WADE-8180

Mini-ITX Mainboard

User's Manual

Version 1.1b

Table of Contents

How to Use This Manual

Chapter 1 System Overview	1-1
1.1 Introduction	1-1
1.2 Check List	
1.3 Product Specification	1-3
1.3.1 Mechanical Drawing	1-5
1.4 System Architecture	1-6
Chapter 2 Hardware Configuration	2-1
2.1 Jumper Setting	2-1
2.2 Connector Allocation	2-2
Chapter 3 System Installation	3-1
3.1 Intel LGA 775 Processor	3-1
3.2 Main Memory	3-3
3.3 Installing the Single Board Computer	3-4
3.3.1 Chipset Component Driver	3-5
3.3.2 Intel Integrated Graphics GMCH Chip	3-5
3.3.3 On-board Fast Ethernet Controllers	3-5
3.3.4 On-board High Definition Audio Controller	3-6
3.3.5 Intel Matrix Storage Manager Device	
3.3.6 AMT Function Installation	
3.3.7 Intel Trusted Platform Module	
3.4 Clear CMOS Operation	
3.5 WDT Programming Guide	
3.6 GPIO Programming Guide	
Chapter 4 BIOS Setup Information	4-1
4.1 Entering Setup Launch System Setup	4-1
4.2 Main Menu	
4.3 Standard BIOS Features	4-3
4.4 Advanced BIOS Features	
4.5 Advanced Chipset Features	
4.6 PCI/PNP Resource Management	
4.7 Boot Configuration Features	
4.8 Power Management Features	
4.9 BIOS Security Features	
4.10 Default Menu	
4.11 Exiting Selection	4-43
Chapter 5 Troubleshooting	5-1
5.1 Hardware Quick Installation	
5.2 BIOS Setting	
5.3 FAQ	5-4
A P A	

Appendix A

Appendix B

How to Use This Manual

The manual describes how to configure your WADE-8180 system board to meet various operating requirements. It is divided into five chapters, with each chapter addressing a basic concept and operation of Single Host Board.

Chapter 1: System Overview. Presents what you have in the box and give you an overview of the product specifications and basic system architecture for this series model of single host board.

Chapter 2: Hardware Configuration. Show the definitions and locations of Jumpers and Connectors that you can easily configure your system.

Chapter 3: System Installation. Describes how to properly mount the CPU, main memory and Compact Flash to get a safe installation and provides a programming guide of Watch Dog Timer function.

Chapter 4: BIOS Setup Information. Specifies the meaning of each setup parameters, how to get advanced BIOS performance and update new BIOS. In addition, POST checkpoint list will give users some guidelines of trouble-shooting.

Chapter 5: Troubleshooting. Provide variously of useful tips to quickly get WADE-8180 running with success. As basic hardware installation has been addressed in Chapter 3, this chapter will basically focus on system integration issues, in terms of backplane setup, BIOS setting, and OS diagnostics.

The content of this manual is subject to change without prior notice. These changes will be incorporated in new editions of the document. The vendor may make supplement or change in the products described in this document at any time.

Updates to this manual, technical clarification, and answers to frequently asked questions will be shown on the following web site: http://www.portwell.com.tw/

Chapter 1 System Overview

1.1 Introduction

Taking advantages of Intel energy-efficient dual-core processing, WADE-8180 Mini-ITX Mother Board adopts Intel® CoreTM 2 Quad, CoreTM 2 Duo Desktop processors up to 1333 MHz FSB and Intel® Q45 Express chipset with Intel® ICH10DO RAID function to fit the high performance computer system applications for meeting today's demanding pace and keep complete compatibility with hardware and software designed. The onboard devices support one PCI Express x16 for an alternative graphics add-on card, integrated graphics, and built Intel® 82567LM Gigabit Ethernet PHY for iAMT 5.0 function & Intel® 82574L Gigabit Ethernet controller offering stable high-speed networking.

WADE-8180 comes with the Intel® GMA 4500 graphics supporting DVMT 5.0 display memory up to 287 MB. The board also features two DIMMs up to 4 GB SDRAM with dual channel DDR3 1066/800, four Serial ATA high-speed data transferring at up to 3 Gb/s, optional Intel® Trusted Platform Module 1.2, and 7.1 + 2 CH HDAC through Realtek ALC883 audio codec. The onboard Winbond W83627 DHG I/O Controller supports two serial ports: one RS-232 serial port interfaces, and one RS-232 pin header, Hardware Monitor function, eight hi-speed USB 2.0 ports, two 6-pin Mini-Din connectors for PS/2 mouse and keyboard, and one 24-pin standard connector designed to support ATX power function. Besides, a feature of CPU overheat protection will provide user more security and stability.

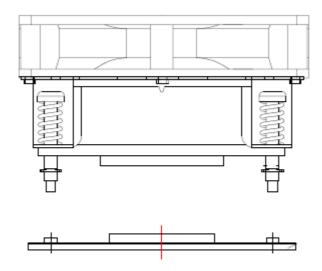
Built with these impressed functions, WADE-8180 Mini-ITX Mother Board are those ideal solutions for Automation, multi-media, gaming, DVR, KIOSK, medical equipment, industrial automation, financial automation, process control, semiconductor equipment, and network security markets.

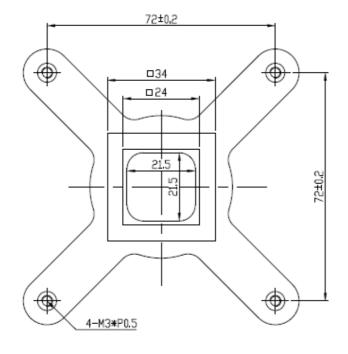
Note:

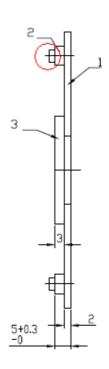
PCI Express x16 slot (PCIE1) only support VGA card.

1.2 Check List

The WADE-8180 package should cover the following basic items


- ✓ One WADE-8180 Mini-ITX main board
- ✓ Two Serial ATA cable
- ✓ One Serial port for RS232 cable
- ✓ One USB cable
- ✓ One I/O Shield cover
- ✓ One Supporting CD Driver contains internal VGA display driver, Ethernet network controller driver and on board devices drivers
- ✓ One Cooler Back Plate


You may just choose Portwell's cooler kit, or please do use Portwell's cooler back plate under the board.


Note:

If you'd like to use your own cooler, instead of Portwell's, please make sure the below SPEC can match the cooler back plate we shipped with the board. Choosing cooler:

- 1. Please use screw-type cooler. (Push-pin type cooler is not recommended)
- 2. The screw of the screw-type Cooler must be M3.
- 3. The pillar height of your choosing cooler's back plate in the PCB holes must be 2mm±0.2mm, then you can make sure this cooler can be used on Portwell's cooler back plate.

If any of these items is damaged or missing, please contact your vendor and keep all packing materials for future replacement and maintenance.

1.3 Product Specification

Main processor

- Support Intel® Core™ 2 Quad / Duo Processor
- FSB: 1333/1066/800 MHz

BIOS

AMI BIOS

Main Memory

- Support dual-channel DDR3 memory interface
- Up to 4GB DDR3 800/1066 SDRAM on Two 240pin DIMM sockets

Chipset

INTEL Q45 and ICH10DO

Expansion Interface

One PCI Express X 16 slot

SATA Interface

Four Serial ATA high-speed data transferring at up to 3 Gb/s

Serial Ports

Support two serial ports (One RS-232 port at real I/O, One RS232 pin header)

USB Interface

Support eight USB (Universal Serial Bus) ports (four at rear I/O; four ports internal)

PS/2 Mouse and Keyboard Interface

Support dual 6-pin mini-DIN connector at rear I/O panel for PS/2 keyboard /mouse

Audio Interface

Connector and header of Line-in/Line-out/MIC for external and internal usage

• Real-Time Clock/Calendar (RTC)

Support Y2K Real Time Clock/Calendar with battery backup for 7-year data retention

Watchdog Timer

- Support WDT function through software programming for enable/disable and interval setting
- Generate system reset

On-board VGA

Integrated Intel® Gen 5.0 GMA 4500 Graphics

On-board Ethernet LAN

Two Gigabit Ethernet (10/100/1000 M bits/sec) LAN port

• High Driving GPIO

Programmable 8-bit Digital I/O interface

System Monitoring Feature

Monitor CPU temperature, system temperature and major power sources, etc

Outline Dimension (L X W)

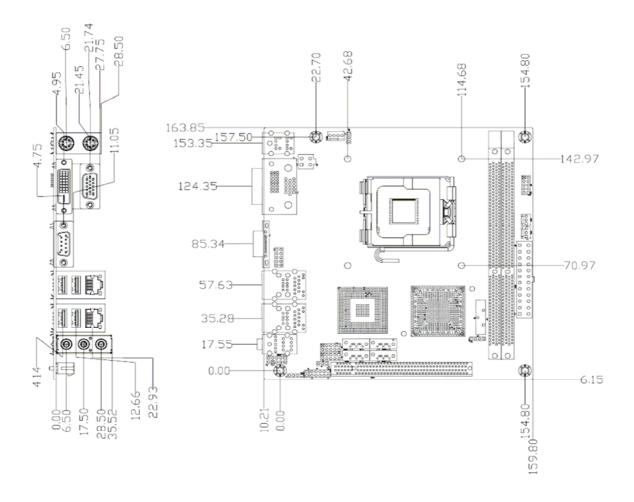
170mm (6.69") X 170mm (6.69")

• Power Requirements

Voltage Value(V)	3.30		5.00		12.00		12.00		5.00		
Power Rail	P3V3_MAIN		P5V_MAIN P12V		P12V_	P12V_MAIN I		P12V_CPU		P5V_STBY	
	Imax	I-nom	Imax	I-nom	Imax	I-nom	Imax	I-nom	Imax	I-nom	
Input current(A)	17.03	10.54	10.71	6.72	4.75	2.80	11.57	9.25	2.13	1.06	

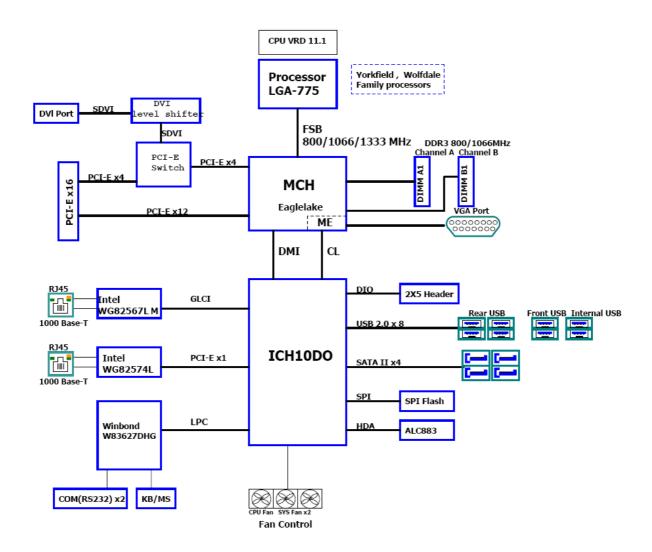
Operating Temperature

 $0^{\circ}\text{C} \sim 55^{\circ}\text{C}$


Storage Temperature

-20°C ~ 80°C

• Relative Humidity


 $5\% \sim 90\%$, non-condensing

1.3.1 Mechanical Drawing

1.4 System Architecture

All of details operating relations are shown in WADE-8180 series System Block Diagram

WADE-8180 System Block Diagram

Chapter 2 Hardware Configuration

This chapter gives the definitions and shows the positions of jumpers, headers and connectors. All of the configuration jumpers on the board are in the proper position. The default settings shipped from factory are marked with an asterisk (\star).

2.1 Jumper Setting

In general, jumpers on the board are used to select options for certain features. Some of the jumpers are designed to be user-configurable, allowing for system enhancement. The others are for testing purpose only and should not be altered. To select any option, cover the jumper cap over (SHORT) or remove (NC) it from the jumper pins according to the following instructions. Here, NC stands for "Not Connect".

