
1

ASSIST Assembler Replacement User’s
Guide

Program&Documentation: John R. Mashey

Project Supervision : Graham Campbell

PSU Computer Science Department

Preface

This manual is the key reference source for the programmer who uses the replacement facility of
ASSIST. This facility allows the programmer to write and test his own versions of certain
program modules which are part of the ASSIST Assembler. The modules which are replaceable
perform a wide variety of functions, thus allowing for a number of different course assignments
covering important segments of a running 360 Assembler. Among those replaceable are modules
for management of the symbol table, base register table, scanning and conversion of various
constant types, and evaluation of both self- defining terms and general expressions. The entire
replacement process can be performed with low overhead, in-core, and batched, while allowing
the user program no possible way to damage the rest of the ASSIST system.

The first part of this manual briefly describes the internal structure of the ASSIST assembler, and
lists the steps in the entire replacement process. Also included are the overall register and linkage
conventions required of all replaceable modules.

The second section describes the additional debugging facilities available to the writer of a
replacement module. The third section shows the deck setup, Job Control Language, and PARM
options needed to make a replacement run. The fourth section lists all messages which may be
printed by the ASSIST Replace Monitor during a replacement run.

The reader should be familiar with the following manual:

ASSIST Introductory Assembler User’s Manual

The above manual gives various information which may be required to write a program which can
be run under ASSIST, and explains the various messages which may generated (other than
Replace Monitor messages). Note also that this manual is structured similar to the above one.

For replacement of certain of the modules, it may be necessary to examine the following manual
for additional required information:

ASSIST System Program Logic Manual

2

The ASSIST Replacement Process

Overview of the ASSIST Assembler

The ASSIST Assembler is a section of the entire ASSIST System which translates a deck of
S/360 Assembler Language statements into object code, in memory. It is made up of
approximately 30 control sections, of which 3 are main control programs. The overall control
program is named MPCON0, which calls the main programs for each of the two passes in the
assembler, and also calls all initialization and termination entry points for the various other
modules in the assembler.

During the first pass, under control of MOCON1, each card in the input source deck is read,
scanned for label and opcode, and processed partially according to the type of opcode. Each
statement is given a location counter value during this pass, and some types of statements are
completely processed, such as EQU, START, ORG, etc. Each card image and its associated
information is then saved into a large dynamic work area, until an END card is encountered.

During the second pass, each statement saved in the dynamic area is retrieved and processed.
Several different routines control the scanning of each statement and production of object code
from it. Each statement's object code, if any, is loaded into memory, and the statement printed.

Approximately half of the modules of the assembler can be replaced using the ASSIST Replace
Monitor. In general, these modules are those which are fairly low-level routines, which are not
required to have communication with many other modules, and which generally do not have to be
able to examine variables and flags global to the entire assembler. They definitely are never
required to modify storage outside the limits of their own storage. These characteristics make it
possible for them to be replaced without requiring a great deal of knowledge of the internal
workings of the ASSIST Assembler.

3

Steps in the Replacement Process

1. The programmer writes one control section which is to be assembled and used as a
replacement for the existing one in ASSIST of the same name. This control section must
have the following characteristics:

a. The CSECT and ENTRY names (if any) must be defined and spelled exactly as the
existing ones.

b. Certain replaceable modules (such as EVALUT), are permitted to call existing
ASSIST modules. Any module so called can be done so by listing the module
name in an EXTRN statement, then referencing the module name by use of a
V-type address constant.

2. After the user program is assembled and loaded into memory, the Replace Monitor
searches its list of replaceable control sections for one defined as a csect in the user
program. The required entry point names are found, if possible, in the user program.
During this process, the Replace Monitor modifies certain address constants in the main
control table of the assembler, which will permit it to regain control every time one of the
replaced entry points is called. The messages labeled AR000, AR001, and AR002 may
appear on the listing at this point. If it cannot find a legally replaceable csect name, the
message AR100 is printed, and the replacement process terminated. The latter can also
occur if the user program contains more serious errors than given by the value of the
NERR parameter.

3. Various functions are performed to initialize the user program for later execution. These
include initializing the user RFLAG to the value given by the RFLAG= option in the
PARM field (see PART III). Then, instead of executing the user program directly, the
ASSIST Assembler is called to process a test deck, which follows the user program.

4. During the assembly of the test deck, any of the replace program's entry points may be
called. Any such call is intercepted by the Replace Monitor. Using previously saved
information, it supplies the parameter values to the original ASSIST entry point called,
which returns the correct set of values to be computed by that entry.

