User's Manual

ServoCenter 3.1
USEB

User's Manual
&
Programming Guide

Yost Engineering, Inc.
630 Second Street
Portsmouth, Ohio 45662

www.YostEngineering.com

©2002-2005 Yost Engineering, Inc.
Printed in USA

http://www.YostEngineering.com/

User's Manual

Table of Contents

1. Package CRECKIISE....ccovvuueiiieriirsrnnreccsssssnnnescsssssnnssses 3
2. FUNCEION O VeI VICW.uuuuueeeriiersssssnnrrecsssssssssnecsssasssssssssssssssssssse 3
2.1 INEFOAUCTION.cueciueersrecsuriisaensnesssecsanssssesssncssseessnssssesssassssesssssssassssassssesssssssansssassssessassssassssasssssssansss 3
2.2 BOAId OVeIVIEW..cccueirreecsuenssnenssnnsssncssnssssesssnssssessssssssessssssssesssassssesssasssssssssssssassssssssssssassssasssssssasss 4
2.3 Features and SPecCifiCationsS.....c.ccccvvececvricssnrinssnncsssnncsssicsssniosssisssssssssssssssssssssssssssssssssssssssassssses 6
2.3 FRATUIES. ..ottt ettt ettt e s e e sttt e st e e s e e sabe e e sanee e e 6

2.3.2 SPECTICATIONS. ..uvteeeieiieciieeeieeestteeeieeeete e e sttt eestteeestbaeesbeeessaeesnseeesssaeeasseeessseeensseeesseens 6

o 1) o7 Y RS PS 6

33 11S) y 2Tt RS 6

ELECHTICALeiieiieciee ettt et e e e et e e e eab e e e abeeeaaeeeabeeeaaeeeraeeans 6

R 2 1] 721 | 10 o TR 7
3.1 General Installation Precautions........ . iieineiineinseensennsninsensssecsessssesssessssesssessssssssesssssesseses 7
3.2 Installing the ServoCenter 3.1 USB DIIVerS......ccccciiiiicssssnnicssssnricssssssnecsssssssssssssssssssssssssssssnsss 7
3.2.1 Before Installing DITVETS.......c.ccoieiiiieiieeieeiie ettt ettt sae et saeeseessaeenseesene e 7

3.2.2 Installing the Virtual Com POrt DITVeT........cccueieiiiiiiiieeieeeieece e e 8

3.2.3 Installing the ServoCenter 3.1 DITVeT.......ccceeciieeiiiieeiieeiie et 10

3.3 Connecting a Single ServoCenter 3.1 USB Board........couenneeinreecsensnensnensnnssaenssncsssessansssaees 10
3.4 Connecting Multiple ServoCenter 3.1 Boards 11
3.4.1 “Daisy-Chaining” Multiple ServoCenter 3.1 USB Boards...........cccccceeriiiniieniiienenne 11

3.4.2 Using Multiple ServoCenter 3.1 USB Boards on a USB Hub...........cccccccceininninnn. 13

3.5 JUMPET SEEIMES..cciierrriirrnresssrrcsssrrcssniesssnsssssesssssesssssssssssessssssssssssssssesssssssssssssssssossssssssssssssssssses 13
B35 T JUMPET JP L.ttt ettt ettt e et eearee s 13

352 JUMPET JP2..ceoeieee et et ettt ettt et eearee s 14

353 TUMPET JP3 ..ttt et e e eeenree s 14

3.6 Board Identification Setlil@s........ccuvvericrsssrricssssnnnccsssnnecsssssssesssns 15
4 Programming the ServoCenter 3.1.......cciiiiicvricsisnnccsssnnicsssssecssssssessssssssssssssssssnns 16
4.1 Using the Virtual Com Port........ieieiennieniiniinensenssnensecssnessessssessssesssssssssssssssssssssssssssssssssss 16
4.2 ServoCenter 3.1 ProtoCoL.....iciiciisencisencssnicssnecssssecsssnecssssesssssesssssesssssessssssssssssssssssssssseses 16
4.2.1 PrOtOCO] OVETVIEW....cotiiuiiiiiiieieeiiesiteie ettt ettt ettt sttt sttt st nbe et saeenns 16

4.2.2 PaCKEt OVETVIEW....eeutiiiiitieiieeiiesitete ettt sttt ettt et sttt et ettt st e bt enseeneenees 17

4.2.3 Start 0f PACKEt BYLe........oooiieiiieiieiieeie ettt et e e e ebeennae s 17

4.2.4 ComMMANG STeiiiiiiieiie ettt ettt sttt st eenaeeea 18
CommMANd SUMMATY........eeeiiieeiiieeie et eteeeeeeesreeesbee e aeeessseessseessseeensseesnsseennnes 18

