

plFGI

MatLAB Interface
for

PixeLINK FireWire Cameras

User Manual & Technical Guide

Last updated: September, 2002

plFGI User Manual & Technical Guide September 2002

 i

MatLAB Interface
for

PixeLINK FireWire Cameras

User Manual & Technical Guide

M.A.E.Bakker (maarten@panic.et.tudelft.nl)
L.I.Oei (L.I.Oei@its.tudelft.nl)

September, 2002

Copyright © 2002 Czech Technical University in Prague, Czech Republic
M.A.E.Bakker, L.I.Oei

plFGI User Manual & Technical Guide September 2002

 ii

Index

PART I USER MANUAL..1

1 GENERAL INTRODUCTION..1

1.1 SHORT DESCRIPTION OF MATLAB.. 1
1.2 SHORT DESCRIPTION OF THE PIXELINK CAMERA... 1
1.3 SHORT DESCRIPTION OF PLFGI.. 1
1.4 HARDWARE AND SOFTWARE REQUIREMENTS... 2

2 INTRODUCTION TO PLFGI...3

2.1 ABOUT DATA TYPES ... 3
2.2 ABOUT THE CAMERA’S SERIAL NUMBER.. 3
2.3 THE PLFGI FUNCTIONS... 4
2.4 NOTES ON PLGRAB... 8
2.5 NOTES ON PLGET AND PLSET.. 9
2.6 NOTE ON USING HANDLES... 9

3 WORKING WITH PLFGI..10

3.1 GETTING STARTED ... 10
3.2 SOME EXAMPLES.. 10

PART II TECHNICAL GUIDE..12

1 INTRODUCTION TO PLFGI DEVELOPMENT...12

1.1 THE PLFGI DISTRIBUTION PACKAGE.. 12
1.2 BUILDING PLFGI.. 12
1.3 GENERAL NOTES ON PLFGI DEVELOPMENT.. 14

2 TECHNICAL DESCRIPTION OF PLFGI..15

2.1 STRUCTURE DIAGRAM .. 15
2.2 DESCRIPTION OF PLCLOSE .. 16
2.3 DESCRIPTION OF PLGET.. 16
2.4 DESCRIPTION OF PLGRAB ... 16
2.5 DESCRIPTION OF PLISOPEN... 18
2.6 DESCRIPTION OF PLOPEN.. 18
2.7 DESCRIPTION OF PLSET .. 19
2.8 DESCRIPTION OF PLDEVICES ... 20
2.9 DESCRIPTION OF PLCREATEDEVICEHANDLE.. 24
2.10 DESCRIPTION OF PLERROR.. 24
2.11 DESCRIPTION OF PLGETVALUE... 25
2.12 DESCRIPTION OF PLSETVALUE.. 25
2.13 DESCRIPTION OF PLPRINTPOSSIBLEVALUES .. 26
2.14 DESCRIPTION OF PLTYPES .. 26
2.15 GENERAL HINTS ON MODIFYING.. 26

BIBLIOGRAPHY...27

plFGI User Manual & Technical Guide September 2002

 iii

APPENDIX A PARAMETERS IN THE DEVICE’S HANDLE STRUCTURE............28

APPENDIX B PARAMETERS FOR USE WITH GET AND SET29

APPENDIX C SOURCE FILE DEPENDENCIES..31

APPENDIX D TOPICS FOR IMPROVEMENT..32

plFGI User Manual September 2002

 1

PART I USER MANUAL

1 General introduction

This manual describes the Matlab interface ‘plFGI’ for Vitana PixeLINK digital cameras. The
name plFGI stands for ‘PixeLINK Frame Grabber Interface’. In this document you will find
described the functionality of this interface and information about the working conditions.
This document can be used as a reference while working with the interface.

1.1 Short description of Matlab

Matlab is a mathematical program for technical computing. It is used by research institutes
and universities all over the world, mostly to solve problems, which involve matrix and vector
calculations. It can, for example, be used to make analyses and computations on images,
which are stored as matrices. This is the main purpose of the plFGI software. One of the
important features of Matlab is the ability to use external compiled programs from within
Matlab, called MEX-files. The plFGI consists of such external programs. In a windows
environment, the native .dll format is used for MEX-files. Variables are passed between
Matlab and the MEX-files using mxArrays in which all required variables can be stored and
returned.

1.2 Short description of the PixeLINK camera

The PixeLINK PL-A6xx camera series consists of megapixel cameras with a CMOS image
sensor and integrated image processing electronics. The IEEE-1394 ‘FireWire’ interface is
used for communicating with the computer. The cameras are available in both in colour and
black & white versions. Some of the camera models are equipped with a machine vision
connector to connect to external shutters etcetera.

1.3 Short description of plFGI

The plFGI is a simple interface for grabbing images directly from the PixeLINK camera into
a Matlab mxArray. It follows the concept of the existing Data Translation FGI closely.
Several picture formats are supported. Currently, the interface features grabbing an image
from a videostream and changing most settings of the camera. To accomplish this,
functionality of the PixeLINK API library - which is supplied with the camera - is used.

plFGI User Manual September 2002

 2

1.4 Hardware and software requirements

To use this interface, the following is required, newer versions may also work, older versions
probably won’t give good results:

• A Vitana PixeLINK PL-A6xx series camera.
• PixeLINK drivers / API version 3.0
• A PC with at least a Pentium II processor, 64MB of RAM and a IEEE-1394 ‘FireWire’

interface.
• MS Windows 98SE, Windows ME, Windows 2000 SP1 or Windows XP.
• Mathworks Matlab 6.

plFGI User Manual September 2002

 3

2 Introduction to plFGI

In this chapter, some background information and a description of the plFGI functions are
given..

2.1 About data types

The following Matlab data types are used when working with the plFGI:

• string
A vector of which the components are ASCII codes. Used with the plFGI for passing names
of camera parameters to plGet and plSet.

• double
The default data type, used by Matlab to store numbers in the double precision floating point
format. Range from 1.7E-308 to 1.7E+308. Used with the plFGI for passing all variables that
are marked U32, int or double. The (U32) and (int) designations used below in this document
are only used for indicating the allowed range (32 bit unsigned or signed integer) of the
passed variable.

• uint8
8 bit unsigned integer. Used by the plFGI within an mxArray for returning a grabbed image.

• uint16
16 bit unsigned integer. Used by the plFGI within an mxArray for returning a grabbed image.

• struct
An array containing fieldnames (string) and their values (any type). Used by plFGI for the
device handle structure.

• mxArray
The default way of storing arrays of any data type in Matlab. Data is stored in column major
format. Used by the plFGI for returning a grabbed image and for storing the device’s handle
structure.

2.2 About the camera’s serial number

The camera’s serial number is used as a unique identifier for opening and using the camera.
The PixeLINK camera we used for testing the plFGI had as many as 3 different serial
numbers. One serial number on a sticker on the board the image sensor was mounted on (this
number is returned in the HardwareInfo structure, and also used in the PixeLINK application
that comes with the camera). Another serial number is on the board on which the other
electronics of the camera are located. The third serial number is returned when you get the
serial number using the function ‘PimMegaGetSerialNumber’. This last number is the one
we decided to use as ‘official’ serial number, on basis of the PixeLINK documentation
suggesting this. If you don’t know what serial number the camera you want to use has, call
plOpen with a non-existing number to get a listing of the serial numbers of all cameras that
are attached to the computer.

plFGI User Manual September 2002

 4

2.3 The plFGI functions

The plFGI supports the following functions (in alphabetical order):

• plClose closes a PixeLINK camera.
• plGet gets the value of a camera or image processing parameter or the complete

 handle structure of the camera.
• plGrab grabs an image from a PixeLINK camera.
• plIsOpen checks if a PixeLINK camera is already open.
• plOpen opens a PixeLINK camera and return its handle structure or only returns its

 handle if the camera was already open.
• plSet sets the value of a camera or image processing parameter or shows the

 possible parameters or values.

