT\VEDIT.CFG

2. If the default “vedit.cfg” filename is correct, press <Enter>. Otherwise
edit the path and filename as needed.

Notes:

This function does not save the current keyboard layout. You must use
{CONFIG, Keyboard layout, Save layout} for this.
vedit.cfg is a commandmacro that contains all of theConfig() commands
necessary to fully configure VEDIT. Experienced users may prefer to config-
ure VEDIT by directly editing this file as described in Chapter 8.

In the DOS version, you can also save the entire configuration and keyboard
layout into the VEDIT.EXE file with {CONFIG, Misc, Save into
VEDIT.EXE}.

See Also:

“STARTUP.VDM File” in Chapter 5.
{CONFIG, Keyboard layout, Save layout}

264 Chapter 6 Menu Reference Config Menu

Load Config
Configure VEDIT by loading a .CFG configuration file.

Keystroke Equivalent: (None)

Full Description:

You can configure VEDIT by loading a .cfg file. These files are usually
created with {CONFIG, Save config}.

� To load a new configuration from disk:
1. Select {CONFIG, Load config}. You are prompted with:

Filename: C:\VEDIT\VEDIT.CFG

2. If the default “vedit.cfg” filename is correct, press <Enter>. Otherwise
edit the path and filename as needed.

Notes:

VEDIT automatically configures itself at startup by loading the vedit.cfg
file.

This function does not load a new keyboard layout. You must use {CONFIG,
Keyboard layout, Load layout} for this.
If desired, you can deletemost lines from a.cfg file and keep only those lines
that change the default settings.

See Also:

“VEDIT.CFG Config File” in Chapter 8
{CONFIG, Keyboard layout, Load layout}

Auto-save Config
Set up VEDIT to automatically save all configuration changes.

Keystroke Equivalent: (None)

Full Description:

When enabled (default), all configuration changes are automatically saved so
that you will have the new configuration the next time you run VEDIT. The
configuration changes are saved by immediately updating the vedit.cfg
file.

However, experienced VEDIT users may wish to disable {CONFIG, Auto-
save config} so that you can make temporary configuration changes. To make
configuration changes permanent, you must then select {CONFIG, Save
config}.
Changes to the keyboard layout are not automatically saved; they can only be
saved with {CONFIG, Keyboard layout, Save layout}.

Config Menu Chapter 6 Menu Reference 265

Notes:

When restoring a previous edit session, all configuration settings are restored,
regardless of whether you made them permanent.

See Also:

{CONFIG, Keyboard layout, Save layout}.

Config All Buffers
Select whether changing any of the “edit buffer dependent” configuration
parameters affects all edit buffers or just the current and subsequently created
buffers.

Keystroke Equivalent: (None)

Full Description:

For maximum flexibility when editing multiple files, VEDIT maintains a
separate set of Tab stops and selected configuration parameters for each edit
buffer. For example, this lets you have word wrap enabled for one file being
edited, but not for another.

The edit buffer dependent configuration parameters are identified with a “(*)”
in their name. Included are many of the programming, word processing and
file handling parameters.

Changing any of these parameters always affects the current edit buffer. It also
sets the value that will be used for any newly opened buffers and the value that
will be saved by {CONFIG, Save config}. (See Notes: below for exceptions.)
When “Config all buffers” is enabled, changing any of these parameters also
affects all other edit buffers (files) that are currently open.

NOTE: This item is enabled by default because other editors do not have
this level of flexibility and new users might otherwise be confused.
It is very likely that you will want to disable it at times.

For example, if you are editing a program source code file and a documentation
file, you may want to have {CONFIG, Word processing, Word wrap}
enabled in the documentation file. However, since accidentally selecting
paragraph formatting would scramble your program, you only want to enable
“Word wrap” for the one file.

Notes:

Changing {CONFIG, File handling, File type} and {CONFIG, File han-
dling, Record header size} only affect the current edit buffer and not other
edit buffers, regardless of how {CONFIG, All buffers} is set. Also these
parameters are not saved into the vedit.cfg file.

266 Chapter 6 Menu Reference Config Menu

Tab and Filling

Tabs stops (*) [Default = Every 8 columns]

If only one number is entered, it is considered a uniform tab interval. Since the
far left column is column number 1, the first tab stop will be at the interval plus
1. Therefore, the default value of “8” sets the tab stops at column 9, 17, 25, 33,
41,

If more than one number is entered, they are considered to be explicit tab stops.

If for some reason you only wanted a single tab stop, for example “20”, enter
it as “20 20”.

Any Tab characters in your file past the last explicit tab stop are displayed as
normal control characters.

You can set a separate set of tab stops for each edit buffer if you disable
{CONFIG, Config all buffers}.

Expand <Tab> with spaces (*) [Default = 4]

Determines whether the <Tab> key ([TAB CHARACTER] function) inserts
a Tab character or, alternatively, spaces to the next tab stop.

Also controls whether whitespace in a columnar block that is being inserted,
copied or moved is re-tabbed to the optimal number of Tab characters.
Alternatively, anyTabs are converted to just spaces. This switch does not affect
normal non-columnar block operations.

Also controls whether a “Block fill” with spaceswill actually insert the optimal
number of Tab characters and spaces.

This option combines several options into one by having you add “mask”
values (setting bits) for each desired sub-option.

Config Menu Chapter 6 Menu Reference 267

The base value of “0” hasVEDIT convert to Tab characterswhenever possible.
With a value of “7”, VEDIT never inserts Tab characters.

Mask 1 The <Tab> key is expanded with spaces. Left margin indentation
is with only spaces.

Mask 2 Tab characters within a columnar block operation are converted
to spaces.

Mask 4 The spaces in a “Block fill” operation are never converted to Tabs.

Example values:

0 The <Tab> key is not expanded - a Tab character is entered into text.
Whitespace in a columnar operation is re-tabbed. Spaces in a “Block fill”
are converted to the optimal number of Tabs.

1 The <Tab> key is expanded with spaces. Whitespace in a columnar
operation is re-tabbed. Spaces in a “Block fill” are converted to the optimal
number of Tabs.

4 (Default) The <Tab> key is not expanded - a Tab character is entered into
the text. Whitespace in a columnar operation is re-tabbed. Spaces in a
“Block fill” are not converted to Tabs.

7 The <Tab> key is expanded with spaces. Whitespace in a columnar
operation is not converted to Tabs. Spaces in a “Block fill” are not
converted to Tabs.

Other than columnar block operations, this option does not affect Tab charac-
ters already in your file. Use {BLOCK, Edit/translate, Detab} to convert
existing Tab characters in your file to spaces.

Block fill character (*) (0 - 255) [Default = 32]

This is the character used by {BLOCK, Edit/Translate, Block fill} and
{BLOCK, Edit/Translate, Insert empty column} to fill/insert blocks. It is
also used when selecting the [] Fill buffer text option with {BLOCK, Move
to register}.
It is typically set to “Space” (value 32), but can be changed for special purposes.
For example, setting it to a “.” (value 46) lets you insert a column of periods
with {BLOCK, Edit/Translate, Insert empty column}.
Note: Depending upon the setting of “Expand <Tab> with spaces”, VEDIT
may convert spaces to the optimal number of Tabs and spaces.

Trim spaces after columnar operation (*) [Default = Yes]

Controls whether the trailing spaces at the end of lines are removed following
a columnar block operation. This only trims spaces on those lines involved in
the operation.

268 Chapter 6 Menu Reference Config Menu

Word Processing

Enable word wrap and formatting (*) [Default = No]

Enables word wrap when entering new text and paragraph formatting with
{EDIT, Format paragraph}. It should be disabled when editing programs!
VEDIT only performs word wrap when entering text past the right margin.
Use {EDIT, Format paragraph} to reformat existing text.
If {CONFIG, Config all buffers} is disabled, you can enable or disable word
wrap for each file being edited.

Right margin (*) (0=Window, 1=HSM, 16 - 255) [Default = 0]

Sets the right margin used for word wrap, {EDIT, Format paragraph} and
{EDIT, Center line}. The default value of “0” sets the right margin to the
current window width. “1” sets it to the same value as {CONFIG, Display
options, Horizontal scroll margin}. Any desired value between 16 and 255
can also be set.

A value of “70” is good for printing text on an 80 column printer with
{CONFIG, Printer, Left margin} set to 10, which gives a 1 inch left margin.
(The right margin is actually set to one less than the width of the window or
the horizontal scroll margin to leave room for the cursor.)

Left margin (*) (0 - 80) [Default = 0]

Sets the left margin used for formatting paragraphs. It can also be changedwith
{EDIT, Indent} (<F8>) and {EDIT, Undent} (<F7>).
Note: Don’t set a left margin to keep your text from printing on the left edge
of the paper. Instead use {CONFIG, Printer, Left margin} to position your
text on the printed paper.

Config Menu Chapter 6 Menu Reference 269

Format paragraph options (0 - 7) [Default = 0]

Determines how {EDIT, Format paragraph} deals with extra spaces.
This option combines three options into one by having you add “mask” values
(setting bits) for each desired sub-option.

The base value of “0” trims trailing spaces, removes extra spaces from between
words and leaves only a single space following “.”, “!” and “?”.

Mask 1 Add a trailing space after each paragraph line except the last. This
extra space is allowed to exceed the right margin.

Mask 2 Allow extra spaces between words.

Mask 4 Allow two spaces after “.”, “!” and “?”. Use this if you like two
spaces between sentences.

For example, if youwant trailing spaces after each line and two spaces between
sentences, configure this parameter to “5”.

Justify paragraphs [Default = No]

When enabled, {EDIT, Format paragraph} will also justify the formatted
paragraph by adding spaces between words to give an even right margin.

Programming

Auto-Indent mode (*) [Default = No]

When enabled, the indent position (left margin) for a new line of text is initially
the same as for the previous line of text. This is convenient for programming
in ‘C’, Pascal, etc. It is sometimes desirable when editing word processing
documents.

The indent position can be changed with {EDIT, Indent} (<F8>) and {EDIT,
Undent} (<F7>).

270 Chapter 6 Menu Reference Config Menu

Indent increment (*) (1 - 20) [Default = 4]

Controls how much the left margin is indented/undented for each {EDIT,
Indent} and {EDIT, Undent}.
Common values are “4” or the same value as the tab stop interval.

Lower/Upper case key conversion (*) (0 - 5) [Default = 0]

Determines whether lower case letters typed on the keyboard are converted
(inserted) as upper case letters. Upper case can also be converted to lower case.

Primarily for assembly language programming. It does not affect any existing
text; use {EDIT, Edit/translate, Lower/Upper case} to convert existing text.
0 No conversion takes place.

1 All lower case letters are converted to upper case.

2 Lower case letters are converted to upper case, unless the cursor is
past the “Key conversion character” (below). Primarily applicable to
assembly language programming, where it is desirable to have the
Label, Opcode and Operand in upper case and the comment in upper
and lower case.

3 Similar to (2) except that characters are reversed instead of being
forced to upper case.

4 All upper case letters are converted to lower case.

5 Similar to (2) except that upper case letters are conditionally con-
verted to lower case.

Key conversion character (*) (32 - 126) [Default = “;”]

Sets the conditional lower/upper case key conversion character used by
“Lower/upper case key conversion” (above). The default “;” is applicable to
assembly language programming.

File-type specific config (0=Off, 1 - 7) [Default = 0]

Determines whether VEDIT configures itself according to common filename
extensions such as “.txt”, “.c”, “.html”, etc. The startup.vdm file deter-
mines the configuration performed for each file type, including color syntax
highlighting and template editing. The supplied startup.vdm file defines
the following values:

0 All file-type specific configuration is disabled.

1 Enabled, but syntax highlighting and template editing are disabled.

3 Template editing is also enabled, syntax highlighting is disabled.

5 Syntax highlighting is also enabled, template editing is disabled.

7 Syntax highlighting and template editing are both enabled.

NOTE: This function only works with the supplied startup.vdm file.

Config Menu Chapter 6 Menu Reference 271

Technical:

When enabled, the special “file open” event macros in text registers 110 and
112 are automatically executed for each file that is opened.Also the “file close”
event macros in text registers 111 and 113 are automatically executed for each
file that is closed and saved to disk.

See also:

The topics “File-type Specific Configuration”, “Template Editing” and “Syn-
tax Highlighting” in Chapter 5 (Advanced Topics).

Enable template editing (*) [Default = No]

When enabled, the special command macro in text register 115 is executed for
each normal text character entered in Visual Mode. This macro is typically
setup by startup.vdm to perform template editing or shorthand expansion.

Selecting {MISC, Load template file} automatically enables this setting in
the current buffer (file).

See also “Template Editing” in Chapter 5

Enable color syntax highlighting (*) [Default = No]

When enabled, the text is color highlighted according to the currently loaded
syntax definition file. (Note that screen updates will be slower; however this
is barely noticeable on fast computers.)

Selecting {MISC, Load syntax file} automatically enables this setting in the
current buffer (file).

See also “Syntax Highlighting” in Chapter 5. (Advanced Topics)

Display Options

272 Chapter 6 Menu Reference Config Menu

Enable Scroll Bars [Default = Yes]

(Windows version only)When enabled, scroll bars are displayed for all editing
windows. However, the vertical scroll bar is only displayed when the file
(buffer) contains enough lines to require scrolling. Non-editing windows
created with the VEDIT PLUS macro language never have scroll bars.

You can also turn scroll bars on/off with {VIEW, Scroll bars}.
Select {CONFIG, Save config} to make the configuration change permanent.

Enable Toolbar [Default = Yes]

(Windows version only) When enabled, the VEDIT toolbar is displayed. The
toolbar is an easy way to access commonly used menu items with the mouse.
A VEDIT program size of about 720 pixels is needed to see all toolbar buttons.

You can also turn Scroll bars on/off with {VIEW, Toolbar}.
Select {CONFIG, Save config} to make the configuration change permanent.

Enable -MORE- operation [Default = Yes]

When enabled, the screen displaywill be pausedwith the “-MORE- ...” prompt
when any command macro attempts to display more than one “page” of text
between keystrokes. When set to “No”, text can scroll off the screen before it
can be read.

Highlight cursor line (0 - 2) [Default = 0]

Determines whether the line that the cursor is on is highlighted. This can help
you determine which line you are on.

0 The cursor line is not highlighted.

1 Full - The entire line (to the right edge) is highlighted.

2 Partial - Only text characters on the cursor line are highlighted. This
makes it easy to see extra spaces past the ends of lines.

By default, the highlighted line is displayed using “bright” characters. Or select
any desired color with {CONFIG, Editing colors, Cursor line}.

Window borders (1=Partial, 3=Scroll bars) [Default = 3]

(DOS,QNX,UNIX only)Determines the type of borders editingwindowswill
have and whether scroll bars are displayed.

0 No borders. It is difficult to tell one window from another unless each
window is in a different color.

1 Windows have minimal borders. When two or more windows are on
the screen, each window has a top border. When necessary, windows
also have a left-hand border.

2 Windows have full borders, but no scroll bars.

3 Windows have full borders with scroll bars. Scroll bars are only
displayed in editing windows. Non-editing windows created with the
VEDIT PLUS macro language will have full borders but no scroll
bars.

Config Menu Chapter 6 Menu Reference 273

Window name display style (0=Normal, 1 - 3) [Default = 0]

Determines how a window’s name is displayed on its title bar.

0 Both the ID number and the buffer number may be displayed;
however, in the usual case that they are the same, only the ID number
is displayed.

1 Only the window ID number is displayed, e.g. “<2>”.

2 Only the buffer number is displayed, e.g. “[1]” or “[1:2]”.

3 Both the window ID number and the buffer number are always
displayed.

Auto-create window style (1=Full, 2=Cascaded) [Default = 2]

Determines the size of windows that are auto-created for each additional file
(buffer) that is opened.

Set to “1", a full-size overlapping window is created for each file. These
windows can be resized/moved, cascaded or tiled with the {WINDOW}menu.
{VIEW, Reset} initializes the screen and recreates one window for each file
(buffer).

Set to “2", a smaller, cascaded window is created for each file.

The default is “Cascaded” because this is common with other editors and
programs. However, we suggest “Full-sized” so that more of the file can be
viewed without having to zoom all windows.

DOS, UNIX, QNX versions: A value of “0” allows a single window to be
shared by all buffers. See the on-line help for this item.

Horizontal scroll margin (*) (0=Off, 1=Win, 40 - 2048] [Default = 0]

Determines whether lines longer than the window’s width simply extend past
the right edge (and are accessed via horizontal scrolling) or are wrapped onto
multiple screen lines, called continuation lines.
“1” sets the “scroll margin” to the window’s width; lines wrap at the window’s
right edge. Other scroll margins between 40 and 2048 can also be set; lines
wrap at the specified margin.

The default value of “0” disables screen wrapping; long lines extend indefi-
nitely to the right.

Horizontal scroll increment (*) (1 - 100) [Default = 20]

Determines by how many columns the screen scrolls right or left when
[SCROLL RIGHT] and [SCROLL LEFT] are pressed or VEDIT scrolls
automatically.

274 Chapter 6 Menu Reference Config Menu

Characters / Cursors

Screen display mode (*) (0 - 7, 8, 16, 32) [Default = 0]

Determines how ASCII control and graphics characters are displayed. It can
also enable the Hexadecimal, Octal and EBCDIC modes for all characters.

Changing this value changes the display mode for the current window and all
subsequently created windows; it does not affect other existing windows. The
new display mode will be used for all windows if you select {VIEW, Reset}.
This option combines several options into one by having you add “mask”
values (setting bits) for each desired sub-option.

The base value of “0” displays all characters literally, except <Tab>, <CR>
and <LF>.

Mask 1 Display control characters in the format ^x.
Mask 2 Display graphics character in the format <nnn>.
Mask 4 Display <Tab>, <Null>, <CR> and <LF> literally. Used in the

ASCII window following {VIEW, Toggle Hex-mode split}.
Mask 8 Display all characters in hexadecimal. Used in the hex-mode

window following {VIEW, Toggle Hex-mode split}.
Mask 16 Display all characters in octal.

Mask 32 Display all characters in EBCDIC, or according to the currently
loaded translate table. The file itself is not translated.

Mask-8, Mask-16 and Mask-32 cannot be combined with any other masks.
Therefore, the valid values are “0” through “7”, “8”, “16” and “32”.

{VIEW, Toggle display mode} toggles through the eight most useful values.
Normal ASCII files display as gibberish in EBCDIC mode.

Config Menu Chapter 6 Menu Reference 275

Newline display character (*) (0 - 254) [Default = 32]

Determines the character displayed at the end of each line where the “newline”
(<CR><LF> pair) is. The default “space” (value 32) is, of course, not visible.
Visible candidates on an IBM PC include values “14”, “17” and “20”.

Tab display character (*) (0 - 254) [Default = 32]

Determines the “fill” character used to display tab characters on the screen. By
default, “spaces” (value 32) are displayed to the next tab position. If you need
a better indication of where tab characters are, pick another character such as
a “period” (value 46) or value “250”.

NOTES: This character is only used for screen display; spaces are always
used when printing.

Use {BLOCK, Edit/translate, Detab} to convert tab characters
in the file to spaces.

Null display character (*) (0 - 254) [Default = 0]

The IBM PC displays the “Null” character (value 00) as a space which is
therefore indistinguishable from a real space (value 32). To make the Null
character stand out better, you can display it as any other character. Values “4”
and “7” are reasonable choices.

NOTE: This character is also used when printing because most printers
ignore null characters. Thismakes it possible to see null characters
in a printout.

Cursor type in overstrike mode (0 - 6) [Default = 2]

Cursor type in insert mode (0 - 6) [Default = 1]

Cursor type in virtual space mode (0 - 6) [Default = 0]

Determines how the cursor is displayed when the editor is in “Overstrike” or
“Insert” mode, or in “Virtual space mode” — the space past the last character
of a line.

Since the Windows, DOS, QNX and UNIX versions are all different, please
refer to the on-line help for this item for the actual values.

Cursor blink rate (2 - 25) [Default = 8]

Determines the cursor’s blink rate for the blinking cursor types above. A
smaller number causes the cursor to blink faster. (The unit is 1/18 of a second.)

276 Chapter 6 Menu Reference Config Menu

Editing Colors

Windows Version:

The configurable colors are split into the two categories “Editing colors” and
“Syntax colors”; the latter are used only when Syntax highlighting is enabled.

All “Editing colors” can be set to “0” to use a default color, some of which are
set by the overall Windows color scheme. Alternatively, explicit “overriding”
colors can be selected.

DOS, UNIX, QNX Versions:

All colors used by VEDIT can be configured, including the colors in the main
menu, the sub-menus and window borders.

{CONFIG, Colors} contains sub-menus to separate the many colors into
logical groups. A color chart is displayed when you enter these sub-menus;
however the DOS color chart does not support “point and shoot” color
selection.

VEDIT has two sets of screen attributes; one for Color Displays and one for
Monochrome displays. {CONFIG, Colors, Enable monochrome} selects
which set is being used and configured.

The invocation option “-m” forces this setting to monochrome.
The “monochrome” attributes can be used as an alternate set of colors. For
example, you may prefer one set on your desktop computer and another set on
your laptop. A single vedit.cfg file could be configured for both comput-
ers. Use the “-m” invocation option when running on the Laptop. (The
“VEDIT” environment variable can be used to make “-m” the default.)
Only the colors used in the Windows version are listed here. Refer to Chapter
8 (Configuration) or the on-line help in the {CONFIG, Colors} sub-menus for
a description of parameters not covered here.

Config Menu Chapter 6 Menu Reference 277

Edited text

Sets the primary color for the text inwindows. The color of individualwindows
can subsequently be changed with {MISC, Color Toggle} (<Alt-J>). The
initial value is set during installation.

Windows version: A value of “0” uses the default Windows color scheme.
However, we recommend setting an explicit value so that it can be coordinated
with the syntax highlighting colors. For example, white-on-blue (value 31) or
yellow-on-blue (value 30) are good editing colors.

DOS version: An explicit value must be set; do not use “0” because that results
in invisible text.

Window erase

Sets the color for those portions of awindowwhere there is no text. The normal
setting of “0” uses the same color as for “Edited text”. Setting an overriding
color gives an unusual effect, but lets you clearly see trailing spaces at the ends
of lines.

Block highlighting

With the default value of “0”, highlighted blocks are displayed in reverse video.
Use this parameter to set an overriding color. For example, “71” displays
blocks as white text on a red background.

Cursor line

This parameter sets the color for the entire cursor (current) line when {CON-
FIG, Display options, Highlight cursor line} is enabled. The default setting
of “0” causes the line to be displayed with the IBM PC “intensity” flipped.

278 Chapter 6 Menu Reference Config Menu

Syntax Colors

The syntax highlighting colors are only usedwhen {CONFIG, Programming,
Enable color syntax highlighting} is set.
The syntax highlighting definition file sets up pattern matching to recognize
different parts of the displayed text as “Reserved words”, “Symbols”, “Com-
ments”, “Strings” and “Numeric”. The matched text is then displayed in the
corresponding color.

These colors must be explicitly set; there is no default value. DO NOT use a
value of “0”, because that results in invisible text.

For the most pleasing visual effect, these colors should be coordinated with
the color for “Edited text”. For example, if the edited text is white-on-blue, all
of the syntax highlighting colors should also use a blue background.

Config Menu Chapter 6 Menu Reference 279

Emulation

Cursor positioning mode (0 - 4) [Default = 1]

Controls how the cursor moves on the screen where there is no text.

In general the cursor only moves to where there is text, avoiding empty parts
of the screen. For example, pressing [CURSOR RIGHT] with the cursor at
the end of a line moves to the beginning of the next line.

0 The cursor can never be positioned past the end of a line. For example,
if you move the cursor down from the end of a long line to a shorter
line, the cursor will also move left to the end of the shorter line.

1 The cursor can be moved straight up and down from a long line past
short lines to another long line. If any attempt is made to change the
textwith the cursor past the end of a line, e.g. typing in newcharacters,
the cursor first moves left to its “correct” position.

2 The cursor “zig-zags” as it is moved up or down past the end of a
short line. This mode ensures that the cursor is always located over
real text yet preserves the horizontal position from which it started.

3 The cursormoves identically tomode 1. However, if the cursor is past
the end of a line and you type new text, spaces are automatically
inserted from the end of the line up to the newly entered text. This
mode is handy for filling out tables and other formatted text. Note
that using this mode may result in unwanted spaces being inserted
into the text, thus consuming additional memory and disk space.

4 Similar to mode 3 except that [CURSOR RIGHT] can move the
cursor past the end of a line; it does not move to the beginning of the
next line. Use this mode for free-form text layout.

280 Chapter 6 Menu Reference Config Menu

Modes 1 or 2 are recommended for programmers, modes 3 or 4 for word
processing. Other word processors generally operate in one of themodes listed
and you may want to pick one that you are already familiar with.

A little experimentation is best for understanding these modes and deciding
which you like best.

{CONFIG, Emulation, Special emulation modes} can be set to prevent
[CURSOR RIGHT] and [CURSOR LEFT] from wrapping to the next/pre-
vious line when they reach the end/beginning of the line.

[TAB CHARACTER] emulation mode (0 - 3) [Default = 3]

Controls how the [TAB CHARACTER] and [BACKTAB] functions operate.
These functions are almost always assigned to <Tab> and <Shft-Tab>.
0 [TAB CHARACTER] always inserts a Tab character (or spaces) to

the next tab stop.

1 [TAB CHARACTER] performs [NEXT TAB STOP] in “Over-
strike” mode and inserts a Tab character (or spaces) in “Insert” mode.

2 If the cursor is not in a highlighted block, [TAB CHARACTER]
inserts a Tab character (or spaces). If the cursor is in a highlighted
block, [TAB CHARACTER] and [BACKTAB] are equivalent to
{EDIT, Indent} and {EDIT, Undent} — all lines in the block are
re-indented.

3 Combines (1) and (2).

<Enter> key emulation mode (0 - 3) [Default = 1]

Controls how the <Enter> key ([RETURN] function) operates.
0 <Enter> always inserts a “newline” at the cursor position; this splits

the current line or adds a new one at the cursor position.