Command DEtailS..........eouiiiiiiiie e 19

4.2.5 The Checksum ValUC..........ccciiiiiiiiiiiieiic ettt 24

4.3 Programming with Raw Serial I/O......uiiiiiiiviiiciissnniicscsnnicssssnnricsssssssssssssssssssssssessssssssssssnans 25
4.3.1 QBASIC Example Program........c..ccccceoueriiniriinieieienecieeiesieesieeteeieesie e 25

4.3.2 C++: Microsoft Visual C++ 6 Example Program...........ccoccecerienennienicninncnienennens 26

4.3.3 C: Linux gcc Example Program...........cccocveeiiiiiienieeiiieeieeeese e 28

4.3.4 C : Borland Turbo C Sample Program.............ccccceeviiiiieniiiiiienieeiieieeieeseee e 30

4.3.5 Visual Basic 6 Sample Program............cccceevuieriiiiiienieeieenie et 31

4.4 Programming With the ServoCenter 3.1 ActiveX Control 32
4.4.1 Operation with ServoCenter ActiveX Control............cccvevveeciienieeiiienieeieenie e 32

4.4.2 Installing the ServoCenter ActiveX Control..........ccccveeeiieeriiieeniieenie e e 32

4.4.3 Using the ServoControl in Visual Basic 6.0............cccceevviiieiiiiniieeeiiecee e 33

4.4.4 ServoCenter 3.1 OCX Control Methods..........cceeviiiiiiiiiiiiiiieiiececeeeeee e 34

4.4.5 Programming in Visual Basic 6.0 with the YEIServoControl.............c.ccccevveveveenneen. 38

4.5 Programming With the ServoCenter 3.1 DLL.......ciiciiviiiciissnnicssssnnricsssnsscsssssssscsssssssssssssssees 39
4.5.1 ServoCenter 3.1 DLL Functional OVervieW............ccccveeeiuieeeiiiieeiieeciie e eevee e 39

4.5.2 Installing the yeisrvo.dll Runtime Library.........cccccoeeeeriininienicncinicnicnceiceeeeeen 43

4.5.3 Programming with yeisrvo.dll in Visual Basic 6.0...........cccccoevieviiiiiiniiiieeieeee 43

4.5.4 Programming with yeisrvo.dll in Visual CH++ 6.0..........ccoooiiviiiiiiiniiieiieieeeeeeen 44

4.5.5 Programming with yeisrvo.dll in Visual C++ NET..........ccccooviiviiiiiiiiiieieieeee 45

4.5.6 Programming with yeisrvo.dll in the Microsoft .NET Framework..............c..cccoeeuenn. 45

Visual Basic INET.......couiiiiiiieeee ettt sttt s 46
ettt h et ettt et h et e a e te e bt n e e ehe e teentesaeenbeenean 46

5. APPECNAIXaaeiiiiiiiiiirsssssssssssnssssssrresescssses 47
5.1 Hexadecimal/Decimal/Binary Conversion Chart.........ceiiiinisencsssencssnncsssnicssseecssssessssesnns 47
5.2 Serial Cable DIagram.........cceeicnvricssnccisnncssssncsssncsssscssses 47
5.3 ServoCenter 3.1 Circuit Schematic 48

User's Manual

1. Package Checklist

When you purchase this product you receive the following items:

ServoCenter 3.1 USB Controller Board

- USB Device Cable (Type A to Type B)

- AC Adaptor (9VDC@1500ma, Positive Center)
ServoCenter 3.1 USB User’s Manual & Programming Guide
ServoCenter 3.1 Software/Examples CD

Attention: The ServoCenter 3.1 USB Controller Board contains static sensitive devices.
Avoid touching the circuitry on the board and always handle the board by the edges
only.

Caution: Fully read this instruction manual before operating the ServoCenter 3.1 USB.
Misuse of the ServoCenter 3.1 USB board could result in equipment damage or injury.

2. Function Overview

2.1 Introduction

The ServoCenter 3.1 USB is an embedded controller that allows any device with a USB
port or serial port to control standard hobby servo motors. The board provides both a
USB and a serial interface to allow for easy control of the seek position and seek speed
of each of up to sixteen connected servos independently and simultaneously. This
independent control scheme allows one servo to be moving to a position slowly, while
another is moving to a different position quickly, while yet another is moving to
another position at a medium speed.

The ServoCenter USB controller also offers features such as absolute & relative control
command sets, raw & scaled positional modes, a simple yet reliable command protocol,
and on-board settings storage.