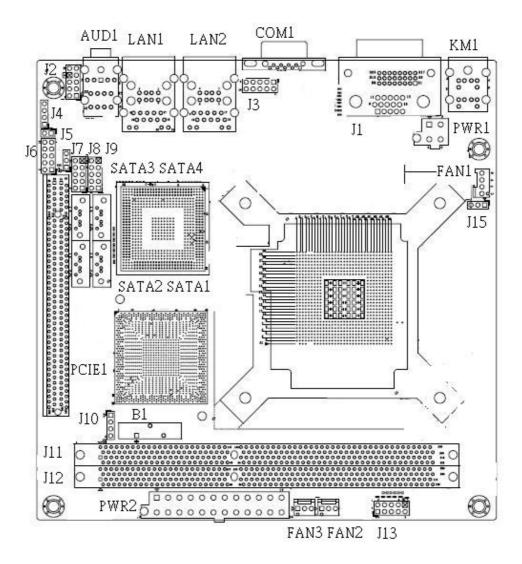


Figure 2-1 WADE-8180 Top-side Jumper and Connector Locations

J7: Clear CMOS

Pin No.	Signal Description
1-2	Clear CMOS
2-3	Normal operation ★

J15: PCIE x16 Slot Function Select

Pin No.	Signal Description
1-2	SDVO function (DVI , ADD2 support) ★
2-3	PCIE x1,x4 VGA Card Enable

2.2 Connector Allocation

I/O peripheral devices are connected to the interface connectors.

Connector Function List

Connector	Description	Remark
AUD1	Audio port	
FAN1	Fan connector	1 x 4 headers
FAN23	Fan connector	1 x 3 headers
J1A	VGA connector	
J1B	DVI connector	
J2	Front Audio Header	2 x 5 wafer
J3	Serial Header	2 x 5 headers
J4	CD-IN header	1 x 4 headers
J5	Chassis Intruder Header	1 x 2 headers
J6	Digital I/O	2 x 5 headers
J7	RTC reset header	1 x 3 headers
J8/J9	USB connector	2 x 5 headers
J10	Speaker header	1 x 4 headers
J11	Memory socket	
J12	Memory socket	
J13	Front panel header	2 x 5 headers
J14	XDP Connector	
J15	PCIE x16 Slot Function Select header	1 x 3 headers
KM1	K/B & Mus port	
LAN1	Lan & USB Connector	
LAN2	Lan & USB Connector	
PWR1	Auxiliary CPU Power connector	2 x 2 wafer
PWR2	Main Power connector	2 x 12 wafer
SATA1234	Sata connector	

Pin Assignments of Connectors

AUD1: Audio Connector

PIN No.	Signal Description
1 (Blue)	Line-in
2 (Green)	Speaker out
3 (Red)	MIC-in

<u>FAN 1</u>

PIN No.	Signal Description
G	Ground
V	+12V
S	Fan Speed Control
С	FANCTL

FAN 2,3

PIN No.	Description
1	Fan Speed
2	+12V
3	Ground

J2: Front Audio Header

PIN No.	Signal Description	PIN No.	Signal Description
1	A_MIC2_L	2	GND
3	A_MIC2_R	4	FP_AUD_DETECT
5	A_LINE2_R	6	A_MIC2_JD
7	GND	8	NC
9	A_LINE2_L	10	A_LINE2_JD

J3: RS232 Header

PIN No.	Signal Description	PIN No.	Signal Description
1	DCD	2	DSR
3	RXD	4	RTS
5	TXD	6	CTS
7	DTR	8	RI
9	Ground	10	Ground

<u>J4 : CD_IN Header</u>

PIN No.	Signal Description	PIN No.	Signal Description
1	CD_IN_L	2	CD_GND
3	CD_GND	4	CD_IN_R

J5: Chassis Intruder Header

PIN No.	Description
1	Intruder detect
2	GND

<u>J6: Digital Header</u>

PIN No.	Signal Description	PIN No.	Signal Description
1	VCC5	2	DI0
3	DO0	4	DI1
5	DO1	6	DI2
7	DO2	8	DI3
9	DO3	10	GND

J8: USB Header

PIN No.	Signal Description	PIN No.	Signal Description
1	5V_USB	6	USB7P
2	5V_USB	7	GND
3	USB6N	8	GND
4	USB7N	9	KEY
5	USB6P	10	GND

<u>J9: USB Header</u>

PIN No.	Signal Description	PIN No.	Signal Description
1	5V_USB	6	USB5P
2	5V_USB	7	GND
3	USB4N	8	GND
4	USB5N	9	KEY
5	USB4P	10	GND

J10: Speaker Header

PIN No.	Signal Description	PIN No.	Signal Description
1	VCC5	2	NC
3	SPKR	4	SPKR

J13: Front Panel Header

PIN No.	Signal Description	PIN No.	Signal Description
1	HDD_LED+	2	PWR_LED+
3	HDD_LED-	4	PWR_LED-
5	GND	6	PWR_SW
7	RST_SW	8	GND
9	NC	10	Key

PWR1: Auxiliary CPU Power Connector

PIN No.	Signal Description	PIN No.	Signal Description
1	GND	3	12V_VRD
2	GND	4	12V_VRD

PWR2: Main Power connector

PIN No.	Signal Description	PIN No.	Signal Description
1	3.3V	13	3.3V
2	3.3V	14	-12V
3	GND	15	GND
4	5V	16	PS_ON_N
5	GND	17	GND
6	5V	18	GND
7	GND	19	GND
8	ATXPWRGD	20	Reserved
9	5V_STBY	21	5V
10	12V	22	5V
11	12V	23	5V
12	3.3V	24	GND

Chapter 3 System Installation

This chapter provides you with instructions to set up your system. The additional information is enclosed to help you set up onboard PCI device and handle Watch Dog Timer (WDT) and operation of GPIO in software programming.

3.1 Intel LGA 775 Processor

Installing LGA 775 CPU

1) Lift the handling lever of CPU socket outwards and upwards to the other end. Following step A position to step B position (Figure 3-1).

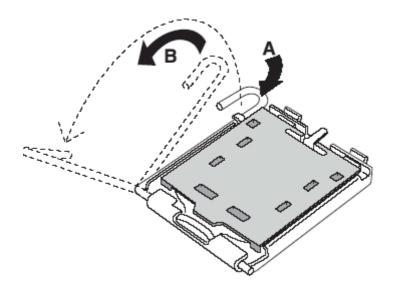


Figure 3-1

2) Align the processor pins with pinholes on the socket. Make sure that the notched corner or dot mark (pin 1) of the CPU corresponds to the socket's bevel end. Then press the CPU gently until it fits into place (see Fig.3-4). If this operation is not easy or smooth, don't do it forcibly. You need to check and rebuild the CPU pin uniformly.

Triangle mark is meaning first pin position; kindly assemble and take aim at notch of top and bottom between CPU and socket.

Figure 3-2

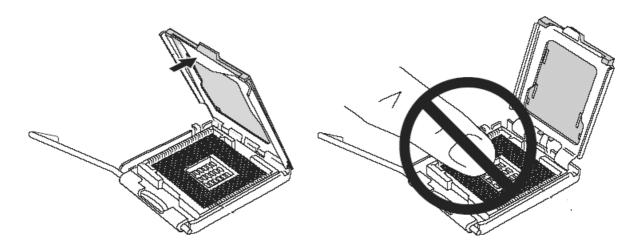


Figure 3-3

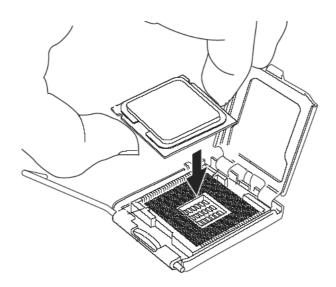


Figure 3-4

Precaution! (See fig.3-3) Don't touch directly by your hand or impacts internal align balls of CPU socket to avoid motherboard destruction, it is a precise actuator.

- 3) Push down the lever to lock processor chip into the socket once CPU fits.
- 4) Follow the installation guide of cooling fan or heat sink to mount it on CPU surface and lock it on the LGA 775 package.
- 5) You should know LGA 775 processor need extra 12V power source. Don't forget to connect 4pin 12V connector to PWR1.

PWR1 : Auxiliary CPU Power Connector

PIN No.	Signal Description	PIN No.	Signal Description
1	GND	3	P12V_VRD
2	GND	4	P12V_VRD

Removing CPU

- 1) Unlock the cooling fan first.
- 2) Lift the lever of CPU socket outwards and upwards to the other end.
- 3) Carefully lifts up the existing CPU to remove it from the socket.
- 4) Follow the steps of installing a CPU to change to another one or place handling bar to close the opened socket.

CPU Application

Supports Intel® Core 2 Quad, Core 2 Duo Desktop processors up to 1333 MHz FSB in an LGA775 socket.

3.2 Main Memory

The board also features two DIMMs up to 4 GB SDRAM with dual channel DDR3 1066/800.

WADE-8180 provides 2 x 240-pin DIMM sockets which supports DDR3 800/1066 MHz as main memory, Non-ECC (Error Checking and Correcting), non-register functions. The maximum memory size can be up to 4GB capacity.

For system compatibility and stability, do not use memory module without brand. Memory configuration can be either one double-sided DIMM in either one DIMM socket or two single-sides DIMM in both sockets.

Watch out the contact and lock integrity of memory module with socket, it will impact on the system reliability. Follow normal procedures to install memory module into memory socket. Before locking, make sure that all modules have been fully inserted into the card slots.

Dual Channel DDR3 DIMM

Dual Channel DDR3 memory technology doubles the bandwidth of memory bus. Adequate or higher bandwidth of memory than processor would increase system performance. To enable Dual Channel DDR3 memory technology, you have to install dual identical memory modules in both memory sockets. Following tables show bandwidth information of different processor and memory configurations.

CPU FSB	Bandwidth
1066MHz	8.5GB/s
800MHz	6.4GB/s

Memory Frequency	Dual Channel DDR Bandwidth	Single Channel DDR Bandwidth
1066MHz	17GB/s	8.5GB/s
800MHz	12.8GB/s	6.4GB/s

Note:

To maintain system stability, don't change any of DRAM parameters in BIOS setup to upgrade system performance without acquiring technical information.

3.3 Installing the Single Board Computer

To install your WADE-8180 into standard chassis or proprietary environment, please perform the following:

Step 1 : Check all jumpers setting on proper position

Step 2: Install and configure CPU and memory module on right position

Step 3 : Place WADE-8180 into the dedicated position in the system

Step 4: Attach cables to existing peripheral devices and secure it

WARNING

Please ensure that SBC is properly inserted and fixed by mechanism.

Note:

Please refer to section 3.3.1 to 3.3.7 to install INF/VGA/LAN/Audio/Raid/AMT & TPM drivers.

3.3.1 Chipset Component Driver

The chipset on WADE-8180 is a new chipset that a few old operating systems might not be able to recognize. To overcome this compatibility issue, for Windows Operating Systems such as Windows XP, please install its INF before any of other Drivers are installed. You can select the Intel Chipset driver from the WADE-8180 CD-title.

3.3.2 Intel Integrated Graphics GMCH Chip

WADE-8180 comes with the Intel® GMA 4500 graphics supporting DVMT 5.0 display memory up to 287 MB. Shared 32 accompany it to 128MB system Memory with Total Graphics Memory. This combination makes WADE-8180 an excellent piece of multimedia hardware.

With no additional video adaptor, this onboard video will usually be the system display output. By adjusting the BIOS setting to disable on-board VGA, an add-on PCI-Express by 16 VGA card can take over the system display.

Drivers Support

Please select Intel Graphic driver from the WADE-8180 Driver CD-title. Driver supports Windows XP.

3.3.3 On-board Fast Ethernet Controllers

Drivers Support

Please select Intel Ethernet driver from the WADE-8180 Driver CD-title to install those two integrated Intel® 82567LM Gigabit Ethernet PHY for iAMT 5.0 function & Intel® 82574L Gigabit Ethernet controller drivers. Those two drivers support Windows XP.

LED Indicator (for LAN status)

WADE-8180 provides two LED indicators to report Intel 82567LM & 82574L Gigabit Ethernet interface status. Please refer to the table below as a quick reference guide.