1 <Enter> only inserts a “newline” in “Insert” mode; in “Overstrike”
mode it is equivalent to [NEXT LINE] — it only moves the cursor
to the beginning of the next line.

2 <Enter> is always equivalent to [NEXT LINE]; it never inserts a
“newline”.

3 <Enter> inserts a “newline” following the current line (it opens a
new line).

[BACKSPACE] emulation mode (0 - 3) [Default = 0]

Sets the behavior of the [BACKSPACE] key.
0 [BACKSPACE] always deletes the preceding character. Pressed at

the beginning of a line, it deletes the preceding “newline”.

1 [BACKSPACE] only deletes in “Insert”mode. In “Overstrike”mode
it only moves the cursor left to the previous character.

2 [BACKSPACE] always deletes the preceding character, but stops at
the beginning of the line.

Config Menu Chapter 6 Menu Reference 281

3 [BACKSPACE] only deletes in “Insert” mode and stops at the
beginning of line.

[LINE BEGIN/END] emulation mode (0 - 5) [Default = 3]

Sets the behavior of [LINE BEGIN] and [LINE END] (normally the<Home>
and <End> keys).
0 [LINE BEGIN] and [LINE END] move the cursor only to the

first/last character currently displayed in the window. Since the
window is not horizontally scrolled, this may not be the first/last
character of the text line. Successively pressing [LINE BEGIN] or
[LINE END] has no effect. (This mode is only useful with slow CRT
terminals under UNIX or QNX.)

1 [LINE BEGIN] and [LINE END] move the cursor to the very
first/last character of the current text line. The window is horizontally
scrolled if necessary. Successive presses have no effect.

2 Move the cursor only to the first/last character displayed in the current
window without scrolling. However, pressing [LINE BEGIN] and
[LINE END] repeatedly moves the cursor to the preceding/next
window line.

3 Move the cursor to the very first/last character of the text line.
Pressing [LINE BEGIN] and [LINE END] repeatedly moves the
cursor to the preceding/next screen line.

4 Move the cursor only to the first/last character displayed in the current
window. Otherwise same as “5”. (Probably of limited use.)

5 Move the cursor to the very first/last character of the text line.
Pressing [LINE BEGIN] a second time moves to the top of the
screen. Pressing [LINE BEGIN] a third timemoves to the beginning
of the file. Similarly, pressing [LINE END] a second time moves to
the bottom of the screen. Pressing [LINE END] a third time moves
to the end of the file. (This emulates the Brief (tm) editor.)

Special emulation modes (0 - 255) [Default = 0]

Enables special emulation modes. “0” disables the special modes.

This option combines six options into one by having you add “mask” values
(setting bits) for each desired sub-option.

Mask 1 [SCREEN BEGIN] and [SCREEN END] go to the first/last
column instead of remaining in the current column.

Mask 2 [SCROLL UP] and [SCROLL DOWN] leave the cursor in the
current screen line instead of in the current text line.

Mask 4 {SEARCH, Search} and {SEARCH, Replace} also perform
{SEARCH, Next}. You must first press [CANCEL] and then
{SEARCH, Search} to enter a new search string.

Mask 8 [CURSOR RIGHT] and [CURSOR LEFT] don’t wrap to the
next/previous line when they reach the end/beginning of the line.

282 Chapter 6 Menu Reference Config Menu

Mask 16 The last normal character, not the “newline” is the last accessible
character on the line. (Used by the “vi” emulation).

Mask 32 [DELETE] doesn’t delete the “newline”.
Mask 64 [DELETE] doesn’t delete a highlighted block. Otherwise, it will

delete a highlighted block when both block markers are set and
the cursor is within the block. Blocks can always be deleted with
{BLOCK, Edit/translate, Block delete}.

Mask 128 [DELETE] doesn’t delete a highlighted block if only 1 marker
set; both markers must be set.

Alt/Ctrl/Shift key shortcut modes (0 - 15) [Default = 7]

Determines if tapping the <Alt>, <Ctrl> and <Shift> keys perform shortcut
functions. This option combines six options into one by having you add “mask”
values (setting bits) for each desired sub-option.

The base value of “0” disables all shortcuts.

Mask 1 Tapping <Alt> performs [MENU]; tapping it again removes the
menus. Note: this is always enabled in the Windows version.

Mask 2 Double-tapping<Ctrl> performs [CANCEL]; this is an easyway
to remove block markers.

Mask 4 Double-tapping <Shift> performs {BLOCK, Set stream
marker}; this is an easy way to set block markers.

Mask 8 <Ctrl+Shift> performs [ERASE LINE]; this is an easy way to
delete lines. (This is not the default because it requires some care;
if you need both keys down for “<Shift> block marking”, press
<Shift> first.)

Enable <Shift> block marking [Default = Yes]

Controls whether the <Shift> key can be used to mark blocks of text.
When enabled, a block can be marked (highlighted) by holding down the
<Shift> key andmoving the cursor. This includes the “arrow”” keys,<Home>,
<End>, <PgUp>, <PgDn>, <Ctrl-End>, etc. In this mode, <Shift-Home>,
etc., cannot be used as function keys. Also, <Shift-F1> through <Shift-F12>
cannot be used as cursor movement functions, but can be used for other
functions.

When disabled, <Shift-Home>, etc., can be used as function keys with editing
operations and have keystroke macros assigned to them.

Auto-replace block with new text (0 - 7) [Default = 3]

Determines whether a highlighted block of text at the cursor position is
automatically deleted if new text is typed or inserted from a text register or the
clipboard. This is the default and is typical for most Windows programs. See
NOTES below.

For example, a search normally highlights the found text as a block. You can
then immediately type in replacement text without first deleting the block.

Config Menu Chapter 6 Menu Reference 283

Hint: To insert new text without deleting the searched text, first press
<Cursor Right> and then <Cursor Left> to remove the block
highlighting. Or double-press <Ctrl>.

0 Off. A highlighted block is never automatically deleted.

1 Enabled only for new typed text. Largest block size is 1K bytes.

2 Enabled only for inserting text registers or the clipboard.

3 Enabled for both new text and inserting a register or clipboard.

7 Enabled for both. Auto-delete blocks of any size.

NOTES: As a safety feature, the largest block that can be auto- deleted is
normally 1000 bytes. For larger blocks, simply press first.
The value “7” bypasses the 1000 byte limit. Use with care!

We suggest turning this feature off if you edit files with critical
data.

Advance cursor past block insert [Default = Yes]

Determines whether the cursor advances following a block, scratchpad, text
register or clipboard insertion. It also determines the cursor position following
{EDIT, Insert file}.
No The cursor is not moved, and is left at the beginning of the inserted

block. Useful when you want to edit at the beginning of the inserted
block.

Yes The cursor is advanced past the inserted text.

Block marker emulation mode (0 - 2) [Default = 0]

Determineswhether the newblock of text is highlighted following a {BLOCK,
Copy to cursor} or {BLOCK, Move to cursor}.
0 The block markers are automatically removed (cleared) following a

block copy or move.

1 With a Copy, the original block remains highlighted; with a Move,
the block is highlighted in its new position. This emulates real
WordStar. It simplifies copying a block to several positions, but
requires an extra step to remove markers.

2 With both a Copy or Move, the block is highlighted in its new
position. This emulates the Borland editors (emulation ofWordStar).

284 Chapter 6 Menu Reference Config Menu

File Handling

Auto-save interval [Default = 0]

VEDIT can optionally auto-save all modified files after a configurable number
of minutes. This option sets the time interval. A value of “0” disables this
feature. Although by default this feature is turned off, we recommend that you
enable it with a typical value of “20”.

Backup files (0=Off, 1=.BAK, 2=Backup Dir) [Default = 1]

Controls whether backup files are created so that you can refer back to the
original file if needed. WeHIGHLY recommend that backup files be enabled.
0 Disabled. Backup files are not created.

1 Create backups by renaming the original file to have a “.BAK”
filename extension. (UNIX, QNX: “.b” extension.)

2 Create backups by moving the original file to the VEDIT Backup
Directory, typically “C:\VEDIT\BACKUP” or “C:\BACKUP”.

See also “Exiting VEDIT - Backup Files” in Chapter 4.

Save session in current directory

When enabled, the edit session save/restore files veditsav.env and
veditsav.dat are saved in the current directory. This permits restoring the
last edit session you had in that directory.

Otherwise, veditsav.env and veditsav.dat are saved in the User
Config Directory, typically “C:\VEDIT”.When VEDIT is next invoked (with-
out filenames) from anywhere, you will be switched to the last directory you
were in and the files you were last editing.

Config Menu Chapter 6 Menu Reference 285

Use V-SWAP when entering DOS [Default = Yes]

DOSversion only:Determineswhether VEDITwill use theV-SWAPprogram
(when already installed inmemory) to swap itself out ofmemorywhen entering
DOS. No error is given if V-SWAP is not in memory.

Overwrite-only mode (*) [Default = 1]

Controls whether the current file is in overwrite-only mode. In this mode
deletions and insertions which would change the size of the file cannot be
made; however character overstriking and block overwrites can be made.

0 Disabled. All editing changes can be made to any type of file. (DOS
VEDIT PLUS: Disk sector editing is always in overwrite mode).

1 Record mode. Overwrite-only mode is enabled if the “File type” is
set to “8” or greater for fixed-length-record data or binary files.

2 Enabled for all file types.

Enable fast browse mode (*) [Default = Yes]

When VEDIT opens a file in “Read-only” mode, it does not always know the
current line number; the line number is then displayed as “?????”. For example
if you have opened a multi-megabyte file and select {GOTO, End of file},
VEDIT will instantly jump to the end of the file without counting the number
of lines in the file.

When disabled, browsing will be slower, but the correct line number will
always be displayed.

Enable auto-file type (*) [Default = Yes]

When enabled, VEDIT examines each newly opened file to determine its most
likely file type, i.e. as a “Window/DOS text”, “UNIX text”, “Mac text” or
“binary/data” file.

When disabled, VEDIT does not examine the file, and the file type is simply
set by {CONFIG, File handling, File type}.
Since you can easily override the file type, there is little reason to disable this
feature.

File type (*) (0=CR+LF, 1=LF, 2=CR, n=record size)

Determines the type of file VEDIT assumes it is editing. It controls the screen
display, what the “newline” character is, and changes the behavior of some
editing operations.

VEDIT automatically determines the “most likely” file type of each opened
file if {CONFIG, File handling, Enable auto-file type} is enabled. You can
override this value if VEDIT sets it incorrectly for your needs.

0 Lines end in Carriage-Return and Line-Feed. Typical for Win-
dows/DOS. Lines ending in only a Line-Feed (without a preceding
Carriage-Return) are displayed with a “<LF>”. The <Enter> key
inserts both a Carriage-Return and a Line-Feed.

286 Chapter 6 Menu Reference Config Menu

1 Lines end in just a Line-Feed. Typical for UNIX/QNX. Carriage
return is no longer a special character and if it occurs in the text it is
displayed as “<CR>”. The <Enter> key inserts only a Line-Feed.

2 Lines end in just a Carriage-Return. Typical for Mac. Line-Feed is no
longer a special character and if it occurs in the text it is displayed as
“<LF>”. The <Enter> key inserts only a Carriage-Return.

n Values of “8” through “2048” correspond to the record length for
fixed-length-record data files. Values of “64” and “16” are useful for
editing binary files. Instead of assuming that lines end in a “newline”
character, each line is treated as simply ‘n’ characters. This is de-
scribed in more detail under “File Types - Win/DOS, Unix, Mac,
Binary” in Chapter 4.

By default, “Overwrite-only” mode is selected; change it if you need
to delete or insert characters. Word processing functions are not
available in this mode.

Notes:

Windows version: You can set the correct file type or record length in the
File-open dialog box when you open the file.

You can temporarily toggle the file type to Binary-16 or Binary-64 with
{VIEW, Toggle binary/text mode}.
Changing this value only affects the current edit buffer even if {CONFIG,
Config all buffers} is enabled.

Record header size (*) (0 - 16K)

Some fixed-length-record data files begin with a header that is not the same
length as the records. By setting this value to the length of the header and the
file type to the length of the records, all records will be properly aligned within
VEDIT. xBASE .DBF files are an example. This is described in more detail
under “File Types - Data (Database) Files with Headers” in Chapter 4.

When set, the header will be “Line 0” and the line number will display the
current record number.

NOTE: Changing this value only affects the current edit buffer even if
{CONFIG, Config all buffers} is enabled.

Config Menu Chapter 6 Menu Reference 287

Printer

Paper length (0=Auto, 5 - 100)

When set to “0=Auto” (Windows version only), the number of lines per page
is automatically determined by the size of the current printer font, the printing
orientation (portrait or landscape) and the paper size.

Otherwise, this value should be set to the length of the paper in lines. This is
typically 66 for dot-matrix printers and between 58 and 62 for laser printers.

If this value is set too large, every other printed page will have just a few lines
on it. If in doubt, set it to 58 or 60. You may want to change it when printing
labels or short forms.

The number of lines of text printed per page is equal to the “Page length”minus
“Top margin” minus “Bottom margin”.

Notes:

Many laser printers have a default setting of 60 lines per page. This will work
properly with a “Paper length” of 66 as long as {PRINT, Config, Form-Feed}
is enabled and the top/bottom margins are each set to 3 or more.

Top margin (0 - 60) [Default = 3]

This value determines how many lines are left blank at the top of each page.
A value of “0” causes text to print on the very first line.

Bottom margin (0 - 60) [Default = 3]

This value determines howmany lines are left blank at the bottomof each page.

Left margin (0 - 100) [Default = 5]

This value is set to avoid printing at the very left edge of the paper. Setting this
value has no effect on editing; it has the same effect as adjusting the paper
sideways in the printer.

288 Chapter 6 Menu Reference Config Menu

With laser printers, a value of “5” typically gives a one inch leftmargin because
the printer adds its own 1/4" - 1/2" margin. A value of “10” typically gives a
one inch left margin on a dot-matrix printer.

Notes:

This “Left margin” is added to any left margin in your text. For example, if
your text was written using a left margin of 8 characters and you print this
document with a left margin for the printer of 10 characters, total space to the
left of each line will be 18 characters.

Right margin (0=Off, 1=Win, 2=HSM, 3=RM, 40-255) [Default = 0]

Lines longer than this optional margin are wrapped ontomultiple printed lines.
This is usefulwhen printing long lines becausemost printers otherwise truncate
long lines. Values are:

0 Right margin feature is turned off.

1 Right margin is automatically set according to the current window
width.

2 Right margin is set to the same value as {CONFIG, Display options,
Horiz. scroll margin}.

3 Right margin is set to the same value as {CONFIG, Word process-
ing, Right margin}.

40 - 255 Usually set to the number of characters your printer can print per line,
typically 80, 96 or 132.

Line spacing (1 - 4) [Default = 1]

Determines whether the text is printed single spaced (1), double spaced (2) or
triple spaced (3). For example, a value of “2” leaves a blank line between every
printed line.

Print mode (0=Win, 2=Normal, 274=Safe, 1024=Raw)

Determines if control and graphic characters are sent “as-is” to the printer, or
are first expanded. Also permits printing in hexadecimal, or printing an
EBCDIC file on an ASCII printer. The most common values are:

0 Characters are printed in the same mode as they are displayed; the
display mode is changed with {VIEW, toggle display mode} or
{CONFIG, Characters/Cursors, Screen display mode}.

2 Tabs are expanded to spaces, all other control/graphics characters are
sent as-is to the printer.

274 “Safe” mode. All control character are converted to the ^x format so
that they don’t control the printer. It is a combination of Masks 256,
16 and 2.

1024 All control characters including Tabs are sent as-is to the printer.

Other print modes are selected by adding “mask” values (setting bits) for each
desired characteristic:

Config Menu Chapter 6 Menu Reference 289

Mask 8192 Print EBCDIC in equivalent ASCII, using translate table. Other
translate tables can be loaded.

Mask 4096 Print all chars in octal.

Mask 2048 Print all chars in hexadecimal.

Mask 1024 Print all control characters, including Tabs and <Esc> as-is.
(Overrides any Masks below.)

Mask 512 Print graphics characters in the format <nnn>.
Mask 256 Print control characters in the format ^x.
Mask 32 Print Carriage-Return and Line-Feed as <CR> and <LF>.
Mask 16 Print Backspace as ^H (depends upon Mask 256).
Mask 8 Print Escape character as <Esc>.
Mask 2 Expand Tabs with spaces.

Mask 1 Assume tab stops at every 8 columns.

NOTE: When printing in hexadecimal or EBCDIC, you may need to set the
“Right margin” so that long lines are wrapped onto multiple printed
lines.

Enable print job strings (0=Off, 3=Both) [Default = 0]

Determines whether the “Print job start string” and “Print job finish string” are
sent. The start string can be used to select a font; the finish string to reset the
printer to its default font. Values are:

0 Don’t send either string.

1 Send only the print job start (init) string.

2 Send only the print job finish (reset) string.

3 Send both strings.

The strings are set by editing the vedit.cfg file.

Windows Version: These strings are of limited use because Windows uses its
own strings according to the type of printer. The “Print job finish string” is
probably never needed.

DOS Version: You can override the default setting in the Printing dialog box.
The strings can also be set in {CONFIG, Printer}.

Enable Form-Feed [Default = Yes]

When enabled, a single “Form-Feed” character is used to advance to the top
of a new page; nearly all printers can be advanced this way. Otherwise, it uses
the correct number of “Line-Feeds” to advance to the next page. A Form-Feed
character in the file also signals VEDIT to start a new page.

When possible, it is better to enable this parameter; the “Paper length” value
is then not so critical.

290 Chapter 6 Menu Reference Config Menu

Paper orientation [Default = 0] (Windows only)

Printing is normally in portrait or landscape mode, depending upon the default
settings for the printer. Alternatively, this parameter can force the printer into
portrait or landscape mode. A value of “1" forces the printer into Portrait mode
while ”2" forces the printer into Landscape mode.

Page eject on Finish/Eject [Default = Yes] (DOS only)

Determines whether a page eject is included at the end of each print-job, i.e.
with printing dialog box items () All and [Finish/Eject].
However, on some network printers and under UNIX/QNX, you may need to
set this parameter to “No” to prevent blank pages after each print job.

Printer (0=Default ... 7=file) [Default = 0] (DOS only)

This parameter determines to which parallel or serial port VEDIT prints. You
can also print to a file.

When set to “0”, it prints to the default printer as set by {PRINT, Config,
Change default printer}, typically “PRN”. “PRN” is normally the same as
“LPT1”; however, you can use the DOS ”MODE” command to reroute it to
another parallel or serial port.

You can also print directly to a parallel or serial port, or a file:

1
2
3
4
5
6
7

LPT1
LPT2
LPT3
COM1
COM2
COM3
file

When set to “7”, VEDIT prints to a file. For each print job, it will prompt you
for the name of the file. You can also print to the same file each time by setting
this parameter to “0” and changing the “default” print device to be a filename.

Change default printer [Default = “PRN”] (DOS, UNIX, QNX only)

Selects the “default” device to which VEDIT prints. Under DOS, this is
initially “PRN”. This device can also be changed to a filename such as
“veditprn.prn”, However, each new print-job will then overwrite the previous
one, unless you change the filename.

Under UNIX/QNX, the default print device is “lp”. It can be changed as
necessary.

Printer Font

The text can be printed in any desired font and size. The editing (display) font
and the printing font can be completely different. Unlike WYSIWYG Word
Processors, with VEDIT you can edit in an easy-to-read screen font and print
the text in a different font.

Config Menu Chapter 6 Menu Reference 291

Search Options

Default case-sensitive option [Default = No]

When enabled, the search option [] Case is selected by default. This makes
the search case sensitive. Otherwise the search is not case sensitive, e.g. the
search string “this” will also locate “This” and “THIS”.

If you want {SEARCH, Incremental search} or {SEARCH, Compare
buffers} to be case sensitive, you must set this parameter.

Default search mode (0=Simple,1=Pat,2=RE,3=RE-Max) [Default = 1]

Sets the default search mode for the Search and Replace dialog boxes. Users
not familiar with regular expressions should leave this set to “1”. With regular
expressions, many normal characters have a special meaning and cannot be
searched “as-is”.

0 Simple. No pattern matching or regular expressions are used.

1 (Default) Pattern matching is used. All pattern matching codes begin
with “|”; enter “||” to search for a single “|” in the file. (Note: “|” is
the “pipe” character, which is <Shift>-\ on the keyboard.)

2 Regular expressions are used. Most punctuation characters have a
special meaning. Closely follows the UNIX standards.

3 “Maximized” regular expressions are used. Consider the regular
expression search string “a.+b” and the text “12a3456b7890b”.When
maximized, it will match “a3456b7890b”; otherwise it will only
match “a3456b”.

See Also:

“Search and Replace” in Chapter 4.
{SEARCH, Search}, {SEARCH, Replace}

292 Chapter 6 Menu Reference Config Menu

Restore edit position on error (0 - 2) [Default = 1]

Determines the position of the cursor following an unsuccessful search.

0 Positions the cursor as close to the pre-search position as possible, but
without performing any file buffering.

1 Restores the cursor to the pre-search position.

2 Positions the cursor at the End-of-file. (Beginning-of-file for reverse
searches).

Normally “1” is nice, but in huge files, “0” or “2” should be used to save time
— it takes a noticeable amount of time to restore the edit position in multi-
megabyte files.

Support non-english characters (0=Off, 1=ANSI, 2=On)

Determineswhether the patternmatching codes “|A”, “|U” and “|V”will match
non-english letters in the extended character set with decimal value 128 - 255.

It also determines whether {BLOCK, Edit/translate, Upper/Lower/Switch
case} recognizes non-english letters.
0 Off. None of the extended characters (128-255) are recognized as letters.

This works best with English.

1 When anANSI font is displayed, non-english letters in the extendedANSI
character set are recognized.When anOEM font is displayed, non-english
letters are not recognized.

2 Non-english letters are recognized, depending upon the font. When an
ANSI font is displayed, non-english letters in the extendedANSI character
set are recognized. For example, decimal value 252 which is an umlaut
“u” is treated as a lower case letter.

When an OEM font is displayed, non-english letters in the extended
IBM-PC (OEM) character set are recognized. For example, decimal value
129 which is an umlaut “u” is treated as a lower case letter.

Note:
(Technical) VEDIT queriesWindows for information aboutANSI non-english
letters. Therefore, if you notice any inconsistencies, be sure that Windows has
been set to the correct language (code page).

Config Menu Chapter 6 Menu Reference 293

Misc

NOTE: The DOS, UNIX and QNX versions contain additional items in this
sub-menu. Refer to the on-line help for this sub-menu for a com-
plete description.

Beep level (0 - 5) [Default = 2]

Controls under what conditions VEDIT produces a beep on the speaker.

0 VEDIT never beeps the speaker.

1 Only beeps under control of the macro language Alert() command.
2 Also beeps for error messages and when answering prompts with

invalid responses.

3 Also beeps when pressing invalid keys in the menus.

4 Also beeps when pressing unassigned control and function keys.

5 Also beeps when attempting to scroll past beginning/end of the
buffer, or attempting to undo/redo when there is nothing more.

Help level (0 - 1) [Default = 1]

When set to “1”, a help line is displayed on the bottom of the screen whenever
you are in the menu system, during point and shoot file selection and for
selected other prompts. “0” turns this help line off.

Box drawing style (1 - 4) [Default = 1]

Determines the style used by {MISC, Box drawing mode} for drawing the
vertical and horizontal lines with <Shift+Cursor>. Note that <Ctrl+Cursor>
draws a different, complementary, type of line.

294 Chapter 6 Menu Reference Config Menu

Maximum [REPEAT] count (1 - 65535) [Default = 256]

Determines the maximum repeat count that can be entered for [REPEAT] and
{EDIT, Repeat}.
The default maximum of “256” is used to prevent novice users from inadver-
tently entering a huge count for an edit operation that might corrupt their file
or take a long time to perform. Values larger than 256 are often desirable, but
can exceed VEDIT’s ability to undo them. Experienced users may prefer a
larger value.

Keyboard input options (0 - 31) [Default = 17]

Controls processing of keyboard characters. You will only need to change this
value for special applications.

This option combines five options into one by having you add “mask” values
(setting bits) for each desired sub-option.

The base value of “0” strips 8 bit characters, discards unassigned control keys
and preserves the case of letters.

Mask 1 Enable 8 bit keyboard characters; you always want this enabled
on an IBM PC.

Mask 2 Treat 8 bit (graphics) characters as function keys. This is useful
on some CRT terminals, but should be disabled on an IBM PC.

Mask 4 Enter unassigned function/control keys into the text. Almost
everyone will want this disabled.

Mask 8 Reverse the case of all letters, e.g. typing “a” gives you “A” and
typing “A” gives you “a”. (We are not exactly surewhyyouwould
want this, but a few users have asked for it.)

Mask 16 In amulti-character control sequence, convert the 2nd and follow-
ing <Ctrl> characters to equivalent letters. This is useful for the
WordStar layout so that, for example, ^K ^V is equivalent to ^K
V. This is enabled by default because it does not interfere with
other layouts.

The recommended values are “1” and “17”.

Config Menu Chapter 6 Menu Reference 295

Keyboard Layout (Sub-menu)
Keystroke Equivalent: (None)

Introduction:

VEDIT’s keyboard layout is completely configurable. Each basic edit function
can be assigned to any key or alternate keys. As many keystroke macros and
“hot-keys” as desired can be added to the layout.

This sub-menu lets you record or add new keystroke macros and view/edit the
entire keyboard layout as a normal text file. While editing, you can also print
the layout if desired.

To make changes to the keyboard layout permanent, they must be saved to the
vedit.key file. Entire keyboard layouts can also be loaded “on the fly”.

Notes:

Experienced VEDIT users will probably prefer to make changes to the key-
board layout and add new keystroke macros by directly editing the
vedit.key file. This is described in Chapter 8 (Configuration).

Keystroke macros and changing the keyboard layout are extensively covered
in Chapter 4.

VEDIT’s normal keyboard layout includes many pre-defined keystroke mac-
ros for selecting menu items; these are often called “hot-keys”. VEDIT’s
menus display all assigned “hot-keys”.