Nota bene: In Matlab, the function names are not case sensitive, although it may be easier to
read back code if cases are used.

Below, descriptions are given of each of the plFGI functions callable from Matlab. For a
description of plDevices, which is used as an internal function, we refer to the technical
documentation. In the descriptions below, prhs[0] is used to indicate the first input parameter,
prhs[1] for the second input parameter, prhs[2] for the third, etcetera. Similarly, plhs[0] is
used to indicate the (first) return value of the MEX-function.

• plClose

DLL name plClose.dll
Syntax plClose(handle) or plClose(serialnumber)
Description plClose closes an open PixeLINK camera device.
Input prhs[0] = (struct) handle of the device, or

 (U32) serial number of the device
Remarks It will be verified whether the input is a valid handle or number. plClose will

then try to close the device. If the device was not open, does not exist or returns
an error code, an error message is printed and plClose exits.

Output No return value, the device is closed and the internal list of open devices is
updated.

Examples plClose(m);
plClose(75122);

plFGI User Manual September 2002

 5

• plGet

DLL name plGet.dll
Syntax plGet(handle), plGet(handle, parametername),

plGet(serialnumber) or plGet(serialnumber, parametername)
Description plGet returns the device’s up-to-date handle if 1 argument is given, or returns

the value of the given parameter if 2 arguments are given.
Input prhs[0] = (struct) handle for the device, or

 (U32) serial number of the device
prhs[1] = (string) name of the parameter (optional)

Remarks It will be verified whether the input is a valid handle or number. plGet will then
try to get the requested parameter. If the parameter is not valid, the device is not
open, does not exist or returns an error code, and error message is printed and
plGet exits.

Output plhs[0] = (struct) handle for the device (with 1 input argument)
plhs[0] = value(s) of the given parameter (with 2 input arguments)

Examples m = plGet(m);
value = plGet(m, ‘Timeout’);
m = plGet(75122);
value = plGet(75122, ‘Timeout’);

• plGrab

DLL name plGrab.dll
Syntax imagematrix = plGrab(handle) or

imagematrix = plGrab(serialnumber)
Description plGrab grabs a frame from the PixeLINK camera device and places it into an

mxArray.
Input prhs[0] = (struct) handle for the device, or

 (U32) serial number of the device
Remarks It will be verified whether the input is a valid handle or number. plGrab will

then try to capture and return an image. If there is not enough free memory, the
device is not open, does not exist or returns an error code, and error message is
printed and plGrab exits.

Output plhs[0] = (mxArray) grabbed frame
Examples im = plGrab(m);

im = plGrab(75122);

plFGI User Manual September 2002

 6

• plIsOpen

DLL name plIsOpen.dll
Syntax plIsOpen(handle) or plIsOpen(serialnumber)
Description plIsOpen checks whether the device has been opened. It returns 0 if the device

has not been opened, and 1 if it has been opened.
Input prhs[0] = (struct) device handle, or

 (U32) serial number of the device
Remarks It will be verified whether the input is a valid handle or number. If the camera

was unplugged from the computer without being closed first, this function will
still show it as being open.

Output plhs[0] = (double) 0 if the camera device is not open
 1 if the camera device is open

Examples boolean = plIsOpen(m);
boolean = plIsOpen(75122);

• plOpen

DLL name plOpen.dll
Syntax handle = plOpen(serialnumber)
Description plOpen opens a PixeLINK camera device and returns the device’s handle. If

there is no camera with the given serial number, a list of available serial
numbers is printed.

Input prhs[0] = (int) serial number of the device to be opened
Remarks It will be verified whether the input is a number. If it is a valid serial number

plOpen will try to open the camera device and return a handle structure. If the
camera is already open, a warning will be printed, and the handle structure will
be returned. If the input was not a number, or the camera could not be opened,
an error message is printed. If there is no camera with the given serial number, a
list of available serial numbers is printed.

Output plhs[0] = (struct) handle for the device
Example m = plOpen(75122);

plFGI User Manual September 2002

 7

• plSet

DLL name plSet.dll
Syntax plSet(handle), plSet(handle, parametername),

plSet(handle, parametername, value),
plSet(serialnumber), plSet(serialnumber, parametername), or
plSet(serialnumber, parametername, value)

Description plSet sets the value of a given parameter. When 1 argument is given a list of all
possible parameters is given. When 2 arguments are given, the possible values
of the given parameter are given. When called with 3 or more arguments, the
device’s parameter given in the second argument will be set to the value(s)
given in the other argument(s).

Input prhs[0] = (struct) handle for the device, or
 (int) serial number of the device
prhs[1] = (string) name of the parameter (optional)
prhs[2...n] = value of the given parameter (optional)

Remarks It will be verified whether the input is a valid handle or number. If it is not, an
error message will be printed. plSet will then try to write the specified
parameter. If the parameter does not exist, the value is out of range under the
given circumstances or if the device returns an error code, an error message is
printed and plSet exits.

Output A list of all possible parameters is printed on the screen (with 1 input argument)
The possible values of the parameter are printed on the screen (with 2 input
arguments)

Examples plSet(m);
plSet(m, ‘Timeout’);
plSet(m, ‘Timeout’, value);
plSet(75122);
plSet(75122, ‘Timeout’);
plSet(75122, ‘Timeout’, 1024);
plSet(m, 'SubWindowSize', 'PCS2112_NO_DECIMATION', 480, 640);

plFGI User Manual September 2002

 8

2.4 Notes on plGrab

The properties of the grabbed image depend on several parameters. For most parameter
settings, a good overview is given in the PixeLINK manuals. Two parameters are not covered
directly by those manuals: GrabColorConversion and GrabOutputType.

The setting of GrabOutputType (default: RAW) determines what image format should be
returned. The following settings are possible:

• RAW returns the image exactly as produced by the camera (row major array, one

position for every pixel). Colour images are returned as a Bayer pattern.
• IMAGE returns an mxArray that is suitable for direct viewing with the Matlab image

command. In case of colour images, the Bayer pattern is first translated into a suitable
RGB format. The conversion method is determined by the setting of
GrabColorConversion.

• RGB24 returns a single column mxArray that is filled according to the standardised
RGB24 format. It can be used for example to save pictures to a file, as many image file
formats are in one way or the other based on this format. In case of colour images, the
Bayer pattern is first translated into a suitable RGB format. The conversion method is
determined by the setting of GrabColorConversion.

The setting of GrabColorConversion (default: BAYER_3BY3_COLOR) determines, in case
of colour images that are returned as IMAGE or RGB24, what method should be used to
convert the Bayer pattern of the camera to a suitable image. Possible values are:

• BAYER_2BY2_COLOR Fastest
• BAYER_3BY3_COLOR Fast—Default
• BAYER_3BY3GGRAD_COLOR Best quality for real-time
• BAYER_2PASSGRAD_COLOR Best for captured images
• BAYER_2PASSADAPT_COLOR Best for captured images
• BAYER_VARGRAD_COLOR Best for captured images
• BAYER_2BY2_MONO Fastest (converts to monochrome)
• BAYER_3BY3_MONO Best quality for real-time (to mono.)
• BAYER_ADAPT_MONO Best for captured images (to mono.)
• BAYER_NO_CONVERSION No Bayer conversion

The captured image is returned in an mxArray. To arrange things in a bit more convenient
way, let’s define ‘Height’ to be (SubWindowSize.Height / SubWindowSize.Decimation) and
define ‘Width’ to be (SubWindowSize.Width / SubWindowSize.Decimation). Then, the
image is returned as described below:

• For RAW images an mxArray of size [Width, Height] filled with uint8 or uint16 is

returned.
Whether the contents of the mxArray consist of uint8 or uint16 depends on the setting of
the DataTransferSize parameter.