82567LM	Color	Color Name of LED		on of	f Ether	net Port
&82574L	Coloi	Name of LED	Linked		Active	
Status LED	Orange	LAN Linked & Active LED	On		В	linking
Speed	Orange	LAN speed LED	Giga Mbps		100 Ibps	10 Mbps
LED	Green		Orange	G	reen	Off

3.3.4 On-board High Definition Audio Controller

Drivers Support

Please select the Realtek High Definition Codec Audio driver form WADE-8180 Driver CD-title. The driver supports Windows XP.

3.3.5 Intel Matrix Storage Manager Device

Drivers Support

Please find utility tool for Intel ICH10DO of WADE-8180 CD-title. The drivers support Windows XP.

Installing Serial ATA hard disks

The WADE-8180 supports Four Serial ATA hard disk drives. For optimal performance, install identical drives of the same model and capacity when creating a disk array.

To install the SATA hard disks for a RAID configuration:

- 1. Install the SATA hard disks into the drive bays.
- 2. Connect the SATA signal cables.
- 3. Connect a SATA power cable to the power connector on each drive.

Intel RAID configurations

This WADE-8180 supports RAID 0, RAID 1, RAID 5, RAID (1+0) and Intel® Matrix Storage configurations for Serial ATA hard disks drives through the Intel ICH10DO Southbridge chip.

RAID configurations

RAID 0 (Data striping) optimizes two identical hard disk drives to read and write data in parallel, interleaved stacks. Two hard disks perform the same work as a single drive but at a sustained data transfer rate, double that of a single disk alone, thus improving data access and storage. Use of two new identical hard disk drives is required for this setup.

RAID 1 (Data mirroring) copies and maintains an identical image of data from one drive to a second drive. If one drive fails, the disk array management software directs all applications to the surviving drive as it contains a complete copy of the data in the other drive. This RAID configuration provides data protection and increases fault tolerance to the entire system. Use two new drives or use an existing drive and a new drive for this setup. The new drive must be of the same size or larger than the existing drive.

RAID 5 stripes both data and parity information across three or more hard disk drives. Among the advantages of RAID 5 configuration include better HDD performance, fault tolerance, and higher storage capacity. The RAID 5 configuration is best suited for transaction processing, relational database applications, enterprise resource planning, and other business systems. Use a minimum of three identical hard disk drives for this setup.

RAID 10 is data striping and data mirroring combined without parity (redundancy data) having to be calculated and written. With the RAID 10 configuration you get all the benefits of both RAID 0 and RAID 1 configurations. Use four new hard disk drives or use an existing drive and three new drives for this setup.

Intel Matrix Storage Manager. The Intel® Matrix Storage technology supported by the ICH10DO chip allows you to create a RAID 0 and a RAID 1 set using only two identical hard disk drives. The Intel® Matrix Storage technology creates two partitions on each hard disk drive to create a virtual RAID 0 and RAID 1 sets. This technology also allows you to change the hard disk drive partition size without losing any data.

3.3.6 AMT Function Installation

A major barrier to greater IT efficiency has been removed by Intel® Active Management Technology (Intel® AMT) a feature on Intel® vProTM technology. Using built-in platform capabilities and popular third-party management and security applications, Intel AMT allows IT to better Discover, Heal, and protects their networked computing assets.

Drivers Support

Installing ME (Management Engine) Drivers (which includes HECI Driver and LMS_SOL Driver) and operating PCI serial port and PCI simple communications controller. Driver supports Windows XP.

3.3.7 Intel Trusted Platform Module

The Trusted Platform Module (TPM) can securely store keys, digital certificates, passwords and data.

Drivers Support

Please select the TPM Driver form WADE-8180 Driver CD-title. Driver supports Windows XP.

3.4 Clear CMOS Operation

The following table indicates how to enable/disable Clear CMOS Function hardware circuit by putting jumpers at proper position.

J7: Clear CMOS

JP1	Function
1-2	Clear CMOS
2-3	Normal operation ★

3.5 WDT Programming Guide

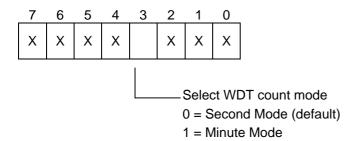
The Watchdog Timer of motherboard consists of 8-bit programmable time-out counter and a control and status register.

WDT Controller Register

There are two PNP I/O port addresses that can be used to configure WDT.

2Eh: EFIR (Extended Function Index Register, for identifying CR index number)

2Fh: EFDR (Extended Function Data Register, for accessing desired CR)

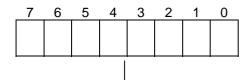

WDT Control Mode Register

Register Location: CR F5h

Attribute: Read/Write

Size: 8bit

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Attribute	Reserved	Reserved	Reserved	Reserved	R/W	Reserved	Reserved	Reserved


WDT Counter Register

Register Location: CR F6h

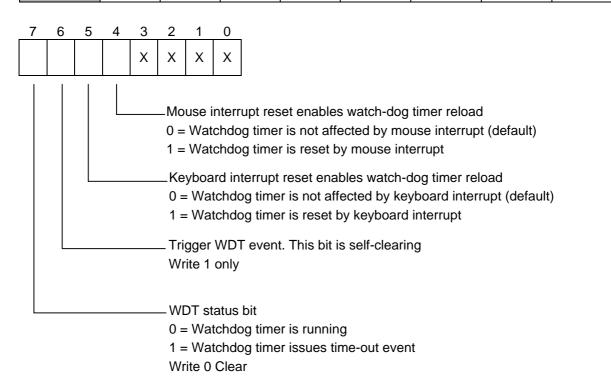
Attribute: Read / Write

Size: 8bit

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Attribute		Read/Write						

-Watch Dog Timer Time-out value 00h: Time-out Disable (default)

01h: Time-out occurs after 1 second/minute 02h: Time-out occurs after 2 seconds/minutes FFh: Time-out occurs after 255 seconds/minutes


WDT control & status Register

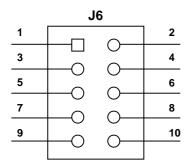
Register Location: CR F7h

Attribute: Read / Write

Size: 8bit

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Attribute	R/W	R/W	W 1	R/W 0	Reserved	Reserved	Reserved	Reserved

WDT Control Command Example


Use DEBUG.EXE program under DOS or Windows 98

Command	WDT	Note
O 2E 87		Enter Extended Function Mode
O 2E 87		
O 2E 07		Select Logic Device 8
O 2F 08		
O 2E 2D		Assign WDT Enable
O 2F 20		
O 2E 30		
O 2F 01		
O 2E F6		Specify Time-out Value
O 2F 05	5 seconds	
O 2E AA		Exit Extended Function Mode

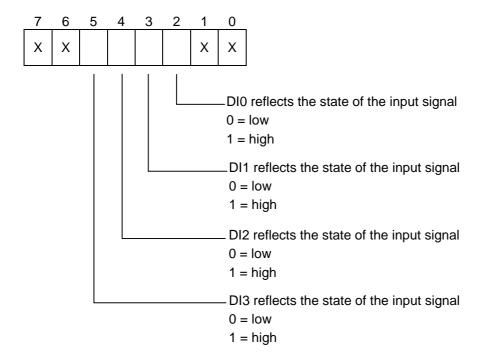
3.6 **GPIO Programming Guide**

The motherboard provides 4 input / output ports that can be individually configured to perform a simple basic I/O function.

GPIO Pin Assignment

PIN No.	Signal Description	Default	PIN No.	Signal Description	Default
1	3.3V		2	DI0	high
3	DO0	high	4	DI1	high
5	DO1	high	6	DI2	high
7	DO2	high	8	DI3	high
9	DO3	high	10	GND	

GPIO Controller Register

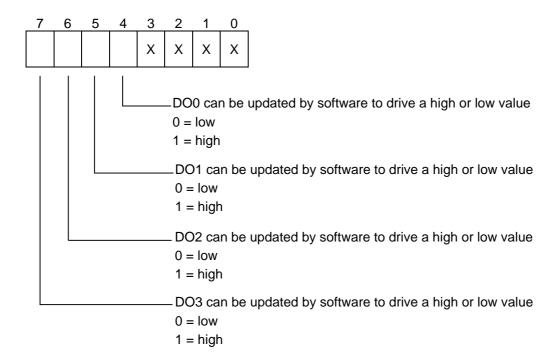

The control for the GPIO signals is handled through a separate 2-byte I/O space.

DI0 ~ DI3 Level for Input Register

Register Location: 4B8h

Attribute: Read Size: 8bit

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Attribute	Reserved	Reserved	Read	Read	Read	Read	Reserved	Reserved


DO0 ~ DO3 Level for output Register

Register Location: 4B9h

Attribute: Read / Write

Size: 8bit

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Attribute	R/W	R/W	R/W	R/W	Reserved	Reserved	Reserved	Reserved

GPIO Control Command Example (C Language)

Command	GPIO	Note			
int iret = 0;					
iret = inportb(0x4B8);	Charle DIO atatus	if hit? A then DIO is high			
iret = iret & 0x04;	Check DI0 status	if bit2 = 1 then DI0 is high			
if (iret == 0x04) {//hi}					
iret = inportb(0x4B9);					
iret = iret 0x10;	Set DO0 to HI	bit4 = 1 for DO0 set to high			
outportb(0x4C4, iret);					

Chapter 4 BIOS Setup Information

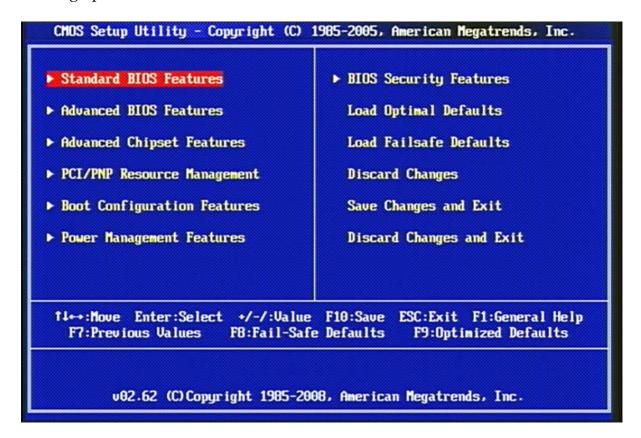
WADE-8180 is equipped with the AMI BIOS stored in Flash ROM. These BIOS has a built-in Setup program that allows users to modify the basic system configuration easily. This type of information is stored in CMOS RAM so that it is retained during power-off periods. When system is turned on, WADE-8180 communicates with peripheral devices and checks its hardware resources against the configuration information stored in the CMOS memory. If any error is detected, or the CMOS parameters need to be initially defined, the diagnostic program will prompt the user to enter the SETUP program. Some errors are significant enough to abort the start up.

4.1 Entering Setup -- Launch System Setup

Power on the computer and the system will start POST (Power On Self Test) process. When the message below appears on the screen, press key to enter Setup.

Press to enter SETUP

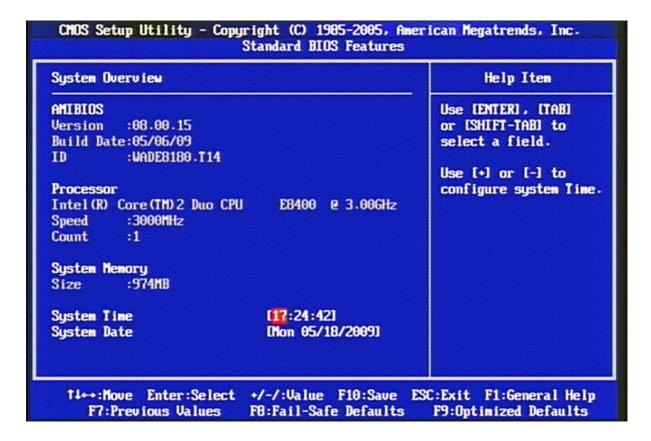
If the message disappears before you respond and you still wish to enter Setup, restart the system by turning it OFF and On or pressing the RESET button. You may also restart the system by simultaneously pressing <Ctrl>, <Alt>, and <Delete> keys.