At this point, depending on certain bits in the current value of the user RFLAG, various
debugging information may be printed. This may include the current card image being
processed, the values of 5 parameter registers on entry to the Replace Monitor, and their
correct values as returned by the original ASSIST module. These messages have labels
AR051, AR052, AR054, respectively.

5. At this point, a check is made to assure that the entry point called actually was defined
properly by the user. If not, the AR101 message is given, user storage is dumped, and the
interception of calls is terminated. Otherwise, the user registers and counters are prepared,
and the user program executed beginning at the address in his program given by the called
entry point. The user program is not executed directly, but is interpreted to prevent it from

4

damaging any part of ASSIST. The user program may thus access storage outside its area,
but may not modify such storage.

6. The user program is interpreted until it either terminates normally by returning to the
return address supplied to it in R14, or terminates with some error.

7. If the user program terminated normally, the register values it returned are checked
against the ones returned by the original module. In some cases, the exact register values
do not matter, but any value definitely wrong is noted. If anything is actually wrong, any
debug information not already printed during step 4 is printed now. Then the values of the
user-returned parameter registers are printed (AR058), followed by a message flagging the
incorrect registers (AR059). The AR058 message may be printed in any case if the
appropriate bit in the current value of the user RFLAG is turned on. Another bit in the
RFLAG is set if an error has occurred. This bit may be tested by the user program the next
time it is called.

The correct values are placed in the parameter registers, and control is returned to the
program which originally called the replaced entry point.

8. If the user program did not terminate normally, and the error was a branch out of the user
program, it may be the case that the user program was attempting to call some other
original ASSIST module. The call is checked to see if it is a legitimate one. If so, the
parameter registers may be printed (AR050), and then checked to make sure they contain
legal values. If they are illegal for any reason, they are flagged with message AR059, the
user program is dumped, and no further calls are made to user entry points. If the call is
legal, the desired routine is called, and its parameter values placed in the user's registers,
and step 6 is begun once more.

9. Finally, the assembly of the test program is completed, with all calls having been made to
the appropriate entry points of the user replacement program. Messages AR003 and
AR004 are then printed, giving various statistics about the performance of the user
program. These include the number of times each entry point was called, the total number
of instructions executed by each entry, the number of times the values returned by the user
program were incorrect, the average number of instructions executed per call, and the
percent of the calls which were handled incorrectly.

10. If the option BATCH was specified, control returns to step 1, thus allowing different
modules to be tested during one run. Otherwise, ASSIST execution terminates.

5

Register and Subroutine Linkage Conventions

Register Usage

The general purpose registers are referred to by two separate sets of symbols. The first is a set of
absolute register equates, the symbols R0-R15 being used for registers 0-15. In addition, a second
set exists which has more mnemonic meaning. The user is urged to utilize only symbolic registers
in his program, and should thus include any of the required EQU instructions in his program. In
particular, registers 7-11 should be coded using the symbols RA-RE. The additional symbolic
register equates are as follows:

 RW EQU R3 GENERAL WORK REGISTER 1
 RX EQU R4 GENERAL WORK REGISTER 2
 RY EQU R6 GENERAL WORK REGISTER 3
 RZ EQU R6 GENERAL WORK REGISTER 4

 RA EQU R7 PARAMETER REGISTER 1
 This register is commonly used as a scan pointer register
 inside the assembler.
 RB EQU R8 PARAMETER REGISTER 2
 This register is commonly used to pass a control value to
 a subroutine, and on return, almost always contains either
 an error code, or a zero to show no errors.
 RC EQU R9 PARAMETER REGISTER 3
 This register is most often used in the assembler for passing
 a 24-bit value (such as the result of an expression or a
 self-defining term).
 RD EQU R10 PARAMETER REGISTER 4
 RE EQU R11 PARAMETER REGISTER 5
 Registers RD and RE may be used for subroutines needing more
 than two or three arguments, but are more commonly used as
 work temporary work registers.

 RAT EQU R12 ASSEMBLER TABLE POINTER-READ ONLY
 This register points the main assembler table (VWXTABL csect,
 AVWXTABL dsect) during an assembly. No subroutine in the
 assembler may modify this register.
 RSA EQU R13 SAVE AREA POINTER/BASE REG FOR SOME
 This register is used to point to an OS/360 save area, for
 any subroutine which may call another. Almost all subroutines
 use this as a base register if they are not lowest-level
 routines.
 RET EQU R14 RETURN ADDRESS USED IN CALLS
 This is used in subroutine linkage for the return address to
 a calling program. This symbol is generally used whenever
 subroutine linkage is being set up, while R14 is used when the
 register is being used as a temporary work register.
 REP EQU R15 ENTRY POINT ADDRESS/OFTEN USED BASE
 This register is used to hold the entry point address for all
 subroutines in the assembler. Lowest-level routines usually
 use this as a base register. In other routines, this may be
 used as a local work register, in which case the symbol R15
 is normally coded.