• For IMAGE images an mxArray of size [Height, Width, 3] filled with uint8 is returned.
This is true for colour and black & white images, both are returned in the Matlab colour
image format.

• For RGB24 format, an array of size [Height * Width * 3, 1] of uint8 is returned.

plFGI User Manual September 2002

 9

2.5 Notes on plGet and plSet

Care should be taken on the following points:

• Not all combinations of parameter values are valid, for example setting ImagerClocking

to 0x00 (16MHz, no division) while DataTransferSize is set to ‘DATA_16BIT_SIZE’
will result in an error message.

• Some values have a certain granularity, for example setting SubWindowSize.Height to
475 will result in a value of 472 being set.

• Parameter names are case sensitive.
• For a complete list of parameters, refer to Appendix B of this document and to the

PixeLINK documentation.

2.6 Note on using handles

The handle obtained when using plOpen will of course not automatically be updated to reflect
the recent settings of the device. This is not important for the plFGI functions, as they only
use non- settable parameters from the handle. When you want to view the most recent
settings, please use plOpen or plGet to obtain the most recent information. It is even possible
to make use of the construction m = plGet(m); to update the handle to reflect changed
settings, if one wants to.

plFGI User Manual September 2002

 10

3 Working with plFGI

3.1 Getting started

To be able to use plFGI functions, Matlab should be able to find and load the right files. First
make sure the PixeLINK API library file ‘PimMegaApi.dll’ is in a directory that is in the
Windows path. If it is not, the following error message will occur whenever you try to use a
plFGI function:

Unable to load mex file: g:\fgi\bin\plOpen.dll.
The specified module could not be found.

??? Invalid MEX-file

This can be quite confusing, as it doesn’t directly point to the actual cause of the error.

Also, Matlab should be able to find the plFGI executable files. If the plFGI distribution is
stored on the network path Y:\Software\plFGI for example, the following commands should
be typed into the Matlab command window:

system_dependent RemotePathPolicy Reload;
system_dependent RemoteCWDPolicy Reload;
addpath Y:\software\plFGI\bin;

To view black and white RAW images with the Matlab image function, make sure the right
colour map is set by typing:

colormap(gray(255));

When viewing raw images in 16-bit format, it should be taken into consideration that values
of 255 and above will be interpreted as maximum white level by the Matlab image function.
To be able to view the image correctly, use some scaling.

3.2 Some examples

The following example will open a camera having serial number 75122, get the current value
of the gamma correction parameter displaying it on the screen, set the gamma correction
parameter, then get the new value of the gamma correction parameter displaying it on the
screen, then close the camera. To have the parameter not display on the screen, just put a ;
behind the plGet lines.

m = plOpen(75122);
g = plGet(m, 'Gamma')
plSet(m, 'Gamma', 0.65);
g = plGet(m, 'Gamma')
plClose(m);

plFGI User Manual September 2002

 11

The following example will open a (black & white) camera having serial number 75122, grab
an image using the default settings (480 rows, 640 columns, 8-bit raw image), display it and
then close the camera.

m = plOpen(75122);
im = plGrab(m);
colormap(gray(255));
image(im');
plClose(m);

The following example will open a (colour) camera having serial number 98765, set the
image size to 200 rows, 320 columns, decimation factor 2, set the GrabOutputType, set the
GrabColorConversion and capture an image. Then it will set the GrabColorconversion to
another value and capture another image. It will then close the camera, display the first image,
wait for a key to be pressed, then display the second image.

m = plOpen(98765);
plSet(m, 'SubWindowSize', 'PCS2112_DECIMATE_BY_2', 200, 320);
plSet(m, 'GrabOutputType', 'IMAGE');
plSet(m, 'GrabColorConversion', 'BAYER_VARGRAD_COLOR');
im = plGrab(m);
plSet(m, 'GrabColorConversion', 'BAYER_ADAPT_MONO');
im2 = plGrab(m);
plClose(m);
image(im);
waitforbuttonpress;
image(im2);

The following example will capture 100 images and display them on the screen one after the
other as in a movie. It is presumed that the camera is already open with handle h, that all
parameters are set correctly and that it will be closed later. Note: the tic and toc Matlab
functions can be used to measure the average frame rate. To measure the pure grabbing speed
without the time Matlab needs to display the image, just leave out the line with image(i');

for im=1:100
im = plgrab(m);
image(im');

end

plFGI Technical Guide September 2002

 12

PART II TECHNICAL GUIDE

1 Introduction to plFGI development

1.1 The plFGI distribution package

The plFGI distribution package currently consists of 3 folders:

/bin contains all .dll and .m executable files
/doc contains all documentation
/src contains the source code and project files used for building the plFGI

In every folder and subfolder, a readme.txt file is present, in which all files that should be in
the folder are listed, along with the purpose they are for.

1.2 Building plFGI

plFGI was built using the Microsoft Visual C++ 6.0 Integrated Development Environment.
Every MEX-function has its own subfolder, containing the necessary files for building it.
Double click on the appropriate workspace file (.dsw) to open the project. All relevant header
and source files (see Appendix C for an overview of the dependencies) are included in the
workspace. Before opening the project, you may want to check the pathnames used in the
various project configuration files, or just place all files in the same folders as used during
development:

G:\NewFGI\src\ plFGI source files and project folders
Y:\software\framegrag\pixelink\api\ PixeLINK libraries
Y:\soft95\matlab6\extern\lib\win32\microsoft\msvc60\ Matlab libraries

At some point, you may want to create a new project, below is the procedure that was used to
create plFGI:

• Create a new DLL project (File → New → Projects → Win32 Dynamic-Link Library →

A DLL that exports some symbols)
• Throw away StdAfx.cpp, StdAfx.h and Projectname.h
• Disable precompiled headers (Project → Settings → C/C++ → Category Precompiled

Headers → Not using precompiled headers)
• Link the necessary libraries (Project → Settings → Link → Category General →

Object/library modules):
- Y:\soft95\matlab6\extern\lib\win32\microsoft\msvc60\libmex.lib
- Y:\soft95\matlab6\extern\lib\win32\microsoft\msvc60\libmx.lib
- Y:\software\framegrag\pixelink\api\pimmegaapi.lib

• Export the mexFunction (Project → Settings → Link → Category General → Project
Options): /export:mexFunction

• Implement Projectname.cpp, starting with the following template:

plFGI Technical Guide September 2002

 13

#define WIN32_LEAN_AND_MEAN
/* This excludes rarely-used stuff from Windows headers. We don’t
 * know what that means exactly, but it is generated by MS Visual C++
 * when you create a project and we just copied it.
 */

#include <windows.h>

#include "Y:\soft95\matlab6\extern\include\mex.h"
/* with Y:\soft95\matlab6\extern\lib\win32\microsoft\msvc60\libmx.lib
 * and Y:\soft95\matlab6\extern\lib\win32\microsoft\msvc60\libmex.lib
 */

#include "Y:\software\framegrag\pixelink\api\pimmegaapiuser.h"
/* with Y:\software\framegrag\pixelink\api\pimmegaapi.lib */

#ifdef __cplusplus
 extern "C" {
#endif

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 /* implement the MEX function here */
}

#ifdef __cplusplus
 } /* extern "C" */
#endif

Code example 1 Template for a plFGI MEX-function

The libraries of Matlab version 6.1 and the PixeLINK Camera API Release 3.0 were used for
the development of the plFGI.

plFGI Technical Guide September 2002

 14

1.3 General notes on plFGI development

The MEX-files are implemented as C++ files (instead of C), because the PixeLINK Camera
API is implemented in C++ and it uses language constructions, which cannot be used with C
files. With the extern "C" command, the mexFunction is exported as a C function, so it will
be possible to call the function from within Matlab, just like normal C MEX-files.

