XPS Controller

Universal High-Performance
Motion Controller/Driver

Eny Angle '
N

User’s Manual

® Software Tools

Tutorial

Newport. V2.6x

Experience | Solutions

For Motion, Think Newport

XPS Universal High-Performance Motion Controller/Driver

XPSDocumentation V2.6 x (08/11) ii

XPS

Universal High-Performance Motion Controller/Driver

Table of Contents

WWATANEY ..ottt ettt ettt et s bt e b e et s bt e b e et e s be e b e et e ss e et e e a b e nse e b e eatenneennenn X
EU Declaration 0f CONfOIMILYccccouririiirieiinieinieieeieenteeeteteee et nenee X
PIEFACE ..ottt xi
Confidentiality & Proprietary Rightscccoccoeviiiiniiniiniinccececenene xi
Sales, Tech SUppOrt & SEIVICEcccoevueiriieinieinreieeeeereeee e xi
Service INFOrmMatioNc..oiiviueiiiiiiie ettt eae e e e eaaeeens xii
Newport Corporation RMA Proceduresccceeeueenievenieninenenenrecnecnnennes Xii
PaCKAZING ..ottt Xii

User’s Manual

1.0
1.1
12

13
14

INErOAUCTION ... coveeeeeeereenneceereeeesereeseeseesessesssresssssossssssssssassssssssssssssssassessasanee 1

Scope Of the ManUAL ..ottt ere e ae e snene s 1
Definitions and SYMDOLSc.coueiriiiriiiriieeeeecec ettt 3
1.2.1 General Warning or Cautionc.couecevueirueieuenieenieninieiereeeeneeesaeesseeesessenessenenne 3
1.2.2 EIECHIIC SNOCK ...oviniiiiiiiiciicieicectecctetcee ettt ee 3
123 European Union CE Markccccocoiiniiiniiniiccnceeeeneenreeereeeeseeene 3
124 “ON” SYMDOL ..ottt ee 3
125 “OFF” SYMDOLoiiiiiiiiiiicieeeee ettt sae e ee 3
Warnings and CAULIONSccveerieirieirieineieeteeeerte ettt et st se e s s s s se s e s snenes 4
General Warnings and CaULIONSccceevueerieirieinierieeieereeertetereeeresee et sse s sse e sseseenes 4

2.0
2.1
22
23
24
25
2.6

2.7

2.8
29

SYSLEM OVEIVIEW ..ccvvreeeerieeccsssssssssssssssccsssssssssssssssscsssssssssssssssssssssssssssssssace O

SPECITICALIONS ...cuvviieieietceetetetet ettt ettt ettt be s se e neseenenenens 6
DIIIVE OPHIOIS ..vvviniiiieirteeet ettt sttt ettt a et a e a e st e ese s ene s e sneneenen 7
Compatible Newport Positioners and Drive Power Consumptionc.cocceeveenveeniercnrennnes 8
XPS HardwWare OVEIVIBWccceevueuirieirieieienieienteenretesestesessesessestesesesessesessesessessesessesessenessensenes 9
Front Panel DEeSCIIPLION.......c..c.ccuiiriiirieirieieeiecrteeetet ettt ere e st se s sneseenen 9
Rear Panel DeSCIIPLIONc.coueiiuiriiiirieiriciricieeteeeeetetete et ae e ae e s ne e enens 10

2.6.1 Axis Connectors (AXIS 1 — AXIS 8) c.eecverieiieierieteeeerieete et 10
Ethernet Configurationc.ocoueiriiirieinieineieerteeeeeteeetet et se e s enesaenens 11

2.7.1 Communication ProtOCOISccoueiriiirieinieinieieieiecrecteeereeeee e 11

272 AAIESSING....cveuiiiieiiieiiieeeteetetetet ettt ettt a e enen 12
Sockets, Multitasking and Multi-user APplICALIONSc..cccoveerreirierirerieerieenteiereeeneeeeneenene 12
Programming With TCLcc.ccccoiiiiiiiiiiiieecceeecteet ettt 12

iii XPSDocumentation V2.6.x (08/11)

XPS

Universal High-Performance Motion Controller/Driver

3.0 Getting Startedccceeeeinccrsnnneeecccsssssssssssssssccsssssssssssssssssssssssssssasssssscsssss 14

3.1 Unpacking and Handlingcccccooiiiiniiiniiiniinciecicreeeeeeeeeeeesreeereeese s esse s 14
32 Inspection fOr DAmMAaZEcccoccoueiririiriiinieiniciecieee ettt ettt 14
3.3 PACKING LAST wutiieiieiieieeetee ettt ettt ettt ettt ettt 14
34 SYSIEIM SEIUP ...ctiiiiiiitiieeeetete ettt ettt ettt a e e ettt et ae s n et neenen 14
34.1 Installing DIIVer Cardscccovevirieiriiiineiieieeeeeeeerereeeereteesee et erenenens 15
342 POWET ON ..ottt ettt et ae e s eae s enen 15
3.5 Connecting to the XPS ..ottt 16
3.5.1 Straight through cables (Black)cocoeoieirieiniiiineiccieeeeecceeceeeeeene 16
352 Cross-0Ver CabIESs (SIAY) ..c..cerreerieerreirreieieieiereeenteeeresteseseesessenessesesseeesessesesenens 16
3.5.3 Direct Connection to the XPS controller............cccocoverninininieinennennenenenens 17

354 Connecting the XPS to a Corporate Network Using Static IP Configuration19
3.5.5 Connecting The XPS to a Corporate Network Using Dynamic IP Configuration .

... 20

3.5.6 Recovering lost IP configurationcoeceeveereeenieineninicnieenieeneeenieeeeeerenenens 21

3.6 Testing your XPS-PC CONNECIONc..ccoueuiriiiiriiieiiieicteerteteteeeieee e eese s sae s seenes 23
3.7 ConNEctiNg the STAZEScueveuirieirieieieieieie ettt ettt be et s et be s ae s ae e s e enen 24
3.8 Configuring the CONtIOIIETccoiiiiiiiiiiiiiciecece ettt enes 25
3.8.1 Auto ConfigUurationcccececveerueinreineieieieeneerteeeteeereeeresteeste e s e eseseenesenens 26

3.8.2 Manual Configuration for Newport POSItIONerscccccceveevveveniercnenenennncnnenene 28

3.8.3 Manual Configuration for stages not made by Newportcccocccevevvevrcnnenee 32

3.9 SyStem SHUt-DOWIc.iiiiiiiiiiiiieiciee ettt ettt s et se e ae s e enes 32

Software Tools

4.0 SOFEWALE TOOIS ..eeeeuereereeneceereeeeeerreneeseerassessesesssssessssssssssssssssssssssssessssssssssss 33

4.1 Software TOOIS OVEIVIBWc..ccoveuiriiiirieinieiricieieeeteet ettt ettt s e ae e 33
42 CONTROLLER CONFIGURATION — Users Managementccccecceveenrerunennereneeennenenne 34
43 CONTROLLER CONFIGURATION — IP Managementcccccccveerueerueerreeenenerensenennenenne 35
44 CONTROLLER CONFIGURATION — Generalc.ccccccoeeineieenieenieinieenieieeeereeeesnenenne 35
4.5 SYSTEM — Error File DisSplayc..cccocceeiimieiniieciecnieinieenreteieeeeseeesseeereee e eese s senenne 36
4.6 SYSTEM — Auto CONfiGUIALIONc..cuevveuirieuirieieieieieieienteteteeereeeteteresaenes e s s eesesesessenenne 36
4.7 SYSTEM — Manual ConfigUration..........cccceeeirerieinieenieninieineieeieensenesseeeseeesessesessenessenenne 37
4.8 SYSTEM - Manual Configuration — Gantries (Secondary Positioners)c.cocceecevvecnnennn 41

4.8.1 Home search of ANTIIESc.ccevueivieirieiriieieeceeeeeeeee et seee 42

482 Gantries With lINEAr MOLOTSc..ccvueiriiiriieiieiceeeeeeeece et aene 43

4.8.3 Gantries with linear motors and variable force ratiococecvevveeiecnrecnnenenns 44
4.9 STAGE — Add from Data BaSeccccecivieirieiiiieceecintceercteteteeteesaeeeree e seene 46
4.10 STAGE — Add CUSTOM SEAZEveuvvenieiiieiirieieieieiereerretsreeeree e ae e s s e s s s s enessenenne 47
411 STAGE — MOGIY ..ottt et 47
412 FRONT PANEL — MOVE ...ccoouiiiiiiiieiieitetetete ettt tese e se e st se s s s sene 49

XPSDocumentation V2.6.x (08/11)

iv

XPS

Universal High-Performance Motion Controller/Driver

4.13 FRONT PANEL — JOZ .ttt ettt sttt sttt s 50
4.14 FRONT PANEL — SPINAIEcueriiiiiiinieiccirteteeritecertrt ettt ettt ettt 50
4.15 FRONT PANEL — I/O VIBW ...ootriiuiininieriininteieenintereentst ettt ettt s ae e esseneenens 51
416 FRONT PANEL — I/O S@Lcctririiuiininierceninteieenisteteiertst ettt sttt st se e esseneenens 51
4.17 FRONT PANEL — POSItioner EITOTS........cccccouruiiriieiieirieinteieieieeeecsteeereeene e senenne 52
4.18 FRONT PANEL — Hardware Statisccceceeiriieieieieieieteteeetetetete ettt 52
4.19 FRONT PANEL — DIIVET STATUSueoveuiieiiieieieieieteereceteeereeetesesestesesseseeseeesessesesenessenenne 53
420 TERMINAL ..ottt ettt ettt ettt et b ettt et sttt st ne et 53
421 TUNING — AUtO-SCALINE c..ceeviniiiieiiieiteertceee ettt s e ae e 56
422 TUNING — AUtO-TUNING ..ceooviiiiiieiiieenieirteietee ettt e s e ae e 57
5.0 FTP (File Transfer Protocol) Connection..............cceeceecsueesnccsanccsanessaeess 59
6.0 Maintenance and SEIVICEccueerseeeseesssenssnessanssssnssnessanssssssssssssaasssanssss 01
6.1 ENClOSUIe ClEANING.......cerviiriiieiiieeieieteieteteete ettt sae et s st ae e se e senenne 61
6.2 ODLAINING SEIVICEviieiiieiiitiieiiieentetetet ettt sae et se e a e st ae e ese s enesenenne 61
6.3 TrOUDIESNOOTINGocviuiiiieiieieieteteetceetee ettt ettt s s sesene 61
6.4 Updating the Firmware Version of Your XPS Controllercccceveeeeneiniennenncnecnnencnn 62
Motion Tutorial
7.0 XPS ArChiteCtureccccevreeessnecsnnssnensnecsanssssesssnesssnssssesssncsssnssssesssssssancess 03
Tl INITOAUCTION .ottt et ettt et et ettt et et et et et et et et et enaentens 63
T2 State DIAZIAMSeuviuiieiiieieieieeeerte ettt ettt ettt et s e s et et ae e n e ene s nenne 64
T3 MOTION GIOUPS ...ttt ettt ettt a e sae et e se s ese s se st se e esensenensenenne 66
7.3.1 Specific Single Axis Group Featurescccocoeeveeneineincnneneenecreeneenes 67
7.3.2 Specific Spindle Group FEaturescccocoverirerieeneenieineieeeeeneeesreenreneenes 67
733 Specific XY Group FEaturescccecevienieineninenieenecniceerceeeeeeeeesreesneseenes 67
734 Specific XYZ Group Featurescccoeoviomeineneeneenienrceeeeeneeesreesneneenes 67
7.3.5 Specific MultipleAxes FEatures...........coccveineinenieeneinieinceeeeereeeseeesneneenes 67
T A NAVE UNILS eeuiiiieiieieietetetetetet ettt ettt ettt ettt et et et e et et et et et et et et et entensentens 67
8.0 MOLION.uucceeeeerueesseensnensanessannsssnsssnessanssssnsssnssssnssssnssssesssnsssssssssasssssssaasssaesss 09
8.1 MOION PIOTILES ...ttt ettt ettt 69
8.2 HOME SEATCH ...ttt ettt ettt ettt 71
8.3 REfEreNCING STALE....c.eouiiiiiiiiiicieicieeeet ettt ettt et b e ae e n e enes 74
8.3.1 MOVE ON SENSOL EVENLSeviuriinreuireniereseereteneeesessesessestesessesessenessesesseseesensesensenens 75
8.3.2 Moves of Certain DiSplacementsccceeeveerieinieinieninienieenieenreenreeereeereeenens 75
8.3.3 Position CoUNtEr RESELS......c.ccveiriiiriiieiiieieieceeereerreeterereteete et erenenens 76
834 State DIagram......ccccieiiiriiieiiiecieietceeeieeeeee ettt 76
8.3.5 Example: MechanicalZeroAndIndexHomeSearchcccccoeveniecnienncnnncnnencns 77

v XPSDocumentation V2.6.x (08/11)

XPS

Universal High-Performance Motion Controller/Driver

84
8.5
8.6
8.7
8.8

IMIOVE ..ttt a e 77
MOION DIONE ...ttt ettt ettt a et ne e enenenens 78
JOG .ttt a et a et n e nen 80
IMSEET STAVE ...veiiiniiiicictceetceete ettt ettt et e a et e s e ae et a et ne e ene s enens 81
ANALOZ TTACKING ...ttt ettt ettt s et n e ene e enens 82

8.8.1 Analog Position TracKing.........ccoccveririririnieinieinieinieieeeeeteeseeesseeereeerenenens 83

8.8.2 Analog Velocity TracKing.........cocceuevireininieinieinieinieeceeeteeseeesreeereeerenenens 84

9.0
9.1

92

93

TraJeCLOTIS uueeeeeeeeecrssscrssnnnesneccssssssssssssssnnecsssees SO

LiNE-ATC TTAJECIOTIESveveuirenieriieieieienteitetee ettt et ere s ese e st s st se s se s esesse e ene e esennenens 86
9.1.1 Trajectory TerminolOZYccceeeueerieerieinieinieieteieenreenteeereee e sseesaeseenes 86
9.1.2 Trajectory CONVENTIONSc.ccccurueieueieierieenteenteeeretenessesesseseeseseesesesessenessenesseseenes 87
9.13 GeometriC CONVENTIONScc.curueiereiereienententereeereteressesesseeeseseesesesessesessenessessenes 87
9.14 Defining Line-Arc Trajectory EIementsccccccoevevievinieinennenecneenecneenes 87
915 DEfiNe LINESeoveniiiieiiieitcecieeeete ettt ettt 88
9.1.60 DEfINE ATCS ..oviiieniiiieiieeeetcetcteet ettt ettt a e sae e enen 88
9.1.7 Trajectory File DeSCIIPLIONccccceeieerieirieinieinieieeieenreeerceereeereee e esseseenes 89
9.1.8 Trajectory File EXaMPIESccccccoveuiriiiniiiniiinieinieicceerceerceeee e 89
9.1.9 Trajectory Verification and EXECUtIONcccceeuruerieuerieinieinieineieeeeeneeennenenes 90
9.1.10 Examples of the Use of the FUNCHONSc.ccccueuerieinieinieiniireeeiecreenenes 91

SPLIIES ..ttt ettt ettt b e bt a e s st a et n e nen e n e aee 92
9.2.1 Trajectory TerminolOZYcccoceeeeerieerieinieinieietereeeste e sseesnesenes 92
9.2.2 Trajectory CONVENTIONSc.coeovrueieueieienieienteeereeereeeressesessesessessesesesessesessenessensenes 92
923 GeometriC CONVENTIONScc.cvrrereueieieienententereeereteressesesseseeseseesesesessesessenessessenes 92
924 Catmull-Rom Interpolating SPINESsc.coccceveirienieeneinieincineieesreeseeeereenes 92
9.2.5 Trajectory Elements Arc Length Calculationc.cccceeeenceincnncnencnecenennes 93
9.2.6 Trajectory File DeSCIIPLIONccceceeieerieinieinieinieieeniecnteeereeereeereee e esaenenes 94
9.2.7 Trajectory File EXamPIecccoccoveiiiiniiiiniiinieiniciccecreeerceeeeeieseeesre e 94
9.2.8 Spline Trajectory Verification and EXecUtionccccccevecerrcvneniecnecnrencnennes 96
9.2.9 Examples of the Use of the FUNCHONSccoeiriiiiinieiniiincieeeeeeeerees 97

PVT TIaJECIOTIESvenieiiieiieteieieteet ettt ettt et b ettt ae e a et ne e enenenens 97
9.3.1 Trajectory TerminolOZYcccceeeueuerieerieinieinreieieieenreenteeereeereee e sseessesenes 97
932 Trajectory CONVENTIONSc.coccirueieuerieienieenreneeteeereteressenesseseesessesesesessesessenessensenes 97
933 GeometriC CONVENTIONScc.cvrueieuereieienenteneereeereteresseresseseeseseesessesessesessenessessenes 98
934 PVT INterpolationcccoecevueirieieeieienieenietrreteteeeresseesteseeseeeseseesessesesseesseseenes 98
9.3.5 Influence of the Element Output Velocity to the Trajectoryc...ceceecenenennes 99
9.3.6 Trajectory File DeSCIiptionc.cccoceeeuerieerieinieinieieeneeenteesreeereeeeseeeeneneenes 100
9.3.7 Trajectory File EXamPpleccccoeiviininiiiniiiicincieeieceeenreeereeeeeeeeneeenes 100
9.3.8 PVT Trajectory Verification and EXecutionccecceveveviecneninenecncccnennes 102
9.3.9 Examples of the Use of the functions..........c..ccceeeveuerinenecnienncnncnecnecneenes 103

10.0 CompensSationcccccsseeeeeecccssssssssssssssecsss 104

10.1

Backlash COMPENSALIONc.coueuirriieiiieierreinreieeteetees ettt re e ss e sseeenes 105

§ O T 151 TST: Vol 20) g @015 (=1o1 50) 1 WU 106

XPSDocumentation V2.6.x (08/11)

vi

XPS

Universal High-Performance Motion Controller/Driver

10.3
104
10.5

POSIHIONET MAPPING ...veniiinieiiieiieicieetcetctetet ettt ettt s e sneenen 106
XY MAPPING ..ottt ettt sttt n e enen 109
XY Z IVIAPPING ..ottt ettt ettt et et et et et et e b et e st e st et ententent et ensententententensensenes 111

11.0
11.1
112
113
114

Event Trierscccccccrsiscsssnnnsieccssssssssssssssssccsssssssssssssssssssssssssasssssscess 117

BVEIES .ttt et sttt st a et a et st be et esanenes 118
AALCLIOMIS .ttt ettt ettt ettt ettt et et et e st et et et en b et enten b ent et enten b et et et et e st et et et et enee 125
FUNCHOMNS ..ttt ettt ettt et e et et et et et et et et et eneenee 130
EXAMPIES ..ottt ettt ettt s et enen 131

12.0
12.1
122
123
12.4

Data Gatheringcccoiivvvvrneneiicccsssscsssnnsseeccsssssssssssssssscssssssssssssssssscess 130

Time Based (Internal) Data Gatheringcccovveverierineneneeeeeeeeteeee et 137
Event Based (Internal) Data Gatheringc.coevuererenienienenienieieieeteeeteeeeeee et 139
Function-Based (Internal) Data Gatheringccccooeverenenienienienierieieieeeeeeeeeeeeeeeeeene 141
Trigger Based (External) Data Gatheringccccecevueenierinieirenieenierenreeneeeeeeeseeesreeenes 142

13.0
13.1
132
133
134
135

OULPUL TrigEerS.cccccrrrrrsssnnerreeccsssssssssssssesccsssssssssssssssecssssssssssssssssscsssssess 144

Distance Spaced Pulses (PCO — Position Compare Output)cccceveeeeereeenrecnrecnrennnes 144
AQUAB SIZNAIS ...ttt ettt ettt ettt ettt nee 148
Time spaced pulses (Time flasher)........cccoccvioiririiiniiiniieecceceeereeere e 150
Triggers 0n Line-ArC TrajeCtOTIescoeirreirreirieieieieerieenteeeretereseeesteseere e sesaesessesesseeenes 152
Triggers 0N PVT TIaJECtOTIOS ...c.coueoveuirieirieiinieieieieeteerteeetee ettt ene e ss e eneeenes 153

14.0
14.1

142
143

Control LOOPS ...ccccveiiisssscssesss 155

XPS SEIVO LOOPS vttt ettt a e en e nen 155
14.1.1 Servo structure and BasiCsccceouevievienienienieieieieeeeeeetetee e 155
14.1.2 XPS PIDFF ATCRITECIUTE.....c.ceteieieieieieietetetet ettt ettt 157

Filtering and LIMItationc.cocoeerieirieiinieiineieeieeeerteeeteeere et esre s ss e sneeenes 161

Feed Forward Loops and Servo TUNINGcceivieirieinieninieieieieeneeereeereeeeeeeseeesseeenes 161
143.1 Corrector = PIDFFVEIOCILYcccoeciriiiriiiiiieinicinieietcteiceeereeesreeereeesennenens 161
14.3.2 Corrector = PIDFFACCEIErationccceeeevievieieieieieieieteeeeeeeteeeeeeeen 163
1433 Corrector = PIDDual FEVOIageccccccoveiviiiniiinieiicieceeenicenrceereeeenenens 165
1434 Corrector = PIPOSIHONo.veiiieieieieieteteteeeetete ettt 166

15.0

Analog Encoder Calibrationccceeeeieecccsssccssnenseecccssssssssssssseccssss 168

16.0
16.1
16.2
163
16.4

Introduction to XPS Programmingccccceeeeeccsnneeseccccssssccnssssssseccsses 173

TICL GENETALOT «...eueutentenieietet ettt ettt ettt e e et et e s et et ent et entententenbentententententensensenee 174
LaDVIEW VIS .ttt ettt ettt ettt et ettt et et et et et enee 175
DL DIIVETS ..euteutetetetetestesteste ettt ettt et ettt e et et et et e st ent et ensententensentententententensensenee 178
Running Processes in Parallel.............oooiiiiiiiiiccccccrceeceeeeeeeere e 179

vii XPSDocumentation V2.6.x (08/11)

XPS

Universal High-Performance Motion Controller/Driver

Appendices

17.0
17.1
172
173

Appendix A: HAardWare......cccoeeeeescsnnricsscsnnnncsssssssscssssssssssssssssssssssssscss 183

(@00 115 ¢0) 1[5 SRRSO 183
Rear Pane] CONNECTIOTSuvviiieiiiiiiieie et eeeteee ettt e e eeate e s eeseeesesaaeesessseesessseessssseessssssessssseessnnes 184
Environmental REQUITEMENTSccoeiriiiriiinieirieieeieenieenteretere ettt ere e ss e sneeenes 184

18.0
18.1

18.2
18.3
18.4
18.5

Appendix B: General I/O DeScriptioncccccceeeeesccnneecsscsnnrecsscsnnneees 185

Digital I/Os (All GPIO, Inhibit and Trigger In and PCO Connectors)ccccecevveenrennnnee 185
18.1.1 Digital INPULS cueeuienieieieieietetetet ettt ettt 185
18.1.2 Digital OULPULS ..ottt ettt ere st ese e sae s se e s aenens 186

Digital Encoder Inputs (Driver Boards & DRVO0O)c..cccoeoiiiiiinieiniineneecrccneenes 186

Digital Servitudes (Driver Boards, DRV0O & Analog Encoders Connectors) 186

Analog Encoder Inputs (Analog Encoder COnnectors).........cceceeveereeerreeneeeenneeneecnnenenes 186

ANAlog I/O (GPIO2 CONNECTOT) ..cuveuveuteieieieieieieietetetertetetetestesestesessesesessensesensensenes 187
18.5.1 ANAlOZ INPULS .coviiiiiiieiciecieertcetcetet ettt et 187
1852 ANAIOZ OULPULS ...ttt ere e sae et e s e s snenens 187

19.0

Appendix C: Power Inhibit Connector........ccccccceeeescnerecsscrnnreccscsnnneees 188

20.0
20.1
20.2
20.3
204

Appendix D: GPIO Connectorscccocceerecsscsnnsecsssnssscsssassscsssssssees 189

GPIOT CONMECLOT ..euintenienietetetet ettt ettt ettt ettt et et et et et et et et et et et et et ensensenee 189
GPIO2 CONMECLOT ...euinenieietetetet ettt ettt ettt et et et et et et et et et et et et et ensensenes 189
GPIO3 CONMECLOT ..ttt ettt ettt et et et e et e et et e b et et et et et et et ensentenee 190
GPIO4 CONNECLOT ...euintenieieietetet ettt ettt ettt et e et et et et et et et et et et et et et entensensenes 190

21.0

220
22.1
222
223
224
225

Appendix E: PCO Connector............cccoeeeiccnscnnnccssssnscssssnsssssssnssscess 191

Appendix F: Motor Driver Cards.......cccoeveiecsscsnnrecsscsnssscsscnssscsssnssees 192

DC and Stepper Motor Driver XPS-DRVOLccocoiiiiniiiiiiieeceeeeeeeeeeeeeereenes 192
DC Motor Driver XPS-DRVM.......ooiiiiiiiiieeeeeeeeeee ettt 193
Three phases AC brushless driver XPS-DRVO2cccocconiininninieineineeeeereenreenes 194
DC Motor Driver XPS-DRVO3 ...ttt 194
Pass-Through Board Connector (25-Pin D-Sub) XPS-DRVOO.......ccccccoveverienenenieieienene 195

23.0

Appendix G: Analog Encoder Connector............ccceeenerecsscnssecsscnneees 196

24.0

Appendix H: Trigger IN Connectorcccceeevuerecsscnnssecsscnssecsssnssees 197

SEIVICE FOIM cauuueieeeeeeiereenneieeeeeneceereeneesersesssscssassessssssssssessssssssssasssssssasssssesassesse 199

XPSDocumentation V2.6.x (08/11)

viii

XPS

Universal High-Performance Motion Controller/Driver

Warranty

Newport Corporation warrants that this product will be free from defects in material and
workmanship and will comply with Newport’s published specifications at the time of
sale for a period of one year from date of shipment. If found to be defective during the
warranty period, the product will either be repaired or replaced at Newport's option.

To exercise this warranty, write or call your local Newport office or representative, or
contact Newport headquarters in Irvine, California. You will be given prompt assistance
and return instructions. Send the product, freight prepaid, to the indicated service
facility. Repairs will be made and the instrument returned freight prepaid. Repaired
products are warranted for the remainder of the original warranty period or 90 days,
whichever comes first.

Limitation of Warranty

The above warranties do not apply to products which have been repaired or modified
without Newport’s written approval, or products subjected to unusual physical, thermal
or electrical stress, improper installation, misuse, abuse, accident or negligence in use,
storage, transportation or handling. This warranty also does not apply to fuses, batteries,
or damage from battery leakage.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR USE. NEWPORT CORPORATION SHALL
NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE PURCHASE OR USE OF ITS PRODUCTS.

First printing 2003

Copyright 2011 by Newport Corporation, Irvine, CA. All rights reserved. No part of
this manual may be reproduced or copied without the prior written approval of Newport
Corporation. This manual is provided for information only, and product specifications
are subject to change without notice. Any change will be reflected in future printings.

ix XPSDocumentation V2.6.x (08/11)

XPS Universal High-Performance Motion Controller/Driver

EU Declaration of Conformity

N Y Y Y Y eaYeavas
':,\:}'o:/{@/{@/{@«@«@/{@'«o,/«o/\
&
0\/\9
P
&3
o\’\o
7 . , .
L2 Year C € mark affixed: 2011 Experience = Solutions
&

EC Declaration of Conformity

LA -
." I'he manufacturer:
‘/ MICRO-CONTROLE Spectra-Physics,

.\ 1 rue Jules Guesde Z1. Bois de I'Epine - BP18Y /‘
(/’\’ £-91006 Evry FRANCE e A)
%) (X
.\:/\’ Hereby declares that the product: ’/\:/‘
Descnption: "XPS*
(.:b Function: Universal High-Performance Motion Controller/Dnver @:9}
Type of equipment: Electrical equipment for measurement, control and
‘\,’\’ laboratory :l‘sc (i 0/\\/0
.’b — complies with all the relevant provisions of the Directive 2004/ 108/EC relating to electro- .’.
K’/ magnetic compatibility (EMC). \.
— complies with all the relevant provisions of the Directive 2(06/95/EC relating to electrical
.\‘§ cquipment dcsxg:cd for uic wan:in certain voltage limits (Low Voltage) ’/}/0
..,.) — was designed and built in accordance with the following harmonised standards: Q{q
.\ \’ NF EN 61326-1:2006 « Electrical equipment for measurement, control and 0/ /0
(‘ laboratory use — EMC requirements — Part 1: General requirements »)
$ b NF EN 55011:2007 Class A (Y)
K’ NF EN 61000-3-2:2006 +A1:2009 + A2:2009 « Elcctromagnetic compatibility \0
.\ \’ (EMC) — Part 3-2: Limits - Limits for harmonic current emissions » ./ /‘
‘ NF EN 61010-1:2001 « Safety requirements for electrical equipment for)
measurement, control and laboratory use — Part 1: General requirements »

0‘0 0.0
/ — was desi i built in accordance w following other standards: \
6\‘\’ was dt;ﬂ:id\d:?()()l:;l:lg wecordance with the following other standards: ’/>/0
Q h) NF EN 61000-4-3 (‘ 9
& NF EN 61000-4-4 9,
.\/ NF EN 61000-4-5 \/
(/’\’ NF EN 61000-4-6 ’/) <
Q b NF EN 61000-4-11 6 9
&, &,

4 N
’\‘\’ Date: 10062010 ’/)/ 2,
& sl bk 69

. A clo

A N
’\/\’ MICRO-CONTROLE Spectra-Physics 0/\/ (¢

.’b Zone Industriclle .’.

K‘ F-45340 Beaune La Rolande, France ey
IS 0/\/0
e T e

S, @,
0\’\9’0\’\0’0\’\0’0\’\0’0\/\0'0\/\0'0\/\0'0\/\0’0\/\0'0\/\/6»/0

XPSDocumentation V2.6.x (08/11) X

XPS Universal High-Performance Motion Controller/Driver

Preface

Confidentiality & Proprietary Rights

Reservation of Title

The Newport Programs and all materials furnished or produced in connection with them
(“Related Materials”) contain trade secrets of Newport and are for use only in the
manner expressly permitted. Newport claims and reserves all rights and benefits
afforded under law in the Programs provided by Newport Corporation.

Newport shall retain full ownership of Intellectual Property Rights in and to all
development, process, align or assembly technologies developed and other derivative
work that may be developed by Newport. Customer shall not challenge, or cause any
third party to challenge, the rights of Newport.

Preservation of Secrecy and Confidentiality and Restrictions to Access

Customer shall protect the Newport Programs and Related Materials as trade secrets of
Newport, and shall devote its best efforts to ensure that all its personnel protect the
Newport Programs as trade secrets of Newport Corporation. Customer shall not at any
time disclose Newport's trade secrets to any other person, firm, organization, or
employee that does not need (consistent with Customer's right of use hereunder) to
obtain access to the Newport Programs and Related Materials. These restrictions shall
not apply to information (1) generally known to the public or obtainable from public
sources; (2) readily apparent from the keyboard operations, visual display, or output
reports of the Programs; (3) previously in the possession of Customer or subsequently
developed or acquired without reliance on the Newport Programs; or (4) approved by
Newport for release without restriction.

Sales, Tech Support & Service

North America & Asia Europe

Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: rma.service@newport.com

MICRO-CONTROLE Spectra-Physics S.A.S
1, rue Jules Guesde — Bat. B

ZI Bois de I’Epine — BP189

91006 Evry Cedex

France

Sales France
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport-fr.com

Sales Germany
Tel.: +49 (0) 61 51 /708 -0
e-mail: germany @newport.com

Sales UK
Tel.: +44 (0)1635.521757
e-mail: uk@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55

xi

XPSDocumentation V2.6.x (08/11)

XPS

Universal High-Performance Motion Controller/Driver

Service Information

The user should not attempt any maintenance or service of the XPS Series
Controller/Driver system beyond the procedures outlined in this manual. Any problem
that cannot be resolved should be referred to Newport Corporation. When calling
Newport regarding a problem, please provide the Tech Support representative with the
following information:

® Your contact information.

e System serial number or original order number.

e Description of problem.

e Environment in which the system is used.

e State of the system before the problem.

e Frequency and repeatability of problem.

e Can the product continue to operate with this problem?

e Can you identify anything that may have caused the problem?

Newport Corporation RMA Procedures

Any XPS Series Controller/Driver being returned to Newport must have been assigned
an RMA number by Newport. Assignment of the RMA requires the item serial number.

Packaging

XPS Series Controller/Driver being returned under an RMA must be securely packaged
for shipment. If possible, re-use the original factory packaging.

XPSDocumentation V2.6.x (08/11)

xii

XPS

User’s Manual

1.0 Introduction

User’s Manual

11

Scope of the Manual

The XPS is an extremely high-performance, easy to use, integrated motion
controller/driver offering high-speed communication through 10/100 Base-T Ethernet,
outstanding trajectory accuracy and powerful programming functionality. It combines
user-friendly web interfaces with advanced trajectory and synchronization features to
precisely control from the most basic to the most complex motion sequences. Multiple
digital and analog I/O's, triggers and supplemental encoder inputs provide users with
additional data acquisition, synchronization and control features that can improve the
most demanding motion applications.

To maximize the value of the XPS Controller/Driver system, it is important that users
become thoroughly familiar with available documentation:

The XPS Quick Start and XPS User’s Manual are delivered as paper copies with the
controller.

Programmer’s manual, TCL manual, Software Drivers manual and Stage Configuration
manual are PDF files accessible from the XPS web site.

DLLs and corresponding sources are available from the controller disk in the folder
Public/Drivers/DLL. DLLs can also be downloaded through FTP.

LabView VIs with examples are also available on the controller disk in the folder
Public/Drivers/LabView. They can be downloaded through FTP.

To connect through FTP, please see chapter 5: “FTP connection”.

The first part of this manual is the getting-started part of the system. It serves as an
introduction and as a reference. It includes:

1. Introduction
2. System Overview

3. Getting Started Guide

XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

The second part provides a detailed description of all software tools of the XPS
controller. It includes also an introduction to FTP connections and some general
guidelines for troubleshooting, maintenance and service:

4. Software Tools
5. FTP connection
6. Maintenance and Service

The third part provides an exhaustive description of the XPS architecture, its features
and capabilities. Different than the programmer’s guide, this part is educational and is
organized by features starting with the basics and getting to the more advanced features.
It provides a more complete list of specifications for the different features. It includes:

7. XPS Architecture

8. Motion

9. Trajectories

10. Compensation

11. Event Triggers

12. Data Gathering

13. Triggers

14. Control Loops

15. Analog Encoder Calibration

16. Introduction to XPS programming

XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

1.2

121

122

123

124

125

Definitions and Symbols

The following terms and symbols are used in this documentation and also appear on the
XPS Series Controller/Driver where safety-related issues occur.

General Warning or Caution

Figure 1: General Warning or Caution Symbol.

The Exclamation Symbol in Figure 1 may appear in Warning and Caution tables in this
document. This symbol designates an area where personal injury or damage to the
equipment is possible.

Electric Shock

Figure 2: Electrical Shock Symbol.

The Electrical Shock Symbol in Figure 2 may appear on labels affixed to the XPS
Series Controller/Driver. This symbol indicates a hazard arising from dangerous
voltage. Any mishandling could result in damage to the equipment, personal injury, or

C€

Figure 3: CE Mark.

European Union CE Mark

The presence of the CE Mark on Newport Corporation equipment means that it has
been designed, tested and certified as complying with all applicable European Union
(CE) regulations and recommendations.

“ON” Symbol

Figure 4: “ON” Symbol.

The “ON” Symbol in Figure 4 appears on the power switch of the XPS Series
Controller/Driver. This symbol represents the “Power On” condition.

O

Figure 5: “OFF” Symbol.

“OFF” Symbol

The “Off” Symbol in Figure 5 appears on the power switch of the XPS Series
Controller/Driver. This symbol represents the “Power Off” condition.

3 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

1.3

14

Warnings and Cautions

The following are definitions of the Warnings, Cautions and Notes that may be used in
this manual to call attention to important information regarding personal safety, safety
and preservation of the equipment, or important tips.

WARNING

Situation has the potential to cause bodily harm or death.

CAUTION
Situation has the potential to cause damage to property or
equipment.
NOTE

Additional information the user or operator should consider.

General Warnings and Cautions

The following general safety precautions must be observed during all phases of
operation of this equipment.

Failure to comply with these precautions or with specific warnings elsewhere in this
manual violates safety standards of design, manufacture, and intended use of the
equipment.

e Heed all warnings on the unit and in the operating instructions.

e To prevent damage to the equipment, read the instructions in this manual for
selection of the proper input voltage.

e Only plug the Controller/Driver unit into a grounded power outlet.

e Assure that the equipment is properly grounded to earth ground through the
grounding lead of the AC power connector.

e Route power cords and cables where they are not likely to be damaged.

e The system must be installed in such a way that power switch and power inlet
remains accessible to the user.

e Disconnect or do not plug in the AC power cord in the following circumstances:
— If the AC power cord or any other attached cables are frayed or damaged.
— If the power plug or receptacle is damaged.
— If the unit is exposed to rain or excessive moisture, or liquids are spilled on it.
— If the unit has been dropped or the case is damaged.

e If the user suspects service or repair is required.

e Keep air vents free of dirt and dust.

e Keep liquids away from unit.

¢ Do not expose equipment to excessive moisture (>85% humidity).

¢ Do not operate this equipment in an explosive atmosphere.

e Disconnect power before cleaning the Controller/Driver unit. Do not use liquid or
aerosol cleaners.

e Do not open the XPS Controller/Driver stand alone motion controller. There are no
user-serviceable parts inside the XPS Controller/Driver.

e Return equipment to Newport Corporation for service and repair.

XPSDocumentation V2.6.x (08/11)

XPS User’s Manual

e Dangerous voltages associated with the 100-240 VAC power supply are present
inside Controller/Driver unit. To avoid injury, do not touch exposed connections or
components while power is on.

e Follow precautions for static-sensitive devices when handling electronic circuits.

5 XPSDocumentation V2.6.x (08/11)

XPS User’s Manual

2.0 System Overview

2.1 Specifications

Number of Axes e 1 to 8 axes of stepper, DC brush or DC brushless motors using internal drives

e Other motion devices using external third-party drives

Communication Interfaces |e Internet protocol TCP/IP
e One Ethernet 10/100 Base-T (RJ45 connector) with fixed IP address for local communication

e One Ethernet 10/100 Base-T (RJ45 connector) for networking, dynamic addressing with
DHCP and DNS

e Typically 0.3 ms from sending a tell position command to receiving the answer

e Optional XPS-RC remote control

Firmware Features e Powerful and intuitive, object oriented command language

e Native user defined units (no need to program in encoder counts)

e Real time execution of custom tasks using TCL scripts

e Multi-user capability

e Concept of sockets for parallel processes

e Distance spaced trigger output pulses, max. 2.5 MHz rate, programmable filter

e Time spaced trigger output pulses, 0.02 Hz to 2.5 MHz rate, 50 ns accuracy

e Trigger output on trajectories with 100 us resolution

e Data gathering at up to 10 kHz rate, up to 1,000,000 data entries

e User-defined “actions at events” monitored by the controller autonomously at a rate of 10 kHz

e User-definable system referencing with hardware position latch of reference signal transition
and “set current position to value” capability

e Axis position or speed controlled by analog input
e Axis position, speed or acceleration copied to analog output
e Trajectory precheck function replying with travel requirement and max. possible speed

e Auto-tuning and auto-scaling

Motion e Jogging mode including on-the fly changes of speed and acceleration

e Synchronized point-to-point

e Spindle motion (continuous motion with periodic position reset)

e Gantry mode including XY gantries with variable load ratio

e Line-arc mode (linear and circular interpolation incl. continuous path contouring)
e Splines (Catmull-Rom type)

e PVT (complex trajectory based on position, velocity and time coordinates)

e Analog tracking (using analog input as position or velocity command)

e Master-slave including single master-multiple slaves and custom gear ratio

Compensation e Linear error, Backlash, positioner error mapping
e XY and XYZ error mapping

e All corrections are taken into account on the servo loop

Servo Rate e 10kHz

Control Loop e Open loop, PI position, PIDFF velocity, PIDFF acceleration, PIDDualFF voltage
e Variable PID’s (PID values depending on distance to target position)
e Deadband threshold; Integration limit and integration time

e Derivative cut-off filter; 2 user-defined notch filters

XPSDocumentation V2.6.x (08/11) 6

XPS

User’s Manual

I/0

30 TTL inputs and 30 TTL outputs (open-collector)
4 synch. analog inputs £10 V, 14 Bit

4 synch. uncommitted analog outputs, 16 Bit
Watchdog timer and remote interlock

Trigger In

Hardware latch of all positions and all analog I/0O’s; 10 kHz max. frequency
<50 ns latency on positions
<100 ps time jitter on analog I/O’s

Trigger Out

One high-speed position compare output per axes that can be either configured for position
synchronized pulses or for time synchronized pulses : <50 ns accuracy/latency, 2.5 MHz max.
rate

Dedicated Inputs Per Axis

RS-422 differential inputs for A, B and I, Max. 25 MHz, over-velocity and quadrature error
detection

1 Vpp analog encoder input up to x32768 interpolation used for servo; amplitude, phase and
offset correction; additional 2nd hardware interpolator used for synchronization; up to x200
interpolation

Forward and reverse limit, home, error input

Dedicated Outputs Per Axis
(when using external drives)

2 channel 16-bit, +10 V D/A

Drive enable, error output

Drive Capability

Analog voltage, analog velocity, and analog acceleration (used with XPS-DRVO01 and
XPS-DRVO03 for DC brush motor control).
Analog position (used with XPS-DRVO1 for stepper motor control)

Analog position (used with external drives for example for piezo control)
Analog acceleration, sine acceleration and dual sine acceleration (used with XPS-DRVO02 for
brushless motors control)

Step and direction and +/- pulse mode for stepper motors (requires XPS-DRVO0O0 and external
stepper motor driver)

500 W @ 230 VAC and 425 W @ 115 VAC total available power

Dimensions (W x D x H)

19” — 4U, L: 508 mm

Weight

15 kg max

2.2

Drive Options

The XPS controller is capable of driving up to 8 axes of most Newport positioners with
internal drives that slide through the back of the chassis. These factory tested drives are
powered by an internal 500 W power supply which is independent of the controller
power supply.

The XPS-DRVOLI is a software configurable PWM amplifier that is compatible with
most of Newport’s and other companies’ DC brush and stepper motor positioners.
When used with Newport stages, the configuration of the amplifier is easy using the
auto-configuration utility software. Advanced users can also manually develop their
own configuration files specifically optimized for each application.

The XPS-DRVO1 motor driver supplies a maximum current of 3 Amps and 48 Volts. It
has the capability to drive bipolar stepper motors in microstep mode (sine/cosine
commutation) and DC brush motors in velocity mode, for motors with tachometer, or
voltage mode, for motors without tachometer. Programmable gains and a programmable
PWM switching frequency up to 300 kHz allow a very fine adjustment of the driver to
the motor. For added safety, a programmable over-current protection setting is also
available.

The XPS-DRVO02 is a software configurable PWM amplifier for 3-phase brushless
motors. It has been optimized for performance with XM2000 and IMS-LM linear motor
stages. The XPS-DRVO02 supplies a 100 kHz PWM output with a maximum output
current of 5 A per phase and 44 Vpp. The XPS-DRVO02 requires 1 Vpp encoder input

7 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

23

signals used also for motor commutation. Motor initialization is done by a special
routine that forces the motor to a known magnetic position without the need for Hall or
other sensors.

The XPS-DRVO3 is a fully numerical, programmable PWM-Amplifier that has been
optimized for the use with high-performance DC motors. The high switching frequency
of 100 kHz and appropriate filter technologies minimize noise to enable ultra-precision
positioning in the nm-range. The XPS-DRVO03 supplies a maximum current of 5 Amps
and 48 Volts. It is capable of driving DC motors in velocity mode (for motors with
tachometer), in voltage mode (for motors without tachometer), and in current mode (for
torque motors). All parameters are free-programmable in physical units (for instance the
bandwidth of the velocity loop). Furthermore, the XPS-DRVO03 features individual
limits for the rms current and the peak current.