Press <F1> to Run SETUP or Resume

The BIOS setup program provides a General Help screen. You can call up this screen from any menu by simply pressing <F1>. The Help screen lists the appropriate keys to use and the possible selections for the highlighted item. Press <Esc> to exit the Help screen.

```
General Help
                              11
      Select Screen
                                    Select Item
      Change Option/Field
                              Enter Go to Sub Screen
      Next Page
                              PGUP
                                    Previous Page
     Go to Top of Screen
                              END
                                    Go to Bottom of Screen
      General Help
                              F7
                                    Discard Changes
                              F9
F8
      Load Failsafe Defaults
                                    Load Optimal Defaults
F10
     Save and Exit
                              ESC
                                    Exit
                          (Ok)
```

4.2 Main Menu


Once you enter WADE-8180 AMI BIOS CMOS Setup Utility, a Main Menu is presented. The Main Menu allows user to select from eleven setup functions and two exit choices. Use arrow keys to switch among items and press <Enter> key to accept or bring up the sub-menu.

Note:

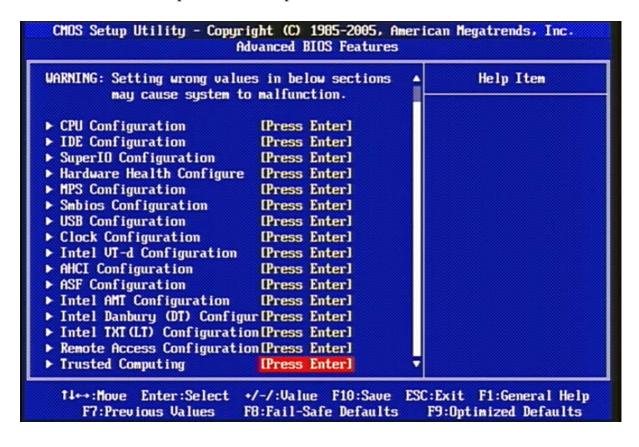
It is strongly recommended to reload Optimal Defaults Setting if CMOS is lost or BIOS is updated.

4.3 Standard BIOS Features

AMI BIOS, Processor, System Memory

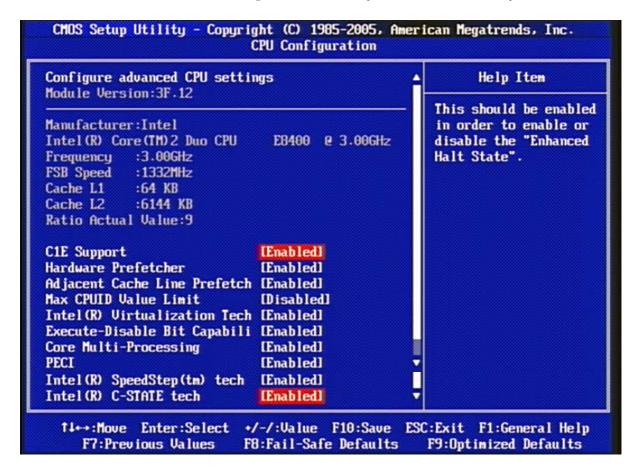
These items show the firmware and hardware specifications of your system. Read only.

System Time


The time format is <Hour> <Minute> <Second>. Use [+] or [-] to configure system Time.

System Date

The date format is $\langle Day \rangle$, $\langle Month \rangle \langle Date \rangle \langle Year \rangle$. Use [+] or [-] to configure system Date.


4.4 Advanced BIOS Features

Use this menu to set up the items of special enhanced features.

CPU Configuration

These items show the advanced specifications of your CPU. Read only.

C1E Support

This should be enabled in order to enable or disable the "Enhanced Halt State".

The choice: Disabled, Enabled.

Hardware Prefetcher

For UP platforms, leave it enabled. For DP/MP servers, it may use to tune performance to the specific application.

The choice: Disabled, Enabled.

Adjacent Cache Line Prefetch

For UP platforms, leave it enabled. For DP/MP servers, it may use to tune performance the specific application.

The choice: Disabled, Enabled.

Max CPUID Value Limit

Disabled for Windows XP

The choice: Disabled, Enabled.

Intel(R) Virtualization Tech

When enabled, a VMM can utilize the additional HW Caps, provided by Intel(R)

Virtualization Tech.

Note: A full reset is required to change the setting.

The choice: Disabled, Enabled.

Execute-Disable Bit capability

When disabled, force the XD feature flag to always return 0.

The choice: Disabled, Enabled.

Core Multi-Processing

When disabled, disable one execution core of each CPU die.

The choice: Disabled, Enabled.

PECI

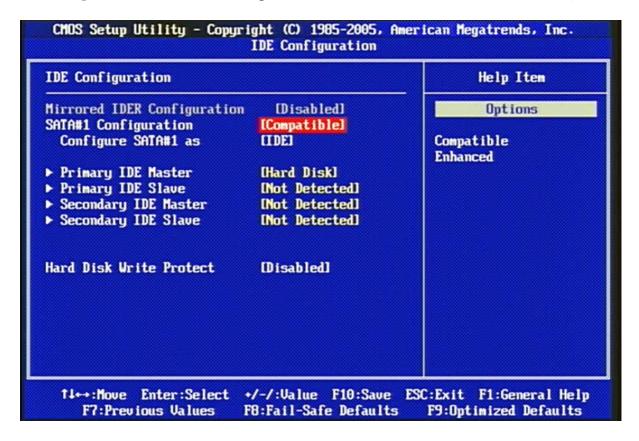
When enabled, enables PECI interface.

The choice: Disabled, Enabled.

Intel(R) Speed Step (tm) Tech

Disable: Disable GV3. Enable: Enable GV3.

The choice: Disabled, Enabled.


Intel(R) C-STATE Tech

CPU idle is set to C2/C3/C4.

The choice: Disabled, Enabled.

IDE Configuration

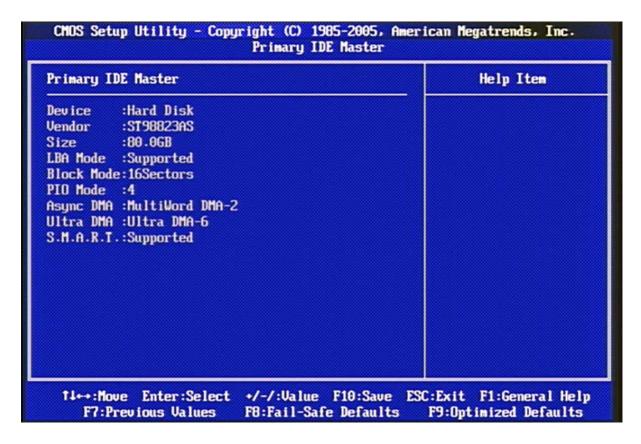
The IDE Configuration the IDE devices, such as hard disk drive or CD-ROM drive. It uses a separate sub menu to configure each hard disk drive (Master and Slave).

Mirrored IDER Configuration

The choice: Disabled, Enabled.

SATA#1 Configuration

The choice: Compatible, Enhanced.


Configure SATA#1 as

This setting specifies the function of the on-chip SATA#1 controller.

The choice: IDE, RAID, AHCI.

Primary/Secondary IDE Master / Slave

While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.

Those options as below are read only.

[Device] It shows the drive type automatically.

[Vender] It shows model name of the drive.

[Size] It shows all disk space of the drive.

[LBA Mode] Enabling LBA causes Logical Block Addressing to be used in place of Cylinders, Heads and Sectors.

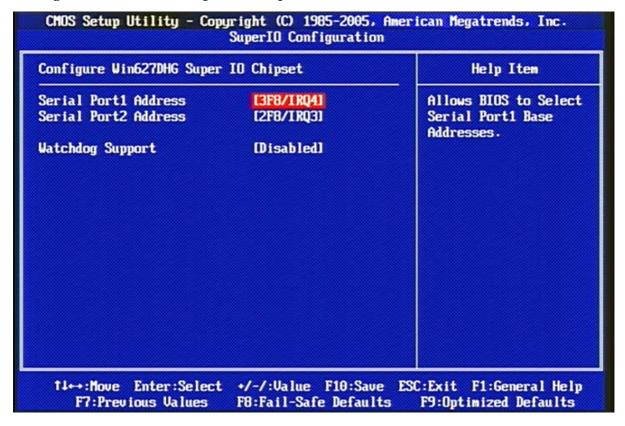
[Block Mode] Any selection except Disabled determines the number of sectors transferred per block.

[PIO Mode] Indicates the type of PIO (Programmed Input/Output)

[Async DMA] Indicates the type of Async DMA

[Ultra DMA] Indicates the type of Ultra DMA

[S.M.A.R.T.] This allows you to activate the S.M.A.R.T. (Self-Monitoring Analysis & Reporting Technology) capability for the hard disks. S. M.A.R.T is a utility that monitors your disk status to predict hard disk failure. This gives you an opportunity to move data from a hard disk that is going to fail to a safe place before the hard disk becomes offline.


Hard Disk Write Protect

Disabled/Enabled device write protection, this will be effective only if device is accessed through BIOS.

The choice: Disabled, Enabled.

Super IO Configuration

Configure Win627DHG Super IO Chipset.

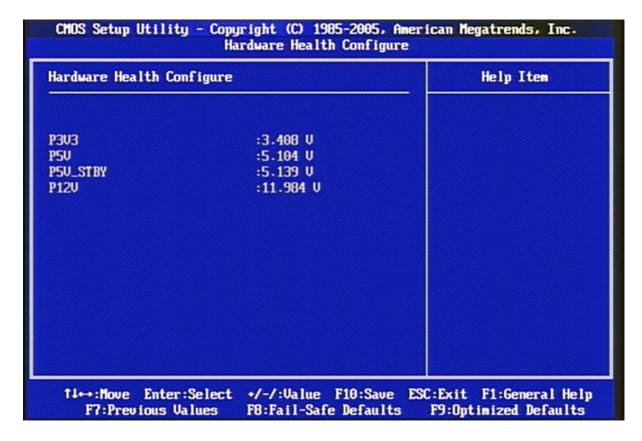
Serial Port 1 Address

Allows BIOS to Select Serial Port1 Base Addresses.

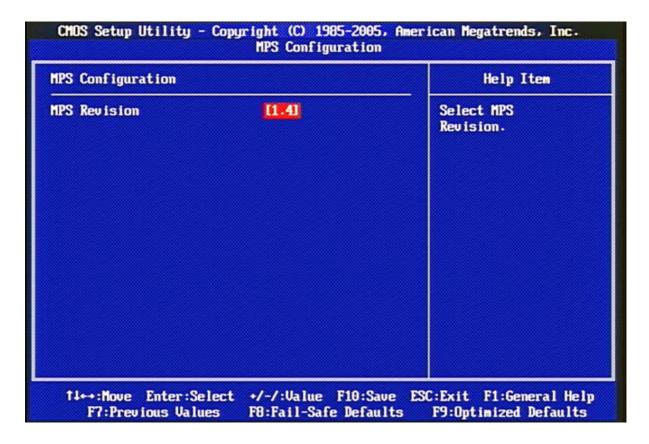
The choice: Disabled, 3F8/IRQ4, 3E8/IRQ4

Serial Port 2 Address

Allows BIOS to Select Serial Port2 Base Addresses.


The choice: Disabled, 2F8/IRQ3, 2E8/IRQ3.

Watchdog Support

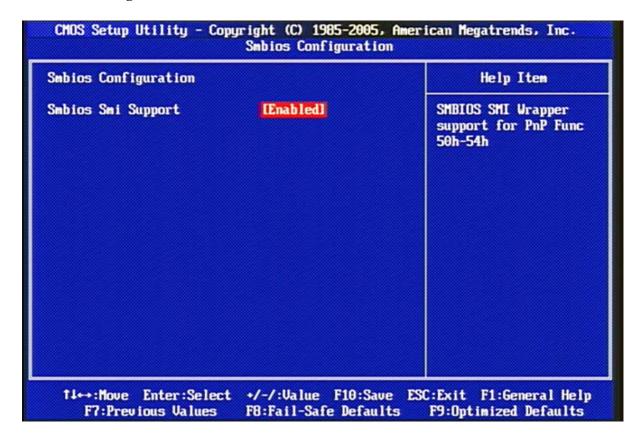

The choice: Disabled, Enabled

Hardware Health Configure

Configuration / Monitor the Hardware Health. Read only.