The PixeLINK dll is load-time linked. This means that when the MEX-file is loaded into
memory, the PixeLINK dll is loaded at the same time. Therefore, to use the MEX-files, it is
necessary that the file ‘PimMegaApi.dll’ is in the Windows-path (not the Matlab-path).
Otherwise Matlab will give an error-message like:

Unable to load mex file: g:\fgi\bin\plOpen.dll.
The specified module could not be found.

??? Invalid MEX-file

This can be quite confusing, as it doesn’t directly point to the actual cause of the error.

1.4 Testing

During development, frequent testing helped to find bugs in plFGI. After the program reached
a stable working state, a few other tests were run in the limited time that was still available.

On suggestion of Assistant Professor Smutný, it was tested how much time the capturing of
multiple frames takes. This could possibly be used as an indication of the quality of the code
(memory leaks and resources that are not released would have become apparent this way).
Also, the performance of the code, the PixeLINK API and the PixeLINK camera could be
verified.

First, some basic tests were performed, showing that capturing the images resulted in a frame
rate a bit lower than that of the demo application, but that could be contributed to the
overhead of calling functions from Matlab, and the lack of loop optimalisation in plFGI.
When testing different resolutions, the effect on overall capturing speed of the camera itself
became apparent: reducing the number of columns in the picture did not affect the capture
time very much, as the camera scans row by row. Reducing the number of rows reduced the
time needed for capturing accordingly. As a last experiment, the exposure time was variated.
Strangely enough, capturing 100 images would take less time than 100 times the exposure
time.

As there was not much time to take a closer look at these tests and do some more advanced
testing, this might be a good subject for future examination.

In Appendix E, the test results are included.

plFGI Technical Guide September 2002

 15

2 Technical description of plFGI

This chapter describes the implementation of the plFGI, the structure of which is similar to
the original FGI system for the DataTranslation frame grabbers. The system is composed of
several MEX-functions, which are callable from Matlab. It supports functionality to open and
close a device, check whether a device is opened, get and set a number of parameters and grab
an image from the camera. This chapter starts with an overview of the structure of the plFGI,
after that follow descriptions of the individual source files. For a functional specification from
the user’s point of view, please refer to the first section of this document.

2.1 Structure diagram

The system is composed of several functions (plIsOpen, plGrab, plGet, plOpen, plClose and
plSet), which can be called from Matlab. These functions call the appropriate functions from
the PixeLINK Camera Application Programming Interface (API). plDevices maintains the
‘open device array’, in which the device ID’s (handles to open devices) are stored. In the
diagram below, the relations between the internal and external plFGI functions are shown. An
arrow indicates that a function is called by another function. The ↔ arrow between plDevices
and the open device array means that data is exchanged in two directions.

Figure 1 Structure of plFGI

plDevices
open

device
array

PixeLINK Camera Application Programming Interface

plOpen plGrab plClose plIsOpen plSet

plSetValue

plPrintPossible
Values

plGet

plGetValue

plError

plCreateDevice
Handle

plFGI Technical Guide September 2002

 16

2.2 Description of plClose

plClose is the MEX-function which takes care of closing an opened PixeLINK device. First it
is tested whether one and only one argument was given, using ‘if (nrhs == 1)’. If not, the else
part is executed, printing an error message with mexPrintf and exiting with mexErrMsgTxt. If
the argument is a device handle structure, the device’s serial number is extracted from it. If
the argument is a number, this is treated as the serial number. If the argument is something
else, again an error message will be shown and the function will exit.

Now, it can be assumed that a serial number is present. It is checked whether the device is
registered as open, with a call to plDevices. If it is not open, the else-part of the ‘if (isOpen)’-
construction is executed and the function terminates with an error message. If it is open, again
a call to plDevices is made, this time to obtain the PixeLINK API’s device-ID. Then the
PixeLINK API function ‘pimMegaUninitialize’ is made to close the device. When an error
occurs closing the device, the standard error handling code in plError returns a non-false
value and the plClose function exits. If all went well, the device should now be closed and a
call to plDevices is made, to update the list of open devices.

2.3 Description of plGet

plGet is the MEX-function which is used for obtaining the value of a parameter, a set of
parameters, or a complete device handle for a PixeLINK device. First, it is tested whether 1 or
2 arguments were given. If not, the else part of the check is executed, resulting in an error
message and the termination of plGet by using the Matlab call mexErrMsgTxt. The first
argument is either a serial number, or a device handle structure. If it is a double, it is stored in
the serialNumber variable. If it is a struct containing a field with the name ‘SerialNumber’,
the value of this field is stored in the serialNumber variable (without further checking). If the
first argument is another data type, an error message is given and plGet is terminated.

After the serial number has been obtained, it is checked whether the device is open by calling
plDevices. If not, an error message is given and plGet is terminated. If the device is open, it is
determined whether one or two arguments were given when calling plGet. If only one
argument was given, a call to the plCreateDeviceHandle subroutine is made and the result of
that is returned. If two arguments were given, it is checked whether the second argument is a
string. If it is not, an error message is given and plGet is terminated. If it is, the name of the
parameter is copied into a string variable and the subroutine plGetValue is called and the
result of that is returned.

2.4 Description of plGrab

plGrab is the MEX-function that grabs a frame from the PixeLINK device and takes care of
the required postprocessing before delivering it to Matlab. Currently only one calling syntax
is supported, so it is checked whether there is exactly one input argument and one output
argument. If not, the else part of the check is executed, resulting in an error message and the
termination of plGrab by using the Matlab call mexErrMsgTxt. The input argument is either a
serial number, or a device handle structure. If it is a double, it is stored in the serialNumber
variable. If it is a struct containing a field with the name ‘SerialNumber’, the value of this
field is stored in the serialNumber variable (without further checking). If the first argument is
another data type, an error message is given and plGrab is terminated.

plFGI Technical Guide September 2002

 17

The serial number is now used to obtain a PixeLINK API device ID by calling plDevices.
Using PimMegaStartVideoStream, the video stream is opened. Behind every call to a
PixeLINK API function, plError is used to check for an error. If an error occurs while the
videostream is supposed to be active, PimMegaStopVideoStream is called before terminating.

Now, it is checked whether the camera is in ‘video mode’, if it is not, a warning is printed to
the screen and the camera is set to video mode. Video mode is used because still mode
requires special lighting conditions or a shutter to control the exposure time1. After this the
program gets some camera parameters and settings:

• Get imagerType (colour or monochrome)
• Get dataTransferSize (8 bit or 16 bit format)
• Get decimation, width and height of the current subwindow2
• Calculate pixelWidth, pixelHeight according to the rules in the PixeLINK Megapixel

FireWire Camera Developer’s Manual3
• Get GrabColorConversion and GrabOutputType parameters using plDevices

Using the above parameters, 3 arrays must set up:

• The capture array, in which the PixeLINK API stores the raw image returned by the

camera. This array has the same number of elements (either 8 or 16 bit unsigned integers)
as the image has pixels (pixelWidth * pixelHeight) and is arranged as an mxArray of
[pixelWidth, pixelHeight].

• The matlab array, which is returned to Matlab. In case of a RAW image, this array has the
same size and arrangement as the capture array. In case of a ‘Matlab IMAGE’, it is an
array of unsigned 8 bit integers three times the size of (pixelWidth * pixelHeight). It is
arranged as an mxArray of [pixelHeight, pixelWidth, 3]; In memory, this means that 3
column-major arrays of [pixelHeight, pixelWidth] are stored consecutively (like this:
RRR....GGG....BBB....). In case of an RGB24 image, an array of size [Height * Width *
3, 1] of uint8 is returned.