The XPS-DRVO0O pass-through module can be used to pass control signals to other
external third-party amplifiers (drivers). By setting the controller’s dual DAC output to
either analog position, analog stepper position, analog velocity, analog voltage or
analog acceleration (including sine commutation), the XPS is capable of controlling
almost any motion device including brushless motors, voice coils and piezoelectric
stages.

In addition to conventional digital AquadB feedback encoder interface, the XPS
controller also features a high-performance analog encoder input (1 Vpp Heidenhain
standard) on each axis. An ultra-high resolution, very low noise, encoder signal
interpolator converts the sine-wave input to an exact position value with a signal
subdivision up to 32,768-fold. For example, when used with a scale with 4 ym signal
period the resolution can be as fine as 0.122 nm. This interpolator can be used for
accurate position feedback on the servo corrector of the system. An additional hardware
interpolator with 40 MHz clock frequency and programmable signal subdivision up to
200-fold is used for synchronization purposes. This fast interpolator latches directly the
position with less than 50 ns latency and provides a much higher level of precision for
synchronization than alternative time based systems. And unlike most high-resolution
multiplication devices the XPS interpolators do not compromise positioning speed.
With a maximum input frequency ranging from 180 kHz to 400 kHz (depending on the
interpolation factor) the maximum speed of a stage with a 20 #m signal period scale can
be up to 3.6 m/s.

Compatible Newport Positioners and Drive Power Consumption

The list of all Newport positioners that are directly compatible with the XPS controller
and the corresponding drive module needed are available from the Newport catalog or
the web site.

XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

24 XPS Hardware Overview

V0 Board
—

Figure 6: XPS Hardware Overview.

25 Front Panel Description

Figure 7: Front Panel of XPS Controller/Driver.

The XPS-RC Remote Control plugs into the front panel of the XPS controller to enable
computer-independent motion and basic system diagnostic. For more information, refer
to the XPS data sheet and the manual that is supplied with the XPS-RC.

9 XPSDocumentation V2.6.x (08/11)

XPS User’s Manual

2.6 Rear Panel Description
GPID4 Trigger in GPIO3 8 x Heidenhain
Male Sub-D37 Male Sub-D9 Sub-D15 1 Vpp encoder input
GPIOY
Female Sub-D37
Power ON/OFF
Switch HOST
Ethernet 10/100
Base-T
ACIN
REMOTE
Ethernet 1010
GP102 Base-T
Female Sub-D25

8 x Newport INHIBIT Input 8 x Position
stage interface Female Sub-D15 compare out
4 Female LEMO Connectors

Figure 8: Rear Panel of XPS Controller/Driver.

NOTE

The Main Power ON/OFF Switch is located above the inlet for the power cord. The
switch and the inlet must remain accessible to the user.

26.1 Axis Connectors (AXIS 1 - AXIS 8)

Each installed axis driver card features a connector to attach a cable between the
controller and a motion device.

CAUTION

Carefully read the labels on the driver cards and make sure the
specifications (motor type, voltage, current, etc.) match those for the
motion devices you intend to connect. Serious damage could occur if
a stage is connected to the wrong driver card.

XPSDocumentation V2.6.x (08/11) 10

XPS

User’s Manual

2.7

271

Figure 9: Axis Driver Card.

Please see next section for installation instructions.

NOTE
Power Input: 100-240 V,50-60 Hz, 11 A-55 A

Ethernet Configuration

ETHERNET ~—— INTRANET or INTERNET ——» ETHERNET

Figure 10: Ethernet Configuration.

Communication Protocols

The Ethernet is a local area network through which information is transferred in units
known as packets. Communication protocols are necessary to dictate how these packets
are sent and received. The XPS Controller/Driver supports the industry standard
protocol TCP/IP.

TCP/IP is a “connection” protocol. The master must be connected to the slave in order
to begin communication. Each packet sent is acknowledged when received. If no
acknowledgment is received, the information is assumed lost and is resent.

11 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

272

2.8

29

Addressing

There are two levels of addresses that define Ethernet devices. The first is the MAC
address. This is a unique and permanent 6 byte number. No other device will have the
same MAC address. The second level of addressing is the IP address. This is a 32-bit
(or 4 byte) number. The IP address is constrained by each local network and must be
assigned locally. Assigning an IP address to the controller can be done in a number of
ways (see section 3.5: “Connecting to the XPS*).

Sockets, Multitasking and Multi-user Applications

Based on the TCP/IP Internet communication protocol, the XPS controller has a high
number of virtual communication ports, known as sockets. To establish communication,
the user must first request a socket id from the XPS controller server (listening at a
defined IP number and port number). When sending a function to a socket, the
controller will always reply with a completion or error message to the socket that has
requested the action.

The concept and application of sockets has many advantages. First, users can split their
application into different segments that run independently on different threads or even
on different computers. To illustrate this, see below:

In this example, a thread on socket 1 commands an xy stage to move to certain positions
to take pictures while another thread on socket 2 manages independently and
concurrently an auto-focusing system. The second task could even be run on a different
PC than the first task yet be simultaneously executed within the XPS. Alternatively, if
the auto-focusing system is providing an analog feedback, this task could have been
also implemented as a TCL script within the XPS (see next topic)

Second, the concept of sockets has another practical advantage for many laboratory
users since the use of threads allows them to share the same controller for different
applications at the same time. With XPS it is possible that one group uses one axis of
the XPS controller for an optical delay line while another group simultaneously uses
other axes for a totally different application. Both applications could run completely
independently from different workstations without any delays or cross-talk.

The XPS controller uses TCP/IP blocking sockets, which means that commands to the
same socket are “blocked” until the XPS gives a feedback about the completion of the
currently executed command (either '0' if the command has been completed
successfully, or an error code in case of an error). If customers want to run several
processes in parallel, users should open as many sockets as needed. Please refer to
section 16.4: “Running Processes in Parallel for further information about sockets and
parallel processing.

Programming with TCL

TCL documentation is available in a PDF file accessible from the XPS controller web
site.

TCL stands for Tool Command Language and is an open-source string based command
language. With only a few fundamental constructs and relatively little syntax, it is very
easy to learn, yet it can be as powerful and functional as traditional C language. TCL
includes many different math expressions, control structures (if, for, foreach, switch,
etc.), events, lists, arrays, time and date manipulation, subroutines, string manipulation,

XPSDocumentation V2.6.x (08/11)

12

XPS

User’s Manual

file management and much more. TCL is used worldwide with a user base approaching
one million users. It is quickly becoming a standard and critical component in thousands
of corporations. Consequently TCL is field proven, very well documented and has many
tutorials, applications, tools and books publicly available (www tcl.tk).

XPS users can use TCL to write complete application code and XPS allows them to
include any function to a TCL script. When developed, the TCL script can be executed
in real time in the background of the motion controller processor and does not impact
any processing requirements for servo updates or communication. The VxWorks
hardware real time multitasking operating system used on the XPS controller assures
precise management of the multiple processes with the highest reliability. Multiple TCL
programs run in a time-sharing mode with the same priority and will get interrupted
only by the servo, communication tasks or when the maximum available time of 20 ms
for each TCL program is over.

The advantage of executing application code within the controller over host run code is
faster execution and better synchronization in many cases without any time taken from
the communication link. The complete communication link can be reserved for time
critical process interaction from or to the process or host controller.

NOTE

It is important to note that XPS provides communication requests priority over
TCL script execution. When using TCL scripts for machine security or other time
critical tasks, it is therefore important to limit the frequency of continuous
communication requests from a host computer, which includes the XPS web-site,
and to confirm the execution speed of repetitive TCL scripts.

13 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

3.0 Getting Starte

d

31

3.2

3.3

34

Unpacking and Handling

It is recommended that the XPS Controller/Driver be unpacked in your lab or work site
rather than at the receiving dock. Unpack the system carefully; small parts and cables
are included with the equipment. Inspect the box carefully for loose parts before
disposing of the packaging. You are urged to save the packaging material in case you
need to ship your equipment.

Inspection for Damage

XPS Controller/Driver has been carefully packaged at the factory to minimize the
possibility of damage during shipping. Inspect the box for external signs of damage or
mishandling. Inspect the contents for damage. If there is visible damage to the
equipment upon receipt, inform the shipping company and Newport Corporation
immediately.

WARNING

Do not attempt to operate this equipment if there is evidence of
shipping damage or you suspect the unit is damaged. Damaged
equipment may present additional hazards to you. Contact Newport
technical support for advice before attempting to plug in and operate
damaged equipment.

Packing List

Included with each XPS controller are the following items:
e User’s Manual and Motion Tutorial.

e XPS controller.

e Cross-over cable, gray, 3 meters.

e Straight-through cable, black, 5 meters.

e Power cord.

e Rack mount ears and handles.

If there are missing hardware or have questions about the hardware that were received,
please contact Newport.

CAUTION
Before operating the XPS controller, please read chapter 1.0 very
carefully.
System Setup

This section guides the user through the proper set-up of the motion control system. If
not already done, carefully unpack and visually inspect the controller and stages for any
damage. Place all components on a flat and clean surface.

CAUTION

No cables should be connected to the controller at this point!

First, the controller must be configured properly before stages can be connected.

XPSDocumentation V2.6.x (08/11)

14

XPS

User’s Manual

341

342

Installing Driver cards

Figure 11: Installing Driver cards.

Due to the high power available in the XPS controller (300 W for the CPU and 500 W
for the drives), ventilation is very important.

To ensure a good level of heat dissipation, the following rules must be followed:

1.

It is strictly forbidden to use the XPS controller without the cover properly mounted
on the chassis.

Driver boards must be inserted from the right (driver 1) to the left (driver 8) when
looking at the controller from the back.

If 8 boards or less are used, the remaining slots must disabled with the appropriate
covers that were delivered with the controller.

. The surrounding ventilation holes at the sides and back of the XPS rack must be free

from obstructions that prevent free flow of air.

Power ON

Plug the AC line cord supplied with the XPS into the AC power receptacle on the
rear panel.

Plug the AC line cord into the AC wall-outlet. Turn the Main Power Switch to ON
(located on the Rear Panel).

The system must be installed in such a way that power switch and power connector
remain accessible by the user.

After the main power is switched on, the LED on the front panel of the XPS will
turn green.

There is an initial beep after power on and a second beep when the controller has
finished booting. The time between the first and the second beep can be 1-2 minutes.

There is also a STOP ALL button on the front panel that is used to shut down all the
motors.

15 XPSDocumentation V2.6.x (08/11)

XPS User’s Manual

35 Connecting to the XPS

The Newport’s XPS Controller/Driver is a multi-axis motion controller system that is
based on a high performance 10/100 base T Ethernet connection using CATS cable.

The controller can be connected in 2 different ways:
1. Direct connection-PC to XPS through a cross over cable (gray).

2. Corporate Network connection — requires input from Network Administrator
(black).

Two cables are provided with the motion controller:
e Cross-over cable — used when connecting XPS directly to a PC.

e Straight Ethernet cable — used when connecting XPS through an intranet.

351 Straight through cables (black)

Standard Ethernet straight through cables are required when connecting the device to a
standard network hub or switch.

P Assignments

-
M d -

Orange¥Whte
Qrange
- Greon'Whae
Edus (0t used)
B2ve/ Whete (nct vied
Greer
Erown'Wihkte (nct usad
Beown (not used)

OF ~ 00 % e b o

Figure 12: Straight through cables.

352 Cross-over cables (gray)

Standard Ethernet cross over cables are required when connecting the device directly to
the Ethernet port of a PC.

NOTE

Cross over cables are typically labeled (cross over or XO) at one or both ends.

_— e P Assignments
,......,...i l..;'.;‘.'.'l SR -~ 1
1 ! N N |
i e |
H s £
| = Deanga/White | « Geean'VWoie
7« Dvangs 1 « Gesn
J - Geeen'Whan J - Dranga/NWhie
&« Blus (801 used) & -« Blue (00t used)
8 - BluaAVhete (not sned 3 - Bue/\Whate (not used)
B ~ Groen 6 - Qrangs
7 - Brown\Whte (not vaed 1 - Beown/NWhie (not used
B « Beown (nee gsed) § « Beown (not used)

Figure 13: Ethernet Cross Over Cables.

XPSDocumentation V2.6.x (08/11) 16

XPS User’s Manual

353 Direct Connection to the XPS controller

For a direct connection between a PC and the XPS controller you need to use the gray
cross-over cable and the HOST connector at the back of the XPS mainframe.

Figure 14: Direct Connection to the XPS using cross-over cable.

First, the IP address on the PC’s Ethernet card has to be set to match the default factory
XPS’s IP address (192.168.0.254). Here is the procedure to set the Ethernet card
address.

This procedure is for the Windows XP operating system:
1. Start Button > Control Panel > Network Connections.

2. Right Click on Local Area Connection Icon and select Properties.

WP X XCHOATX baced EPeret Adugter [Germne]

Com= |

Tho Comrmctor et B bolomerg baee

v Dletet dr M sonel Namwnh
¥ e ot Prrem Charg for Mool e \
L

=] Show com i motix shon e wher Corrected

C=) =)

3. Highlight Internet Protocol (TCP/IP) and click on Properties.

4. Type the following IP address and Subnet Mask as shown in the next window.

17 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

internet Protecel (TCP/) Propertien ” R
|
——
wi o got P setingt antgred sdomacdly | you retvok oot |
P s acatdry (Pmrsese pou reed b b pos reterat et s b

o O Trme) Lerrge
Oteawr, an I adSens mtomatc ol

%) Use e bulknanrg I addbes
e 10 168 1908
Lret ract

Delnd gowway

) Une e huomeng DNS davomn sddenine
Pratemed [HS rervm

L R

5. Click “OK”.

NOTE

The Last number of the IP address can be set to any number between 2 to 253: 100
for example.

NOTE

When configuring the controller to be on the network, the settings for the PC’s
Ethernet card will have to be set back to default under ‘“Obtain an IP address
automatically”.

Once the Ethernet card address is set, you are ready to connect to the XPS controller.
Following is the procedure for connecting to the controller:

6. Open Internet Browser and connect to http://192.168.0.254
Login:
Name: Administrator
Password: Administrator (Please see the picture below).

Rights: Administrator

NOTE

Please note that the login is case sensitive.

XPSDocumentation V2.6.x (08/11)

18

XPS

User’s Manual

QD

Newport.

logrwne Lo e

Motien Contralier / Drver - XFy-C8

— B O s -

Once logged in, the XPS has established a direct connection to local computer.

If you don’t want to connect the XPS controller through a Corporate Network you may
skip to section 3.7: “Connecting the Stages®.

NOTE

If you want to change the IP address of the XPS controller, follow the next section
explanations, but keep using the gray cross-over Ethernet cable to connect the XPS
controller directly to the PC.

354 Connecting the XPS to a Corporate Network Using Static IP Configuration

Once you are logged in using the previous described steps for direct connection, you
can change the IP configuration of the controller in order to connect the XPS over a
Network. Select “CONTROLLER-CONFIGURATION” of the web-site and select the
sub-menu “IP-Management”.

B O v < -

The static IP address, the subnet mask and the Gateway IP address have to be provided
by your Network Administrator to avoid network conflicts. Once you have obtained

19 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

355

these addresses you can input them in the IP configuration window as shown above.
The above shown addresses are only examples.

NOTE

To avoid conflict with the REMOTE Ethernet plug, the IP address must be
different than 192.168.254...

NOTE

For majority of Networks the above setting for the Subnet Mask will work.
However, for larger networks (200 computers or more) the Subnet Mask address
has to be verified with IT department. In most cases for larger networks Subnet
Mask is set to 255.255.0.0.

Once the appropriate addresses for the Static IP configuration are set, click on SET and
switch off controller.

Connect now CAT-5 network cable (black) to the HOST connector of the XPS
controller and to your network.

After restarting controller and restoring your PC’s Ethernet card default configuration,
open the Internet browser and connect using your given Static IP address.

If you don’t want to connect directly to Corporate Network Using Dynamic IP
Configuration, you may skip to section 3.7: “Connecting the Stages®.

Connecting The XPS to a Corporate Network Using Dynamic IP Configuration
Obtain DNS suffix from network administrator for the “DNS suffix” field.

el L L e R I i

O «m

BN U S - L A

Assign any name for the “Controller name” field.
Click on SET and switch off the controller.

Make sure that the standard CAT-5 network cable (black) is connected to the HOST of
the XPS controller and to your network.

After restarting the controller, open the internet browser and connect using your
controller name. You may skip to section 3.7: “Connecting the Stages”.

XPSDocumentation V2.6.x (08/11)

20

XPS

3.5.6

Do not use Dynamic IP configuration if your DHCP server uses Windows NT 4.0

server.

NOTE

Recovering lost IP configuration

If you want to recover a lost IP configuration, you need to connect directly the PC to the
the back of the XPS mainframe with the gray cross-over cable.

REMOTE connector at

using cross-over cable and REMOTE connector.

First, the IP address on

Ethernet card address.

Figure 15: Direct Connection to the XPS

the PC’s Ethernet card has to be set to match the XPS’s fixed IP
address for the REMOTE plug (192.168.254.254). Here is the procedure to set the

This procedure is for the Windows XP operating system:

1. Start Button > Control Panel > Network Connections.

2. Right Click on Local Area Connection Icon and select Properties.

& Local Area Cosnection 4 Prepertin

WP X JCHATX baced EParet Aducter [lermnc]

(ot)

Thet Corvmitor et B bllomeng fent

I Dot dix Maronolt Namwinh
v Fie ard Prrten Sharg bor Micasol Nameo s
L

(s] .
Cwnorgron
Tiarwess s Cartol Putuc ok vomer Putucel The oot
wede wea revoh Srotocol W groeeder Commrc shon
ac1mis Svarie remcorvectnd et |

[Sheow com 1 rotixc ston ewne whee Correctnd

(o][Coes)

3. Highlight Internet Protocol (TCP/IP) and click on Properties.

4. Type the following I

P address and Subnet Mask as shown in the next window.

21

XPSDocumentation V2.6.x (08/11)

User’s Manual

XPS

User’s Manual

internet Protecel (TCP/) Propertien ” H
v
wican gt B ietegt sagred asomanc gy | ypou retverk s opor
P capatdey Ofersase you reed D sb pou retwat et st S

P worspnae I et
Oteawr, an I adSens mtomatc ol
«) Upe B ks I addm
P adden IV 1688 X4 X
Lret mack

Delnd gowway

o) Use e bl DN paven s ine
Pratemed [HS rervm
L R
x j | Corcel
5. Click “OK”.
NOTE

The last number of the IP address can be set to any number between 2 to 253: 100
in this example.

NOTE

When configuring the controller to be on the network, the settings for the PC’s
Ethernet card will have to be set back to default which is “Obtain an IP address
automatically”.

Once the Ethernet card address is set, you are ready to connect to the XPS controller.
Following is the procedure for connecting to the controller:

6. Open Internet Browser and connect to http://192.168.254.254
Login:

Name: Administrator

Password: Administrator (Please see the picture below).

Rights: Administrator

NOTE

Please note that the login is case sensitive.

XPSDocumentation V2.6.x (08/11)

22

XPS

User’s Manual

3.6

O - " - [. -

QDS

Newport.

lgrwns Lot

Motion Contratier / Drver -~ XFy-CH

T

Once you are logged, you can change the IP configuration by following the steps
described in section 3.5.4 or 3.5.5 depending on your configuration.

NOTE

If you want to reset the IP address to the default factory setting, follows the section
3.5.4 to set the IP address back to 192.168.0.254.

Testing your XPS-PC Connection

To check if the XPS is connected to the host computer, you could send a ping message
from the computer to the XPS. This is done by using the menu: Start->Run->then type:
ping + IP address of the XPS. See the example below for the IP address 192.168.33.236:

Type the rame of » program, fokder | docament, or
Porat resonron, Wt windosss sl open & Por pon

(pen EUTRNNIENEED v

l’ . | s | Urowere

If the XPS is connected, it replies in the terminal window that appears when users click
on the OK button:

CAWPMNDOWSwystem Y N \ping axn

If the XPS controller is not connected, the window displays that the time delay of the
request is exceeded.

23 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

3.7

Connecting the Stages

CAUTION

Never connect/disconnect stages while the XPS controller is powered
on.

CAUTION

Lay stage(s) on a flat, stable surface before connecting to the XPS
controller.

With the power off, carefully connect one end of the supplied cables to the stage and the
other end to the appropriate axis connector at the rear of the controller. Secure both
connections with the locking thumbscrews.

When using stages with analog encoder interface, a separate encoder cable has to be
connected to the appropriate connector of the control board labeled “Encoder 1” to
“Encoder 8”.

Please note, that the XPS controller will not detect cross-connection errors between the
motor of one stage and the encoder of another stage. So please make sure that motor,
encoder and other cables are plugged to the appropriate axis.

CAUTION

It is strongly recommended that the user read the section 3.4:
“System Setup®, before attempting to turn the controller or the
motors on. Serious damage could occur if the system is not properly
configured.

All Newport ESP-compatible stages are electrically and physically compatible with the
XPS controller. ESP-compatible stages are visually identified with a blue “ESP
Compatible” sticker, on the stage. If an ESP compatible motion system was purchased,
all necessary hardware to connect the stage with the XPS controller is included. The
stage connects to the XPS via a shielded custom cable that carries all power and control
signals (encoder, limits, and home signals). The cable is terminated with a standard 25-
pin D-Sub connector.

“Dummy stages” might be used to simulate a stage. They allow users to configure and
test system behavior without real stages connected.

For a dummy stage, use a male 25-pin D-Sub connector with signals for + and - travel
limit connected to ground, and plug this device to the Newport stage interface (see
pinout description of the motor driver connectors in appendix F). Configure your system
with a number of those dummy stages. Dummy stages can be found in the stages.ini file
(see Admin/Config folder of the controller) under [DUMMY_STAGE].

XPSDocumentation V2.6.x (08/11)

24

XPS

User’s Manual

3.8

Configuring the Controller

When the driver boards are installed and the IP address is configured the controller can
be configured:

(&)

- L T R v E e [Al » -

_C\D
Newport.

Switch off the XPS controller.
Connect the stages or motion devices.

Switch on the XPS controller and wait for the end of the boot sequence. There is an
initial beep a few seconds after the power on and a second beep when the controller
has finished booting. The time between the first beep and the second beep is approx.
1-2 minutes.

Open an internet browser and connect to http://<your fixed IP address>

(pewe: Lafwrs

Motion Controller / Driver - XPS-C8

BaConD RWewes

Login: Administrator
Password: Administrator
Rights: Administrator

There are two possibilities to configure the controller: Auto configuration and manual
configuration. Auto Configuration is the simplest method to configure the controller,
but has some limitations:

Auto configuration works only with Newport ESP compatible positioners.

Auto configuration configures all detected positioners as single axis groups. But,
single axis groups provide only limited functionality (no synchronized motion, no
trajectories, no XY or XYZ compensation). To take full benefit of the capabilities of
the XPS controller, a manual configuration is needed.

For Non-Newport stages or very old Newport stages, manual configuration is
required. See document ConfigurationWizard.pdf for details. This document is
accessible from the XPS web tools under the tag DOCUMENTATION.

Manual configuration is also required for some vacuum compatible stages (no ESP
chip) and for stages with adjustable home position (-1, 0, +1), if the home position is
changed from the standard position O to -1 or +1. The positions +1 and -1 require
different settings in the stage data base, as the home switch position is not
recognized by the ESP chip.

25 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

3.8.1 Auto Configuration

When logged in as Administrator, select SYSTEM, then “Auto configuration”. The
following screen appears:

[e = |

QO meapert 8 E—Ty—re———

Check, if all connected stages are recognized by the system. If yes, click on
“GENERATE CONFIGURATION FILES”.

The controller reboots and the following screen appears (this action may take up to two

minutes):
|~ o et mtew 2
B Nt P e h e, S P (e § e ——
i - '
Click “OK™.

When the controller has finished booting (hear second beep after 1-2 minutes), press
“F5” to reload the page, select FRONT PANEL, and then select “Move”. The
following screen appears:

XPSDocumentation V2.6.x (08/11)

26

XPS User’s Manual

M T RL LRIV iyt o Wi aeant b agtea

- 2 O e

Click “Initialize”. The State number changes from O to 42 and the Action button
changes from Initialize to Home. Click “Home”. The stage starts moving to find its
reference position. When done, the state number is 11 and the action button changes to
Disable. Enter an allowed position value in the “Abs move 1” field and click “Go”. The
stage moves to this absolute position.

Your system is now ready to use. For more advanced functions, please proceed reading
the rest of this manual.

NOTE

In “AUTO-CONFIGURATION?” the default group is set as SingleAxis. To set the
positioners to a different group type, use manual configuration.

27 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

382

Manual Configuration for Newport Positioners
The manual configuration provides users access to all capabilities of the XPS controller.

For a manual configuration, first users need to build their personal stage data base using
the web tool “Add from Database” under the main tag STAGE. When adding a new
stage from this web tool, the controller copies the parameters from its internal database
(which contains parameters for all Newport stages) and stores these parameters in a file
called stages.ini. Hence, the stages.ini file contains the parameters for only a subset of
stages as defined by the user. Users can assign any name for their stages. The default
name is the Newport part number, but in some cases it makes sense using a different
name. That ways, for instance, it is possible adding the same set of parameters several
times in the stage data base under different stage names. Later, you can modify certain
parameters, like travel ranges or PID settings, to optimize the stage for different
applications.

All stage parameters can be modified using the Web Tool “Modify” under the main tag
STAGE. Alternative, the stage parameters can be modified directly in the stages.ini file
using a text editor. The stages.ini file is located in the Config folder of the XPS
controller. This folder is accessible via ftp, see chapter 5 for details.

When all stages are added to the stages.ini file, build the system using the web tool
“Manual Configuration” under the main tag SYSTEM. In this tool, the stages get
assigned to positioners and the positioners get assigned to motion groups. Please refer to
chapter 7.3 for details on the different motion groups and their specific features. The
group name and positioner name can be any user given name. Once the system has been
built, all system information is stored in a file called system.ini. Also the system.ini file
is located in the Config folder of the XPS controller.

The following describes the different steps needed to add a stage, to modify the stage
parameters and to build a manual configuration. Chapter 4.0 provides further
information about some of the steps described here.

Once you are logged in as Administrator, click on STAGE and then click on “Add
from database”.

1. The following screen appears:

el R L e e el

O «m

R . % - e

e —ryr———

2. Select a family name from the list. Double click.

3. Select the part number corresponding to your hardware. Double click.

XPSDocumentation V2.6.x (08/11)

28

XPS

User’s Manual

. Select the driver (corresponding to your hardware) and configuration.

For all continuous rotation stages, you can choose between a ‘“regular” stage
configuration and a “Spindle” configuration. A Spindle is a specific rotary device
with a periodic position reset at 360°, means 360° equals 0°. When defining the
stage as Spindle in the stages.ini, you must assign this stage also to a Spindle group
in the system configuration and vice versa. For details about Spindles, please refer
also to section 7.3.

5. Once the stage name appears, you can modify it if you like (see comments above).

6. The box “Use ESP Compatibility for Hardware detection” is checked by default. If

your stage has an ESP chip inside (see blue ESP compatible sticker on the stage) this
box shall remain checked. Otherwise, with vacuum compatible stages or with old
Newport stages, uncheck this box.

. Click on “Add new stage” to add the stage.

Once all stages have been added, you can review or modify these parameters from
the screen “Modify”” under the main tag STAGE. NOTE: From this screen you have
access to all stage parameter. Only experienced users should modify these
parameters. For the exact meaning of the different parameters, please refer to the
document ConfigurationWizard.pdf, accessible from the main tag
DOCUMENTATION.

. When done with all stages, click on “Manual Configuration” under SYSTEM.
The following screen appears:

e E R L I e e el
Q - « TeeeTE————

iR s e ———) - e

Syt e . g st
R Al
o
)
——
.-
-
™)

9. Enter a group name.

For example, if you are setting up two ILS stages, you can set them up as two Single
Axis groups, one XY group or one or two MulipleAxis groups. Any group name can
be given. In the example the name of the XY group is MyXY Group.

10.Click on “ADD” to get to the next screen:

29 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

11.Enter the positioner names.

Any positioner name can be used. In this example the X positioner name is
ILS150CC_UPPER. The home sequence can be either “Together” or “X then Y”.

The other fields refer to the error compensation (mapping) of the XPS controller, see
chapter 10.0 for details. For a first configuration, don’t enter anything in these fields.

12.Click on “VALID” to get following screen:

13.Enter the appropriate PlugNumber. The plug number is the axis number where the
stage is physically connected to the XPS controller. Plug number 1 is the first plug
on the right and the number increases to the left, looking at the back of the
controller.

14. Select the StageName from the list of stages. These stage names refer to the stages
defined with the Web Tool “Stage Management”.
15.Checking the box “Use a secondary Positioner” assigns a secondary positioner for a

gantry configuration. For details about gantries, please refer to section 4.8. Don’t
check this box for a regular XY group or for a regular SingleAxis group.

16.Click on “VALID” to get back to the initial screen.

XPSDocumentation V2.6.x (08/11)

30

XPS

User’s Manual

O T RL B s T gy N S p—
Q - « TesEEE——— - o

G Drmiate e ——) - e A

Ty b b

— 9 —- .-

17. Continue the same way with the other motion groups.

18.When done, click on “Create new system.ini file” to complete the System
configuration. The controller re-boots and the following message appears:

[~ oot ot ttew B
Q Tt el P e e e semd @d Yo o b by
| . '

Click on “OK”.

When the controller has finished booting (hear second beep after 1-2 minutes), press
“F5” to reload the page, select FRONT PANEL, then select “Move”. The following
screen appears (Group names will be different according to your definition):

Click “Initialize”. The State number changes from O to 42 and the Action button
changes from Initialize to Home. Click “Home”. The stage starts moving to find its
reference position. When done, the state number is 11 and the action button is Disable.
Enter an allowed position value in the “Abs move 1” field and click “Go”. The stage
moves to this absolute position.

31 XPSDocumentation V2.6.x (08/11)

XPS

User’s Manual

383

39

Your system is now ready to use. For more advanced functions, please proceed reading
the rest of this manual.

Manual Configuration for stages not made by Newport

For configuring the XPS controller to stages or positioning devices not made by
Newport, use the tool “Add Custom Stage” under the main tag STAGE. For detailed
information about this tool, please refer to the document ConfigurationWizard.pdf
provided under the main tag DOCUMENTATION.

System Shut-Down
To shut down the system entirely, perform the following procedure:
Wait for the stage(s) to complete their moves and come to a stop.

Turn off the power, see power switch above the power cord, at the back of the
controller.

XPSDocumentation V2.6.x (08/11)

32

XPS

Software Tools

4.0

Software Tools

Software Tools

4.1

Software Tools Overview

The XPS software tools provide users a convenient access to the most common features
and functions of the XPS controller. All software tools are implemented as a web
interface. The advantage of a web interface is that it is independent from the user's
operating system and doesn't require any specific software on the host PC.

There are two options to log-in to the XPS controller: As “User” or as “Administrator”.
Users can log-in only with User rights. Administrators can log-in with User or with

Administrator rights. When logged-in with Administrator rights, you have an extended
set of tools available.

The predefined user has the log-in name Anonymous, Password Anonymous. The
predefined Administrator has the log-in name Administrator,

Password
Administrator. Both, the Log-in name and the password are case sensitive.

°,,..~..—-.-. .-~ o »
A —pnn —— —— a LRl I e L T
-

Riewport.

Motion Controlier / Driver - XPS-C8

S v e pEmsewd Gd Hena tn wy e

.~ ‘e O ewnt

ommem U R—

33 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

4.2

The main tag is displayed across the top of the XPS Motion Controller/Driver main
program window, and lists each primary interface option. Each interface option has its
own pull-down menu that allows the user to select various options by clicking the
mouse's left button.

On the following pages we provide a brief description of all tools.

Administrator Menus

LAY Nowport sYysmim saads COMTROLLER COMF SULMA 130m RO PAN 1" emasAL AL LU N SO AT O

Sub-Menu for CONTROLLER CONFIGURATION

NYRTEN ATALS COMTRILLEN CUNE SLIMA 11O FOmT AN L LAmIAAL

A Newvwpont
R | R ——-

Restricted set of User Menus

K" &W‘ PRONT PANIL TINMINAL DOCUME NTATE O
.-

Move Jog Spwde 1/Oview 1/0 set Positionsr arvors Hardwars status Dvvver status

CONTROLLER CONFIGURATION - Users Management

This tool allows managing user accounts. There are two type of users defined:
Administrators and Users. Administrators have configurations rights. Users have only
restricted rights to use the system.

The following steps are needed to create a new user:
1. Enter a new user name in the “login” field.
2. Choose the access rights: “User” or “Admin”.
3. Check the box “Reset PWD to XXXXXXXX":
Your password is reset to XXXXXXXX.
4. Select the “VALID” button to add the new access account.

. P~ -~ B o - o — (. -——— s - - - ™
R Ll
-
— -
IR
—
e
OO g @ ——Trerr—

NOTE
The default password is XXXXXXXX and must be changed after the first log in.

XPSDocumentation V2.6.x (08/11)

34

XPS

Software Tools

4.3

44

CONTROLLER CONFIGURATION - IP Management
See chapter 3.5 for details.

M LM DA I g et ag VWadwes it Laghurn
T T F
SR T TS] - L

e e

CONTROLLER CONFIGURATION - General

This screen provides valuable information about the firmware and the hardware of the
controller. It is an important screen for troubleshooting the controller.

MAR UL LA IV D bogiipms agf Windows Sete et Laponte

T stant PT/ - BaBoBD B e Wen

35 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

4.5

4.6

SYSTEM - Error File Display

The Error File Display is another important screen for troubleshooting the XPS
controller. When the XPS encountered any error during booting, for instance because of
an error in the configuration files or because the configuration is not compatible with
the connected hardware, you’ll find some entries in the error log file that guides you to
correct the error.

When no error has been detected during the system boot, this file is empty.

M VR A M Db gitemd oyt Windeus wrte sl | piare

Y I S -

SYSTEM - Auto Configuration

With the help of this screen, a quick basic configuration of the XPS controller can be
done. Check/un-check, those stage models that you want/don’t want the XPS controller
to configure to. When done, click “Generate Configuration Files”. The XPS controller
reboots. After re-booting, you are able to use the XPS controller in this basic
configuration. For further information, refer also to chapter 3.8.1.

NOTE

“Generate Configuration Files” deletes your current system.ini configuration file.
For troubleshooting a system, make sure that you have a copy of your system.ini
file for recovery.

Under Driver Model and Stages model, all motor drivers and Newport ESP compatible
stages seen by the XPS controller are listed. Hence, this screen provides also very
valuable information for diagnosing or troubleshooting the system.

XPSDocumentation V2.6.x (08/11)

36

XPS

Software Tools

4.7

A VRTS8 1V T iigitems sgt Wisduun St et | apossn

O} foen amanpms Aioela 7

. - B L T R e T T S S e—— T - b =) el -

BN
'R

131155

l mm———t . tm g vbomn e "

W gt 8

.e @ @ semme .-

SYSTEM - Manual Configuration

This tool allows you to review the current system configuration and to define a new
one. See also chapter 3.8.2 for further information.

To define a new system, you need to define all motion groups that should belong to that
system. There is no possibility of appending a motion group to an existing configuration
from this tool. To define a new motion group, do the following:

1. Enter the name of the new group (My_XY_Group in this case). Click on “ADD” to
confirm the new group.

M ATVS UM TR IR gt o Wimdun beter wed | nphemt

2. Enter the name for each positioner associated with the motion group (StepAxis and

ScanAxis in this case). Define the home sequence (“Together” or “XThenY” or
“YThenX”). For error compensation you need to define the name and structure of
the correction data, otherwise leave these fields blank. For details about error

37 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

compensation, see chapter 10.0. When done, click on “VALID” to accept the
configuration.

M ATVS UM TR IR gt o Wimdun beter wed | nphemt

Syvien B RN A oy BY ey

Specify the plug number. The plug number is the number of the drive card (1 to 8)
where the stage is physically connected to the XPS controller (see back of XPS
controller). Select the name of the Stage from your stage data base (scroll down
menu).

Checking the box “Use a secondary Positioner” assigns a secondary positioner for a
gantry configuration. A gantry is a motion device where two positioners, each of
them having a motor, an encoder, limits, etc., are used for a motion in one direction.
With most gantries, the two positioners are rigidly attached to each others. Hence,
all motions, including motor initialization, homing, and emergency stops must be
done in perfect synchronization. For details about Gantries and their configuration,
please refer to section 4.8.

When all positioners are configured, click on “VALID” to confirm the group
configuration.

Byvhams Bl - Duakde ol - Wy XV Cowep

P et Megbem

- Jon M O -

Pradecmes > anhie

o AR Y -

BsSonRED B

XPSDocumentation V2.6.x (08/11)

38

XPS Software Tools

4. When the configuration of each positioner is validated, the new group gets listed in
the “New system build” window.

e TR VAR Tl Drdngiipuet igt W mduwe manwt | aptoen

sy b il

s FTrMeConEe B W W

5. Continue the same way with all other motion group. When done, click on “Create
new system.ini file” to apply the new configuration.

NOTE

“Create new system.ini file” deletes the current system.ini file. To keep a copy of
the current system.ini file, get a copy from the “..admin\config” folder of the XPS
controller.

The following screen appears:

[~ oo bomet bt L))
!5 Tt L P e b s e armd Ok P b ——ry

Click on “OK”.

6. When the controller has finished booting (hear second beep after 1-2 minutes),
select SYSTEM tag, then “Error File Display”. When there is no entry in the error
file, your system is configured correctly and ready to use. When not, this file
provides some valuable information for trouble shooting, see also chapter 4.5.

This is an example of a system.ini file with one XY group and one Spindle group:

[GENERAL]
BootScriptFileName =
BootScriptArguments =

[GROUPS]
SingleAxisIinUse =
SpindlelnUse = Spin
XYInUse = My_XY_Group
XYZInUse =
MultipleAxesInUse =

39 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

[My_XY_Group]
PositionerinUse = StepAxis,ScanAxis

InitializationAndHomeSearchSequence = Together

;- Mapping XY
XMappingFileName =
YMappingFileName =

[My_XY_Group.StepAxis]
PlugNumber = 3

StageName = VP-25XA-SECONDARY
[My_XY_Group.ScanAxis]
PlugNumber = 4

StageName = VP-25XA-PRIMARY

[Spin]
PositionerinUse = Rot

[Spin.Rot]
PlugNumber = 2
StageName = URS100CC_Spindle

XPSDocumentation V2.6.x (08/11)

40

XPS

Software Tools

4.8

SYSTEM - Manual Configuration — Gantries (Secondary
Positioners)

This section refers to experienced users of the XPS controller and addresses the
configuration of a gantry via a secondary positioner.

A gantry is a motion device where two positioners, each of them having a motor, an
encoder, limits, etc., are used for a motion in one direction. With most gantries, the two
positioners are rigidly attached to each others, see example below. Hence, all motions,
including motor initialization, homing, and emergency stops must be done in perfect
synchronization.

Figure 16: Example of a gantry.

The XPS controller allows configuring single axis gantries (Xx configuration) and XY
gantries. For XY gantries, it is possible to define XxY, XYy and XxYy configurations.
Here, X and Y refer to the primary positioner and x and y to an assigned secondary
positioner.

To define a gantry, check the box “Use a secondary positioner” during the definition of
a Single Axis group or XY group. See chapter 4.7 for further instructions how to define
a new motion group. When done, the following screen appears (example Single Axis

group):

P e —p— T F

3 - vt e w0 S | L - s - [0 s -

Awinms Bl eyt bk ey

e e
- g ey o
“ mpreea ¥ luas i "

Aunirra
AR R AT, T EREET

[N SRS '} =
ey e - (ORI CEE
L Errpan e
IS ——

i

i I

an N T L e

41 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

481

Define the plug number for the secondary positioner and the name from the stage data
base. The secondary positioner must have at least common values with the primary
positioner for the following parameters:

e MaximumVelocity
MaximumAcceleration
HomeSearchMaximumVelocity
HomeSearchMaximumAcceleration
MinimumTargetPosition
MaximumTargetPositioner

The parameters “End referencing position” and “End referencing tolerance” refer to the
homing process of the gantry, see chapter 4.8.1 for details.

The parameter “Offset after initialization™ is relevant only for gantries with linear
motors. See chapter 4.8.2 for details. For all other gantries, enter O for this parameter.

Furthermore, for certain XY gantries, it is also possible to apply a variable force ratio
for the two X positioner. This variable force ratio accounts for the different forces
required by the primary and the secondary X-axes positioners depending on the position
of the Y axis to ensure a torque-free motion. For details, see chapter 4.8.3.

NOTE

When done with your gantry configuration, the secondary positioner is almost
invisible for the application. All functions are sent directly to the motion group or
to the (primary) positioner of that group. However, it is possible to get information
from the secondary positioner by data gathering by appending
“SecondaryPositioner” to the positioner name. Example:

MySingleGantry.S1.SecondaryPositioner.FollowingError

For further details about data gathering, see chapter 12.0.

Home search of gantries

During the home search of a gantry, first the secondary positioner is homed and the
primary positioner follows the motion. Then, the primary positioner is homed and the
secondary positioner follows the motion. At the end, the primary positioner is at his
home position, but the secondary positioner will be off his home position due to the
tolerances in the assembly of the gantry. The parameter “End referencing position”
defines the “ideal” position of the secondary positioner when the primary positioner is
at his home position. The parameter “End referencing tolerance” defines the maximum
allowed distance between the secondary positioner’s position, when the primary
positioner is at his home position, and the “end referencing position”.

When the actual distance is greater than the value for the “End referencing tolerance”,
the homing is aborted. When the actual distance is less than the value for the “End
referencing tolerance”, then the secondary positioner moves to the “End referencing
position” whiles the primary positioner stays at his home position. Hence, this
parameter allows correcting the angle of the gantry.

XPSDocumentation V2.6.x (08/11)

42

XPS

Software Tools

482

The below sketch illustrates this process:

Primary Secondary

] -
-L-- - Pos = Endeferencingosition
Pos = 0-¥- I . Pos =|ndexdfferenc‘e)O

Initial position

1) Search home of the Secondary positioner. The primary positioner follows

2) Search home of the Primary positioner. The secondary positioner follows.

3) If the distance of the secondary positioner’s position to the “End referencing
position” is greater than the value for the “End referencing tolerance”, the homing is
aborted. If not, the Secondary positioner moves to the “End referencing position”
while the primary positioner stays at his home position.

Index difference refers to the difference of the secondary positioner’s position when the
primary positioner is at his home position to the home position of the secondary
positioner. The value for the Index difference can be queried by the function
PositionersEncoderIndexDifferenceGet().

When no other metrology tools are available, the following method can be used to
determine a value for the “End referencing position” of an assembled gantry:

Set the value for “End referencing position” and “End referencing tolerance” to 0.
Complete the configuration of your system. After reboot, initialize and home the gantry
group. With high probability the homing will fail with error -85 due to the zero value
for the “End referencing tolerance”. Query the index difference with the function
PositionersEncoderIndexDifferenceGet(). Repeat the initialization, homing and
querying of the index difference several times and build the average and the standard
deviation from all values. Now, configure a new system with the same gantry. For “End
referencing position” apply the average value of the index difference. For “End
referencing tolerance” apply a value that is approximately equal to 6 times of the
standard deviation of the index difference. Complete your configuration and reboot your
system. Initialize and home your gantry group several times. Your system should now
work properly.

Gantries with linear motors

The parameter “Offset after initialization” defines the offset of the magnetic tracks of
the linear motors between the primary and the secondary positioner. This parameter is
important to provide optimum performance of a gantry with linear motors. It ensures a
correct sinusoidal commutation of the two motor signals. An accurate measurement of
the offset can be done only with dedicated metrology tools.

For gantries NOT driven in acceleration mode, e.g. gantries with NO linear motors, this
value can be put to 0.

Also: With all stages driven in acceleration mode and that are configured for gantries, it
is recommended to “force the initialization position” using the LMI mode (Large Move
Initialization). To do S0, append LMI to the line
MotorDriverInterface=AnalogSinX AccelerationLMI (X = 60, 90 or 120) and add a line
InitializationCycleDuration=5 at the end of the section driver command interface
parameters of the stages.ini. Example:

43 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

483

;--- Driver command interface parameters
MotorDriverInterface=AnalogSini120AccelerationLMI
ScalingAcceleration=30641;--- units / s>
AccelerationLimit=27856;--- units / s>
MagneticTrackPeriod=24;--- units
InitializationAccelerationLevel=20;--- percent
InitializationCycleDuration=5;--- seconds

With the LMI setting, during initialization, the motor gets energized and the stage
moves to the closest stable magnetic position. The result is a quick motion of the stage
by maximum plus or minus half of the length of the magnetic track. This behavior
might be undesired, but provides a more failure proof method for initialization than the
Newport default process, that applies only very small oscillations to the stage during the
initialization.