MPS Configuration

MPS Revision

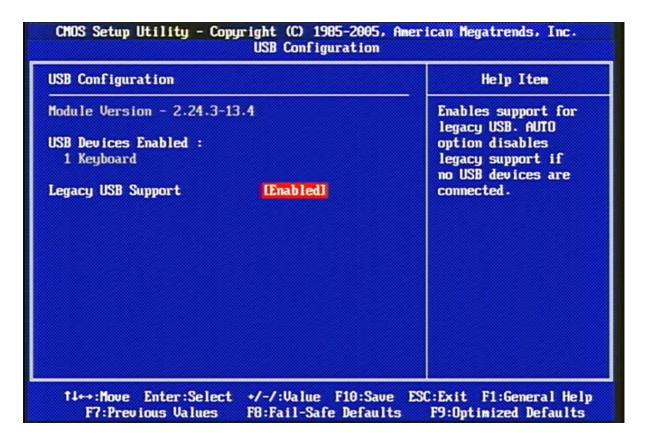

Select MPS Revision

This field allows you to select which MPS (Multi-Processor Specification) version to be used for the operating system. You need to select the MPS version supported by your operating system. To find out which version to use, consult the vendor of your operating system.

The choice: 1.1, 1.4.

Smbios Configuration

SMBIOS Configuration Menu

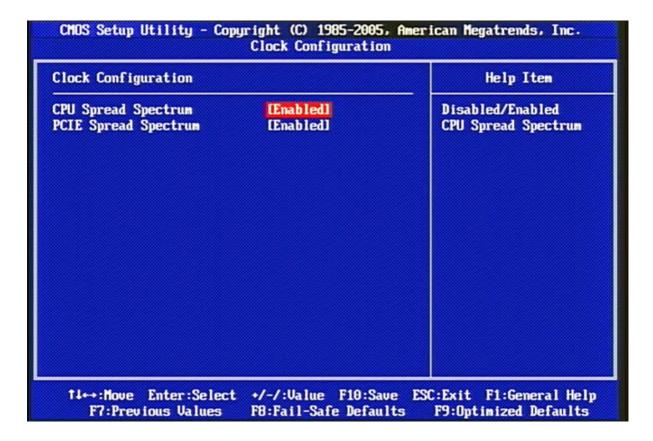

Smbios Smi Support

SMBIOS SMI Wrapper support for PnP Function 50h-54h

The choice: Disabled, Enabled.

USB Configuration

Enables support for Legacy USB. AUTO option disables legacy support if no USB devices are connected.



Legacy USB Support

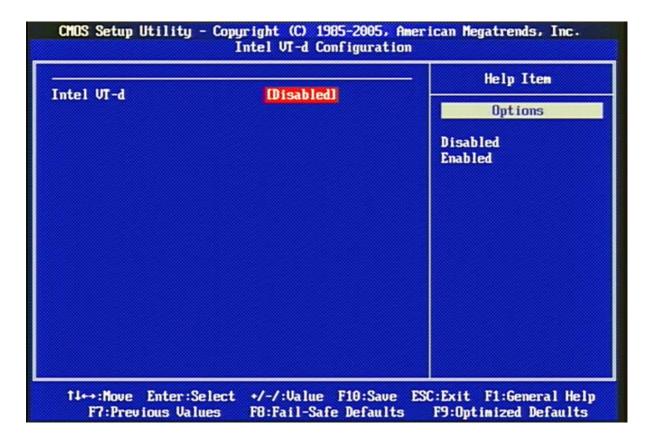
Set to [Enabled] if you need to use any USB 1.1/2.0 device in the operating system that does not support or have any USB 1.1/2.0 driver installed, such as DOS and SCO Unix.

The choice: Disabled, Enabled, Auto.

Clock Configuration

CPU Spread Spectrum

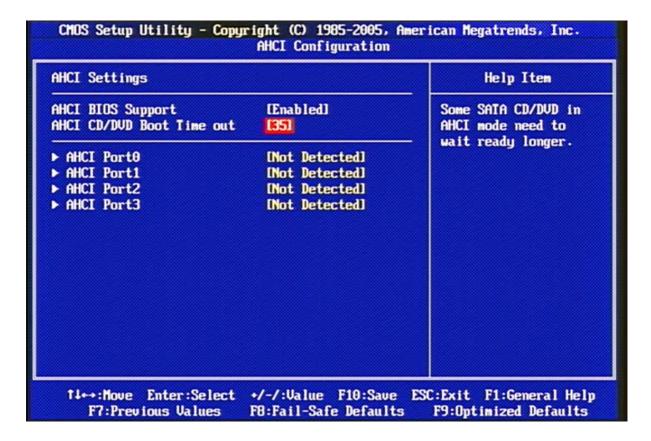
Disabled/Enabled CPU Spread Spectrum


The choice: Disabled, Enabled.

PCIE Spread Spectrum

Disabled/Enabled PCIE Spread Spectrum

The choice: Disabled, Enabled.


Intel VT-d Configuration

Intel VT-d

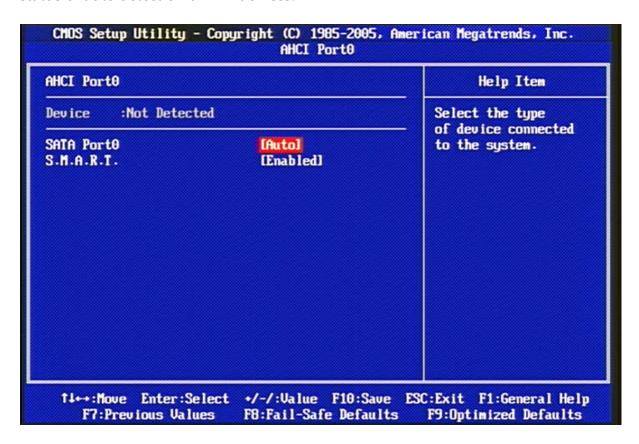
The choice: Disabled, Enabled.

AHCI Settings

AHCI BIOS Support

Enables for supporting

The choice: Disabled, Enabled.


AHCI CD/DVD Boot Time out

Some SATA CD/DVD in AHCI mode need to wait ready longer.

The choice: 0, 5, 10, 15, 20, 25, 30, 35.

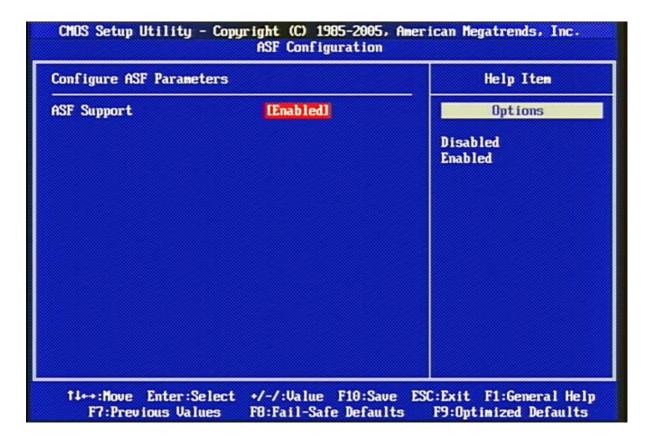
AHCI Port0 ~ Port3

While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.

SATA Port0 ~ Port3

Select the type of device connected to the system.

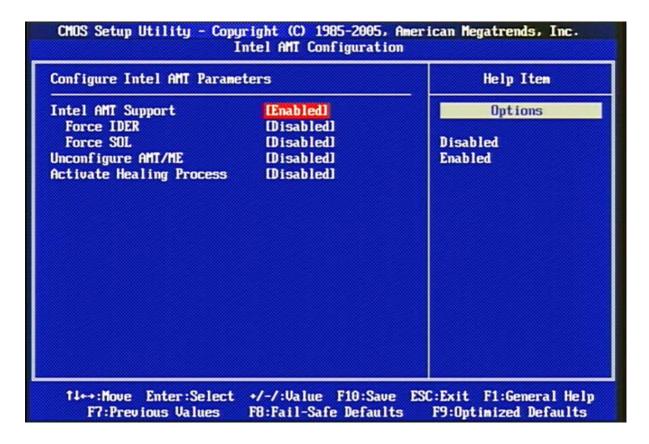
The choice: Auto, Not Installed.


S.M.A.R.T

S.M.A.R.T. stands for Self-Monitoring, Analysis and Reporting Technology.

This allows you to activate the S.M.A.R.T. (Self-Monitoring Analysis & Reporting Technology) capability for the hard disks. S. M.A.R.T is a utility that monitors your disk status to predict hard disk failure. This gives you an opportunity to move data from a hard disk that is going to fail to a safe place before the hard disk becomes offline.

The choice: Disabled, Enabled.


Configure ASF Parameters

ASF Support

The choice: Disabled, Enabled.

Configure Intel AMT Parameters

Intel AMT Support

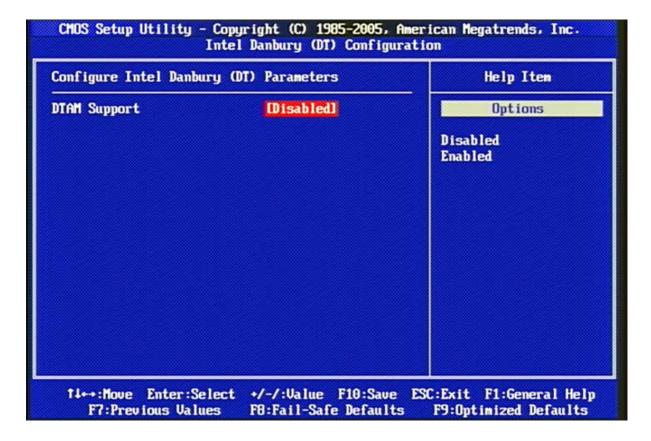
The choice: Disabled, Enabled.

Force IDER

The choice: Disabled, IDER Pri. Master, IDER Pri. Slave, IDER Sec. Master, IDER Sec. Slave

Force SOL

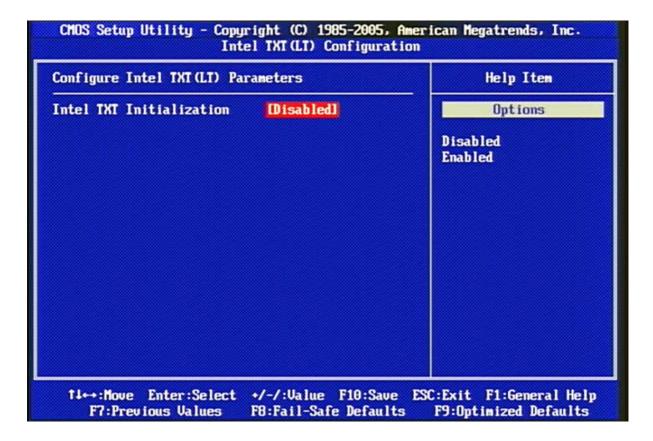
The choice: Disabled, Enabled.


Unconfigure AMT/ME

The choice: Disabled, Enabled.

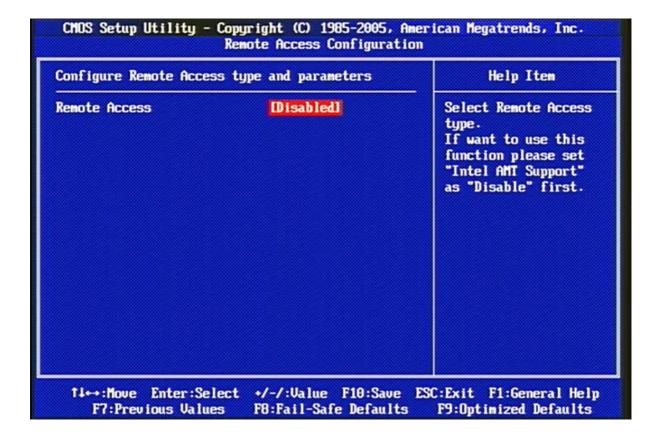
Activate Healing Process

The choice: Disabled, Enabled.