The key to which a keystroke macro is assigned can actually be a sequence of
up to 16 keys (often called an “Escape Sequence”). This lets you define more
keystroke macros than there are function and control keys. For example, you
might use <F12> as the “lead-in” to an entire group of keystroke macros.
Pressing <F12> and then “A” could play back one keystroke macro, pressing
<F12> and then “B” could play back another, and so on.
Keystroke macros may consist of just a single keystroke such as [CURSOR
UP]. This makes it easy to have alternate keys that perform the same basic
editing function.

Technically, VEDIT does not distinguish between the basic keyboard layout
(keys assigned to the edit functions) and keystrokemacros; VEDIT’s keyboard
layout simply lists the key or keys you press and the editing function or

296 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

function(s) to be performed. For the user’s benefit, key(s) that perform a single
edit function are considered part of the basic keyboard layout as displayed by
{HELP, Keyboard layout}; everything else is considered a keystroke macro.

Add Keystroke Macro
Define a new keystroke macro or change an existing one.

Keystroke Equivalent:

<Alt-A>, This is a keystroke macro.

Full Description:

This item adds a new keystroke macro or changes an existing one. Compared
to {CONFIG, Keyboard layout, Record keystroke macro}, this item has the
advantage of letting you edit the macro as you enter it. It should also be used
for macros that access the VEDIT PLUS macro language.

� To add (define) a new keystroke macro:
1. Select {CONFIG, Keyboard layout, Add keystroke macro}.
2. At the “Assigned hot-key” prompt, press the function or control key(s) to

which this keystroke macro should be assigned. This is the key(s) that you
will later press to play back the macro. Typically a keystroke macro is
assigned to a key, such as <F12>, <Shift-F10> or <Ctrl-T>, which is
currently unused or whose current assignment you want to overwrite.

If necessary, you can edit the “Assigned hot-key” sequence with [BACK-
SPACE].

3. When “Assigned hot-key” is correct, press <Tab>. (DOS version: press
<Enter>.)
If the “Assigned hot-key” is already in use, you will be prompted for
confirmation to overwrite the existing assignment.

4. For “Edit sequence:”, press the exact sequence of keystrokes you want the
macro to play back each time its hot-key is pressed.

If necessary, you can edit the “Edit sequence” with [BACKSPACE].
5. When the “Edit sequence” is correct, press <Enter>.
The keystrokemacro is now defined and ready for use. It will be available until
you exit VEDIT (or overwrite it). To make it permanent, select {CONFIG,
Keyboard layout, Save layout}.

Notes:

To use <Esc>, <Enter> or <Backspace> as part of the “Assigned hot-key” or
“Edit sequence”, you must precede that key with [ENTER CTRL] (default:
<Ctrl-Q>). If it contains [ENTER CTRL], press it twice.
The [REPEAT] function can be used with keystroke macros to repeat the
macro a number of times. A [REPEAT] can also be part of the assigned “Edit
Sequence”.

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 297

DOS, UNIX, QNX versions:

This item uses the edit functions [ESCAPE] and [BACKSPACE] which are
almost always assigned to <Esc> and <Backspace>. However on CRT termi-
nals, the assignments may be different; in all cases the top line in the dialog
box displays the exact key(s) to be pressed.

See Also:

“Keystroke Macros” in Chapter 4 for a step-by-step example.
Notes for {CONFIG, Keyboard layout} above.
{CONFIG, Keyboard layout, Record keystroke macro}, {CONFIG, Key-
board layout, Edit/view layout}

Record Keystroke Macro
Define a keystroke macro by recording your editing operations.

Keystroke Equivalent:

<Alt-K>, This is a keystroke macro.

Full Description:

This item records a new keystroke macro while you are editing. This makes it
easy to record a sequence of editing steps that you are going to use over and
over again.

This is an alternative to {CONFIG, Keyboard layout, Add keystroke
macro} and has the advantage of letting you see the editing operations as you
make them. However, “Add Keystroke Macro” has the advantage of letting
you edit the macro as you enter it.

You can define most keystroke macros using either “Add Keystroke Macro”
or “Record Keystroke Macro” according to your preference. New users will
tend to prefer the latter, experienced users the former. However, “Add Key-
stroke Macro” is required for macros that access the VEDIT PLUS macro
language.

� To record a new keystroke macro:
1. Select {CONFIG, Keyboard layout, Record macro}.
2. At the “Assigned hot-key” prompt, press the function or control key(s) to

which the recorded keystrokemacro should be assigned. This is the key(s)
that you will later press to play back the macro. Typically a keystroke
macro is assigned to a key that is currently unused or whose current
assignment you want to overwrite.

If necessary, you can edit the “Assigned hot-key” sequence with [BACK-
SPACE].

3. When “Assigned hot-key” is correct, press <Tab>. (DOS version: press
<Enter>.)
If the “Assigned hot-key” is already in use, you will be prompted for
confirmation to overwrite the existing assignment.

298 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

4. VEDIT is now in “Record mode” — this is indicated on the status line.
Everything you now type becomes part of the recorded keystroke macro.

5. To finish recording the new keystrokemacro, press the “Stop Record” key
which is displayed on the left hand side of the status line.

The “hot-key” for this menu item (default <Alt-K>) is the “Stop Record” key.
When no “hot-key” is defined, the “Stop Record” key is <Ctrl-]> which is
available on all keyboards.

See Also:

For themost part, all commentary and notes for {CONFIG, Keyboard layout,
Add keystroke macro} apply here too.

Edit/view layout
Edit, view or print the keyboard layout.

Keystroke Equivalent: (None)

Full Description:

This item lets you view or edit the entire keyboard layout as a normal text file.
You can also print the layout and “cut and paste” between different layouts.

When done, the new layout is automatically loaded, and can optionally bemade
permanent by saving it as the vedit.key file.

Notes:

The topic “Editing the Keyboard Layout” in Chapter 4 describes editing the
keyboard layout in more detail.

This function is implemented by thekeyedit.vdmmacrowhich completely
controls its operation.

See Also:

“VEDIT.KEY Layout File” in Chapter 8.
{CONFIG, Keyboard layout, Load layout}

Display unused keys
Display a list of unused (unassigned) keys.

Keystroke Equivalent: (None)

Full Description:

This item displays a list of keys that are currently unused — not assigned to
an edit function or keystroke macro.

These keys are therefore available for use as “hot-keys” that can be assigned
to menu items or other keystroke macros. These keys can be assigned with
{CONFIG, Keyboard layout, Add keystroke macro} {CONFIG, Key-
board layout, Record keystroke macro}, or by editing the keyboard layout
with {CONFIG, Keyboard layout, Edit/view layout}, or by directly editing
the vedit.key file.

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 299

Notes:

The dialog boxes for “Add keystroke macro” and “Record keystroke macro”
also let you view the list of unused keys.

See Also:

{CONFIG, Keyboard layout, Add keystroke macro}, {CONFIG, Key-
board layout, Record keystroke macro}
“Keystroke Macros” and “Editing the Keyboard Layout” in Chapter 4.
“VEDIT.KEY Layout File” in Chapter 8.

Save Layout to a File
Save entire keyboard layout in vedit.key or another file.

Keystroke Equivalent: (None)

Full Description:

This item saves the entire keyboard layout, including any new keystroke
macros, into the vedit.key file or other specified file. By saving into
vedit.key, any layout changes will be permanent (or until changed again).

When VEDIT starts up, it loads the keyboard layout from the vedit.key
file.

� To save the current keyboard layout:
1. Select {CONFIG, Keyboard layout, Save layout}. You are prompted

with:
Filename: C:\VEDIT\VEDIT.KEY

2. If the default “vedit.key” filename is correct, press <Enter>. Otherwise
edit the path and filename as needed, or enter “*.key” for point & shoot
file selection.

Since vedit.key normally already exists, you will be prompted for confir-
mation to overwrite it.

Notes:

The topic “VEDIT.KEY Layout File” in Chapter 8 (Configuration) describes
how to edit the vedit.key file.

This functions does not save any comments andConfig() commands that you
may have added to the vedit.key file.

See Also:

“VEDIT.KEY Layout File” in Chapter 8.
{CONFIG, Keyboard layout, Edit/view layout}, {CONFIG, Keyboard
layout, Load layout}

300 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

Load Layout from a File
Load an entire keyboard layout from a .KEY file.

Keystroke Equivalent: (None)

Full Description:

This item loads an entire new keyboard layout from a .key file supplied by
us or previously created with {CONFIG, Keyboard layout, Save layout}.
This lets you change the entire keyboard layout “on the fly” and load different
sets of keystroke macros for different editing tasks.

� To load an entire new keyboard layout file:
1. Select {CONFIG, Keyboard layout, Load layout}.
2. The default filename is “vedit.key”. You can either select this name by

pressing <Enter>, enter the desired filename, or enter “*.key” for point
& shoot file selection. The new keyboard layout table will be loaded.

Notes:

Loading a .key file overwrites any previous keyboard layout and keystroke
macros. If you have created any keystroke macros that you want to keep, you
must first save them with {CONFIG, Keyboard layout, Save layout} (But
don’t overwrite the file you are about to load.)

Before VEDIT loads the .key file, it scans it for validity. If an error is
detected, it displays an error message including the line number on which the
error occurred. Typical errors are misspelling the name of a key or edit
function.

See Also:

{CONFIG, Keyboard layout, Edit/view layout}, {CONFIG, Keyboard
layout, Save layout}

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 301

Help Menu
Keystroke Equivalent:

<Alt-H>, This is a keystroke macro.

Introduction:

The Help menu provides access to the on-line help “Table of Contents”, the
basic keyboard layout, information about the text registers and edit buffers that
are in use, and information related to the current status of VEDIT.

Help on Help
General help on using Windows on-line help.

Keystroke Equivalent: (None)

Full Description:

This item starts up the general help topic on how to use a Windows program’s
on-line help. This is the same information displayed by other programs that
have a “Help on help”.

In other words, this feature is built into Windows; we have no control over it.

Contents (Topics)
Activate VEDIT’s on-line help system; displaying the Table of Contents.

Keystroke Equivalent:

<F1> while no menu or dialog box is displayed; this is the [HELP] function.

Full Description:

VEDIT provides an extensive on-line help system. This item enters the on-line
help and starts at the “Table of Contents”.

302 Chapter 6 Menu Reference Help Menu

You can then select any desired topic and navigate through the on-line help in
the usual manner. You can use the “<<” and “>>” buttons to navigate to the
previous and next topics.

DOS, UNIX, QNX Versions Only:

The non-Windows versions have an on-line help system that is unique to
VEDIT.

� To access help on using the on-line help:
1. Select {HELP, Contents} (default: <F1>).
2. Press [HELP] (default: <F1>).

See Also:

“Context Sensitive Help” in Chapter 3.

Keyboard layout
Display the basic keyboard layout.

Keystroke Equivalent:

<Alt-F1>, This is a keystroke macro.

Full Description:

This item displays the basic keyboard layout. Each edit function is shown along
with the keys assigned to it.

The basic edit functions are described in Chapter 7 (Edit Function Reference).

The keyboard layout can be changed with {CONFIG, Keyboard layout,
Edit/view layout} or by editing the vedit.key file directly as described in
Chapter 8 (Configuration).

DOS, UNIX, QNX Versions Only:

From the keyboard layout display, you can obtain additional information on a
particular edit function by simply pressing the key(s) assigned to that function.

The display of the built-in keystrokemacros is only applicable to the “Normal”
keyboard layout. If you are using a different layout, you can edit the topic
“NORMALK” in the on-line help file. Modifying the on-line help file is
described in the on-line help topic “ONLINE”.

This item is equivalent to entering the on-line help system and selecting
[K]ey-layout.

Edit Buffers
Displays edit buffer information and permits “point and shoot” selection of
any buffer.

Keystroke Equivalent: (None)

Help Menu Chapter 6 Menu Reference 303

Full Description:

This item is identical to {FILE, Buffer switch}.
This item displays the ID numbers of all open edit buffers and lists which
window(s) they are attached to. Buffers that have never been displayed in a
window may not be attached to any window. (The VEDIT PLUS macro
language can create unattached buffers and explicitly attach/detach them.)

It also displays the full pathname of the files being edited, if any. The filename
is preceded with “*” if the file has been altered. It is preceded with “!” if the
file is in Read-only mode.

If you are only viewing the buffer information, press <Esc> or select [Cancel]
to return to your editing when done. Alternatively you can switch to another
edit buffer.

Notes:

This item duplicates {FILE, Buffer switch} so that all status information can
be found in one menu.

See Also:

{FILE, Buffer switch}, {FILE, Open}

Text Registers
Display active text registers: their name, size and contents.

Keystroke Equivalent: (None)

Full Description:

This item displays the names of non-empty text registers, their size and up to
the first 60 bytes of their contents.

See Also:

{HELP, Edit buffers}, {FILE, Buffer switch}

Status Display
Display VEDIT’s version, release date and status information.

Keystroke Equivalent: (None)

Full Description:

The VEDIT Status Display provides important information about the copy of
VEDIT you are using and its present state. Here is an example:

The following information is displayed:

Product name,
version and
release date.

You will need this information when you contact Green-
view Data, Inc. for technical support or upgrade assis-
tance. It describes exactly which product you are using,
the revision number and the date this revision was first
released.

304 Chapter 6 Menu Reference Help Menu

Current
directory

This is the default directory for all file operations. It can
be changed by selecting [] Change directory in any file
selection dialog box.

Input file The file VEDIT last opened for editing. It is the same as
the “Output File” unless you selected {FILE, Save as} to
save the file under a different name.

Output file The file into which VEDIT will save the editing changes.

Output file size This would be the size of the output file if you saved it
right now.

Free in buffer This is the RAM (memory) space, in characters, which
remains available for holding your file in the current edit
buffer. If this value drops too low, VEDITwill “write out”
(auto-buffer) some of the file to a temporary disk file to
keep this value somewhat constant. The total memory
space available to VEDIT is typically much larger. It is
used to hold other files, text registers, etc.

Used in buffer This isRAM(memory) space, in characters,which is filled
with your file in the current edit buffer. If you are editing
a large file, this may be less than the actual size of your
file.

Used in T-Regs This is the number of characters that are currently stored
in all text registers. The maximum value is about 60,000
characters, but may be less if memory is limited. You may
want to empty any large, unneeded text registers.

Date The current date as reported by your computer. If this is
not correct, refer to your computer system documentation
for information on how to set the current date.

Time The current time as reported by your computer.

VEDIT Website

On-line FAQ

On-line support
Quickly access the VEDIT Web site.

Keystroke Equivalent: (None)

Full Description:

These items start your Internet Web browser and connect to the extensive
VEDIT Website. The Home page lists the most current version of VEDIT
PLUS.

Help Menu Chapter 6 Menu Reference 305

Note:

These functions only work under Windows 95/98/NT and require that Web
addresses are associated with your Web browser, as is typical with Netscape
(tm) and Internet Explorer (tm).

You can also receive support by sending e-mail to support@vedit.com.

About
Display theVEDIT version number, copyright and technical support telephone
number.

Keystroke Equivalent: (None)

Full Description:

This item displays the VEDIT version number and release date. TheWindows
version also displays the Serial number. You will need this information when
contacting Greenview Data, Inc. for technical support or upgrade assistance.
It describes exactly which product and version you are using.

This item also displays the current technical support telephone number for
VEDIT and our Internet addresses.

Note:

The Windows version also displays through what month and year you can
receive technical support and download updates from our Website. For exam-
ple:

Support expires at end of 10-2000

This indicates that you can download and install a new VEDIT PLUS dated,
for example, 15-Oct-2000. However, you would need to purchase an update
to a VEDIT PLUS dated 10-Nov-2000. Our Website always lists the current
VEDIT PLUS’ version number and release date.

306 Chapter 6 Menu Reference Help Menu

Escape Menu
Keystroke Equivalent:

<Esc>, This is the edit function [ESCAPE]

Introduction:

The Escape menu provides quick access to several commonly used functions.
These items have been selected because they all represent a conventional and
logical use of the <Esc> key; that is, they let you exit, or “escape” from a
particular common situation.

To select the {ESCAPE} menu, press <Esc>. Since this key is also used to
exit, or “escape from” the menu system, dialog boxes and other prompts, it
will only bring up the {ESCAPE} when no menu or dialog box is displayed.
Press <Esc> again to escape from the {ESCAPE} menu.

Notes:

Technically, it is the [ESCAPE] function that displays this menu. However,
since <Esc> is always assigned to [ESCAPE] under Windows and DOS, we
use the two interchangeably. However, under UNIX and on CRT terminals,
you may have to press the <Esc> key twice.

Command Mode (Exit)

Command Mode (Escape)
Exits or “escapes” Visual Mode to the Command Mode and possibly the
“COMMAND:” prompt.

Keystroke Equivalent:

<Ctrl-E>, This is identical to the edit function [VISUAL EXIT]
<Alt-F10>, This is identical to the edit function [VISUAL ESCAPE]

Full Description:

“CommandMode (Exit)” exits Visual Mode and enters CommandMode. Any
command macro which is currently running will continue to run. If no
command macro is running, you will receive the “COMMAND: ” prompt.

Escape Menu Chapter 6 Menu Reference 307

“Command Mode (Escape)” exits Visual Mode and aborts any command
macro which is running. It will normally give you the “COMMAND:” prompt.
However, if a “locked-in” commandmacro is running, it will restart thatmacro.

If the special “<$>” Command Mode window exists, VEDIT will switch to
this window to display the “COMMAND:” prompt. Otherwise, the prompt
will be displayed at the bottom of the current window.

See Also:

“Basics - Entering Command Mode” in Chapter 2 (Command Mode Guide)
of the VEDIT PLUS Reference Manual.

Command Mode Window (VEDIT PLUS only)
Create the special Command Mode window and switch to it.

Keystroke Equivalent:

<Alt-/>, This is a keystroke macro.

Full Description:

This function creates the special Command Mode window “$” as a 5-line
reserved window at the bottom of the screen and then performs a “Command
mode (Escape)”. Unless a “locked-in” macro is running, you will get the
“COMMAND:” prompt.

Pressing this function’s hot-key (default: <Alt-/>) at the COMMAND: prompt
deletes the Command Mode window and returns to Visual Mode.

HINT: This hot-key (default: <Alt-/>) is a convenient way to toggle be-
tween the Visual Mode and the Command Mode.

See Also:

Chapter 2 in the VEDIT PLUS manual.
On-line help topic “Command Mode Basics” (DOS: “CMD”).

Remove Block Markers
Remove any existing block markers.

Keystroke Equivalent:

<Shft-F9>, this is a keystroke macro.

Brief Description:

Remove any block markers that are currently set; this removes any block
highlighting.

Notes:

It is usually easier to remove the block markers by pressing [CANCEL]
(<Ctrl-\>) or <Ctrl-Break>. To remove the block markers with a mouse,
simultaneously press both mouse buttons.

308 Chapter 6 Menu Reference Escape Menu

See Also:

Identical to {BLOCK, Remove markers}.

Exit (save/abandon)
Keystroke Equivalent:

<Alt-F4>, This is a keystroke macro.

Brief Description:

Save the current file and exit VEDIT.

See Also:

Identical to {FILE, Exit}.

Escape Menu Chapter 6 Menu Reference 309

Mouse Right-Click Menu
Introduction:

When you press the right mouse button during normal
editing, the Right-Click menu is displayed at the mouse
position. It simply duplicates some of the more com-
monly used functions in the main menu.

Most of the Right-Click menu items also have equiva-
lent “hot-keys” and are duplicated on the toolbar. There-
fore, it is simply an alternative way of accessing these
items. It is probably more useful when the toolbar is not
displayed.

Cut to Scratchpad Cut (move) the highlighted block to the scratchpad
(text register 0). Same as {EDIT, Scratchpad, Cut to
scratchpad}.

Copy to Scratchpad Copy the highlighted block to the scratchpad. Same as
{EDIT, Scratchpad, Copy to scratchpad}.

Paste Scratchpad Paste (insert) the scratchpad at the cursor position.
Same as {EDIT, Scratchpad, Paste scratchpad}.

Search Start a new search. Same as {SEARCH, Search}.

Replace Start a new search and replace. Same as {SEARCH,
Replace}.

Next Search or search & replace the next occurrence. Same
as {SEARCH, Next}.

Next Buffer Toggle round-robin fashion to the next buffer (file).
Same as {FILE, Next buffer}.

Previous Buffer Toggle round-robin fashion to the previous buffer
(file). Same as {FILE, Previous buffer}.

Delete (Char/Block) Delete the current character or highlighted block.
Same as {EDIT, Delete, Delete (char/block)} or
[DELETE].

Erase Line Delete the current line. Same as {EDIT, Delete, Erase
line} or [ERASE LINE].

Undo Edit Undo the last editing keystroke. Same as {EDIT,
Undo, Edit}.

310 Chapter 6 Menu Reference Mouse Right-Click Menu

Chapter 7

Edit Function Reference

Edit functions are the basic building blocks of VEDIT’s operation. Each edit
function is assigned to a specific key or key combination. Edit functions can
also be assigned to several (duplicate) keys. For example, the “Normal” layout
assigns [T-REG INSERT] to both <Numpad*> and <F11>.
Many basic editing functions, such as cursor movements, are also available in
dialog boxes.

For more information on assigning keys to edit functions see {CONFIG,
Keyboard layout} in Chapter 6 (Menu Reference) and Chapter 8 (Configura-
tion).

You can display which key or keys are assigned to each edit function by
selecting {HELP, Keyboard layout}.

[BACKSPACE] Deletes the character to the left of the cursor. At the
beginning of a line, it deletes the preceding “newline”
character, effectively merging the lines together.

This function’s behavior is configurable with
{CONFIG, Emulation, [BACKSPACE] emulation
mode}.
In dialog boxes, it permits editing the current entry.

In Window’s dialog boxes, this function is always
<Backspace>.

[BACKTAB] Moves the cursor to the character at the previous tab
stop. It stops at the beginning of a line.

If the cursor is in a highlighted block, it undents all
lines in the block, same as {EDIT, Undent}. This
behavior can be changed with {CONFIG, Emulation,
[TAB CHARACTER] emulation mode}.
In dialog boxes, it always moves to the previous item.

Chapter 7 Edit Function Reference 311

[CANCEL] During normal editing (no prompts) it removes any
block markers that are set. Also stops any [REPEAT]
operation.

DOS, UNIX, QNX versions: It also cancels the menu
system and any dialog box. In Windows/DOS, press-
ing <Ctrl-Break> performs [CANCEL].
It is assigned to <Ctrl-\> in most keyboard layouts.
See also: {BLOCK, Remove markers} in Chapter 6.

[CURSOR UP] Moves the cursor up one line, to the same horizontal
position. The setting for {CONFIG, Emulation, Cur-
sor positioning mode} determines whether the cursor
can be positioned past shorter lines.

In dialog boxes, it recalls previous entries.

[CURSOR DOWN] Moves the cursor down one line, to the samehorizontal
position. The cursor cannot be moved past the last line
in the file.

[CURSOR RIGHT] Moves the cursor to the next character. At the end of
the line, it moves to the beginning of the next line. Its
behavior at the end of a line is configurable with
{CONFIG, Emulation, Cursor positioning mode}.
Set to “4”, the cursor can move past the end of a line.

In dialog boxes, it permits editing the current entry.

[CURSOR LEFT] Moves the cursor to the previous character. At the
beginning of a line, it moves to the end of the previous
line; this behavior is configurable with {CONFIG,
Emulation, Special emulation modes}.

[DELETE] Deletes the character at the cursor. At the end of a line,
it deletes the “newline”. (The Windows/DOS
“newline”consists of the Carriage-Return and Line-
Feed characters.)

If a block is currently highlighted and the cursor is
within the block (or immediately past it), it deletes the
block, same as {BLOCK, Edit/Translate, Block de-
lete}.
This function’s behavior with respect to “newlines”
and blocks is configurable with {CONFIG, Emula-
tion, Special emulation modes}.
See also: {EDIT, Delete, Delete} in Chapter 6.

[DEL PREV WORD] Deletes the word, or portion of a word, or whitespace
to the left of the cursor. Pressing it again deletes the
next whitespace or word.

312 Chapter 7 Edit Function Reference

[DEL NEXT WORD] Delete the word, or portion of a word, to the right of
the cursor.

[ENTER CTRL] Enters the next keystroke literally into the text, includ-
ing control and graphics characters. Also used to enter
control characters into search/replace strings.

It is assigned to <Ctrl-Shift-^> in most keyboard
layouts. Windows and DOS versions: it is also as-
signed to <Ctrl-Q>.
See also: “Keyboard Characters and Screen Display”
inChapter 4; {EDIT, Enter CTRL char} and {MISC,
ASCII table} in Chapter 6.

[ERASE BOL] Erases (deletes) all characters from the beginning of
the line up to the cursor.

See also:{EDIT, Delete, Erase BOL} in Chapter 6.

[ERASE EOL] Erases (deletes) all text from the cursor to the end of
the current line.

See also:{EDIT, Delete, Erase EOL} in Chapter 6.

[ERASE LINE] Erases (deletes) the entire current line.

See also:{EDIT, Delete, Erase line} in Chapter 6.

[ESCAPE] “Escapes” from the current prompt or menu level. If
there is no prompt or menu, it pops up the {ESCAPE}
menu.

See also: “Using Menus” in Chapter 4; {ESCAPE}
Menu in Chapter 6.

[HELP] Displays context sensitive help relevant to the current
menu or prompt. If there is no prompt or menu, it starts
up the on-line help at the Table-Of-Contents, same as
{HELP, Topics}. When the menu system or a prompt
is on the screen, [HELP] directly access the topic
relevant to the currently displayed menu or prompt.

See also: {HELP, Topics/Contents} in Chapter 6.

[INSERT TOGGLE] Toggles between “Insert” and “Overstrike” modes.

See also: {EDIT, Delete, Insert mode} in Chapter 6.

[LINE BEGIN] Moves the cursor to the first character of the screen
line or, if already there, to the first character of the
previous screen line. This function’s behavior is con-
figurable with {CONFIG, Emulation, [LINE
BEGIN/END] emulation mode}.