6

Linkage Conventions - The Assembler

The linkage conventions inside the ASSIST assembler consist of a few modifications to the
standard OS/360 linkage conventions, which have been changed mainly to save time and space.
The differences are as follows:

1. Registers R0-R6 (or R0-R2, RW-RZ) are protected across any calling sequence and must
be restored if changed. R14 (RET) must also be restored if changed before returning.

2. Register R12 (RAT) may not be changed by any routine.

3. Registers R7-R11 (RA-RE) are used for parameters and temporary work registers, and
are not protected at all across calls. No rout ine ever requires more than five arguments, so
these five registers are sufficient.

4. Except for the above, all normal OS/360 conventions are followed regarding save area
linkage requirements and usage. In general, most routine only save as many registers as
required. Lowest-level routines use R15 as a base, and do not perform save area linkage,
other routines usually use R13 as a base and save area pointer.

5. For replacement runs, the user must include any needed EQU symbols for registers. Note
that all documentation and output produced by the Replace Monitor refers to registers
7-11 as RA-RE, so that using these symbols in a replacement program will aid reading the
various diagnostic output produced.

7

Replace Monitor Debugging Aids

The RFLAG

Communication between the user program and the Replace Monitor is achieved through the use
of the User Replace Flag, called the RFLAG. This is a two-byte area of storage which may
initialized for an entire run using the RFLAG= option in the PARM field. Certain bits in it
determine which diagnostic messages the Replace Monitor prints when it intercepts a call to a
replaced module. These bits can also be changed by the user program during execution, thus
allowing the user to obtain additional information when needed. The various bits of the RFLAG
are used as described in the table below.

 BYTE BITS DECIMAL BINARY MEANING IF BIT ON (AR### MESSAGE)
 --
 0 0-7 currently unused, user can set or test
 for his own purposes.
 1 7 1 00000001 print current statement on entry (AR051)
 6 2 00000010 print registers RA-RE on entry (AR052)
 5 4 00000100 print correct regs RA-RE, on exit (AR054)
 from original ASSIST module
 4 8 00001000 print registers RA-RE on exit from (AR058)
 user replacement module
 3 16 00010000 print registers RA-RE if user (AR050)
 module calls an original ASSIST module.
 1,2 64,32 01100000 reserved for future use
 0 128 10000000 is set to 1 when there is an error (AR059)
 parameter registers returned by the user
 program. Is set to 0 if acceptable.
 --

Bit 0 of byte 1 can be used to start extra debugging output only after an error occurs. See the
XREPL example for this action. The entire first byte is reserved for the user program, such as for
additional debugging flag bits for controlling the program. Note that bits 5,6,7 are tested before
the call to the user program. Thus, changing them affects output beginning at the next call to a
user module.

The XREPL Instruction

The XREPL instruction is an SI format instruction, in which the immediate field is used to specify
a type of action. It is coded as

XREPL addr,code

with CODE meaning as follows:

 0 set the RFLAG from the 2-byte area specified by ADDR.
 1 fetch the RFLAG into the 2-byte area specified by ADDR.
 2 fetch the number of instructions left into the 4-byte area given by
 ADDR. This value is decremented each time an instruction is done.

8

The following gives an example of the use of XREPL:

 XREPL MYRFLAG,1 get the value of the RFLAG
 TM MYRFLAG+1,128 was there an error last time
 BZ *+12 no, don't reset it
 OI MYRFLAG+1,8+4+2+1 set all these for debug output
 XREPL MYRFLAG,0 reset the RFLAG to new setting

Job Control Language and PARM Options

Job Control Language

The deck setup for a single-job replacement run is as follows:

// a JOB CARD
// EXEC ASSIST,PARM='REPL,other options if any'
//SYSIN DD *
.....user-written replacement program.....
 END 1 end card of replacement program
..... user test deck for his replacement program.....
/*
//

The deck setup for a replace program run under BATCH is:

$JOB ASSIST ACCT#,REPL,other options, if any
..... user-written replacement program
$ENTRY (required to initiate test)
..... user test deck for replacement program
$ENTRY (optional, if user wants assembled test
 program to execute also - unlikely)

PARM Options

The following PARM field options are of particular interest to the user of the replacement facility.
(see PART III. of USER'S GUIDE).

 REPL required if the run is to be a replacement run rather than
 just a normal assembly and execution.