The ability to independently control both position and speed, combined with the
controller's flexible and extensible feature set make ServoCenter 3.1 USB especially
useful for servo control applications such as robotics, animatronics, motion control,
automation, retail displays, and other areas where independent or coordinated fluid
servo motion is necessary or desirable.

Up to 16 motors can be connected to each ServoCenter 3.1 USB board and up to 16
ServoCenter 3.1 boards can be “daisy-chained” together, thus allowing for a total of
256 RC servos to be controlled independently and simultaneously from one RS-232
serial port.

The ServoCenter 3.1 USB controller can be programmed using a simple raw command
protocol or can be programmed using the included ActiveX control and DLL.
ServoCenter 3.1 USB can be programmed via either the USB or serial port, and USB
communication is made simple through the use of the virtual COM port feature of the
USB drivers. Example programs illustrating various programming methods are
discussed in this user's guide and are provided on the included CD, along with the USB
drivers for the ServoCenter 3.1 USB.

User's Manual

2.2 Board Overview

14. Power LED 15. Jumper JP1
| } [ll 1. Power Switch |
13. Reset Button

I 12. Voltage Regulator I 2. Power Supply Input I

3. USB Connector Port I

I 11. Board ID Switch

I 4. Serial IN Connector I

10. Jumper JP2

I 5. Serial THRU connector I

| 9. Jumper JP3 |

6. External Power Pads I

I 8. Servo Connector 0-7 I I 7. Servo Connector 8-15 I

1. Power Switch — The power switch is used to switch the controller board and the
attached servos off. The board will also not pass information from the serial IN port
to the serial THRU port when turned off.

2. Power Supply Input — Attach a 7-15VDC power source that can supply at least
1000ma supply current. The supply connector should be a 2.1mm x 5.5mm female
connector with a positive center.

3. USB Connector Port — The controller can receive control messages from this port.
This port should be connected to a standard USB port on the host computer system.

4. Serial IN Connector — The controller can receive its control messages from this
port. This port is wired as a DCE port and should be connected with a straight-
through serial cable to a PC serial port or the serial THRU port of another
ServoCenter controller. Serial port behavior is partially determined by jumper
settings.

5. Serial THRU Connector — Messages received on the serial IN port are sent to the
serial THRU port. This port is wired as a DTE port and should be connected to with
a straight-through serial cable to the serial IN port of another ServoCenter controller.
Serial port behavior is partially determined by jumper settings.

6. External Power Pads — If a jumper is installed on position 3 of JP3 then these pads
act as a source of external power which may be used to power additional servos or
circuitry at either 4.8Vdc or 6.0Vdc. If the jumper at position 3 of JP3 is not installed
then these pads may be used to connect an external servo power source such as a
battery or higher current supply.

7. Servo Connector 8-15 — Servos 8 through 15 are connected here. The servos should
always be connected so that the black (ground) wire of the servo is toward the
outside edge of the board.

User's Manual

8. Servo Connector 0-7 — Servos 0 through 7 are connected here. The servos should
always be connected so that the black (ground) wire of the servo is toward the
outside edge of the board.

9. Jumper JP3 — Position 1 of this jumper write protects the internal settings when
installed. Position 2 selects the voltage level provided to the servos as follows: 4.8
volts when installed, 6.0 volts when removed. Position 3 removes the on-board
regulator's voltage from the servo connector when removed. It is necessary to
remove this jumper when powering the servos from an external power source via the
external power pads.

10.Jumper JP2 — This jumper selects the serial data transfer rate as follows: both
positions removed = 9600bps, position 1 removed and 2 installed = 14400bps,
position 1 installed and position 2 removed = 19200bps, both positions installed =
38400bps. When USB connectivity is used the data rate setting for the “Virtual Com
Port” must match this jumper setting.

11.Board ID Switch — This switch determines the board ID of the ServoCenter
controller board. When multiple boards are “daisy-chained” they each require a
unique board ID setting to be controlled independently.

12.Voltage Regulator — This component supplies the power for all sixteen servos.
During normal operation the regulator will get HOT. To avoid injury be careful not
to touch the regulator during operation. To avoid fire do not allow combustible
materials to contact the regulator during operation. The regulator circuit is equipped
with both over-current and over-temperature shutdown circuitry.

13.Reset Button — This button allows the Servo Controller system to be reset without
cycling the power.

14.Power LED — When the power is on the power LED will be lit.