Chapter 7 Edit Function Reference 313

[LINE END] Moves the cursor to the end of the current screen line.
If already there, it moves the cursor to the end of the
next screen line. This function’s behavior is configur-
able with {CONFIG, Emulation, [LINE
BEGIN/END] emulation mode}.

[MENU] Starts the pull-down menu system. The menu system
is accessed in the usual manner using the cursor keys
and <Enter>. Pressing [ESCAPE] backs out of the
menu system, one level at a time. Pressing [CANCEL]
cancels any prompts and removes the menu system.

In theWindows andDOSversions, this function is also
activated by just tapping the <Alt> key.

[NEXT LINE] Moves the cursor to the beginning of the next text line.

[NEXT PARAGRAPH] Moves the cursor to the beginning of the next para-
graph.

[NEXT TAB STOP] Moves the cursor to the next tab stop.

See also: {CONFIG, Tab stops} in Chapter 6.

[NEXT WORD] Moves the cursor to the beginning of the next word.

[PAGE UP] Moves the cursor to the previous screen “page” —
similar to pressing [CURSOR UP] for 3/4 screen
lines. The amount of screen overlap is configurable
with Config(S_PG_OVERLAP) - see Chapter 8.

[PAGE DOWN] Moves the cursor to the next screen “page” — similar
to pressing [CURSOR DOWN] for 3/4 screen lines.

[PREV PARAGRAPH] Moves the cursor to the beginning of the current para-
graph. If already at the beginning of a paragraph,
moves the cursor to the beginning of the previous
paragraph.

See also: “Word Processing Function - Definition of
Paragraph” in Chapter 4.

[PREV WORD] Moves the cursor to the beginning of the current word.
If already at the beginning of a word, moves the cursor
to the beginning of the previous word.

[REPEAT] This function is identical to {EDIT, Repeat}.

[REPEAT LAST] Repeats the last typed character, edit function, menu
selection or keystroke macro.

[REPEAT LAST] is often used to repeat menu selec-
tions for which there is no hot-key.

See also: {EDIT, Repeat} in Chapter 6.

314 Chapter 7 Edit Function Reference

[RETURN] Is always assigned to the <Enter> key. In overstrike
mode, it moves the cursor to the next line, same as
[NEXT LINE]. In insert mode, or at the end of the file,
it opens up a new line by inserting a “newline” char-
acter (<CR><LF> pair). Pressed in the middle of a
line, it splits the line. Its behavior can be changed with
{CONFIG, Emulation, <Enter> key emulation
mode}.

[SCREEN BEGIN] Moves the cursor to the beginning of a line at or near
the top of the current window (screen). This function’s
behavior is configurable with {CONFIG, Emulation,
Special emulation modes}.

[SCREEN END] Moves the cursor to the end of a line at or near the end
of the current window (screen). This function’s behav-
ior is configurable with {CONFIG, Emulation, Spe-
cial emulation modes}.

[SCROLL UP] Scrolls the screen to show the next previous line at the
top of the screen.Moves the cursor, if required, to keep
it on-screen. Its behavior can be changed with {CON-
FIG, Emulation, Special emulation modes}.
See also: “Scrolling the Screen” in Chapter 4.

[SCROLL DOWN] Scrolls the screen to show the next line at the bottom
of the screen. Moves the cursor, if required, to keep it
on-screen.

[SCROLL RIGHT] Scrolls the screen to view long lines going off the right
side of the screen. Moves the cursor, if required, to
keep it on-screen. It scrolls by the number of columns
defined by {CONFIG, Display options, Horizontal
scroll increment}.

[SCROLL LEFT] Scroll the screen to view the beginning portions of long
lines. Moves the cursor, if required, to keep it on-
screen.

[TAB CHARACTER] In insert mode or at the end of a line, it inserts a Tab
character (or optionally spaces to the next tab position)
into the text. In overstrike mode, it moves the cursor to
the next tab position. Its behavior is configurable with
{CONFIG, Emulation, [TAB CHARACTER] emu-
lation mode}.
If the cursor is in a highlighted block, it indents all lines
in the block, same as {EDIT, Indent}.
In dialog boxes, it always moves to the next item.

See also: “The <Tab> Key and Tab Characters” in
Chapter 4; {CONFIG, Tab/Fill, Expand <Tab> with
spaces} in Chapter 6.

Chapter 7 Edit Function Reference 315

[T-REG COPY]
[T-REG MOVE]
[T-REG INSERT]

These functions are identical to {BLOCK, Copy to
register}, {BLOCK, Move to register} and
{BLOCK, Insert register}.
At the “COMMAND:” prompt, [T-REG INSERT]
inserts the contents of the scratchpad (text register 0).

[VISUAL ESCAPE]
(VEDIT PLUS only)

Exits the “Visual Mode” and aborts any command
macro, such as WILDFILE.VDM, that is currently
running.

In VEDIT, if no command macro is currently running,
this function has no effect.

In VEDIT PLUS, this function is normally used to
enter the “Command Mode” and is identical to
{ESCAPE, Command Mode (Escape)}.

[VISUAL EXIT] This edit function is used inside keystroke macros that
access the VEDIT PLUS macro language.

It also permits exiting the “Visual Mode” so that a
command macro, such as WILDFILE.VDM, can con-
tinue running.

In VEDIT PLUS, it enters the “Command Mode”
when no macro is currently running. It is identical to
{ESCAPE, Command Mode (Exit)}.

316 Chapter 7 Edit Function Reference

Chapter 8

Configuration

VEDIT is completely configurable — over 200 parameters and the entire
keyboard layout can be configured to your precise needs and personal prefer-
ences.

NOTES: Please don’t make major changes to VEDIT’s configuration until
you are familiar with it and understand what you are changing.
Otherwise you will change VEDIT so much that it no longer works
as described in the manual and on-line help.

The DOS and QNX version configuration is slightly different. Refer
to the on-line help topic “CFG” for details.

All common configuration changes can be made with the {CONFIG} menu.
The keyboard layout can be changed and new keystroke macros added with
the {CONFIG, Keyboard layout} sub-menu.
These changes can either be temporary or permanent. Temporary means that
the changes are lost when you exit VEDIT. Permanent means that the changes
will be there the next time you runVEDIT. (We call it permanent, but of course
you can change them again.)

To make configuration and keyboard changes permanent, they must be saved
into the vedit.cfg and vedit.key files. VEDIT automatically loads
these files on startup and thereby configures itself.

As you become more familiar with VEDIT, you may prefer to make configu-
ration and keyboard layout changes by editing the vedit.cfg and
vedit.key files directly. Some additional (rarely used) configurations can
only be made by editing the vedit.cfg file.

SUGGESTION: You may want to save a copy of your vedit.cfg and
vedit.key files in another directory, e.g.
c:\vedit\save\vedit.cfg. Your preferred VEDIT
configuration and keyboard layout can then be restored if
you, or someone else, makes unwanted changes to it.

Chapter 8 Configuration 317

Basic Configuration
Most configuration changes are made by selecting items in the {CONFIG}
menu. To save the changes, youmust also select {CONFIG, Save config} and
choose the default filename of “vedit.cfg” in the User Config Directory,
typically c:\vedit\save\vedit.cfg.

Alternatively, if {CONFIG, Auto-save config} is enabled, VEDIT automat-
ically saves configuration changes as you make them. VEDIT is supplied with
“Auto-save config” enabled, but after you are familiar with VEDIT, you may
decide that you don’t want to automatically save every configuration change.

Similarly, the keyboard layout can be changed and new keystroke macros
addedwith the {CONFIG, Keyboard layout} sub-menu. To save the changes,
you must also select {CONFIG, Keyboard layout, Save layout} and choose
the default filename, typically c:\vedit\save\vedit.key.

NOTES: VEDIT does not automatically save changes to the keyboard
layout. You must select {CONFIG, Keyboard layout, Save lay-
out}.

DOS Version: The basic configuration described in the manual and
on-line help assume that {CONFIG, Misc, Auto-load config} is set
to “3”.

How VEDIT Configures Itself
To fully understand (and possibly troubleshoot) VEDIT’s configuration, you
need to know exactly how VEDIT configures itself at startup.

Note: The DOS and QNX version configuration is somewhat different. Refer
to the on-line help topic “CFG” for details.

1. The executable VEDIT file (e.g. vpw.exe) contains the complete “de-
fault” configuration and the “normal” keyboard layout.

DOS version: You can change this built-in configuration by selecting
{CONFIG, Misc, Save into VEDIT.EXE}.
If no other configuration files are found, or the “-ixxx -g ” invocation
options are specified, this determines the startup configuration.

2. VEDIT opens the vedit.ini file which it expects to find in the same
directory as the executable vpw.exe file. This is usually the directory
into which you installed VEDIT.

The entries “HomeDir” and “UserCfgDir” determine the VEDIT Home
Directory and User Config Directory which are used to locate other files.
For most installations, the location of the vpw.exe and vedit.ini
files, the VEDIT Home Directory and the User Config Directory will all
be the same, e.g. c:\vedit. However, for shared network installations,
they might be different. (See the Chapter 2 or the on-line help topic
“Network Installation” for details.)

318 Chapter 8 Configuration

Details:VEDIT first opens the vedit.ini file in the same directory as
the executablevpw.exe. It then reads the “UserCfgDir” value and opens
the vedit.ini file in the User Config Directory as the working
“vedit.ini” file. For most installation, there is only one vedit.ini file.
However, for shared network installations, they are two vedit.ini
files; the vedit.ini file on the network server uses “UserCfgDir” to
specify the location of the user’s vedit.ini file.

3. VEDIT searches the current directory and then theUser Config Directory
(typically c:\vedit) for the configuration files vedit.cfg and
vedit.key. If found, they override the configuration and keyboard
layout built into vpw.exe. No error is given if these files are not found.

If the “-g” invocation option was specified, this step is skipped.
Note that vedit.key must contain the complete keyboard layout.
However, you could manually edit vedit.cfg to have only a few
configuration parameters; the other parameters would come from
vpw.exe.

4. VEDIT searches first the current directory, then theUser Config Directory
and finally the VEDIT Home Directory for the startup.vdm file. This
is a macro (written in the VEDIT PLUS macro language) that further
configures VEDIT on startup.

startup.vdm is primarily used to set up the {TOOLS} and {USER}
menu, file-type specific configuration, color syntax highlighting and
template editing.

The supplied startup.vdm file does not override any configuration
settings or change the keyboard layout. However, it documents how you
can override any configuration settings and add some useful keystroke
macros to the keyboard layout.

Note: The name “startup.vdm” is actually specified by the
“Startup” entry in the vedit.ini file. Advanced
users could change it, but all VEDIT documentation
uses the name “startup.vdm”.

5. VEDIT can optionally configure itself according to the filename extension
of each file being edited. For example. “.txt” files can have word process-
ing features enabled, while “.c” files have programming features and color
syntax highlighting enabled.

The supplied startup.vdm sets up this file-type specific configuration
feature, but does not enable it. You must enable it with {CONFIG, File
handling, File-type specific configuration} and then select {CONFIG,
Save config}. Alternatively, it can be enabled by editingstartup.vdm.
This feature typically changes the tabs stops and the settings in the
{CONFIG, Word processing} and {CONFIG, Programming} sub-
menus according to the file type.

Chapter 8 Configuration 319

Troubleshooting
If your configuration changes are lost the next time you run VEDIT, these
troubleshooting steps can help you solve the problem:

1. Make sure that you really did save your configuration changes by selecting
{CONFIG, Save config}. Most configuration changes are automatically
saved if {CONFIG, Auto-save config} is enabled.
Changes to the keyboard layout must be saved with {CONFIG, Key-
board layout, Save layout}; they are not automatically saved.
To verify that the configuration changes were saved, open and examine
the files vedit.cfg and vedit.key in the User Config Directory,
e.g. c:\vedit\vedit.cfg. You can directly edit these files.

2. Check that your vedit.ini file is correct. Open the vedit.ini file
in the User Config Directory. For non-network installations, this is the
directory into which you installed VEDIT; it is typically c:\vedit.

The vedit.ini file should be fully documented. The first line should
read something like:

; VEDIT.INI - Windows information file for VEDIT.

If the file is not documented, e.g. the first line reads “[VEDIT]”, this
indicates that VEDIT did not find a complete vedit.ini file and
therefore auto-created one. However, the auto-createdvedit.ini is not
complete and likely to cause problems. In this case you should copy the
vedit.ini file from the original VEDIT disk (or downloaded .ZIP
file) to your VEDIT directory.

As described below, be sure that “HomeDir” and “UserCfgDir” specify
the correct VEDIT Home Directory and User Config Directory.
Also be sure that the entry “Startup” is set to the filename “startup.vdm”.

VEDIT PLUS: Go to the Command Mode “COMMAND:” prompt and
enter the command “Config_String()” to verify the current settings for
VEDIT Home Directory and User Config Directory.

3. Make sure that the “UserCfgDir” entry in the vedit.ini file specifies
the correct User Config Directory; it is typically c:\vedit.
Then check that this directory contains the files vedit.cfg and
vedit.key. Remember, {CONFIG, Save config} creates the
vedit.cfg file, and {CONFIG, Keyboard layout, Save layout} cre-
ates the vedit.key file.

4. Make sure that the “HomeDir” entry in the vedit.ini file specifies the
correct VEDIT Home Directory; it is typically also c:\vedit.
For most installations, the VEDIT Home Directory and User Config
Directory are set the same, e.g. c:\vedit. However, if VEDIT is
installed on a shared network server formultiple licensed users, theVEDIT
Home Directory is typically set to the network server, e.g. “h:\apps\vedit”

320 Chapter 8 Configuration Troubleshooting

and theUser Config Directory is typically set to a local hard disk, e.g. “c:
\vedit”.

If the User Config Directory is inadvertently set to the network server,
then your startup configuration will be the configuration saved by the last
VEDIT user.

5. The startup.vdm file may be overriding your saved configuration
changes. Try starting VEDIT without the startup.vdm by using the
invocation option:

vpw -ixxx

The “-ixxx” attempts to load the file “xxx”, which presumably does not
exist, in place of the startup.vdm file.

If your configuration changes are still lost, open the file vedit.cfg in
the User Config Directory and verify your configuration. If desired, you
can directly edit this file.

If your configuration changes are now restored, try setting {CONFIG,
File handling, File-type specific configuration} to “0”. Select {CON-
FIG, Save config} to be sure the change is saved. Then start up VEDIT
normally. If your configuration is now correct, you may want to study the
file-type specific configuration section of thestartup.vdm file. If your
configuration is still lost, some other commands in startup.vdm are
overriding it.

See also:

The topic “Startup.vdm File” in Chapter 5 (Advanced Topics).

The topic “Network Installation” in Chapter 2 (Installation).

Troubleshooting Chapter 8 Configuration 321

VEDIT.KEY Layout File
The keyboard layout can be changed by editing the vedit.key file directly
or by selecting {CONFIG, Keyboard layout, Edit/view layout}. The latter
gives you the choice of making the layout changes temporary or saving them
into vedit.key.

There are several reasons for always editing the vedit.key file directly and
never saving it with {CONFIG, Keyboard layout, Edit/view layout} or
{CONFIG, Keyboard layout, Save layout}:
� You can add comments to the layout for future reference. (Comments are

lost if {CONFIG, Keyboard layout} saves the layout.)
� You can add Config() commands to the vedit.key file to force any

configuration changes needed tomake the keyboard layoutwork properly.
(Config() commands are lost if {CONFIG, Keyboard layout} saves the
layout.)

After creating a custom keyboard layout, you may want to save it not only as
vedit.key, but use {FILE, Save as} to save it under an additional name,
such as “bobs.key”.

A new keyboard layout can be loaded at any time by selecting {CONFIG,
Keyboard layout, Load layout}. Any supplied “.key” file such as nor-
mal.key, brief.key or wordstar.key can be loaded. A custom file,
such as “bobs.key” can also be loaded.

NOTE: After carefully personalizing and commenting avedit.key file, be
sure to save a copy under another name or in another directory. In
particular, don’t overwrite it with {CONFIG, Keyboard layout, Save
layout}, because any comments and Config() commands will then
be lost.

� To edit the vedit.key file:
1. Select {FILE, Open} (default: <Ctrl-O>) and select the file in the User

Config Directory, typically c:\vedit\vedit\vedit.key.
2. Change the layout as described below.

3. Save your changes, e.g. with {FILE, Save and continue} or {WINDOW,
Close}.

4. Select {CONFIG, Keyboard layout, Load layout} to load the new
vedit.key file and verify that the layout is correct.

The next time VEDIT is started, it should have the new layout. If it does
not, see “Troubleshooting” above; most likely, the startup macro
startup.vdm is overriding the layout.

322 Chapter 8 Configuration VEDIT.KEY Layout File

Modifying the VEDIT.KEY file
Follow these guidelines when editing the keyboard layout, either by editing
the vedit.key file directly or by selecting {CONFIG, Keyboard layout,
Edit/view layout}.
1. Normally, leave the first line alone. It assigns the <Enter> key to the

[RETURN] function. It must be the first line of the keyboard layout.
However, it can be preceded by comments or Config() commands.

2. Notice that all remaining lines have the same format. Each line begins
with the key or keys that are pressed to perform an editing function. This
is followed by whitespace; at least a tab or two spaces. Then comes the
entire editing sequence on one line.

3. As long as each line has the correct format, you can add new lines, delete
lines andmodify lines.Wherever you need a “Tab” character enter “[TAB
CHARACTER]”; wherever you need a “newline” (i.e. Carriage-Return
and Line-Feed) enter “[RETURN]”.

4. You can add comment lines to the file by starting the line with two slashes
“//”. See the NOTE: above.

Configuration Commands in “.KEY” Files
A “.key” keyboard layout file (in Text mode), can optionally have any desired
number of lines consisting of Config() and other macro language commands.
This is useful for setting up configuration parameters that are needed to
accurately emulate other editors. For example, our supplied brief.key has
the command Config(E_Line_Mode,5) to properly make the <Home> and
<End> keys emulate the Brief (tm) editor.
When adding macro language commands to a vedit.key file, follow these
guidelines:

� Each command line must begin in column 1 with a valid command.
Comment lines can also be included beginning with the normal “//”.

� The maximum line length for commands and comments is 1000
characters.

� Complex macros using flow control statements are supported; however
each line must be a complete macro. Text register 119 is reserved specifi-
cally for use by macros in “.key” files.

� {CONFIG, Keyboard layout, Save layout} does not save anyConfig()
commands or comments back into the “.key” file.

Therefore, you may find it better to make all permanent keyboard layout
changes by editing your personal “.key” file, e.g. “bobs.key”, and then copying
this file to vedit.key.

NOTE: Loading a new keyboard layout may not restore configuration
settings set by a previous “.key” file.

VEDIT.KEY Layout File Chapter 8 Configuration 323

VEDIT.CFG Configuration File
While most configuration changes can be made with the {CONFIG} menu,
there are several reasons for editing the vedit.cfg file directly:

� All configuration parameters can be changed, including some not avail-
able in the {CONFIG} menu:
� The additional characters that separate words from each other. The

characters occurring at the beginning of a line that separate para-
graphs from each other.

� Number of lines of screen overlap when using [PAGE UP] and
[PAGE DOWN]. Also the range of screen lines in which the cursor
can move before the screen scrolls.

� VEDIT PLUS: How many times the Command Mode help message
is displayed.

� Number of Undo levels available.

� Enable or disable the “DOS shell” functions and the DOS prompt to
be used when shelled out.

� (DOS only) Force VEDIT to start up in 25, 28 or 50 line mode.

� Making numerous changes is often easier by editing thevedit.cfg file.
You can search for items and cut and paste between files.

� When upgrading to future versions of VEDIT, you will use the
vedit.cfg and vedit.key files to transfer your configuration to the
new version.

� VEDIT PLUS users can change any configuration parameter on the fly in
the “Command Mode”. Since vedit.cfg really is a VEDIT PLUS
command macro, it helps to become familiar with the configuration
commands in it.

� To edit the vedit.cfg file:
1. Select {FILE, Open} (default: <Ctrl-O>) and select the file in the User

Config Directory, typically c:\vedit\vedit\vedit.cfg.
2. Change the desired configuration parameters. This is described below.

Some of the parameters are described in this chapter; the remainder are
described under the {CONFIG} menu in Chapter 6 (Menu Reference).

3. Save your changes, e.g. with {FILE, Save and continue} or {WINDOW,
Close}.

4. Select {CONFIG, Load config} to load the vedit.cfg file and verify
that the configuration is correct.

The next time VEDIT is started, it should have the new configuration. If
it does not, see “Troubleshooting” above; most likely, the startup macro
startup.vdm is overriding the configuration.

324 Chapter 8 Configuration VEDIT.CFG Configuration File

List of Config() Parameters
The vedit.cfg file consists of over 200 Config() commands. Most of the
Config() commands change parameters which are also in the {CONFIG}
menu and are described in Chapter 6 (Menu Reference) and in the on-line help
for each {CONFIG} sub-menu. The format of Config() command lines is:

Config(name,"comment“,value)

name The name of the configuration parameter to change.

comment A descriptive comment in double-quotes that is ignored by
VEDIT. It is only for your reference; for most parameters it is
identical to the name seen in the {CONFIG} menu.

value The parameter’s value as a decimal number. This is the only
field that you should change.

This topic primarily describes the additionalConfig() commands which have
no {CONFIG} menu equivalent.
Config(B_HORZ, “Horizontal border character”, 205)
Config(B_...)

DOS, UNIX and QNX versions only. These parameters determine the
characters used to draw boxes around its menus and dialog boxes. They
are not used by the Windows version.

The following parameters determine the colors used by VEDIT. Most only
apply to the DOS, UNIX and QNX versions. Only the editing colors and the
syntax highlighting colors apply to the Windows version.

The parameter names beginning with “C_” are used on color displays, the
parameter names beginning with “C_X_” are used on monochrome displays.
Config(C_TEXT, “Color for edited text ”, 30)

The color used for the edited text. This color may be changed for
individual windows with {MISC, Color Toggle} (<Alt-J> keystroke
macro).

Config(C_STAT, “Color for status line”, 112)
Color of the filename, line and column numbers, and empty parts of the
status line. Usually set to reverse video.

Config(C_STAT_M, “Color for status line messages”, 112)
Color used for status linemessages including “BLOCK”, and “INS”. They
are usually displayed in reverse video. To make these messages stand out,
make this color different from “Color for status line”. This color is also
used for the “continuation characters” used when wrapping long lines on
the screen.

Config(C_WIN_B_M, “Color for active window border”, 63)
Color of the border around the active window. It is preferable to pick a
color different from the edited text.

List of Config() Parameters Chapter 8 Configuration 325

Config(C_WIN_B, “Color for inactive window border”, 48)
Color of the borders around all inactive windows. It should be different
from “Color for active window border”.

Config(C_EMPTY, “Color for empty screen”, 113)
Color of the background (desktop) screen “behind” all windows. It is only
visible when windows don’t cover the entire screen.

Config(C_BAR, “Color for menu bar”, 112)
Color of the main menu bar at the top of the screen. Usually set to reverse
video.

Config(C_BAR_S, “Color for menu bar selection”, 127)
Color of the letter that selects each main menu item. This color should be
different from “Color for menu bar”. (However, the same color as “Color
for menu bar highlighting” can be used).

Also used to highlight option letters and function keys in many prompts
and help messages.

NOTE: If the selection letter is not visible on a monochrome display, try
adjusting the contrast and brightness controls. If this doesn’t work,
pick another attribute value; try “7” or “15”.

Config(C_BAR_H, “Color for menu bar highlighting”, 78)
Color of the menu item that is currently selected.

Config(C_MENU, “Color for menu”, 48)
Color of the pull-downmenus. Coordinate this color with “Color formenu
selection” and “Color for menu highlighting”.

Config(C_MENU_S, “Color for menu selection”, 62)
Color of the letter that selects each pull-down menu item. This color
should be different from “Color for menu”. (However, the same color as
“Color for menu highlighting” can be used).

Config(C_MENU_H, “Color for menu highlighting”, 78)
Color of the pull-down menu item that is currently selected.

Config(C_MENU_I, “Color for inactive menu items”, 56)
Override for items in the {BLOCK} and other menus that are currently
inactive. If “0”, it is the same as “Color for menu”.

Config(C_PROMPT, “Color for simple prompts”, 47)
Color of simple one-line prompts, such as the prompt for {GOTO, Line
#}.

Config(CO_DIALOG, “Color for dialog boxes (override)”, 0)
Override color for dialog boxes. If “0”, it is the same as “Color for menu
bar”.

326 Chapter 8 Configuration List of Config() Parameters

Config(CO_DIALOG_S, “Color for dialog selection (override)”, 0)
Override color for the letter that selects each dialog box item. If “0”, it is
the same as “Color for menu bar selection”.

Config(CO_DLG_BUT, “Color for dialog buttons (override)”, 0)
Override color for the inactive buttons in a full dialog box. If “0”, it is the
same as “Color for menu”.

Config(CO_ACT_BUT, “Color for active button (override)”, 0)
Override color for the active button in a full dialog box. If “0”, it is the
same as “Color for menu highlighting”.

Config(CO_BLOCK, “Color for block highlighting (override)”, 46)
Override color for blocks being highlighted. If “0”, the reverse video of
the text color is used. For example, ”71” will always display blocks as
white text on a red background.

Config(CO_CURSOR, “Color for cursor (override)”, 113)
(IBM DOS only) Override color for the software cursor types 1 and 2
({CONFIG, Characters/Cursors, Cursor type}). If “0”, the reverse
video of the text color is used. For example, ”64” always displays a red
cursor.

If “Color for text” is set to a bright color such as yellow (attribute 14), you
may not like the automatic cursor color.You should then set this parameter
to the desired cursor color.

Config(CO_ERASE, “Color for window erase (override)”, 0)
Override for that portion of an editing window where there is no text. If
“0”, the same color as the text is used.

Setting an overriding color gives an unusual effect, but lets you clearly
see trailing spaces at the ends of lines.

Config(CO_HELP, “Color for Help window (override)”, 0)
Override for pop-up help windows. If “0”, the same color as the current
text is used.

Config(CO_LINE, “Color for cursor line (override)”, 78)
Override for the current line’s color when {CONFIG, Display options,
Highlight cursor line} is enabled. If “0”, the cursor line is displayed in
“bright” characters.