• The RGB24 array is used as an intermediate array to store the result of PimMegaConvert
in case of a non-RAW image, before it is converted to fit into the matlab array. Its size is
always (3 * pixelWidth * pixelHeight) and it is arranged as a normal C-type row-major
array (like this: RGBRGBRGB....).

First, a distinction between the various ‘GrabOutputType’ settings is made, using a case
construction. The size and dim variables are set to the required size and dimensions of the
matlab array. After that, the sizes of the capture array and the RGB24 array are defined. A
case construction is used to allocate memory for the matlab and capture arrays, differentiating
between 8 and 16 bits data size. After this, it is checked whether an error occurred, if so the
program is terminated. If everything went all right, the pointer to the matlab array is set.
When needed, memory is allocated for the RGB24 array.

Now, the image is captured by making a call to PimMegaReturnVideoData and the
videostream is closed using PimMegaStopVideoStream.

For postprocessing, two possibilities are distinguished using an if/else construction.

• The first possibility occurs in case of a RAW image: An 8 bit RAW image is copied into

the matlab array using memcpy, a 16 bit RAW image is converted to have all 10

1 [Vitana, 2002-1], §1.5.5
2 [Vitana, 2002-1], p.92, ‘PimMegaSetSubWindow’
3 [Vitana, 2002-1], p.92, ‘PimMegaSetSubWindow’

plFGI Technical Guide September 2002

 18

significant bits in the right order, according to to the PixeLINK Megapixel FireWire
Camera User’s Manual4: The 2 most significant bits of the first byte, are shifted to be the
2 least significant bits. The second byte is shifted 2 bits to the left (multiplied by 4), then
the two bytes are added (equivalent to a logical ‘and’ operation).

• The second possibility occurs in case of an IMAGE or RGB24 output format. Depending
on 8 versus 16 bits and black/white versus colour, one of the PimMegaConvert* functions
is called to convert the captured image to a 24 bits per pixel image. For colour images, the
GrabColorConversion parameter is used to determine the algorithm to be used by the
PimMegaConvert* function. The result of PimMegaConvert* is stored into the RGB24
array. If the GrabOutputType is set to RGB24, the RGB24 array is directly copied into the
matlab array, using memcpy. In case of an IMAGE type, however, the RGB24 array must
be transposed in order for Matlab to display it properly. This is done using two nested for
loops. Within the for loops the bytes for R, G and B are copied to the appropriate
locations in the matlab array.

All above mentioned case and if constructions contain a default case resulting in an
appropriate error message when the distinguishing variable is not recognised.

• Suggestions for improvement:

o Implementation of the 5 other ways to call plGrab:
- moviematrix = plGrab(handle, imgmatrix)
- [imgmatrix, moviematrix] = plGrab(handle)
- plGrab(handle, imgmatrix)
- plGrab(handle, imgmatrix, moviematrix)
- plGrab(handle, imgmatrix, moviematrix, scaling factor)

o Addition of RGB48 format for 16-bit captures
o Testing the plGrab function with a colour camera (this should work)
o Loop optimalisations
o Capture a RAW image directly into the matlab array.

2.5 Description of plIsOpen

plIsOpen is the MEX-function for checking if certain PixeLINK device is open.

First, it is tested whether only 1 argument was given. If not, the else part of the check is
executed, resulting in an error message and the termination of plIsOpen by using the Matlab
call mexErrMsgTxt. The argument is either a serial number, or a device handle structure. If it
is a double, it is stored in the serialNumber variable. If it is a struct containing a field with the
name ‘SerialNumber’, the value of this field is stored in the serialNumber variable (without
further checking). If the first argument is another data type, an error message is given and
plGet is terminated.

After the serial number has been obtained, it is checked whether the device is open by calling
plDevices. The result of the call to plDevices is stored in the return array of plIsOpen.

2.6 Description of plOpen

plOpen is the MEX-function which takes care of opening a PixeLINK device for use with the
other plFGI functions. First it is tested whether the input argument is a number, if it is not, the
function terminates printing an appropriate error message using mexErrMsgTxt. Then it is

4 [Vitana 2002-2], Appendix C

plFGI Technical Guide September 2002

 19

checked whether the device is open by calling plDevices. If the device is already open, the
else-part of the if-construction is executed printing a warning message, then calling
plCreateDeviceHandle and returning the handle.

If the device was not open, a call to PimMegaGetNumberDevices is made to get the amount
of available devices. When no devices are attached, plOpen exits with an appropriate error
message. When one or more devices are attached, a for loop is entered to open every device,
store the serial number in the array of available serial numbers, check if the serial number
matches the requested serial number, then close it and loop. If the serial number matches the
requested serial number, the variable found is set to true and the loop is exited by using a
break statement.

If found is not true, the array containing all available serial numbers is printed to the screen
and the function is terminated using mexErrMsgTxt.

Finally, the open device array is updated by calling plDevices.

• Suggestions for improvement: Use plError after the call to PimMegaGetNumberDevices

instead of non standard error code.

2.7 Description of plSet

plSet is the MEX-function used to change the parameter settings of a PixeLINK device. First,
it is checked whether any arguments are given, if not, an appropriate error message is printed
to the screen using mexPrintf, and the plSet is terminated using mexErrMsgTxt.

If one or more arguments were given, the first argument should be either a handle structure or
a serial number. If it is a double, it is stored in the serialNumber variable. If it is a struct
containing a field with the name ‘SerialNumber’, the value of this field is stored in the
serialNumber variable (without further checking). If the first argument is another data type, an
error message is given and plGet is terminated. After the serial number has been obtained, it is
checked whether the device is open by calling plDevices. If not, an error message is given and
plGet is terminated.

If only one argument was given, a list of parameter names is printed on the screen and plSet
terminates. If a second argument was given, it is checked whether this is a string. If not plSet
is terminated with an appropriate error message. If it is a string, it is stored in the
parametername variable. Depending on whether 2 or 3 arguments were given,
plPrintPossibleValues is called (2 parameters), or plSetValue is called (3 arguments).

• Suggestions for improvement:

o Implementation of PimMegaSetOverlayCallBack
o Implementation of PimMegaSetPreviewWindow
o Implementation of PimMegaAutoExposure

plFGI Technical Guide September 2002

 20

2.8 Description of plDevices

plDevices is a MEX-function, just like the 6 functions described above. However, it only
contains plFGI internal functionality and should not be called by the user. It is used to keep
track of open devices. This is its functional specification:

DLL name plDevices.dll
Syntax mexCallMATLAB(nlhs, *plhs[], nrhs, *prhs[], "plDevices");
Description plDevices maintains the ‘open device array’, in which the device ID’s (handles

to open devices) are stored. Also some settings, which are not stored in the
PixeLINK Camera API itself, are stored in plDevices.

Input prhs[0] = (string) name of task to be performed: print, remove, isopen, get,
 add, getpar, setpar
prhs[1] = (U32) serial number of device; Only for remove, isopen, get, add,
 getpar, setpar
prhs[2] = (int) deviceID; Only for add
 (string) name of the parameter; Only for getpar, setpar
prhs[3] = value of the parameter; Only for setpar

Output plhs[0] = (double) 1 if device open, 0 if closed; Only for isopen
 (int) deviceID if open, -1 if closed; Only for get
 parameter value, -1 if not found; Only for getpar

plDevices is implemented as a MEX-function, because of two reasons. First this makes it
possible to use the function mexLock() to keep the file in memory, even after typing ‘clear
all’ or ‘clear mex’. This also eliminates the need of having to do the memory management
ourselves. The other reason is that, for testing purposes, it is convenient to be able to call
plDevices directly from Matlab. The users of the plFGI, however, should not use this feature.