Gantries with linear motors and variable force ratio

For XY gantries, where the two X-axes are driven by linear motors (means driven in
acceleration mode), it is also possible to apply a variable force ratio for the two X-axes
positioners. This variable force ratio accounts for the different forces required by the
primary and the secondary X-axes positioner depending on the position of the Y axis.
When correctly set it ensures a torque-free acceleration and deceleration on the x-axis,
see picture below for illustration.

Axe X
-
v
g - 1l
-
>
=
-
-
v
~
-
- 2
3

For applying a variable load ratio for an XY gantry, check the box “Use a force ratio”,
during the group definition. See example below. There are three parameters to input:

e Y Offset for force ratio
e Primary Y Motor Force Ratio
e Secondary Y Motor Force Ratio

A correct definition for these three parameters is not simple. In case of interest in this
function, please call Newport.

XPSDocumentation V2.6.x (08/11)

44

XPS

Software Tools

A TRE VAR 18 Driingiipunt syt W indums mtneant | aptmen

FIoBaConpEe B

[GROUPS]
SingleAxisIinUse =
SpindlelnUse =
XYInUse = MyXYGantry
XYZInUse =
MultipleAxesInUse =

[MyXYGantry]
PositionerinUse = X, Y

This is an example of a system.ini file with one XY gantry:

InitializationAndHomeSearchSequence = YThenX

XMappingFileName =
YMappingFileName =

;—- Gantry Force Ratio parameters
Y OffsetForForceRatio = 0
PrimaryYForceRatio = 0
SecondaryYForceRatio = 0

[MyXYGantry.X]
PlugNumber = 1
StageName = IMS600LM

;—-- Secondary positioner (X2)
SecondaryPlugNumber = 4
SecondaryStageName = IMS600LM

SecondaryPositionerGantryEndReferencingPosition = 10.2243
SecondaryPositionerGantryEndReferencingTolerance = 0.1
SecondaryPositionerGantryOffsetAfterlnitialization = 7.47

[MyXYGantry.Y]
PlugNumber = 3
StageName = IMS400LM

45

XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

4.9 STAGE - Add from Data Base

With the help of this tool, a stage from the Newport stage data base can be added to the
personal stage data base, called stages.ini. In the lower left corner you can review the
name of the stages that are already in this stage data base. To add a new stage, do the
following:

1.
2.
3.

Select a family name from the list. Double click.
Select the part number corresponding to your hardware. Double click.
Select the driver (corresponding to your hardware) and configuration.

For all continuous rotation stages, you can choose between a ‘“regular” stage
configuration and a “Spindle” configuration. A Spindle is a specific rotary device
with a periodic position reset at 360°, means 360° equals 0°. When defining the
stage as Spindle in the stages.ini, you must assign this stage also to a Spindle group
in the system configuration and vice versa. For details about Spindles, please refer
also to section 7.3.

Once the stage name appears, you can modify it, if you like. The default name is the
Newport part number, but in some cases it makes sense using a different name. That
ways, for instance, it is possible adding the same set of parameters several times in
the stage data base under different stage names. Later, you can modifying certain
parameters, like travel ranges or PID settings, to optimize the stage for different
applications.

The box “Use ESP Compatibility for Hardware detection” is checked by default. If
your stage has an ESP chip inside (see blue ESP compatible sticker on the stage) this
box shall remain checked. Otherwise, with vacuum compatible stages or with old
Newport stages, uncheck this box.

Click on “Add new stage” to add the stage.

MAs TR VAR T8 Drdingiipunt igt W imdewe minent | agte e

@ @ oo .o

XPSDocumentation V2.6.x (08/11)

46

XPS Software Tools

4.10 STAGE - Add Custom Stage

This tool supports the configuration of the XPS controller to a stage or to a positioning
device that is not made by Newport. For detailed information about this tool, please
refer to the document ConfigurationWizard.pdf provided under the main tag
DOCUMENTATION.

BT RE ATV Dbt sl - Windows btee st Lapiew

O [i smews o ’

R I T . 3. -

P esrmes paree bmee Teve

W ot G T

Tl ant FT/BAGORD B

4.11 STAGE - Modify

This tool allows you to review and modify all parameters of all stages included in the
stages.ini. Only experienced users should modify these parameters. For the exact
meaning of the different parameters, please refer to the document
ConfigurationWizard.pdf, accessible from the main tag DOCUMENTATION.

WA VL LA DV D bogitemt gt Windawn Wete-wet | ageaee

[o - .. -

S L e o

47 XPSDocumentation V2.6.x (08/11)

XPS Software Tools

To modify parameters of a stage, do the following:

1. Select a stage from the list. Click on Modify.

2. Scroll down to the section that contains the parameters that you want to modify.
Parameters, that require quite common changes, are the minimum and the maximum
target position of a rotation stage. For example, to enable larger rotations of a
rotation stage that is not configured as a Spindle, set the maximum target position to
a very high value and the minimum target position to a very low value. In this case it
is also required to disable the limit switches of the rotation stage, see stage manual
for details.

3. When done, click "Save" to apply the new values, else click Cancel.
4. To take the new values into account, you need to reboot the controller.

The same tool allows also duplicating stages in the stages.ini (in most case some
parameters are modified as a second step) or to delete stages from the stages.ini.

XPSDocumentation V2.6.x (08/11) 48

XPS

Software Tools

412 FRONT PANEL - Move

The move page provides access to basic group functions like initialize, home, or motor
disable, and allows executing relative and absolute moves.

The move page provides also a convenient review of all important group information
like group names, group states and positions. All motion groups are listed in the MOVE

page.
NOTE
A spindle group can do relative moves and absolute moves. So it can be used in the
MOVE page.
FRONT PANEL Menu Move Submenu
T, T T T T T S
< - ‘ 2
el — - —
name — ——
B oSl e/
Posioner G G R L Au— S © AR UGN 1
pmm) 'l A 4 4 Ay
v
Kill - e
all groups o V> Newport
Positioner Mave to the Move to the
velocity absolute position relative pesition
Absolute Relative
positions position

49 XPSDocumentation V2.6.x (08/11)

XPS Software Tools

413 FRONT PANEL - Jog

The jog page allows executing a jog motion. A jog motion is a continuous motion,
where only the speed and acceleration are defined, but no target position. Speed and
acceleration can be changed during the motion (but not during the acceleration period).

For a jog motion, the jog mode must be enabled, see “Action” button.

u et .-
u feeman gy —

BsCopp

414 FRONT PANEL - Spindle

The Spindle page provides similar functions to the jog page. However, specific jog
actions are replaced by spindle actions (that only works for Spindle groups).

SRR I T ——

XPSDocumentation V2.6.x (08/11) 50

XPS

Software Tools

4.15

4.16

FRONT PANEL - I/O View

The I/O Review page provides review of all analog and all digital I/O’s of the
controller. To set the outputs, use the page I/O Set.

MAS BTRE VAR I8 Dhdingiipunt iyt Winduwe tnnt | aghem

| e—— ne LA I N R I D B B R L N B L RN L

LR S B O SR S SR BR BN S

FRONT PANEL - I/O Set

The I/0 set page provides access to set the analog and digital outputs of the controller.

MAs TR VAR T8 Drdingiipunt igt W imdewe minent | agte e

e DR R R TR R E R
&
& 3

| —— e — | emee b b

i
i

e -t

51 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

4.17

4.18

FRONT PANEL - Positioner Errors

The positioner errors page is an important page for trouble-shooting. When
encountering any problems during the use of the system, you find here valuable
information about the errors related to the positioners.

Note that all positioner errors encountered since the last “Clear all positioner errors” are
displayed, even if some of the errors may not be present anymore. The button “Refresh”
refreshes the error page. This means, new errors are displayed, but old errors that do not
exist anymore, are not removed.

To clear the errors, use the button “Clear all positioner errors”.

O - Sromtmmsvese F

VN M D D g - L - . ‘= e -

Pt -y

Aaaaadd oo d Pwasbsdesliabhiibimsnsntnlnn
oo .

r—— VD= e

FRONT PANEL - Hardware Status

The Hardware status page is another important page for trouble-shooting. You find
more valuable information related to your hardware here. Not all information is related
to an error.

-— .

XPSDocumentation V2.6.x (08/11)

52

XPS Software Tools

4.19 FRONT PANEL - Driver Status

The Driver status page is another important page for trouble-shooting. Here you find
valuable information related to the status of the driver. Not all information is related to
an error.

The type of status information that you can get depends on the drivers used.

W e e St oy

ol l o (1))
—ba b

et (1) L
- —tven

420 TERMINAL

The terminal tool allows executing all functions of the XPS controller. It provides also a
convenient method for generating executable TCL scripts. For more details about TCL
scripts, see chapter 16.1.

SR T ——

” —— Cem———

B] Lhwer bevery J 1iA Sammmter oy ®agiy
L — 2 — |
A Mewport. ® e ———]

BsCopp

53 XPSDocumentation V2.6.x (08/11)

XPS Software Tools

To execute a function from the Terminal, do the following:
1. Select a function and double-click to validate the selection.
2. Define the arguments for the function.

For functions with dynamic arguments “ADD” and “REMOVE” buttons are

TR

available. Alternative, you can use a “,” as separator between different arguments.

o TR VAR I Iotngipunt syt Winduws it | gt

° “ am R - o »

W i e St o LR TN L

Semimn bt Vo b R

e] 2
> o T
v AP e
-~ e—— -

B _Abear haary | 1A Sommwtnr -y #agiay

O Newgon. Ery——r—

For some arguments like ExtendedEventName, ExtendedActionName or
GatheringType, the argument name is not directly accessible. In these cases, define
the first part of the argument name, then click in the choice field again and define
the second part of the argument name. See example below for defining the
GatheringType with the function GatheringConfigurationSet():

Step 1 Step 22 Step 3:
Select the positioner name Click in the choice field again. To add another parameter, press ADD.
and click. Select parameter name and click. Repeat step 1 and step 2.

Fusctive argument(e] Latharnngl wafgeral Pamitinn oty weoetia) Lothermyl eotogus sfsnetel fwnclion argusmast) Cotharmglontiger otins

- »

—— = = = e

XPSDocumentation V2.6.x (08/11) 54

XPS

Software Tools

3. When all arguments are defined, click “OK”. Now you can review the final syntax
of the function and can make final text changes, if you want. When done, click
“Execute”.

MAR PTRE VAR I Ihtngipust igt Winduws it | agbmen

Il T L. R LT -

B et beer Sawmary 1A Sommmmter -y #agiay
O Newgon. Ery——r—

4. When the function is executed, you’ll see the controller’s response in the Received
message window. A returned O means that the function has been executed
successfully. In all other cases, you’ll receive an error code. Use the function
ErrorStringGet() to get more information about the error.

MAR PTRE VAR I Ihtngipust igt Winduws it | agbmen

W i e St o R TN L

The functions are listed in alphabetic order. Only those functions are listed that are
available with the current system configuration. For example, if the system consists
only of SingleAxis groups, no group specific functions for Spindles, XY groups, XYZ
groups or MultipleAxis groups will be listed.

55 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

4.21 TUNING - Auto-Scaling

Auto-scaling is only available with positioners that feature a direct drive motor such as
XM, IMS-LM or RGV100BL. To guarantee consistent performance of these stages, it is
strongly recommended to perform an Auto-scaling once the load is attached to the
stage. During the auto-scaling, the XPS controller measures the mass (inertia with

rotation stages) on the positioner and returns recommended values for the Scaling
Acceleration parameter.

Repeat Auto-scaling with any major change of the payload on the positioner. With no
major change of the payload, there is no need to redo the auto-scaling.

To perform an auto-scaling, do the following:

1. Select the main tag TUNING. Select a positioner name. The following screen
appears:

a Yot | 12 rvm | BRARL] eaie r o
e ey |
- —————
oo cmem——e @ers posmmstere € smats sos omstere
sl
ol
~
—— —— o
Al e o
—_—l Sexe_l_Samt] SuStnt]_ _Shme J
S g | ~ee s o r—
- .
N mepot B
-~ . BN

2. Click “Kill group”, then click “Auto-scaling”. The stage vibrates for a couple of
seconds. Then, the following message appears:

R Rl G Wt ate b Sy ove. VBT o poas A

- - - v | -
I S S —
P e - -
- 3
~ | —- |t
- ~; | s | AT .S
S w— |y B
[
O Mt 8 E—Ty——re—
XPSDocumentation V2.6.x (08/11) 56

XPS

Software Tools

3. To save the recommended values, click “Save”. To apply these new values, you
need to reboot the controller. Your positioner should now work properly.

Repeat auto-scaling with any major change of the payload of the positioner.

NOTE

All other functions of the tuning page should be used only by experienced users.

4.22 TUNING - Auto-Tuning

NOTE

Apart from the Auto-scaling feature, which is described in the previous chapter,
only experienced motion control users should use the TUNING tool of the XPS
controller.

All Newport positioners are supplied with default tuning parameters that provide
consistent high quality results for the vast majority of applications. Use the tuning
tool with Newport positioners only when not fully satisfied with the dynamic
behavior of your positioners.

The following provides a brief description of the TUNING tool:

1. Select a positioner name. The following screen appears:

O =1
Phee e PN e Deasaas e

v B * | - o Oeic

| eeve ter g e smarmry L e P el

(O] 3]

(A) 3

B T | S e |t
Sete by | Sate [Shart st 2]
. L}
W Mgt 6

57 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

2.

4.

5.

Perform a gathering with your current parameter settings.

To do so, Initialize and home your positioner, then move to the desired start
position. Define the gathering data: For a stage tuning, Newport recommends
gathering only the following error and the current position. Define a motion
distance. Define the frequency divisor. The frequency divisor defines the sampling
rate of the gathering. A frequency divisor equal to one means one data point is
gathered every servo cycle, or every 100 ys. With most positioners, it is sufficient to
set a value of 10, means one data set every 1 ms. Define the number of points in
relation to the distance, the frequency divisor, the velocity and the acceleration.
Define the velocity, acceleration and jerk time. When done, click “Set & Move”.

The gathering results are displayed in a Java applet window. To see the results, you
have to install Java™ Runtime Environment Standard Edition on your computer.
The XPS provides a direct link to download Java™ Runtime when not installed on
your computer.

M TRE LAR I IhArmbppiet | patng Sie Wi boter wat | aptuoes

B A I Dt it " apy M »

ke 5 - e DK A

Vo — ——— R .

. !‘l .
l..-l'.'l
3

o W e Lo

T start FToMaConED W

When satisfied with the results, there is no need to tune the stage. When not
satisfied, go back to the tuning page and move back to the start position.

Next to the button auto-tuning you have a choice field for the Auto-tuning
parameters. Select “Short settling” or “High robustness”. Choose “Short settling” to
improve the settling time after a motion or to reduce the following error during the
motion. Short settling will define “high” PID vales for your stage, but there is a risk
of oscillations. Choose “High robustness” to improve the robustness of your system
and to avoid oscillations during or after a motion. A “High robustness” tuning, for
instance, can avoid oscillation of rotation stage with high payload inertias. When
done with your selection, press Auto-tuning.

XPSDocumentation V2.6.x (08/11)

58

XPS Software Tools

6. The stage vibrates for a couple of seconds. When done the following screen appears:

MR TRE VAR e Drtngiipeet iyt Windewe it | gt

© Geady wete bonm pume by

et v .-

7. Press “Set” to apply the new parameters. “Set” only changes the temporary working
parameters. You can still recover the old parameters by rebooting the system.

8. To test the behavior of your system with the new parameters, redo the same data
gathering and compare the results. You can now also make manual changes to the
settings. For further instructions and recheck the behavior.

9. To permanently save the settings to the stages.ini, press “Save”. “Save” overwrites
the current settings in your stages.ini. Press “Save” only when fully satisfied with
the results. For recovery, Newport recommends taking always a copy of the
stages.ini with the old settings.

NOTE

For further information about the meaning of the different tuning parameters, see
chapter 14.0.

5.0 FTP (File Transfer Protocol) Connection

FTP is the protocol for exchanging files over the Internet. It works in the same way as
HTTP for transferring web pages from a server to a user's browser and SMTP for
transferring electronic mail across the Internet. FTP uses the Internet TCP/IP protocol to
enable data transfer.

An FTP connection is needed to review the information inside the XPS controller, to
download documentation, to transfer configuration files (to modify them directly), to
transfer TCL scripts, etc...

To connect to the FTP server:
e Start the XPS controller and wait until the boot sequence completes.
e Open an Internet browser window.

e Connect to the FTP server with the IP address of the controller:

59 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

Example

1 o 1w 1. 30, 2

e Itis normal that the following error message appears:

2 Windown cormot acomms B fokder, Mahe sure pou byped the Nie name comectly and that you have permeson ts

\y accent the Fokder

Coray
220 Vawerts PP server (VeWorks 5 4 2) ready

=

e Press OK.

e Select “File” from the top menu of the Internet browser, and then “Connect as...”.
The following window appears:

T mg o100 10 10 0 et ——

o+ B -

r- Tt) - p—

M- -
——— R -
—

.y - " P | o

§, Tt - e st ® s o g S - S
. — - — - - -
— ——

e——— et b B e

Caz oo)

———— .

Specify the XPS user name and XPS password. Press log on. The folders of the XPS
controller are displayed (see below). Browse through the different folders and transfer
data from or to your host PC the same way as with Windows Explorer.

ranel? heviet

o~ Pow Ppuine ok ..
|
O - ©- 3| Pows o | - |
st 5 e A2 s 30 20 cBe ';
Coogie - | v pwesee + @ Dntkowe Bjopoen S E
Py » s~ - Tee el |
¢ JE. [t | "o Pt 0o o e
* Qe " v e F e 0000 2008 ho8
" § Wy Comptw LMk Vha Fa 200 2000 g0 30
* Sy et Mo [] Phe Pricher 00082008 1 8
Becyce
W e e

AO(.'O‘
. Poywmegr
. L
- wkd .y

Lt A ® rerew

XPSDocumentation V2.6.x (08/11)

60

XPS

Software Tools

6.0 Maintenance and Service

6.1

6.2

6.3

Enclosure Cleaning

The XPS Controller/Driver should only be cleaned with a sufficient amount of soapy
water solution. Do not use an acetone or alcohol solution, this will damage the finish of
the enclosure.

Obtaining Service

The XPS Controller/Driver contains no user serviceable parts. To obtain information
regarding factory service, contact Newport Corporation or your Newport representative
and be ready with the following information:

e Instrument model number (on front panel).
e Instrument serial number (on rear panel) or original order number.
e Description of the problem.

If the instrument is to be returned to Newport Corporation, a Return Number will be
issued, which should be referenced in the shipping documents.

Complete a copy of the Service Form as shown at the end of this User’s Manual and
include it with your shipment.

Troubleshooting

For troubleshooting, the user can query different error and status information from the
controller. The XPS controller can provide the Positioner Error, the Positioner
Hardware Status, the Positioner Driver Status, the Group Status, and also a general
system error.

If there is an error during command execution, the controller will return an error code.
The command ErrorStringGet can be used to retrieve the description belonging to the
error code.

The following function commands are used to retrieve Positioner Error and Positioner
Hardware Status:

e PositionerErrorGet: Returns an error code.
e PositionerErrorStringGet: Returns the description of the error code.
e PositionerHardwareStatusGet: Returns the status code.

e PositionerHardwareStatusStringGet: Returns the description belonging to the status
code.

In a fault condition, it is also very important to know the current status of the group and
the cause of the transition from the previous group status to the current group state. The
following functions can be use to retrieve the Group Status:

e GroupStatusGet: Returns the group status code.

e GroupStatusStringGet: Returns the description belonging to the group status code.

NOTE

Refer to the Programmer’s Manual for a complete list of status and error codes.
Also refer to chapter 4.0 for troubleshooting the XPS controller with the help of
the Newport web utilities.

61 XPSDocumentation V2.6.x (08/11)

XPS

Software Tools

6.4

Updating the Firmware Version of Your XPS Controller

Users can regularly update the controller with new firmware releases. To review the
current available versions, refer to the FTP server:

ftp://download newport.com/MotionControl/Current/MotionControllers/XPS/Updates/

There are separate folders for the different versions, each folder contains the Firmware
pack, the RC IHM and the Stage data base.

To install a new version, follow these instructions:

1. Double click on the XPS-C8_Install.exe file (in FirmwarePack) and follow the
instructions without rebooting the controller.

2. Double click on the StageDBInstallexe file (in StageDataBase), follow the
instructions and reboot the controller.

3. Uninstall both installers. To do so, click on Windows Start menu — Programs —
Newport — XPS Tools — Firmware Pack FTP Updater — Uninstall Firmware Pack
FTP Updater, then click on “Accept”, and “OK”.

A history file for the firmware and the stage database is added to the web
documentation.

XPSDocumentation V2.6.x (08/11)

62

XPS

Motion Tutorial

Entry Angle
4

7.0

XPS Architecture

Motion Tutorial

7.1

Introduction

The architecture of the XPS firmware is based upon an object-oriented approach.
Objects are key to understanding object-oriented technology. Real-world objects share
two characteristics: state and behavior. Software objects are modeled after real-world
objects, so they have state and behavior too. A software object maintains its state in one
or more variables. A variable is an item of data named by an identifier. A software
object implements its behavior with methods. A method is a function (subroutine)
associated with an object. Therefore, an object is a software bundle of variables and
related methods. Encapsulating related variables and methods into a neat software
bundle is a simple yet powerful idea that provides two primary benefits to software
developers:

e Modularity: The source code for an object can be written and maintained
independently of the source code for other objects. Also, an object can be easily
passed around in the system.

e Information hiding: An object has a public interface that other objects can use to
communicate with it. The object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it.

All objects have a life cycle and state diagrams are used to show the life cycle of the
objects. The transition from one state to another will be initiated by the reception of a
message from another object. Like all other diagrams, state diagrams can be nested in
different layers to keep them simple and easy to read.

63 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

7.2

State Diagrams

State diagrams are a way to describe the behavior of each group or object. They
represent each steady state of a group and every transition between states in an
exhaustive way. State diagrams contain the following components:

® Instiad Poimt
) Fnal Poim
' State Name State
—_— Transition Between 2 States

xﬁ Choice Point

Here is an example of a simple stage diagram:

'] T—‘
First Stat S d Stat
@—>» Fust State]-—b- acon ae;

Instiad e —
Point

ppr——

] = Third State

L4
Choice
Pont

\ -

o <—

Final Point §
State diagrams can also include sub state diagrams:

(=]

—»»—-}{ First State —-D{Socor-dStatu I

————{ }—>={ Third State

Choice
Point

¢

’

The state diagrams that are specific to the XPS controller follow the same format.
Within the XPS controller, all positioners are assigned to different motion groups.
These motion groups have the following common state diagram:

—
<<

$ Groupintiakzel)

‘Motor |
intiadzation
_state

Not initialized state

At ' F

I GroupHomeSearch Homing "
Not referenced state I >{ Homing state -

XPSDocumentation V2.6.x (08/11) 64

XPS

Motion Tutorial

As shown in the above state diagram, all groups have to be first initialized and then
homed before any group is ready to perform any other function. Once the group is
homed, it is in a ready state. There are five different motion groups available with the
XPS controller:

e SingleAxis group

e Spindle group

e XY group

e XYZ group

e MultipleAxes group

Each group also has group specific states. Please refer to the Programmer’s Manual for
group-specific state diagrams for the five different groups.

All positioners of a group are bundled together for security handling. Security handling
on different groups is treated independently. Following is a list of the different faults
and consequences that can happen in the XPS controller:

Error type Consequence
General inhibition Emergency stop
Motor fault
Encoder fault
End of travel Emergency brake
Following error Motion disable

e After an emergency brake or an emergency stop, both considered major faults, the
corresponding group goes to a “not initialized” state: the system has to be initialized
and homed again before any further motion.

e After a following error, as it is considered a minor fault, the corresponding group
goes to a “Disable” state: a GroupMotionEnable() command puts the system back
into “ready” state.

At any given time the group status can be queried from the controller. The function
GroupStatusGet (GroupName) returns the current state number. The state numbers
are associated to the state and to the event that has generated the transition (if any). The
function GroupStatusStringGet (StateNumber) returns the state description
corresponding to the state number.

65 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Called function

1. Grouplnitialize 7. GroupMoveAbort 13. GroupAnalogTrackingModeEnable

2. GroupHomeSearch 8. GroupKill or KillAll 14. GroupAnalogTrackingModeDisable
3. GroupMoveAbsolute 9. GroupSpinParametersSet | 15. GrouplnitializeWithEncoderCalibration
4. GroupMoveRelative 10. GroupSpinModeStop 16. GroupReferencingStart

5. GroupMotionDisable 11. SpinSlaveModeEnable 17. GroupReferencingStop

6. GroupMotionEnable 12. SpinSlaveModeDisable

7.3

State diagram of the XPS controller.

Motion Groups

Within the XPS controller, each positioner or axis of motion must be assigned to a
motion group. This “group” can either be a SingleAxis group, a Spindle group, an XY
group, an XYZ group or a MultipleAxes group. Once defined, XPS automatically
manages all safeties and trajectories of the motion group from the same function. For
instance, the function GroupHomeSearch (GroupName) automatically homes the
whole motion group GroupName independent of its definition as a SingleAxis group, a
Spindle group, an XY group, an XYZ group or a MultipleAxes group. Within the
system configuration file, system.ini, you can select the home sequence as sequential,
one positioner after the other, or in parallel, with all positioners homing at the same
time. With a single function such as GroupMoveAbsolute (GroupName, Position),
the whole motion group, GroupName, is moved synchronously to the defined absolute
position, where “Position” may be one or more parameters depending on the number of
positioners this motion group contains. You can also use this same command to move a
single positioner of a group to an absolute position by using the syntax
GroupMoveAbsolute (GroupName.PositionerName, Positionl). These powerful,
object-oriented functions are not only extremely intuitive and easy to use, they are also
more consistent with other programming methods and reduce the number of commands
to be learned by the user compared to traditional mnemonic commands.

Another benefit provided by motion groups is improved error handling. For instance,
whenever an error occurs due to a following error or a loss of the end-of-run signal,
only the motion group where the error originated gets affected (disabled) while all other
motion groups remain active and enabled. The XPS manages these events
automatically. This greatly reduces complexity and improves the security and safety of
sensitive applications.

XPSDocumentation V2.6.x (08/11)

66

XPS

Motion Tutorial

731

732

733

7.34

735

7.4

To illustrate this, let’s consider a typical scanning application. If there is an error on the
stepping axis of the XY table (which is set-up as an XY group), then only the XY table
will be disabled while the auto-focusing tool (a vertical stage that is defined as a
separate SingleAxis group) can continue to function.

Each of the four available motion groups has specific features:

Specific SingleAxis Group Features

Master-Slave — To enable this function the slaved positioner must be defined as a
SingleAxis group. The master positioner can be a member of any motion group. So it is
possible to define a Positioner as a slave of another positioner that is part of an XYZ

group.

Specific Spindle Group Features

The Spindle Group is a single positioner group that enables continuous rotations with no
limits and with a periodic position reset.

Master-Slave - In Master-Slave spindle mode the master and the slave group must be
Spindle groups.

Specific XY Group Features

Line-Arc trajectories, XY mapping — These features are only available with XY groups.
It is not possible for an XY group to perform a Spline or a PVT trajectory. Also, an XY
group cannot be slaved to another group, however, any positioner of an XY group can
be a master to a slaved SingleAxis group.

Specific XYZ Group Features

Spline trajectories, XYZ mapping — These features are only available with XYZ groups.
It is not possible for an XYZ group to perform a Line-Arc or a PVT trajectory. Also, an
XYZ group cannot be slaved to another group, however, any positioner of an XYZ
group can be a master to a slaved SingleAxis group.

Specific MultipleAxes Features

PVT trajectories — PVT trajectories are only available with MultipleAxes groups. It is
not possible for a MutipleAxes group to perform a Line-Arc or a Spline trajectory. Also,
an XYZ group cannot be slaved to another group. However, any positioner of a
MultipleAxes group can be a master to a slaved SingleAxis group.

For further details on the different types of trajectories (Line-Arc, Spline, PVT) and
how to define these trajectories, please refer to chapter 9.0: “Trajectories®.

For simple point-to-point motion of individual positioners, the most commonly used
group is the SingleAxis group.

Native Units

The XPS controller supports user-defined native units like ym, inches, degrees or
arcsecs. The units for each positioner are set in the configuration file where the
parameter EncoderResolution indicates the number of units per encoder count. When
using the XPS controller with Newport stages, this part of the configuration is done
automatically. Once defined, all motions, speeds and accelerations can be commanded
in the same natural unit without any math needed. All other parameters like stage travel,
maximum speed and all compensations are defined on the same scale as well. This is a
great advantage compared to other controllers that can be commanded only in multiples
of encoder counts, which can be an odd number.

In the XPS controller there are 4 types of position information for each positioner:
TargetPostion, SetpointPosition, FollowingError and CurrentPosition. These are
described as follows:

67 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

The CurrentPosition is the current physical position of the positioner. It is equal to the
encoder position after all compensations (backlash, linear error and mapping) have been
taken into account.

The SetpointPosition is the theoretical position commanded to the servo loop. It is the
position where the positioner should be, during and after the end of the move.

The FollowingError is the difference between the CurrentPosition and the
SetpointPosition.

The TargetPosition is the position where the positioner must be after the completion of
amove.

When the controller receives a new motion command after the previous move is
completed, a new TargetPosition is calculated.

This new target is received as an argument for absolute moves. For relative moves, the
argument is the length of the move and the new target is calculated as the addition of the
current target and the move length. Then the profiler of the controller calculates a set of
SetpointPositions to determine where the positioner should be at each time.

When the positioner is controlled by a digital servo loop with a PID corrector, a part of
the signals sent to the motor of the positioner is a function of the following error. Part of
this function is the integral gain of the PID filter that requires a following error equal to
zero to reach a constant value.

The encoder in the positioner delivers a discrete signal (encoder counts). Take the
example of an encoder with a resolution of 1 and a target position equal to 1.4. The real
position cannot reach the value of the target position (1 or 2 instead of 1.4), so the
following error will never be equal to zero (closest values are +0.6 and -0.4). Thus, due
to integral gain of the PID filter, the system will never settle, but will oscillate between
the positions 1 and 2.

The XPS controller avoids this instability while allowing the use of natural units instead
of encoder counts by using a rounded value of the TargetPosition to calculate the
motion profile and a rounded value for the following error. But the non-rounded value
of the TargetPostion will be stored as final position, so that there is no accumulation of
errors due to rounding in case of successive relative moves.

To understand the difference, consider a positioner with a resolution of 1 that is at the
position 0. This positioner receives a relative motion command of 10.4. At the end of
the motion the CurrentPosition will be 10 and the SetpointPosition will be 10, but the
TargetPosition will be 10.4. The positioner then receives the same relative motion
command again. At the end of this motion the CurrentPosition will be 21, the
SetpointPosition will be 21 and the TargetPosition will be 20.8.

NOTE

When an application requires a sequence of small incremental motion of constant
step size close to the encoder resolution, make sure that the commanded
incremental motion is equal to a multiple of encoder steps.

The TargetPosition, SetpointPosition, CurrentPositon and FollowingError can be
queried from the controller using the appropriate function calls.

XPSDocumentation V2.6.x (08/11)

68

XPS Motion Tutorial

8.0 Motion

8.1 Motion Profiles

When talking about motion commands, we refer to certain strings sent to a motion
controller that will initiate a certain action, usually a motion. The XPS controller
provides several modes of positioning from simple point-to-point motion to the most
complex trajectories. On execution of a motion command, the positioner moves from
the current position to the desired destination. The exact trajectory for the motion is
calculated by a motion profiler. So the motion profiler defines where each of the
positioners should be at each point in time. There are specifics worth mentioning on the
motion profiler used by the XPS controller:

In a classical trapezoidal motion profiler (trapezoidal velocity profile), the acceleration
is an abrupt change. This sudden change in acceleration can cause mechanical
resonance in a dynamic system. In order to eliminate the high frequency portion of the
excitation spectrum generated by a conventional trapezoidal velocity motion profile, the
XPS controller uses a sophisticated SGamma motion profile. Figure 1 shows the
acceleration, velocity and position plot for the SGamma profile.

Jert Velocty
1000 v 1
w0 b/ {
N Al
c/ > Jerk Time \}
B \ m
> \ \,/ |
1000)
¢ g1 02 0
Terw () Teme (1)
Acceletation Potitien
o —
\
|
9 \
2 of i
£ S
9 {
= T 22 03 1
Tere (s} Teme is)

Displacement: 150 e * umits
Maxmum velocay: 0.8 units/s
Maximum accelerason: 12 uns/s’
Minimum jerk time: 0.004 s
Maxmum jerk tme: 0.04 s

Notice: The minsmum displacement lasts at least 4 imes the minimum jerk time
Figure 17: SGamma Motion Profile.

The SGamma motion profile provides better control of dynamic systems. It allows for
perfect control of the excitation spectrum that a move generates. In a multi-axes system
this profile gives better control of each axis independently, but also allows control of the
cross-coupling that are induced by the combined motion of the axes. As shown in figure
1, the acceleration plot is parabolic. The parabola is controlled by the jerk time (jerk

69 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

being the derivative of the acceleration). This parabolic characteristic of the acceleration
allows for a much smoother motion. The jerk time defines the time to reach the
necessary acceleration. One feature of the XPS controller is that it automatically adapts
the jerk time to the step width by defining a minimum and a maximum jerk time. This
auto-adaptation of the jerk time allows a perfect adjustment of the systems behavior to
different motion step sizes.

NOTE

Because of the jerk controlled acceleration time, any move has a duration of at
least four times the jerk time.

For the XPS controller the following parameters need to be configured for the SGamma
profile:

e MaximumVelocity (units/s)

e MaximumAcceleration (units/s?)

e EmergencyDecelerationMultiplier (Applies to Emergency Stop)
e MinimumlJerkTime (s)

e MaximumlJerkTime (s)

The above parameters are set in the stages.ini file for the positioner. When using the
XPS controller with Newport stages these settings are automatically done during the
configuration of the system.

The velocity, acceleration and jerk time parameters can be modified by the function
PositionerSGammaParametersSet().

Example
PositionerSGammaParametersSet (MyGroup.MyStage, 10, 80, 0.02, 0.02)

This function sets the positioner “MyStage” velocity to 10 units/s, acceleration to 80
units/s2 and minimum and maximum jerk time to 0.02 seconds. The set velocity and
acceleration have to be less than the maximum values set in the stages.ini file. These
parameters are not saved if the controller is shut down. After a re-boot of the controller
the parameters will be set back to the values set in the stages.ini file.

In actual use, the XPS places a priority on the displacement position values over the
velocity value. To reach the exact demanded position, it may be possible that the speed
of the positioner varies slightly from the value set in the stages.ini file or by the
PositionerSGammaParametersSet function. So the drawback of the SGamma profile
is that the velocity used during the move can be a little bit different from the velocity
defined in the parameters.

The function, PositionerSGammaExactVelocityAdjustedDisplacementGet(), can be
used as described below to achieve the exact desired speed in applications that require
an accurate value of the velocity during a move. In this case, the velocity value is
adhered to, but the target position can be slightly different from the one required. In
other words, according to the application requirements, the user can choose between
very accurate positions or very accurate velocities.

Example
PositionerSGammaExactVelocityAdjustedDisplacementGet
(MyGroup.MyStage, 50.55, ExactDisplacement)

This function returns the exact displacement for that move with the exact
constant velocity set above (10 mm/s). The result is stored in the variable
ExactDisplacement, for instance 50.552.

GroupMoveAbsolute (MyGroup.MyStage, 50.552)

In the above example, for a position of 50.55 mm, the command returns a value of
50.552. This means that in order for the positioner “MyStage” to achieve the desired

XPSDocumentation V2.6.x (08/11)

70

XPS

Motion Tutorial

8.2

velocity in the most accurate way the commanded position should be 50.552 mm
instead of 50.55 mm.

The XPS can report two different positions. The first one is the SetpointPosition or
theoretical position. This is the position where the stage should be according to the
profile generator.

The second position is the CurrentPosition. This is the actual position as reported by the
positioner’s encoder after taking into account all compensation. The relationship
between the SetpointPosition and the CurrentPosition is as follow:

Following error = SetpointPosition - CurrentPosition
The functions to query the SetpointPosition and the CurrentPosition are:

GroupPositionCurrentGet() and GroupPositionSetpointGet()

Home Search

Home search is a specific motion process. Its goal is to find a reference point along the
travel accurately and repeatedly. The need for this absolute reference point is twofold.
First, in many applications, it is important to know the exact position in space, even
after a power-off cycle. Secondly, to protect the motion device from hitting a travel
obstruction set by the application (or its own hardware travel limits), the controller uses
software limits. To be efficient, the software limits must be referenced accurately before
running the application.

After motor initialization, any motion group must first be homed or referenced before
any further motion can be executed. Here, homing refers to an XPS predefined motion
process that moves a stage to a unique reference position. Referencing refers to a group
state that allows the execution of different motions and the setting of the position
counters to any value (see next section for details). The referencing state provides
flexibility for the definition of custom home search and system recovery processes. It
should only be used by experienced users.

A number of hardware solutions may be used to determine the position of a motion
device. The most common are incremental encoders (these are the ones supported by
XPS). By definition, these encoders can only measure relative position changes and not
absolute positions. The controller keeps track of position changes by incrementing or
decrementing a dedicated counter according to the information received from the
encoder. Since there is no absolute position information, position “zero” is where the
controller was powered on (and the position counter was reset).

To determine an absolute position, the controller must find a reference position that is
unique to the entire travel, called a home switch or origin switch.

An important requirement is that this switch must have the same accuracy as the
encoder pulses.

If the motion device uses a linear scale as a position encoder, the home switch is usually
placed on the same scale and read with the same accuracy.

If, on the other hand, a rotary encoder is used, homing becomes more complicated. To
have the same accuracy, a mark on the encoder disk could be used (called index pulse),
but because the mark repeats every revolution, it does not define a unique point over the
entire travel. An origin switch, on the other hand, placed in the travel of the motion
device is unique, but typically is not accurate or repeatable enough. The solution is to
use both in a dedicated search algorithm as follows.

Figure 18: Home (Origin) Switch and Encoder Index Pulse.

A Home switch (Figure 18) separates the entire travel in two areas: one has a high level
and the other has a low level. The most important part is the transition between the two

71 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

areas. Just looking to the origin switch level, the controller knows already on which side
of the transition the positioner is and which direction to move.

The task of the home search process is to identify one unique index pulse as the
absolute position reference. This is first done by finding the home switch transition and
then the very first index pulse (Figure 19).

Figure 19: Slow-Speed Origin Switch Search.

Labeling the two motion segments D and E, the controller is searching for the origin
switch transition in D and searching for the index pulse in E. To guarantee the best
accuracy possible, both D and E segments must perform at a very low speed and
without stopping in between.

The homing process described has a drawback. At low search speeds, the process could
take a very long time if the positioner happens to start from the one end of travel. To
speed things up, the positioner is moved fast until it is in the vicinity of the origin
switch and then performs the two slow motions, D and E, at half the home search
velocity. The new sequence is shown in Figure 20.

Figure 20: High/Low-Speed Home (Origin) Switch Search.

Motion segment B is performed at high speed, with the pre-programmed home search
speed. When the home switch transition is encountered, the motion device stops (with
an overshoot), reverses direction and searches for the switch transition again, this time
at half the velocity (segment C). Once the switch transition is encountered, it stops
again with an overshoot, reverses direction and executes D and E with one tenth of the
programmed home search speed.

In the case when the positioner starts from the other end of the home switch transition,
the routine is shown in Figure 21.

Figure 21: Home (Origin) Search from Opposite Direction.

The positioner moves at high speed up to the home switch transition (segment A) and
then executes segments B, C, D and E.

This home search process guarantees that the last segment, E, is always performed in
the positive direction of travel and at the same reduced speed. This method ensures an
accurate and repeatable reference position.

XPSDocumentation V2.6.x (08/11)

72

XPS

Motion Tutorial

There are 8 different home search processes available in the XPS controller:

e MechnicalZeroAndIndexHomeSearch is used when the positioner has a hardware
home switch plus a zero index from the encoder. This process is the default for most
of Newport standard stages as described above.

e MechanicalZeroHomeSearch is used with positioners that have a hardware home
switch but no zero index from the encoder.

e IndexHomeSearch is used with positioners that have a home index, but no home
switch signal. In this process, the positioner always moves initially in the same
direction to find the index. When a limit switch is detected, the direction of motion
reverses until the index is found. Note: For users with CIEO3 boards, if a limit is
detected before the index, there will be an emergency brake and the group will go in
NOT_INITTALIZED status.

e CurrentPositionAsHome is used when the positioner has no home switch or index.
This process will keep the positioner’s home at its current location.

e MinusEndOfRunAndIndexHomeSearch uses the positioner’s minus end-of-run
limit as a hardware home switch and a zero index from the encoder. This process is
comparable to MechanicalZeroAndIndexHomeSearch, but uses the minus end-of-
run limit signal as hardware home switch. The positioner homes to a position that is
different from the MechanicalZeroAndIndexHomeSearch location.

e MinusEndOfRunHomeSearch uses the positioner’s minus end-of-run limit for
homing.

¢ PlusEndOfRunHomeSearch uses the positioner’s plus end-of-run limit for
homing. Note: This home search works only with the CIEOS board or later versions.

The home search process is set up in the stages.ini file. When using the XPS controller
with Newport stages, this setting is done automatically with the configuration of the
system. The home search velocity, acceleration and time-out are also set up in the
stages.ini file.

Each motion group can either be homed “together” or “sequentially”, meaning all
positioners belonging to that group home at the same time in parallel or all the
positioners home one after the other, respectively. This option is also set up in the
system.ini file or during configuration.

A Home search can be executed with all motion groups and any motion group MUST
be homed before any further motion can be executed. To home a motion group that is in
a “ready” state, that motion group must first be “killed”” and then “re-initialized”.

Example
This is the sequence of functions that initialize and home a motion group.

Grouplnitialize (MyGroup)
GroupHomeSearch (MyGroup)

GroupKill MyGroup)

73 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

8.3

Referencing State

The XPS predefined home search processes described in the previous section, might not
be compatible with all motion devices or might not be always executable. For instance
if there is a risk of collision during a standard home search process. In other situations, a
home search process might not be desirable. For example, to ensure that the stages have
not moved, the current positions are stored to memory. In this case it is sufficient to
reinitialize the system by setting the position counters to the stored position values.

For these special situations, the XPS controller offers the referencing state as an
alternative to the predefined XPS home search processes.

NOTE

The referencing state should be only used by experienced users. Incorrect use
could cause damage.

The referencing state is a parallel state to the homing state, see state diagram page 76,
Figure 22. To enter the referencing state, send the function
GroupReferencingStart(GroupName) while the group is in the NOT REFERENCED
state.

In the referencing state, the function

GroupReferencingA ctionExecute(PositionerName, Action, Sensor, Parameter) is
available to perform certain actions like moves, position latches of reference signal
transitions, or position resets. The function
PositionerSGammaParametersSet(PositionerName) can be used to change the
velocity, acceleration and jerk time parameters.

To leave the referencing state, send the function
GroupReferencingStop(GroupName). The Group will be in the HOMED state, state
number 11.

The syntax and function of the function
GroupReferencingA ctionExecute(PositionerName, Action, Sensor, Parameter) will
be discussed in detail. With this function there are four parameter to specify:

e PositionerName is the name of the positioner on which this function is executed.

e Action is the type of action that is executed. There are eight actions that can be
distinguished in three categories: Moves that stop on a sensor event, moves of
certain displacement, and position counter reset actions.

e Sensor is the sensor used for those actions that stop on a sensor event. It can be
MechanicalZero, MinusEndOfRun, or None.

e Parameter is either a position or velocity value and provides further input to the
function.