15.Jumper JP1 — This jumper controls the configuration of the serial communications.
When a jumper is installed in position 1, the module will receive command messages
from either the serial IN port or the USB port. This allows a board to be temporarily
disabled by removing this jumper. When a jumper is installed in position 2, the
module will be able to transmit messages to the PC. A jumper installed in position 3
allows this board to pass information to subsequently connected ServoCenter boards.
A jumper installed in position 4 allows subsequently connected ServoCenter boards
to pass information back to the serial IN and USB ports.

User's Manual

2.3 Features and Specifications

2.3.1 Features
Supports both USB and RS232 serial control.
- USB connectivity allows complete servo control via the PC's USB port.
Standard RS-232 serial control at 9600,14400,19200, or 38400 bps.

- Virtual COM Port feature makes USB communication just as easy as standard
RS-232 communication.

Control position and speed of all connected servos simultaneously.

Scaled motion commands allow maximum, minimum, and startup position-
setting, making complex motion programming easier.

- Absolute and relative position commands allow for greater programming
flexibility.

Configuration information saved even when the power is off.

Control up to 16 RC servos per board. Daisy-chain up to 16 boards to control
up to 256 servos from one serial or USB port.

On-board voltage regulator supports both 4.8v and 6.0v servo supply voltages.
Over-current / over-temperature protection.

- Includes USB device cable and 1500ma AC power supply.
Simple yet robust serial protocol makes programming simple.

- Included ServoCenter ActiveX control and Win32 DLL makes creating
complex control applications fast and easy.

- Included example programs get you started quickly.

- Example programs included for VC6, VB6, QBASIC, Turbo C, VB.NET,
C#NET, and GCC/LINUX.

- Jumper settings allow for flexible configuration and control options.

2.3.2 Specifications

Physical

Size: 4.25"L x 3.5"W x 1.0"H (10.7cm L x 8.8cm W x 2.5cm H)
Weight: 2.7 oz

Interface

Input Interface: USB Type B port or 9-pin RS232 DCE interface.
Through Interface: 9-pin IBM style RS232 DTE interface.

Data Format (RS232 only): 8 data bits, no parity, 1 stop bit at 9600,
14400, 19200, or 38400 bps.

Servo Interface: 3-pin standard RC servo connector.

Electrical

Power Supply: 7.5VDC — 15VDC at no less than 1000ma.
Power Jack: 2.1mm x 5.5mm Male Jack, Center Positive.
Servo Power Output: Regulated 4.8VDC or 6.0VDC (selectable)

User's Manual

3 Installation

3.1 General Installation Precautions

The ServoCenter 3.1 board allows for several configuration options so that the user can
select the option that best suits the particular need required. In each configuration,
however, the installation procedure is basically the same. When installing or
configuring any ServoCenter 3.1 board, observe the following:

l.

Some of the electronic components are sensitive and can be damaged by
electro-static discharge. Avoid touching the circuitry on the board itself and
handle the board only by the edges. Place the board in a static shielding bag
when storing the board for extended periods.

. Use only the AC adaptor that was provided with the ServoCenter board. If an

alternate power supply is used ensure that it is of appropriate voltage,
amperage and polarity for the board.

. When making changes in wiring, configuration, and jumper settings, be

careful not to touch the voltage regulator/heat-sink. These components get
hot and may cause injury if contacted.

. The regulator and heat-sink of the ServoCenter controller get HOT during

periods of heavy utilization. Avoid placing the ServoCenter board in enclosed
spaces or in close proximity to combustible materials.

. When connecting servo motors be careful to observe the polarity of the servo

connectors. The black wire should be connected toward the outside edge of
the board. Failure to observe the proper connector polarity could result in
damage to the ServoCenter board and/or the incorrectly connected servos.

. If an external power source such as an alternate power supply or battery is

connected to the PWR connector, then ensure that the jumper on position 3 of
JP3 is removed.

3.2 Installing the ServoCenter 3.1 USB Drivers

Before the USB capabilities of the ServoCenter 3.1 USB may be used, two drivers must
be installed to the PC that will communicate with the controller board. The first driver
is the Virtual Com Port driver, which will allow your programs to access the
ServoCenter's USB port in the same way that RS232 serial ports are accessed (for more
information, see Section 4.1). The second driver is the ServoCenter 3.1 USB driver,
which is what allows the PC to communicate with the ServoCenter 3.1 USB.

3.2.1 Before Installing Drivers

Windows will automatically prompt you to install these drivers the first time you
connect the ServoCenter 3.1 USB to your PC. If you have the ServoCenter 3.1 CD,
insert it now. If not, you will need to download the ServoCenter 3.1 USB drivers from
http://www.Y ostEngineering.com/ServoCenter.