The open device array

plDevices maintains the ‘open device array’. This is an array of structures of type:

struct {U32 serialNumber;
int deviceID;
U32 grabColorConversion;
int grabOutputType;}

In this global array of structs the device ID (handle to the device) and the parameters
GrabColorConversion and GrabOutputType are stored for every open device. The serial
number of the device is used to uniquely identify the device. This is the number returned by
PimMegaGetSerialNumber, which is called by plOpen immediately after initialising the
device.

The workings of plDevices

For every open device the following information is stored in the open device array described
above: The device’s serial number, the device’s ID which is used by the PixeLINK API to
identify the device, the GrabColorConversion parameter and the GrabOutputType parameter.
Another global variable, deviceCount, is incremented every time a device is opened and
decremented every time a device is closed, thus counting the number of open devices.

First mexLock is called, to make sure plDevices (containing the open device array) stays in
memory. Then it is checked whether any arguments are given and if the first argument is a

plFGI Technical Guide September 2002

 21

text string. If not, the error message in the else part of the check is displayed and plDevices
terminates. If it is, the first argument is stored in the task variable. If there is a second
argument, it should always be the serial number of a device. If it is not a number, plDevices is
terminated with an error message.

A case construction is used to make a first selection between the different tasks based on the
number of arguments given. For every number of arguments from 1 to 4, a different case
exists; the default case gives an error message. Inside a case, the different tasks are selected
using an if/else if construction together with strcmp. When the strcmp fails, an appropriate
error message is given and plDevices terminates.

Although plDevices is not meant to be called directly from Matlab, in the next part the
syntaxes and examples are written down as if it were, because this way it is easier to denote
and understand the usage of the left-hand and right-hand side arguments.

• 1 argument

print

Syntax plDevices(‘print’)
Description prints a list of open devices, with SerialNumber, DeviceID,

GrabColorConversion and GrabOutputType.
Input prhs[0] = (string) ‘print’
Output None
Example plDevices(‘print’)

This task is mainly intended for testing and debugging purposes: It prints all entries of the
open device array to the screen, one device per line, by using a for-loop (for i = 0 to
deviceCount - 1).

• 2 arguments

remove

Syntax plDevices(‘remove’, serialnumber)
Description removes a device from the ‘open device array’.
Input prhs[0] = (string) ‘remove’

prhs[1] = (U32) serialnumber
Output None
Example plDevices(‘remove’, 75122)

This task removes a device from the open device list. Using a for-loop (for i = 0 to
deviceCount - 1), the given serial number is compared to every serial number in the open
device array. As soon as a matching entry is found, a new for-loop is entered (for t = <number
of matching entry> to deviceCount - 1) to overwrite every entry, from the matching entry up
to the last entry, with the entry immediately following it (this goes wrong if the last entry is
31; see ‘Suggestions for improvement’). After the inner for-loop finishes, deviceCount is
decremented.

plFGI Technical Guide September 2002

 22

isopen

Syntax plDevices(‘isopen’, serialnumber)
Description checks whether a device has been opened.
Input prhs[0] = (string) ‘isopen’

prhs[1] = (U32) serialnumber
Output plhs[0] = (double) 1 if the device is open

 0 if the device is closed
Example plDevices(‘isopen’, 75122)

This task returns 0 if the device is not open, 1 if it is open. First the return value is set to 0,
then a for-loop (for i = 0 to deviceCount - 1) is entered. The given serial number is compared
to every serial number in the open device array. As soon as a matching entry is found, the
return value is set to 1, and the loop is left using a break statement.

get

Syntax deviceId = plDevices(‘get’, serialnumber)
Description returns the device ID (handle to the device) of a camera..
Input prhs[0] = (string) ‘get’

prhs[1] = (U32) serialnumber
Output plhs[0] = (int) deviceID if the device is open

 -1 if the device is closed
Example plDevices(‘remove’, 75122)

This task returns the device ID for a given serial number. It works the same way as isopen,
except that the return value is set to -1, and as soon as a matching entry is found, the return
value is set to the appropriate device ID.

• 3 arguments

add

Syntax plDevices(‘add’, serialnumber, deviceID)
Description adds a device to the ‘open device array’.
Input prhs[0] = (string) ‘add’

prhs[1] = (U32) serialnumber
prhs[2] = (int) deviceID

Output None
Example plDevices(‘add’, 75122, 256085040)

This task adds a new device to the open device array. First, it is checked whether there is still
room in the array to store the information of one more open device. If the array is full, an
error message is printed and plDevices is terminated. If there still is room, the entry after the
last entry of the open device array (index: deviceCount, because array indexing starts at
deviceCount - 1) is filled with the device ID given in the third argument, and suitable default
values for the parameters. After that, deviceCount is incremented.

plFGI Technical Guide September 2002

 23

getpar

Syntax parameterValue = plDevices(‘getpar’, serialnumber,

parametername)
Description returns the value of the specified parameter.
Input prhs[0] = (string) ‘getpar’

prhs[1] = (U32) serialnumber
prhs[2] = (string) parametername

Output plhs[0] = value of the specified parameter
Example parameterValue = plDevices(‘getpar’, 75122,

‘GrabOutputType’)

This task reads the value of the given device parameter from the open device array. First, the
third argument, which should be a string with the name of the requested parameter, is loaded
into the parName variable. Then the return value (which should be a double) is initialised. It is
determined which parameter should be returned by using strcmp in an if/then/else if/else
construction. The procedure is the same for every parameter: A temporary boolean variable t
is used to indicate whether a matching serial number was not found. It is set to 1, then a (for i
= 0 to deviceCount - 1) loop is entered. As soon as a matching serial number is found, the
requested parameter is stored as return value, t is set to 0, and the for loop is terminated using
a break statement. Finally, if t still has value 1, an error message is printed stating that the
requested serial number could not be found.

• 4 arguments

setpar

Syntax plDevices(‘setpar’, serialnumber, parametername,

parametervalue)
Description sets the value of the specified parameter.
Input prhs[0] = (string) ‘setpar’

prhs[1] = (U32) serialnumber
prhs[2] = (string) parametername
prhs[3] = value of the specified parameter

Output None
Example plDevices(‘setpar’, 75122, ‘GrabOutputType’, RAW)

(in which case RAW is defined as 0x0)

This task writes the given value of the given device parameter in the open device array. Its
internal structure is almost the same as that of getpar, but the parameter value is written, not
read.

• Suggestions for improvement: In ‘remove’, the inner for loop tries to copy one entry more

than needed. When having 32 camera’s open, this could result in a segfault. The inner
loop for condition should be: (t = i; t < deviceCount - 1; t++)

plFGI Technical Guide September 2002

 24

2.9 Description of plCreateDeviceHandle

plCreateDeviceHandle is a subroutine which is linked to the plOpen and plGet MEX-
functions. When given the serial number of a PixeLINK device, it will create a Matlab struct
matrix containing all the device’s parameter names with their respective values. This is the
so-called handle structure, which is returned by plOpen and plGet.

After declaration of the necessary variables and structures, the device-ID for calling the
PixeLINK API functions is obtained by calling plDevices. Then, for every parameter, the
appropriate API call is made to obtain its value. If the API call returns the value for
unsupported function, the string ‘Unsupported’ is stored as parameter value. If the API returns
any other error code, the string ‘Could not get value’ is stored as parameter value. No other
error checking is being done. If everything went okay, the value of the requested parameter is
stored in a temporary variable by the PixeLINK API and immediately after that it is stored
into the handle structure using mxSetField.