The following table summarizes all possible configurations:

Sensor Parameter
Action MechanicalZero MinusEndOfRun None Position Velocity
LatchOnLowToHighTransition v v v
LatchOnHighToLowTransition v v v
LatchOnIndex \Y \
LatchOnIndexAfterSensorHighToLowTransition v v v
SetPosition v v
SetPositionToHomePreset \Y
MoveToPreviouslyLatchedPosition \Y \Y
MoveRelative \Y \

XPSDocumentation V2.6.x (08/11)

74

XPS

Motion Tutorial

831

832

Move on sensor events

The “move on sensor events” start a motion at a defined velocity, latches the position
when a state transition of a certain sensor is detected, then stops the motion. There are
four possible actions under this category:

e LatchOnLowToHighTransition

e LatchOnHighToLowTransition

e LatchOnIndex

e LatchOnIndexAfterSensorHighToLow

With LatchOnLowToHighTransition and LatchOnHighToLowTransition, latching
happens when the right transition on the defined sensor occurs. The sensor can be either
MechanicalZero or MinusEndOfRun. With LatchOnIndex and
LatchOnIndexAfterSensorHighToLow, the latching happens on the index signal.
With LatchOnIndexAfterSensorHighToLow the latching happens on the first index
after a high to low transition on the defined sensor (MechanicalZero or
MinusEndOfRun). Because of the dedicated hardware circuitries used for the position
latch, there is essentially no latency between sensor transition detection and position
acquisition.

In all cases, the motion stops after the latch. However, this means that the motion
doesn’t rest on the sensor transition, but at some small distance from it. To move
exactly to the position of the sensor ftransition, wuse the action
MoveToPreviouslyLatchedPosition.

The latch does not change the current position value. In order to set the current position
value, use the action SetPosition or SetPositionToHomePreset, for instance, after a
MoveToPreviouslyLatchedPosition.

In the referencing state, the limit switch securities are still enabled until the
MinusEndOfRun sensor is specified with a GroupReferencingActionExecute()
function. When specified, the limit switch securities get disabled and will only get re-
enabled with the function GroupReferencingStop().

The Parameter is a signed velocity (floating point). This means that the direction of
motion is specified by the sign of the parameter.

Moves of Certain Displacements
These two move commands which don’t use the same parameters, are explained below.
e MoveRelative

The action MoveRelative allows commanding a relative move of a positioner
similar to the function GroupMoveRelative. However, the function
GroupMoveRelative is not available in the referencing state. The relative move is
specified by a positive or negative displacement. The move is done with the
SGamma profiler. The speed and acceleration are the default values, or the last ones
defined by either a move on sensor event, a MoveToPreviouslyLatchedPosition, or
a PositionerSGammaParametersSet.

e MoveToPreviouslyLatchedPosition

This action moves the positioner to the last latched position, see section 8.3.1:
“Move on sensor events* for details. It verifies there was a position latched since
this last GroupReferencingStart call. This is important because an old latched
position can still be in memory from a previous home search or referencing. And
moving to this previous latched position could have unexpected results. The move is
done with the SGamma profiler. The speed is specified by a parameter. The
acceleration is the default value, or the last ones defined by a
PositionerSGammaParametersSet.

75 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

833

834

Position Counter Resets

The “position counter resets” sets the current position to a certain value. There are two
options: SetPosition and SetPositionToHomePreset. The main use of these actions is
when the positioner is at a well defined reference position after a
MoveToPreviouslyLatchedPosition action.

Another use of this action is for a “soft” system start by referencing a group to a known,
set position, without executing a home search process, for example. In this case, a
suggested sequence of functions follows:

GroupReferencingStart(GroupName)

GroupReferencingA ctionExecute(PositionerName, “SetPosition”,
“None”, KnownCurrentPosition)

GroupReferencingStop(GroupName)

SetPosition sets the current position to a value defined by a parameter.
SetPositionToHomePreset sets the current position to the HomePreset value stored in
the stages.ini configuration file. It is equivalent to a SetPosition of the same positioner
to the HomePreset value.

It is important that all positioners of a motion group are referenced to a position using
the SetPosition or SetPositionToHomePreset before leaving referencing state.

State Diagram

The referencing state is a parallel state to the homing state. It is between the
NotReferenced state and the Ready state. Please see state diagram below:

Figure 22: State Diagram.

XPSDocumentation V2.6.x (08/11)

76

XPS

Motion Tutorial

835

84

Example: MechanicalZeroAndIndexHomeSearch

The following sequence of functions has the same effect as the
MechanicalZeroAndIndexHomeSearch:

GroupReferencingStart(GroupName)
PositionerHardwareStatusGet (PositionerName, &status)

if ((status & 4) == 0) { /I 4 is the Mechanical zero mask on the hardware
status

GroupReferencingActionExecute(PositionerName,
“LatchOnLowToHighTransition”, “MechanicalZero, -10)

}

GroupReferencingActionExecute(PositionerName,
“LatchOnHighToLowTransition”, “MechanicalZero”, 10)
GroupReferencingActionExecute(PositionerName,
“LatchOnLowToHighTransition”, “MechanicalZero”, -5)
GroupReferencingActionExecute(PositionerName,
“LatchOnindexAfterSensorHighToLow”, “MechanicalZero”, 5)
GroupReferencingActionExecute(PositionerName,
“MoveToPreviouslyLatchedPosition”, “None”, 5)
GroupReferencingActionExecute(PositionerName,
“SetPositionToHomepreset”, “None”, 0)
GroupReferencingStop(GroupName)

Move

A move is a point-to-point motion. On execution of a move command, the motion
device moves from a current position to a desired destination (absolute move) or by a
defined increment (relative move). During the motion the controller is monitoring the
feedback of the positioner and is updating the output based upon the following error.
The XPS controller’s position servo is being updated at 10 kHz and the profile
generator at 2.5 kHz, providing highly accurate closed loop positioning. Between
profiler and corrector there is a time-based linear interpolation to accommodate for the
different frequencies.

There are two types of moves that can be commanded: an absolute move and a relative
move. For an absolute move the positioner will move relative to the HomePreset
position as defined in the stages.ini file. In most cases the HomePreset is 0, which
makes the home position equal to the 0 position of the positioner. For a relative move
the positioner will move relative to the current TargetPosition. In relative moves, it is
possible to make successive moves that are not equal to an integer of an encoder steps
without accumulating errors. See section 8.4 for further details.

Absolute and relative moves can be commanded to positioners and to motion groups.
When commanding a move to a positioner, only the position parameter for that
positioner must be provided. When commanding a move to a motion group, the
appropriate number of position parameters must be provided with the move command.
For instance for a move command to an XYZ group, 3 position parameters must be
defined.

When commanding a move to a motion group, all positioners of that group will move
synchronously. It means at any time, any positioner of that group has executed the same
part of its trajectory, while the “slowest” positioner defines the speed and acceleration
of the other positioners. All positioners will start and stop their motion at the same time.
This type of motion is also known as linear interpolation.

The functions for absolute and relative motions are GroupMoveAbsolute() and
GroupMoveRelative() respectively.

77 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

8.5

Example

A motion system consist of one XY group called ScanTable and one SingleAxis group
called FocusStage. ScanTable has two positioners in use, called ScanAxis and StepAxis.

GroupHomeSearch (ScanTable)

GroupHomeSearch (FocusStage)

After homing is completed...

GroupPositionCurrentGet (ScanTable, Pos1, Pos2)

...will return 0 to Posl and 0 to Pos2, assuming PresetHome = 0.
GroupPositionCurrentGet (FocusStage, Pos3)

Will return O to Pos3, assuming HomePreset = 0.
GroupMoveAbsolute (ScanTable, 100, 50)
GroupMoveAbsolute (ScanTable.StepAxis, -20)

The second move is only for one positioner of that group and can be only
executed after the first move is completed. After all moves are completed. ..

GroupPositionCurrentGet (ScanTable, Pos1, Pos2)
...will return 100 to Posl and -20 to Pos2.
GroupMoveRelative (FocusStage, 1)
GroupMoveRelative (FocusStage, 1)

The second move can be only executed after the first move is completed. After
all moves are completed...

GroupPositionCurrentGet (FocusStage, Pos3)
... will return 2 to Pos3.

The velocity, acceleration and jerk time parameters of a move are defined by the
function PositionerSGammaParametersSet() (see also section 8.1). When the controller
receives new values for these parameters during the execution of a move, it will not take
these new values into account on the current move, but only on the next following
moves. When wanting to change the velocity or acceleration of a positioner during the
motion, use the Jogging mode (see section 8.5)

A move can be stopped at any time with the function GroupMoveAbort() that accepts
GroupNames and Positionernames. It is important to note, however, that the function
GroupMoveAbort(PositionerNames) gets accepted when the motion has been also
commanded to the positioner, and not to the group. In the previous example, the
function GroupMoveAbort(ScanTable.ScanAxis) is rejected for a motion that has
been launched with GroupMoveRelative(ScanTable, 100, 50). If you want to stop this
motion, you need to send the function GroupMoveAbort(ScanTable).

With XPS firmware 1.5.0 and higher, the XPS controller supports also asynchronous
moves of several positioners belonging to the same motion group. The individual
motion, however, need to be managed by separate threads (see also section 16.4 for
details).

Motion Done

The XPS controller supports two methods to define when a motion is completed
(MotionDone): The theoretical MotionDone and the VelocityAndPositionWindow
MotionDone. The preferred method for MotionDone used is set up in the stages.ini file.
In theory, MotionDone is when motion is completed as defined by the profiler. It does
not take into account the settling of the positioner at the end of the move. So depending
on the precision and stability requirements at the end of the move, the theoretical
MotionDone might not always be the same as the physical end of the motion. The
VelocityAndPositonWindow MotionDone allows a more precise definition by

XPSDocumentation V2.6.x (08/11)

78

XPS

Motion Tutorial

Pomtion stror

specifying the end of the move with a number of parameters that take the settling of the
positioner into account. In the VelocityAndPositionWindow MotionDone the motion is
completed when:

| PositionErrorMeanValue | < | MotionDonePositionThreshold | AND |
VelocityMeanValue | < | MotionDoneVelocityThreshold | is verified during the
MotionDoneCheckingTime period.

The different parameters have the following meaning:

A

End of theotescal mows | MotorDoneChectng Time

Figure 23: Motion Done.

e MotionDonePositionThreshold: This parameter defines the position error window.
The position error has to be within + of this value for a period of
MotionDoneCheckingTime to validate this condition.

e MotionDoneVelocityThreshold: This parameter defines the velocity window. The
velocity at the end of the motion has to be within + of this value for a period of
MotionDoneCheckingTime to validate this condition.

e MotionDoneCheckingTime: This parameter defines the period during which the
conditions for the MotionDonePositionThreshold and the
MotionDoneVelocityThreshold must be true before setting the motion done.

e MotionDoneMeanPeriod: A sliding mean filter is used to attenuate the noise for
the position and velocity parameters. The MotionDoneMeanPeriod defines the
duration for calculating the sliding mean position and velocity. The mean position
and velocity values are compared to the threshold values as defined above. This
parameter is not illustrated on the graph.

e MotionDoneTimeout: This parameter defines the maximum time the controller will
wait from the end of the theoretical move for the MotionDone condition, before
sending a MotionDone time-out.

Important:

The XPS controller can only execute a new move on the same positioner or on the same
motion group when the previous move is completed (MotionDone) and when the
positioner or the motion group is again in the ready state.

79 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

8.6

The XPS controller allows triggering an action when the motion is completed
(MotionDone) by using the event MotionEnd. For further details see chapter 11.0.

The functions PositionerMotionDoneGet() and PositionerMotionDoneSet() allow
reading and modifying the parameters for the VelocityAndPositionWindow
MotionDone. These parameters are only taken into account when the MotionDoneMode
is set to VelocityAndPositionWindow in the stages.ini.

Example

Modifications of the MotionDoneMode can be made only manually in the stages.ini
file. The stages.ini file is located in the config folder of the XPS controller, see chapter
5 “FTP connection® for details. Stage parameters can also be modified from the website,
in Administrator mode, STAGES menu, Modify submenu

Make a copy of the stages.ini file to the PC. Open the file with any text editor and
modify the MotionDoneMode parameter of appropriate stage to
VelocityAndPositionWindow, and set the following parameters:

;--- Motion done

MotionDoneMode = VelocityAndPositionWindow ; instead of Theoretical
MotionDonePositionThreshold = 4 ; units
MotionDoneVelocityThreshold = 100 ; units/s
MotionDoneCheckingTime = 0.1 ; seconds
MotionDoneMeanPeriod = 0.001 ; seconds
MotionDoneTimeout = 0.5 ; seconds

Replace the current stages.ini file on the XPS controller with this modified version
(make a copy of the old .ini file first). Reboot the controller. To apply any changes to
the stages.ini or system.ini, the controller has to reboot.

Use the following functions:
Grouplnitialize(MyGroup)
GroupHomeSearch(MyGroup)
PositionerMotionDoneGet(MyGroup.MyPositioner)

This function returns the parameters for the VelocityAndPositionWindow
Motion done previously set in the stages.ini file, so 4, 100, 0.1, 0.00 and 0.5.

PositionerMotionDoneSet(MyGroup.MyPositioner,
PositionThresholdNew Value, VelocityThresholdNew Value,
CheckingTimeNew Value, MeanPeriodNew Value, TimeoutNew Value)

This function replaces the parameters by the new entered values.

JOG

Jog is an indeterminate motion defined by velocity and acceleration parameters. Unlike
a GroupMoveAbsolute() or a GroupMoveRelative(), the end of the motion is not
defined by a target position. It can be best described by a “go”’-command with a
definition how fast, but not how far.

In jog mode, the speed and acceleration of a motion group can be changed on-the-fly to
accommodate varying situations. This is not possible with a GroupMoveAbsolute() or
a GroupMoveRelative() which are defined moves. Practical examples for jog are with
tracking systems or coordinate transformations where the speed or acceleration of the
jogging group is modified depending on the position or speed of the other motion
groups or based on an analog input value.

The Jog mode can be enabled using the function GroupJogModeEnable() and is
available to all motion groups. Once this mode is enabled, the motion parameters can be
set using the command GroupJogParameterSet() which applicable to positioners and
to motion groups. To exit the jog mode, first set the velocity to zero and then send the
function GroupJogModeDisable().

XPSDocumentation V2.6.x (08/11)

80

XPS

Motion Tutorial

8.7

Examples

For a single axis group:
GroupJogModeEnable (MySingleGroup)
Enables the Jog mode.
GroupJogParameterSet (MySingleGroup, 5, 20)

The single stage starts moving with a velocity of 5 units per second and an
acceleration of 20 units per second”.

GroupJogParameterSet (MySingleGroup, -5, 20)

The single stage starts moving in the reverse direction with the same absolute
velocity and same acceleration.

GroupJogParameterSet (MySingleGroup, 0, 20)
The single stage stops moving, its velocity being 0 units per second.
GroupJogModeDisable (MySingleGroup)
Disables the Jog mode.
For a XY group:
GroupJogModeEnable (MyXY Group)
Enables the Jog mode.
GroupJogParameterSet (MyXY Group, 5, 20, 10, 40)

The X axis and Y axis start moving with a velocity of 5 and 10 units per
second and an acceleration of 20 and 40 units per second’ respectively.

GroupJogParameterSet (MyXY Group, 0, 20, 0, 40)

Both stages stop moving, their velocities being 0 units per second.
To apply new parameters to only one stage, use the following function:

GroupJogParameterSet (MyXY Group.XPositioner, 5, 20)

Only the X axis starts moving with a velocity of 5 units per second and an
acceleration of 20 units per second”.

GroupJogParameterSet (MyXY Group.XPositioner, 0, 20)

The X axis stage stops moving, its velocity being 0 units per second.
GroupJogModeDisable (MyXY Group)

Disables the Jog mode.

In Jog Mode the profiler uses the CurrentPosition and the defined velocity and
acceleration to calculate a new Setpoint position every 0.4 ms. These new Setpoint
positions are then transferred to the corrector loop which runs every 0.1 ms. To
accommodate the different frequencies between the profiler and the corrector, a linear
interpolation between the new Setpoint and the previous Setpoint is done. Worst case, a
new velocity and acceleration can be taken into account only every 0.4 ms. In Jog mode
the profiler uses a trapezoidal motion profile (see also section 8.1 for further details on
motion profiles).

Master Slave

In master slave mode, any motion axis can be electronically geared to another motion
axes, including a single master with multiple slaves. The gear ratio between the master
and the slave is user defined. During motion, all axes compensations of the master and
the slave are taken into account.

The slave must be a SingleAxis group. The master can be a positioner from any group.
The master slave relation is set by the function SingleAxisSlaveParametersSet().

The master-slave mode is enabled by the function SingleAxisSlaveModeEnable(). To
enable the master slave mode, the Slave group must be in the ready state. The Master
group can be in the not-referenced or ready state.

81 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

8.8

Example 1

This example shows the sequence of functions used to set-up a master-slave relation
between two axes that are not mechanically joined (means all axis can move
independently):

Grouplnitialize (SlaveGroup)
GroupHomeSearch (SlaveGroup)
Grouplnitialize (Master Group)
GroupHomeSearch (MasterGroup)

SingleAxisSlaveParametersSet (SlaveGroup, MasterGroup.Positioner,
Ratio)

SingleAxisSlaveModeEnable (SlaveGroup)

GroupMoveRelative (MasterGroup.Positioner, Displacement)

SingleAxisSlaveModeDisable (SlaveGroup)

Example 2

This example shows the sequence of functions used to set-up a master-slave relation
between two axes that are mechanically joined. Different than example 1, all
motions, including the motion done during the home search routine, are done
synchronously.

Important: First, set the HomeSearchSequenceType of the Slave group’s positioner to
CurrentPositionAsHome in the stages.ini and reboot the XPS controller.

Grouplnitialize (SlaveGroup)
GroupHomeSearch (SlaveGroup)
Grouplnitialize (Master Group)

SingleAxisSlaveParametersSet (SlaveGroup, MasterGroup.Positioner,
Ratio)

SingleAxisSlaveModeEnable (SlaveGroup)
GroupHomeSearch (MasterGroup)

GroupMoveRelative (MasterGroup.Positioner, Displacement)

NOTE

The slave positioners should have similar capabilities as the master positioner in
terms of velocity and acceleration. Otherwise you might not be able to use the full
capabilities of the master or the slave positioners.

Analog Tracking

Analog tracking allows the control of the position or velocity of a motion group via
external analog inputs. Analog tracking is available with all motion groups. To enable
this mode, first set the tracking parameters of the positioners belonging to that motion
group. Then enable tracking while the motion group is homed (in ready state after
homing). In analog tracking mode, the analog inputs are filtered by a first order low-
pass filter. Its cut-off frequency is defined by the parameter
“TrackingCutOffFrequency” given in the section “profiler” of the stage.ini parameter
file.

XPSDocumentation V2.6.x (08/11)

82

XPS

Motion Tutorial

8.8.1

To set or get the tracking parameters, use the following functions:
Positioner Analog TrackingPositionParametersSet()

Positioner Analog TrackingPositionParametersGet()

Positioner AnalogTrackingV elocityParametersSet()
Positioner AnalogTrackingV elocityParametersGet()

The functions PositionerAnalogTrackingPositionParametersSet() and
PositionerAnalogTrackingVelocityParametersSet() define the maximum velocity and
acceleration used during analog tracking.

Analog Position Tracking

The parameters that can be set for analog position tracking are the GPIO Name, scale
and offset. The GPIO Name denotes which connector and pin number the analog signal
will be input. The scale and the offset are used to calibrate the output position in the
following way:

Position = InitialPosition + (AnalogValue - Offset) * Scale

Typical applications of analog position tracking is for beam stabilization, tracking
systems, auto focusing sensors or alignment systems. When connecting a function
generator to the GPIO input, analog tracking provides an easy way to make cyclical
motion, sinusoidal motion, for example.

Example

Following is an example that shows the sequence of functions used to setup Analog
Position Tracking:

Grouplnitialize (Group)
GroupHomeSearch (Group)

Positioner AnalogTrackingPositionParameterSet (Group.Positioner,
GPIO2.ADC1, Offset, Scale, Velocity, Acceleration)

GroupAnalogTrackingModeEnable (Group, ‘“Position”)

GroupAnalogTrackingModeDisable (Group)

83 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

8.8.2

Analog Velocity Tracking

The parameters that can be set for analog velocity tracking are the GPIO Name, offset,
scale, deadband threshold and order. The relationship among offset, scale, deadband and
order is illustrated in Figure 24.

Without order:

Dead-Band
- >
With order > 1 on the output:

O A “”

Dead - Bard
- -

Figure 24: The Relationship Among Offset, Scale, Dead Band & Order.

The tracking velocity calculates as follow:
e Analoglnput is the voltage input at the GPIO
e AnalogGain refers to the AnalogGain setting of the analog input

e Offset, Order, DeadBandThreshold, and scale are defined with the function
PositionerAnalogTrackingVelocityParametersSet

e MaxADCAmplitude, InputValue, OutputValue are internally-used parameters only
InputValue = AnalogInput - Offset
if (InputValue >= 0) then
InputValue = InputValue - DeadBandThreshold
if (InputValue < 0) then InputValue =0
else
InputValue = InputValue + DeadBandThreshold
if (InputValue > 0) then InputValue =0
OutputValue = (IInputValuel/ MaxADCAmplitude)Order
Velocity = Sign(InputValue) * OutputValue * Scale * MaxADCAmplitude

In the dead band region there is no motion. If the order is set to 1, then the velocity is
linear with respect to the input voltage.

If order is set greater than 1, then the velocity response is polynomial with respect to the
input voltage. This makes the change in velocity more gradual and more sensitive in
relation to the change in voltage.

A good example for using analog velocity tracking is for an analog joystick.

XPSDocumentation V2.6.x (08/11)

84

XPS Motion Tutorial

Example

Following is an example that shows the sequence of functions used to set-up Analog
Velocity Tracking:

Grouplnitialize (Group)
GroupHomeSearch (Group)

Positioner AnalogTrackingV elocityParameterSet (Group.Positioner,
GPIO2.ADC1, Offset, Scale, DeadBand Threshold, Order, Velocity,
Acceleration)

GroupAnalogTrackingModeEnable (Group, “Velocity”)

GroupAnalogTrackingModeDisable (Group)

85 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

9.0 Trajectories

9.1

911

The XPS controller supports 3 different types of trajectories:

The line-arc trajectory is a trajectory defined by a number of straight and curved
segments. It is available only for positioners in XY groups. The major benefit of a line-
arc trajectory is the ability to maintain a constant speed (speed being the scalar of the
trajectory velocity) throughout the entire path, not including the acceleration and
deceleration periods. The trajectory is user defined in a text file that is sent to the
controller via FTP. Once defined, the user executes a function to begin the trajectory
and the XPS automatically calculates and executes the motion, including precise
monitoring of the speed and acceleration all along the trajectory. Simply executing the
same trajectory more than once results in continuous path contouring. A dedicated
function performs a precheck of the trajectory which returns the maximum and
minimum travel requirements per positioner as well as the maximum possible trajectory
speed and trajectory acceleration that is compatible with the different positioner
parameters.

The spline trajectory executes a Catmull-Rom spline (which is a 3rd order polynomial
curve) on an XYZ group. The major requirements of a spline is to hit all points (except
for the first and the last point that are only needed to define the start and the end of the
trajectory) and to maintain a constant speed throughout the entire path (except for the
acceleration and deceleration period). The definition and execution of the spline
trajectory is similar to the line-arc trajectory with similar functions for trajectory pre-
checking.

The PVT-mode allows for the most complex trajectories and is only available with
MultipleAxes groups. In a PVT trajectory, each trajectory element is defined by the end
position and end speed of each positioner plus the move time for the element. When all
elements are defined, the controller calculates the cubic function trajectory that will pass
through all defined positions at the defined times and velocities. PVT is a powerful tool
for any kind of trajectory with varying speeds and for trajectories with rotation stages or
other nonlinear motion devices.

Line-Arc Trajectories

Trajectory Terminology

Trajectory: defined as a continuous multidimensional motion path. Line-arc trajectories
are defined in a two-dimensional XY plane. These are used with XY groups. The major
requirement of a line-arc trajectory is to maintain a constant speed (speed being the
scalar of the vector velocity) throughout the entire path (except the acceleration and
deceleration periods).

Trajectory element (segment): an element of a trajectory is defined by a simple
geometric shape, in this case a line or an arc segment.

Trajectory velocity: the tangential linear velocity (speed) along the trajectory during its
execution.

Trajectory acceleration: the tangential linear acceleration used to start and end a
trajectory. Trajectory acceleration and trajectory deceleration are equal by default.

XPSDocumentation V2.6.x (08/11)

86

XPS

Motion Tutorial

9.1.2

913

914

Trajectory Conventions
When defining and executing a line-arc trajectory, a number of rules must be followed:
e The motion group must be a XY group.

e All trajectories must be stored in the controller’s memory under ..\public\trajectories
(one file for each trajectory). Once a trajectory is started, it executes in the
background allowing other groups or positioners to work independently and
simultaneously.

e Each trajectory must have a defined beginning and end. Endless (infinite)
trajectories are not allowed. Though, N-times (N defined by user) non-stop
executions of the same trajectory without stopping is possible. As the trajectory is
stored in a file, the trajectory maximum size (maximum elements number) is
unlimited for practical purposes.

e Two types of trajectory elements (segments) are available: lines Line(X,Y) and arcs
Arc(R,A) (Radius, SweepAngle). Any line-arc trajectory is a set of consecutive line
or arc segments. The line segments are true linear interpolations y = A*x + B, the
arc segments are true arcs of circles (x - x0)* + (y - y0)* = R”.

e A line-arc trajectory forms a continuous path, so each segment’s final position is
equal to the next segment’s starting position. However, as the segment’s tangential
angles around the connection point of any two consecutive segments may not be
continuous, there might be some velocity discontinuities from one segment to next
(which means that the line-arc trajectory continuity property is R0O). An excessive
velocity discontinuity at joints can damage the mechanics, so the trajectory
definition process must take this into account.

e Each line-arc trajectory element is defined relative to the trajectory starting point.
Every trajectory starting point has the coordinates (0,0), which has no relation to the
zero position of the positioners. All trajectories physically start from the current X
and Y positions of the XY group.

Geometric Conventions
The coordinate system is an XY orthogonal system.

The X-axis of this system correlates to the XPositioner and the Y-axis correlates to the
YPositioner of the XY group as defined in the stages.ini.

The origin of the XY coordinate system is in the lower left corner, with positive values
up and to the right.

All angles are measured in degrees, represented as floating point numbers. Angle origin
and signs follow the trigonometric convention: positive angles are measured counter-
clockwise.

Defining Line-Arc Trajectory Elements

A line-arc trajectory is defined by a number of line and arc elements. The trajectory
elements are executed in the same order as defined in the trajectory data file.

Figure 25: Line-arc trajectory example.

87 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

915

9.1.6

Figure 25 shows a trajectory example. Every trajectory must have a first element entry
angle (called First Tangent) defined in the head of the trajectory data file. If the first
element is a line, this parameter has no effect. If the first element is an arc, the entry
angle is the tangent to the first point of the arc. Each trajectory element is identified by a
number, starting from 1. The references for synchronizing external events with the
trajectory execution are the starting and ending points of these elements.

Line and arc elements can be sequenced in any order. An arc is automatically placed by
the controller so that its entry angle corresponds to the exit angle of the preceding
element to ensure the continuity of the trajectory. But with every line segment, the user
must choose the (X,Y) end-point in that way that the angle discontinuity to the previous
segment does not exceed the maximum allowed angle discontinuity. The angle
discontinuity is measured in degrees and is defined in the head of the trajectory data
file. In theory, a trajectory can be defined only by straight lines, if two adjacent line
segments have an angle difference smaller than the allowed angle of discontinuity, as
shown in the Figure 26.

Figure 26: Contouring with linear lines only.

In practice this is not recommended since each angle of discontinuity corresponds to an
instantaneous velocity change on both axes, which produces large accelerations. This
can result in a shock to the stages and an increase of the following error. The larger the
angle of discontinuity, the larger the shock and the following error will be. Special
consideration must be given to both these effects when increasing the maximum
discontinuity angle from its default value.

Define Lines
A line element is defined by specifying the (X, Y;) ending point.
The element starting point is always the end point of the previous segment (X, Y;.,).

Note that all line element positions are defined relative to the trajectory starting point
0,0).

Figure 27: Line element to (X;, Y;) position coordinates.

As described before, when adding a new line element, the user must make sure that the
discontinuity angle between the new segment and the previous one is not excessive.

Define Arcs
An arc is defined by specifying the radius R and the sweep angle A (Figure 28).

Figure 28: An arc defined with radius and angle.

XPSDocumentation V2.6.x (08/11)

88

XPS

Motion Tutorial

9.1.7

9138

Both radius and sweep angles are expressed in double precision floating point numbers.
The sweep angle can range from 1 E'* to 1.797 E**® allowing a definition of arcs from a
fraction of a degree to a practically infinite number of overlapping circles.

Trajectory File Description
The line-arc trajectory is defined in a file that has to be stored in the

.\public\trajectories folder of the XPS controller. This file must have the following
structure:

The first line sets the “FirstTangent”: Define the tangent angle for the first
point in case of an arc. This parameter
has no effect if the first element is a
line.

The second line sets the “DiscontinuityAngle”: Define the maximum allowed angle of
discontinuity.

The third line must be empty for better readability.

The following lines define the line-arc trajectory: Each line defines an element of the
trajectory.

An element can be a “Line” or an “Arc’:
Line: Define X and Y positions to build a linear segment Line(X, Y).

Arc: Define radius and sweep angle to build an arc of circle Arc(R, A).

Trajectory File Examples

The following is an example of a trajectory file that represents a rectangle with rounded
corners and with the end point equal to the starting point:

FestTangent « 0 Oegrees

X
Duncontnutylogie « 081 ; Degrees
‘ ne« N0

N« 0%

"
N
s Une« 20 X0
b~ ANo«10%
4 4
L =00

\ R Ase = 1090
\ Lng =10, 10
10 ANt =109

K Axs

Figure 29: Graphical display of the first line-arc trajectory data file example.

89 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

919

Y Aus

o

&

The following is an example of a trajectory file that represents a rectangle with rounded
corners and with the end point equal to the starting point:

FrstTangent «» 30, Degroes

Oacontnuryingle « 087 Degrees

Nt « 109

Lne = 8010

N« 101K

- Ling » 60,30
Nc = 1015

LU = 8050

Nt o« 159

C b =it
C
g
A

T

Y

Are » 5180
Une « 80.-8

v

A= 5100

Loe » 40.-0

T —— - Mo 51
Une « 50.-20
————————— Arc » 5180

LUne « 40.-10
Are = 10,180

-0 & 40 N 0 byt &)) Une =109

X Asis Avc = 1090

Figure 30: Graphical display of the second line-arc trajectory data file example.

Trajectory Verification and Execution

To verify and execute a line-arc trajectory, there are four functions:

XYLineArcVerification(): Verifies a line-arc trajectory data file.

XYLineArcVerificationResultGet(): Returns the last trajectory verification results,
actuator by actuator. This function works only after a XYLineArcVerification().

XYLineArcExecution(): Executes a trajectory.

XYLineArcParametersGet(): Gets the trajectory’s current execution parameters.
This function works only during the execution of the trajectory.

The function XYLineArcVerification() can be executed at any time and is
independent from the trajectory execution. This function performs the following:

Checks the trajectory file for data coherence.

Calculates the trajectory limits, which are: the required travel per positioner, the
maximum possible trajectory velocity and the maximum possible trajectory
acceleration. This function helps define the parameters for the trajectory execution.

If all is OK, it returns an “OK” (0). Otherwise, it returns a corresponding error.

The function XYLineArcVerificationResultGet() can be executed only after a
XYLineArcVerification() and returns the following:

Travel requirement in positive and negative direction for each positioner.

The maximum possible trajectory velocity (speed) that is compatible with all
positioner velocity parameters. It returns a value for the trajectory velocity, that,
when applied at least one of the positioners will reach its maximum allowed speed at
least once along the trajectory. So the returned value varies between Min
{V max_actuatory and Square Root {Summ (Vmaxiacmm)z}. However, this value does not
take into account that the positioners’ acceleration can also limit the trajectory
velocity. For example, the case of a line-arc trajectory containing arc segments with
a small radius.

The maximum possible trajectory acceleration that is compatible with all positioner
parameters. At a trajectory, acceleration of one of the positioners will reach its
maximum allowed acceleration during the trajectory execution.

The XYLineArcVerificationResultGet() function returns the trajectory execution limits
that have previously been calculated by the XYLineArcVerification function. Note
about this function’s result: Only the returned travel requirements are specific for each

XPSDocumentation V2.6.x (08/11)

90

XPS

Motion Tutorial

9.1.10

positioner. The returned velocity/acceleration values are the same for all positioners,
because they represent the trajectory velocity/acceleration.

To execute a line-arc trajectory, send the function XYLineArcExecution() with the
parameters for the trajectory velocity, and the trajectory acceleration that is used during
the start and the end of the trajectory. The motion profile for line-arc trajectories is
trapezoidal. The function XYLineArcExecution() does not verify the trajectory
coherence or geometric conditions (exceeding any positioners min. or max. travel,
speed or acceleration) before execution, so users must pay attention when executing a
trajectory and verify the trajectory relative to the maximum possible values or
interference. In case of an error during the execution, because of bad data or because of
a following error (for example if the trajectory acceleration or speed was set too high)
the motion group will make an emergency stop and will go the disabled state. The
parameters for trajectory velocity and trajectory acceleration can also be set to zero. In
this case the controller uses executable default values which are the

Min{All V . acwaor fOr the trajectory velocity and the Min{All A ., .caorr fOr the
trajectory acceleration.

A trajectory can be executed many times (up to 2°' times) by specifying the
ExecutionNumber parameter with the XYLineArcExecution function. In this case the
second run of the trajectory is simply appended at the end of the first run while the end
position of the first run is taken as a new start position (referenced to zero) of the second
run. The trajectory endpoint does not need to be the same as the start point. The total
trajectory is executed without stopping between the different runs.

Finally, the function XYLineArcParametersGet() returns the trajectory execution
status with trajectory name, trajectory velocity, trajectory acceleration and current
executed trajectory element. This function returns an error if the trajectory is not in
execution.

Examples of the Use of the Functions
XYLineArcVerification (XYGroup, Linearcl .trj)
This function returns a 0 if the trajectory is executable.

XYLineArcVerificationResultGet (XY Group.XPositioner, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)

This function returns the name of the trajectory checked with the last sent
function XYLineArcVerification to that motion group (Linearcl trj), the
negative or left travel requirement for the XYGroup XPositioner, the positive
or right travel requirement for the XYGroup XPositioner, the maximum
trajectory velocity and the maximum trajectory acceleration.

XYLineArcExecution (XYGroup, Linearcl.trj, 10,100, 2)

Executes the trajectory Linearcl .trj with a trajectory velocity of 10 units/s
and a trajectory acceleration of 100 units/s* two (2) times.

XYLineArcParametersGet (XY Group, *FileName, *TrajectoryVelocity,
*TrajectoryAcceleration, *ElementNumber)

Returns the name of the trajectory in execution (Linearcl .trj), the trajectory
velocity (10), the trajectory acceleration (100) and the number of the current
executed trajectory element.

91 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

9.2

921

922

923

924

Splines

Trajectory Terminology

Trajectory: Continuous multidimensional motion path. Spline trajectories are defined
in a three-dimensional XYZ space. They are available with XYZ groups only. The
major benefit provided by a spline trajectory is to hit all points (except for the first and
the last point that are needed to define the start and the end) and to maintain an almost
constant speed (speed being the scalar of the vector velocity) throughout the entire path
(except the acceleration and deceleration periods). Please note, that the trajectory speed
can vary in some areas depending on the distribution of the reference points. This is
related to the spline algorithm used.

Trajectory element (segment): An element of a spline trajectory is defined by a 3rd
order polynomial curve joining two consecutive control points.

Trajectory velocity: The tangential linear velocity (speed) along the trajectory during
its execution.

Trajectory acceleration: The tangential linear acceleration used to start and end a
trajectory. Trajectory acceleration and trajectory deceleration are equal by default.

Trajectory Conventions
When defining and executing a spline trajectory, a number of rules must be followed:
e The motion group must be an XYZ group.

e All trajectories must be stored in the controller’s memory under ..\public\trajectories
(one file for each trajectory). Once a trajectory is started, it executes in the
background allowing other groups or positioners to work independently and
simultaneously.

e Each trajectory must have a defined beginning and end. Endless (infinite)
trajectories are not allowed. Though, N-times (N defined by user) non-stop
executing a trajectory is possible. As the trajectory is stored in a file, the trajectory
maximum size (maximum elements number) is unlimited for practical purposes.

e Spline trajectory elements (segments) are 3 order polynomial curve segments S;(u),
joining the positions P, (X, , Y., Z;;) and P; (Xj, Y;, Z)). Here “u” is the normalized
time presenting parameter varying from 0 (corresponding to P; ;) to 1 (corresponding
to Py).

e Spline trajectories form a continuous path (each segment output position is equal to
the next segment input position), and the segment tangential angles at the connection
point of any two consecutive segments are continuous including its derivative. It
means that the spline trajectory continuity property is R'.

Geometric Conventions
The coordinate system is a XYZ orthogonal system.

The X-axis of this system correlates to the Xpositioner, the Y-axis to the YPositioner,
and the Z-axis to the ZPositioner of the XYZ group as defined in the stages.ini.

The origin of the XYZ coordinate system is in the lower left corner, with positive values
up (Z), to the right (X) and forward (Y).

All angles are measured in degrees, represented as floating point numbers. Angle origin
and sign follow the trigonometric convention: positive angles are measured counter-
clockwise.

Catmull-Rom Interpolating Splines

To trace a smooth curve that links different predefined trajectory points, the
intermediate points must be calculated following a mathematical model. For the sake of
simplicity, in most cases this is done by a polynomial curve (polynomial interpolation).

XPSDocumentation V2.6.x (08/11)

92

XPS

Motion Tutorial

925

For motion systems, the resulting curve should hit all predefined points. This is called
precise interpolation in contrast to approximate interpolation (like Bezier splines),
where the predefined points only act as control points. Within the class of precise
interpolation we have:

e Global polynomial interpolation: One polynomial presents the whole trajectory.
Examples are Lagrange polynomial or Newton polynomial.

e Local polynomial interpolation: Each segment that links two consecutive trajectory
points has its own polynomial. The resulting curve is obtained by segment
polynomial concatenation. To limit oscillations inside segments, the polynomial
order is generally limited to 3 or less. This is called spline interpolation. If the
polynomial order is equal to 3, we have the cubic spline interpolation.

The interpolation methods are also classified by the continuity criterion Ck. An
interpolating curve has the continuity C* if it and its derivatives up to k-degree are
continuous in all its points. The interpolating spline curves generally have C' or C*
continuity.

Catmull-Rom splines are a family of local cubic interpolating splines where the
tangent at each point pi is calculated based on the previous pi-1 and the next point p;,,
on the spline. In case of the spline curve tension T = 1/2 (normal case), the Catmull-
Rom spline is described by the following equation:

1 3 3 1 p,
2 5 4 1 .

S(u)= (u3 u’u 1) 010 ¢ P;
271 0 1 0 p,

0 2 0 0 p,

Here, pi are the coordinates of the predefined trajectory point in x, y and z (py;, Pyi» P.)-

“u” is the normalized interpolating parameter, varying from O (starting at p;) to 1
(ending at pj,,).

Catmull-Rom splines have a C1 continuity (continuity up to the first derivative), local
control and interpolation. Catmull-Rom splines have the advantage of simple
calculation without matrix inversion for on-line calculations, which is a great advantage
for splines with a large number of trajectory points. For this reason, the XPS controller
uses the Catmull-Rom spline interpolation.

4

(o.

“;,.‘ p'h'
Figure 31: A Catmull-Rom spline.

Trajectory Elements Arc Length Calculation

Spline contouring at constant speed requires a high precision calculation of the
segment’s arc length. The segment’s arc length can be expressed as follow:

2 2 2

d d d
—Sx(u) + —Sy(u) + —Sz(u) du
i () i y(u) ™ (u)

u

L(uy,uy) =

93 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

9.2.6

9.2.7

Here, u, = 0 is the segment starting point and ul = 1 is the segment ending point. Sx,
Sy, Sz are x-, y-, and z-components of the segment function.

This integral can only be numerically calculated, which is done by the XPS controller
using the Romberg numerical integration algorithm. This guarantees that the arc length
is calculated with an error less than 107,

Trajectory File Description

The spline trajectory is described in a file that is in the ..\public\trajectories folder of the
XPS controller. Each line of this file represents one point of the spline trajectory except
for the first and the last lines that are needed only to define the start and the end of the
trajectory. Two consecutive points form a trajectory segment.

The line format of the file is:
X-Position, Y-Position, Z-Position
The separator between the X-, Y-, and Z-Position is the comma.

As mentioned before, the first and last lines of the file are only needed for the first and
the last segment spline interpolation. These define the angle the trajectory starts and
ends, but the motion system will not hit these points. So the trajectory’s first “real”
point (starting point) is the one defined by the second line and the trajectory’s real “last”
point (end point) is the one defined by the second to the last line.

The position values in the data file are relative to the physical position of the motion
group at the start of the trajectory. If the position in the second line of the file (starting
point) is not equal to zero (0, 0, 0), the real trajectory positions (those that the motion
group will hit) are furthermore shifted by this value.

Example

The spline trajectory file has the following format:
Xo Yo Zo
XN %4
X, Y2 7
X3 Y; Zs

Xy Yuo 24

At the moment of the execution of the trajectory, the motion group is at the position X,
Y, Z¢. So the real matrix in absolute coordinates of the motion group is:

X Z
c+X(-X, YC+yO—y, c+zg-2,

XC y{) ZC

Xc+x2—x] Y<:+y2—yl Zc+z2 -z
Xc+x3—x] yc+y3—y| Zc+z3 -z

Xc+x4—x] yc+y4—yl Zc+z4 -7

Trajectory File Example

This trajectory represents a spiral from (0, 20, 0) starting point to (0, -20, 24) ending
point. As described before, the trajectories first (-5, 19.365, -1) and last (5, -19.365, 25)
points are only needed to define the start and end conditions of the trajectory. Because
the second line (0, 20, 0) is not equal to zero (0, 0, 0), all points that the motion group
will hit during the execution of the trajectory are reduced by this value from the
physical start position of the motion group.

XPSDocumentation V2.6.x (08/11)

94

XPS Motion Tutorial

The original data file is (except for the tabs that are only added for better readability):

-5, 19.365, -1 -15, 13.229, 13

0, 20, 0 -10, 17.321, 14

5, 19.365, 1 -5, 19.365, 15
10, 17.321, 2 0, 20, 16
15, 13.229, 3 5, 19.365, 17
20, 0, 4 10, 17.321, 18
15, -13.229, 5 15, 13.229, 19
10, -17.321, 6 20, 0, 20

5, -19.365, 7 15, -13.229, 21

0, -20, 8 10, -17.321, 22
-5, -19.365, 9 5, -19.365, 23
-10, -17.321, 10 0, -20, 24
-15, -13.229, 11 5, -19.365, 25
-20, 0, 12

With this data file, the real trajectory points relative to the physical start position of the
motion group are (first and last lines are eliminated because the motion group will not
hit these points and the values from the second column are reduced by 20 as the first
line was (0, 20, 0)):

0, 0, 0 -15, -6.771, 13
5, -0.635, 1 -10, -2.679, 14
10, -2.679, 2 -5, -0.635, 15
15, -6.771, 3 0, 0, 16
20, -20, 4 5, -0.635, 17
15, -33.229, 5 10, -2.679, 18
10, -37.321, 6 15, -6.771, 19
5, -39.365, 7 20, -20, 20
0, -40, 8 15, -33.229, 21
-5, -39.365, 9 10, -37.321, 22
-10, -37.321, 10 5, -39.365, 23
-15, -33.229, 11 0, -40, 24
-20, -20, 12
= - = SN L
.‘,
\\ 0.8
= X \\ .a_.;'
O _ / ~

X A
Y Axs

Figure 32: Executing the above trajectory data file
with the Catmull-Rom spline algorithm.

95 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

9238

Spline Trajectory Verification and Execution
To verify and execute a spline trajectory, there are four functions:
e XYZSplineVerification(): Verifies a spline trajectory data file.

e XYZSplineVerificationResultGet(): Returns the last trajectory verification results,
actuator by actuator. This function works only after a XYZSplineVerification().

e XYZSplineExecution(): Executes a trajectory.

e XYZSplineParametersGet(): Returns the trajectory current execution parameters.
This function works only during the execution of the trajectory.