User's Manual

3.2.2 Installing the Virtual Com Port Driver

1. When the Found New Hardware Wizard starts, Windows may ask you if you
want to connect to Windows Update to search for drivers. If you see this
prompt, select “No, not this time.”

Found New Hardware Wizard

Welcome to the Found New
:l;& Hardware Wizard

firdows will zearch for curent and updated software by
locking an your computer, an the hardware inztallation CD, or an
the "Windows Update \Web gite [with pour permizzion).

Eead owr privacy policy

Cat Windows contect to Windows Update to search for
zoftware?

€ Yes, this time only

€ Yes, now and every time | connect a device

Click MNest to continue,

< Back I Mexst » I Cancel |

2. Next, the Wizard will tell you what device a driver is needed for and ask you if
you want to install the software automatically or install it from a specific
location. Choose “Install from a list or specific location (Advanced).”

Found New Hardware Wizard

Thiz wizard helps you install zoftware for:

USE High Speed Serial Converter

Z'\"\.l If your hardware came with an installation CD
iz or floppy disk. insert it now.

What do you want the wizard to do?

€ |nztall the software automatically [Fecommended)

" install from a list or specific location [&dvanced}

Click, Mext to continue.

< Back I Mext > I Cancel

User's Manual

3. Next, you must tell the Wizard where to find the driver you need. Select the
box next to the “Include this location in the search:” option. If you have the
ServoCenter 3.1 CD, provide [CD]:\USB\Drivers as the location. If you
downloaded the drivers from the internet, you will need to specify the folder to
which you saved them.

Found New Hardware Wizard

Pleagze choose your search and installation options. .

¢ Search for the best driver in these locations.

Uze the check boxes below ta limit or expand the default zearch, which includes lozal
paths and removable media. The best driver found will be inzstalled.

¥ Search removable media [floppy, CO-ROM...]

¥ Include this location in the search:

ID:\LISE'\Drivers\ j Browse |

" Dot zearch. | wil choose the driver to install.

Chooze thiz option to select the device driver from a list. Windows does not guarantee that
the driver you choosze will be the best match for your hardware.

< Back I Mest > I Cancel |

4. The Found New Hardware Wizard will now install the Virtual Com Port
Driver. Depending on your PC's security settings, you may see the following
message warning that the driver you're installing is not certified by Microsoft.
Click “Continue Anyway” to finish installing the driver.

Hardware Installation

' E The software vau are installing for this hardware:
L
IISE High Speed Serial Converter

haz not pazzed Windows Logo testing ta werify itz compatibility
with Windows #P. [Tell me why this testing iz imporkant. |

Continuing your ingtallation of this software may impair
or destabilize the correct operation of your spstem
either immediately or in the future. Microzoft strongly
recommends that you stop this installabion now and
contact the hardware vendor for software that has
pazzed Windows Logo testing.

Continue Anyway

User's Manual

5. Upon completion, the Wizard should inform you that the driver was
successfully installed.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

5

The wizard has finished instaling the zoftware for:

g USE High Speed Serial Coreeerter

Click Finizh to cloze the wizard.

< Back Cance|

3.2.3 Installing the ServoCenter 3.1 Driver

Follow the instructions outlined in Section 3.2.2 to install the ServoCenter 3.1 USB
Driver.

3.3 Connecting a Single ServoCenter 3.1 USB Board

Follow these steps to connect a single ServoCenter 3.1 USBboard.

1. Connect the USB port on the ServoCenter 3.1 USB controller board to a free
USB port on your PC using the provided USB cable.

-OR-
Connect the serial IN connector of the ServoCenter 3.1 USB to the serial port
of your PC (or other serial device) using a 9-Pin Serial Cable (DBIF to
DB9M).
2. Connect from 1 to 16 servos to the ServoCenter board’s servo ports.

3. Ensure that jumper settings are correct. (See Section 3.5)

4. Ensure that the board ID setting is correct. Generally board ID 0 is used in
single board applications, but any board ID can be used. (See Section 3.6)

10

User's Manual

5. Connect the provided 9VDC@1500ma power supply to the ServoCenter
board.

9VDC
RS > Adaptor

™

Serial or USB
Cable

Connecting a Single ServoCenter 3.1 Controller

3.4 Connecting Multiple ServoCenter 3.1 Boards

ServoCenter 3.1 has the capability to have up to 16 boards with unique servo
configurations connected together in a “daisy-chain” arrangement, or connected
independently from a USB “hub” device. This expandability allows for distinct and
precise control of up to 256 servo motors with one USB or serial port.