Config(C_RESERVE_W1, “Color for reserved words 1", 28)
Color of the syntax highlighting items that match the definition for
“Reserved1”.

Config(C_RESERVE_W2, “Color for reserved words 2", 27)
Color of the syntax highlighting items that match the definition for
“Reserved2”.

List of Config() Parameters Chapter 8 Configuration 327

Config(C_RESERVE_W3, “Color for reserved words 3", 29)
Color of the syntax highlighting items that match the definition for
“Reserved3”.

Config(C_RESERVE_W4, “Color for reserved words 4", 31)
Color of the syntax highlighting items that match the definition for
“Reserved4”.

Config(C_SYMBOL, “Color for symbols”, 23)
Color of the syntax highlighting items that match the definition for
“Symbols”.

Config(C_COMMENT, “Color for comments”, 18)
Color of the syntax highlighting items that match the definitions for
“Comment” or “Linecmt”.

Config(C_STRING, “Color for strings”, 26)
Color of the syntax highlighting items that match the definition for
“Strings”.

Config(C_NUMBER, “Color for numeric”, 23)
Color of the syntax highlighting items that match the definition for
“Numeric”.

Most of the following Config() commands apply to all versions of VEDIT.
Most correspond to items in the {CONFIG} menus.
Config(E_CR_MODE, “Cursor positioning mode (0 - 4)”, 1)

Same as {CONFIG, Emulation, Cursor positioning mode}.
Config(E_EXP_TAB, “Expand <Tab> with spaces (*)

Same as {CONFIG, Tab/Fill, Expand <Tab> with spaces}.
Config(E_TAB_MODE, “[TAB CHARACTER] emulation mode”, 3)

Same as {CONFIG, Emulation, [TAB CHARACTER] emulation
mode}.

Config(E_ENTER_MODE, “<Enter> key emulation mode (0 - 3)”, 1)
Same as {CONFIG, Emulation, <Enter> key emulation mode}.

Config(E_BS_MODE, “[BACKSPACE] emulation mode (0 - 3)”, 0)
Same as {CONFIG, Emulation, [BACKSPACE] emulation mode}.

Config(E_LINE_MODE, “[LINE BEGIN/END] emulation mode”, 3)
Same as {CONFIG, Emulation, [LINE BEGIN/END] emulation
mode}.

Config(E_SPEC_MODE, “Special emulation modes (0 - 255)”, 0)
Same as {CONFIG, Emulation, Special emulation modes}.

328 Chapter 8 Configuration List of Config() Parameters

Config(E_SHIFT_MODE, “Alt/Ctrl/Shift key shortcut modes”, 7)
Same as {CONFIG, Emulation, Alt/Ctrl/Shift key shortcut modes}.

Config(E_E_SHFT_BK, “Enable <Shift> block marking”, 1)
Same as {CONFIG, Emulation, Enable <Shift> block marking}.

Config(E_BM_MODE, “Block marker emulation mode (0 - 2)”, 0)
Same as {CONFIG, Emulation, Block marker emulation mode}.

Config(E_ADV_CR_BK, “Advance cursor past block insert”, 1)
Same as {CONFIG, Emulation, Advance cursor past block insert}.

Config(E_TRIM_BK, “Trim spaces after columnar operation (*)”, 1)
Same as {CONFIG, Tab/Fill, Trim spaces after columnar block op-
eration}.

Config(E_BK_FILL_C, “Block fill character (*) (0 - 255)”, 32)
Same as {CONFIG, Tab/Fill, Block fill character}.

Config(E_SCRL_MARG, “Horiz. scroll margin (*) (0=Off)”, 0)
Same as {CONFIG, Display options, Horiz. scroll margin}.

Config(E_SCRL_INC, “Horiz. scroll increment (*) (1 - 100)”, 20)
Same as {CONFIG, Display options, Horiz. scroll increment}.

Config(E_INS_MODE, “Insert mode (Visual mode)”, 1)
Determines whether VEDIT starts in “Insert” or “Overstrike” mode. Set
by [INSERT TOGGLE]. Since thisConfig() parameter is not saved into
vedit.cfg, thestartup.vdm file must be used to set this parameter.

Config(E_EMULATE, “Emulation (0=VEDIT, 2,3=vi, 4=QNX)”, 0)
Reserved. Note: the vi emulation package originally suppliedwithVEDIT
(PLUS) version 3.7 is no longer available due to the new macro language
introduced in version 4.0.

Config(F_AUTO_SAVE, “Auto-save interval (0=Off, minutes)”, 0)
Same as {CONFIG, File handling, Auto-save interval}.

Config(F_BACKUP_MODE, “Backup files (0=Off, 1=.BAK, 2=Dir)”, 1)
Same as {CONFIG, File handling, Backup files}.

Config(F_OVER_MODE, “Overwrite-only mode (*) (0=Off)”, 1)
Same as {CONFIG, File handling, Overwrite-only mode}.

Config(F_SAVE_SESS, “Save session in current directory”, 0)
Same as {CONFIG, File handling, Save session in current directory}.

Config(F_VSWAP, “Use V-SWAP when entering DOS”, 1)
(DOS only) Same as {CONFIG, File handling, Use V-SWAP when
entering DOS}.

List of Config() Parameters Chapter 8 Configuration 329

Config(F_F_BROWSE, “Enable fast browse mode (*)”, 1)
Same as {CONFIG, File handling, Enable fast browse mode}.

Config(F_AUTO_F_TYPE, “Enable auto-file type (*)”, 1)
Same as {CONFIG, File handling, Enable auto-file type}.

Config(F_F_TYPE, “File type (*) (0=CR+LF, 1=LF, 2=CR,)”, 0)
Same as {CONFIG, File handling, File type}.

Config(F_REC_HEAD, “Record header size (*) (0 - 16K)”, 0)
Same as {CONFIG, File handling, Record header size}.

Config(F_EOF_PROC, “Special E-O-F processing (*)”, 0)
AllowsVEDIT to create files compatiblewith oldDOSprograms (or other
applications) that require a Ctrl-Z End-Of-File character.

If enabled, VEDIT does not read past the first Ctrl-Z when opening a file
and will not insert Ctrl-Z characters. Three options control how files are
written.

0 Normal text/binary file. Ctrl-Z is not treated specially.

1 Files are written in their exact file length. (Files are truncated at the
first <Ctrl-Z> encountered.)

2 Files are written with one Ctrl-Z end-of-file marker.

3 Files are written with one Ctrl-Z and are padded with “nulls” to make
the file length a multiple of 128.

Config(F_E_STARTUP, “Enable STARTUP.VDM file”, 1)
(DOS only) A value of “1” enables thestartup.vdm file. When set to
“0” thestartup.vdm is not loaded and executed.A change to this value
must be saved into the VEDIT.EXE file with {CONFIG, Misc, Save into
VEDIT.EXE}.

HINT: You can disable the startup.vdm file with the invoca-
tion option “-i xxx”, where ‘xxx’ is a non-existent file. No
error message will be given. This is useful for debugging
startup configuration problems.

Config(F_AUTO_BUF, “Enable auto-buffering (0, 1, 2)”, 2)
This parameter should always be set to “2”. Only provided for compati-
bility with older versions of VEDIT PLUS. It will be discontinued in a
future version. If not set to “2”, VEDITwill not automatically perform the
file buffering necessary to edit files larger than memory!

Config(H_KEY_IN, “Keyboard input (0=ROM,1=System)”, 0)
(DOS only) VEDIT can read the IBM PC keyboard via either the “ROM
BIOS” or “System” calls. With “ROM BIOS”, most keyboard enhancers
are bypassed and have no effect on VEDIT’s operation; via “System”,
they affect operation, which may be desirable or undesirable. (There is

330 Chapter 8 Configuration List of Config() Parameters

little reason to use keyboard enhancers since VEDIT’s keystroke macros
are more flexible and better integrated.)

On some computers, when set to “System”, some special keys such as the
Numpad “*”, “-” and “+” keypad keys, <F11> and <F12> are not
available as function keys.

Config(H_KEY_RATE, “Keyboard typematic rate (0=Normal)”, 0)
(DOS only) Same as {CONFIG, Misc, Keyboard typematic rate}.
The “-k” invocation option sets this to “0”.

Config(H_POLL_MODE, “Keyboard polling (0=Compatibility)”, 1)
(DOS only) Same as {CONFIG, Misc, Keyboard polling}.
The “-j” invocation option sets this to “0”.

Config(H_USE_BIOS, “Write screen via BIOS”, 0)
(IBM DOS only) VEDIT normally writes directly to the screen for
maximum speed and flexibility. However, you can optionally configure
VEDIT to write indirectly to the screen via the “BIOS”. This is only
needed for special applications. Screen display is significantly slower. A
value of “2” permits the IBMPCversion to run on someolder non-IBMPC
compatibles.

The “-o” invocation option overrides this setting.
Config(H_VGA_TYPE, “Enable VGA 28/50/30/34/60 lines (0 - 7)”, 7)

(IBM DOS only) Same as {CONFIG, Misc, Enable VGA
28/30/34/50/60}.

Config(H_MOUSE_O, “Mouse options (0=Off, 1=Corner)”, 1)
Same as {CONFIG, Misc, Mouse options}.

Config(P_PAPER_L, “Paper length (5 - 100)”, 62)
Same as {CONFIG, Printer, Paper length}.

Config(P_TOP_MARG, “Top margin (0 - 60)”, 3)
Same as {CONFIG, Printer, Top margin}.

Config(P_BOT_MARG, “Bottom margin (0 - 60)”, 3)
Same as {CONFIG, Printer, Bottom margin}.

Config(P_LEFT_MARG, “Left margin (0 - 100)”, 10)
Same as {CONFIG, Printer, Left margin}.

Config(P_RIGHT_MARG, “Right margin...”, 0)
Same as {CONFIG, Printer, Right margin}.

Config(P_LINE_S, “Line spacing (1 - 4)”, 1)
Same as {CONFIG, Printer, Line spacing}.

List of Config() Parameters Chapter 8 Configuration 331

Config(P_DSP_MODE, “Print mode...”, 0)
Same as {CONFIG, Printer, Print mode}.

Config(P_E_STRING, “Enable print job strings”, 0)
Same as {CONFIG, Printer, Enable print job strings}.

Config(P_E_FF, “Enable Form-Feed”, 1)
Same as {CONFIG, Printer, Enable Form-Feed}.

Config(P_E_PE, “Page eject on Finish/Eject”, 1)
Same as {CONFIG, Printer, Page eject on Finish/Eject}.

Config(P_DEFAULT, “Printer (0=Default ... 7=File)”, 0)
Same as {CONFIG, Printer, Printer}.

Config(PG_AUTO_IND, “Auto-indent mode (*)”, 0)
Same as {CONFIG, Programming, Auto-indent mode}.

Config(PG_IND_INC, “Indent increment (*) (1 - 20)”, 4)
Same as {CONFIG, Programming, Indent increment}.

Config(PG_CASE_CONV, “Lower/Upper case key conv. (*) (0 - 5)”, 0)
Same as {CONFIG, Programming, Lower/Upper case key conver-
sion}.

Config(PG_CONV_C, “Key conversion character (*) (32 - 126)”, 59)
Same as {CONFIG, Programming, Key conversion character}.

Config(PG_F_AUTO_CONFIG, “File-type specific configuration”, 0)
Same as {CONFIG, Programming, File-type specific config} .

Config(PG_TEMPLAT, “Enable template editing (*)”, 0)
Same as {CONFIG, Programming, Enable template editing}.

Config(PG_E_SYNTAX, “Enable syntax highlighting (*)”, 0)
Same as {CONFIG, Programming, Enable syntax highlighting}.

Config(S_STAT_OPT, “Status line display (1=Top, 2=Bottom)”, 2)
(DOS only) Same as {CONFIG, Display options, Status line display}.

Config(S_H_CR_LINE, “Highlight cursor line (0 - 2)”, 0)
Same as {CONFIG, Display options, Highlight cursor line}.

Config(S_DSP_MODE, “Screen display mode (0 - 32)”, 0)
Same as {CONFIG, Characters/Cursors, Screen display mode}.

Config(S_NEWL_D_C, “Newline display character (*) (0 - 255)”, 32)
Same as {CONFIG, Characters/Cursors, Newline display character}.

Config(S_TAB_D_C, “Tab display character (*) (0 - 255)”, 32)
Same as {CONFIG, Characters/Cursors, Tab display character}.

332 Chapter 8 Configuration List of Config() Parameters

Config(S_NULL_D_C, “Null display character (*) (0 - 255)”, 0)
Same as {CONFIG, Characters/Cursors, Null display character}.

Config(S_E_MORE, “Enable -MORE- operation”, 1)
Same as {CONFIG, Display options, Enable -MORE- operation}.

Config(S_CR_TYPE_O, “Cursor type in overstrike mode (0 - 6)”, 2)
Same as {CONFIG, Characters/Cursors, Cursor type in overstrike
mode}.

Config(S_CR_TYPE_I, “Cursor type in insert mode (0 - 6)”, 1)
Same as {CONFIG, Characters/Cursors, Cursor type in insert mode}.

Config(S_CR_TYPE_V, “Cursor type in virtual space (0 - 6)”, 0)
Same as {CONFIG, Characters/Cursors, Cursor type in virtual
space}.

Config(S_CR_BLINK, “Cursor blink rate (2 - 25)”, 8)
Same as {CONFIG, Characters/Cursors, Cursor blink rate}.

Config(S_CURSOR_C, “Cursor type-0 character (1 - 254)”, 176)
Same as {CONFIG, Characters/Cursors, Cursor type-0 character}.

Config(S_ERASE_C, “Screen erase character”, 32)
VEDIT normally clears the screen with spaces (value 32). However, for
special applications, a different character could be used.

Config(S_EMPTY_C, “Empty (desktop) character”, 176)
(DOSonly) This character is displayed in the background (desktop) screen
“behind” all windows. It is only visible when windows don’t cover the
entire screen. The color is set with Config(C_EMPTY).

Config(S_N_LINE, “Number of screen lines (0=Auto)”, 0)
(IBM DOS) With default value of “0”, VEDIT starts up in the current
number of screen lines.When set to other values, such as 28 or 50, VEDIT
will attempt to switch the screen to the specified number of lines. This
requires a VGA display adapter. Changes to this value must be saved into
VEDIT.EXE with CONFIG, Misc, Save into VEDIT.EXE}.
(DOS CRT version only) Set this value to the number of lines on your
CRT terminal; typically 24 or 25.

Config(S_N_COL, “Number of screen columns (0=Auto)”, 0)
(DOS CRT version only) Set this value to the number of columns on your
CRT terminal; typically 80 or 132.

Config(S_PG_OVERLAP, “Line overlap when paging”, 2)
Determines the number of lines from the previous page that will be visible
following a [PAGE UP] or [PAGE DOWN]. About 10% overlap is
suggested, e.g. “2” for a 25 line display. Having some overlap provides a

List of Config() Parameters Chapter 8 Configuration 333

visual reference while paging and makes scanning a document much
easier.

This value is with respect to 25 screen lines. The actual value is automat-
ically adjusted according to the size of the current window.

Config(S_TOP_MARG, “Top margin for cursor”, 2)
Determines the number of lines that will normally be visible above the
line the cursor is on, before the screen scrolls. Setting the value greater
than “0” ensures that you will normally see some lines above your present
cursor position.

This value is with respect to 25 screen lines. The actual value is automat-
ically adjusted according to the size of the current window.

Config(S_BOT_MARG, “Bottom margin for cursor”, 2)
This is similar to the previous parameter; it determines the number of lines
that will normally be visible below the line the cursor is on, before the
screen scrolls. Setting the value greater than “0” ensures that you will
normally see some lines below your present cursor position.

Config(S_STAT_C, “Status line character”, 32)
(DOS, UNIX, QNX only) The empty parts of the status line are usually
displayed with the space character (value 32). However, if you do not
select a reverse video status line, you may want to select a “dash” (value
45) or value “196” on an IBM PC.

Config(S_CONT_C, “Screen continuation character”, 173)
This is the line continuation indicator which is displayed in the reserved
column 1 when long lines are wrapped on the screen. Most common is a
hyphen (value 45) or reverse video hyphen (value 173). See “Wrapping
Long Lines on the Screen” in Chapter 4.

Config(S_RESTORE, “Restore screen mode on exit”, 2)
(IBMDOSonly)When set to “1”, VEDITwill upon exit restore the screen
size and mode to the same as when it started up.When set to “0”, it returns
to DOS in the current screen mode.

Config(S_MONO, “Enable monochrome (B&W) colors”, 0)
(DOS, QNX only) Same as {CONFIG, Colors, Enable monochrome
(B&W) colors}.

Config(SR_CASE_OPT, “Default case-sensitive option”, 0)
Same as {CONFIG, Search options, Default Case-sensitive option}.

Config(SR_MODE_OPT, “Default search mode”, 1)
Same as {CONFIG, Search options, Default search mode}.

Config(SR_RES_POS, “Restore edit position on error (0 - 2)”, 1)
Same as {CONFIG, Search options, Restore edit position on error}.

334 Chapter 8 Configuration List of Config() Parameters

Config(U_E_DIALOG, “Enable full dialog boxes”, 1)
(DOS, UNIX, QNX only) Same as {CONFIG, Misc, Enable full dialog
boxes}.

Config(U_FULL_DLG_O, “Full dialog box options (0 - 31)”, 31)
(DOS, UNIX, QNX only) Same as {CONFIG, Misc, Full dialog box
options}.

Config(U_TERSE_DLG_O, “Terse dialog box options (0 - 31)”, 31)
(DOS, UNIX, QNX only) Same as {CONFIG, Misc, Terse dialog box
options}.

Config(U_E_SUBM_P, “Sub-menu preview (0=Off, 1, 2)”, 1)
(DOS, UNIX, QNX only) Same as {CONFIG, Display options, Enable
sub-menu preview}.

Config(U_KEY_IN_O, “Keyboard input options (0 - 31)”, 17)
Same as {CONFIG, Misc, Keyboard input options}.

Config(U_BEEP_LVL, “Beep level (0=Never, 1 - 5)”, 2)
Same as {CONFIG, Misc, Beep level}.

Config(U_HELP_LVL, “Help level”, 1)
Same as {CONFIG, Misc, Help level}.

Config(U_BOX_DRAW, “Box drawing style (0=Prompt, 1,2,3,4)”, 4)
Same as {CONFIG, Misc, Box drawing style}.

Config(U_CM_H_CNT, “Count for Command mode help message”, 3)
(VEDIT PLUS only) This parameter determines how many times the
“COMMAND:” prompt is preceded by the help message:
Enter “exit” to exit, “v” to edit, “h” for help

Experienced users may prefer a value of “0” to disable it. A value of “255”
causes it to always appear.

Config(U_E_UNDO, “Enable undo in Command mode”, 1)
When set to “0”, the undo is disabled and resetwhenevermacro commands
are executed. When set to “1”, the undo is enabled for most commands;
however, it is disabled and reset when the Call() command is executed.
When set to “2”, the undo is enabled for all commands.

Config(U_UNDO_MAX, “Undo levels - max”, 1000)
Determines the number of levels available on the Undo stack when a
newly created edit buffer has enough memory for its own reserved 64K
memory segment. (Each edit buffer has its own Undo stack).

Config(U_UNDO_MIN, “Undo levels - min”, 100)
Determines the number of levels available on the Undo stack when a
newly created edit buffer shares memory with other edit buffers or text
registers.

List of Config() Parameters Chapter 8 Configuration 335

Config(U_REP_MAX, “Maximum [REPEAT] count”, 256)
Same as {CONFIG, Misc, Maximum [REPEAT] count}.

Config(U_SHELL, “Enable DOS shell”, 1)
Determines whether the functions {MISC, DOS Shell} and {MISC, Run
Program} are available in the menu system. (VEDIT PLUS: also the
System() command.) This parameter is usually set to “1”. However,
systems integrators can disable these functions when VEDIT is run from
inside a tight environment, such as a vertical application inwhich the users
have no knowledge of DOS (or UNIX).

Config(U_DISK_EDIT, “Enable disk sector modification”, 1)
(VEDIT PLUS, IBM DOS Only) The default value “1” sets “[x] Read-
only mode” in the Disk-open dialog box so that, by default, the disk is
opened in Read-only mode. With a value of “2”, the disk, by default, is
opened in read-write mode.With a value of “0”, the disk is always opened
in Read-only mode; the user cannot disable “[x] Read-only mode”.

Config(U_LOAD_CFG, “Auto-load config...”, 3)
(DOS only) Same as {CONFIG, Misc, Auto-load config}.

Config(U_AUTO_CFG, “Auto-save config”, 1)
Same as {CONFIG, Auto-save config}.

Config(U_CFG_ALL, “Config all buffers”, 1)
Same as {CONFIG, Config all buffers}.

Config(U_SAV_ENV, “Enable edit restore”, 0)
Same as {FILE, Enable edit restore}.

Config(U_USER_P, “User configured parameter (*)”, 0)
(VEDIT PLUS only) This parameter is available for any user defined
purpose; it is not used internally. For example, it could be used as an “ID”
to identify particular configurations — a macro would read this “ID” to
ensure that the correct configuration was being run.

Config(W_WORD_WRAP, “Enable word wrap and formatting (*)”, 1)
Same as {CONFIG, Word processing, Enable word wrap and format-
ting}.

Config(W_LF_MARG, “Left margin (*) (0 - 80)”, 0)
Same as {CONFIG, Word processing, Left margin}.

Config(W_RT_MARG, “Right margin (*) (0=Win, 1=HSM, 16-255)”, 0)
Same as {CONFIG, Word processing, Right margin}.

Config(W_JUST_PARA, “Justify paragraphs”, 0)
Same as {CONFIG, Word processing, Justify paragraphs}

Config(W_FORMAT_O, “Format paragraph options (0 - 7)”, 0)
Same as {CONFIG, Word processing, Format paragraph options}

336 Chapter 8 Configuration List of Config() Parameters

Config_String() Parameters
Config_String(HOME, “C:\VEDIT”)

Sets the VEDIT Home Directory. VEDIT searches here for the “.hlp”
on-line help files, “.vdm” macro files and other supplemental files.

The VEDIT Home Directory is normally the directory into which VEDIT
was installed, e.g. c:\vedit (UNIX: /usr/lib/vedit) (QNX:
/qnx4/vedit).

The Windows version automatically saves this value into the
vedit.ini file. In theDOSversion, changes to this valuemust be saved
into the vedit.exe file with CONFIG, Misc, Save into
VEDIT.EXE}.
(DOS only) You can override this setting with the “VEDPATH” environ-
ment variable. For example, to use the directory “C:\UTIL\VEDIT” you
could place the following command into your AUTOEXEC.BAT file:

SET VEDPATH=C:\UTIL\VEDIT

Config_String(USER_CFG, “C:\VEDIT”)
Sets the User Config Directory. VEDIT searches here for the
vedit.cfg, vedit.key, startup.vdm and vedit.ini files.

The VEDIT Home Directory and User Config Directory are usually the
same. If VEDIT was installed on a network server, they will be different.

Config_String(BACKUP, “C:\VEDIT\BACKUP”)
Sets the directory into which VEDIT copies modified files for backup
purposes when {CONFIG, File handling, Backup files} is set to “2”.
(The default value is “1” — it creates a “.bak” file in the same directory
as the original file.)

The default directory is c:\vedit\backup, but you may want to
change it to c:\backup.

See “Exiting VEDIT - Backup Files” in Chapter 4 for more information.

Config_String(PR_DEF, “PRN”)
Same as {CONFIG, Printer, Change default printer}.

Config_String(PR_START, “”)
Same as {CONFIG, Printer, Change print job start string}.

Config_String(PR_FINISH, “”)
Same as {CONFIG, Printer, Change print job finish string}.

Config_String(OS_PROMPT, “PG$G”)
The string parameter is used as the DOS prompt when shelled out to DOS
via {MISC, DOS shell}. The default “PG$G” gives a prompt of
“path>>”. This is equivalent to the DOS command “SET
PROMPT=PG$G”. For more information see your DOS manual.

List of Config() Parameters Chapter 8 Configuration 337

Config_String(WORD_SEP, “,;:()”)
Determines which characters separate words from each other. All control
characters and “space” also separate words. You could include “.”
(period), but then “e.g.”would be treated as twowords.Up to 32 characters
can be specified.

Config_String(PARA_SEP, “.@!\”)
Determines which characters identify lines that separate paragraphs from
each other. Lines beginning with these characters are considered “format
command lines” that will not be merged with adjacent line when re-for-
matting. Blank lines also separate paragraphs. Up to 8 characters can be
specified.

Config_String(MATCH_PAREN, “[][()({}{<><”)
Determineswhich character-pairs arematched by {GOTO, Matching ()}.
Notice how each pair is specified using three characters. Up to 8 pairs (24
characters) can be specified.

Config_String(TOOL_MENU, “Tools”)
Determines the name of the {TOOL} menu on the main menu bar. Is is
typically “Tools”, “JavaTools” or “Tutorial”.

Config_String(USER_MENU, “User”)
Determines the name of the {USER} menu on the main menu bar. The
documentation assumes it is “User”, but any name up to 8 characters can
be specified.

Config_Tab() Parameter
Config_Tab(8)

Determines the tab stops. This command takes the same parameter(s) as
the {CONFIG, Tab stops} function. A single number sets a uniform tab
interval; otherwise up to 32 explicit tab stops can be specified.

338 Chapter 8 Configuration List of Config() Parameters

Chapter 9

Messages

VEDIT displays a message to notify you of errors or special conditions. Many
are simply confirmation prompts to perform an operation that may be difficult
to undo. Most error messages result when you mistakenly attempt an impos-
sible operation, such as loading a non-existent file.

Messages can also result when VEDIT detects syntax and programming errors
in macros written in the VEDIT PLUS macro language. In most cases, the
offending macro command is displayed. To resolve these, you may need to
consult the VEDIT PLUS manual or the supplier of the macros.

Abandon (quit) altered file? [Yes] [No]
This is the confirmation prompt for a macro written in the VEDIT PLUS
macro language that is attempting to abandon the current file. Select [Yes]
if you really want to abandon the file without saving any changes.