Configure Intel Danbury (DT) Parameters

DTAM Support

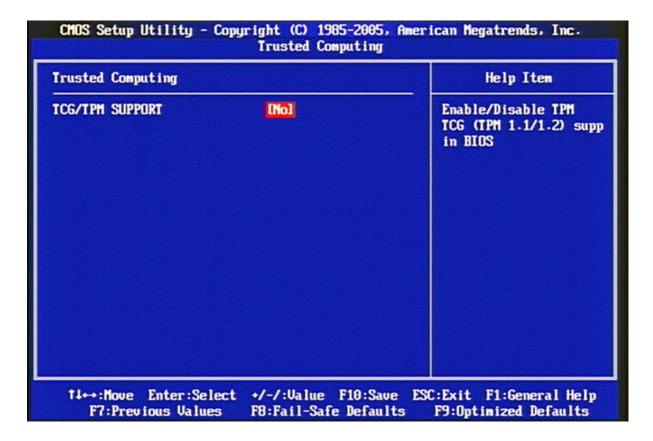
The choice: Disabled, Enabled.


Configure Intel TXT (LT) Parameters

Intel TXT Initialization

The choice: Disabled, Enabled.

Configure Remote Access type and parameters



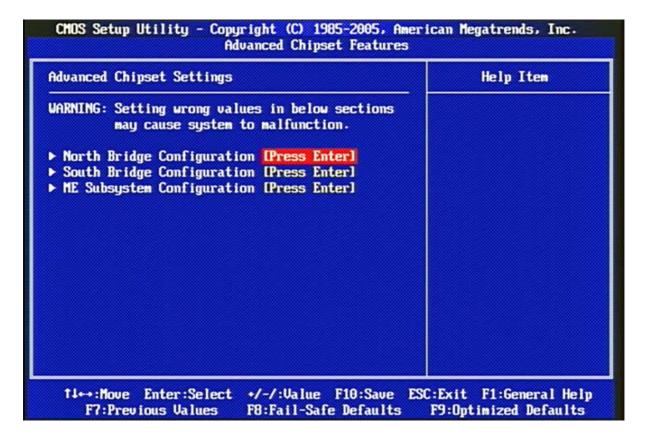
Remote Access

Select Remote Access type. If want to use this function please set "Intel AMT Support" as "Disable" first.

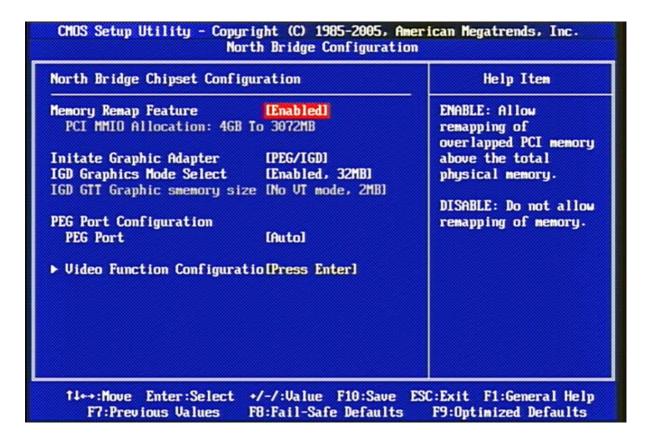
The choice: Disabled, Enabled.

Trusted Computing

TCG/TPM SUPPORT


Enabled/Disable TPM TCG (TPM 1.1/1.2) supp in BIOS.

The choice: No, Yes.


4.5 Advanced Chipset Features

Advance Chipset Settings

This menu controls the advanced features of the onboard Northbridge/Southbridge and ME Subsystem.

North Bridge Chipset Configuration

Memory Remap Feature

ENABLE: Allow remapping of overlapped PCI memory above the total physical memory. DISBALE: Do not allow remapping of memory.

The choice: Disabled, Enabled.

PCI MMIO Allocation

4GB To 3072MB. (Read Only)

Initate Graphic Adapter

Select which graphics controller to use as the primary boot device.

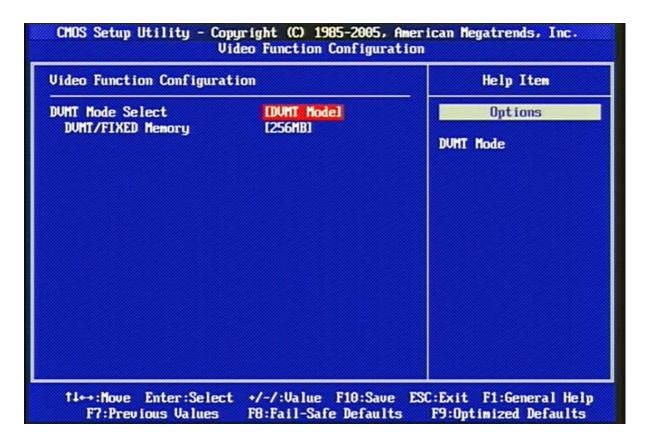
The choice: IGD, PEG/IGD.

IGD Graphics Mode Select

Select the amount of system memory used by the internal graphics device.

The choice: Enabled, 32MB, Enabled, 64MB, Enabled, 128MB.

IGD GTT Graphic smemory size


No VT mode, 2MB. (Read Only)

PEG Port Configuration

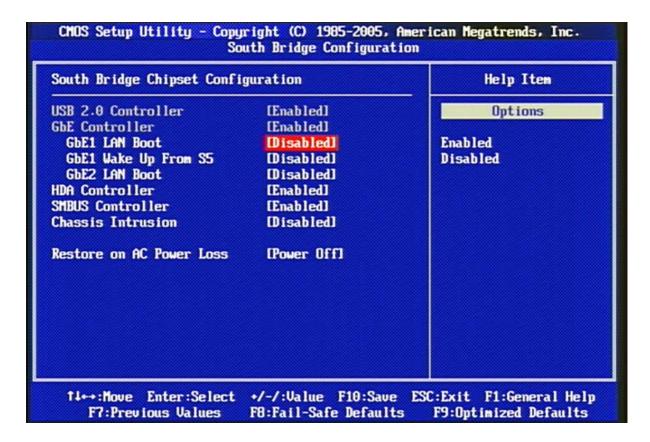
This setting allows you to select whether to use the on-chip graphics processor or the PCI Express card. When set to [Auto], the BIOS checks to see if a PCI Express graphics card is installed. If it detects that a PCI Express graphics card is present, the motherboard boots up using that card. Otherwise, it defaults to the onboard graphics processor.

The choice: Auto, Disabled.

Video Function Configuration

DVMT Mode Select

Intel's Dynamic Video Memory Technology (DVMT) allows the system to dynamically allocate memory resources according to the demands of the system at any point in time. The key idea in DVMT is to improve the efficiency of the memory allocated to either system or graphics processor.


It is recommended that you set this BIOS feature to DVMT Mode for maximum performance. Setting it to DVMT Mode ensures that system memory is dynamically allocated for optimal balance between graphics and system performance.

The choice: DVMT Mode.

DVMT/FIXED Memory

When set to DVMT/FIXED Mode, the graphics driver will allocate a fixed amount of memory as dedicated graphics memory, as well as allow more system memory to be dynamically allocated between the graphics processor and the operating system. The choice: 128MB, 256MB, Maximum DVMT.

South Bridge Configuration

USB 2.0 Controller (Read Only)

Set to [Enabled] if you need to use any USB 2.0 device in the operating system that does not support or have any USB 2.0 driver installed, such as DOS and SCO Unix.

GbE Controller (Read Only)

This setting Enable the onboard Gigabit Ethernet controller.

GbE1 LAN Boot

When [Enabled], the BIOS attempts to boot from a LAN1 boot image before it attempts to boot from a local storage device.

The choice: Enabled, Disabled.

GbE1 Wake Up From S5

This field specifies whether the system will be awakened from the S5 power saving mode when activity or input signal of onboard LAN1 is detected.

The choice: Enabled, Disabled.

GbE2 LAN Boot

When [Enabled], the BIOS attempts to boot from a LAN2 boot image before it attempts to boot from a local storage device.

The choice: Enabled, Disabled.

HDA Controller

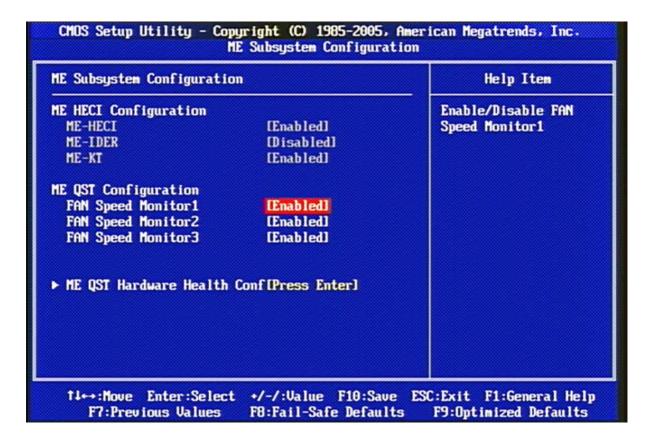
This setting controls the High Definition Audio interface integrated in the Southbridge.

The choice: Enabled, Disabled.

SMBUS Controller

The choice: Enabled, Disabled.

Chassis Intrusion


The choice: Disabled, Enabled, Reset.

Restore on AC Power Loss

This item allows user to configure the power status of using ATX power supply after a serious power loss occurs.

The choice: Power Off, Power On, Last State.

ME Subsystem Configuration

ME HECI Configuration

Enable/Disable ME-HECI, ME-IDER, ME-KT.

ME-HECI (Read Only)

This setting Enable the ME-HECI.

ME-IDER (Read Only)

This setting Enable/Disable can be changed by the IDE-R option of the Intel(R) AMT configuration.

ME-KT (Read Only)

This setting Enable/Disable can be changed by the SOL option of the Intel(R) AMT configuration.

ME QST Configuration

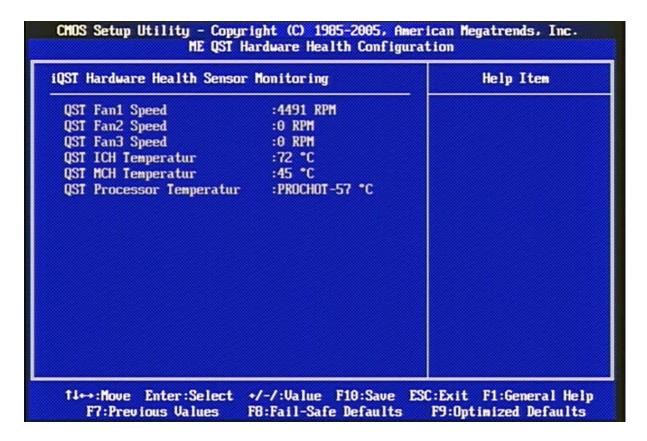
Enable/Disable FAN Speed Monitor1, 2, 3.

FAN Speed Monitor1

The choice: Disabled, Enabled.

FAN Speed Monitor2

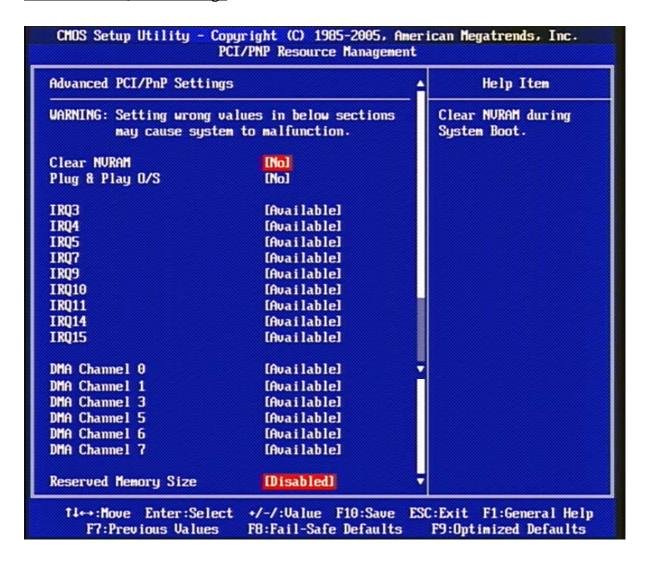
The choice: Disabled, Enabled.