The ServoCenter boards can be identified from one another programmatically by
assigning each board an Identification Number. This can be achieved via the use of the

block of four switches located on the ServoCenter board. Please refer to Section 3.5
for more information on Identification Numbers.

3.4.1 “Daisy-Chaining” Multiple ServoCenter 3.1 USB Boards

Complete the following steps to “daisy-chain” multiple ServoCenter 3.1 USB Boards:

1. Connect the USB port on the ServoCenter 3.1 USB controller board to a free
USB port on your PC using the provided USB cable.

-OR-
2. Connect the serial IN connector of the ServoCenter 3.1 USB to the serial port

of your PC (or other serial device) using a 9-Pin Serial Cable (DBYF to
DB9M).

11

User's Manual

. Connect the serial IN connector of the next ServoCenter board to the THRU
port of the previous ServoCenter Board using a 9-Pin Serial Cable (DBOIF to
DBO9M). Repeat this step for all other boards.

. Ensure that a jumper is installed in JP1 position 3 and all other jumper settings
are as desired (see Section 3.4 for more information).

. Set the Board ID switches for each board to the desired value. This is
important because this ID number is what a controlling program will use to
deliver commands to specific servos on specific controller modules. For more
information on Board ID numbers, refer to Section 3.6.

. Connect the provided 9VDC@1500ma power supplies to each ServoCenter
board. Each module should be connected with a separate power supply.

. Connect from 1 to 16 servo motors to each of the connected ServoCenter
boards.

Serial or USB
Cable

Servo

Serial
9VDC Cable

Servo Servo ° ° ° Servo

“Daisy-Chaining” Multiple ServoCenter 3.1 Controllers

12

User's Manual

3.4.2 Using Multiple ServoCenter 3.1 USB Boards on a USB Hub

Complete the following steps to control multiple ServoCenter 3.1 USB Boards from a
USB Hub:

1.

2.

Connect a USB Hub to a USB port on your PC.

Connect a ServoCenter 3.1 USB Module to an open USB port on the hub
using a USB device cable. Repeat this step for all other boards.

. Set the Board ID switches for each board to the desired value. This 1s

important because this ID number is what a controlling program will use to
deliver commands to specific servos on specific controller modules. For more
information on Board ID numbers, refer to Section 3.6.

. Connect the provided 9VDC@1500ma power supplies to each ServoCenter

board. Each module should be connected with a separate power supply.

. Connect from 1 to 16 servo motors to each of the connected ServoCenter

boards.

Note: While ServoCenter 3.1 will support up to 16 unique Identification Numbers at
one time, any number of ServoCenter boards may be assigned the same ID Number.
The result of this will be that all boards with the same ID number in a chain will
simultaneously move their respective servos to the same positions. This can be done to
obtain synchronized multiple servo movements or to divide high current servos across
multiple boards without consuming additional board IDs.

3.5 Jumper Settings

The ServoCenter 3.1 USB board has three sets of jumpers to allow various flexible
software and hardware control configurations. The functionality exhibited by these
jumper banks (Section 2.2 Items 9, 10, 14) when a jumper is installed is described in
each of the sections below.

3.5.1 Jumper JP1

Jumper JP1 controls the configuration of the serial communications mode. The
specific functionality of jumper JP1 is as follows:

Jumper JPI
Position Effect of Jumper When Installed

1 ServoCenter 3.1 USB board can receive messages from PC.
2 ServoCenter 3.1 USB board can send messages to PC.
3 Pass messages from PC to later boards in daisy-chain.
4 Pass messages from later boards in daisy-chain to PC.

13

User's Manual

When a jumper is installed in position 1, this ServoCenter board will be able to receive
messages from the PC. It is sometimes useful to remove the position 1 jumper to
temporarily disable a board without physically disconnecting it.

When a jumper is installed in position 2, this ServoCenter board will be able to transmit
messages to the PC.

When a jumper is installed in position 3, this ServoCenter board passes information to
subsequently connected ServoCenter boards.

When a jumper is installed in position 4, this ServoCenter board passes information
from subsequently connected ServoCenter boards to the PC or previous.

3.5.2 Jumper JP2

Jumper JP2 controls the configuration of the serial communications data rate, used if
you connect the ServoCenter 3.1 USB using a 9-pin Serial Cable. The specific
functionality of jumper JP2 is as follows:

Jumper JP2
Position 1 Position 2 Baud Rate Selected
Off Off 9600bps
Off On 14400bps
On Off 19200bps
On On 38400bps

3.5.3 Jumper JP3

Jumper JP3 controls the servo power options and the system settings write protection.
The specific functionality of jumper JP3 is as follows:

Jumper JP3
Position Effect of Jumper When Installed
1 System settings are write protected.
) Servo voltage select. Regulated servo power is set to 4.8VDC when installed
and 6.0VDC when removed.
3 Internal regulated servo power is connected to the servo connectors.