 RFLAG=number coded to initialize the value of the RFLAG for the entire
 run. The default value is 0.

 BATCH may be coded if the user wants to test more than one module,
 or more than one version of the same module in the same run.

 I=number the instruction count limit specified applies to each call of
 a replacement module. It is therefore recommended that this
 optional operand be coded, and that its value be fairly small.

9

Replace Monitor Messages

The following lists the messages which may be produced during a replace run by the Replace
Monitor. Note that all these messages are printed inline with output produced by other sections of
ASSIST. In particular, Replace Monitor output is embedded in the listing of the user test
program, which can possibly make it difficult to read in some cases. A helpful procedure is to run
the test program by itself under ASSIST, thus obtaining a listing, then insert a PRINT OFF
command at the beginning. This will remove most of he test program listing.

All Replace Monitor messages are of the form ///AR### message. The type of message is
indicated by the value of ###, as follows:

000-049 - informative or warning messages.
050-099 - debugging output messages,produced during intercepted call.
100-199 - severe error message, causing replacement interception to end.

 AR000

REPLACE CSECT: name ///
This message appears immediately after the replace csect has been assembled, with name
being the name of the replacing csect.

 AR001
REPLACE ENTRY: name AT LOCATION: xxxxxx ///
If message AR000 appears, each properly defined entry point in the csect will be listed
here with its location xxxxxx in memory. Note that a csect which can be entered through
its csect name is also listed.

 AR002
 REPLACE ENTRY: name NOT FOUND AS CSECT OR ENTRY ///

This message may appear with the AR000 and AR001 messages for any entry or csect
name which is required, but either not defined in the user program or not declared as
CSECT or ENTRY. If this entry name is called during execution, its execution will be
terminated with an AR101 message and storage dump.

 AR003
STATISTICS: # INSTRUCTIONS # CALLS # WRONG INSTRS/CALL %WRONG
This message appears after the test program is assembled.

 AR004
name : 5 decimal numbers
One of this message appears for each entry point after AR003. It describes the
performance of the named entry point during the run.

 AR050
ON CALL TO name REGISTERS RA-RE (values of regs 7-11)
This message may be printed if the RFLAG byte 1 bit 3 is set and the user program calls
some other ASSIST module. It may also be printed if the user program tries to pass illegal
parameter values to the routine name.

 AR051
ON ENTRY TO name STMT ADDR: xxxxxx -> card image

10

This message is printed before calling the user program, and shows the current statement
being processed, if any. The address of the card image is given by xxxxxx, which
corresponds to the first character following the '>' in the message. The message is if
RFLAG byte 1 bit 7 is set before the call, or if an error occurs in the user program.

 AR052
ON ENTRY TO name REGISTERS RA-RE: (values of 5 registers)
This message displays the 5 parameter registers before the user program name is called,
and is printed if RFLAG byte 1 bit 6 is on before the user program is called, or if there is
an error.

 AR054
ON EXIT FROM name REGISTERS RA-RE: (values of 5 registers)
This message shows the correct values of the parameter registers as returned by the
original ASSIST module name. It is printed if RFLAG byte 1 bit 5 is on before call to the
module, or if the user program makes an error.

 AR058
ON EXIT FROM name REGISTERS RA-RE: (values of 5 registers)
If RFLAG byte 1 bit 4 is on after completion of the user program, or if there is an error,
this message appears, and gives the values of the parameter registers as returned by the
user entry name.

 AR059
WARNING: ERROR IN USER REGS: error list
If any of the user registers has an incorrect value, this message is printed, either following
AR050 or AR058, depending on whether the incorrect value(s) were in a call to another
module or in a return of values to the calling program.
The error list consists of one or more of the following:

R0-R6 when a user program returned, the values in registers 0-6
were not all the same as when it was called.

R12 the user program modified the value of the assembler table
pointer, which is not permitted.

R13 the user did not restore the save area pointer.
$$$$$$$$ The dollar signs indicate a register shown in messages AR050

or AR058 as incorrect.

If this message appears, RFLAG byte 1 bit 0 is set to 1 for the next time the user program
is called.

 AR100
REPLACE CSECT NOT FOUND - REPLACE ABORT ///
This message appears immediately after the assembly of the user program. None of the
allowable csect names were found as a csect in the user program.

 AR101
INVALID ENTRYPOINT NAME: name CALLED. REPLACE ACTION ABORTED ///
If name appeared in an AR002 message and is called, this message appears, followed by a
dump of user storage and the last values of the user registers.

 AR102
USER PROGRAM ABENDED DURING REPLACEMENT ///
Replace action is aborted and a dump given.