VEDIT PLUS: The command option “NOCONFIRM” or “OK” sup-
presses this prompt on the Buf_Empty() and Buf_Quit() commands.

Abandon (quit) all files? [Yes] [No]
This is the confirmation prompt after you select [Quit-all] in the {FILE,
Exit} dialog box. Select [Yes] if you really want to abandon allmodified
files (buffers) and exit VEDIT.

VEDIT PLUS: This is also the confirmation prompt for the Qall()
command. Use the command option “NOCONFIRM” or “OK” to sup-
press it or use the command Qally.

BAD FILENAME
The specified filename does not follow the conventions. Perhaps the
pathname or either part of the filename is too long. Also, DOS/Windows
does not allow some characters (e.g. “+”, “=”, “/”, “*”, “$”, “,”) in a
filename.

BAD PARAMETER
You specified an invalid command parameter.

VEDIT PLUS: Numerous commands give this error if you specified an
invalid argument or a numeric argument is out of range. The actual
command is displayed.

Chapter 9 Messages 339

BLOCK IS TOO LARGE FOR TEXT REGISTER
The block you are attempting to copy or move to a text register or with
{BLOCK, Copy/Move to cursor} is too large; most likely it is greater
than the maximum 256 Kbytes that VEDIT can currently handle.

If the block contains normal text (i.e. it is not a binary file and does not
contain Null characters), you can often perform the copy/move using the
Windows clipboard. The maximum block size is about half of your
physical memory; however, huge clipboard operations are often very
slow.

Alternatively, you can use {BLOCK, Write to disk} to write the huge
block to a disk file, such as “block.tmp”. You can then insert the block
into any file at the cursor position with {EDIT, Insert file}.
See the on-line help topic “Blocks - Cut and paste huge blocks” (DOS:
“HUGEBLOCK”) for details on how to cut and paste huge blocks of any
size.

BREAK
You pressed [CANCEL] (<Ctrl-\>) or <Ctrl-C> while printing or while
a command macro is running.

This message can also occur if a macro or menu function could not
complete and VEDIT could not determine its exact cause. If it persists,
you may want to exit VEDIT and restart it.

[C]ANCEL, [I]GNORE, [R]ETRY? (DOS only)
Occurs when DOS detects an error and is preceded by “READ ERROR”
(disk drive door open, read error), “WRITE ERROR” (disk write error)
or “PRINTER NOT READY” to indicate the type of error. Press “C” to
cancel the operation. This is safe because it returns to VEDIT. Press “R”
to retry the operation, such as after closing the drive door. You can press
“I” to ignore, but this usually just leads to another error.

CANNOT CREATE WINDOW
{WINDOW, Custom split} attempted to create a window that already
exists or you specified too small/large a size.

VEDIT PLUS:Win_Split() attempted to split a reserved window, create
awindow that already exists, or create too small/large awindow.Win_Re-
served() attempted to create a second window at the top or bottom of the
screen. At most, there can be one reserved window at the top and one at
the bottom.

CANNOT EDIT FILE IN THIS MODE (USE BINARY)
This error is usually caused by editing a file with very long lines in
non-binary mode. Try editing the file again in binary mode by immedi-
ately setting {CONFIG, File handling, File type} to “64”.
VEDIT PLUS: Try entering the commands “Config(F_F_TYPE,64)
BOF V” to place VEDIT into binary mode, go to the beginning of the file
and reenter Visual Mode.

340 Chapter 9 Messages

CANNOT ENTER CTRL-Z
You cannot enter a Ctrl-Z character into a file when Con-
fig(F_EOF_PROC) is enabled (it is disabled by default), because Ctrl-Z
is then treated as the “End-of-file” marker.

CANNOT FIND: search string
The specified search string could not be found. This is a normal message
for {SEARCH} menu items when no more occurrences can be found.
Remember that VEDIT always searches from the current cursor position;
perhaps you want to restart the search from the beginning of the file.

VEDIT PLUS: Use the “NOERR” option on the applicable commands to
suppress this message.

CANNOT MODIFY EXECUTING MACRO REGISTER
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: A macro cannot modify the contents of any text register
that contains the currently executing macro commands. This includes any
parent macrowhenCall() commands are used. In other words, self-modi-
fying macros are not allowed.

CANNOT NEST KEYSTROKE MACROS
You previously pressed a keystroke macro that contains the Visual()
command to return to Visual Mode. While in Visual Mode you pressed
another keystroke macro. This is not allowed — a previous keystroke
macro must finish running before you can press another one. Keystroke
macros rarely need aVisual() command in them. They should never have
Visual() at the very end; they automatically return to Visual Mode.

CANNOT OVERWRITE READ-ONLY FILE
The file you specified with {FILE, Save as} or {BLOCK, Write to disk}
is a read-only file and cannot be overwritten.

CANNOT RUN COMMAND.COM, ERROR #
Windows version: Most likely, DOS cannot find its COMMAND.COM
file—make sure your “COMSPEC” environment variable is set correctly.
Check that you can enter DOS from the normal desktop MS-DOS icon.

DOS version: Usually indicates that there is not enough memory to shell
out to DOS and run COMMAND.COM. Perhaps you can exit one ormore
edit buffers to free more memory space. You should have V-SWAP
installed in memory before running VEDIT in order to prevent this error.
This error also occurs when DOS cannot find its COMMAND.COM file
— make sure your “COMSPEC” environment variable is set correctly.

Cannot undo this operation! Proceed anyway? [Yes] [No]
There is insufficient free memory to delete the (large) block of text and
undo it if needed. This prompt does not occur if the deletion can be undone.

Chapter 9 Messages 341

CLOSE ERROR
The output file could not be closed and therefore is not saved! This is a
very unusual condition, but can occur if the disk becomes write protected,
or if VEDIT was attempting to save the file on a floppy disk and you
prematurely removed the disk. This can happen on a network system, if
the network goes down.

Unfortunately, any text that VEDIT has already attempted to write to disk
is probably lost. You can attempt to save the file to another drive with
{FILE, Save as}.

COMMAND NOT AVAILABLE IN “-B” BROWSE MODE
Some commands are not available when you have invoked VEDIT with
the “-b” browse-only mode or “-r” restricted mode options. {FILE, Save
as} is not available in either mode; {BLOCK, Write to disk} is not
available in restricted mode.

COMMAND REQUIRES (...):
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The specified command requires parentheses and, most
likely, arguments.

DIRECTORY NOT FOUND
The directory specified as part of a filename could not be found. Perhaps
you mistyped it or specified the wrong drive. This error also occurs when
the configured VEDIT Home Directory could not be found.

DOS MEMORY OR FAT ERROR. SAVE FILES AND REBOOT
This very unlikely error indicates either that memory has been corrupted,
perhaps by an incompatible Memory-Resident program, or that DOS
detected an error in its “File Allocation Table” (FAT). After re-booting,
run the DOS “CHKDSK” program to check the integrity of the files.

END OF BUFFER REACHED
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The Line() command tried to move past the beginning or
end of the file. Use the “NOERR” command option to suppress this error
message.

FLOW CONTROL STATEMENT STILL OPEN
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The end of a commandmacro was reached before the final
“}” of a While, Do-while, Repeat or For loop was reached. Check that
the “{” and “}” are properly matching in all flow control statements. It
can also be caused by unpaired “{” and “}” occurring within string
arguments or comments.

342 Chapter 9 Messages

FILE IS BEING EDITED
The file you are trying to save to disk with {FILE, Save as}, {BLOCK,
Write to disk} or {CONFIG, Save to disk} is currently open for editing.
Open files are locked and cannot be overwritten. Use {FILE, Buffer
switch} to see a list of files being edited.

FILE IS ALREADY OPEN IN THIS BUFFER
A macro written in the VEDIT PLUS macro language attempted to open
two files in one edit buffer.

VEDIT PLUS: The File_Open_Write() command attempted to open a
file for output in an edit buffer that already has an output file open. Perhaps
you want to change the output filename with File_Save_As().

FILE NOT FOUND
The file you specified for editing does not exist. Perhaps youmistyped the
pathname or specified the wrong drive.

FILE NOT OPENED
This message follows another message and reminds you that your at-
tempted file-open operation was cancelled. It generally follows an oper-
ating system error message if you attempt to open a file which is in use
(“locked”) by another program or user.

FUNCTION NOT AVAILABLE IN “BINARY” MODE
Word processing functions such as indenting and paragraph formatting
cannot be performed on binary/data files, i.e. when {CONFIG, File
handling, File type} is set to “8” or more. This prevents binary/data files
from being corrupted.

IN BROWSE MODE -OR- FILE IS READ-ONLY
You cannot alter a file which is in Browse mode. A file is in browse mode
if:

� It was opened with “[x] Read-only mode” in the file-open dialog
box.

� The file has the “read-only” attribute set.

� The file is in a network directory that has been set to “read-only”.

� The file is on a write-protected floppy disk.

� {FILE, Browse mode} has been set.
� VEDIT was invoked with the “-b” browse-only mode option.

INCOMPLETE COMMAND:
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The following command is missing arguments or the final
“)”. This error can result if the final quote of a string argument is missing.

Chapter 9 Messages 343

INTERNAL ERROR # nn
VEDIT has detected an internal problem. After you press any key, VEDIT
will automatically select {FILE, Exit}. You can then save or abandon
your files. Or you can select [Cancel] to return to your editing; however
the errorwill most likely immediately reoccur. After exiting, double check
that your files are intact. Please contact us if you can replicate the error.

VEDIT PLUS: Following the error, VEDIT PLUS will enter Command
Mode. We suggest using Exit() to save your files and exit.

INVALID COMMAND:
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The specified command is not a known command. Perhaps
you mistyped it or used the wrong abbreviation.

INVALID DRIVE
You specified an invalid or non-existent drive in a filename. Most likely
you mistyped it.

INVALID EDIT BUFFER OPERATION
You are attempting an operation that is valid for text registers, but is
invalid for edit buffers. You cannot change the contents of an edit buffer
except when it is the active buffer. Copying a block to an edit buffer with
{BLOCK, Copy to register} is not allowed. This error also occurs if you
attempt to execute the contents of the current buffer as a command macro
with {MISC, Execute macro}—you must first switch to another buffer.

VEDIT PLUS: May also be caused by an improper Reg_Copy(),
Reg_Empty() or Reg_Load() command.

INVALID EXPRESSION:
The numeric expression you entered at the prompt for a number has
incorrect syntax.

VEDIT PLUS: The numeric expression used as a numeric argument has
incorrect syntax.

INVALID FLOW CONTROL
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: A While, Do-while, Repeat, For or If statement has
incorrect syntax. Perhaps you left off the condition or the initial “{”.

INVALID [HELP] REQUEST
During the [HELP] function you are prompted to press the function/con-
trol key for the desired edit function. Instead, you pressed a displayable
character or an unused function/control key.

INVALID KEY SEQUENCE
While setting up a keystroke macro you entered the “Function/Control
key” as an invalid “sequence” beginningwith a displayable character. You

344 Chapter 9 Messages

may use a function/control key, a single displayable character or a “se-
quence” beginning with a control or function key.

INVALID MENU
The custom {USER}menu that you attempted to create contains a syntax
error. The {USER} menu is typically loaded with the command
Reg_Load(124,"user.mnu") in the startup.vdm file. In this case the
“user.mnu” file has a syntax error. See “{USER} and {TOOL} Menus”
in Chapter 5.

INVALID REGISTER
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: You specified an invalid numeric register for a numeric
command. The numeric register must be in the range “0” - “127”. Or you
specified an invalid text register number which must be in the range “0”
- “127”.

INVALID TEXT MARKER
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: You specified an invalid text marker with the
Set_Marker() orMarker() command. The text markers must be in the
range “0” - “9”.

JUMPING INTO A FLOW CONTROL STATEMENT
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: The Goto command cannot jump into a flow control
statement. Flow control statements can only be entered at their beginning.
However, it is allowable to jump out of a flow control statement, or to
jump within it.

KEYBOARD LAYOUT CORRUPTED
VEDIT noticed that its internal keyboard layout table has become cor-
rupted; it will immediately exit after saving all files. May be caused by
loading an invalid .KEY file with {CONFIG, Keyboard layout, Load
layout}. If this error occurs whenever you start VEDIT, simply delete the
file vedit.key file in the VEDIT Home Directory. VEDIT will then
start up with the “normal” layout. Then select {CONFIG, Keyboard
layout, Save layout} to create a new vedit.key file.

DOS version: You may have to go back to the original VEDIT.EXE file
if the invalid keyboard layout was saved into the current VEDIT.EXE file.

LABEL MISSING: label:
Caused by a programming error within a VEDIT PLUS command macro.

VEDITPLUS:TheGoto command could not find the “label:” it is to jump
to. Perhaps the “:” is missing.

Chapter 9 Messages 345

MACRO ERROR IN r
Thismessage often precedes other error messages to indicate in which text
register the offending command occurred. ‘r’ has value 255 for command
macro errors occurring in keystroke macros.

NESTING (STACK) ERROR
Caused by a programming error within a VEDIT PLUS command macro.

VEDIT PLUS: You cannot nest command macros deeper than 25 levels.
This error often is caused by a macro that recursively calls itself — e.g.
register 10 contains the command Call(11) and register 11 contains the
command Call(10). Flow control structures cannot be nested deeper than
25 levels. Using commands as arguments to other commands cannot be
nested deeper than five levels. The Save_Pos() command can only save
five edit positions on its stack. Also caused when Reg_Push() or
Num_Push() attempt to push too many registers. Also caused by
Out_Ins() that doesn’t have amatchingOut_Ins(CLEAR); similarly for
other re-direction commands.

New file
This message briefly displays on the status line if the file opened for
editing did not exist and a new file has been created. If you typed thewrong
filename, you can edit the correct file by immediately selecting {FILE,
Open, Same buffer} (<Alt-O>).

No assigned filename! Enter “Save As” filename:
There is no filename assigned into which to save the current edit buffer,
e.g. with {FILE, Exit}. VEDIT is prompting you for the desired filename.

NO CURRENT SEARCH/REPLACE STRING
The {SEARCH, Again} function did not operate because you have not
yet specified a search or replace string with {SEARCH, Search} or
{SEARCH, Replace}.

NO DIRECTORY SPACE
NO DISK SPACE

The disk (or directory) became full before the entire file(s) was saved to
disk. To save your file(s) you must first delete some unneeded files.
Alternatively, you might be able to save the file to another disk using
{FILE, Save as}.
Windows version: Switch to Explorer (or Program Manager) and delete
any old unneeded files to make more free disk space.)

DOS version: Shell to DOS with {MISC, DOS Shell} and delete any old
unneeded files.

See “Maximum File Size” in Appendix A for a description of how much
disk space VEDIT requires to edit files.

346 Chapter 9 Messages

NOTE: Never delete any files from within VEDIT that have “$” in their
filename extension, e.g. “.1$$” and “.1R$”. They are temporary files
needed by VEDIT. (You can delete them after exiting VEDIT in the
unlikely event they still exist.)

NO EDIT BUFFER AVAILABLE
You are attempting to simultaneously edit more files than VEDIT has
available edit buffers. At most 32 files can be simultaneously edited;
however commandmacros can use edit buffers for their own purposes and
reduce this number. Perhaps you can close some of the files you are done
editing with {FILE, Close}.

NOT ENOUGH MEMORY FOR OPERATION
There was insufficient free memory to perform the operation, such as
copying a block of text to a text register. Other than some block operations,
such as copying too large a block to a text register, this error will rarely
occur. See the error message “BLOCK IS TOO LARGE” for a method of
copying larger blocks.

This error will occur with {EDIT, Insert file} if the current buffer does
not yet have a file open. First open a file with {FILE, Open} or {FILE,
Save as}.
Be sure that configuration parameter Config(F_AUTO_BUF) is set to
“2” as it always should be. (Other settings are provided for backwards
compatibility with old macros.)

NOT ENOUGH MEMORY TO AUTO-BUFFER
There is insufficient free memory in the edit buffer to perform auto-buff-
ering. Most likely you are simultaneously editing more files than VEDIT
can handle with the available memory. Use {HELP, Status display} to
see how much memory space is free. Most likely, almost the entire
memory is being used by other edit buffers and text registers leaving less
than 3 Kbytes for the current edit buffer. You must empty some text
registers and/or close other files.

If there is sufficient free memory, try editing the file in binary mode by
setting {CONFIG, File handling, File type} to “64”.

NOT ENOUGH MEMORY TO LOAD VEDIT (DOS Only)
There is insufficient memory available for VEDIT to start up — approxi-
mately 180K is needed. Use the DOS “MEM” or “CHKDSK” command
to see how much is available.

NOT FOUND IN HELP FILE
The help topic you selected could not be found in the on-line help file.
Most likely you entered the topic name incorrectly.

Chapter 9 Messages 347

Ok to truncate (erase) output file? [Yes] [No]
VEDIT users should never see this error message.

VEDIT PLUS: This is the confirmation prompt for the File_Truncate()
command which truncates and closes the current output file. (The word
“erase” is to remind you that improper use of this command can erase the
file being edited!) Use the command option “NOCONFIRM” or “OK” to
suppress the confirmation.

Ok to erase these files? [Yes] [No]
This message only occurs when a macro written in the VEDIT PLUS
macro language uses theFile_Delete() command to delete files fromdisk.
Select [Yes] to delete the listed files.

Ok to overwrite existing file? [Yes] [No]
The functions {BLOCK, Write to disk} and {CONFIG, Keyboard
layout, Save layout} ask for confirmation if the designated file to be
written already exists on disk. Select [Yes] to overwrite the existing disk.
Note that these functionsDO NOT create a “backup” of any existing file.
VEDIT PLUS: The Reg_Save(), Config_Save() and Write_Block()
command asks for confirmation if the designated file to be written already
exists on disk. Use the command option “NOCONFIRM” or “OK” to
suppress the confirmation.

PRINTER/DEVICE NOT READY (DOS Only)
The printer does not respond—most likely it is not turned on or is not set
“on-line”. Under DOS, this message is followed by “[C]ANCEL,
[I]GNORE, [R]ETRY”. Press “R” to retry after setting your printer
on-line. Press “C” to cancel the print command.

PRINTING — Press <CTRL-C> to Abort
This message is displayed anytime text is being printed. It reminds you
that you can press <Ctrl-C> to stop the printing. Because many printers
have “print buffers”, your printer may continue printing for some time
after you press <CTRL-C>.

READ ERROR
An error occurred reading fromdisk—perhaps the drive door is not closed
or you are trying to read an unformatted floppy disk. Under DOS, this
message is followed by “[C]ANCEL, [I]GNORE, [R]ETRY”. Press “R”
to retry after closing the drive door. Press “C” to cancel the read command.
If the disk has developed a bad sector, you can press “I” to ignore the error,
but this will likely read a block of garbage from the disk.

Redefine displayable char? [Yes] [No]
The “Function/Control Key” you entered while adding a new keystroke
macro is a displayable character which is about to be assigned a new
meaning. Select [Yes] to redefine it, or [No] if you made a mistake and
do not want to redefine it.

348 Chapter 9 Messages

Redefine existing key? [Yes] [No]
The “Function/Control Key” you entered while adding a new keystroke
macro is already assigned to an edit function or a keystroke macro. Select
[Yes] to redefine it, or [No] if you made a mistake and you do not want
to redefine it.

VEDIT PLUS: The command option “NOCONFIRM” or “OK” sup-
presses this prompt on the Key_Add() command.

REGISTER NOT AVAILABLE / PROTECTED
Command macros can protect the text registers they use internally so that
they are not accidentally modified from Visual Mode. We suggest that
text registers 0 through 9 be used asVisualMode “cut and paste” registers.
Commandmacros should only use registers “10” and up for their own use.
Ideally, command macros should use the highest numbered registers
possible to reduce the chance of this error.

REGULAR EXPRESSION SYNTAX ERROR (SEARCH)
There is a syntax error on the search side of a regular expression. Perhaps
a “]” or “}” is missing or the groups are not nested properly. The “OR”
operator “|” cannot occurwithin groups—only between groups.A regular
expression cannot begin with “*”. When using “\n”, be sure that the ‘n’th
group already exists.

REGULAR EXPRESSION SYNTAX ERROR (REPLACE)
There is a syntax error on the replacement side of a regular expression.
Most likely you are improperly using “\n” — be sure that the ‘n’th group
was defined on the search side. (Counting starts at 1.)

REGULAR EXPRESSION - NOT ENOUGH MEMORY
There is insufficient free memory available to perform the search and
replace. Most likely due to an “\n” on the replacement side which corre-
sponds to many (thousands of) characters matched on the search side. Can
also result from an improperly formed expression.

SEARCH / REPLACE STRING TOO LONG
This error occurs if the overall search/replace string, plus any “variable”
characters included with “|@(r)”, exceeds 260 characters.

SYNTAX ERROR (SEARCH)
There is a syntax error in the search string using pattern matching codes.
The search string cannot end in just “|”; use “||” to search for a “|”. “|ddd”
requires that all three decimal digits are present; e.g. use “|000” to search
for the “Null” character. “|Hhh” requires that both hexadecimal digits are
present; e.g. use “|H0D” to search for the Carriage-Return character.

TOO MANY FILES OPEN
You are attempting to simultaneously editmore files than the “FILES=nn”
statement in your CONFIG.SYS file allows. Increase the number by three
for each additional file you want to edit. See “Checking your CON-
FIG.SYS file” in Chapter 2 (Getting Started).

Chapter 9 Messages 349

V-SWAP ERROR #n (DOS Only)
VEDIT attempted to use V-SWAPwhile shelling out to DOS and an error
occurred. See “V-SWAP Error Messages” in the on-line help topic
“VSWAP” for a detailed description.

WAITING FOR PRINTER — Press <CTRL-C> to Abort
VEDIT is waiting on a network or multi-user system for another program
or user to release the printer before it can begin printing. This message
changes to the normal printing message once printing begins.

WRITE ERROR
An error occurred writing to disk — perhaps the drive door is not closed
or you are trying to write to an unformatted floppy disk. Under DOS this
message is followed by “[C]ANCEL, [I]GNORE, [R]ETRY”. Press “R”
to retry after closing the drive door. Press “C” to cancel the write
command. If your disk has developed a bad sector, you should attempt to
save the file to another disk using {FILE, Save as}.

350 Chapter 9 Messages

Appendices

A - File Management
This is a technical description of VEDIT’s file handling. It explains the
automatic file buffering used to handle large files. For most applications, it is
not necessary to have a detailed knowledge of howVEDITmanages large files
and memory.

Basic File Handling
The purpose of editing is to either create a new file, or to modify an existing
file. When a file is first created, the initial text is entered with the editor,
corrections are made, and the text is then saved on disk. When an existing file
is edited, it is read from disk (opened), modified, and then written back to disk
(closed) with either the original filename or a new filename.

Since VEDIT can edit files that are much larger than memory, it processes two
files while editing — it reads text from the existing file called the “input” file
and writes text to a new file called the “output” file.
When VEDIT edits an existing file, it performs the following operations:

1. The existing file is opened as the “input file”. As much of it as will fit is
read into memory; for smaller files, all of it is read into memory.

2. A new file is created for the “output file”. It temporarily has the desired
filename, but with an extension of “.r$$”, where ‘r’ is the edit buffer
number. The main buffer #1 uses the extension “.1$$”. Buffer #10 uses
the extension “.A$$”, buffer #11 uses “.B$$” and so on.

3. The file is edited as desired. In the case of large files, VEDIT will shuffle
text between the input and output files so that the desired portion is in
memory and can be displayed on the screen.

4. When saving the file, VEDIT performs some file renaming — it first
renames the existing input file to have an extension of “.BAK”. This is
referred to as the “backup” of the file. Any previous backup of the file is
deleted by this process.

It then renames the “.r$$” output file to the real name of the destination
file.

A - File Management Appendices 351

Automatic File Buffering
When editing files which are larger than can fit into memory at one time,
VEDIT shuffles text between the input and output files so that the desired
portion is in memory and can be displayed on the screen.We call this shuffling
“auto-buffering”.
Conceptually, it helps to consider the displayed screen a “window” into the
edit buffer. This “window” may readily be moved anywhere within the edit
buffer with the [PAGE UP], [PAGE DOWN] and other cursor movement
functions. Furthermore, the edit buffer can be considered a “window” into a
large file. Moving this edit buffer “window” toward the end of the file is
referred to as “forward file buffering”, and moving it toward the beginning of
the file as “backward file buffering”.
VEDIT also performs auto-buffering, when necessary, to insert large blocks
of text. For example, if there is not enough free memory to insert the contents
of a large text register, part of the edit buffer will be written to disk to make
the necessary memory free.

Backward File Buffering
When editing a large file, you often want to edit some text which has already
passed through the edit buffer and has been written to disk (to the output file).
This is the purpose of backward file buffering.

Backward file buffering reads text from the output file back into the beginning
of the edit buffer for further editing. First, however, it makes additional space
free in the edit buffer by writing out text from the end of the edit buffer to a
temporary disk file. The file has a name extension of “.rR$” where ‘r’ is the
edit buffer number.

Since backward disk buffering requires an additional temporary file, VEDIT
requires additional free disk space when editing files.

Although backward file buffering works just as automatically and invisibly as
forward file buffering, it must be used with a little more care, especially if you
are using floppy disks. Since it requires an additional temporary file, you are
more likely to run out of disk space.

Maximum File Size
Since editing a large file requires both an input file and an output file, the
maximum file size that can be edited is 1/2 of a disk. (Reading from the input
file does not free up disk space.) If the input and output files are on different
drives, the maximum file size is a full disk. Due to the additional temporary
file needed for backward file buffering, the maximum file size (in the worst
case) is reduced to 1/3 of a disk. The temporary file is always on the current
drive. (With a three drive system you could safely edit a file one disk in length,
by making the current, the input file and output file drives all different.) These
file size limitations arise because in the worst case VEDIT needs to create a

352 Appendices A - File Management

temporary file which is nearly as large as the output file, which is generally as
large as the input file.

It is always best be to sure that there is enough free disk space before editing
a file. The DOS “DIR” command can tell you the size of the file being edited
and the amount of free disk space.