When a jumper is installed in position 1, updates to the internal stored controller
settings are prohibited. This is useful for preventing accidental modification of stored
settings once they are entered. The controller will still allow changes to the settings,
but will not allow those changes to be committed to the persistent storage. Thus when
the power is cycled or the system is reset, then the stored settings will be restored.

When a jumper is installed in position 2, the on-board regulator provides 4.8VDC.
When the jumper is removed from this position then the regulator provides 6.0VDC.

14

User's Manual

When a jumper is installed in position 3, the on-board regulator supplies power to the
servo connectors. When the jumper is removed from this position the regulated power
is disconnected from the servo connectors. This jumper should be removed if an
external power source such as a battery is used to provide the servo power via the
“external power connection”. Removal of this jumper can also act as a quick method of
removing power from the servos without disconnecting their wires. To avoid damage,
never connect an external power source to the “external power connection” while this
jumper is installed.

3.6 Board Identification Settings

Board Identification Numbers are set via the blue bank of switches located in the upper
left corner of the ServoCenter 3.1 USB board (see Board Overview, Item 6).
Identification numbers are determined by the position of each switch in the bank. The
settings of the switch indicate the binary representation of the board ID number. Refer
to the table below regarding the switch position/ID number relationship.

Board Identification Settings

1 2 3 4 Board ID
Off Off Off Off 0
Off Off Off On 1
Off Off On Off 2
Off Off On On 3
Off On Off Off 4
Off On Off On 5
Off On On Off 6
Off On On On 7
On Off Off Off 8
On Off Off On 9
On Off On Off 10
On Off On On 11
On On Off Off 12
On On Off On 13
On On On Off 14
On On On On 15

Board IDs can be changed at any time during the operation of the ServoCenter 3.1.

15

User's Manual

4 Programming the ServoCenter 3.1

4.1 Using the Virtual Com Port

The ServoCenter 3.1 USB controller board can be easily programmed via a RS232
serial port or a USB interface using the same codebase. This is made possible by
ServoCenter 3.1 USB's Virtual Com Port feature, which allows the USB port to be
opened, read from and written to just like a normal RS232 Com Port. No API or library
calls are necessary.

When users install the ServoCenter 3.1 USB drivers (see Section 3.2), the PC will
assign the device a unique Com number (e.g. Com1, Com2, etc.). Users can view what
Com number was assigned to the ServoCenter 3.1 USB board by using the Windows
Device Manager and selecting Ports.

The Com number assigned to the ServoCenter when the drivers are installed will only
be visible when the controller board is connected to the PC and powered on. Whenever
the controller 1s powered off, Windows will release the virtual Com port. When the
ServoCenter is reconnected to the PC, it will be assigned the same virtual Com number
that it was given when the drivers were installed.

4.2 ServoCenter 3.1 Protocol

4.2.1 Protocol Overview

The ServoCenter 3.1 controller receives messages from the controlling system in the
form of sequences of serial communication bytes called packets. Each byte is serial
encoded using 8N1 serial encoding (8 data bits, no parity, and 1 stop bit). The packet
size can range from three to six bytes in length, depending upon the nature of the
command being sent to the controller. Each packet consists of an initial “start of
packet” byte (which includes a board ID specifier), followed by a “command value”
specifier byte, followed by zero to three “command data” bytes, and terminated by a
packet “checksum value” byte.

The ServoCenter 3.1 controller buffers the incoming command stream and will only
take an action once the entire packet has been received and the checksum has been
verified as correct. Incomplete packets, packets with inappropriate board IDs, and
packets with incorrect checksums will be ignored. This allows the controlling system
to send command data at leisure without loss of function. The command buffer will,
however, be cleared whenever the ServoCenter controller is either reset or powered
off/on.

Most ServoCenter commands return no result data. Certain commands, however, are
designed to return status information about the current settings and positions of
connected servos. It is important to note that although many ServoCenter 3.1 boards
can be connected and controlled simultaneously by a single PC, only one of the
connected boards may be configured to send data back to the controlling system. The

transmit/receive functionality is controlled by the various jumper settings of jumper
block JPI.

16

User's Manual

4.2.2 Packet Overview
Each packet 1s from 3 to 6 bytes in length and is formatted as follows:

First Byte — Start of Packet. Calculated by adding

+
240(0xF0) + Board ID 240 to the desired board ID.

Command ID Second Byte — Command Value. Selected from
one of the possible control commands.