FAN Speed Monitor3

The choice: Disabled, Enabled.

ME QST Hardware Health Configuration

Shows Fan 1-3 Speed, ICH &MCH Temperature and Processor Temperature.


iQST Hardware Health Sensor Monitoring (Read Only)

4.6 PCI/PNP Resource Management

Advanced PCI/PnP setting wrong values in below sections may cause system to malfunction.

Advanced PCI/PnP Settings

Clear NVRAM

Clear NVRAM during System Boot.

The choice: No, Yes.

Plug & Play O/S

No: lets the BIOS configure all the devices in the system.

Yes: lets the operating system configure Plug and Play (PnP) devices not required for boot if your system has a Plug and Play operating system.

The choice: No, Yes.

IRQ Resources

When resources are controlled manually, assign each system interrupt a type, depending on the type of device using the interrupt.

Available: Specified IRQ is available to be used by PCI/PnP devices. Reserved: Specified IRQ is reserved for use by Legacy USA Devices.

The choice: Press Enter.

IRQ-3/IRQ-4/IRQ-5/IRQ-7/IRQ-9/IRQ-10/IRQ-11/IRQ-14/IRQ-15 assigned to.

The choice: Available, Reserved.

DMA Resources

When resources are controlled manually, assign each system interrupt a type, depending on the type of device using the DMA Resource.

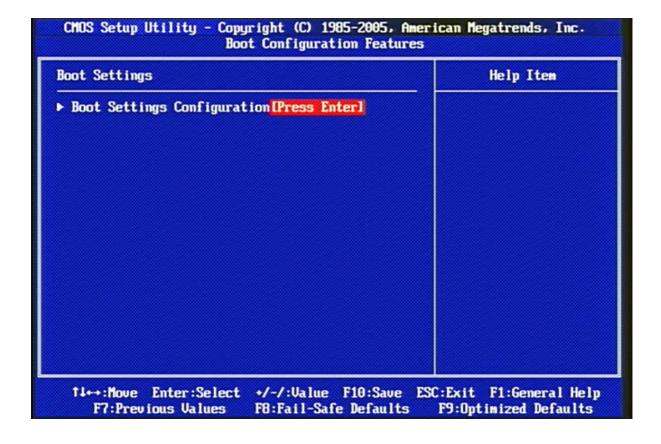
Available: Specified DMA is available to be used by PCI/PnP devices. Reserved: Specified DMA is reserved for use by Legacy USA Devices.

The choice: Press Enter.

DMA Channel 0/DMA Channel 1/DMA Channel 3/DMA Channel 5/DMA Channel 6/DMA Channel 7 assigned to.

The choice: Available, Reserved.

Reserved Memory Size


Select Size of memory block to reserve for legacy ISA devices.

The choice: Disabled, 16K, 32K, 64K.

4.7 Boot Configuration Features

Use this menu to specify the priority of boot devices.

Boot Setttings

Boot Setttings Configuration

Quick Boot

Allows BIOS to skip certain tests while booting. This will decrease the time needed to boot the system.

The choice: Disabled, Enabled.

Quiet Boot

Disabled: Displays normal POST messages.

Enabled: Displays OEM Logo instead of POST messages.

The choice: Disabled, Enabled.

AddOn ROM Display Mode

Set display mode for Option ROM.

This item is used to determine the display mode when an optional ROM is initialized during POST. When set to [Force BIOS], the display mode used by AMI BIOS is used. Select [Keep Current] if you want to use the display mode of optional ROM.

The choice: Force BIOS, Keep Current.

Bootup Num-Lock

Select Power-on state for Numlock.

This setting is to set the Num Lock status when the system is powered on. Setting to [On] will turn on the Num Lock key when the system is powered on. Setting to [Off] will allow users to use the arrow keys on the numeric keypad.

The choice: Off, On.

PS/2 Mouse support

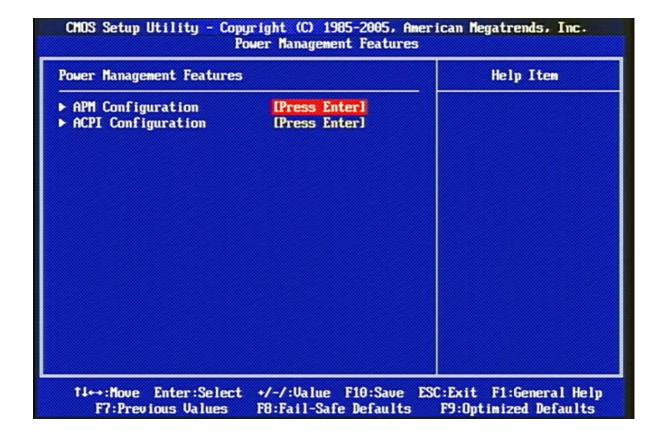
Select support for PS/2 Mouse.

Select [Enabled] if you need to use a PS/2-interfaced mouse in the operating system.

The choice: Disabled, Enabled, Auto.

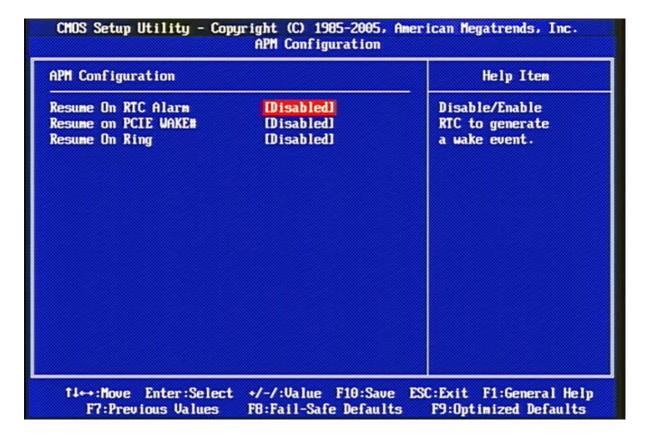
Hit 'DEL' Message Display

Displays" Press DEL to run Setup in POST".


Set this option to [Disabled] to prevent the message as follows:

Hit Del if you want to run setup

It will prevent the message from appearing on the first BIOS screen when the computer boots. Set it to [Enabled] when you want to run the BIOS Setup Utility.


The choice: Disabled, Enabled.

4.8 Power Management Features

APM Configuration

Select for APM Configuration.

Resume On RTC Alarm

Disable/Enable RTC to generate a wake event.

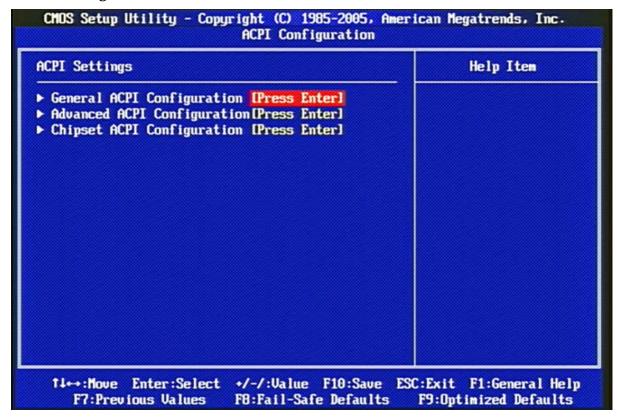
The choice: Disabled, Enabled.

Resume On PCIE WAKE#

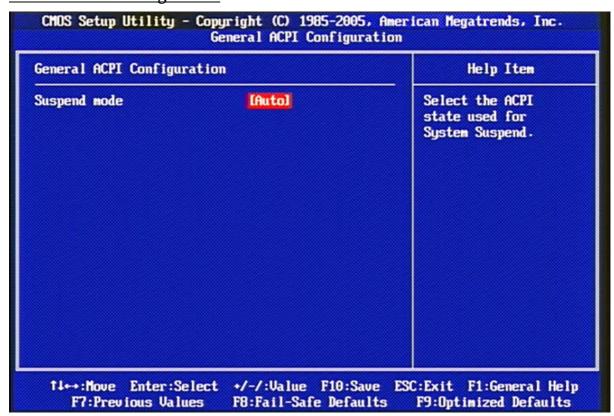
Disable/Enable PCIE to generate a wake event.

The choice: Disabled, Enabled.

Resume On Ring


Disable/Enable RI to generate a wake event.

The choice: Disabled, Enabled.


ACPI Configuration

Select for Advanced ACPI Configuration.

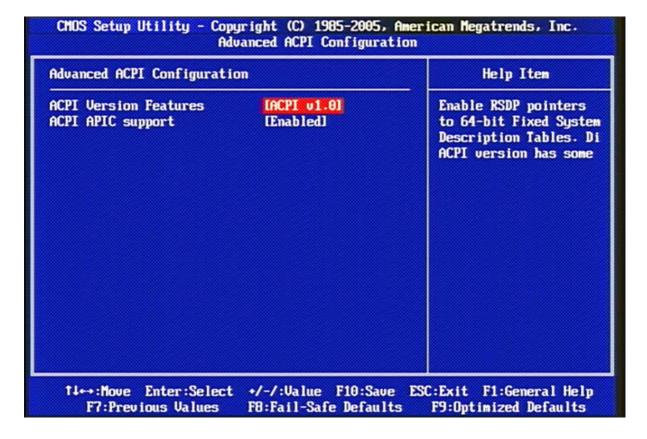
ACPI Settings

General ACPI Configuration

Suspend mode

Select the ACPI state used for System Suspend.

This item specifies the power saving modes for ACPI function. If your operating system supports ACPI, you can choose to enter the Standby mode in S1 (POS) or S3 (STR) fashion through the setting of this field. Options are:


[Auto] The Auto mode provides those S1 and S3 modes to operation system or application and allows them to decide which mode (S1 or S3) can be used.

[S1 (POS)] The S1 sleep mode is a low power state. In this state, no system context is lost (CPU or chipset) and hardware maintains all system contexts.

[S3 (STR)] The S3 sleep mode is a lower power state where the information of system configuration and open applications/ files is saved to main memory that remains powered while most other hardware components turn off to save energy. The information stored in memory will be used to restore the system when a "wake up" event occurs.

Advanced ACPI Configuration

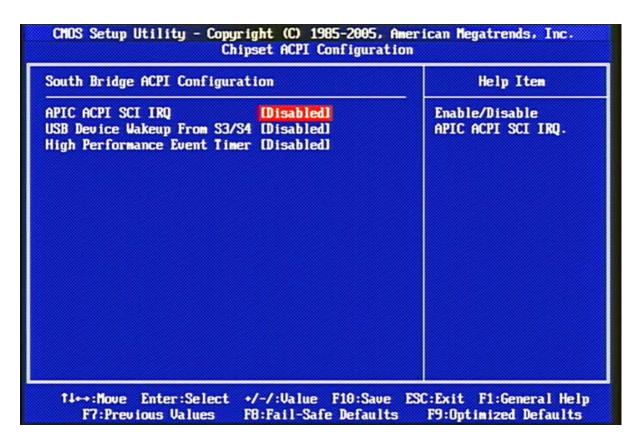
Advanced ACPI Configuration settings, Use this section to configure additional ACPI options.

ACPI Version Features

Enable RSDP pointers to 64-bit Fixed System Description Tables.

The choice: ACPI v1.0 / ACPI v2.0 / ACPI v3.0.

ACPI APIC support


Include ACPI APIC table pointer to RSDT pointer list.

The choice: Disabled, Enabled.

Chipset ACPI Configuration

Chipset ACPI related Configuration settings, Use this section to configure additional ACPI options.

South Bridge ACPI Configuration

APIC ACPI SCI IRQ

Enable / Disable APIC ACPI SCI IRQ.