When the amount of free space is twice the size of the file being edited, you
are usually safe (unless the new filewill be significantly larger than the original
file).You can include any “.BAK”version of the file being edited in the amount
of free space available. If the amount of free space is not at least equal to the
size of the file being edited, you will run out of disk space even without
backward file buffering.

If the amount of free disk space is barely greater than the size of the file being
edited, you should avoid backward disk buffering — going to the beginning
of the file when it is no longer in memory. The format of the “LINE” message
on the status line tells you whether the beginning of the file is in memory.

SUGGESTION: If you are near the end of a very large file and need to go to
the beginning, it is often faster to use {FILE, Open, Same
buffer} (<Alt-N>) to start editing the file over again. This
has the added benefit of saving the current file.

Networking and Multi-Tasking
Some operating systems, such as UNIX and QNX allow several programs to
be run simultaneously on one computer system by one ormore users. Networks
also allow multiple users to access a common set of files. These environments
must deal with the situation where one program attempts to access a file which
is already in use by another program. In effect, the second program is denied
access to the file, or “locked out”. This process is called “file locking”. For
example, two users cannot simultaneously run VEDIT on the same file.

VEDIT is designed to work in both environments and in conjunction with their
file locking. Typically, if you try to access a file with VEDIT which is already
in use by another program, the operating system will first issue you an error
message. Then VEDIT will issue an additional error message “FILE NOT
OPENED” to note that the file was not successfully accessed. VEDIT ensures
that files which it is working on, or will soon need to access, are locked from
use by other programs. VEDIT will also release files as soon as it is done with
them so that they may then be used by other programs.

VEDIT also prevents you from editing the same file in two edit buffers.
(Otherwise it would be unclear which edit buffer contained the “real” file.)
However, you can edit different parts of a file (using one edit buffer) inmultiple
windows.

A - File Management Appendices 353

B - Search Modes Summary

Pattern Matching Codes
NOTE: Only the codes “|Hhh”, “|N”, “|Oooo”, “|ddd” and “|@(r)” can be

used on the replacement side.
|A Match any alphabetic letter, upper or lower case.
|B Match a blank - one space or tab.
|C Match any control character.
|D Match any numeric digit - “0” - “9”.
|F Match any alphanumeric - a letter or a digit.
|G Match any graphics (high-bit) character.
|Hhh Match the character with hexadecimal value ‘hh’. Can also be used on

the replacement side.
|I Match any word separator, including Config_String(WORD_SEP).
|K Match any non-standard control character other than Tab, Carriage-Re-

turn and Line-Feed.
|L Match “newline”: Carriage-Return and/or Line-Feed. CR is optional in

DOS/Windows files.
|M Multi - match any sequence of zero or more characters.
|N Match “newline” characters, similar to “|L”. CR is required inDOS/Win-

dows files. Can also be used on the replacement side.
|Oooo Match the character with octal value ‘ooo’. Can also be used on the

replacement side.
|P Match any “parenthesis” - { } [] () < >.
|S Match any separator - not a letter, digit or “_” (underscore).
|T Match the Tab character (value 09).
|U Match any upper case letter.
|V Match any lower case letter.
|W Match white space - single or multiple Spaces or Tabs.
|X Match extended white space - one or more Spaces, Tabs, Carriage-Re-

turns and/or Line-Feeds.
|Y Match multiple characters until the next pattern matches.
|ddd Match the character with decimal value ‘ddd’.
|000 Match the Null (value 00) character
|< Match beginning of line (zero length match).
|> Match end of line (zero length match).
|{set} Matches one occurrence of any item in the “pattern set”.
|[set] Matches one optional occurrence of any item in “pattern set”.
|@(r) Access contents of text register ‘r’ as a variable string.
|? Match any character.
|! Match any character except following character or pattern.
| | Use “| |” when you need to search for a “|”.

354 Appendices B - Search Modes Summary

Regular Expressions
Expressions that match a single character:

. (Period) Simple wildcard that matches any character.
[list] Matches any one character in the ‘list’.
[^list] Matches any one character not in the ‘list’.
[~list] Same. “[~” is equivalent to “[^”.
\b Matches the ASCII backspace character (hex 08).
\dDDD Matches the character with decimal value ‘DDD’. All three digitsMUST

be present.
\e Matches the ASCII <Esc> character (hex 1B).
\f Matches the ASCII Form-feed character (hex 0C).
\hHH Matches the character with hexadecimal value ‘HH’. Both digitsMUST

be present.
\n Matches the Line-Feed character (hex 0A). This is the “newline” char-

acter for UNIX type text files. To search for multiple-line patterns, use
“\N” instead.

\N Matches the “newline” character(s) and allows searching for multiple
line patterns. The “newline” depends upon the current file type and can
be CR, CR+LF or LF. (“\N+” and “\N*” are currently not supported.)

\oOOO Matches the character with octal value ‘OOO’. All three digits MUST
be present.

\r (Lower case) Matches the ASCII CR character (hex 0D).
\s Matches the ASCII space character (hex 20).
\t Matches the ASCII tab character (hex 09).
\0 (Zero) Matches the ASCII Null character (hex 00).
\ “\” followed by a special character matches that character. The special

characters are:
^ $. * + ? - ~ \ | [] { }

Expressions that match multiple characters:

* Matches zero or more occurrences of the preceding single character
matching expression.

+ Matches one or more occurrences of the preceding single character
matching expression.

? Matches zero or one occurrences of the preceding single character
matching expression.

\1 - \9 Matches the same text as was matched by the previous ‘n’th group.

Other:

^ (Caret) Matches the beginning of a line (when it is the first character in
a regular expression).

$ Matches the end of a line (when it is the last character in a regular
expression).

{ } Groups expressions for future reference in either the search string or
replacement string.

B - Search Modes Summary Appendices 355

| Matches any text that is matched by the preceding OR the following
expression. It cannot occur within { }.

\@(r) Use the contents of text register ‘r’ in this position in the search (or
replace) string.

Replacement Side:

\b The ASCII backspace character (hex 08).
\dDDD The character with decimal value ‘DDD’. All three digits MUST be

present.
\e The ASCII <Esc> character (hex 1B).
\f The ASCII Form-feed character (hex 0C).
\hHH The character with hexadecimal value ‘HH’. Both digits MUST be

present.
\n The Line-Feed character (hex 0A). This is the “newline” character for

UNIX type text files.
\N The “newline” character(s) depending upon the current file type and can

be <CR><LF>, <LF> or <CR>.
\oOOO The character with octal value ‘OOO’. All three digitsMUST be present.
\r The Carriage-Return character (hex 0D).
\s The ASCII space character (hex 20).
\t The ASCII tab character (hex 09).
\0 (Zero) The ASCII Null character (hex 00).
\@(r) Use the contents of text register ‘r’ in this position in the replacement

string.
\1 - \9 Same text as was matched by the n’th group on the search side.
& Entire text that was matched by the search expression.

Precedence of Regular Expression Operators:

Regular Expression Operator Precedence

Highest: \
[]
* + ?
{ }
Concatenation

Lowest: |

356 Appendices B - Search Modes Summary

C - Application Notes
This appendix lists a few keystroke macros that you can add to VEDIT. These
and many more are listed in the supplied file KEY-MAC.LIB. Some of these
macro are included in the default {USER} menu. The VEDIT PLUS macro
language is used in these keystroke macros.

NOTE: The Chapter 4 topic “Editing the Keyboard Layout - Adding a
Keystroke Macro from KEY-MAC.LIB” describes how to add these
keystroke macros to VEDIT.

Duplicate line
This keystroke macro duplicates the current line of text and moves the cursor
to the beginning of the new line.

[VISUAL EXIT] BOL() Block_Copy()

This simple macro above does not work quite right on the last line of a file.
However, the following macro does.

[VISUAL EXIT]
BOL() Block_Copy() if (Cur_Col>1) { Ins_Newline() }

Move by sentence
The following keystroke macro moves the cursor to the beginning of the next
sentence.

[VISUAL EXIT] Search(“.|S”) Search(“|F”)

Transpose letters
The following keystroke macro transposes two characters and advances the
cursor to the following character.

[VISUAL EXIT] Block_Move(Cur_Pos+1,Cur_Pos+2) Char()

The following variation transposes the previous two characters without ad-
vancing the cursor.

[VISUAL EXIT] Block_Move(Cur_Pos-2,Cur_Pos-1)

Insert date and time
This keystroke macro inserts the current date and time at the cursor position.

[VISUAL EXIT]
Out_Ins() Date(NOCR) Type_Space(2) Time(NOCR)
Out_Ins(CLEAR)

C - Application Notes Appendices 357

Scroll to center the current line
This keystroke macro scrolls the screen so that the current line is centered
vertically in the middle of the screen.

[VISUAL EXIT] Set_Visual_Line(Win_Lines/2)

Simultaneously [PAGE UP/DOWN] two windows
These keystroke macros perform a simultaneous [PAGE UP] and
[PAGE DOWN] in two windows. (It beeps if there are not exactly two
windows open.) Assign them to any two available keys, perhaps <Alt-PgUp>
and <Alt-PgDn>.

[VISUAL EXIT]
if (Win_Total==2) { #100=Win_Num
Win_Switch(Win_Next,ATTACH)
Do_Visual(“\PU\”) Update() Win_Switch(#100,ATTACH)
Do_Visual(“\PU\”) } else { Alert() }

[VISUAL EXIT]
if (Win_Total==2) { #100=Win_Num
Win_Switch(Win_Next,ATTACH)
Do_Visual(“\PD\”) Update() Win_Switch(#100,ATTACH)
Do_Visual(“\PD\”) } else { Alert() }

Copy block to another open file (buffer)
This keystrokemacro copies the highlighted block of text to another open file’s
(buffer’s) cursor position. If three or more files are being edited, it prompts
for the buffer number.

[VISUAL EXIT]
if (be == -1){ return } Num_Push(10,10) #10=Buf_Num
Reg_Copy_Block(0,bb,be,RESET) if (bt == 2){
Buf_Switch(Buf_Next) } else {
Buf_Switch(Get_Num(‘Copy to which buffer? ‘,STATLINE)) }
Reg_Ins(0) Buf_Switch(#10) Num_Pop(10,10)

Search and list matching lines
This macro prompts for a text string and lists all lines containing the string
with their line numbers. See also {USER, Search and select}.

[VISUAL EXIT]
Save_Pos()
Get_Input(103,"Enter text string: “,STATLINE+NOCR)
Win_Clear() Begin_Of_File()
while (Search(@103,ADVANCE+NOERR)) {
Num_Type(Cur_Line,NOCR) Type_Space(2)
Type(0) Type() }
Restore_Pos()

358 Appendices C - Application Notes

Delete blank lines
This keystroke macro deletes all blank lines, i.e. lines containing only a
Carriage-Return and/or Line-Feed. Does not delete “blank” lines that also
contain spaces and tabs.

[VISUAL EXIT]
Replace(“|<|>|N”,"",BEGIN+ALL+NOERR)

The following macro also deletes “blank” lines that contains spaces and tabs.

[VISUAL EXIT]
Replace(“|<|[|W]|>|N”,"",BEGIN+ALL+NOERR)

Delete lines containing a particular string
This keystroke macro prompts for a search string and then deletes all lines in
the file containing the string. As a precaution, the search string must be at least
four characters long; however themacros should still be usedwith CAUTION!
The cursor is left following the last deleted line.

[VISUAL EXIT]
Get_Input(103,"Enter search string: “,STATLINE+NOCR)
if (Reg_Size(103) < 4) {

Alert()
Statline_Message(”ERROR - Minimum 4 chars") Return

}
BOF()
repeat(ALL) {

Search(“|@(103)”,ERRBREAK)
BOL() Del_Line()

}

Word count
The following keystroke macro counts the number of words in a file and
displays the result. You can assign it to any desired key. It is the same as
{USER, Word count}.

[VISUAL EXIT]
M(“Counting words in file. Please wait...”,STATLINE)
Save_Pos()
BOF() #102=Search(“|s|a”,ALL+NOERR)
Restore_Pos()
#101=Win_Num
Win_Switch(STATLINE)
Win_Clear()
M(“Word count = ”) Num_Type(#102,NOCR)
Get_Key(“ Press any key...”)
Win_Switch(#101)

C - Application Notes Appendices 359

Compare two windows
This keystroke macro compares the current window with the “next” window.
It is similar to {Search, Compare buffers}, but it never prompts for the buffer
number. It beeps if there is only one window.

[VISUAL EXIT]
if ((#100=Win_Next)!=Win_Num) {

Compare(Win_Status(#100)+BUFFER)
} else { Alert() }

Align left edge of line with cursor
This keystroke macro aligns the left edge of the current line with the position
of the cursor and advances to the next line. Repeatedly pressing the assigned
key aligns the following lines. This is useful for re-aligning text in aC program.

[VISUAL EXIT]
#100=Win_Hor-1 BOL() Search(“|!|W”) Del_Line(0)
Ins_Text(“ ”,COUNT,#100) Do_Visual(“\CD\”)

Running V-SPELL from within VEDIT
This keystroke macros runs the V-SPELL spelling corrector from within
VEDIT to correct the current file being edited. You can assign it to <Ctrl-F1>
or any other desired key.

Note: The Out_Reg() and Dir() commands are needed to convert long
filenames to the short 8.3 format needed by V-SPELL.

[VISUAL EXIT]
Out_Reg(102) Dir(pathname,NOMSG+SHORT)
Out_Reg(CLEAR) File_Close(NOMSG)
Sys(“vs |@(102)”,DOS+MAX+DELETE+NOMSG)
File_Open(@102)

Toggle into VGA 132 column mode (DOS Only)
This capability is not directly built into VEDIT because it is very non-standard
and different for each VGA card.

This keystroke macro switches some VGA cards into 132 x 25 mode using
video mode 35 (23 hex). Substitute “35” for other modes available on your
particular VGA card.

[VISUAL EXIT] #100=35 Sys_Int(16) Screen_Reset()

You can return to 25 line mode with {MISC, VGA/EGA toggle} or with the
following keystroke macro.

[VISUAL EXIT] #100=3 Sys_Int(16) Screen_Reset()

NOTE: Video hardware manufactures warn that incompatible video modes
may damage the video card and/or monitor. Therefore, only select
video modes that are supported by your hardware.

360 Appendices C - Application Notes

D - Troubleshooting (DOS)
DOS:
WINDOWS:

Refer to the topic “Configuration - Troubleshooting” in Chap-
ter 8 if you are having trouble saving configuration changes.

Hangs immediately
If VEDIT hangs immediately or after a few keystrokes, remove any
keyboard related Terminate-stay-resident programs and try it again. The
programs are often loaded by your AUTOEXEC.BAT file.

In some rare cases VEDIT may crash at startup if {CONFIG, Misc,
Keyboard polling} or {CONFIG, Misc, Keyboard repeat rate} are set
to any value other than “0". If this occurs, start up VEDIT with the
invocation options ”-j“ and ”-k“ which force these settings to ”0" (their
most compatible values).
vedit -j -k

Then select {CONFIG, Misc, Save into VEDIT.EXE} to make these
settings permanent.

See the directions below for “Keyboard typematic rate...”.

Keyboard appears “hung” after exiting VEDIT
Follow the directions below for “Keyboard typematic rate...”.

Try tapping the <Alt> and <Ctrl> keys to see if this clears the “hung”
condition. For reasons unknown to us, some systems temporarily get the
<Alt> and <Ctrl> keys “stuck” in the down position when they really are
not. Users reporting this problem report the same problem with other
programs.

Cannot read menus on monochrome display
Most likelyVEDITwas installed for a color display and you have aLaptop
computer or a monochrome display connected to color adapter. Start up
VEDIT with the “-m” option and then select {CONFIG, Save into
VEDIT}.

Cannot read first letter in menus
This occurs with some monochrome displays and Laptops. First adjust
your screen contrast and brightness controls to see if this helps. If not,
select the {CONFIG, Colors} sub-menu and change “Color for menu bar
selection” and “Color for menu selection” to “7”, “15” or “127”. Experi-
ment with these and other values.

Keyboard typematic rate is slow in VEDIT or after exiting
VEDIT normally speeds up the keyboard typematic rate (key repeat rate)
inside VEDIT and then restore it upon exit. However, this interferes with
other keyboard enhancers andmany PS/2machines. In this case configure
{CONFIG, Misc, Keyboard typematic rate} to “0”. With this setting,

D - Troubleshooting (DOS) Appendices 361

VEDIT does not attempt to change the typematic rate. Then select {CON-
FIG, Save into VEDIT}. Finally, exit and start up VEDIT again.
For more details see the topic “Installation - Setting the Keyboard Type-
matic Rate” in Chapter 2 (Getting Started).

Mouse does not work or works erratically in VEDIT
For VEDIT’s mouse support to work you must have a mouse driver
installed, typically this is the line “DEVICE=MOUSE.SYS” in your
CONFIG.SYS file or the line “MOUSE” in your AUTOEXEC.BAT file.
If the mouse cursor does not move to the lower lines of a 43 or 50 line
display, you should check that you have a recent version of the mouse
driver, version 6.24 or later for the Microsoft mouse, version 4.15 or later
for the Logitech mouse.

The mouse support is optimized for the Microsoft and Logitech mouse; if
you have aMouse Systems mouse, you may have to set {CONFIG, Misc,
Mouse options} to “65” or “66”. Then select {CONFIG, Save into
VEDIT}, exit and start up VEDIT again.
If your mouse still acts erratically, you can try setting {CONFIG, Misc,
Mouse cursor} to “129” or “130”. Then select {CONFIG, Save into
VEDIT}, exit and start up VEDIT again. These special values allow
VEDIT to work with older style mouse drivers.

If you still have trouble with the mouse, select the {CONFIG, Misc}
sub-menu and press [HELP] (<F1>). Additional values for “Mouse
options” that solve other mouse problems are described.

With compatible VGA cards and mouse drivers, VEDIT’s mouse support
will work with extended screen sizes such as 132 by 50. If your mouse
does not work in these extended modes, you should contact the VGA card
and/or mouse manufactures for a compatible mouse driver.

After exiting VEDIT, DOS only scrolls in the top half of the 43/50 lines on
the screen.

When running VEDIT on an EGA/VGA system, you can toggle to 43/50
line mode. If you then exit VEDIT and configuration parameter Con-
fig(S_RESTORE) is set to “0”, your screen will stay in the 43/50 line
mode and DOS will normally run properly with the additional lines.
However, if you notice that DOS is only running in the top 25 lines, the
most likely cause is having ANSI.SYS installed. ANSI.SYS does not
support more than 25 lines. Many EGA/VGA cards come with a utility
disk containing an improved ANSI.SYS which supports 43/50 lines.

362 Appendices D - Troubleshooting (DOS)

E - IBM PC Keyboard Layout
The entire “normal” keyboard layout is listed in alphabetic order by key name.
It includes the actual contents of each keystroke macro. This list is similar to
that displayed by {CONFIG, Keyboard layout, Edit/view layout}.
<Alt-A> [MENU] CKA
<Alt-B> [MENU] B
<Alt-C> [MENU] C
<Alt-D> [MENU] VD
<Alt-E> [MENU] E
<Alt-F> [MENU] F
<Alt-G> [MENU] G
<Alt-H> [MENU] H
<Alt-I> [MENU] BN
<Alt-J> [MENU] VC
<Alt-K> [MENU] CKR
<Alt-L> [MENU] BL
<Alt-M> [MENU] M
<Alt-N> Used by Compiler support
<Alt-O> [MENU] FMS
<Alt-P> Used by Compiler support
<Alt-Q> [MENU] VI
<Alt-R> [REPEAT LAST]
<Alt-S> [MENU] S
<Alt-T> [MENU] T
<Alt-U> [MENU] U
<Alt-V> [MENU] V
<Alt-W> [MENU] W
<Alt-X> [MENU] FX
<Alt-Y> [MENU] FMH
<Alt-Z> [MENU] VZ
<Alt-`> Not assigned
<Alt—> Used by Windows
<Alt-=> [MENU] VB
<Alt-\> [MENU] VH
<Alt-[> [MENU] GN
<Alt-]> [MENU] GD
<Alt-;> Not assigned
<Alt-’> Not assigned
<Alt-,> Not assigned
<Alt-.> [MENU] VV (DOS Only)
<Alt-/> [ESCAPE] W

E - IBM PC Keyboard Layout Appendices 363

<Alt-Bksp> [MENU] EUE
<Alt-Cursor Down> [SCROLL DOWN]
<Alt-Cursor Left> [SCROLL LEFT]
<Alt-Cursor Right> [SCROLL RIGHT]
<Alt-Cursor Up> [SCROLL UP]
<Alt-Del> Not assigned
<Alt-End> Not assigned
<Alt-Enter> [MENU] HD
<Alt-F1> [MENU] HK
<Alt-F2> [MENU] SR
<Alt-F3> Not assigned
<Alt-F4> [MENU] FX
<Alt-F5> [MENU] WS
<Alt-F6> Cannot be used; reserved by Windows
<Alt-F7> Not assigned
<Alt-F8> Not assigned
<Alt-F9> [MENU] BM
<Alt-F10> [VISUAL ESCAPE]
<Alt-F11> [T-REG MOVE]
<Alt-F12> [MENU] FS
<Alt-Home> Not assigned
<Alt-Ins> Not assigned
<Alt-PgDn> Not assigned
<Alt-PgUp> Not assigned
<Backspace> [BACKSPACE]
<Ctrl-A> [MENU] BA
<Ctrl-B> [MENU] EF
<Ctrl-C> [MENU] EC
<Ctrl-D> [MENU] GS
<Ctrl-E> [VISUAL EXIT]
<Ctrl-F> [MENU] SS
<Ctrl-G> [MENU] GG
<Ctrl-H> [MENU] SR
<Ctrl-I> [MENU] SI
<Ctrl-J> [ERASE BOL]
<Ctrl-K> [ERASE EOL]
<Ctrl-L> [ERASE LINE]
<Ctrl-M> Not assigned
<Ctrl-N> [MENU] FN
<Ctrl-O> [MENU] FO
<Ctrl-P> [MENU] FP
<Ctrl-Q> [ENTER CTRL]
<Ctrl-R> [REPEAT]

364 Appendices E - IBM PC Keyboard Layout

<Ctrl-S> Not assigned
<Ctrl-T> Not assigned
<Ctrl-U> [MENU] EUL
<Ctrl-V> [MENU] EP
<Ctrl-W> [MENU] WO
<Ctrl-X> [MENU] ET
<Ctrl-Y> [MENU] EUR
<Ctrl-Z> [MENU] EUE
<Ctrl-[> Not assigned
<Ctrl-\> [CANCEL]
<Ctrl-]> [MENU] GM
<Ctrl-Shift-^> [ENTER CTRL]
<Ctrl-_> Not assigned
<Ctrl-Bksp> [DEL PREV WORD]
<Ctrl-Cursor Down> [NEXT PARAGRAPH]
<Ctrl-Cursor Left> [PREV WORD]
<Ctrl-Cursor Right> [NEXT WORD]
<Ctrl-Cursor Up> [PREV PARAGRAPH]
<Ctrl-Del> [DEL NEXT WORD]
<Ctrl-End> [MENU] GE
<Ctrl-Enter> [NEXT LINE]
<Ctrl-F1> [MENU] HS
<Ctrl-F2> [MENU] SA
<Ctrl-F3> [MENU] SC
<Ctrl-F4> [MENU] WO
<Ctrl-F5> [MENU] WP
<Ctrl-F6> [MENU] WN
<Ctrl-F7> [MENU] ML
<Ctrl-F8> [MENU] ME
<Ctrl-F9> [MENU] BC
<Ctrl-F10> [VISUAL EXIT]
<Ctrl-F11> [T-REG COPY]
<Ctrl-F12> Not assigned
<Ctrl-Home> [MENU} GB
<Ctrl-Ins> [MENU] EC
<Ctrl-PgDn> [SCREEN END]
<Ctrl-PgUp> [SCREEN BEGIN]
<Ctrl-Shift-C> [MENU] ESC
<Ctrl-Shift-O> [MENU] FMQ
<Ctrl-Shift-P> [MENU] MP
<Ctrl-Shift-R> [MENU] MQ
<Ctrl-Shift-V> [MENU] ESP
<Ctrl-Shift-X> [MENU] EST

E - IBM PC Keyboard Layout Appendices 365

<Ctrl-Shift-Z> [MENU] EUL
<Ctrl-Tab> [MENU] WN
<Cursor Down> [CURSOR DOWN]
<Cursor Left> [CURSOR LEFT]
<Cursor Right> [CURSOR RIGHT]
<Cursor Up> [CURSOR UP]
 [DELETE]
<End> [LINE END]
<Enter> [RETURN]
<Esc> [ESCAPE]
<F1> [HELP]
<F2> [MENU] SS
<F3> [MENU] SN
<F4> [MENU] FB
<F5> [MENU] FV
<F6> [MENU] FT
<F7> [MENU] EN
<F8> [MENU] EE
<F9> [MENU] BS
<F10> [MENU]
<F11> [T-REG INSERT]
<F12> Not assigned
<Home> [LINE BEGIN]
<Ins> [INSERT TOGGLE]
<Numpad/> [VISUAL EXIT]
<Numpad*> [T-REG INSERT]
<Numpad-> [T-REG MOVE]
<Numpad+> [T-REG COPY]
<Numpad.Enter> [RETURN]
<PgDn> [PAGE DOWN]
<PgUp> [PAGE UP]
<Shft-Del> [MENU] ET
<Shft-F1> Not assigned
<Shft-F2> [MENU] SB
<Shft-F3> [MENU] SP
<Shft-F4>-<Shift-F8> Not assigned
<Shft-F9> [MENU] BR
<Shft-F10> Not assigned
<Shft-F11> Not assigned
<Shft-F12> Not assigned
<Shft-Ins> [MENU] EP
<Shft-Tab> [BACKTAB]
<Tab> [TAB CHARACTER]

366 Appendices E - IBM PC Keyboard Layout

F - IBM PC Color Chart
Value Text on Background Value Text on Background
16 Black on Blue 1 Blue on Black
32 Green 33 Green
48 Cyan 49 Cyan
64 Red 65 Red
80 Magenta 81 Magenta
96 Brown 97 Brown
112 White 113 White

2 Green on Black 3 Cyan on Black
18 Blue 19 Blue
50 Cyan 35 Green
66 Red 67 Red
82 Magenta 83 Magenta
98 Brown 99 Brown
114 White 115 White

4 Red on Black 5 Magenta on Black
20 Blue 21 Blue
36 Green 37 Green
52 Cyan 53 Cyan
84 Magenta 69 Red
100 Brown 101 Brown
116 White 117 White

6 Brown on Black 7 White on Black
22 Blue 23 Blue
38 Green 39 Green
54 Cyan 55 Cyan
70 Red 71 Red
86 Magenta 87 Magenta
118 White 103

14 Yellow on Black 8 Grey on Black
30 Blue 24 Blue
46 Green 40 Green
62 Cyan 56 Cyan
78 Red 72 Red
94 Magenta 88 Magenta
110 Brown 104 Brown
126 White 120 White

F - IBM PC Color Chart Appendices 367

G - ASCII Table

NOTES: This table displays the IBM PC (OEM) character set.