The function XYZSplineVerification() can be executed at any moment and is
independent from the trajectory execution. This function performs the following:

e Checks the trajectory file for data coherence.

e Calculates the trajectory limits, which are the required travel per positioner, the
maximum possible trajectory velocity and the maximum possible trajectory
acceleration. This function helps define the parameters for the trajectory execution.

e Ifallis OK, it returns an “OK” (0). Otherwise, it returns a corresponding error.

The function XYZSplineVerificationResultGet() can be executed only after a
XYZSplineVerification() and returns the following:

e Travel requirement in positive and negative direction for each positioner.

e The maximum possible trajectory velocity (speed) that is compatible with all
positioner velocity parameters. It returns a value for the trajectory velocity, that,
when applied at least one of the positioners will reach its maximum allowed speed at
least once along the trajectory. So the returned value varies between
Min{Vmax_actuator} and Square Root {Summ(Vmax_actuator)2}. However, this
value does not take into account that also the positioners’ acceleration can limit the
trajectory velocity. This is the case with splines that contain sharp curved segments.

e The maximum trajectory acceleration that is compatible with all positioner
parameters. At this trajectory acceleration, one of the positioners will reach its
maximum allowed acceleration during the trajectory execution.

The function XYZSplineVerificationResultGet() returns the trajectory execution
limits that have previously been calculated by the XYZSplineVerification function.
Note on this function’s response: Only the returned travel requirements are specific for
each positioner, the returned velocity/acceleration values are the same for all
positioners, because they represent the trajectory velocity/acceleration.

To execute a spline trajectory, send the function XYZSplineExecution() with the
parameters for the trajectory velocity and the trajectory acceleration (the trajectory
acceleration that is used during the start and the end of the trajectory). The motion
profile for spline trajectories is trapezoidal. The function XYZSplineExecution() does
not verify the trajectory coherence or geometric conditions (exceeding any positioners
min. or max. travel, speed or acceleration) before execution, so users must pay attention
when executing a trajectory without verifying the trajectory and without looking to the
maximum possible values. In case of an error during the execution, because of bad data
or because of a following error (for example the trajectory acceleration or speed was set
too high) the motion group will make an emergency stop and will go to the disabled
state. The parameters for trajectory velocity and trajectory acceleration can also be set to
zero. In this case the controller uses almost surely executable default values which are
the Min{All V., acuaors fOr the trajectory velocity and the

Min{All A . scwatory fOr the trajectory acceleration.

Finally, the function XYZSplineParametersGet() returns the trajectory execution
status with trajectory name, trajectory velocity, trajectory acceleration and current
executed trajectory element. This function returns an error if the trajectory is not in
execution.

XPSDocumentation V2.6.x (08/11)

96

XPS

Motion Tutorial

929

9.3

931

932

Examples of the Use of the Functions
XYZSplineVerification (XYZGroup, Splinel .trj)
This function returns a 0 if the trajectory is executable.

XYZSplineVerificationResultGet (XYZGroup.XPositioner, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)

This function returns the name of the trajectory checked with the last sent
function XYZSplineVerification to that motion group (Splinel.trj), the
negative or left travel requirement for the XYZGroup XPositioner, the
positive or right travel requirement for the XYZGroup XPositioner, the
maximum trajectory velocity and the maximum trajectory acceleration.

XYZSplineExecution (XYZGroup, Splinel .trj, 10, 100)

Executes the trajectory Splinel .trj with a trajectory velocity of 10 units/s and
a trajectory acceleration of 100 units/s*.

XYZSplineParametersGet (XYZGroup, *FileName,
*TrajectoryVelocity, *TrajectoryAcceleration, *ElementNumber)

Returns the name of the trajectory in execution (Splinel trj), the trajectory
velocity (10), the trajectory acceleration (100) and the number of the current
executed trajectory element.

PVT Trajectories

Trajectory Terminology

Trajectory: continuous multidimensional motion path. PVT stands for Position,
Velocity, and Time. PVT trajectories are defined in an n-dimensional space (n =1 to 8).
These are available with MultipleAxes groups. A PVT trajectory is generated with
continuous movements of the MultipleAxes group’s positioners over several time
periods. For each period, each positioner must complete a defined displacement from its
current position and a defined output velocity at the end of the period. By definition,
there is no constant vector velocity and no definition for a vector acceleration in
contrast to line-arc trajectories or splines.

Trajectory element (segment): An element of a PVT trajectory is defined by a set of all
positioner displacements and output velocities and the duration for this segment. In the
PVT data file, each element is presented by a line:

DT, DP1, VO1, DP2, VO2, .. DPn, VOn

DT: The segment duration in seconds.
DP1,DP2,...,DPn: Positioners (#1, #2,..., #n) displacements during DT.
VOI1,V02,..., VOn: Positioners output velocities at the end of DT.

Trajectory Conventions
When defining and executing a PVT trajectory, a number of rules must be followed:
e The motion group must be a MultipleAxes group.

e All trajectories must be stored in the controller’s memory under
.\public\trajectories. Once a trajectory is started, it executes in background allowing
other groups to work independently and simultaneously.

e Each trajectory must have a beginning and an end. Endless (infinite) trajectories are
not allowed. Though, N-times (N defined by user) non-stop execution of a trajectory
is possible. As the trajectory is stored in a file, the trajectory maximum size
(maximum elements number) is practically not limited.

e PVT trajectory elements (segments) are 3" order polynomial pieces for each
positioner that hit the positions P, (at time ti-1 with a velocity v;,) and positions P;
(at time ti with a velocity v;). There is no direct link between the trajectories of the
different positioners of the MultipleAxes group.

97 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

e PVT trajectories form a continuous path (each segment output position is equal to
the next segment input position), and the segment tangential angles at the connection
point of any two consecutive segments are continuous including its derivative. It
means that the PVT trajectory continuity property is R'.

e The input velocity of any element is equal to the output velocity of the previous
element. The input velocity for the first element is always zero. The output velocity
of the last element must be zero as well.

933 Geometric Conventions

e The coordinate system can be any system convention, it does not need to be an
orthogonal system.

e A PVT trajectory can be defined on any MultipleAxes group. There is no limit to the
number of positioners belonging to that MultipleAxes group. It is also possible to
define a PVT trajectory on a MultipleAxes group that contains only one positioner.

934 PVT Interpolation

For each positioner belonging to the MultipleAxes group, the PVT trajectory calculates
a 3" order polynomial curve P(u) that can be presented by the following equations:

Profile coefficient
e Acceleration jerk:

60[DTO(Vin+ Vou) 20DX]

Jerk = 3
DT

e Initial acceleration:

_ 20[30DX - DT 92 0Vin+ Vou)|
DT?

in =
e Final acceleration:

20[DTO(Vin+20Vou) 30DX]
DT*

Guu& =

Profile equation

e Acceleration:

Acc(t) = Gin + Jerk Ot

e Velocity:
Vel(t) = Vin+ G 0t + 25K
e Position:
A2 3
Pos(t) = Vin 0t 4 S0, Jerk
2 6
Here:

DT is the segment duration in seconds

DX is the displacement during DT

V., is the output velocity of the previous segment (which is equal to the input
velocity of the current segment)

V.. s the output velocity of the current segment.

t is the time in seconds starting at O (entry of the current element) and ending at

DT (end of the segment)

XPSDocumentation V2.6.x (08/11) 98

XPS

Motion Tutorial

935

Influence of the Element Output Velocity to the Trajectory

The contour of each PVT trajectory element is not only influenced by the displacement,
but also by the input and output velocities. As the user decides on these velocities,
attention must be placed to these values to get the desired results.

The effect of the velocity is illustrated in the following example which shows the
position and velocity profiles for one segment of a PVT trajectory that has a
displacement of 5 mm, a duration of 100 ms, an input velocity of 10 mm/s and an output
velocity of either 50 mm/s or 500 mm/s:

e If the output velocity is equal to 50 mm/s.

Pestsan
&
.’/
'y = !
= ’/
€ __/
£ S
2} — g
//
| _’—/
[=
0 2 0 0 ® o
=l
Velooty
100
- S el —— _‘.‘_
:-] /// ——
o\ : A
0 2 0 0 0 e
=l
e If the output velocity is equal to 500 mm/s.
Poratan
\ r
E 0 p
__.\\\
e S =
3 i
0 2 0 80 0 o
Velooty
50 —
//
//
E 0 b _/’_/’
e S e—
s | - -
0 2 0 0 0 e

=l

Figure 33: PVT trajectory element in execution: the comparison.

99 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

A PVT trajectory must have three parameters: position, velocity and time. With given
target displacement, output velocity and time duration, the PVT trajectory calculates
intermediate positions and velocities as a function of time.

With an output velocity of 50 mm/s, the positioner has “enough” time to achieve the
displacement within the assigned time (100 ms) in the forward direction. The velocity
increases at the beginning and then slows down towards the end. The position always
increases up to the target position (5 mm).

On the other hand, when the output velocity is set to 500 mm/s, the positioner does not
have enough time to achieve the displacement and speed requirements in the forward
direction. So the positioner will first reverse the direction of motion to be able to
approach the end position with a speed of 500 mm/s.

9.3.6 Trajectory File Description

The PVT trajectory is described in a file that is in the ..\public\trajectories folder of the
XPS controller. Each line of this file represents one element of the trajectory.

A line contains several data separated by a comma. The number of data in each line
depends on the number of positioners belonging to the MultipleAxes group. The first
data in each line is the duration of the element. The following data is grouped in pairs of
two representing the displacement and the output velocity for each positioner of the

group.
So the line format is as follow:
Data#1: Element duration (seconds).
Data #2: st positioners displacement (units).
Data #3: st positioners output velocity (units/s).
Data #4: 2nd positioners displacement (units).
Data #5: 2nd positioners output velocity (units/s).
(And so on...)

NOTE

The first positioner is always defined first in the system.ini of the MultipleAxes
group (see ActuatorInUse), the second positioner is always defined as second, and
SO on...

9.3.7 Trajectory File Example

Following is an example of a PVT trajectory defined on a MultipleAxes group that
contains two positioners. The tabs are added for better readability:

1.0, 0.4167, 1.25, 0, 0
1.0, 2.9167, 5, 0, 0
1.0, 7.0833, 8.75, 0, 0
1.0, 9.5833, 10, 0, 0
1.0, 10, 10, 0.4167, 1.25
1.0, 10, 10, 2.9167, 5
1.0, 10, 10, 7.0833, 8.75
1.0, 10, 10, 9.5833, 10
1.0, 9.5833, 8.75, 10, 10
1.0, 7.0833, 5, 10, 10
1.0, 2.91667, 1.25, 10, 10
1.0, 0.41667, 0, 10, 10
1.0, 0, 0, 9.5833, 8.75
1.0, 0, 0, 7.0833, 5
1.0, 0, 0, 2.91667, 1.25
1.0, 0, 0, 0.41667, 0

XPSDocumentation V2.6.x (08/11) 100

XPS

Motion Tutorial

This file represents the following data:

00

W0 |

Time Axis #1 Axis #1 Axis #2 Axis #2
Period (s) Displacement Velocity Out Displacement Velocity Out
1.0 0.4167 1.25 0 0
1.0 2.9167 5.0 0 0
1.0 7.0833 8.75 0 0
1.0 9.5833 10 0 0
1.0 10 10 0.4167 1.25
1.0 10 10 2.9167 5
1.0 10 10 7.0833 8.75
1.0 10 10 9.5833 10
1.0 9.5833 8.75 10 10
1.0 7.0833 5 10 10
1.0 2.9167 1.25 10 10
1.0 0.4167 0 10 10
1.0 0 0 9.5833 8.75
1.0 0 0 7.0833 5
1.0 0 0 2.9167 1.25
1.0 0 0 0.4167 0
Table 1: The trajectory data file.
Pessson
//"‘/ ” ” -
2 ’ /Alll [24
Au/ > ’
- £
- .8 -~ r
_’// -
- R " y
Velooy
Axa Arna
s A T TR P o
N \
/ \
/|) \
\ S
s \ \
L -’ o N o

Figure 34: Executing trajectory data file with the PVT algorithm.

101

XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

9338

PVT Trajectory Verification and Execution
To verify and execute a PVT trajectory, there are four functions:
e MultipleAxesPVTVerification(): Verifies a PVT trajectory data file.

e MultipleAxesPVTVerificationResultGet(): Returns the last trajectory verification
results, actuator by actuator. This function works only after a
MultipleAxesPV T Verification().

e MultipleAxesPVTExecution(): Executes a trajectory.

e MultipleAxesPVTParametersGet(): Returns the trajectory current execution
parameters. This function works only during the execution of the trajectory.

The function MultipleAxesPVTVerification() can be executed at any moment and is
independent from the trajectory execution. This function is doing the following:

e Checks the trajectory file for data coherence.

e Simulates the trajectory to determine the positioner’s requirements, which are the
travel requirements in negative and positive direction and the maximum reached
speed and acceleration for each positioner. This function helps determine whether
the trajectory is executable.

e If all is OK, it returns an “OK” (0). Otherwise it returns a corresponding error. An
error for instance is reported if one of the positioner’s speed or acceleration reached
during the trajectory exceeds the maximum allowed speed or acceleration.

The function MultipleAxesPVTVerificationResultGet() can be executed only after a
MultipleAxesPVTVerification(). It returns the trajectory limits for each positioner,
which are the travel requirements in positive and negative direction, the maximum
reached speed and the maximum reached acceleration.

To execute a PVT trajectory, send the function MultipleAxesPVTExecution() while
specifying the file name and the execution number. This function does not verify the
trajectory coherence or geometric conditions (exceeding any positioner’s min. or max.
travel, speed or acceleration) before execution, so users must be careful when executing
a trajectory without verifying the trajectory first. In case of an error during the
execution, f because of bad data or because of a following error, the motion group will
make an emergency stop and will go the disabled state.

Finally, the function MultipleAxesPVTParametersGet() returns the trajectory name and
the number of the trajectory element that is currently in execution. This function returns
an error if the trajectory is not in execution.

XPSDocumentation V2.6.x (08/11)

102

XPS Motion Tutorial

9.39 Examples of the Use of the functions
MultipleAxesPVTVerification (NGroup, PVT1.trj)
This function returns a 0 if the trajectory is executable.

MultipleAxesPVTVerificationResultGet (NGroup.1Positioner, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)

This function returns the name of the trajectory checked with the last sent
function MultipleAxesPVT Verification to the motion group NGroup
(PVT1.trj) and the trajectory limits for the positioner NGroup.lPositioner.
These trajectory limits are: the negative or left travel requirement, the
positive or right travel requirement, the maximum reached speed and the
maximum reached acceleration. Make sure that these trajectory limits
(negative and positive travel requirements, speed and acceleration) are
below the soft limits of the stages defined in the stages.ini file (section Travel:
MinimumTargetPosition, MaximumTargetPosition and section Profiler:
MaximumVelocity, MaximumAcceleration).

MultipleAxesPVTExecution (NGroup, PVT1.trj, 5)
Executes the trajectory PVTI .trj five (5) times.

MultipleAxesPVTParametersGet (NGroup, *FileName,
*ElementNumber)

Returns the trajectory file name in execution (PVTI trj) and the number of
the current executed trajectory element.

103 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

10.0 Compensation

The XPS controller features different compensation methods that improve the
performance of a motion system:

Backlash compensation: The setting of a backlash compensation improves the bi-
directional repeatability and bi-directional accuracy of a motion device that has
mechanical play. Backlash compensation is available with all positioners, but it is not
compatible with all motion modes. When the backlash compensation is activated, the
XPS controller adds a user-defined BacklashValue to the TargetPosition to calculate a
new target position whenever reversing the direction of motion. This internally used
new target position is then the basis for the calculations of the motion profiler. No
modification of the actual target is done.

Linear error compensation: The linear error compensation helps to improve the
accuracy of a motion device by eliminating linear error sources. Linear errors can be
caused by screw pitch errors, linear increasing angular deviations (abbe errors), thermal
effects or cosine errors (angles between feedback device and direction of motion).
Linear error compensation is available with all positioners. It’s value is defined in the
stages.ini. When set different than zero, the encoder positions are compensated by this
value. Linear error compensation can be used in parallel to any other compensation. For
this reason, care must be taken to the effects when using linear error compensation in
addition to other compensation methods.

Positioner mapping: In contrast to the linear error compensation, positioner mapping
allows to compensate also for nonlinear error sources. Positioner mapping is done by
sending a compensation table to the XPS controller and doing the needed settings in the
stages.ini. Positioner mapping is available with all positioners and works in parallel
with other compensations except for the backlash compensation. For this reason, care
must be taken to the effects when using linear error compensation in addition to other
compensations.

XY mapping: XY mapping is only available with XY groups. It allows compensation
for all errors of an XY group at any position of the XY group by sending two
compensation tables to the XPS controller (x and y compensations mapped to x and y
positions). The XY mapping is dynamically taken into account on the corrector loop of
the XPS controller. XY mapping works in parallel to other compensation methods. For
this reason, care must be taken to the effects when using for instance XY mapping and
positioner mapping at the same time.

XYZ mapping: XYZ mapping is only available with XYZ groups. It compensates for
all errors of a XYZ group at any position of the XYZ group by sending three
compensation files to the XPS controller (x compensations mapped to X, y, and z
positions, and so on). The XYZ mapping is dynamically taken into account on the
corrector loop of the XPS controller. XYZ mapping works in parallel to other
compensation methods. For this reason, care must be taken to the effects when using for
instance XYZ mapping and positioner mapping at the same time.

TargetPosition, SetpointPosition & CurrentPosition are accessible via function and
Gathering (Data Collection).

SetpointVelocity, SetpointAcceleration & FollowingError are accessible via
Gathering (Data Collection).

XPSDocumentation V2.6.x (08/11)

104

XPS

Motion Tutorial

APl MoveAbsolute,
MoveRelatve

J,

APl MoveAbsolute,
MoveRelative. .

TargetPosition
(Double precisson)

SetPoimPostion
SetPoimVelocity FollowingError
SetPointAccelaration

! Profiler .—0—->

10.1

7

PID | ' l "\

-~ . "lr' ~\.

2 —»{ X > Cosriie I-—0—>- Driver t=——3p=i Stage ‘»—
\ IR \ e J

Group Ads | Axis linear \ ¢ Encoder i
Mapping mapping | correction } [4-

Figure 35: Definition of different positions for one actuator.

Backlash Compensation

Backlash compensation is available with all positioners, but works only under certain
conditions:

e The “HomeSearchSequenceType” in the stages.ini must be different than
“CurrentPositionAsHome”.

e Backlash compensation is not compatible with positioner mapping. So for
positioners with backlash compensation it is not allowed to have any entry for
“PositionerMappingFileName” in the stages.ini.

e Backlash compensation is not compatible with trajectories (Line-Arc, Spline, PVT),
jog, or analog tracking. So it is not possible to execute any trajectory, to use the jog
mode or to enable the analog tracking with any motion group that contains
positioners with enabled backlash compensation.

After the above has been taken into consideration, a number of steps need to be done to
enable the backlash compensation. First of all there must be a value larger than O for
“backlash” in the stages.ini. But this setting does not automatically enable the backlash
compensation. To do so, you need to send the function PositionerBacklashEnable()
while the motion group, to which this positioner belongs, must be disabled. To disable
the backlash compensation (for instance to execute some jog motion or to use analog
tracking), use the function PositionerBacklashDisable(). The value for the backlash
compensation can be changed at any time by the function PositionerBacklashSet().
The new value for the backlash will be taken into account with the next following
move. Finally, the function PositionerBacklashGet() returns the current value for the
backlash and the backlash status (“enabled” or “disabled”).

For set backlash to remain set after power down, the stages.ini file must be modified
with the value desired.

105 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

10.2

10.3

Example
In the stages.ini file, set a value different from O in section Backlash:

;--- Backlash
Backlash =5 ; units

This example shows the sequence of functions to enable the backlash compensation:
PositionerBacklashEnable (MyGroup .MyPositioner)
Grouplnitialize (MyGroup)
GroupHomeSearch (MyGroup)

PositionerBacklashSet (MyGroup.MyPositioner, 10)
PositionerBacklashGet (MyGroup.MyPositioner, *Backlash, *Status)
Returns the backlash value (10) and the backlash status (Enable).

PositionerBacklashDisable (MyGroup.MyPositioner)

Linear Error Correction

Linear error correction is available with all positioners and works in parallel to any
other compensation. To use the linear error correction you need to set a value for
“LinearErrorCorrection” in the stages.ini. When set, the corrected positions are
calculated the following way:

Corrected position = HomePreset +
(EncoderPosition — HomePreset) x (1 + LinearEncoderCorrection/106)

The LinearEncoderCorrection is specified in ppm (parts per million). The correction is
applied relatively to the physical home position of the positioner (the Encoder position
by definition is set to the HomePreset value at the home position). This hardware
reference for linear error correction has the advantage of being independent of the value
for the HomePreset.

Example

In the stages.ini file, set a value different from O in section Encoder, parameter
LinearEncoderCorrection:

;- Encoder

EncoderType =AquadB

EncoderResolution = 0.001 ; unit

LinearEncoderCorrection =5 ; ppm
Positioner Mapping

Positioner mapping allows correcting for any nonlinear errors of a positioner. Positioner
mapping is available with all positioners and can be used in addition to other
compensations, except for the backlash compensation.

XPSDocumentation V2.6.x (08/11)

106

XPS Motion Tutorial

Profiler —NXP—F CP‘D FF —3 Driver —>=i Stage
| VoY Corrector \ ‘ l

. [] {
Axis Axis lingar l-q—— Encoder

mapping | correcuon
Mapping File: HomePreset
PositionerMappingFleName
PostionerMappingLineNumber
PosibonerMappingMaxPositionError UinearEncoderCorrection

Figure 36: Positioner Mapping.

e HomePreset: Encoder position value at the home position.
e LinearEncoderCorrection: Value in ppm. Correction is given by

CorrectedPosition = HomePreset +
(EncoderPosition — HomePreset)*(1+LinearCorrection/106).

e Mapping file: Declaration of the mapping in the stages.ini file (part Positioner
mapping).

The positioner mapping data gets defined in a text file. Each line of that file represents
one set of data. Each set of data is composed of the position and the error at this
position. The separator between the two data entries in each line is a tab. All positions
are relative to the physical home position of the positioner. The data file must contain
the line “0 0”, which means that the error at the home position is 0. This hardware
reference for positioner mapping has the advantage of being independent of the value
for the HomePreset.

The following shows the general structure of such a data file:

PosMin Error 0

Pos 1 Error 1

Pos 2 Error 2

0 0

PosMax Error LineNumber-1

To activate the positioner mapping, the mapping file must be in the .\admin\config
directory of the XPS controller and the following settings must be done in the stages.ini:

e PositionerMappingFileName: Name of the mapping file.
e PositionerMappingLineNumber: Number of lines of that file.

¢ PositionerMappingMaxPositionError: Maximum absolute error in that file (any
value larger than the actual largest value in the file will be accepted as well).

The PositionerMappingLineNumber and the

PositionerMappingMaxPositionError are only used to check for the correctness of the
mapping file.

107 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Example

The following shows an example of a positioner mapping data file:
PosMapping .txt

-3.00 -0.00125
-2.00 -0.00112
-1.00 -0.00137
0.00 0.00000
1.00 0.00140
2.00 0.00145
3.00 0.00154

Define the positioner mapping in the stages.ini file:

;--- Backlash
Backlash =0 ; unit

;—- Positioner mapping
PositionerMappingFileName = PosMapping.txt
PositionerMappingLineNumber = 7
PositionerMappingMaxPositionError = 0.00154

;--- Travels

MinimumTargetPosition =-2 ; unit
HomePreset =0 ; unit
MaximumTargetPosition =3 ; unit

NOTE

These travel limits must be equal to or within the positioner limit positions of the
mapping file (here +3 and -3).

Use of the functions:

¢ Grouplnitialize(MyGroup)

e GroupHomeSearch(MyGroup)

e GroupMoveAbsolute(MyGroup.Positioner, 0.25)

The mapping file must at least cover the minimum and the maximum travel of the
positioner. It must cover MinimumTargetPosition and MaximumTargetPosition
parameters defined in the stages.ini, section Travels. In the example above, the travel of
the positioner can not be larger than +3 units, but it can be smaller than this. The units
for the data are the same as defined by the EncoderResolution in the stages.ini. The data
reads as follows: the corrected position at position 3.00 units is 2.99846 units (3.00 -
0.00154). Between two data, the XPS controller is performing a linear interpolation of
the error. The corrected position at position 0.25 units is 0.24965 units (0.25 -
0.00140*0.25/1).

NOTE

Mapping is a functionality implemented within the controller to correct the errors
of accuracy. Once activated, mapping is transparent for the user. The function
GroupPositionCurrentGet doesn’t return 0.24965 (0.25 - 0.00140%0.25/1) but 0.25.

XPSDocumentation V2.6.x (08/11)

108

XPS

Motion Tutorial

XMappeglineNumbes

APl > move to
XY TargetPosstion

X Mapping File

0 | Yma
Xerr00

-

X rmn
X1

o}

| X max.

-

Y

104 XY Mapping

XY mapping is only available with XY groups. It compensation for all errors of an XY
group at any position of that XY group. XY mapping can be used in addition to other
compensations, including positioner mapping. So care must be taken to the cross-effects
of using XY mapping and other compensations at the same time.

v X positioner ;

(

== Profilerto |

Corrector “
interpolation

| X pasitioner »:";

Profiler To servo loop X
)

XError
Mapping

_ } Y postioner

0 -\ [
Y;;om.oner p{ ' Jp! Profilerto 3| ToservoloopY
& N Corrector .

Interpolation

Y Error
Mapping

Figure 37: XY Mapping

XY mapping is defined by 2 compensation tables, each for X and Y, in a text file
format. In each of these files, the first column specifies the X positions, X being the first
positioner of the XY group, and the first row, the Y positions. Each cell represents the
error for that X,Y position. The first entry in that file must be 0 (zero). The separator
between the different data in each row is the tab. All positions are relative to the
physical home position of the XY group. The data files must contain the X position = 0
and the Y position = 0. The error at X = Y = 0 must be 0, which means that the error at
the home position is 0. This hardware reference for tXY mapping has the advantage of
being independent of the value for the HomePreset.

The following shows the structure of such mapping files:

Y Magping File
YMappngColumaNumber

- - -

XMappingColumnNumber

o) | Ymax 0 Yma Y Y max
Xma Yorr00

XI
o ®

.an_

-

YMappngLineNumbdar

-

Figure 38: XY Mapping Files.

NOTE

Error in X =Y = 0 must be 0. This value in the file corresponds to the HomePreset
positions in the XY group reference.

109 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

To activate XY mapping, the mapping files must be in the .\admin\config directory of
the XPS controller and the following settings must be done in the system.ini:

XMappingFileName: Name of the mapping file.
XMappingLineNumber: Total number of lines of that file.

XMappingColumnNumber: Total number of columns of that file.

XMappingMaxPositionError: Maximum absolute error in that file (any value
larger than the actual largest value in that file will be accepted as well).

YMappingFileName: Name of the mapping file.
YMappingLineNumber: Total number of lines of that file.

YMappingColumnNumber: Total number of columns of that file.

YMappingMaxPositionError: Maximum absolute error in that file (any value
larger than the actual largest value in that file will be accepted as well).

The

X(Y)MappingMaxPositionError are only used to check for the correctness of the

X(Y)MappingLineNumber,

mapping file.

Example

X(Y)MappingColumnNumber

The following shows an example of the X and Y mapping files:
Matrix X: XYMapping_X .txt

0 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
-3.00 -0.00192 -0.00534 -0.00254 0.00023 0.00254 0.00534 0.00192
-2.00 -0.00453 -0.00322 -0.00676 0.00049 0.00676 0.00322 0.00453
-1.00 -0.00331 -0.00845 -0.00769 0.00102 0.00769 0.00845 0.00331
0.00 -0.00787 -0.00228 -0.00787 O 0.00787 0.00228 0.00787
1.00 -0.00232 -0.00210 -0.00342 0.00089 0.00342 0.00210 0.00232
2.00 -0.00134 -0.00308 -0.00675 0.00101 0.00675 0.00308 0.00134
3.00 -0.00789 -0.00148 -0.00234 0.00121 0.00234 0.00148 0.00789
Matrix Y: XYMapping_Y .txt
0 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
-3.00 -0.00172 -0.00434 -0.00154 0.00013 0.00204 0.00234 0.00122
-2.00 -0.00433 -0.00222 -0.00376 0.00029 0.00636 0.00222 0.00353
-1.00 -0.00311 -0.00635 -0.00569 0.00089 0.00739 0.00245 0.00231
0.00 -0.00737 -0.00128 -0.00387 O 0.00567 0.00128 0.00387
1.00 -0.00212 -0.00110 -0.00142 0.00079 0.00332 0.00310 0.00132
2.00 -0.00114 -0.00208 -0.00375 0.00089 0.00375 0.00348 0.00122
3.00 -0.00689 -0.00128 -0.00134 0.00101 0.00232 0.00138 0.00689
Verify in the stages.ini for both stages:
;--- Travels
MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit
NOTE

The limit travels must be equal or within the X and Y limit positions of the

mapping files, here +3 and -3, respectively.

XPSDocumentation V2.6.x (08/11)

110

XPS

Motion Tutorial

10.5

Apply the following settings in the system.ini file:

;- Mapping XY

XMappingFileName = XYMapping_X.txt
XMappingLineNumber =7
XMappingColumnNumber = 7
XMappingMaxPositionError = 0.00845

YMappingFileName = XYMapping_Y.ixt
YMappingLineNumber = 7
YMappingColumnNumber = 7
YMappingMaxPositionError = 0.00739

Use of the functions:

¢ Grouplnitialize(XY)

¢ GroupHomeSearch(XY)

¢ GroupMoveAbsolute(XY, 3, 2)

The mapping files must at least cover the minimum and the maximum travel of the XY
group (they must cover the MinimumTargetPosition and the MaximumTargetPosition
for the X and Y positioners, parameters defined in the stages.ini, part Travels). So in the
above example, the travel of the X and Y positioners can not be larger than +3 units, but
they can be smaller than this. The units for the data are the same as defined by the
EncoderResolution in the stages.ini. The data reads as follow: at position X = 3.00 units,
Y = 2.00 units the corrected X position is 2.99852 units (3.00 - 0.00148) and the
corrected Y position is 1.99862 units (2.00 - 0.00138). Between two data, the XPS
controller is doing a linear interpolation of the error. The two mapping files don’t need
to contain the same X and Y positions.

NOTE

Mapping is a functionality implemented within the XPS controller to correct the
errors of accuracy. When mapping is activated, it is transparent for the user. At
position (X,Y) = (3.00, 2.00), the function GroupPositionCurrentGet(XY.X) doesn’t
return 2.99852 (3.00 - 0.00148) but 3.

XYZ Mapping

XYZ mapping is only available with XYZ groups. It compensation for all errors of an
XYZ group at any position of that XYZ group. XYZ mapping can be used in addition to
other compensations, including positioner mapping. Care must be taken to the cross-
effects when using XYZ mapping and other compensations at the same time.

XYZ mapping is defined by 3 compensation files (compensation for X, Y and Z) in a
text format. Each of these files can be seen as the juxtaposition of successive tables
where the first column of the first table contains the X position; the first row of the first
table contains the Y position; and the first cell of each table contains the Z position. The
separator between the different data in each row is a tab. For better readability, inserting
an empty line between successive tables is recommended, but is not mandatory. The
other cells contain the corresponding error.

All positions are relative to the physical home position of the XYZ group. The data files
must contain the X position = 0, the Y position = 0, and the Z Position = 0. The error at
X =Y =7 = 0 must be 0, which means that the error at the home position is 0. This
hardware referential for the XYZ mapping has the advantage of being independent of
the value for the HomePreset.

Figure 39 shows the structure for the three mapping files for X, Y, and Z correction:

111 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

MappingZDimNumber

MappingYColumnNumber

- 0 Y min, (o) Y max,
3 A X min, Err Err Err Err Err
?: Err Err Err Err Err
S @ Err Err Err En Err
>r(‘ 4
= Err Err Err Err Err
&y | X max Err En Err Err Err
=
’
4 Z min, < 0 Err Err Err Ert Err
- . Err Err Err Ert Err
0 - 0 Err Err @ Err Err
- Err Err Err Ermr Err
v | Zmaxie O Er | Em | Em | Ew | Em

0 Err I Err Err En Err

Err Err Err Err Enr
0 . Ere Ern Err Ent Err
' Err Err Err Ert Err
0 ‘ Err Err Err Err Err

’

Figure 39: XYZ Mapping Files.

NOTE

Error in X =Y = Z = 0 must be 0. This value in the file corresponds to the
HomePreset positions in the XY group reference. A terminator (#) must be added
at end of each matrix.

To activate the XYZ mapping, the mapping files must be in the .\admin\config
directory of the XPS controller and the following settings must be done in the
system.ini:

XMappingFileName: Name of the mapping file.

XMappingXLineNumber: Total number of lines of each table including header.
XMappingY ColumnNumber: Total number of columns.
XMappingZDimNumber: Number of successive tables.

XMappingMaxPositionError: Maximum absolute error in that file (Any value
larger than the actual largest value in that file will be accepted as well).

YMappingFileName: Name of the mapping file.

YMappingXLineNumber: Total number of lines of each table including header.
YMappingY ColumnNumber: Total number of columns.
YMappingZDimNumber: Number of successive tables.

YMappingMaxPositionError: Maximum absolute error in that file (Any value
larger than the actual largest value in that file will be accepted as well).

XPSDocumentation V2.6.x (08/11)

112

XPS

Motion Tutorial

e ZMappingFileName: Name of the mapping file.

e 7ZMappingXLineNumber: Total number of lines of each table including header.

e 7ZMappingY ColumnNumber: Total number of columns.

e 7ZMappingZDimNumber: Number of successive tables.

e 7ZMappingMaxPositionError: Maximum absolute error in that file (Any value
larger than the actual largest value in that file will be accepted as well).

X(Y,Z)Mapping Y ColumnNumber,
X(Y,Z)MappingZDimNumber and X(Y,Z)MappingMaxPositionError are only used to

The

X(Y,Z)MappingXLineNumber,

check for the correctness of the mapping file.

Example
The following shows examples for the X, Y, and Z mapping files for an XYZ mapping:

Matrix X: XYZMapping_X .txt

-1.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00

O O O O O O o o

-3.00
-0.00192
0.00453
-0.00331
-0.00787
0.00232
-0.00134
0.00189

0
-0.00192
0.00453
-0.00331
-0.00787
0.00232
-0.00134
0.00189

0
-0.00192
0.00453
-0.00331
-0.00787
0.00232
-0.00134
0.00189

-2.00
-0.00534
-0.00322
0.00445
0.00228
0.00210
0.00308
-0.00148

0
-0.00534
-0.00322

0.00445

0.00228

0.00210

0.00308
-0.00148

0
-0.00534
-0.00322

0.00445

0.00228

0.00210

0.00308
-0.00148

-1.00
0.00254
0.00376

-0.00769

-0.00787

-0.00342
0.00275
0.00234

0
0.00254
0.00376
-0.00769
-0.00787
-0.00342
0.00275
0.00234

0
0.00254
0.00376
-0.00769
-0.00787
-0.00342
0.00275
0.00234

0.00
0.00125
-0.00412
-0.00126
0.00320
0.00169
-0.00369
0.00458

0
0.00125
-0.00412
-0.00126
0
0.00169
-0.00369
0.00458

0
0.00125
-0.00412
-0.00126
0.00320
0.00169
-0.00369
0.00458

1.00
-0.00137
-0.00258
-0.00153

0.00154

0.00265

0.00337
-0.00333

0
-0.00137
-0.00258
-0.00153

0.00154

0.00265

0.00337
-0.00333

0
-0.00137
-0.00258
-0.00153

0.00154

0.00265

0.00337
-0.00333

2.00
0.00110
-0.00111
0.00298
-0.00169
0.00169
-0.00214
0.00152

0
0.00110
-0.00111
0.00298
-0.00169
0.00169
-0.00214
0.00152

0
0.00110
-0.00111
0.00298
-0.00169
0.00169
-0.00214
0.00152

3.00
0.00123
-0.00287
0.00487
-0.00369
0.00125
-0.00456
0.00335

0
0.00123
-0.00287
0.00487
-0.00369
0.00125
-0.00456
0.00335

0
0.00123
-0.00287
0.00487
-0.00369
0.00125
-0.00456
0.00335

113

XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

Matrix Y: XYZMapping_Y txt

-1.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

-3.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
-2.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
-1.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
0.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
1.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
2.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
3.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190

0 0 0 0 0 0 0

-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 O -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123

O OO O OO oo

o
o

0 0 0 0 0 0 0

-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
-0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123

Matrix Z: XYZMapping_Z txt

-1.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

-3.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
-2.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
-1.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
1.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
2.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
3.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002

#
0 0 0 0 0 0 0 0
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 O -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
#
1.00 0 0 0 0 0 0 0
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
#

XPSDocumentation V2.6.x (08/11) 114

XPS Motion Tutorial

Verify in the stages.ini:

For the X axis:

;--- Travels

MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit

NOTE

The limit travels must be equal or within the X limit positions of the mapping files
(here +3 and -3).

For the Y axis:

;--- Travels

MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit

NOTE

The limit travels must be equal or within the Y limit positions of the mapping files
(here +3 and -3).

For Z axis:
;--- Travels
MinimumTargetPosition =-1 ; unit
HomePreset =0; unit
MaximumTargetPosition =1 ; unit

NOTE

The limit travels must be equal or within the Z limit positions of the mapping files
(here +3 and -3).

In the system.ini file:

;—- Mapping XYZ

XMappingFileName = XYZMapping_X.txt
XMappingXLineNumber = 7
XMappingYColumnNumber = 7
XMappingZDimNumber = 3
XMappingMaxPositionError = 0.00787
YMappingFileName = XYZMapping_Y.txt
YMappingXLineNumber = 7
YMappingYColumnNumber = 7
YMappingZDimNumber = 3
YMappingMaxPositionError = 0.00534
ZMappingFileName = XYZMapping_Z.txt
ZMappingXLineNumber =7
ZMappingYColumnNumber =7
ZMappingZDimNumber = 3
ZMappingMaxPositionError = 0.0003

115 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Use of the functions:

¢ Grouplnitialize(XYZ)

¢ GroupHomeSearch(XYZ)

e GroupMoveAbsolute(XYZ,3,1,1)

The mapping files must at least cover the minimum and the maximum travel of the
XYZ group (they must cover the MinimumTargetPosition and the
MaximumTargetPosition for the X, Y and Z positioners, parameters defined in the
stages.ini, part Travels). So in the above example the travel of the X and Y positioners
can not be larger than +3 units, and the travel for the Z positioner can not be larger than
+1 unit. But they can be smaller than this. The units for the data are the same as defined
by the EncoderResolution in the stages.ini. The data reads as follow: at position (X,Y,Z)
= (3.00, 2.00, 1.00), the corrected X position is 2.99848 units (3.00 - 0.00152), the
corrected Y position is 2.9989 units (3.00 - 0.00110) and the corrected Z position is
3.0002 units (3.00 + 0.0002). Between two data, the XPS controller is doing a linear
interpolation of the error. The three mapping files for X, Y, and Z don’t need to contain
the same X, Y and Z positions.

NOTE

Mapping is a functionality implemented inside the XPS controller to correct the
errors of accuracy. But when mapping is activated, it is transparent for the user.
At position X,Y.,72) = 3.00, 1.00, 1.00), the function
GroupPositionCurrentGet(XYZ.X) doesn’t return 3.00333 (3.00 + 0.00333) but 3.

XPSDocumentation V2.6.x (08/11)

116

XPS

Motion Tutorial

11.0 Event Triggers

Important Note to Users of XPS Firmware prior to Revision 1.6.0

With XPS firmware 1.6.0 Newport, has significantly expanded the use of the event
triggers. However this extended use also requires changes to the event structure
and the introduction of new functions that now all start with EventExtended. The
old functions like EventAdd() etc. are still part of the new firmware, but no longer
documented.

The XPS event triggers work similar to IF/THEN statements in programming. “If” the
event occurs, “then” an action is triggered. Programmer’s can trigger any action (from
a list of possible actions, see section 11.2) at any event (from a large list of possible
events, see section 11.1). It is also possible to trigger several actions at the same event.
Furthermore, it is possible to link several events to an event configuration. In this case,
all events have to happen at the same time to trigger the action(s). It is comparable to a
logic AND between the different events.

Some events are singular time events like “motion start”. They will trigger an action
only once when the event occurs. Some other events have a duration like “motion
state”. They will trigger the same action each time (as applicable) as long as the event
occurs. For events with duration, the event can be also considered as a statement that is
checked whether it is true or not. A third event category are the permanent events
“Always” (always happens) and “Timer” (happens every nth servo cycle). They will
trigger the action always on every nth servo cycle.

As the XPS controller provides the utmost flexibility on programming event triggers,
the user must be careful and consider possible unwanted effects. Some events might
have duration although only one single action is asked. Some other events might never
occur. This is especially true when linking several events to an event configuration. The
different possible effects get illustrated in section 11.3 by some examples.

To trigger an action with an event, first the event and the associated action need to get
configured using the functions EventExtendedConfigurationTriggerSet() and
EventExtendedConfigurationActionSet(). Then, the event trigger needs to get
activated using the function EventExtendedStart(). When activated, the XPS controller
checks for the event each servo cycle (or each profiler cycle for those events that are
motion related) and triggers the action when the event happens. Hence, the maximum
latency between the event and the action is equal to the servo cycle time of 100 ys or
equal to the profiler cycle time of 400 us. For events with duration, it means also that
the same action is triggered each servo cycle, means every 100 us, or each profiler
cycle, means every 400 us, as long as the event is happening.

Event triggers (and their associated action) get automatically removed after the event
configuration has happened at least once and is no longer true anymore. The only
exception is if the event configuration contains any of the permanent events “Always”
or “Timer”. In that case the event trigger will always stay active. With the function
EventExtendedRemove(), any event trigger can get removed.

The function EventExtendedWait() can be used to halt a process. It essentially blocks
the socket until the event occurs. Once the event occurs, it gets deleted. It requires a
preceding function EventExtendedConfigurationTriggerSet() to define the event at
which the process continues.

The functions EventExtendedGet() and EventExtendedAllGet() return details of the
event and action configurations.

117 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

111 Events
General events are defined as “Always”, “Immediate” and “Timer”. With the event
“Always”, an action is triggered each servo cycle, means every 100 us. For events that
are defined as “Immediate”, an action is triggered once immediately (means during the
very next servo cycle). For the events “Timer” an action is triggered immediately and
every nth servo cycle. Here, “n” corresponds to the “FrequencyTicks” defined with the
function TimerSet(). There are five different timers available that get selected by the
actor (1...5). (Actor is the object that actions/events are linked to)
All events that are motion related (from MotionStart to TrajectoryPulseOutputState in
the below table, beside MotionDone) refer to the motion profiler of the XPS controller.
The motion profiler runs at a frequency of 2.5 kHz, or every 400 pus. Thus, events
triggered by the motion profiler have a resolution of 400 us. Consequently, events with
duration, such as MotionState, will trigger an action every 400 us. All motion related
events, except MotionDone, have a category such as “Sgamma” or “Jog”. This category
refers to the motion profiler. Here, SGamma refers to the profiler used with the function
GroupMoveRelative and GroupMoveAbsolute and Jog refers to the profiler used in the
Jogging state. The other event categories refer to trajectories. The separator between the
category, the actor, and the event name is a dot (.).
Actor Category Event Name Parameter
Group GPIO SGamma XYLineArc PVT
Positioner TimerX Jog Spline 1 2 3 4
Immediate
Always
v Timer
v \ \ MotionStart
v \ \ MotionStop
v \ \ MotionState
v \ \ ConstantVelocityStart
v \ ConstantVelocityEnd
v \ \ ConstantVelocityState
v \ ConstantAccelerationStart
v \ ConstantAccelerationEnd
v \ ConstantAccelerationState
v \ ConstantDecelerationStart
v \ ConstantDecelerationEnd
v \ ConstantDecelerationState
v \ \ \ TrajectoryStart
v \ \ \ TrajectoryEnd
v \ \ \ TrajectoryState
v \ \ \ ElementNumberStart Element #
v \ \ \ ElementNumberState Element #
v MotionDone
v \ \ TrajectoryPulse
v \ \ TrajectoryPulseOutputState
\ DILowHigh Bit index
\ DIHighLow Bit index
\ DIToggled Bit index
\ ADCHighLimit Value
v ADCLowLimit Value
\ PositionerError Mask
\ PositionerHardwareStatus Mask
XPSDocumentation V2.6.x (08/11) 118

XPS

Motion Tutorial

An event is entirely composed by:

[Actor].[Category].Event Name, Parameterl, Parameter2, Parameter3,
Parameter4

Not all event names have a preceding actor and category, but all events have four
parameters, even though most parameters have no specific meaning. For the parameters
with no meaning, it is still required to have a zero (0) as default.