The only exception to this are the parameters ‘GrabColorConversion’ and ‘GrabOutputType’,
which are not stored in the PixeLINK API, but in plDevices. They are obtained in a similar
way to the device-ID by calling plDevices using mexCallMatlab.

• Suggestions for improvement: Convert some of the if-constructions to switch

constructions (for example the one used for SubWindowSize).

2.10 Description of plError

plError is an error-checking function which is linked to every MEX-function that uses
PixeLINK API calls. It is called after every call to such an API function. Required inputs are
the PixeLINK API return-code returned by the called API function and a string describing in
max. 33 characters what the program was doing when the possible error occurred.

First, the string input of the plError function is used to create an error message ‘The device's
API encountered a problem while <string>:’. When the PixeLINK API return code (which is
defined in PimMegaApiUser.h) indicates an error, this string is printed on the screen.

After that, a case construction is used to determine the nature of the PixeLINK API return
code. When everything is okay, plError returns a value of 0 (false). When an error occurred,
plError prints an appropriate descriptive message on the screen using mexPrintf and returns a
non-zero value (true). To make it possible to distinguish between critical and non-critical
errors, a value of 1 is returned on an error that might not be critical. A value of 2 is returned
on errors that are always considered critical. Where appropriate, the program can decide on
this information to continue or to terminate.

• Suggestions for improvement: The entire building of the string used in ‘The device’s API

encountered...’ can be moved within the following ‘if (result != ApiSucces)’ condition.

plFGI Technical Guide September 2002

 25

2.11 Description of plGetValue

plGetValue is a subroutine which is linked to the plGet MEX-function. When given an
mxArray for returning the parameter value, the device’s serial number and the name of the
parameter to be returned, it will return the parameter’s value or values in the given mxArray.

plGetValue is very similar to plCreateDeviceHandle. The most important difference is that
not all possible parameters of the device are obtained, but only the parameter or structure of
which the name was given. This is accomplished by using an if/elseif construction together
with multiple strcmp statements. An obvious difference is that the mxArray m can differ in
size according to the parameter that is stored in it.

When an unknown parameter name is given, plGetValue prints a list of known parameter
names to the screen.

2.12 Description of plSetValue

plSetValue is a subroutine linked to the plSet MEX-function. It needs 4 or more input
arguments: the serial number of the device, the name of the parameter to be set, the number of
values that are passed, all values that are needed to set the parameter.

First, the serial number is used to obtain the PixeLINK device-ID by calling plDevices. For
every parameter name, it is checked using an if/strcmp construction whether the right number
and type of values are given. If not, a descriptive error message is printed and plSetValue is
terminated using a call to mexErrMsgTxt.

After this, another if/elseif/strcmp construction is used to distinguish between the different
parameter names. For every parameter name, the passed values are copied into a variable,
parsed if necessary and a call is made to the relevant PimMegaSet* function. For the
‘GrabColorConversion’ and the ‘GrabOutputType’ parameters, a call is made to plDevices as
these are stored there instead of in the PixeLINK API.

• Errors found in the PixeLINK API documentation:

[Vitana 2002-1], p.92, ‘PimMegaSetSubWindow’

(uStartColumn + uNumberColumns) must be less than PCS2112_MAX_WIDTH.
(uStartRow + uNumberRows) must be less than PCS2112_MAX_HEIGHT.

‘less than’ should be ‘less than or equal to’.

--

[Vitana 2002-1], p.94, ‘PimMegaSetSubWindowPos’

(uStartColumn + current number of columns) must be less than PCS2112_MAX_WIDTH.
(uStartRow + current number of rows) must be less than PCS2112_MAX_HEIGHT.

‘less than’ should be ‘less than or equal to’.

--

plFGI Technical Guide September 2002

 26

[Vitana 2002-1], p.95, ‘PimMegaSetSubWindowSize’

(Current start column + Width) must be less than PCS2112_MAX_WIDTH.
(Current start row + Height) must be less than PCS2112_MAX_HEIGHT.

‘less than’ should be ‘less than or equal to’.

2.13 Description of plPrintPossibleValues

plPrintPossibleValues is a subroutine linked to the plGet and plSet MEX-functions. When
given the name (string) of a parameter, it will use strcmp in an if/else if construction to
determine what should be printed. Then a short description of the given parametername and
its possible values is printed to the screen using mexPrintf.

2.14 Description of plTypes

plTypes.h contains all definitions that are used by the plFGI program. Currently, the only
values that are defined here are those used to store the ‘GrabOutputType’ variable.

2.15 General hints on modifying

• When adding or removing a device parameter, this should be done in the obvious places

in the following files: plCreateDeviceHandle.cpp, plGetValue.cpp,
plPrintPossibleValues.cpp, plSetValue.cpp and plSet.cpp. Also the ‘nof’ variable and the
‘fieldnames’ structure in plCreateDeviceHandle should be updated accordingly. Please
also don’t forget to update the parameter overview in plGetValue.

plFGI Technical Guide September 2002

 27

Bibliography

[Vitana, 2002-1] VITANA CORPORATION (2000-2002). PixeLINK Megapixel FireWire

Camera Developer’s Manual, Release 3.0 (online version). Vitana
Corporation, Ottawa, Ontario, Canada.

[Vitana, 2002-2] VITANA CORPORATION (2000-2002). PixeLINK Megapixel FireWire
Camera User’s Manual, Release 3.0 (online version). Vitana
Corporation, Ottawa, Ontario, Canada.

plFGI Technical Guide September 2002

 28

Appendix A Parameters in the device’s handle structure

DeviceID
BlueGain
CurrentFrameRate
DataTransferSize
Exposure
ExposureTime
Gamma
Gpo
GreenGain
HardwareVersion.ProductID
HardwareVersion.SerialNumber
HardwareVersion.FirmwareVersion
HardwareVersion.FpgaVersion
ImagerChipId
ImagerClocking
ImagerName
ImagerType
MonoGain
PreviewWindowPos.Top
PreviewWindowPos.Left
PreviewWindowSize.Height
PreviewWindowSize.Width
RedGain
Saturation
SerialNumber
SoftwareVersion
SubWindow.Decimation
SubWindow.StartRow
SubWindow.StartColumn
SubWindow.NumberRows
SubWindow.NumberColumns
SubWindowPos.StartRow
SubWindowPos.StartColumn
SubWindowSize.Decimation
SubWindowSize.Height
SubWindowSize.Width
Timeout
VideoMode
GrabColorConversion
GrabOutputType

Table 1 A list of all parameters that are present in the handle structure of the device

plFGI Technical Guide September 2002

 29

Appendix B Parameters for use with get and set

availability Parameter name Type Range Default Granu
larity get set

BlueGain U32 0 .. 63 31 1 + +
CurrentFrameRate FLOAT - - + -
DataTransferSize STRING DATA_8BIT_SIZE,

DATA_16BIT_SIZE
8BIT - + +

Exposure U32 0 .. 2046 2046 + +
ExposureTime Time

ChangeClockSpeed
FLOAT
STRING

TRUE, FALSE

FALSE

-

+
-

+
+

Gamma FLOAT 0 .. 1 1 + +
Gpo U32 0, 1 0 1 + +
GreenGain U32 0 .. 63 31 1 + +
HardwareVersion ProductID

SerialNumber
 FirmwareVersion

 FpgaVersion

STRING

STRING

STRING

STRING

-
-
-
-

-
-
-
-

-
-
-
-

+
+
+
+

-
-
-
-

ImagerChipId U32 - - - + -
ImagerClocking STRING 0x00, 0x01, 0x02,

0x80, 0x81,0x82
0x00 - + +

ImagerName STRING - ImagerX - + +
ImagerType STRING PCS2112M_IMAGER,

PCS2112C_IMAGER
- - + -

MonoGain U32 0 .. 63 31 1 + +
OverlayCallBack - - - - - N/I5
PreviewColorConversion STRING (see table 3) (table 3) - - +
PreviewWindow - - - - - N/I
PreviewWindowPos Top