Windows version: Select {MISC, ASCII table} to see how all
characters in the currently selected font are displayed.

The values 0 (Null), 32 (Space) and 255 appear identical on the
screen. Use {CONFIG, Characters/Cursors, Null display char-
acter} to change how the Null character is displayed.

368 Appendices G - ASCII Table

INDEX

! “.1$$” file, 345
“.1R$” file, 346
“1-END” message, 68
132 Column mode, 352
“<” message, 68
[and] (in regular expressions), 127
\ (regular expression escape character), 128
{ and } (in regular expressions), 130
| (pattern matching codes), 120, 250, 348
| (in regular expressions), 129
|@(r), 125

A Abandoning file (See also File - Exit and File - Close), 63
<Alt> key shortcuts, 283
ANSI - Translate graphics characters, 110 - 111, 231
ASCII - Translate to EBCDIC, 110 - 111, 231
ASCII Table, 241, 361
Assembly language programming, 76, 124

Ctags, 178 - 179
Auto-buffering, 346
Auto-configuration (Startup), 57
Auto-execution (of macros), 164
Auto-file save, 66, 285
Auto-indent mode, 135, 270
AUTOEXEC.BAT file, 30

B [BACKSPACE], 90, 281, 283, 311
[BACKSPACE] emulation mode, 281
[BACKTAB], 311
Backup file (“.BAK”), 65, 285, 345
Backward file buffering, 346
Beep level, 294
Beginning of file/buffer, 235
Binary file editing, 214
Binary files, 67, 82, 84, 286

Header size, 85
BIOS

Keyboard input, 78, 326
Screen output, 58, 326

Block, 94 - 109
Auto-replace, 283
{BLOCK} menu, 218 - 226
Characters included, 96
Columnar blocks, 94, 105
Copy/move (See Copying/moving text), 94 - 109

369

Cut & past huge blocks, 103
Delete, 208, 228
Fill, 99, 229
Fill character, 268
Highlighting (See Block markers), 94
Indent, 104, 201
Line blocks, 94
Overstrike, 99
Search, 251, 255
Translating, 110 - 111, 231
Write to disk, 226

Block markers, 67
Auto-cancel, 284
Goto, 236
Highlight color/attribute, 278
Highlighting, 94, 105, 284
Remove, 96, 222, 284, 308
Setting, 94 - 95, 218, 283
Setting columnar markers, 220
Setting line markers, 220

“BLOCK” message, 67
Box drawing mode, 242, 294
Browse mode, 57, 61, 68, 190, 286, 335
Buffer (See Edit buffer), 192
“BYTE” message, 67

C C programming, 155 - 159
Ctags, 178 - 179
Syntax highlighting, 155
Template editing, 158

[CANCEL], 312
“Caps” lock, 67
<CR>, 74, 287
Carriage-return character, 74, 82, 286

Searching, 122
Case (See Lower and upper case), 76
Center line, 199, 269
CFUNC.VDM file, 175
Clipboard, 70, 103, 197
“COL” message, 67
Color

Chart, 360
Configuration, 277
Edited text, 215, 278
Toggle, 215

Color syntax highlighting - See Syntax highlighting, 155 - 157
Column

Display column #, 67
Go to column #, 237

Columnar block (See Block), 94, 220
Command macros, 161 - 163

370

Auto-execution, 59, 164
Execute, 163, 244 - 246
Load, 163, 245
Text register usage, 162

Command Mode
Enter via {Escape} menu, 307

Command Mode (VEDIT PLUS), 161, 316
Enter via keystroke macro, 92
Help message, 328
Message on status line, 67

Comments (Assembly language), 124
Compare

Buffers (files), 257
Directories, 170
Files, 168 - 169

COMPARE.VDM file, 168 - 169
COMPDIR.VDM and COMPDIR.BAT files, 170
COMPILE.CNF file, 182
Compiler support, 180 - 184

Description of files, 36
Installation, 181
Startup, 247
Using, 183

CONFIG.SYS file, 30
Configuration

{CONFIG} menu, 263 - 295
Edit buffer dependent parameters, 266
File-type specific, 153 - 154, 271
Initial, 33
Keyboard layout, 38 - 42, 296 - 301
Load from disk, 265
Network, 31 - 32
Overview, 263 - 295
Save to disk, 264 - 265
Startup, 57
STARTUP.VDM file, 149
VEDIT.CFG file, 324
VEDIT.KEY file, 322 - 323

Continuation character, 72
Configuration, 328

Continuation line, 72
Control characters

Display, 74, 213, 275
Entering, 73, 201
Keyboard, 73
Search for, 252

Convert lower to upper case (See Lower and upper case), 76, 227
Copying/moving text, 97

Between files, 141, 168
Huge blocks, 103
To a text register, 99, 206, 224

371

To the cursor, 222
To the Scratchpad, 98, 206
To the Windows clipboard, 103, 197

Ctags facility, 178 - 179
<Ctrl> key shortcuts, 283
<Ctrl-\>, 67
<Ctrl-C>, 165, 340
<Ctrl-N>, 252
<Ctrl-Z>, 325
Current directory, 142, 305
Cursor

Blink rate, 276
Display (style and type), 78, 276
Position after block insertion, 202, 284
Positioning mode, 280

[CURSOR DOWN], 312
[CURSOR LEFT], 281 - 282, 312
Cursor movement

By paragraphs, 48, 314
By screens/pages, 48, 314
By sentence, 352
By words, 47, 314
In text, 47, 312, 327

[CURSOR RIGHT], 281 - 282, 312
[CURSOR UP], 312
Cut and Paste (See also Copying/moving text), 206

D Data files (See also Binary files), 84
Database files

Editing, 85, 173 - 174
Date

Display, 305
Insert date and time, 89, 352

dBase files, 173 - 174
Default directory, 142, 305
[DEL NEXT WORD], 47, 209
[DEL PREV WORD], 47, 209
Delete

Block of text, 208, 228
Large blocks, 81
Line, 209
Text (Overview), 46
Undo, 81, 204
Words, 209, 312

[DEL NEXT WORD], 313
[DEL PREV WORD], 312
[DELETE], 283, 312

At end of line, 83
Detabbing (Tabs to spaces), 228
Directory

Compare two directories, 170

372

Current (Starting), 142
Default, 305

Disk full error (recovery), 338
“DISK” message, 67
Disk space

Maximum file size, 346
Usage, 346

Display font, 217
Display modes, 74, 213, 275
DOS Shell, 242, 244

Enable/disable, 328
DOS text file, 83, 286

Convert to UNIX, 83
Drag and drop, 55, 138
Duplicate line (macro), 352

E EBCDIC, 67
Translate to ASCII, 110 - 111, 231

“EBCDIC” message, 67
Edit buffer

Attach to window, 144
Close, 140, 189
Configuration parameters, 266
Details, 143
ID number, 274
Insert as a text register, 143
Multiple file editing, 60
Naming, 144
Number on status line, 67, 192
Open, 186 - 188
Switching, 140, 192 - 193
Usage, 303

Edit function
Reference, 311 - 316

{EDIT} menu, 196 - 202
Edit session restore, 57, 64, 194, 285
Editing

Binary files, 214
Hex-mode, 79 - 80, 214
Multiple files, 60, 138 - 143, 187 - 188
New file, 186 - 188
One file in two windows, 146
Switching between files, 140, 192 - 193

Emulation
Modes, 77
Of other editors, 280

End-of-file character (<Ctrl-Z>), 325
End-of-file processing, 325
End-of-file/buffer, 235
End-of-line character (See Newline character), 82
[ENTER CTRL], 201, 313

373

<Enter> key, 45, 83, 281, 286
Entering new text, 45
Environment variable “VEDPATH”, 329
Environment variable “VBACKUP”, 66
Environment variable “VEDIT”, 60
Erase (See Delete), 209
[ERASE BOL], 209, 313
[ERASE EOL], 209, 313
[ERASE LINE], 209, 313
Error messages, 331 - 342
<Esc> key

Assignment to [ESCAPE], 307
Enter into text, 201, 297
Usage with UNIX, 39

[ESCAPE], 313
{ESCAPE} menu, 307 - 309
Event macros, 158 - 159
Exit

Save/restore edit session, 64, 194
Screen restore, 328
VEDIT, 54, 63 - 66, 194, 309

F File
Altered/unaltered, 63, 68, 190, 203
Binary, 82 - 85, 286
Buffering, 346
Change name (Save as), 191
Close, 140, 189
Comparison, 257
Comparison (macro), 168 - 169
Exit - save/abandon, 63, 194, 309
{FILE} menu, 186 - 195
Goto position (offset), 237
Handling/management, 345 - 347
Input file, 305, 345
Inserting, 202
Large (long), 346
Locking, 347
Maximum file size, 346
Names of files being edited, 67, 304
Open, 187 - 188
Open/close event macro, 271
Output file, 305, 345
Position, 237
Read-only, 190, 335
Save and continue editing, 54, 190
Save and exit, 54
Size, 305
Switching between files, 140, 192 - 193
Type (Binary/text), 82 - 85, 286

File-type specific configuration, 153 - 154, 271

374

Filename (displaying), 67
Fill (See Block - Fill), 229
Font

Display, 69, 217
Printer, 113

Form-Feed character, 290
Format paragraph, 136, 199
Free memory space, 305
Full disk (See Disk full error), 338
Function/control keys, 295, 326

G {GOTO} menu, 235 - 240
Graphics characters

Display, 74, 213, 275
Entering, 73
Keyboard, 78
Search for, 252
Strip high bit, 230

H Help, 313
Help level, 294
{HELP} menu, 302 - 306
Introduction, 302
On-line, 302, 313
Status display, 304

Hex-mode editing, 79 - 80, 214
Hexadecimal

Offset into file, 68
High bit characters (See Graphics characters), 73
Highlighting (See Block markers)

Color/attribute, 278
Horizontal scroll increment, 274
Horizontal scroll margin, 72, 85, 274
Horizontal scrolling, 71, 274
HTML editing, 155 - 160

I Icon properties - changing, 56
Indent increment, 135, 271
Indenting text, 104, 134, 200
Input file, 305, 345
“INS” message, 68
Insert

File, 202
From ASCII Table, 241
Text (Overview), 45

Insert mode, 210, 276, 281, 325
[INSERT TOGGLE], 210, 313
Installation, 21

DOS, 24 - 29
DOS version in OS/2, 28
DOS version in Windows, 27

375

Files (Description) 34 - 37
IBM PCDOS/MS-DOS, 24
Network, 31 - 32
Testing, 29
Windows, 22 - 23

Invoking VEDIT, 147 - 150
Options, 57, 164
Overview, 44, 55 - 62

J Java SDK support, 181
Justifying paragraphs, 136 - 137, 270

K Key conversion character, 76, 271
.KEY file (VEDIT.KEY), 300, 322 - 323
KEY-MAC.LIB file, 89, 92
Keyboard

Notation, 19
Options, 78, 295, 326
Polling, 26, 58
Shortcuts, 283
Typematic rate, 26

Keyboard layout, 38 - 42, 296 - 301
Change, 91 - 93, 299, 322 - 323
Display/Help, 303
Edit, 91 - 93, 299
Edit (Keyboard layout file), 323
Load from disk, 93, 301
“Normal” layout, 39 - 40, 356 - 359
Print, 299
Save to disk, 300
Supported keys, 326
UNIX, 39
Unused keys, 299

Keystroke macros, 86 - 90
Add/Record, 88, 297 - 298
Built-in, 41
Delete (un-assign a key), 90
Escape sequence, 296
Examples, 88 - 89, 351
Help, 303
Hot-keys, 86
Macro language (VEDIT PLUS), 86, 89, 92, 161
Misc. notes, 297, 351
Modify, 90
Repeating, 297
Save, 300

L Large files (See File - Large), 346
Left margin, 134, 269, 288
Line

Center, 199, 269

376

Display line #, 67, 85, 286
Editing long lines, 72, 85
Erase, 209
Go to line #, 236
Split into two, 45
Toggle 25/28/50 line mode, 215
Wrap long lines on screen, 72, 274

[LINE BEGIN], 47, 282, 313
Line block (See Block), 94, 220
Line emulation mode, 282
[LINE END], 47, 282, 314
“LINE” message, 68
<LF>, 74, 286
Line-Feed character (See also Newline character), 74, 82, 286
Lower and upper case

Change/switch case of text, 227
Converting keys, 76, 271
Reverse case (Keyboard), 78, 295
Searching, 250, 257, 292

M Macintosh text file, 83, 286
Convert to DOS, 84

Macro language (See Command Macros), 161
Macros (See Command macros or Keystroke macros), 161 - 163
Margin (See Left and Right margins), 134
Markers (See Block markers or Text Markers), 238
Match parentheses, 239
Maximum file size, 346
Memory

Restricting usage, 59
Space free, 305

[MENU], 314
Menu system

Preview, 263
Microsoft Windows, 27
{MISC} menu, 241 - 248
Monochrome screen colors, 29, 58
Mouse

Right-click menu, 310
Mouse support

Zoom button, 211
Multi-Tasking Operating Systems, 347
Multiple drives, 346
Multiple file processing, 166 - 167
Multiple files (See Editing), 138 - 143

N Network
Configuration, 31
File locking, 347
Installation, 31 - 32
Printing, 291

377

“New file” message, 57
Newline character, 45, 82, 286

Display, 74, 276
Searching, 121 - 122, 252

[NEXT LINE], 314
[NEXT PARAGRAPH], 48, 314
[NEXT TAB STOP], 314
[NEXT WORD], 47, 314
Notation, 19
Null character, 73, 122, 129, 252

Display, 276
“Num” lock, 67
Numeric expressions, 70

O Offset into file, 68, 237
Offset paragraph, 136
OS/2, 28
Outliner (CFUNC macro), 175
Output file, 305, 345
Overstrike mode, 45, 276, 281, 325
Overwrite-only mode, 62, 100, 286

P Padding (Tabs and spaces), 105, 135
[PAGE DOWN], 48
[PAGE UP], 48, 314

Number of lines/overlap, 327
Page eject, 291
Paragraph

Definition of, 133
Formatting, 136, 199, 269
Formatting - Enable, 269
Justifying, 136 - 137, 270
Offset, 136
Unjustify, 137

Parentheses matching, 239
Pattern matching, 120, 348

Codes, 120
Pattern sets, 124

“POS” message, 68
[PREV PARAGRAPH], 48, 314
[PREV WORD], 47, 314
Print

Basic operation, 114
Block, 114, 117, 193
Configuration, 288
Control characters, 116, 289
Dialog box, 193
Display mode, 116
EBCDIC, 116
Eject Page, 291
Entire file, 114 - 115, 165, 193

378

Finish print job, 291
Fonts, 119
Form-Feed character, 290
Formatter (macro), 115, 165
Hexadecimal, 116, 289
Introduction, 53, 113 - 119
Job, 290
Laser Printer notes, 288
Line spacing (double, etc.), 289
Macro, 115, 165
Margins, 115, 288
Mode, 289
Paper length, 288
Print-job, 117
Printer port selection, 291
Start/Finish strings, 117 - 118
To file, 291
Troubleshooting, 115
Wrapping long lines, 289

PRINT.VDM file, 115, 164 - 165
Programs

Run from within VEDIT, 176 - 177

Q Quit (abandon) and exit (See File - Exit), 63

R Read-only file, 190, 335
Read-only mode, 57, 286
Record mode, 84
Record size, 84
Redo, 49, 81, 204
Registers (See Text register), 98
Regular expressions, 126, 292
[REPEAT], 196, 295, 314

Keystroke macros, 297
[REPEAT LAST], 314
Repeating operations (See also [REPEAT]), 50, 196
Replacement string, 253
Restore edit session, 57, 64, 194, 285
Retabbing (Spaces to tabs), 228, 267
[RETURN] (See also <Enter> key), 315
Right margin, 135, 269, 289
Right-click menu, 310
“RM” message, 68
Running programs (Shell), 176-177, 242, 244, 328

S Save configuration changes into VEDIT, 265
Save configuration changes to disk, 264
Save keyboard layout, 300
Save text and continue, 54, 190
Save text and exit, 54, 63, 194, 309
Scratchpad (text register), 70, 98, 206

379

Screen
Color chart, 360
Color/attributes, 58, 277 - 278
Display (updating), 78
Display modes, 74, 213, 275
Initialize, 212
Overlap when paging, 327
Restore on exit, 328
Scrolling, 71 - 72
Size, 327, 352
Writing (Direct Memory/BIOS), 58, 326

[SCREEN BEGIN], 282, 315
[SCREEN END], 282, 315
Scroll bars, 216, 273
[SCROLL DOWN], 71, 282, 315
[SCROLL LEFT], 71, 274, 315
[SCROLL RIGHT], 71, 274, 315
[SCROLL UP], 71, 282, 315
Scroll increment, 274
“Scroll” lock, 67
Scroll margin, 274
Scrolling, 71 - 72, 315, 327
Search, 120 - 132, 249 - 257

Again, 254
Blocks, 251, 255
Carriage-Return, 122
Case sensitive, 250, 257, 292
Configuration, 292
Control character, 252
Error, 293
From beginning of file, 251
Incremental search, 254
Introduction, 249
Local (only to end of memory), 251
Modes, 120, 250, 292
Multiple files, 166, 256
Newline, 122
Next, 254
Null character, 122, 129
Options, 250
Pattern matching codes, 348 - 350
Previous, 254
Regular expressions, 250, 292, 349
{SEARCH} menu, 249 - 257
Simple mode, 250, 292
String, 125, 249
Text, 249
Words, 251

Search and Replace, 120 - 132, 249 - 257, 282
Again, 254
Multiple files, 167

380

Options, 253
Serial number, 306
Set markers (See Block markers or Text markers), 218
Setup.exe, 34

Shelling out to DOS, 176-177, 242, 244, 328
<Shift> key shortcuts, 283
Shortcuts, 69
SORT.VDM macro, 171 - 172
Sorting, 112, 171 - 172, 231
Spaces

Convert to tabs, 105, 109, 228, 267
In paragraphs, 137, 270
Trailing, 105
Trimming, 108, 268

Starting VEDIT, 44, 55 - 62
Startup configuration, 57
STARTUP.VDM file, 58, 147 - 150, 326
Status display, 304
Status line, 67 - 68

Configuration, 327
Strip comments (assembly language), 124
Strip high bit (Bit 8), 230
Substitute (See Search and Replace), 120 - 132
Switching buffers (See Edit buffer - Switching, 140
Syntax highlighting, 155-157, 272

Colors, 279
Load syntax file, 247

T [T-REG COPY], 224, 316
[T-REG INSERT], 225, 316
[T-REG MOVE], 224, 316
[TAB CHARACTER], 267, 281, 315
Tab character (key), 75, 267, 315

Convert spaces to tabs, 105, 109, 228
Convert Tab character to spaces, 105, 109, 228
Display, 74, 76, 276
Expand Tab key with spaces, 76, 267

Tab stops, 75, 267
Technical support, 20, 306

Replacement disk, 21
Template editing, 158 - 159, 272

Load template file, 246
Temporary disk file (“.1R$”), 346
Text Markers

Go to, 239
Setting, 238

Text register
Copy/move to, 99, 206, 224
Display, 304
Emptying, 100
In search string, 125, 252

381

Inserting, 99, 207, 225
Memory usage, 304 - 305
Naming, 101
Overview, 98
Usage, 100, 304
Usage by command macros, 162

Time
Display, 305
Insert date and time, 89, 352

{TOOLS} menu
Description, 151
Load menu, 248

Toolbar, 216, 273
Trailing spaces, 105
Translating a block/file, 110 - 111, 231
Transpose letters, 352
Troubleshooting, 354 - 355

Configuration and Startup, 320 - 321
{Tutorial} menu, 248

U Undenting - See Indenting, 200
Undo

Deletion, 81, 204, 229
Edit, 203
Introduction, 49, 81, 203
Levels, 81, 328
Line, 203
Redo, 81, 204
Reset, 205
{UNDO} menu, 203 - 205

UNIX text file, 83, 286
Convert to DOS, 83

Unjustify (See also Justifying paragraphs), 137
Upper and lower case (See Lower and upper case), 76
User Config Directory, 318, 320
User interface, 69 - 70
{USER} menu

Description, 151
Load menu, 248

V V-SPELL
Introduction, 16
Run from inside VEDIT, 351

V-SWAP
DOS Shell, 243
Enable, 286
Installation, 30

“.VDM” file, 162
“VEDIT” environment variable, 60
VEDIT Home Directory, 318, 320
VEDIT icon

382

Properties, 56
VEDIT.CFG file, 149, 317 - 330
VEDIT.INI file, 21, 58, 66, 150, 318, 320
VEDIT.KEY file, 300, 319 - 320, 322 - 323
“VEDPATH” environment variable, 329
Version number (VEDIT), 304, 306
Vertical scrolling, 71
VGA display, 215, 352
View - See Windows, 258
{VIEW} menu, 211 - 217
Virtual space mode, 276
[VISUAL ESCAPE], 316
[VISUAL EXIT], 92, 316
Visual Mode, 316

Definition, 161

W Wildcard characters, 122, 126, 166
WILDFILE.VDM file, 166 - 167
Windows, 144 - 146

Arrange icons, 259
Attach to buffer, 144
Border characters, 325
Borders, 273
Cascade, 258, 274
Close, 140, 260
Color/attributes, 278
Command Mode window, 308
Delete, 260
Display modes, 74, 213, 275
Editing multiple files, 139, 189
Full-size, 139-140, 146, 212, 274
ID Number/name, 144, 260, 274
Minimized, 259
Multiple per file, 259
Name display, 274
Naming, 144
Overview, 144 - 146
Remove, 260
Reset, 139, 212
Resize, 139
Splitting, 139, 259
Switching, 145, 261 - 262
Tile, 258
{VIEW} menu, 211 - 217
{WINDOW} menu, 258 - 262
Zooming, 139, 145, 211

Windows Clipboard, 103, 197
Word

Count, 351
Definition of, 133, 330
Selecting as a block (mouse), 221

383

Wrap (See also Right margin), 135
Word Perfect keyboard layout, 93
Word Processing, 133 - 137

Configuration, 269
Word wrap - Enable, 269
WordStar keyboard layout, 78, 93

Z Zooming windows (See also Windows), 145

384

	Table of Contents
	Introduction
	2 - Getting Started
	Installation
	--- Windows Installation
	--- DOS Installation
	--- Network Installation
	Initial Configuration
	Description of Files
	Keyboard Layout

	3 - Quick Tutorial
	Starting VEDIT
	Entering New Text
	Deleting Text
	Moving the Cursor
	Undo and Redo
	Repeating Operations
	“Cut and Paste” a Block
	Printing Text
	Saving Your Work
	Exiting VEDIT

	4 - Editing Guide
	Starting (Invoking) VEDIT
	Exiting VEDIT
	The Status Line
	User Interface
	Scrolling the Screen
	Screen Display & Keyboard
	Hex Mode Editing (and Octal)
	Undo and Redo
	File Types - Win/DOS, UNIX,
	Keystroke Macros
	Editing the Keyboard Layout
	Block Operations
	Translating a Block or File
	Sorting Lines in a Block / File
	Printing in VEDIT
	Search and Replace
	Word Processing Functions
	Editing Multiple Files
	Windows

	5 - Advanced Topics
	STARTUP.VDM File
	{USER} and {TOOL} Menus
	File-type Configuration
	Color Syntax Highlighting
	Template Editing
	HTML Editing Features
	Command Macros
	Auto-Execution
	PRINT - Print Macro
	WILDFILE - Multi-file Processing
	COMPARE - Compare Files
	COMPDIR - Compare Directories
	SORT - Sorting Macro
	DBASE.VDM Macro
	CFUNC - C Program Outliner
	RUNSHELL - Run Other Programs
	“ctags” Symbol Lookup
	Integrated Compiler Support

	6 - Menu Reference
	{FILE} Menu
	{EDIT} Menu
	{EDIT, Undo} Sub-menu
	{EDIT, Scratchpad} Sub-menu
	{EDIT, Delete} Sub-menu
	{VIEW} Menu
	{BLOCK} Menu
	{BLOCK, Edit/translate} Sub-menu
	{BLOCK, Convert newlines} Sub-menu
	{GOTO} Menu
	{MISC} Menu
	{SEARCH} Menu
	{WINDOW} Menu
	{CONFIG} Menu
	{CONFIG, Keyboard layout} Sub-menu
	{HELP} Menu
	{ESCAPE} Menu
	{MOUSE} Right-click Menu

	7 - Edit Function Reference
	8 - Configuration
	Basic Configuration
	How VEDIT Configures Itself
	Troubleshooting
	VEDIT.KEY Layout File
	--- Modifying the VEDIT.KEY file
	--- Configuration Commands in “.KEY” Files
	VEDIT.CFG Configuration File
	List of Config() Parameters
	--- Config_String() Parameters
	--- Config_Tab() Parameter

	9 - Messages
	Appendices
	Index
	A - File Management
	B - Search Modes Summary
	--- Pattern Matching Codes
	--- Regular Expressions
	C - Application Notes
	D - Troubleshooting (DOS)
	E - IBM PC Keyboard Layout
	F - IBM PC Color Chart
	G - ASCII Table