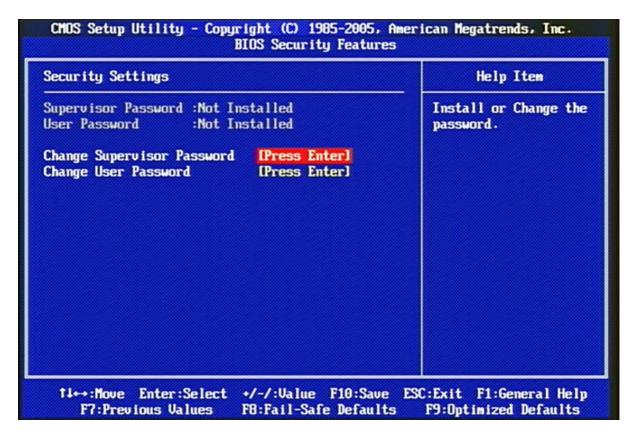
The choice: Disabled, Enabled.

USB Device Wake From S3/S4

Enable / Disable USB device Wake from S3/S4.

The choice: Disabled, Enabled.

High Performance Event Timer


The choice: Disabled, Enabled.

4.9 BIOS Security Features

Use this menu to set supervisor and user passwords.

Security Settings

Install or Change the password.


Supervisor Password / Change Supervisor Password

Supervisor Password controls access to the BIOS Setup utility. These settings allow you to set or change the supervisor password. Please press "Enter" to key-in.

<u>User Password / Change User Password</u>

User Password controls access to the system at boot. These settings allow you to set or change the user password.

4.10 Default Menu

Load Optimal Defaults

When <Enter> is pressed, a confirmation dialog box with a message similar to:

Load Optimal Defaults? [Ok] [Cancel]

Select 'Ok' loads the default values that are factory settings for optimal performance system operations.

Load Failsafe Defaults

When <Enter> is pressed, a confirmation dialog box with a message similar to:

Load Failsafe Defaults? [Ok] [Cancel]

Select 'Ok' loads the BIOS default values for the most stable, minimal-performance system operations.

4.11 Exiting Selection

CMOS Setup Utility - Copyright (C) 1985-2005, American Megatrends, Inc. Standard BIOS Features ▶ BIOS Security Features Advanced BIOS Features Load Optimal Defaults Load Failsafe Defaults Advanced Chipset Features ▶ PCI/PNP Resource Management Discard Changes ▶ Boot Configuration Features Save Changes and Exit Power Management Features Discard Changes and Exit 14↔:Move Enter:Select +/-/:Value F10:Save ESC:Exit F1:General Help F7:Previous Values FB:Fail-Safe Defaults F9:Optimized Defaults υθ2.62 (C) Copyright 1985-2008, American Megatrends, Inc.

Discard Changes

Abandon all changes and continue with the Setup Utility. Pressing <Enter> on this item asks for confirmation: Discard Changes? Please select [Ok] or [Cancel].

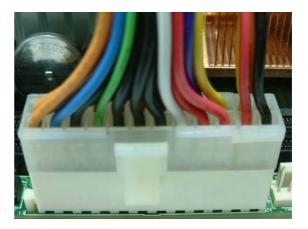
Save Changes and Exit

Exit System Setup and save your changes to CMOS. Pressing <Enter> on this item asks for confirmation: Save configuration changes and exit the Setup? Please select [Ok] or [Cancel].

Discard Changes and Exit

Exit System Setup and discard your changes to CMOS. Pressing <Enter> on this item asks for confirmation: Discard changes and exit the setup? Please select [Ok] or [Cancel].

Chapter 5 Troubleshooting


This chapter provides a few useful tips to quickly get WADE-8180 running with success. As basic hardware installation has been addressed in Chapter 2, this chapter will primarily focus on system integration issues, in terms of BIOS setting, and OS diagnostics.

5.1 Hardware Quick Installation

ATX Power Setting

Unlike other Single board computer, WADE-8180 supports ATX only. Therefore, there is no other setting that really needs to be set up. However, there are only two connectors that must be connected – PWR1 (4 pins CPU +12V main power connector) & PWR2 (24 pins ATX Power Connector) Figure.

Serial ATA Hard Disk Setting for IDE/RAID/AHCI

Unlike IDE bus, each Serial ATA channel can only connect to one SATA hard disk at a time; there are total four connectors, SATA1 & SATA2, SATA3 and SATA4. The installation of Serial ATA is simpler and easier than IDE, because SATA hard disk doesn't require setting up Master and Slave, which can reduce mistake of hardware installation. All you need to operate IDE, RAID and AHCI application for system, please follow up setting guide in BIOS programming (Table 5-1); Furthermore, you can consult chapter 4.4 partially "IDE Configuration" part of the" Advanced BIOS Features".

Detect sequence: SATA1 → SATA2 → SATA3 → SATA4

SATA1 -- Primary IDE Master SATA2 -- Secondary IDE Master

SATA3 -- Primary IDE Slave

SATA4 -- Secondary IDE Slave

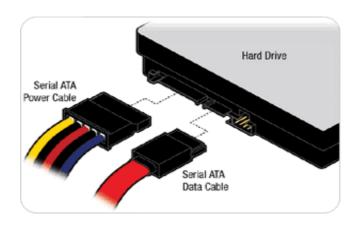
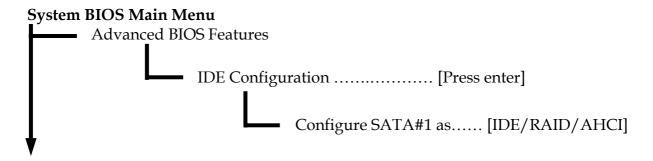



Table. 5-1 SATA Mode setting guide

5.2 BIOS Setting

It is assumed that users have correctly adopted modules and connected all the devices cables required before turning on DC 12V power. 240-pin DDR3 Memory, keyboard, mouse, SATA hard disk, VGA connector, device power cables, ATX accessories are good examples that deserve attention. With no assurance of properly and correctly accommodating these modules and devices, it is very possible to encounter system failures that result in malfunction of any device.

To make sure that you have a successful start with WADE-8180, it is recommended, when going with the boot-up sequence, to hit "DEL" key and enter the BIOS setup menu to tune up a stable BIOS configuration so that you can wake up your system far well.

Loading the default optimal setting

When prompted with the main setup menu, please scroll down to "Load Optimal Defaults", press "Enter" and "Ok" to load in default optimal BIOS setup. This will force your BIOS setting back to the initial factory configuration. It is recommended to do this so you can be sure the system is running with the BIOS setting that Portwell has highly endorsed. As a matter of fact, users can load the default BIOS setting any time when system appears to be unstable in boot up sequence.

Auto Detect Hard Disks

In the BIOS Advanced Settings=> IDE Configuration, pick up any one from Primary IDE Master & Slave/Secondary IDE Master & Slave ports, and press "Enter". Setup the selected IDE port and its access mode to "Auto". This will force system to automatically pick up the IDE devices that are being connected each time system boots up.

Improper Disable Operation

There are too many occasions where users disable a certain device/feature in one application through BIOS setting. These variables may not be set back to the original values when needed. These devices/features will certainly fail to be detected.

When the above conditions happen, it is strongly recommended to check the BIOS settings. Make sure certain items are set as they should be. These include the Serial Port1/ Serial Port 2 ports, USB ports, external cache, on-board VGA and Ethernet.

It is also very common that users would like to disable a certain device/port to release IRQ resource. A few good examples are

Disable Serial Port1 to release IRQ #4 Disable Serial Port2 to release IRQ #3 Etc...

A quick review of the basic IRQ mapping is given below for your reference.

IRQ#	Description
IRQ #0	System Timer
IRQ #1	Keyboard Event
IRQ #2	Usable IRQ
IRQ #3	COM2
IRQ #4	COM1
IRQ #5	Usable IRQ
IRQ #6	Diskette Event
IRQ #7	Usable IRQ
IRQ #8	Real-Time Clock
IRQ #9	Usable IRQ
IRQ #10	Usable IRQ
IRQ #11	Usable IRQ
IRQ #12	IBM Mouse Event
IRQ #13	Coprocessor Error
IRQ #14	Hard Disk Event
IRQ #15	Usable IRQ

It is then very easy to find out which IRQ resource is ready for additional peripherals. If IRQ resource is not enough, please disable some devices listed above to release further IRQ numbers.

5.3 FAQ

Symptom: SBC keeps beeping, and no screen has shown.

Solution: In fact, each beep sound represents different definition of error message. Please refer to table as following:

Beep sounds	Meaning	Action
One long beep with one	DRAM error	Change DRAM or reinstall it
short beeps		
One long beep constantly	DRAM error	Change DRAM or reinstall it
One long beep with two	Monitor or Display	Please check Monitor connector
short beeps	Card error	whether it inserts properly
Beep rapidly	Power error warning	Please check Power mode setting

Information & Support

Question: I forget my password of system BIOS, what am I supposed to do?

Answer: You can simply short 1-2 pins on J7 to clean your password.

Question: Intel Q45 series Chipset supports Dual Channel Mode, but how can I enable this function?

Answer: You don't have to change any setting. You can simply plug in two DDR3 Long-DIMM Modules, and then system will automatically enable Dual Channel Mode.

Question: What kind of CPU supports?

Answer:Supports Intel® Core 2 Quad, Core 2 Duo Desktop processors up to 1333 MHz FSB in an LGA775 socket.

Question: How to update the BIOS file of the WADE-8180?

Answer: 1. Please visit web site of the Portwell download center as below hyperlink and register an account.

http://www.portwell.com.tw/support/newmember.php

- 2. Input your User name and password to log in the download center.
- 3. Select the "Search download" to input the keyword "WADE-8180".
- 4. Find the "BIOS "page to download the ROM file and flash utility.
- 5. Execute the zip file to root of the bootable USB Pen drive.
- 6. Insert your bootable USB Pen drive in WADE-8180 board and power-on.
- 7. Input the "AFUDOS XXXXX.ROM -p -b -n -c" to start to update BIOS. ("XXXXX" is the file name of the ROM file.)
- 8. Switch "Off" the Power Supply when you finished the update process.
- 9. To short the J7 jumper from 2-3 short to 1-2 short 5 seconds then set back to 2-3 short. (Clear CMOS)
- 10. Switch "ON" the Power Supply then press the "del" key to BIOS to load "Failsafe defaults" and "Optimal defaults" then select "Save Changes and Exit" option.

Note:

Please visit our technical web site at

http://www.portwell.com.tw

For additional technical information, which is not covered in this manual, you can mail to <u>tsd@mail.portwell.com.tw</u> or you can also send mail to our sales, they will be very delighted to forward them to us.

System Memory Address Map

Each On-board device in the system is assigned a set of memory addresses, which also can be identical of the device. The following table lists the system memory address used for your reference.

Memory Area	Size	Device Description		
0000-003F	1K	Interrupt Area		
0040-004F	0.3K	BIOS Data Area		
0050-006F	0.5K	System Data		
0070-040A	14K	DOS		
040B-04C6	2.9K	Program Area		
04C7-9DBF	611K	[Available]		
= Conventional memory ends at 623K =				
9DC0-9DFF	1K	Extended Bios Area		
9E00-9FFF	8K	Unused		
A000-AFFF	64K	VGA Graphics		
B000-B7FF	32K	Unused		
B800-BFFF	32K	VGA Text		
C000-CC5F	49K	Video ROM		
CC60-EFFF	142K	Unused		
F000-FFF	64K	System ROM		
HMA	64K	First 64k Extended		

Interrupt Request Lines (IRQ)

Peripheral devices can use interrupt request lines to notify CPU for the service required. The following table shows the IRQ used by the devices on board.

IRQ#	Current Use	Default Use
IRQ 0	Unused	System Timer
IRQ 1	System ROM	Keyboard Event
IRQ 2	[Unassigned]	Usable IRQ
IRQ 3	System ROM	COM2
IRQ 4	System ROM	COM1
IRQ 5	Unused	Usable IRQ
IRQ 6	System ROM	Diskette Event
IRQ 7	Unused	Usable IRQ
IRQ 8	System ROM	Real-Time Clock
IRQ 9	[Unassigned]	Usable IRQ
IRQ 10	[Unassigned]	Usable IRQ
IRQ 11	[Unassigned]	Usable IRQ
IRQ 12	System ROM	IBM Mouse Event
IRQ 13	System ROM	Coprocessor Error
IRQ 14	System ROM	Hard Disk Event
IRQ 15	[Unassigned]	Usable IRQ