To define an Event, use the function EventExtendedConfigurationTriggerSet().

Examples

EventExtendedConfiguration TriggerSet
(MyGroup.MyPositioner.SGamma.MotionStart, 0,0, 0, 0)

In this case the actor is a positioner (MyGroup.MyPositioner) and the event has a
category. The event happens when the next motion with the SGamma profiler on the
positioner MyGroup.MyPositioner starts. After the motion is started, the event gets
removed.

EventExtendedConfigurationTriggerSet
(MyGroup.XYLineArc.ElementNumberStart, 5, 0, 0, 0)

In this case the actor is a group (MyGroup) and the event has a category. The event
happens when the trajectory element number 5 on the next LineArc trajectory on this
group starts.

EventExtendedConfigurationTriggerSet
(GPIO2.ADC2.ADCHighLimit, 3,0, 0, 0)

In this case the actor is a GPIO name (GPIO2.ADC2) and the event has no category.
The event happens when the voltage on the GPIO.ADC2 exceeds 3 Volts.

It is also possible to link different events to an event configuration. The same function
EventExtendedConfigurationTriggerSet() is used, and the different events are just
separated by a comma. The event combination happens when all individual events
happen at the same time. It is comparable to a logic AND between the different events.

Examples

EventExtendedConfigurationTriggerSet (GPI02.ADC2.ADCHighLimit,
3,0,0,0, MyGroup.MyPositioner.SGamma.MotionState, 0, 0, 0, 0)

This event will happen when the voltage of the GPIO.ADC2 exceeds 3 Volts during a
SGamma motion of the MyGroup.MyPositioner.

EventExtendedConfigurationTriggerSet (Always, 0, 0,0, 0,
MyGroup .MyPositioner SGamma.MotionStart, 0, 0, 0, 0)

This event will happen during each SGamma motion started on the positioner
MyGroup.MyPositioner. The addition of the event always has here just the effect that
the event gets not removed anymore after the next motion has been started (see
difference to first example above).

119 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

The exact meaning of the different events and event parameters is as follow:
Always: Triggers an action ALWAYS, means each servo cycle.
Event parameter 1 to 4 = 0 by default.

NOTE: This event is PERMANENT until the next reboot.
Call the EventExtendedRemove function to remove it.

Immediate: Triggers an action IMMEDIATELY, means once during
the very next servo cycle:

Event parameter 1 to 4 = 0 by default.
NOTE: This event is EPHEMERAL.

Timer: Triggers an action every nth servo cycle, where n gets
defined with the function TimerSet.

Event parameter 1 to 4 = 0 by default.

NOTE: This event is PERMANENT until the next reboot.
Call the EventExtendedRemove function to remove it.

MotionDone: Triggers an action when the motion done is reached.
Event parameter 1 to 4 = 0 by default.

For the exact definition of MotionDone, please refer to
section 8.5.

ConstantVelocityStart: Triggers an action when the constant velocity is reached.
Event parameter 1 to 4 = 0 by default.

ConstantVelocityEnd: Triggers an action when the constant velocity is finished.
Event parameter 1 to 4 = 0 by default.

ConstantVelocityState: Triggers an action during the constant velocity state. Event
parameter 1 to 4 =0 by default.

AL P
VO anTyeioc iy Slate

Lvers

TN

oratartivioc ity Surn Corsuantveloc tytng
Evertt Fvece

Figure 40: Constant Velocity Event.
ConstantAccelerationStart: Triggers an action when the constant acceleration
is reached. Event parameter 1 to 4 = 0 by default.

ConstantAccelerationEnd: Triggers an action when the constant acceleration
is finished. Event parameter 1 to 4 = 0 by default.

ConstantAccelerationState: Triggers an action during the constant acceleration
state. Event parameter 1 to 4 = 0 by default.

ConttamAcc eler stonState

Lvem
- -
/ 7 .\\\
/ \\
’ Y Y
ConstarsAcceleratonStant ConstantAccebersnoning \‘ //
Evem Evern \ /

\ ,‘,/
Figure 41: Constant Acceleration Event.

The same definition applies to ConstantDecelerationStart, ConstantDecelerationEnd and
ConstantDecelerationState.

XPSDocumentation V2.6.x (08/11)

120

XPS

Motion Tutorial

ConstantDecelersmonine

Evert

ComstarOecelerationSun

\ Event
- ~ A A o’
\ /

\ /

- »-
ConstamDeceleranonState

Evern

Figure 42: Constant Deceleration Event.

MotionStart:

MotionEnd:

MotionState:

Triggers an action when the motion starts. Event parameter
1 to 4 =0 by default.

Trigger an action when the motion is ended. Event
parameter 1 to 4 = 0 by default. Note, MotionEnd refers to
the end of the theoretic motion which is not the same as
MotionDone depending on the definition (see also section
8.5).

Triggers an action during the motion. Event parameter 1 to
4 =0 by default.

MooonSute

fvent

4

\ /
N

MosonEnc
vt

Figure 43: Motion Event.

There are also several trajectory events that can be defined:

TrajectoryStart:

TrajectoryEnd:

TrajectoryState:

ElementNumberStart:

ElementNumberState:

Triggers an action when the trajectory is started. Event
parameter 1 to 4 =0 by default.

Triggers an action when the trajectory is stopped. Event
parameter 1 to 4 =0 by default.

Triggers an action during the trajectory state. Event
parameter 1 to 4 =0 by default.

T o
facioryState
g

Figure 44: Trajectory Event.

Triggers an action when the trajectory element number is
started. The first event parameter specifies the number of
the trajectory element. The other event parameters are 0 by
default.

Triggers an action during the execution of that trajectory
element number. The first event parameter specifies the

121

XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

TrajectoryPulse:

number of the trajectory element. The other event
parameters are 0 by default.

ElementNorrder State

fvert

TragecrorySun Tragecronyénd

Syt frvot

Figure 45: Element Number Event.

Triggers an action when a pulse on the trajectory is
generated (see chapter 13.0: ““Output Triggers for details).
All event parameters are 0 by default.

Note, that any event trigger gets automatically removed
when it has happened at least once and not anymore on the
next servo or profiler cycle. Hence, in order to trigger an
action at every TrajectoryPulse it is required to link that
event to the event Always (see also section 11.4:
“Examples®).

TrajectoryPulseOutputState: Triggers an action during the trajectory pulse output

DILowHigh:

DIHighLow:

DIToggled:

ADCHighLimit:

ADCLowLimit:

state, means between the start and the end definitions of the
trajectory output pulses (see sections 13.4 and 13.5:
“Triggers on Trajectories” for details). All event parameters
are 0 by default.

Triggers an action when the digital input bit switches from
low state to high state. The first event parameter is the bit
index (0 to 15). The other event parameters are 0 by default.

Triggers an action when the digital input bit switches from
high state to low state. The first event parameter is the bit
index (0 to 15). The other event parameters are 0 by default.

Triggers an action when the digital input bit switches from
low to high or from high to low. The first event parameter
is the bit index (0 to 15). The other event parameters are 0
by default.

Triggers an action when the analog input value exceeds the
limit. The first event parameter is the limit value in volts.
The other event parameters are O by default.

Triggers an action when the analog input value is below the
limit. The first event parameter is the limit value in volts.
The other event parameters are 0 by default.

XPSDocumentation V2.6.x (08/11)

122

XPS

Motion Tutorial

PositionerError: Triggers an action when the current positioner error applied
with the error mask results in a value different than zero.
The first event parameter specifies the error mask in a
decimal format. The other event parameters are 0 by
default.
Code (Hexa) Bit# Decimal Positioner error description
0 No error
0x00000001 0 1 General inhibition detected
0x00000002 1 2 Fatal following error detected
0x00000004 2 4 Home search time out
0x00000008 3 8 Motion done time out
0x00000010 4 16 Requested position exceed travel limits in trajectory
or slave mode
0x00000020 5 32 Requested velocity exceed maximum value in
trajectory or slave mode
0x00000040 6 64 Requested acceleration exceed max value in trajectory
or slave mode
0x00000100 8 256 Minus end of course activated
0x00000200 9 512 Plus end of course activated
0x00000400 10 1024 Minus end of run glitch
0x00000800 11 2048 Plus end of run glitch
0x00001000 12 4096 Encoder quadrature error
0x00002000 13 8192 Encoder frequency and coherence error
0x00010000 16 65536 Hard interpolator encoder error
0x00020000 17 131072 Hard interpolator encoder quadrature error
0x00100000 20 1048576 First driver in fault
0x00200000 21 2097152 Second driver in fault
Examples

EventExtendedConfigurationTriggerSet
(MyGroup .MyPositioner.PositionerError, 2, 0,0, 0)

This event happens when the positioner MyGroup.MyPositioner has a fatal

following error.

EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner .PositionerError, 12,0, 0, 0)

This event happens when the positioner MyGroup MyPositioner has either a
home search time out or a motion done time out.

123

XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

PositionerHardwareStatus:
status applied with the error mask results in a value
different than zero. The first event parameter specifies the

status

Triggers an action when the current hardware

mask in a decimal format. The other event

parameters are 0 by default.

Code (Hexa) Bit# Decimal Hardware status description
0x00000001 0 1 General inhibition detected
0x00000004 2 4 ZM high level

0x00000100 8 256 Minus end of run activated
0x00000200 9 512 Plus end of run activated
0x00000400 10 1024 Minus end of run glitch

0x00000800 11 2048 Plus end of run glitch

0x00001000 12 4096 Encoder quadrature error
0x00002000 13 8192 Encoder frequency or coherence error
0x00010000 16 65536 Hard interpolator encoder error
0x00020000 17 131072 Hard interpolator encoder quadrature error
0x00100000 20 1048576 First driver in fault

0x00200000 21 2097152 Second driver in fault

0x00400000 22 4194304 First driver powered on

0x00800000 23 8388608 Second driver powered on
Example

EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.PositionerHardwareStatus, 768, 0, 0, 0)

This event happens when the positioner MyGroup MyPositioner has either a
plus end of run or a minus end of run detected.

XPSDocumentation V2.6.x (08/11)

124

XPS

Motion Tutorial

11.2 Actions
There are several actions that can be triggered by the events listed above. Users have the
full flexibility to trigger any action (out of the list of possible actions) at any event (out
of the list of possible events). It is also possible to trigger several actions at the same
event by adding several sets of parameters to the functions
EventExtendedConfigurationActionSet(), similar to how it is done with events.
Actor Action Name Parameter
Group GPIO
Positioner TimerX 1 2 3 4
\ DOToggle Mask
\ DOPulse Mask
\ DOSet Mask Value
N DACSet.CurrentPosition Positioner name Gain Offset
\ DACSet.CurrentVelocity Positioner name Gain Offset
\ DACSet.SetpointPosition Positioner name Gain Offset
N DACSet.SetpointVelocity Positioner name Gain Offset
\ DACSet.SetpointAcceleration | Positioner name Gain Offset
ExecuteTCLScript TCL file name Task name Arguments
KillTCLScript Task name
GatheringOneData
GatheringRun Nb of points Divisor
GatheringRunAppend
GatheringStop
ExternalGatheringRun Nb of points Divisor
v MoveAbort
CAUTION

Certain events like MotionState have a duration. These events trigger
the associated action in each motion profiler cycle as long as the event
is true. For example, associating the action DOToggle with the event
MotionState will toggle the value of the digital output in each profiler
cycle as long as the MotionState event is true.

An event doesn’t reset the action after the event: For example, to set
a digital output to a certain value during the constant velocity state
and to set it back to its previous value afterwards, two event triggers
are needed: One to set to the digital output of the desired value at the
event ConstantVelocityStart and another one to set it back to its
original value at the event ConstantVelocityEnd. The same effect can
NOT be achieved with the sole use of the event
ConstantVelocityState.

An action is entirely composed by:
[Actor].Action Name, Parameterl, Parameter2, Parameter3, Parameter4.

Not all action names have a preceding actor, but all actions have four parameters. Even
though not all actions have a specific meaning for all four parameters, it is still required
to have a zero (0) as default.

To define an action, use the function EventExtendedConfigurationA ctionSet().

Example:

EventExtendedConfigurationActionSet
(GPIO1.DO.DOToggled, 4,0,0,0)

125 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

In this case the actor is the digital output GPIO1.DO and the action is to toggle the
output. The mask 4 refers to bit #3, 00000100. Hence, this action toggles the value of
bit 3 on the digital output GPIO.DO.

EventExtendedConfigurationActionSet (ExecuteTCLScript,
Example.tcl, 1,0, 0)

The action ExecuteTCLScript has no preceding actor. This action will start the
execution of the TCL script “Example.tcl”. The task name is 1 and the TCL script has
no arguments (a zero for the third parameter means no arguments).

EventExtendedConfigurationActionSet (GatheringRun, 1000, 10, 0, 0)

The action GatheringRun has no preceding actor. This action will start an internal data
gathering. It will gather a total of 1000 data points, one data point every 10th servo
cycle, means one data point every 10/10000 s = 1 ms.

It is also possible to trigger several actions at the same event. To do so, just define
another action in the SAME function. Several actions are separated by a comma (,).

Example:

EventExtendedConfigurationTriggerSet
(MyGroup .MyPositioner.PositionerError, 2, 0,0, 0)

EventExtendedConfigurationActionSet (ExecuteTCLScript,
ShutDown.tcl, 1,0, 0, ExecuteTCLScript, ErrorDiagnostic.tcl, 2, 0, 0)

EventExtendedStart ()

In this example the TCL scripts ShutDown.tcl and ErrorDiagnostic.tcl are executed
when a fatal following error is detected on the positioner MyGroup.MyPositioner.

The exact meaning of the different action and action parameters is as follow:

DOToggle: This action is used to reverse the value of one or many bits on the
Digital Output. When using this action with an event that has some duration (for
example motion state) the value of the bits will be toggled each profiler cycle as
long as the event occurs.

Action Parameter #1 — Mask The mask defines which bits on the GPIO
output will be toggled (change their value).
For example, if the GPIO output is an 8 bit
output and the mask is set to 4 then the
equivalent binary number is 00000100. So as
an action, the bit #3 will be toggled.

Action Parameter #2 to #4 These parameters must be 0 by default.

DOPulse: This action is used to generate a positive pulse on the Digital Output. The
duration of the pulse is 1 microsecond. To function, the bits on which the pulse is
generated should be set to zero before. When using this action with an event that has
some duration (for example motion state) a 1 us pulse will be generated each cycle
of the motion profiler (or every 400 us) as long as the event occurs.

Action Parameter #1 — Mask The mask defines on which bits on the GPIO
output the pulse will be generated. For
example, if the GPIO output is an 8 bit output
and the mask is set to 6 then the equivalent
binary number is 00000110. So as an action,
a 1 us pulse will be generated on bit #2 and
#3 of the GPIO output.

Action Parameter #2 to #4 These parameters must be 0 by default.

XPSDocumentation V2.6.x (08/11)

126

XPS

Motion Tutorial

DOSet: This action is used to modify the value of bit(s) on a Digital Output.

Action Parameter #1 — Mask The mask defines which bits on the GPIO
output are being addressed. For example, if
the GPIO output is an 8 bit output and the
mask is set to 26 then the equivalent binary
number is 00011010. Therefore with a Mask
setting of 26, only the bits # 2, #4 and #5 are
being addressed on the GPIO output.

Action Parameter #2 — Value This parameter sets the value of the bits that
are being addressed according to the Mask
setting. So for example since a Mask setting
of 26, bits #2, #4 and #5 can be modified, a
value of 8 (00001000) will set the bits #2 and
#5t0 0 and the bit#4 to 1.

Action parameter #3 and #4 These parameters must be O by default.

DACSet.CurrentPosition and DACSet.SetpointPosition: This action sets a
voltage on the Analog output in relation to the actual (current) or theoretical
(Setpoint) position. The gain and the offset are used to calibrate the output. This
action makes most sense with events that have some duration (always, MotionState,
ElementNumberState, etc.) as the analog output will be updated each servo cycle or
each profiler cycle as long as the event lasts. When used with events that have no
duration (like MotionStart or MotionEnd), the analog output gets only updated once
and this value is hold until the next change.

Action Parameter #1 — Positioner Name This parameter defines the name of the
positioner which position value is used.

Action Parameter #2 — Gain The position value is multiplied by the gain
value. For example, if the gain is set to 10
and the position value is 1 mm, then the
output voltage is 10 V.

Action Parameter #3 — Offset The offset value is used to correct for any
voltage that may be present on the Analog
output.

Analog output = Position value * gain + offset

Action parameter #4 This parameter must be 0 by default.

DACSet.CurrentVelocity and DACSet.SetpointVelocity: This action sets a
voltage on the Analog output in relation to the actual (current) or theoretical
(Setpoint) velocity. The gain and the offset are used to calibrate the output. This
action makes most sense with events that have some duration (Always, MotionState,
ElementNumberState, etc.) as the analog output will be updated each servo cycle or
each profiler cycle as long as the event lasts. When used with events that have no
duration (like MotionStart or MotionEnd), the analog output gets only updated once
and this value is hold until its next change.

Action Parameter #1 — Positioner Name This parameter defines the name of the
positioner which Velocity value is used.

Action Parameter #2 — Gain The Velocity value is multiplied by the gain
value. For example if the gain is set to 10 and
the velocity value is 1 mm/s, then the output
voltage is 10 V.

Action Parameter #3 — Offset The offset value is used to correct for any
voltage that may be present on the Analog
output.

127 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Analog output = Velocity value * gain + offset

Action parameter #4 This parameter must be 0 by default.

DACSet.SetpointAcceleration: This action is used to output a voltage on the
Analog output to form an image of the theoretical acceleration. The gain and the
offset are used to calibrate this image. This action makes most sense with events that
have some duration (Always, MotionState, ElementNumberState, etc.) as the analog
output will be updated each servo cycle or each profiler cycle as long as the event
lasts. When used with events that have no duration (like MotionStart or MotionEnd),
the analog output gets only updated once and holds this value until its next change.

Action Parameter #1 — Positioner Name This parameter defines the name of the
positioner which SetpointAcceleration is used
to output on the analog output.

Action Parameter #2 — Gain The SetpointAcceleration is multiplied by the
gain value. For example if the gain is set to
10 and the corrected SetpointAcceleration is
1 mm/s2 then the output voltage will be 10 V.

Action Parameter #3 — Offset The offset value is used to correct for any
voltage that may be present on the Analog
output.

Analog output = SetpointAcceleration value * gain + offset

Action parameter #4 This parameter must be 0 by default.

NOTE

The gain can be any constant value used to scale the output voltage and the
offset value can be any constant value used to correct for any offset voltage on
the analog output.

ExecuteTCLScript: This action executes a TCL script on an event.

Action Parameter #1 — TCL File Name This parameter defines the file name of
the TCL program.

Action Parameter #2 — TCL Task Name Since several different or even the same
TCL scripts can run simultaneously, the TCL
Task Name is used to track individual TCL
programs. For example, the TCL Task Name
allows stopping a particular program without
stopping all other TCL programs that run
simultaneously.

Action Parameter #3 — TCL Arguments List The Argument list is used to run
the TCL scripts with input parameters. For
the argument parameter, any input can be
given (number, string). These parameters are
used inside the script. To get the number of
arguments use $tcl_argce” inside the script. To
get each argument use “$tcl_arge($i)” inside
the script. For example, this parameter can be
used to specify a number of loops inside the
TCL script. A zero (0) for this parameter
means there are no input arguments.

Action parameter #4 This parameter must be 0 by default.

XPSDocumentation V2.6.x (08/11)

128

XPS

Motion Tutorial

KillTCLScript: This action stops a TCL script on an event.

Action parameter #1 — Task name This parameter defines which TCL script is
stopped. Since several different or even the
same TCL scripts can run simultaneously, the
TCL Task Name is used to track individual
TCL programs.

Action parameter #2 to #4 These parameters must be 0 by default.

GatheringOneData: This action acquires one data as defined by the function
GatheringConfigurationSet. Different than the GatheringRun (see next action),
which generates a new gathering file, the GatheringOneData appends the data to the
current gathering file stored in memory. In order to store the data in a new file, you
first need to launch the function GatheringReset, which deletes the current gathering
file from memory.

Action parameter #1 to #4 These parameters must be 0 by default.

GatheringRun: This action starts an internal gathering. It requires that an internal
gathering was previously configured with the function GatheringConfigurationSet.
The gathering must be launched by a punctual event and does not work with events
that have duration.

Action Parameter #1 — NbPoints This parameter defines the number of data
acquisitions. NbPoints multiplied with the
number of gathered data types must be
smaller than 1,000,000. For instance, if 4
types of data are collected, NbPoints can not
be larger than 250,000 (4¥250,000 =
1,000,000).

Action Parameter #2 — Divisor This parameter defines the frequency for the
gathering in relation to the servo frequency of
the system (10 kHz). This parameter has to be
an integer and greater or equal to 1. For
instance, if the parameter is set to 10, then the
gathering will take place every 10™ servo
cycle or at a rate of 1 kHz (10 kHz/10) or at
every 1 msec.

Action Parameter #3 and #4 These parameters must be 0 by default.

GatheringRunAppend: This action continues a gathering previously stopped with
the action GatheringStop, see next action.

Action parameter #1 to #4 These parameters must be 0 by default.

GatheringStop: This action halts a data gathering previously launched by the action
GatheringStart. Use the action GatheringRunAppend to continue the data gathering.
Please note, that the action GatheringStop does not automatically store the gathered
data from the buffer to the flash disk of the controller. For doing so, please use the
function GatheringStopAndSave. For more details about data gathering, please refer
to chapter 12: “Data Gathering”.

Action parameter #1 to #4 These parameters must be 0 by default.

129 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

11.3

ExternalGatheringRun: This action starts an external gathering. It requires that an
external gathering was previously configured with the function
GatheringExternalConfigurationSet. The gathering must be launched by a punctual
event and does not work with events that have duration.

Action Parameter #1 — NbPoints This parameter defines the number of data
acquisitions. NbPoints multiplied with the
number of gathered data types must be
smaller than 1,000,000. For instance, if 4
types of data are collected, NbPoints can not
be larger than 250,000 (4¥250,000 =
1,000,000).

Action Parameter #2 — Divisor This parameter defines every Nth number of
trigger input signal at which the gathering
will take place. This parameter has to be an
integer and greater or equal to 1. For example
if the divisor is set to 5 then gathering will
take place every 5th trigger on the trigger
input signal.

Action Parameter #3 and #4 These parameters must be 0 by default.

For further details on data gathering see chapter 12: “Data Gathering”.

MoveAbort: This action allows to stop (abort) a motion on an event. It is similar to
sending a MoveAbort() function on the event. After breaking, the group is in the
READY state.

Action Parameter #1 to #4 These parameters must be O by default.

Functions

The following functions are related to the event triggers:

EventExtendedConfigurationTriggerSet (): This function configures one or
several events. In case of several events, the different events are separated by a
comma (,) in the argument list. Before activating an event, one or several actions
must be configured with the function EventExtendedConfigurationActionSet(). Only
then, the event and the associated action(s) can get activated with the function
EventExtendedStart().

EventExtendedConfigurationTriggerGet (): This function returns the event
configuration defined by the last EventExtendedConfigurationTriggerSet() function.

EventExtendedConfigurationActionSet (): This function associates an action to
the event defined by the last EventExtendedConfigurationTriggerSet() function.

EventExtendedConfigurationActionGet (): This function returns the action
configuration defined by the last EventExtendedConfigurationActionSet() function.

EventExtendedStart (): This function launches (activates) the last configured event
and the associated action(s) defined by the last
EventExtendedConfigurationTriggerSet() and
EventExtendedConfigurationActionSet() and returns an event identifier. When
activated, the XPS controller checks for the event each servo cycle (or each profiler
cycle for those events that are motion related) and triggers the action when the event
occurs. Hence, the maximum latency between the event and the action is equal to the
servo cycle time of 100 us or equal to the profiler cycle time of 400 us for motion
related events. For events with duration, it means also that the same action is
triggered each servo cycle, means every 100 us, or each profiler cycle, which means
every 400 us as long as the event is happening.

XPSDocumentation V2.6.x (08/11)

130

XPS

Motion Tutorial

114

Event triggers (and their associated action) get automatically removed after the
event configuration has happened at least once and is no longer true anymore. The
only exception is if the event configuration contains any of the permanent events
“Always” or “Trigger”. In that case the event trigger will always stay active. With
the function EventExtendedRemove(), any event trigger can get removed.

¢ EventExtendedWait (): This function halts a process (essentially by blocking the
socket) until the event defined by the last EventExtendedConfigurationTriggerSet()
occurs.

e EventExtendedRemove (): This function removes the event trigger associated to
the defined event identifier.

e EventExtendedGet (): This function returns the event configuration and the action
configuration associated to the defined event identifier.

e EventExtendedAllGet (): This function returns for all active event triggers the
event identifier, the event configuration and the action configuration. The details of
the different event triggers are separated by a comma (,).

Examples

Below is a table that shows possible events that can be associated with possible actions.
Some of these examples however, may have unwanted results. Since the XPS controller
provides great flexibility to trigger almost any action at any event, the user must be
aware of the possible unwanted effects.

Possible events Possible actions

* Always) | * Toggle digital output
o Immediate .~ * Generate pulse on digital output
* Motion stan o -:}?"-ff._____ T * Set digital output
» Motionend — , & « Copy setpoint position to analog output
* Motion state Anaiog Gutput » Setpownt poution * gam « offser
» Constant velocity stant (’) e Copy satpoint velocity to analog output
* Constant velocity end "\\ ANIOg Cutpul » Satpont veloCAy * gann « oMset
 Constant velocity state AN * Copy setpoint acceferation to analog output

. "-\\ Aaiog output » setpont acceleraton * gam « offsat
» Trajectory element stan N o Stant TCL script
*» Trajectory element state - * « Stant data gathering

1} Possitie. But prodadly with enwanted 2) Possible, but will copy ondy ONE
result Wil adways toggle the dignal value 1 e 37007 sutput that wil
output whie the roup 8 @ moton remam the same

Figure 46: Possible Events.

131 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Examples
1. EventExtendedConfigurationTriggerSet

(G1.P1.SGamma.ConstantVelocityStart, 0,0, 0, 0)
EventExtendedConfigurationActionSet (GPI01.DO.DOSet, 4, 4,0, 0)
EventExtendedStart()

GroupMoveAbsolute (G1.P1,50)

In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100). Note, that the
state of the bit will not change when the constant velocity of the positioner is ended.
In order to do so, a second event trigger would be required (see next example).

. EventExtendedConfigurationTriggerSet

(G1.P1.SGamma.ConstantVelocityStart, 0,0, 0, 0)
EventExtendedConfigurationActionSet (GPI01.DO.DOSet, 4,4,0,0)
EventExtendedStart()

EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.ConstantVelocityEnd, 0,0, 0, 0)

EventExtendedConfigurationActionSet (GPI01.DO.DOSet, 4,0, 0, 0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1,50)

In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100) and when the
constant velocity of the positioner G1.P1 is over, bit #3 will be set to zero. Note, that
the same effect can not be reached with the event name ConstantVelocityState.

After both events have happened, the event triggers will get automatically removed.
In order to trigger the same action at each motion, it is required to link the events
with the event “Always” (see next example). This link will avoid that the event
trigger gets removed after it is not happening anymore.

. EventExtendedConfigurationTriggerSet (Always, 0, 0,0, 0,

G1.P1.SGamma.ConstantVelocityStart, 0,0, 0, 0)
EventExtendedConfigurationActionSet (GPI01.DO.DOSet, 4, 4,0, 0)
EventExtendedStart()

EventExtendedConfigurationTriggerSet (Always, 0, 0,0, 0,
G1.P1.SGamma.ConstantVelocityEnd, 0, 0, 0, 0)

EventExtendedConfigurationActionSet (GPIO1.D0O.DOSet, 4, 0, 0,0)
EventExtendedStart()

GroupMoveAbsolute (G1.P1,50)

GroupMoveAbsolute (G1.P1, -50)

In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100) and when the
constant velocity of the positioner G1.P1 is over, bit #3 will be set to zero. Different
than in the previous example, here the concatenate with the event “Always” avoids
that the event trigger gets removed after the event is over. Hence, the state of the bit
#3 will change with every beginning and with every end of the constant velocity
state of a motion.

. EventExtendedConfigurationTriggerSet

(G1.P1.SGamma.ConstantVelocityState, 0,0, 0, 0)
EventExtendedConfigurationActionSet (GPIO1.DO.DOSet, 255, 0,0, 0)
EventExtendedStart()

GroupMoveAbsolute (G1.P1,50)

XPSDocumentation V2.6.x (08/11)

132

XPS

Motion Tutorial

In this example, during the constant velocity state of the positioner G1.P1, 1 us
pulses are generated on all 8 bits on the digital output on connector number 1 every
cycle of the motion profiler (Note: 255 = 11111111). The cycle time of the motion
profiler is 400 us, so pulses are generated every 400 us (see picture below).

Tek Prevu 7 -
lvl Al .00V
|8 120mV
2 - -
¢
@ Ze0v . M i00ps A Chit S .08V
20 Jun 2005
"M10.20% 13:23:51

5. EventExtendedConfigurationTriggerSet (Always, 0, 0,0, 0)

EventExtendedConfigurationActionSet
(GPIO2.DAC1.DACSet.SetpointPosition, 0.1,-10,0, 0

GPIO2.DAC2.DACSet.SetpointVelocity, 0.5, 0,0, 0)
EventExtendedStart()

In this example, the analog output #1 on GPIO2 will always output a voltage in
relation to the SetpointPosition of the positioner G1.P1, and the output #2 on GPIO2
will always output a voltage in relation to the SetpointVelocity of the same
positioner. The gain on output #1 is set to 0.1 V/unit and the offset to -10 V. This
means when the stage is at the position 0 unit, a voltage of -10 V will be outputted.
When the stage is at the position 10 units, a voltage of -9V will be outputted.

Here, the event “Always” makes that these values will get updated every servo
cycle, means every 0.1 ms. If instead of the event “Always” the event “Immediate”
will be used, only the most recent values will be outputted and kept. If instead of the
event “Always” a motion related event such as MotionState will be used, the update
will only happen every profiler cycle, or every 0.4 ms.

. TimerSet(Timer1,10000)

EventExtendedConfigurationTriggerSet (Timer1.Timer, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO1.DO.DOToggle, 255, 0,0, 0)
EventExtendedStart()

EventExtendedRemove(1)

The function Timer() sets the Timerl at every 10 000th servo cycle, or at one
second. Hence, in this example, every second all bits on digital output on connector
number 1 will be toggled (Note: 255 = 11111111). The event Timer is permanent. In
order to remove the event trigger, use the function EventExtendedRemove() with the
associated event identifier (1 in this case).

133 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

7. MultipleAxesPVTPulseOutputSet(G1,2,20,1)
GatheringConfigurationSet(G1.P1.CurrentPosition)

EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,G1.PVT.TrajectoryPulse,0,0,0,0)

EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()
MultipleAxesPVTExecution(G1,Traj.trj,1)

In this example, first the generation of an output pulse every one second between the
2" and the 20" element on the next PVT trajectory executed on the group GI is
defined (function MultipleAxisPVTPulseOutputSet). Then, the data gathering is
defined (CurrentPosition of positioner G1.P1).

Hence, in this example, with every trajectory pulse, one data point is gathered and
appended to the current gathering file in memory. Here, the concatenate of the event
TrajectoryPulse with the permanent event Always makes sure that the event trigger
is always active. Without the event Always, only one data point will be gathered.

This is because any event gets automatically removed when once happened and not
happening anymore on the next servo or profiler cycle (which is the case here as a
pulse is only generated every one second).

Please note, that the action GatheringOneData appends data to the current data file.
In order to store the data in a new file it is required to first launch the function
GatheringReset() which deletes the current data file from memory.

8. GatheringConfigurationSet(G1.P1.CurrentPosition)

EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.MotionStart,0,0,0,0)

EventExtendedConfigurationActionSet(GatheringRun,20,1000,0,0)
EventExtendedStart()

GroupMoveAbsolute (G1.P1,50)

GatheringStopAndSave()

In this example, an internal data gathering of 20 data points every 0.1 second (every
1000" servo cycle) is launched with the start of the next motion of the positioner
G1.P1. The type of data that gets gathered is defined with the function
GatheringConfigurationSet (CurrentPosition of positioner G1.P1). To store the data
from internal memory to the flash disk in the XPS controller, you need to send the
function GatheringStopAndSave(). The GatheringRun deletes the current data file in
the internal memory (in contrast to the GatheringOneData which appends data to the
current file). Also, the function GatheringStopAndSave() stores the data file under a
default name Gathering.dat on the flash disk of the XPS controller and will
overwrite any older file of the same name in the same folder. Hence, make sure that
you store your valuable data files under different name after the
GatheringStopAndSave().

NOTE

When wusing the function EventExtendedConfigurationTriggerSet() or
EventExtendedConfigurationActionSet () from the terminal screen of the XPS
utility, the syntax for one parameter is not directly accessible. For instance, for the
event XY.X.SGamma.MotionStart, first select XY.X from the choice list. Then,
click on the choice field again and select SGammaMotionStart. See also screen
shots below.

For specifying more than one data type, use the ADD button. Select the next
parameter as described above.

XPSDocumentation V2.6.x (08/11)

134

XPS

Motion Tutorial

Step 1:
Select the positioner name
and click.

P Viwns arguerast(s) 1V owstd slonded sl
C P e worw roes
“ 0 e arte st ce-there | 1?
» |Con
-

Step 2:

Click in the choice field again
and select the parameter name.

Var tan srgumertis] |vestlatorded snl

Step 3:

Define event parameters,
To add another event, click ADD,
else click OK.
L (8] ¥ ewmtt stomdad srdiger aliom | roggerSet
’r.'.rv.'-— harve On
Lt Aa . v = ::]
o [Co

135

XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

12.0 Data Gathering

The XPS controller provides four methods for data gathering:

1. Time based (internal) data gathering. With this method one data set is gathered
every n" servo cycle.

2. Event based (internal) data gathering. With this method one data set is gathered on
an event.

3. Function based (internal) data gathering. With this method one data set is gathered
by a function.

4. Trigger based (external) data gathering. With this method one data set is gathered
every n" external trigger input (see also chapter 13.0: “Output Triggers®).

With method 1, 2, and 3 we are also referring to an internal or servo cycle synchronous
data gathering. With the trigger based data gathering we are also referring to an external
data gathering as the event that triggers the data gathering, the receive of a trigger input,
is asynchronous to the servo cycle.

The time based, the event based and the function based data gathering store the data in
common file called gathering.dat. The trigger based (external) data gathering stores the
data in different file, called ExternalGathering.dat. The type of data that can be gathered
differs also between the internal and the external data gathering.

Before starting any data gathering the type of data to be gathered needs to be defined
using the functions GatheringConfigurationSet() (in case of an internal data gathering)
or ExternalGatheringConfigurationSet() (in case of an external data gathering).

During the data gathering new data is appended to a buffer. With the functions
GatheringCurrentNumberGet() and GatheringExternalCurrentNumberGet() the current
number of data sets in this buffer and the maximum possible number of data sets that
fits into this buffer can be recalled. The maximum possible number of data sets equals

1 000 000 divided by the number of data types belonging to one data set.

The function GatheringDataGet(index) returns one set of data from the buffer. Here, the
index O refers to the 1st data set, the index (n-1) to the n-th data set. When using this
function from the Terminal screen of the XPS utilities, the different data types
belonging to one data line are separated by a semicolon (;)

To save the data from the buffer to the flash disk of the XPS controller, use the
functions GatheringStopAndSave() and GatheringExternalStopAndSave(). These
functions will store the gathering files in the.\Admin\Public folder of the XPS
controller under the name Gathering.dat (with function GatheringStopAndSave() for an
internal gathering) or GatheringExternal.dat (with function
GatheringExternalStopAndSave() for an external gathering).

CAUTION

The functions GatheringStopAndSave() and
GatheringExternalStopAndSave() overwrite any older files with the
same name in the .\Admin\Public folder. After a data gathering, it is
required to rename or better, to relocate valid data files using an ftp
link to the XPS controller (see also chapter 5: “FTP connection”).

A gathering file can have a maximum of 1,000,000 data entries and a maximum of 25
different data types. The first line of the data file contains the sample period in seconds
(minimum period = 0.0001 s), the second line contains the names of the data type(s) and
the other lines contain the acquired data. A prototype of a sample file is shown below.

XPSDocumentation V2.6.x (08/11)

136

XPS

Motion Tutorial

12.1

Gathering dat
SamplePeriod 0 0
GatheringTypeA GatheringTypeB GatheringTypeC
ValueA1 ValueB1 ValueC1
ValueA2 ValueB2 ValueC2
ValueAN ValueBN ValueCN

Time Based (Internal) Data Gathering

The data for the time based gathering get latched by an internal interrupt related to the
servo cycle of the system (10 kHz). The function GatheringConfigurationSet() defines
which type of data will be stored in the data file. The following is a list of all the data
type(s) that can be collected:

PositionerName.CurrentPosition
PositionerName.SetpointPosition
PositionerName.FollowingError
PositionerName.CurrentVelocity
PositionerName.SetpointVelocity
PositonerName.CurrentA cceleration
PositionerName.SetpointAcceleration
PositionerName.CorrectorOutput

GPIO (ADC, DAC, DI, DO) See Programmer’s Guide for a list of all the
GPIO Names for the Analog and Digital 1/0O.

The Setpoint values refer to the theoretical values from the profiler whereas the current
values refer to the actual or real values of position, velocity and acceleration.

For gathering information from the secondary positioner of a gantry, append
“.SecondaryPositioner” to the positioner name. Example:

PositionerName.SecondaryPositioner.FollowingError

For details about gantry configurations, see chapter 4.8.

It is possible to start the gathering either by function call or at an event. The following
sequence of functions is used for a time based data gathering started by function call:

GatheringConfigurationSet()
GatheringRun()

The following sequence of functions is used to start a time based data gathering at an
event:

GatheringConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationActionSet()
EventExtendedStart()

A function which triggers the action, for instance a GroupMoveRelative().

When all data is gathered, use the function Gathering StopAndSave() to save the data
from the buffer to the flash disk of the XPS controller.

137 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

Other functions associated with internal Gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringDataGet()
GatheringDataMultipleLinesGet()
GatheringStop()

GatheringRunAppend()

See Programmer’s Manual for details on functions.

NOTE

When using the function GatheringConfigurationSet() from the terminal screen of
the XPS utility, the syntax for one parameter is not directly accessible. For
instance, for the parameter XY.X.SetpointPosition, first select XY.X from the
choice list. Then, click on the choice field again and select SetpointPosition. See
also screen shots on the next page.

For specifying more than one data type, use the ADD button. Select the next
parameter as described above.

Step 1. Step 22 Step 3:
Select the positioner name Click in the choice field again. To add another parameter, press ADD,
and click Select parameter name and click. Repeat step 1 and step 2.

Fusctinm argumennt (o] Lathanngl waliger el Pumitinm oty mreet o) Lothermyl eotigus ofswetel fwnclion argusmast s) Ceothearmglontiger oties

Example 1

Using the terminal screen of the XPS utility, this example shows the sequence of
functions to accomplish a time based data gathering triggered at an event.

Grouplnitialize(XY)
GroupHomeSearch(XY)

GatheringConfigurationSet(XY .X.SetpointPosition,
XY X.CurrentVelocity, XY .X.SetpointAcceleration)

The 3 data XY X SetpointPosition, XY X.CurrentVelocity and
XY X SetpointAcceleration will be gathered.

EventExtendedConfigurationTriggerSet
(XY .X.SGamma.MotionStart,0,0,0,0)

EventExtendedConfigurationActionSet(GatheringRun,5000,10,0,0)
EventExtendedStart()

GroupMoveRelative(XY .X, 50)

GatheringStopAndSave()

XPSDocumentation V2.6.x (08/11) 138

XPS

Motion Tutorial

12.2

In this example, a gathering is started when the positioner XY .X starts its next motion
using the Sgamma profiler, for instance by the functions GroupMoveRelative() or
GroupMoveAbsolute(). The types of data being collected are the Setpoint Position,
Current Velocity and Setpoint Acceleration for the positioner XY.X. A total of 5000
data sets is collected, one data point every 10™ servo cycles, or one data point every
10/10000 s =0.001 s.

Example 2

Using the terminal screen of the XPS utility, this example shows the sequence of
functions to accomplish a time based data gathering started by function call.

Grouplnitialize(X)

GroupHomeSearch(X)
GatheringConfigurationSet(X.X.SetpointPosition, X.X.FollowingError)
GatheringRun (5000,10)

GroupMoveRelative (X, 10)

GatheringStop ()

GatheringStopAndSave ()

In this example, the gathering is started by function call. The SetpointPosition and
FollowingError of the positioner XY.X are gathered at a rate of 1 kHz (every 10™ servo
cycle, 10 kHz servo cycle rate). The data gathering is stopped after the relative move is
completed.

The gathering will stop automatically once the number of points specified has been
collected. However, data will not be saved automatically to a file. The function
GatheringStopAndSave() has be to used to save the data to a file.

It is also possible to halt a data gathering at an event. To do so, define another event
trigger and assign the action GatheringStop to that event. Use another event trigger and
assign the action GatheringRunAppend to continue with the gathering. For details, see
chapter 11.0: “Event Triggers®.

Note

The function GatheringRun() starts always a new internal data gathering and
deletes any previous internal gathering data hold in the buffer. If you want to
append data to the file use the function GatheringRunAppend() instead.

Event Based (Internal) Data Gathering

The event based gathering provides a method to gather data at an event. For instance,
gathering data at a certain value of a digital or analog input, during a constant velocity
state of a motion or on a trajectory pulse.

The event based data gathering uses the same file as the time based and the function
based data gathering (see sections 12.1 and 12.3). However, unlike the time based
gathering, the event based gathering appends data to the existing file in memory. This
allows gathering of data during several periods or even with different methods in one
common file, see examples. To start data gathering in a new file, use the function
GatheringReset(), which deletes the current gathering file from memory.

The data type(s) that can be collected with the event based gathering are the same as for
the time based and the function based gathering:

PositionerName.CurrentPosition
PositionerName.SetpointPosition
PositionerName.FollowingError

PositionerName.CurrentVelocity

PositionerName.SetpointVelocity

139 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

PositonerName.CurrentA cceleration
PositionerName.SetpointAcceleration
PositionerName.CorrectorOutput

GPIO (ADC, DAC, DI, DO) See Programmer’s manual for a list of all the
GPIO Names for the Analog and Digital 1/0O.

The Setpoint values refer to the theoretical values from the profiler where-as the current
values refer to the actual or real values of position, velocity and acceleration.

For gathering information from the secondary positioner of a gantry, append
“.SecondaryPositioner” to the positioner name. Example:

PositionerName.SecondaryPositioner.FollowingError

For details about gantry configurations, see chapter 4.8.

The following sequence of functions is used for an event based data gathering:
GatheringReset()
GatheringConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

Use the function GatheringStopAndSave() to store the gathered file from the
buffer to the flash disk of the XPS controller.

Other functions associated with the event based gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringDataGet()

Please refer to the programmer’s manual for details.

Example 1
GatheringReset()

Deletes gathering buffer.

GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition, GPI02.ADC1)

The 3 data XY X.CurrentPosition, XY.Y .CurrentPosition and GPIO2.ADCI
will be gathered.

EventExtendedConfigurationTriggerSet(GP1I02.ADC1.ADCHighLimit,
5,0,0,0)

EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

The data gathering starts when the value of the GPIO2.ADCI exceeds 5 Volts. One set
of data will be gathered each servo cycle or every 100 us (as the event is checked each
servo cycle). The data gathering automatically stops when the value of the
GPIO2.ADCI falls below 5V again, as the event is automatically removed then (see
chapter 11.0: “Event Triggers® for details).