Left
LONG
LONG

 200
200

 +
+

-
-

PreviewWindowSize Height
Width

U32
U32

0 .. 1024
0 .. 1280

 8
8

+
+

-
-

RedGain U32 0 .. 63 31 1 + +
Saturation U32 96 + +
SerialNumber U32 - - - + -
SoftwareVersion U32 - - - + -
SubWindow Decimation

StartRow
StartColumn

NumberRows
NumberColumns

STRING
U32
U32
U32
U32

(see table 4)

0 .. 1024
0 .. 1280

(table 4)
0
0

480
640

-

8
8

+
+
+
+
+

+
+
+
+
+

SubWindowPos StartRow
 StartColumn

U32
U32

 0
0

 + +

SubWindowSize Decimation
Height
Width

STRING
U32
U32

(see table 4) (table 4)
480
640

-
8
8

+ +

Timeout U32 1000 + +
VideoMode STRING STILL_MODE,

VIDEO_MODE
VIDEO - + +

GrabColorConversion STRING (see table 3) (table 3) - + +

5 N/I means ‘Not Implemented’

plFGI Technical Guide September 2002

 30

GrabOutputType STRING RAW, IMAGE, RGB24 RAW - + +

Table 2

BAYER_2BY2_COLOR Fastest
BAYER_3BY3_COLOR Fast – Default
BAYER_3BY3GGRAD_COLOR Best quality for real-time
BAYER_2PASSGRAD_COLOR Best for captured images
BAYER_2PASSADAPT_COLOR Best for captured images
BAYER_VARGRAD_COLOR Best for captured images
BAYER_2BY2_MONO Fastest (converts to monochrome)
BAYER_3BY3_MONO Best quality for real-time (to monochrome)
BAYER_ADAPT_MONO Best for captured images (to monochrome)
BAYER_NO_CONVERSION No Bayer conversion

Table 3

PCS2112_NO_DECIMATION Original resolution – Default
PCS2112_DECIMATE_BY_2 Resolution / 2, resulting height and width may be rounded

down to accommodate the camera’s decimation algorithms
PCS2112_DECIMATE_BY_4 Resolution / 4, resulting height and width may be rounded

down to accommodate the camera’s decimation algorithms

Table 4

plFGI Technical Guide September 2002

 31

Appendix C Source file dependencies

plClose plClose.cpp, plError.cpp, plError.h
plDevices plDevices.cpp, plTypes.h
plGet plGet.cpp, plCreateDeviceHandle.cpp, plGetValue.cpp, plError.cpp,

plCreateDeviceHandle .h, plGetValue.h, plError.h, plTypes.h
plGrab plGrab.cpp. plError.cpp, plError.h, plTypes.h
plIsOpen plIsOpen.cpp
plOpen plOpen.cpp, plCreateDeviceHandle.cpp, plError.cpp, plCreateDeviceHandle.h,

plError.h
plSet plSet.cpp, plPrintPossibleValues.cpp, plSetValue.cpp, plError.cpp,

plPrintPossibleValues.h, plSetValue.h, plError.h, plTypes.h

Table 5

plFGI Technical Guide September 2002

 32

Appendix D Topics for improvement

This is a full list of all topics for improvement on plFGI:

• plGrab: Implementation of the 5 other ways to call plGrab:

- moviematrix = plGrab(handle, imgmatrix)
- [imgmatrix, moviematrix] = plGrab(handle)
- plGrab(handle, imgmatrix)
- plGrab(handle, imgmatrix, moviematrix)
- plGrab(handle, imgmatrix, moviematrix, scaling factor)

• plGrab: Addition of RGB48 format for 16-bit captures
• plGrab: Testing the plGrab function with a colour camera (this should work)
• plGrab: Loop optimalisations
• plGrab: Capture a RAW image directly into the left hand array (*plhs[]) of the

mexFunction
• plOpen: Use plError after the call to PimMegaGetNumberDevices instead of non standard

error code
• plSet: Implementation of PimMegaSetOverlayCallBack
• plSet: Implementation of PimMegaSetPreviewWindow
• plSet: Implementation of PimMegaAutoExposure
• plDevices: In ‘remove’, the inner for loop tries to copy one entry more than needed.

When having 32 camera’s open, this could result in a segfault. The inner loop for
condition should be: (t = i; t < deviceCount - 1; t++)

• plCreateDeviceHandle: Convert some of the if-constructions to switch constructions (for
example the one used for SubWindowSize)

• plError: The entire building of the string used in ‘The device’s API encountered...’ can be
moved within the following ‘if (result != ApiSucces)’ condition.

• Function to check whether the camera is connected to the computer
• Reset function, to set all parameters to their default value
• Demo M-files
• Additional tests on the performance of plFGI

plFGI Technical Guide September 2002

 33

Appendix E Test results

Below are the screen printouts of the tests performed on plFGI:

>> plset(m,'DataTransferSize','DATA_8BIT_SIZE');
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 65.8000

>> plset(m,'SubWindowSize','PCS2112_NO_DECIMATION', 512, 640);
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 29.6600

>> plset(m,'SubWindowSize','PCS2112_NO_DECIMATION', 256, 640);
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 17.3000

>> plset(m,'SubWindowSize','PCS2112_NO_DECIMATION', 1024, 640);
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 55.8000

>> plset(m,'SubWindowSize','PCS2112_NO_DECIMATION', 1024, 320);
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 52.7800

>> plset(m,'ExposureTime',1);
>> tic,for i=1:100,y=plgrab(m);end,t=toc

t =

 51.3500

>> plget(m)

ans =

 DeviceID: 256106896
 BlueGain: 'Unsupported'
 CurrentFrameRate: 'Could not get value'
 DataTransferSize: 'DATA_8BIT_SIZE'
 Exposure: 1028
 ExposureTime: 1.0400
 Gamma: 1
 Gpo: 'Off'
 GreenGain: 'Unsupported'
 HardwareVersion.ProductID: 'PL-A630 Series Monochrome EC Module'
 HardwareVersion.SerialNumber: '12572'
 HardwareVersion.FirmwareVersion: '1.0.3.0'
 HardwareVersion.FpgaVersion: '4'
 ImagerChipId: 805306368
 ImagerClocking: '0x01 External (16Mhz) Division by 2'
 ImagerName: 'Imager0'
 ImagerType: 'PCS2112M_IMAGER (Monochrome Camera)'
 MonoGain: 0
 PreviewWindowPos.Top: 'Could not get value'
 PreviewWindowPos.Left: 'Could not get value'
 PreviewWindowSize.Height: 'Could not get value'

plFGI Technical Guide September 2002

 34

 PreviewWindowSize.Width: 'Could not get value'
 RedGain: 'Unsupported'
 Saturation: 'Unsupported'
 SerialNumber: 75122
 SoftwareVersion: 16777984
 SubWindow.Decimation: 'PCS2112_NO_DECIMATION'
 SubWindow.StartRow: 0
 SubWindow.StartColumn: 0
 SubWindow.NumberRows: 1024
 SubWindow.NumberColumns: 320
 SubWindowPos.StartRow: 0
 SubWindowPos.StartColumn: 0
 SubWindowSize.Decimation: 'PCS2112_NO_DECIMATION'
 SubWindowSize.Height: 1024
 SubWindowSize.Width: 320
 Timeout: 1000
 VideoMode: 'VIDEO_MODE'
 GrabColorConversion: 'BAYER_3BY3_COLOR'
 GrabOutputType: 'RAW'