Example 2
TimerSet(Timerl, 10)

XPSDocumentation V2.6.x (08/11)

140

XPS

Motion Tutorial

12.3

Sets the timer I to 10 servo ticks, means every 1 ms.
GatheringReset()
Deletes gathering buffer .

GatheringConfigurationSet(XY .X.CurrentPosition,
XY.Y.CurrentPosition, GP1I02.ADC1)

The 3 data XY X.CurrentPosition, XY.Y.CurrentPosition and GPIO2.ADCI
will be gathered.

EventExtendedConfigurationTriggerSet(Timer1,0,0,0,0,
GPIO2.ADC1.ADCHighLimit,5,0,0,0)

EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

Different than the previous example, here the event ADCHighLimit is linked to the
event Timerl. This has two effects. First, the event gets permanent as the event timer is
permanent. Second, one set of data is gathered only every 10 ms (combination of events
must be true). For details on the event definition, please see chapter 11.0: “Event
Triggers*.

As aresult, in this example, one set of data is gathered every 10 ms whenever the value
of the GPIO2.ADCI exceeds 5 Volts.

Example 3
TimerSet(Timerl, 10)
Sets the timer I to 10 servo ticks, means every 1 ms.
GatheringReset()
Deletes gathering buffer.

GatheringConfigurationSet(XYZ.X.CurrentPosition,
XYZ.Y .CurrentPosition, XYZ.Z.CurrentPosition)

EventExtendedConfigurationTriggerSet(Timer1,0,0,0,0,
XYZ.Spline.TrajectoryState,0,0,0,0)
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

In this example, during the execution of the next spline trajectory on the group XYZ one
set of data will be gathered every 10 ms. In contrast to the time based gathering, which
allows programming of a similar function, here, the data gathering will automatically
stop with the end of the trajectory. Also, it is not need to define the total number of data
sets that will be gathered.

Function-Based (Internal) Data Gathering

The function based gathering provides a method to gather one set of data by a function.
It uses the same file as the time based and the Event based data gathering, see chapters
13.1 and 13 .4 for details. At receipt of the function, one set of data is appended to the
gathering file in memory.

The data type(s) that can be collected with the event based gathering are the same as for
the time based and the event based gathering, see chapter 12.1 and 12.2 for details.

Example
GatheringReset()

Deletes gathering buffer.

GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition)

141 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

124

The 2 data XY X.CurrentPosition and XY .Y .CurrentPosition will be gathered.
GatheringDataAcquire()

Gathers one set of data.

GatheringCurrentNumberGet()

This function will return 1, 500000, 1 set of data acquired, max. 500 000 sets
of data can be acquired.

GatheringDataAcquire()
GatheringDataAcquire()
GatheringCurrentNumberGet()

This function will return 3, 500000; 3 sets of data acquired, max. 500 000
sets of data can be acquired.

Trigger Based (External) Data Gathering

The trigger based data gathering allows acquiring position and analog input data at
receive of an external trigger input (TRIG IN connector at the XPS, see section 24.0 for
more details).

The position data is latched by dedicated hardware. The jitter between the trigger signal
and the acquisition of the position data is less than 50 ns. The analog inputs, however,
are only latched by an internal interrupt at a rate of 10 kHz and the XPS will store the
most recent value. Hence, the acquired analog input data might be up to 100 s old.

NOTE

There must be a minimum time of 100 us between two successive trigger inputs.

The data of the trigger based (external) data gathering is stored in a file named
ExternalGathering.dat, which is different from the file used for the internal data
gathering (Gathering.dat). Hence, internal and external data gathering can be used at the
same time.

The function GatheringExternalConfigurationSet() defines which type of data will be
gathered and stored in the data file. The following data types that can be collected:

PositionerName.ExternalLatchPosition and
PositionerName.SecondaryPositioner.ExternalLatchPosition
(for secondary positioners of gantries, see chapter 4.8 for details).

These positions refer to the uncorrected encoder position, means no error corrections are
taken into account. For devices with RS422 differential encoders, the resolution of the
position information is equal to the encoder resolution.

For devices with sine/cosine 1Vpp analog encoder interface, the resolution is equal to
the encoder scale pitch divided by the value of the positioner hard interpolator, see
function PositionerHardInterpolatorFactorGet(). Its value is set to 20 by default; the
maximum allowed value is 200. Please refer to the Programmer’s Manual for details.

The external latch positions require that the device has an encoder. No position data can
be latched with this method for devices that have no encoder.

GPIO2.ADC1 to GPIO.ADC4
(referring to the 4 analog input channels on the GPIO2)

The following sequence of functions is used for a trigger based data gathering:
GatheringExternalConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationActionSet()

EventExtendedStart()

XPSDocumentation V2.6.x (08/11)

142

XPS

Motion Tutorial

Other functions associated with the event based gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringExternalDataGet()

Please refer to the Programmer’s Manual for details.

Example

GatheringExternalConfigurationSet(XY.X.ExternalLatchPosition,
GPIO2.ADC1)

EventExtendedConfiguration TriggerSet(Immediate,0,0,0,0)
EventExtendedConfigurationActionSet(ExternalGatheringRun,100,2,0,0)
EventExtendedStart()

In this example, a trigger based (external) gathering is started immediately (with the
function EventExtendedStart()). The types of data being collected are the XY.X encoder
position and the value of the GPIO2.ADCI1. A total of 100 data sets are collected; one
set of data at each second trigger input. The gathering will stop automatically after the
100th data acquisition. Use the function GatheringExternalStopAndSave() to save the
data to a file. The file format is the same as for the internal data gathering.

143 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

13.0 Output Triggers

13.1

External data acquisition tools, lasers, and other devices can be synchronized to the
motion. For this purpose, the XPS features one dedicated trigger output per axis, see
Appendix E, PCO connector for details. The XPS can be configured to either output
distance spaced pulses, AquadB encoder signals, or time spaced pulses on this
connector.

In the distance spaced configuration, one output pulse is generated when crossing a
defined position and then, a new pulse is generated at every defined distance until a
maximum position has been reached. In most cases, this mode provides the most precise
synchronization of the motion to an external tool.

In the AquadB configuration, AquadB encoder signals are output on the PCO
connector. These signals can be either provided always, or only if the positioner is
within a defined position window. When used with stages that feature a digital encoder
(AquadB) as opposed to a SinCos encoder (Analoglnterpolated), the AquadB
configuration essentially provides an image of the encoder signals on the PCO
connector.

In the time flasher configuration, an output pulse is generated when crossing a defined
position and then, a new pulse is generated at a defined time interval until a maximum
position has been reached. In some cases, this mode can provide an even more precise
synchronization of the motion to an external tool, in particular if the variation of the
speed multiplied with the time interval is smaller than the error of the encoder signals
during the same period.

Dedicated hardware is used to check the position crossing and the time interval to attain
less than 50 ns latency between the position crossing and the trigger output.

In addition and independent from the above, the XPS controller can output distance
spaced pulses on line-arc trajectories and time spaced pulses on PVT trajectories. In
these cases the distances/time intervals are checked on the servo cycle and a resolution
of 100 us is provided.

Distance Spaced Pulses (PCO - Position Compare Output)

In the distance spaced pulse configuration, one first output pulse is generated when the
positioner enters the defined position window. This is independent of the positioner
entering the window from the minimum position or from the maximum position. From
this first pulse position, a new pulse is generated at every position step until the stage
exits the window.

NOTE

To make sure that the trigger pulses are always at the same positions independent
of the positioner entering the window from the minimum or from the maximum
window position, the difference between the minimum and the maximum window
position should be an integer multiple of the position step.

The duration of the trigger pulse is 200 nsec by default and can be modified using the
function PositionerPositionComparePulseParametersSet (PositionerName,
PCOPulseWidth, EncoderSettlingTime). Possible values for PCOPulseWidth are: 0.2
(default), 1,2.5 and 10 (us). Please note, that only the falling edge of the trigger pulse is
precise and only this edge should be used for synchronization irrespactable from the
PCOPulseWidth setting. Note also, that the duration of the pulse detected by your
electronics may be longer depending on the time constant of your RC circuit.
Successive trigger pulses should have a minimum time lag equivalent to the
PCOPulseWidth time times two.

XPSDocumentation V2.6.x (08/11)

144

XPS

Motion Tutorial

The second parameter, EncoderSettlingTime applies a filter to the encoder signals for
the trigger pulse generation. Possible values are: 0.075 (default), 1, 4, 12 (us). The
setting of this EncoderSettlingTime should be done in relation to the application, in
particular speed and encoder resolution, and the encoder/position noise. For most
applications, the default value works fine. At very low speed, with high encoder
resolution, and significant encoder/position noise, however, it may be possible that
additional trigger pulses are generated where no trigger pulse should be generated from
the application. In these cases, a higher value setting for the EncoderSettlingTime could
avoid these unwanted extra pulses. The value for the EncoderSettlingTime, however,
should not exceed the value for the Encoder resolution divided by the speed. Please note
also, that the EncoderSettlingTime adds a nominal delay between the encoder transition
and the trigger pulse.

Example

With XM stages and hardware interpolator set to 200 (see function
PositionerHardInterpolatorFactorSet ()) the resolution of the trigger pulses is 20 nm (4
um encoder scale pitch / 200). At continuous speed motion with 20 um/s speed, the
nominal time between successive encoder counts is 1 ms (20 nm / 20 gm/s). In a not
optimum environment of the XM stages, it is possible, that the actual position detected
by the trigger circuitry is not continuously increasing, but flickering around one encoder
count (20 nm) from time to time. When using the default setting for the
EncoderSettlingTime (0.075 us) under these conditions, it is well likely possible that
more than one trigger pulse is generated (since the stage, seen by the controller, is
moving back and forth). A higher value setting for the EncoderSettlingTime could avoid
these unwanted and unpredictable extra trigger pulses in this case.

Pulsesy

otung ‘, ‘\
Pewtor
. -~ bt

Encoder Setthnglime » <

mn. PCOPolseWains * 2
Detwean tucCrssnve puites
- -

Figure 47: Position Compare Output.

The following functions are used to configure the distance spaced pulses:
PositionerPositionCompareSet
PositionerPositionCompareGet
PositionerPositionCompareEnable
PositionerPositionCompareDisable

The function PositonerPositonCompareSet() defines the position window and the
distance for the trigger pulses. It has four input parameters:

Positioner Name
Minimum Position
Maximum Position
Position Step

To enable the distance spaced pulses, the function PositionerPositionCompareEnable()
must be sent.

145 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

Example
Grouplnitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerPositionCompareSet(MyStage X5, 25,0.002)
PositonerPositionCompareEnable(MyStage . X)

PositionerPositionCompareGet(MyStage, &MinimumPosition,
&MaximumPosition, &PositionStep, &EnableState)

This function returns the parameters previously defined, the minimum
position 5, the maximum position 25, the position step 0.002 and the enabled
state (1=enabled, 0 =disabled).

GroupMoveAbsolute(MyStage ,30)
PositionerPositionCompareDisable(MyStage . X)

The group has to be in a READY state for the position compare to be enabled. Also, the
PositionerPositionCompareSet() function must be completed before
PositionerPositionCompareEnable() function. In this example, one trigger pulse is
generated every 0.002 mm between the minimum position of 5 mm and the maximum
position of 25 mm. The first trigger pulse will be at 5 mm and the last trigger pulse will
be at 25 mm.

The output pulses are accessible from the PCO connector at the back of the XPS
controller, See appendix E, PCO connector, for details.

This table summarizes the results of the example above:

Position Pulse enable Pulse 1

of the stage 1 state activation Explanation
0 0 No Position compare not enabled
5 1 Yes Position compare enabled, first pulse
5...25 1 Yes One pulse every 0.002 mm
25 1 Yes Last pulse
25.002 0 No Position compare disabled
30 0 No Position compare disabled

The figure below shows actual screen shots from an oscilloscope for the example above.
The enable window is displayed in ch1 and the pulses in ch2:

Tek Prevu [~ | Décl. ?
r, A 24V
"
‘.
k]
| 2
Chil 200V WF 200V M20.0us A Chi . 2.60V
17 Jun 2005
nmioooN 14:13:04
XPSDocumentation V2.6.x (08/11) 146

XPS

Motion Tutorial

At position 5 mm, the position compare output functionality becomes active and the
first pulse is generated. Then, pulses are generated every 2 ym which equals a time span
of 100 us at a speed of 20 mm/s (2 pym/20 mm/s = 100 us).

Tok Prevu M 20.0us Déch. ?
U A 24V
) N
B
49 t 3
§ , X
1
2,
Chil 2.00V K 200V 21.004s A Chi . 2.60V
17 Jun 2005
e 100 340us 14:16:13

This second picture shows a zoom of the second pulse. The duration of the pulse should
be 200 ns, however there is a longer fall time that is related to the time constant of the
RC circuit used. Please note that only the falling edge of the pulse is precise and should
be used for synchronization purposes.

IMPORTANT NOTE

The parameters PositionStep, MinimumPosition, and MaximumPosition (specified
with the function PositionerPositionCompareSet) are rounded to the nearest
detectable trigger position. When using the Position Compare function with
AquadB encoders, the trigger resolution is equal to the EncoderResolution of the
positioner specified in the stages.ini. When using the Position Compare function
with AnalogInterpolated encoders, the trigger resolution is equal to the
EncoderScalePitch defined in the stages.ini divided by the interpolation factor
defined by the function PositionerHardInterpolatorFactorSet.

AnalogInterpolated encoder

Figure 48: AnaloglInterpolated Encoder.

Trigger resolution = EncoderScalePitch
PositionerHardInterpolatorFactor

147 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

13.2

Trigger pulses

Figure 49: Trigger Pulses.

MinimumPosition, MaximumPosition, and PositionStep should be multiples of the
Trigger resolution. If not, rounding to the nearest multiple value is made.

AquadB signals

In the AquadB signal configuration, AquadB encoder signals are provided on the PCO
connector, see Appendix E, PCO connector for details and pinning. These signals are
either output always (Always configuration), or only when the positioner is within a
defined position window (Windowed configuration).

When used with stages that feature a digital encoder (AquadB), the AquadB signals are
the same as the encoder signals of the stage. When used with SinCos encoders
(AnaloglInterpolated), the resolution of the AquadB signal is defined by the signal
period of the encoder and the settings of the hardware interpolator by the function
PositionerHardInterpolatorFactorSet ().

Example

XM stages feature an analog encoder with a signal period of 4 ym. With the setting
PositionerHardInterpolatorFactorSet (200) the post-quadrature resolution of the AquadB
signals is: 4 ym / 200 = 0.02 ym. In this case one full period of the AquadB signals
equals 0.08 ym.

The following functions are used to configure AquadB signals:
PositionerPositionCompareAquadBWindowedSet
PositionerPositionCompareAquadBWindowedGet
PositionerPositionCompareEnable
PositionerPositionCompareAquadBAlwaysEnable
PositionerPositionCompareDisable

The function PositonerPositonCompareAquadBAlwaysEnable() has only one input
parameter, the positioner name. When sent, AquadB signals are generated always. To
disable this mode use the function PositionerPositionCompareDisable().

The function PositonerPositonCompareAquadBWindowedSet () has three input
parameter:

Positioner name
Minimum Position
Maximum Position

To enable the AquadB signals, the function PositionerPositionCompareEnable() must
be sent.

XPSDocumentation V2.6.x (08/11)

148

XPS

Motion Tutorial

Example
Grouplnitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerPositionCompareAquadBWindowedSet(MyStage X, 10, 20)
PositonerPositionCompareEnable(MyStage . X)

PositionerPositionCompareGet(MyStage, &MinimumPosition,
&MaximumPosition, &EnableState)

This function returns the parameters previously defined, the minimum
position 10, the maximum position 20 and the enabled state (I1=enabled, 0
=disabled).

GroupMoveAbsolute(MyStage ,30)
PositionerPositionCompareDisable(MyStage.X)

The figure below shows a screen shots from an oscilloscope for the example above.

The group has to be in a READY state for the position compare to be enabled. Also, the
PositionerPositionCompareAquadBWindowedSet() function must be completed before
the PositionerPositionCompareEnable() function. In this example, AquadB signals are
generated when the positioner is between the minimum position of 10 mm and the
maximum position of 20 mm.

IMPORTANT NOTE

The AquadB signal configuration is only available with positioners that have an
encoder (AquadB or AnalogInterpolated).

The AquadB signals can not be provided at the same time as the distance spaced
pulses (PCO) or the time spaced pulses (see next section).

The function PositionerPositionCompareEnable() enables always the last
configuration sent, either distance spaced pulses defined with the function
PositionerPositionCompareSet() or AquadB pulses defined with the function
PositionerPositionCompareAquadBWindowedSet().

149 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

13.3

Time spaced pulses (Time flasher)

In the time spaced configuration, a first pulse is generated when the motion axis enters
the time pulse window. From this first pulse, a new pulse is generated at every time
interval until the positioner exits the time pulse window.

Hardware attains less than 50 ns jitter for the trigger pulses. The duration of the pulse is
200 nsec by default and can be modified using the function
PositionerPositionComparePulseParametersSet (). Possible values for the
PCOPulseWidth are: 0.2 (default), 1, 2.5 and 10 (us). Please note, that only the falling
edge of the trigger pulse is precise and only this edge should be used for
synchronization irrespactable from the PCOPulseWidth setting. Note also, that the
duration of the pulse detected by your electronics may be longer depending on the time
constant of your RC circuit. Successive trigger pulses should have a minimum time lag
equivalent to the PCOPulseWidth time times two.

The following functions are used to generate time spaced pulses:
PositionerTimeFlasherSet
Positioner TimeFlasher Get
PositionerTimeFlasherEnable
PositionerTimeFlasherDisable

The function PositonerTimeFlasherSet() defines the position window and the time
intervals for the trigger signals. It has four input parameters:

Position Name
Minimum Position
Maximum Position
Time Interval

The time interval must be greater than or equal to 0.0000004 seconds (0.4 ps) and less
than or equal to 50 seconds. Furthermore, the time interval must be a multiple of 25 ns.

To enable the time spaced pulses, the function PositionerTimeFlasherEnable() must be
sent.

Example 1
Grouplnitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerTimeFlasherSet(MyStage.X,5, 25,0.00001)
PositonerTimeFlasherEnable(MyStage.X)
GroupMoveAbsolute(MyStage ,30)
Positioner TimeFlasherDisable(MyStage.X)

The group has to be in a READY state for the time flasher to be enabled. Also, the
PositionerTimeFlasherSet() function must be completed before
PositionerTimeFlasherEnable() function. In this example, one trigger pulse is generated
every 0.00001 seconds or at a rate of 100 kHz between the minimum position of 5 mm
and the maximum position of 25 mm. The first trigger pulse will be at 5 mm and the last
trigger pulse will be at 25 mm or before.

The output pulses are accessible from the PCO connector at the back of the XPS
controller, See appendix E, PCO connectors for details.

XPSDocumentation V2.6.x (08/11)

150

XPS

Motion Tutorial

Figure 50: Temporal resolution of time spaced pulses in oscilloscope view.

Example 2

The time flasher function is of particular use with high precision (direct drive) stages.
At high speeds, these stages typically provide very good speed stability. In other words,
the position change over a short time interval is highly consistent and repeatable. Hence,
time spaced pulses can be used for synchronization with similar, in some cases even
higher precision as distance spaced pulses. The time spaced pulse configuration,
however, provides some further flexibility with regards to the nominal distance between
successive triggers.

Consider an XM stage for instance. XM stages feature an analog encoder with 4 ym
signal period. The max. resolution of the distance spaced pulses is 20 nm (setting
PositionerHardInterpolatorFactorSet(200)). If the goal is to get pulses at a nominal
distance of 268 nm at a speed of 200 mm/s speed, this is not possible using the distance
spaced pulse configuration. Either 260 nm or 280 nm are possible, but not 268 nm. With
some minor adjustments to the target speed, however, this is well possible using the
time spaced pulse configuration:

e The target speed is 200 mm/s, the desired distance between successive pulses is
268 nm. So the nominal time interval between successive pulses is:
268 nm /200 mm/s = 1.340 us

e Round this nominal value to the next possible time interval, means to the next
integer multiple of 25 ns: 1.350 us
Use this rounded time interval to calculate a corrected velocity:
268 nm/ 1.350 us = 198.51852 mm/s

GroupMoveAbsolute(MyStage X, -50)
PositionerSGammaParametersSet(MyStage . X, 198.51852, 2500, 0.02,0.02)
PositionerTimeFlasherSet(MyStage.X, -30, 30, 0.00000135)
PositionerTimeFlasherEnable(MyStage . X)
GroupMoveAbsolute(MyStage . X)
PositionerTimeFlasherDisable(MyStage.X)

In this example, a first pulse is generated when the stage crosses the position -30 mm.
Further pulses are generated every 1.350 us until the stage reaches the maximum
position of +30 mm. As the stage moves at a speed of 198.51852 mm/s, the nominal
distance between successive pulses is: 198.51852 mm/s * 1.35 s = 268 nm.

151 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

134

Triggers on Line-Arc Trajectories

This capability allows output of pulses at constant trajectory length intervals on Line-
Arc-Trajectories. The pulses are generated between a start length and an end length. All
lengths are calculated in an orthogonal XY plane. The StartLength, EndLength, and
PathLengthlInterval refer to the Setpoint positions.

The trajectory length is calculated at a rate of 10 kHz. This means that the resolution of
the trajectory length is 0.0001 * trajectory velocity. For a trajectory velocity of 100
mm/s for instance, the resolution of the trajectory length is 10 ym. If the programmed
PathLengthInterval is not a multiple of this resolution, the pulses can be off from the
ideal positions by a maximum =+ half of this resolution.

Two signals are provided:

GPIO2, pinl1, Window: A constant 5 V signal is sent between the StartLength and
the EndLength.

GPIO2, pin12, Pulse: A 1 us pulse with 5 V peak voltage is sent every
PathLengthInterval.

For details about the XPS I/O connectors, see appendix, section 20.2.

To define the StartLength, EndLength, and PathLengthInterval, use the function
XYLineArcPulseOQutputSet().

Example
XYLineArcPulseOutputSet(XY, 10, 30,0.01)

One pulse will be generated every 10 um on the next Line-Arc Trajectory
between 10 mm and 30 mm.

XYLineArcVerification(XY, Traj.trj)
Loads and verifies the trajectory Traj.trj
XYLineArcExecution(XY, Traj.trj, 10,100, 1)

Executes the trajectory at a trajectory speed of 10 mm/s and with a trajectory
acceleration of 100 mm/s one time.

Please note, that the pulse output settings are automatically removed when the trajectory
is over. Hence, with the execution of every new trajectory, it is also required to define
the pulse output settings again.

It is also possible to use the trajectory pulses and the pulse window state as events in the
event triggers (see section 11.0: “Event Triggers* for details). This allows the gathering
of data on a trajectory at constant length intervals.

Example
XYLineArcPulseOutputSet(XY, 10, 30,0.01)

One pulse every 10 um will be generated on the Line-Arc Trajectory between
10 mm and 30 mm.

XYLineArcVerification(XY, Traj.trj)
Loads and verifies the trajectory Traj.trj

GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition, GP1I02.ADC1)

Configures data gathering to capture the current positions of the XY X and
the XY.Y and the analog input GPIO2.ADCI

EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,XY .LineArc.TrajectoryPulse,0,0,0,0)

XPSDocumentation V2.6.x (08/11)

152

XPS

Motion Tutorial

13.5

Triggers an action for every trajectory pulse. The link of the event
TrajectorPulse with the event Always is important to make the event
permanent. Otherwise, the event will be removed after the first pulse.

EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
Defines the action; gathers one set of data each trajectory pulse.
EventExtendedStart()

Starts the event trigger.

XYLineArcExecution(XY, Traj.trj, 10,100, 1)

Executes the trajectory at a trajectory speed of 10 mm/s and a trajectory
acceleration of 100 mm/s one time.

GatheringStopAndSave()

Saves the gathering data from memory into a file gathering.dat in the
..admin/public folder of the XPS.

In this example, one set of data will be gathered on the trajectory between length 10 mm
and 30 mm at constant trajectory length intervals of 10 ym.

Triggers on PVT Trajectories

This capability allows output of pulses at constant time intervals on a PVT trajectory.
The pulses are generated between a first and a last trajectory element (see 9.3, PVT
Trajectories for details). The minimum possible time interval is 100 ps.

Two signals are provided:

GPIO2, pinl1, Window: A constant 5 V signal is sent between the beginning of the
first and the end of the last trajectory element.

GPIO2, pin12, Pulse: A 1 us pulse with 5V peak voltage is sent for every time
interval

For details about the XPS I/O connectors, see appendix, section 20.2.

To define the first element, the last element and the time interval, use the function
MultipleAxesGroupPV TPulseOutputSet().

Example 1
MultipleAxesGroupPV TPulseOutputSet (Groupl, 3, 5,0.01)

One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.

MultipleAxesPVTVerification(Groupl, Traj.trj)
Loads and verifies the trajectory Traj.trj
MultipleAxesPVTExecution(XY, Traj.trj, 1)
Executes the trajectory Traj.trj one time.

Note that the pulse output settings are automatically removed when the trajectory is
over. Hence, with the execution of every new trajectory, the pulse output settings must
be defined again.

It is also possible to use the trajectory pulses and the pulse window state as events in the
event triggers (see section 11.0: “Event Triggers* for details). This allows the gathering
of data on a trajectory.

Example 2
MultipleAxesPVTPulseOutputSet(Groupl, 3, 5, 0.01)

One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.

MultipleAxesPVTVerification(Groupl, Traj.trj)

153 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

Loads and verifies the trajectory Traj.trj
GatheringConfigurationSet(Group1.P.CurrentPosition, GPIO2.ADC1)

Configures data gathering to capture the current position of the Groupl.P
positioner and the analog input GPIO2. ADCI

EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,Groupl.PVT.TrajectoryPulse,0,0,0,0)

Triggers an action for every trajectory pulse. The link of the event
TrajectorPulse with the event Always is important to make the event
permanent. Otherwise, the event will be removed after the first pulse.

EventExtendedConfigurationA ctionSet(GatheringOneData,0,0,0,0)
Defines the action; gathers one set of data each trajectory pulse.
EventExtendedStart()

Starts the event trigger

MultipleAxesPVTExecution(XY, Traj.trj, 1)

Executes the trajectory Traj.trj one time.

GatheringStopAndSave()

Saves the gathering data from memory in a file gathering.dat in the
..admin/public folder of the XPS.

In this example, one set of data will be gathered every 10 ms on the trajectory between
the start of the 3rd and the end of the 5th element.

XPSDocumentation V2.6.x (08/11) 154

XPS

Motion Tutorial

14.0 Control Loops

14.1

14.11

XPS Servo Loops

Servo structure and Basics

The XPS controller can be used to control a wide range of motion devices, which are
categorized within the XPS as “positioners”. Within the structure of the XPS' firmware,
a “positioner” is defined as an object with an associated profile (trajectory), a PID
corrector, a motor interface, a driver, a stage and an encoder.

The general schematic of a positioner servo loop is below.

Figure 51: Servo structure and Basics.

The calculations done by the “servo loop” result in a voltage output from the controller
that is applied to the driver, which can be either an internal driver like Newport's
Universal drive modules or to an external driver through the XPS pass-through module.
Depending on the corrector loop type selected, the level of this output voltage can be
the result of two gain factors, the PID corrector and the FeedForward loop. The XPS has
imbedded configuration files that provide optimized corrector loop settings for all
Newport stages. Non-Newport stages may need to be assigned a specific corrector loop
setting during the set-up process. In addition to the two main gain loops the XPS also
adds filtering and error compensation parameters to this servo loop to improve system
response and reliability.

The profiler (Trajectory Generator) within the controller calculates in real time, the
position, velocity, and acceleration/deceleration that the positioner must follow to reach
its commanded position (Setpoint Position). This profile is updated at a rate of 2.5 kHz.

The PID corrector then compares the SetpointPosition, as defined by the profiler, and
the current position, as reported by the positioner's encoder, to determine the current
following error. The PID corrector then outputs a value that the controller uses to
maintain, increase or decrease the output voltage, which is applied to the driver. This
loop is updated at a rate of 10 kHz. The adjustment of the PID parameters allows users
to optimize the performance of their positioner or system by increasing or decreasing
the responsiveness of the output to increasing or decreasing following errors. Refer to
the section on PID tuning for more information and tips on PID tuning. The PID
corrector loop and trajectory generation loop rates have been optimized to provide the
highest level of precision. In most applications the critical control loop is the PID
corrector since it has the most significant impact on positioning performance. Because
of this, the PID loop is updated 4 times during each profiler cycle to improve profile
execution and minimize following errors.

The Feed-Forward gain generates a voltage output to the driver that is directly
proportional to the input. The purpose of this gain is to generate a movement of the
positioner as close as possible to the desired move that is independent of the encoder
feedback loop. Adding this Feed-Forward gain can help reduce any encountered
following errors and thus requires less compensation by the PID gain corrector. For

155 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

example, if a driver and positioner respond to a constant voltage by moving at a
constant speed, then feed forward input would be dictated by the SetpointSpeed.

The XPS stores standard Newport stage configuration files that can be used to quickly
and easily develop the stage and system initialization (.ini) files. Below is a sample of
typical stages and the type of DriverName, MotorDriverInterface and CorrectorType
each is assigned. These standard Newport settings will be optimal for virtually every
application and users would only need to modify their corrector loop parameters (Kp,
Kd, Ki) to optimize positioner performance. Similar configurations can be adopted for
non-Newport stages that are of similar motor driver types.

4 Stages with high current (> 3 A) DC motor (RV, IMS) (with tachometer or back-emf
estimation):

DriverName: XPS-DRVM1,2,3

l +10 V Input gives +ScalingVelocity (stage velocity).
1 Speed loop & Current loop configured by hardware.
MotorDriverInterface: AnalogVelocity

CorrectorType: PIDFFVelocity for Speed loop and PIDFFAcceleration for current
loop.

4 Stages with DC motor driven through a current loop (RGV) (no tachometer):
DriverName: XPS-DRVM4
l +10 V Input gives +ScalingAcceleration (stage acceleration).
1 Current loop configured by hardware.
MotorDriverInterface: AnalogAcceleration
CorrectorType: PIDFFAcceleration
4 Stages with low current (< 3 A) DC motor & tachometer (VP, ILSCCHA):
DriverName: XPS-DRVOL1 in velocity mode.
l Input 1: £10 V results in +ScalingVelocity (theoretical stage velocity).
l Input2: £10 V results in +ScalingCurrent (3 A).
| Speed loop programmable.
MotorDriverInterface: AnalogVelocity
CorrectorType: PIDFFVelocity
4 Stages with low current (<3 A) DC motor, without tachometer (ILSCC type):
DriverName: XPS-DRVO1 in voltage mode.
l Input 1: £10 V results in +ScalingVoltage (48 V).
l Input2: £10 V results in +ScalingCurrent (3 A).
MotorDriverInterface: AnalogVoltage

CorrectorType: PIDDualFFVoltage

4 Stages with Stepper motor & Encoder (UTMPP, RVPE, ILSPP...):

DriverName: XPS-DRVOL in stepper mode.

l Input 1: £10 V results in +ScalingCurrent in motor winding 1.
l Input2: £10 V results in +ScalingCurrent in motor winding 2.
MotorDriverInterface: AnalogStepperPosition

CorrectorType: PIPosition

4 Stages with Stepper motor & no encoder (CMA, SR50PP, PRSOPP, MFAPP):

DriverName: XPS-DRVOL in stepper mode.
l Input 1: £10 V results in +ScalingCurrent in motor winding 1.

l Input2: £10 V results in +ScalingCurrent in motor winding 2.

XPSDocumentation V2.6.x (08/11)

156

XPS

Motion Tutorial

14.1.2

MotorDriverInterface: AnalogStepperPosition

CorrectorType: NoEncoderPosition

These are just examples of available positioner associations in the XPS. The flexibility
of positioner associations allows many other configurations to be developed to drive
non-Newport positioners or other products. Before developing other configurations, the
user should be aware that the main goal of creating these associations is to match the
servo loop output to the appropriate driver input as stated by the manufacturer. For
instance:

The Corrector PIPosition is used when a constant voltage applied to a driver results
in a constant position of the positioner (stepper motor, piezo, electrostrictive, etc.).

Corrector PIDFFVelocity is used when a constant voltage applied to a driver results
in a constant speed of the positioner (DC motor and driver board in speed loop
mode).

Corrector PIDFFAcceleration is used when a constant voltage applied to a driver
results in a constant acceleration of the positioner (DC motor and driver board in
current loop mode).

Corrector PIDDualFFVoltage is used when a constant voltage applied to a driver
results in a constant voltage applied to the motor (DC motor and driver board with
direct PWM command).

XPS PIDFF Architecture

Corrector loops PIDFFVelocity, PIDFFAcceleration and PIDFFDualVoltage all use the
same architecture as the PID corrector that is detailed below. PIPosition is a simplified
version of this loop that is used to provide closed loop positioning via encoder feedback
to stepper motor positioners.

157 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

14.1.21

14.1.2.2

PID Corrector Architecture

The PID corrector uses the following error (SetpointPosition — EncoderPosition) as its
input and applies the sum of three correction terms (Kp, Kd and Ki) to determine the
output.

Figure 52: PID Corrector Architecture.

Proportional Term

The Kp, or proportional gain, multiplies the current following error of that servo cycle
by the proportional gain value (Kp). The effect is to react immediately to the following
error and attempt to correct it. Changes in position generally occur during commanded
acceleration, deceleration, and in moves where velocity changes occur in the system
dynamics during motion. As Kp is increased, the PID corrector will respond with a
increased output and the error is more quickly corrected. For instance, if a positioner or
group of positioners is expected to have small following errors, as is the case for small
moves where overcoming static friction of the system is predominant, then the Kp may
need to be increased to produce sufficient output to the driver. For larger moves, the
following errors are generally larger and require lower Kp values to produce the desired
output. Also note that for larger moves the kinetic friction of the system is generally
much lower than static friction and would generally require less correction gain than

XPSDocumentation V2.6.x (08/11)

158

XPS

Motion Tutorial

14123

14.1.24

smaller moves. However, if Kp becomes too large, the mechanical system may begin to
overshoot (encoder position > SetpointPosition), and at some point, it may begin to
oscillate, becoming unstable if it does not have sufficient damping.

Kp cannot completely eliminate errors. However, since as the following error e,
approaches zero, the proportional correction element, Kp x e, also approaches zero and
results in some amount of steady-state error. For this reason other gain factors like Kd
and Ki are required.

Derivative Term

The Kd, or derivative gain, multiplies the differential between the previous and current
following error by the derivative gain value (Kd). The result of this gain is to stabilize
the transient response of a system and can also be thought of as electronic damping of
the Kp. The derivative acts as a gain that increases with the frequency of the variations
of the following error:

%: [sin(2 Frt)]=2 Frcos (2 Frt)

The result is that the derived term becomes preponderant at high frequencies, compared
to proportional and integral terms. For the same reason, the value of Kd is in most cases
limited by high frequency resonance of the mechanics. This is why a low pass filter (cut
off frequency = DerivativeFilterCutOffFrequency) is implemented in the derivative
branch to limit excitation at high frequencies. Increasing the value of Kd increases the
stability of the system. The steady-state error, however, is unaffected since the
derivative of the steady-state error is zero.

These two gains alone can provide stable positioning and motion for the system.
However to eliminate the steady state errors, an additional gain value must be used.

Integral Term

The Integral term Ki acts as a gain that increases when the frequency of the variations
of the following error decrease:

[sin(2 Frt)]z % Fr sin(2 Frt)"

The result is that integral term becomes preponderant at low frequencies, compared to
the proportional and derivate terms. The gain becomes infinite when frequency = 0.
Even a very small following error will generate an infinite value of the integral term.
The advantage of the integral term is that it will eliminate any steady-state following
error. However, the disadvantage is that the integral term can reach values where the
corrector is saturated causing the system to become unstable at the end of a move and
cause the positioner to hunt or dither. To reduce this effect two additional parameters
are included in the PID corrector to help prevent these instabilities, Ks and Integration
Time.

Ks

The saturation limit factor Ks permits users to limit the maximum value of Ki that is
applied to the total PID corrector output. The Ks saturation can be set between 0 and 1,
a typical setting is 0.5. As an example, at a setting of 0.5 the maximum output generated
by the Ki term applied to the PID output would be 0.5 x the maximum set output.
However, if the Ki gain factor output is less than 0.5 x the maximum set output, then the
entire gain will be applied to the PID corrector. This maximum output is set within the
section MotorDriverInterface in the stages.ini using the parameters AccelerationLimit,
VelocityLimit or VoltageLimit. Refer to the Programmers manual for more information
on this function.

Integration Time

The IntegrationTime is used to adjust the duration for integration of the residual errors.
This can help in applications where large following errors can occur during motion. The

159 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

14.1.2.5

use of a small value of Integration Time will limit the integration range to the latter
parts of the move, avoiding the need of a large overshoot at the end of the move to clear
the integrated following error value. The drawback is that the static error will be less
compensated.

Yariable Gains

In addition to the classical Kp, Ki, and Kd gain parameters, the XPS PID Corrector
Loop also includes variable gain factors GKp, GKd, and GKi. These can be used to
reduce settling time on systems that have nonlinear behavior or to tighten the control
loop during the final segment of a move. For example, a positioner or stage with a high
level of friction will have a response which is dependent on the size of the move:
friction is negligible for a large move but becomes a predominant factor for small
moves. For this reason, the required response of the system to reach the commanded
position is not the same for small and large moves. The optimum value of PID
parameters for small moves is very often higher then the optimum value for large
moves. It is advantageous to modify PID settings depending on the move size. For users
that do not need to make PID corrector adjustments (or prefer not to) benefit from the
compensations provided by the variable gain correctors. This compensation is made
automatically by the XPS variable gain corrector by applying a gain that is driven by the
distance between the Target Position (position that must be reached at the end of the
motion) and the Encoder Position. As shown in the figure below, when the distance to
move completion is large, the total output gain from these parameters is fractional (the
“Kform term” is fractional), but as the move size or distance to final position is small
the Kform term approaches 1 and full GKx output is provided.

GKp=10 Kp=2
Target Postion = 0
Encodes Postion = -100to 100
o Kform ,
= Sioe -.....-[I-GK ‘]-x
P (Ktarm, Encoder Posto ' | Target Position - Encodar Positon | « Kiorm ' P
FoOKp N
0 |
M
Ko 1, Eacoder Post | "1
) “ Y \
- , -
it K(l 10, Eacoder Pouts Wi ’ I N
’ J \ -
Dl B S
e e == >, N —-—— -
0 . - - - J
100 2 0 20 10C
et F wn

Figure 53: Variable Gains.

The parameter GKx is used to adjust the amplitude of the total output and the parameter
Kform is used set how soon this Gkx is applied. As seen in the figure below, if a Kform
of 1 is implemented the GKx is not applied until the positioner is very close to it's target
position, in this case 0. But a Kform of 10 will implement the GKx much sooner and
tighten the control of the loop further from the target position. This can be very
effective when positioning high inertial loads or when very short settling times are
critical. The default setting for the Kform parameter is O for all standard Newport
stages.

XPSDocumentation V2.6.x (08/11)

160

XPS

Motion Tutorial

14.2

14.3

143.1

Filtering and Limitation

In addition to the various PID correctors and calculations, the filtering and limitation
parameters also have the same structure for all the correctors (PIDFFVelocity,
PIDFFAcceleration and PIDFFDualVoltage, etc).

Figure 54: Filtering and Limitation.

The first section of the above diagram shows the succession of two digital notch filters.
Each filter is defined by its central frequency (NotchFrequency) its bandwidth
(NotchBandwidth) and its gain (NotchGain).

The gain, usually in the range of 0.01 to 0.1, is the value of the amplification for a
signal at a frequency equal to the central frequency and the bandwidth is the range about
the central frequency for which this gain is equal to a -3 db reduction.

Notch filters are typically used to avoid the instability of the servo loop due to
mechanics natural frequencies, by lowering the gain at these frequencies. When they are
implemented, these filters add some phase shift on the signal. This phase shift increases
with the filter bandwidth and must remain small in the frequency range where the servo
loop is active to maintain stability. The result is that notch filters are only effective at
avoiding instabilities due to excessive and constant natural frequencies.

The last section of the diagram shows the limitation and scaling features. Scaling is used
to transform units of position, speed or acceleration in the corresponding voltage. The
Limitation factor is a safety that is used to limit the maximum voltage that can be
applied to the driver to protect against any runaway or saturation situations that may
occur.

Feed Forward Loops and Servo Tuning

Corrector = PIDFFVelocity

The PIDFFVelocity corrector should be implemented into applications where the
positioner driver requires a “speed” input (constant voltage to the driver provides
constant speed output to the positioner), using MotorDriverInterface = AnalogVelocity.

Figure 55: Corrector = PIDFFVelocity.

161 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

143.1.1

143.1.2

Parameters

FeedForward Method:

e Velocity

e KFeedForwardVelocity is a gain that can be applied to this feed forward.

e When the system is used in open loop, the PID output is not applied and the feed
forward gain is set to 1 (the entire output of the controller is FF gain).

PID corrector:

e Total output of the PID is a speed (units/s), so:
Kpis given in 1/s.
Ki is given in 1/s*.
Kd has no unit.

Filtering and Limitation:

e ScalingVelocity (units/s) is the theoretical speed resulting from a 10 V input to the
driver.

e VelocityLimit (units/s) is the maximum speed that can be commanded to the driver.
Basics

For a “perfect system” (no friction, all performance factors known, no following errors),
a KFeedForwardVelocity value of 1 will generate the exact amount of output required
to reach the TargetPosition.

The Kd parameter is generally redundant when using the speed loop of the driver and is
usually set to zero, but a higher value can be used to improve the “tightness” of the
speed loop.

The proportional gain Kp drives the cut-off frequency of the closed loop.

Due to the integration of the speed command in a position by the encoder, the overall
gain of the proportional path at a given frequency Frq is equal to Kp/2ntFrq. This gain is
equal to 1 at Frq P = Kp/2m (close to the cut-off frequency).

This frequency must remain lower than the cut-off frequency of the speed loop of the
driver and lower than the mechanic’s natural frequencies to maintain stability.

The integral gain Ki drives the capability of the closed loop to overcome perturbations
and to limit static error.

Due to the integration of the speed command in a position by the stage encoder, the
overall gain of the integral path at a given frequency Frq is:

Ki

Gain=—— ——
am (20 OFrq)’

This gain is equal to one at Frql:

1
Frql = — O/Ki
rq 0 WVKi

This frequency Frql must typically remain lower than the frequency FrqP of the
proportional path to keep the stability of the servo loop.

XPSDocumentation V2.6.x (08/11)

162

XPS

Motion Tutorial

14.3.1.3 Methodology of Tuning PID
1. Verify the speed in open loop (adjustment done using ScalingVelocity).

2. Close the loop, set Kp, increase it to minimize following errors to the level until

oscillations/vibrations start during motion, then decrease Kp slightly to cancel these
oscillations.

Set Ki, increase it to limit static errors and improve settling time until the
appearance of overshoot or oscillation conditions. Then reduce Ki slightly to
eliminate these oscillations.

Kd is generally not needed but it can help in certain cases to improve the response
when the speed loop of the driver board is not efficient enough.

14.3.2 Corrector = PIDFFAcceleration

The PIDFFAcceleration must be used in association with a driver having a torque input
(constant voltage gives constant acceleration), using MotorDriverInterface =
AnalogAcceleration. (AnalogSin60Acceleration, AnalogSin90Acceleration,
AnalogSin120Acceleration, AnalogDualSin60Acceleration,
AnalogDualSin90Acceleration or AnalogDualSin120Acceleration).

Figure 56: Corrector = PIDFFAcceleration.

14.3.2.1 Parameters

FeedForward:

A feed forward in acceleration is used.
KFeedForwardAcceleration is a gain that can be apply to this feed forward.

When the system is used in open loop, the PID output is cut and the feed forward
gain is set to 1.

PID corrector:

Output of the PID is an acceleration value in units/s’.
Kp is given in 1/s>.
Ki is given in 1/s’.

Kd is given in 1/s.

Filtering and Limitation:

ScalingAcceleration (units/s®) is the theoretical acceleration of the stage resulting
from a 10 volts input on the driver (depends on the stage payload).

AccelerationLimit (units/s?) is the maximum acceleration allowed to be commanded
to the driver.

163 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

14322

14323

Basics

The derivative term Kd drives the cut-off frequency of the closed loop and must be
adjusted first (the loop will not be stable with only Kp).

Due to the double integration of the acceleration command in a position by the stage
encoder, the overall gain of the derivative path at a given frequency Frq is equal to
Kd/2aFrq. This gain is equal to one at FrqD = Kd/2m (close to servo loop cut-off
frequency). This frequency must remain lower than the cut-off frequency of the current
loop of the driver and lower to mechanical natural frequencies to keep the stability.

The proportional gain Kp drives mainly the capability of the closed loop to overcome
perturbations at medium frequencies and to limit following errors. Due to the double
integration of the acceleration command in a position by the stage encoder, the overall
gain of the proportional part at a given frequency Frq is:

. Kp
Gain=—————
am (20 OFrq)’

This gain is equal to one at FrqP:

FrqP = % 0+4/Kp

This frequency FrqP must remain lower than the frequency FrqD of the derivative part
to keep the stability.

The integral gain Ki drives the capability of the closed loop to overcome perturbations
at low frequencies and to limit static error.

Due to the double integration of the acceleration command in a position by the stage
encoder, the overall gain of the integral part at a given frequency Frq is:

Gain= L3
(20 OFrq)
This gain is equal to one at Frql:
1 I
Frql = —{Ki?

20

This frequency Frql must remain lower than the frequency FrqP of the proportional part
to keep the stability.

Methodology of Tuning PID

1. Verify the AccelerationFeedForward in open loop (adjustment done using
ScalingAcceleration).

Close the loop, set Kd, increase it to minimize following errors until vibrations
appears during motion.

2. Decrease Kd to eliminate oscillations.

3. Set Kp, increase it to minimize following errors until the appearance of oscillations,
decrease it to eliminate oscillations.

4. Set Ki, increase it to limit static errors and settling time until appearance of
overshoot/oscillations.

XPSDocumentation V2.6.x (08/11)

164

XPS

Motion Tutorial

1433

14331

Corrector = PIDDual FFVoltage

The PIDDualFFVoltage must be used in association with a driver having a voltage input
(constant voltage gives constant motor voltage), using MotorDriverInterface =
AnalogVoltage.

Can also be used in velocity or acceleration command.

Figure 57: Corrector = PIDDual FFVoltage.

Parameters

FeedForward:

3 feed forwards are used: Speed, Acceleration and Friction.

KFeedForwardAcceleration is a gain that can be apply to the feed forward in
acceleration.

KFeedForwardVelocity is a gain that can be apply to the feed forward in velocity.
Friction is a value which is applied with the sign of the velocity.

When the system is used in open loop, the PID output is cut and only one feed
forward in velocity is applied with the gain defined by
KFeedForwardVelocityOpenLoop.

PID corrector:

Output of the PID is a voltage.
Kp is given in V/unit.
Ki is given in V/unit/s.

Kd is given in V .s/unit.

Filtering and Limitation:

ScalingVoltage is the theoretical motor voltage resulting from a 10 V input on the
driver (48 V).

VoltageLimit (volts) is the maximum motor voltage allowed to be commanded to
the driver.

165 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

14332

14333

1434

14341

Basics

The PIDDualFFVoltage corrector can be seen as a mix between the PIDFFVelocity and
PIDFFAcceleration correctors. It is difficult to give a precise picture of this behavior
which depends a lot on the response of the stage (speed and acceleration versus motor
voltage).

Methodology of Tuning PID

1. Adjust KFeedForwardVelocityOpenLoop to optimize the following of the speed at
high speed.

2. Close the loop using the same value for KFeedForwardVelocity, set Kp, increase it
to minimize following errors until oscillations/vibrations appears during motion,
decrease Kp to eliminate oscillations.

3. Set Kd, increase until oscillations/vibrations appear during motion, and decrease it
to eliminate oscillations.

4. Increase Ki to cancel static error and minimize settling time until appearance of
overshoot/oscillations.

Corrector = PIPosition

PIPosition corrector can be used with AnalogStepperPosition or AnalogPosition
interface.

AnalogPosition interface is to be used with a driver having a position input (example =
piezo driver).

AnalogStepperPosition interface is to be used with a driver having two sine and cosine
current inputs (constant voltage gives constant currents in motor windings so position is
constant).

Figure 58: Corrector = PIPosition.

Parameters
FeedForward:
e One feed forward in position. No adjustable gain.

e When the system is used in open loop, the PI output is cut and the feed forward in
position is applied.

PI corrector:
e Output of the PI is a position.
Kp has no units.

Ki is given in 1/s.

XPSDocumentation V2.6.x (08/11)

166

XPS

Motion Tutorial

143422

Basics & Tuning

In most cases, only Ki is needed to correct static errors.

The overall gain of the integral part of the servo loop at a given frequency Frq is:

Gain= L
20 OFrq
This gain is equal to one at:
Ki
Frql=——
=20

167 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

15.0 Analog Encoder Calibration

This section refers only to analog sine encoder inputs. The purpose of the analog
encoder interpolation feature is to improve the stage accuracy by detecting and
correcting analog encoder errors such as offsets, sine to cosine amplitude differences,
and phase shift.

Other kinds of errors can exist in the encoder such as impure sine or cosine signals. This
feature will not compensate for them and will disturb the results of the calibration
process.

Also, this calibration process assumes that the errors are small, i.e., less than a few
percent.

Below are figures and numbers to illustrate the type of errors and their impact on

accuracy.
Offset Error
Ervoe when 1% of sing or cosine sffset
S g
F o
L \
02
0 01 02 0) 04 -1 0s or] | 0 14

(Eacoder Perod
Figure 59: Offset Error.

The offset error generates 0.32% interpolation error per percent offset on the sine or
cosine signals. With a 20 ym scale pitch, 1% sine offset generates 63.5 nm peak to peak
interpolation error.

Amplitude Mismatch

Errar when 1% smplitede &iffecence

y : /

; \ / ,\ /
N / /
" \\/ 7

0 01 92 03 04 25 08 0y s 0% \c

IS Pened

(Eacoder Perod
Figure 60: Amplitude Mismatch.

The amplitude mismatch between sine and cosine signals generates 0.17% interpolation
error per percent amplitude mismatch. With a 20 um scale pitch, 1% amplitude
mismatch generates 33 nm peak to peak interpolation error.

XPSDocumentation V2.6.x (08/11) 168

XPS

Motion Tutorial

Phase Shift
Errar when 1* of phane shilt
23 : . i
Vi \ / \\
/ /N

; / \ / \\
S / \
: /
& / \. // \\
- / \\ \

/ / \
/ \ L |
0 01 82 03 04 9% 08 0y 1) 08 i\

(Escoder Perd
Figure 61: Phase Shift.

The phase shift between sine and cosine generates 0.28% interpolation error per degree
phase shift. With a 20 gm scale pitch, 1 degree phase shift between sine and cosine
generates 55.5 nm peak to peak error.

Combined Errors

The combination of these errors is not a simple sum but is more likely a root mean
square relationship. With a 20 ym scale pitch, 1% sine offset, 1% cosine offset, 1%
phase mismatch and 1 degree phase error between sine and cosine generates 132.5 nm
peak to peak error.

2000+/(0.32%)> + (0.32%)° + (0.164%)* + (0.28%)* =111.373

Note that the calculated value, 111.373 nm is lower than the measured 132.5 nm.

Analog encoder compensation feature

The compensation for repeatable distortions of the analog encoder input signals is
always active. It uses the following parameters read from the stages.ini file. The default
values are O for all stages:

EncoderSinusOffset = 0 volts
EncoderCosinusOffset = 0 volts
EncoderDifferentialGain = 0
EncoderPhaseCompensation = 0 deg

The function GrouplnitializeWithEncoderCalibration() initializes the positioner and
runs the encoder calibration process. During calibration, the stage moves for 25
EncoderScalePitch and the controller determine the appropriate calibration values. The
controller, though, will not automatically apply these values.

The function PositionerEncoderCalibrationParametersGet() returns the results of the
last encoder calibration. To apply these values, add them manually to the appropriate
section in the stages.ini file, and reboot the controller.

In the folder .\Admin\Public\Drivers\LabView\XPS-C8 of the XPS controller,
embedded in Examples.llb, there is a LabView application to display the current analog
encoder values. The display zone matches the maximum possible amplitude of the
analog signals. When they are larger than this, the AD converter will clip and the
interpolation error will increase dramatically. The dotted circle represents the 1 volt
peak to peak “ideal” encoder, the red circle represents the current mean encoder settings
and the green dot the current encoder value. This application uses the function
PositionerEncoderAmplitudeValuesGet() for display.

169 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

B Aecies o (ol ot Sewon st S

Btew Ui Loboin O Beimer Pdne o
o iigin =
=
Analog encoder display
arrens - I~
St the puntures wed g SAY

| e 1w
.-
Ly

Example of the use of the functions
GrouplnitializeWithEncoderCalibration(MyGroup)

PositionerEncoderCalibrationParametersGet(MyGroup.MyStage)

This function returns the encoder calibration parameter values: encoder
sinus signal offset, encoder cosinus signal offset, encoder differential gain,
and encoder phase compensation. These values need to be entered in the
appropriate section of the stages.ini.

PositionerEncoderAmplitudeValuesGet(MyGroup.MyStage)

This function returns the encoder amplitude values: encoder sinus signal
maximum amplitude value, encoder sinus signal current amplitude value,
encoder cosinus signal maximum amplitude value and encoder cosinus signal
current amplitude value.

Following is the complete process for calibrating a stage with an analog encoder
interface:

XPSDocumentation V2.6.x (08/11) 170

XPS

Motion Tutorial

Step 1
Initialize the positioner and run the calibration routine.
(3~ = e e
B e en fars s L i
B et g ! I D Ao Juwes O !_!_!

T ey y—— e e

_swces |
a
h—--.t——-'o-n—.-
P e — g -
%J
—
R il
—=-.
e
Fom e, et - y
B e e e -
.]
- St .t . ") | FETTUR S S
i -
i -
- ™7 "._" P -

Step 2
Start the AnalogEncoderCalibrationDiplay VI. Move the positioner at very low speed.

Notice the variations between the actual (green) values and the ideal (red) values. In this
case, it makes sense to apply new compensation values.

171 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

Step 3

Apply the compensation values gathered in step 1 into the stages.ini; reboot the
controller.

Initialize the positioner: run the AnalogEncoderCalibrationDiplay VI; move the
positioner at a very low speed.

Notice the difference to the previous results. It might be necessary to run the
compensation at several positions and several times to optimize the results.

XPSDocumentation V2.6.x (08/11) 172

XPS Motion Tutorial

16.0 Introduction to XPS Programming

For advanced applications and repeating tasks, it is usually better to sequence different
functions in a program rather than executing them manually via the web site interface.
Motion processes can be written in different ways, but essentially can be distinguished
between host-managed processes, processes controlled from a PC with communication
to the XPS via the Ethernet TCP/IP interface and XPS-managed processes, processes
controlled directly by the XPS controller via a TCL script.

Host-managed processes

Host-managed processes are recommended for applications that require a lot of data
management or a lot of digital communication with other devices other than the XPS
controller. In this case, it is more efficient to control the process from a dedicated
program that runs on a PC and which sends (and gets) information to (and from) the
XPS controller via the Ethernet TCP/IP communication interface. Communication to
the XPS controller can be established from almost any PC and is independent of the
PC’s operating system (Windows, Linux, Unix, Mac OS...) and programming language
(LabView, C++, C, VisualBasic, Delphi, etc.). The XPS controller supports the
development of host-managed processes with a Windows communication DLL, a
complete set of LabView drivers and a number of example programs in C++,
VisualBasic and LabView. A few basic examples are provided in this section. For more
details, please refer to the Software Drivers Manual.

XPS-managed processes (TCL)

The XPS controller is also capable of controlling processes directly using TCL scripts.
TCL stands for Tool Command Language and is an open-source string-based command
language. With only a few fundamental constructs, it is very easy to learn and it is
almost as powerful as C. Users of XPS can use TCL to write complete application code
and XPS allows them to include any function to a TCL script. When developed, the
TCL script can be executed in real time on the motion controller in the background,
utilizing time that the controller does not need for servo or communication. Multiple
TCL programs run in a time sharing mode. To learn more about TCL, refer to the TCL
Manual which is accessible from the web site of the XPS controller.

The advantage of XPS-managed processes compared to host-managed processes is
faster execution and better synchronization in many cases without any time taken from
the communication link. XPS-managed processes or sub-processes are particularly
valuable with repeating tasks, tasks that run in a continuous loop, and tasks that require
a lot of data from the XPS controller. Examples include: anti-collision processes,
processes that utilize security switches to stop motion when stages are in danger of
collision; tracking, auto-focusing or alignment processes, processes that use external
data inputs to control the motion; or custom initialization routines, processes that must
constantly be executed during systems use.

The XPS controller has real-time multi-tasking functionality, and with most applications
it is not only a choice between a host-managed or an XPS-managed process, but also a
recognition of splitting the application into the right number of sub-tasks, and defining
the most efficient process for each sub-task. An efficient process design is one of the
main challenges with today’s most complex and critical applications in terms of time
and precision. It is recommended to spend a lot of thought to the proper definition of the
best process approach.

The aim of this section is to provide a brief introduction to the different ways of XPS
programming. This section, however, cannot address all details. For further information,
refer to the TCL and the software drivers manual of the XPS controller which are
accessible via the XPS web site interface.

173 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

16.1

TCL Generator

The TCL generator provides a convenient way of generating simple executable TCL
scripts. These scripts may serve also as a good place to start for the development of
more complex scripts.

The TCL generator is accessible from the terminal menu of the XPS web site. Pressing
the TCL generator button generates a TCL script that includes the commands previously
executed and listed in the Command history list. Note that the order in the TCL script is
the same as executed and inverse to the order of the Command history list. The name of
the TCL script is History.tcl and is stored in the .\Admin\Public\Scripts folder of the
controller.

Example
This is an example using three stages, two of them in an XY group and one in a
SingleAxis group.
The following functions were executed:
KillAll()
Grouplnitialize(S)
Grouplnitialize(XY)
GroupHomeSearch(S)
GroupHomeSearch(XY)
GroupMoveAbsolute(S, 70)
GroupMoveAbsolute(S, -70)
GPIODigitalSet(GPIO3.DO, 63, 0)
EventAdd(XY X, XYLineArc.TrajectoryStart, 0, DOSet, GPIO3.DO, 42, 42)
XYLineArcVerification(XY, Linearc?2.trj)
XYLineArcExecution(XY, Linearc2 .trj, 10, 70, 1)

EIPAAE SN TREY LAY e bestry @ LCathocmmy dronley
L Seoun

History

. <A Newport
To execute the script, use the function TCLScriptExecute(History.tcl, task1, 0).

In this example, after initializing and homing both groups, the TCL script moves the
single axis stage to the position 70 units, then to the position —70 units. It also sets the
digital output GPIO3 to 0.

Once checked, the line arc trajectory defined in the Linearc2.trj file gets executed with a
velocity of 10 units/sec and an acceleration of 70 units/sec. When this trajectory starts,
more precisely when the positioner of the X axis starts moving, the bits #2, #4 and #6 of
the output GPIO3 are set to 1 (4210 =1010102).

XPSDocumentation V2.6.x (08/11)

174

XPS

Motion Tutorial

16.2

D01 D02 DO3 DO4 DOS DOG

3T | O ® O ® O ©

@ Ouputsetto
QO Output sett0 0

NOTE

Selecting the function TCLScriptExecute() from the terminal menu opens a drop-
down list for the available TCLFileNames. However, this list is limited to 100
entries.

To learn more TCL programming, refer to the TCL Manual accessible from the
documentation menu of the XPS web site. The TCL manual provides a complete
description of all TCL commands and some more complex examples of TCL scripts.

LabView VIs

LabView is one of the most popular programming languages for the XPS controller.
Newport provides a complete list of LabView drivers for the XPS controller, which
means that LabView VIs exist for all XPS commands. In this section, a simple LabView
application was developed that sequentially sends a number of commands to the XPS.
The final application is illustrated as follow:

Btwe Lpow Lauime QM Pemmm Pughe oo

A TICTR Y. SRESre = b (=

t—we v
.

i ey S i -

-~

To use the XPS LabView drivers, the library files from the
./Admin/Public/Drivers/LabView/XPS-C8 Controller folder of the XPS controller must
be copied to the folder Program Files/National Instruments/LabVIEW6 .1 /user lib/XPS-
C8 Controller of your host computer.

Start the LabView software and open an empty VI.

All drivers are located in the menu: Window->Functions Pallet->Functions-> User
library->XPS C8. The drivers are classified in groups: TCP, General, Single axis, XY
axes, XYZ axes, Multiple axes, Positioner, GPIO, Gathering and Events actions).

175 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

" e
Mot |0 8 @ | Ei| s | e | £y | £3vn] |] Sy | e o Bra | ao. | [GWEAG w
All LabView routines must begin with a TCP Open and must end with a TCL Close. If
the TCP connection is not well managed, there will be no communication with the XPS.
Then, add a constant chain (Window->Functions Pallet->Functions->Chain) to
indicate the IP address of the controller and link it to the TCP Open driver.

When passing the cursor on the in/out panes of the driver, the required information is
displayed.

Add a Firmware Version Get from the general group and associate an indicator to its
second output. Link TCP Open to Firmware Version Get.

Then, add the initialization part: Add Group Kill, Group Initialize and Home search
drivers from the single axis group and indicate the name of the group to each driver.

XPSDocumentation V2.6.x (08/11) 176

XPS

Motion Tutorial

All drivers, except TCP Open and TCP Close, require a connection ID in (top left pane),
a connection ID out (top right pane), an error in (bottom left pane) and an error out
(bottom right.

Add two Group move absolutes from the single axis group and indicate the name of the
group. On the pane Target position, add a constant in which the desired absolute
positions is written. Finally, link the drivers together and link the last move to the TCP
Close.

To test the program, press the button @

This example displays the firmware version of the XPS controller and executes a
motion of the single axis group from O to +10, and then to —10 units.

To learn more the XPS LabView drivers and their use, refer to the Software drivers
manual accessible from the documentation menu of the XPS web site.

177 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

16.3 DLL Drivers

A DLL simplifies function calls from most programming languages. The DLL of the
XPS controller is located in the ..Admin/Public/Drivers/DLL folder of the XPS
controller. The files XPS_C8_drivers.h and XPS_C8_drivers.lib must be copied to the
project folder and the file XPS_C8_drivers.dll to the folder of the executable file.

[T Wedkspace Ex1_Versonier. | prosectis)
- a Ex1_VersionGet fdes

¢) Source Fles
=3 Header Fles
[§) £x1_VersonGeth
[B] €41 _VersorGeDigh Echir Cdtion Afctpoe Faecs Qi
|B) Recouce h Lowmn 3 & U X n -

Tobe | Tpe
WM Ke Agpheation
A Ke Extersen On Mgt .,

XPS_C8_drvens
= =y Rewcm™
8] Ex1_VesorGet o
(8] Ex1_VersoeGet 12
J) ReadMe e

o) Exterl Deperderce: AACErTe L eemerk Doay ob erw
e desorphon,

Once these files are added, for instance to a C++ project, the prototypes of the functions
can be called in the program with the respective syntax of the functions (parameters
number, type...). The file XPS_C8_drivers.h can be opened to see the list of the
available functions and their prototypes.

For instance, the prototype of the function FirmwareVersionGet is as follow:
DLL int __stdcall FirmwareVersionGet (int Socketindex, char * Version);

It requires two arguments (int and char*).

Example of C++ sequence

char buffer [256] = {\0'};

char pIPAddress[15] = {“192.168.33.236"};
int nPort = 5001;

double dTimeOut = 60;

int SocketID = -1;

/I TCP / IP connection
SocketlD = TCP_ConnectToServer(plPAddress, nPort, dTimeOut);
if (SocketID == -1)

{
sprintf (buffer, “Connection to @ %s, port = %ld failed\n”, plPAddress,
nPort);
AfxMessageBox (buffer, MB_ICONSTOP);
}
else
{

AfxMessageBox(“Connected to target’, MB_ICONINFORMATION);

/I Get controller version
FirmwareVersionGet (SocketID, buffer); // Get controller version
AfxMessageBox (buffer, MB_ICONINFORMATION);

/I TCP / IP disconnection
TCP_CloseSocket(SocketlD); // Close Socket
AfxMessageBox(“Disconnected from target’, MB_ICONINFORMATION);

}

XPSDocumentation V2.6.x (08/11) 178

XPS

Motion Tutorial

This example opens a TCP connection, gets the firmware version of the XPS controller
and closes the connection. The execution is displayed in message boxes:

1 _versionGet Sl 1 _versionGet Rl i1 _versionGet R

’\l) Connected to target ‘\l) XPS-CB Frmware V1,4.0 \l) Desconnectad from target

C &) C &)

16.4

To learn more about the DLL prototypes, refer to the Programmer’s Manual, accessible
from the web site interface of the XPS controller. All DLL prototypes are described
there.

The Software drivers manual, also accessible from the XPS web site interface, provides
further information about the use of the DLL and additional C++ programming
examples.

Running Processes in Parallel

TCP provides a reliable, point-to-point communication channel that client-server
applications on the Internet use to communicate with each other. To communicate over
TCP, a client program and a server program establish a connection to one another. Each
program binds a socket to its end of the connection. To communicate, the client and the
server both read from and write to the socket that binds the connection.

Sockets are interfaces that can “plug into” each other over a network. Once “plugged
in”, the connected programs can communicate.

Figure 62: Running Processes in Parallel.

XPS uses blocking sockets. In other words, the programs/commands are “blocked” until
the request for data has been satisfied. When the remote system writes data on the
socket, the read operation will complete it and write it in the received message window
of the Terminal menu (‘0’ if command has been well executed or the error number in
case of an error). That way, commands are executed sequentially as each command
always waits for a feedback before allowing execution of the next function. The main
benefit of using this type of socket is that an execution acknowledgement is sent to the
host computer with each function. In case of any error, it allows an exact diagnostic,
which function has caused the error. It also allows a precise sequential process
execution. On the other hand, more functions could be sent in parallel using non-
blocking sockets. However, the drawback is that it is almost impossible to diagnose
which function has caused an error.

To execute several processes in parallel, for instance to request the current position
during a motion and other data simultaneously, it is possible to communicate to the XPS
controller via different sockets. The XPS controller supports a maximum number of 30
parallel opened sockets. The total number of open communication channels to the XPS
controller, be it via the website, TCL scripts, a LabView program, or any other program
can not be larger than 30.

User’s who prefer not to use blocking sockets, or whose programming languages don’t
support multiple sockets, such as Visual Basic versions prior to version .Net, can

179 XPSDocumentation V2.6.x (08/11)

XPS

Motion Tutorial

disable the blocking feature by setting a low TCPTimeOut value, 20 ms for instance. In
this case, the XPS will unblock the last socket after the TCPTimeOut time. However,
this method loses the ability to pinpoint which commands were properly executed.

Examples of the use of parallel sockets

The following examples illustrate how to open several sockets via the web site
interface, TCL scripts, LabView VIs and C++ programs.

Web site interface

The simplest way to open several sockets in parallel is to open several windows on the
IP address of the controller. This is completely transparent to the user. Two or more
groups of stages can be commanded for instance from two terminal menus at the same
time to execute different motions (multitasking).

TCL scripts

A TCL script is carried out sequentially: the commands are executed one by one
following the order they are written in the script. Consequently, there is no great interest
to open several sockets in a single TCL script.

However, it is possible to start a TCL script from another TCL script. That way, as
many sockets and parallel processes can be started in parallel as needed. Below is an
example with 3 open sockets:

HHRHHHHR A
TCL program : GEN
HHRHHHHR A

set TimeOut 10

set code 0

set Prog1 “ProgRV.tcl”
set Task1 “Task1”

set Prog2 “ProgXY .tcl”
set Task2 “Task2”

open TCP socket
set code [catch “OpenConnection $TimeOut socketlD”]

if {$code == 0} {
puts stdout “ProgGen : TCP_ConnectToServer OK => $code ID =
$socketID” <— Socket 1

set code [catch “TCLScriptExecute $socketID $Prog1 $Task1 0”]
puts stdout “ProgGen : TCLScriptExecute => error = $code”
<— Socket 2

set code [catch “TCLScriptExecute $socketID $Prog2 $Task2 0”]
puts stdout “ProgGen : TCLScriptExecute => error = $code”
<— Socket 3

close TCP socket
set code [catch “TCP_CloseSocket $socketlD”]
puts stdout “ProgGen : TCP_CloseSocket => $code ID = $socketID”

}else {
puts stdout “ProgGen : TCP_ConnectToServer NOT OK => $code”

}

XPSDocumentation V2.6.x (08/11)

180

XPS Motion Tutorial

NOTE

Socket 2 and Socket 3 are not opened by the TCLExecuteScript function, but we
supposed these scripts open some sockets on their own.

LabView VIs

In a VI file, several processes can easily be created, all beginning with a TCP Open and
all finishing with a TCP Close. Each TCP Open will open its own socket. Shown below
is a simple VI that opens 4 sockets at the same time.

Prtem A [e Peveer Smge
:’10&& B .jb.‘.'l::.‘
s =
e Oy By L5 2 B
)
Socket 1 bz v E
e -y O -, — S-S
Socket 2
(Pt B0 s -
= = N IR} N0 =P . —r
W v o Prremy— 11
T i
Socketd |m n * o [—j *
Socket 4

C++ program

A C++ program is executed sequentially. Even if it calls many functions, they are
always executed one by one following the order they are written. In order to open
several sockets for multitasking, the C++ multithreading functionality must be used.

The XPS driver DLL allows a maximum number of 100 simultaneously opened sockets.
One XPS controller supports a maximum number of 30 simultaneously opened sockets,
but a program could control several XPS controllers.

181 XPSDocumentation V2.6.x (08/11)

XPS Motion Tutorial

XPSDocumentation V2.6.x (08/11) 182

XPS

Appendices

17.0 Appendix A: Hardware

Appendices

171

Controller

Weight:
Input voltage:

Input current:

Frequency:

16 kg (32 1b)
100240 VAC

11 A/115V
55A/230 V

60/50 Hz

183

XPSDocumentation V2.6.x (08/11)

XPS

Appendices

17.2

17.3

Rear Panel Connectors

Environmental Requirements
Temperature range:
Storage: -20 to +80 °C
Operating: +5to 435 °C
Relative Humidity (Non-condensing):
Storage: 10 to 95% RH
Operating: 10 to 85% RH
Altitude:
Storage: To 10,000 ft
Operating: To 5,000 ft

XPSDocumentation V2.6.x (08/11)

184

XPS

Appendices

18.0 Appendix B: General 1/0 Description

18.1

18.1.1

This paragraph briefly describes all XPS signal types.

Description of each XPS connector interface is detailed in further paragraphs.

Digital I/0s (All GPIO, Inhibit and Trigger In and PCO Connectors)
All digital I/Os are TTL compatible:

e All digital I/Os are not isolated, but are referenced to electrical ground (GND).

e Inputlevels must be between 0 V and +5 V.

e Output levels should be at least +5 V (up to 30 V absolute maximum rating with
open collector outputs).

e Outputs must be pulled up to the user external power supply (+5 V to +24 V). This
external power supply must be referenced to the XPS ground (GND).

All digital I/Os are refreshed asynchronously on user requests. Therefore, digital inputs
or outputs have no refreshment rate.

Typical availability delay is 100us due to function treatment.

All digital inputs are identical, except for GPIO3 inhibition input (described with
GPIO3).

All digital inputs are in negative logic and have internal +5 V pull up resistors.

Digital Inputs
Parameter Symbol Min. Max. Units
Low Level Input Voltage \ 0 0.8 \
High Level Input Voltage Viu 1.6 5 \
Input Current LOW I - -2.5 mA
Input Current HIGH Iy - 04 mA

Figure 63: Digital TTL Input.

GPIOn inputs (n = 1 to 4) can be accessed via the GPIODigitalGet(GPIOn.DI, ...)
function.

All digital outputs are identical.

All digital outputs are in negative logic (NPN open collector, 74LS06 TTL type circuit)
and have no internal pull up to permit levels above +5 V.

185 XPSDocumentation V2.6.x (08/11)

XPS Appendices
18.1.2 Digital Outputs
Parameter Symbol Min. Max. Units
Low Level Output Voltage VoL 0 1 \
High Level Output Voltage Vou 24 30 \
Input Current LOW Ion - -40 mA
Input Current HIGH Tou - 0.2 mA
Figure 64: Open Collector Digital Output.
GPIOn outputs (n = 1 to 4) can be accessed via the GPIODigitalSet(GPIOn.DO, ...)
function.
18.2 Digital Encoder Inputs (Driver Boards & DRV00)
All digital encoder inputs are RS-422 standard compliant:
e All digital encoder signals are not isolated, but are referenced to the electrical
ground (GND).
e Encoder signals must be differential pairs (using 26LS31 or MC3487 line driver
type circuits). Encoder inputs have a terminating impedance of 120 Q.
e Inputs are always routed on differential pairs. For a high level of signal integrity, we
recommend using shielded twisted pairs of wires for each differential signal.
e <Encoder power supply is +5 V @ 250 mA maximum (referenced to the electrical
ground) and is sourced directly by the driver boards.
18.3 Digital Servitudes (Driver Boards, DRV00 & Analog Encoders
Connectors)
All servitude inputs are TTL compatible:
e All servitude inputs are not isolated, but are referenced to the electrical ground
(GND).
e Inputlevels must be between 0 V and +5 V.
All servitude inputs are refreshed synchronously with control loop (10 kHz).
All servitude inputs are identical.
All servitude inputs expect normally closed sensors referenced to ground (input is
activated if the sensor is open) and have internal 2.2 K pull up resistors to the +5 V.
184 Analog Encoder Inputs (Analog Encoder Connectors)

Analog encoder interface comply with the Heidenhain LIF481 glass scales wiring
standard.

XPSDocumentation V2.6.x (08/11)

186

XPS

Appendices

18.5

185.1

1852

Analog I/0 (GPIO2 Connector)

Analog Inputs

The 4 analog inputs have 10 V range, 14 Bit resolution, and a 15 kHz 2nd order low
pass filter front end.

In all cases, the analog input values must be within the +10 V. The analog input
impedance is typically 22 kQ. The maximum input current is +500 pA.

1 LSB =20V/16384 =122 mV

The maximum offset error is +17,1 mV.

Analog Outputs

The 4 analog outputs have +10 V range and 16 Bit resolution. The maximum offset
error is +2 mV, and the maximum gain error is +6 LSB. The output settling time is
typically 50 usec at 1% of the target value (output filter is a 15 kHz 1st order low pass
filter).

Analog outputs are voltage outputs (output current less than 1 mA), so to use them
properly, they must be connected to impedance higher than 10 kQ.

1 LSB =:20 V/65536 = 0.3 mV.
Analog outputs can be accessed via the GPIOAnalogSet(GPIO2.DAChn,...) function.

187 XPSDocumentation V2.6.x (08/11)

XPS

Appendices

19.0 Appendix C: Power Inhibit Connector

Figure 65: Inhibition connector.

This connector is provided for the wiring of a remote STOP ALL switch.
It has the same effect as the front panel STOP ALL button.
Inhibition input is a standard TTL input.

Inhibition (Pin #2), must always be connected to GND during normal controller
operation.

An open circuit is equivalent to pressing STOP ALL on the front panel. Wire the switch
contacts normally closed.

NOTE

Connecting more than one switch is not recommended on this input.

XPSDocumentation V2.6.x (08/11)

188

XPS Appendices

20.0 Appendix D: GPIO Connectors

20.1 GPIO1 Connector

Figure 66: GPIOI Digital I/O Connector.

General Purpose Inputs Outputs GPIO1 is the main XPS digital I/O connector.

20.2 GPIO2 Connector

Figure 67: GPIO2 Analog & Digital Connector.

General Purpose Inputs Outputs GPIO2 is an additional digital input connector.

This connector is also the main analog I/O connector with 4 analog inputs and 4 analog
outputs.

189 XPSDocumentation V2.6.x (08/11)

XPS Appendices

20.3 GPIO3 Connector

Figure 68: GPIO3 Digital I/O Connector.

General Purpose Inputs Outputs GPIO3 is a digital I/O connector.

204 GPIO4 Connector

Figure 69: GPIO4 Additional Digital I/O Connector.

General Purpose Inputs Outputs GPIO4 is an additional digital I/O connector.

XPSDocumentation V2.6.x (08/11) 190

XPS

Appendices

21.0 Appendix E: PCO Connector

Figure 70: Position Compare Output Connector.

There is one PCO connector for every two axes. Axis #1 refers to the upper (odd)
encoder plug and axis #2 refers to the lower (even) encoder plug. The signals provided
on this plug depend on the configuration of the output triggers, see section 13, Output
trigger, for more details.

The state of the enable signal is low when the stage is inside the programmed position
compare window.

Note also, that only the falling edge of the trigger pulse is precise and only this edge
should be used for synchronization irrespactable from the PCOPulseWidth setting.

The duration of the pulse is 200 nsec by default and can be modified using the function
PositionerPositionComparePulseParametersSet(). Possible values for the
PCOPulseWidth are: 0.2 (default), 1, 2.5 and 10 (us). Successive trigger pulses should
have a minimum time lag equivalent to the PCOPulseWidth time times two.

The signals are open collector type and accept up to 30 Volts and 40 mA

The +5V output provided on the PCO connector can be used to pull-up these outputs
and can supply 50 mA max.

NOTE

To ensure fast transitions with an open collector, it is necessary to have enough
current to speed-up the transistor’s junction capacitor charge / discharge. A good
value is around 10 mA. So to pull-up the PCO signals to +5 V a 470 Q resistor can
be used.

Refer to section B.1 Digital I/Os, § Digital Outputs for detailed electrical description.

191 XPSDocumentation V2.6.x (08/11)

XPS

Appendices

22.0 Appendix F: Motor Driver Cards

221

DC and Stepper Motor Driver XPS-DRV01

Motor +

Motor -

Ph1

Ph2

Ph3

Ph4

Common 3&4

Common 1&2

+ Travel limit

- Travel limit

Encoder A & /A

Figure 71:XPS-DRVO1 Motor Driver Connectors.

This output must be connected to the positive lead of the DC
motor. The voltage seen at this pin is pulse-width modulated with
maximum amplitude of 48 V DC.

This output must be connected to the negative lead of the DC
motor. The voltage seen at this pin is pulse-width modulated with
maximum amplitude of 48 V DC.

This output must be connected to Winding A+ lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width
modulated with maximum amplitude of 48 V DC.

This output must be connected to Winding A- lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width
modulated with maximum amplitude of 48 V DC.

This output must be connected to Winding B+ lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width
modulated with maximum amplitude of 48 V DC.

This output must be connected to Winding B- lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width
modulated with maximum amplitude of 48 V DC.

This output must be connected to the center tab of Winding B of a
two-phase stepper motor. The voltage seen at this pin is pulse-
width modulated with maximum amplitude of 48 V DC.

This output must be connected to the center tab of Winding A of a
two-phase stepper motor. The voltage seen at this pin is pulse-
width modulated with maximum amplitude of 48 V DC.

This input is pulled-up to +5 V with a 2.2 kQ resistor by the
controller and represents the stage positive direction hardware
travel limit.

This input is pulled-up to +5 V with a 2.2 kQ resistor by the
controller and represents the stage negative direction hardware
travel limit.

These A and /A inputs are differential inputs. Signals are
compliant with RS422 electrical standard and are received with a

XPSDocumentation V2.6.x (08/11)

192

XPS

Appendices

222

Encoder B and /B

Index & /Index

Encoder ground

Origin

26L.S32 differential line receiver. A resistor of 120 Q adapts the
input impedance. The A and /A encoder signals originate from the
stage position feedback circuitry and are used for position
tracking.

These B and /B inputs are differential inputs. Signals are compliant
with RS-422 electrical standard and are received with a 26L.S32
differential line receiver. A resistor of 120 ©Q adapts the input
impedance. The B and /B encoder signals originate from the stage
position feedback circuitry and are used for position tracking.

These Index and /Index inputs are differential inputs. Signals are
compliant with RS422 electrical standard and are received with a
26L.S32 differential line receiver. A resistor of 120 Q adapts the
input impedance. The Index and /Index signals originate from the
stage and are used for homing the stage to a repeatable location.

Ground reference for encoder feedback.

This input is pulled-up to +5 V with a 2.2 kQ resistor by the
controller. The Origin signal originates from the stage and is used
for homing the stage to a repeatable location.

+5 V (DRV01: 250 mA Maximum) A +5 V DC supply is available from the driver.

Limit ground

Shield GND

This supply is provided for stage home, index, travel limit, and
encoder feedback circuitry.

Ground for stage travel limit signals. Limit ground is combined
with digital ground at the controller side.

Motor cable shield ground.

Brake + (available only on DRVM board) Voltage command (24 V or 48 V: strap on

the driver board) to drive the brake.

Brake — (available only on DRVM board) Reference of the above voltage command.

Tachometer + & Tachometer — These inputs are used to receive tachometer voltage

information. This voltage depends on the output voltage rating of
the employed tachometer.

DC Motor Driver XPS-DRVM

Figure 72: XPS-DRVM Motor Driver Connectors.

193 XPSDocumentation V2.6.x (08/11)

XPS Appendices

223 Three phases AC brushless driver XPS-DRV(02

Figure 73: XPS-DRV02 Motor Driver Connectors.

224 DC Motor Driver XPS-DRV(03

Figure 74: XPS-DRVO03 Motor Driver Connectors.

XPSDocumentation V2.6.x (08/11) 194

XPS Appendices

22.5 Pass-Through Board Connector (25-Pin D-Sub) XPS-DRV00

WARNING

This pass-through board connector takes the place of the motor
interface connector only if this axis is connected to an external motor
driver.

Figure 75: DRVOO Pass-Through Connector.

Analog A output and Analog B output have 16 bits resolution and are +10 V output.
These signals are used to command an external driver.

195 XPSDocumentation V2.6.x (08/11)

XPS

Appendices

23.0 Appendix G: Analog Encoder Connector

Figure 76: Analog Encoders Connector.

This connector is used to receive sine/cosine encoder signals.

The sinusoidal position signals, sine and cosine, must be phase-shifted by 90° and have
signal levels of approximately 1 Vpp. Each of these two signals is composed of an
analog sinusoidal signal and his complement entering in a differential amplifier (Sine =
Analog VA - Analog /VA).

Analog VA, Analog /VA, Analog VB, Analog /VB, Analog VI and Analog /VI:
Levels for these signals must be 0.5 Vpp.

VA, /VA, VB and /VB inputs are the sine and cosine signals from the encoder glass
scale.

VI and /VI inputs are used to receive Index information from the encoder glass scale.

+5 VA:
This +5 V DC supply is provided for supplying the encoder.

+5 VL:
This +5 V DC supply is provided for supplying digital circuits (Limit and Home).

Limit and Home are TTL inputs for Limit switch management and homing purposes
directly from the encoder glass scale.

Figure 77: Heidenhain Servitude TTL Input Signals.

XPSDocumentation V2.6.x (08/11)

196

XPS Appendices

24.0 Appendix H: Trigger IN Connector

Figure 78: Trigger Input Connector.

Synchro is a TTL input. It is used to trig the XPS controller acquisition (External
gathering).

A low to high transition will latch all encoders and analog inputs inside the controller.

197 XPSDocumentation V2.6.x (08/11)

XPS Appendices

XPSDocumentation V2.6.x (08/11) 198

XPS

Universal High-Performance Motion Controller/Driver

Service Form

Name:

Company:

Address:

Country:

P.O. Number:

Item(s) Being Returned:

Model#:

Description:

Return authorization #:

Your Local Representative

Tel.:

Fax:

(Please obtain prior to return of item)

Date:

Phone Number:

Fax Number:

Serial #:

Reasons of return of goods (please list any specific problems):

199

XPSDocumentation V2.6.x (08/11)

Newport.:

Visit Newport Online at:

www.newport.com

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: rma.service@newport.com

Europe

MICRO-CONTROLE Spectra-Physics S.A.S
1, rue Jules Guesde — Bat. B

ZI Bois de ’Epine — BP189

91006 Evry Cedex

France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport-fr.com

Technical Support
e-mail: tech_europe @newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55

	Newport Website
	XPS Controller
	Table of Contents
	User’s Manual
	Software Tools
	Motion Tutorial
	Appendices

	Warranty
	EU Declaration of Conformity
	Preface
	Confidentiality & Proprietary Rights
	Sales, Tech Support & Service
	Service Information
	Newport Corporation RMA Procedures
	Packaging

	User’s Manual
	Introduction
	Scope of the Manual
	Definitions and Symbols
	Warnings and Cautions
	General Warnings and Cautions

	System Overview
	Specifications
	Drive Options
	Compatible Newport Positioners and Drive Power Consumption
	XPS Hardware Overview
	Front Panel Description
	Rear Panel Description
	Ethernet Configuration
	Sockets, Multitasking and Multi-user Applications
	Programming with TCL

	Getting Started
	Unpacking and Handling
	Inspection for Damage
	Packing List
	System Setup
	Connecting to the XPS
	Testing your XPS-PC Connection
	Connecting the Stages
	Configuring the Controller
	System Shut-Down

	Software Tools
	Software Tools
	Software Tools Overview
	CONTROLLER CONFIGURATION – Users Management
	CONTROLLER CONFIGURATION – IP Management
	CONTROLLER CONFIGURATION – General
	SYSTEM – Error File Display
	SYSTEM – Auto Configuration
	SYSTEM – Manual Configuration
	STAGE – Add from Data Base
	STAGE – Add Custom Stage
	STAGE – Modify
	FRONT PANEL – Move
	FRONT PANEL – Jog
	FRONT PANEL – Spindle
	FRONT PANEL – I/O View
	FRONT PANEL – I/O Set
	FRONT PANEL – Positioner Errors
	FRONT PANEL – Hardware Status
	FRONT PANEL – Driver Status
	TERMINAL
	TUNING – Auto-Scaling
	TUNING – Auto-Tuning

	FTP (File Transfer Protocol) Connection
	Maintenance and Service
	Enclosure Cleaning
	Obtaining Service
	Troubleshooting
	Updating the Firmware Version of Your XPS Controller

	Motion Tutorial
	XPS Architecture
	Introduction
	State Diagrams
	Motion Groups
	Native Units

	Motion
	Motion Profiles
	Home Search
	Referencing State
	Move
	Motion Done
	JOG
	Master Slave
	Analog Tracking

	Trajectories
	Line-Arc Trajectories
	Splines
	PVT Trajectories

	Compensation
	Backlash Compensation
	Linear Error Correction
	Positioner Mapping
	XY Mapping
	XYZ Mapping

	Event Triggers
	Events
	Actions
	Functions
	Examples

	Data Gathering
	Time Based (Internal) Data Gathering
	Event Based (Internal) Data Gathering
	Function-Based (Internal) Data Gathering
	Trigger Based (External) Data Gathering

	Output Triggers
	Distance Spaced Pulses (PCO – Position Compare Output)
	AquadB signals
	Time spaced pulses (Time flasher)
	Triggers on Line-Arc Trajectories
	Triggers on PVT Trajectories

	Control Loops
	XPS Servo Loops
	Filtering and Limitation
	Feed Forward Loops and Servo Tuning

	Analog Encoder Calibration
	Introduction to XPS Programming
	TCL Generator
	LabView VIs
	DLL Drivers
	Running Processes in Parallel

	Appendices
	Appendix A: Hardware
	Controller
	Rear Panel Connectors
	Environmental Requirements

	Appendix B: General I/O Description
	Digital I/Os (All GPIO, Inhibit and Trigger In and PCO Connectors)
	Digital Encoder Inputs (Driver Boards & DRV00)
	Digital Servitudes (Driver Boards, DRV00 & Analog EncodersConnectors)
	Analog Encoder Inputs (Analog Encoder Connectors)
	Analog I/O (GPIO2 Connector)

	Appendix C: Power Inhibit Connector
	Appendix D: GPIO Connectors
	GPIO1 Connector
	GPIO2 Connector
	GPIO3 Connector
	GPIO4 Connector

	Appendix E: PCO Connector
	Appendix F: Motor Driver Cards
	DC and Stepper Motor Driver XPS-DRV01
	DC Motor Driver XPS-DRVM
	Three phases AC brushless driver XPS-DRV02
	DC Motor Driver XPS-DRV03
	Pass-Through Board Connector (25-Pin D-Sub) XPS-DRV00

	Appendix G: Analog Encoder Connector
	Appendix H: Trigger IN Connector

	Service Form