Command Data
Command Data/ Command Parameters.

Varies from zero to three bytes depending upon the
command specified in the second byte position. See
the table below for specific command data format
and specification.

Command Data

Command Data

Checksum Value Last Bﬁe — Packet Checkgum. See the checksum'
description below for specific calculation information.

Typical ServoCenter 3.1 Command Packet

4.2.3 Start of Packet Byte

Each command packet starts with a specific type of byte called the “Start of Packet”
byte. The “Start of Packet” byte serves two purposes: to signify the start of a
command packet and to identify the board ID of the intended recipient. This byte's
value is calculated by adding 240 (0xf0 hex) to the board ID of the board to which
you are sending the command message. Thus a byte value of 240(0xf0 hex) would be
used to send a message to the board with ID 0, 241(0xf1) for board ID 1, 242(0xf2) for
board ID 2, etc.

17

User's Manual

4.2.4 Command Set

Command Summary

The table below summarizes the ServoCenter 3.1 command set.

Description Command Data Data Descriptions
Length
QuickMove 0 (x00) 2 SvNum(0~15), SvPosition(0~200)
Scaled QuickMove 1 (0x01) 2 SvNum(0~15), %SvPosition(0~100%)
Servo Enable 2 (0x02) 1 SvNum(0~15)
Servo Disable 3 (0x03) 1 SvNum(0~15)
Set Min 4 (0x04) 2 SvNum(0~15), SvPosition(0~200)
Set Max 5 (0x05) 2 SvNum(0~15), SvPosition(0~200)
Set Start 6 (0x06) 2 SvNum(0~15), SvPosition(0~200)
Set Max Speed 7 (0x07) 2 SvNum(0~15), SvMaxSpeed(1~200) in centi-secs / 60°
Set Min to Current 8 (0x08) 1 SvNum(0~15)
Set Max to Current 9 (0x09) 1 SvNum(0~15)
Set Start To Current 10 (0x0a) 1 SvNum(0~15)
Get Current Position 11 (0x0b) 1 SvNum(0~15)
Get Min Position 12 (0x0c) 1 SvNum(0~15)
Get Max Position 13 (0x0d) 1 SvNum(0~15)
Get Start Position 14 (0x0e) 1 SvNum(0~15)
Get Max Speed 15 (0x0f) 1 SvNum(0~15)
Move Raw 16 (0x10) 3 SvNum(0~15), SvPosition(0~200), SvSpeed(1~100)
Move Raw CW 17 (0x11) 3 SvNum(0~15), ASvPosition(0~200), SvSpeed(1~100)
Move Raw CCW 18 (0x12) 3 SvNum(0~15), ASvPosition(0~200), SvSpeed(1~100)
Move Scaled 19 (0x13) 3 SvNum(0~15), %SvPosition(0~100), SvSpeed(1~100)
Move Scaled CW 20 (0x14) 3 SvNum(0~15), A%SvPosition(0~100), SvSpeed(1~100)
Move Scaled CCW 21 (0x15) 3 SvNum(0~15), A%SvPosition(0~100), SvSpeed(1~100)
Set Pulse Width Min 22 (0x16) 1 PwValue(1 — 239) in 10us units.
Set Pulse Width Max 23 (0x17) 1 PwValue(1 — 239) in 10us units.
Servo Reverse 24 (0x18) 1 SvNum(0~15)
Servo Normal 25 (0x19) 1 SvNum(0~15)
Show Settings 235 (0xeb) 0 None.
Commit Settings 236 (Oxec) 0 None.
Load Factory Settings 237 (Oxed) 0 None.
Reset as Startup 238 (Oxee) 0 None.
Display Version 239 (Oxef) 0 None.

18

User's Manual

Command Details

In the tables below you'll find a description of each of the ServoCenter commands and
a brief explanation of how and where each command would be used.

Function:

Command Value:

Data Bytes:

Data Format:

Description:

Function:

Command Value:

Data Bytes:

Data Format:

Description:

Function:

Command Value:

QuickMove

0 (0x00)

2

SvNum(0~15), SvPosition(0~200)

The QuickMove command provides a method of instantly moving a single servo (specified by
SvNum) to a specified raw position (specified by SvPosition). This function is useful when it is
desired to move a servo to a position as fast as possible. With QuickMove no servo position
interpolation is performed and the control signal for that specified servo is immediately modified
when the command is issued.

Servo Enable
2 (0x02)

1
SvNum(0~15)

The Servo Enable command provides a method of enabling a servo(specified by SvNum). This
function is used to enabled a servo channel that has been previously disabled. With the control signal
enabled the servo will actively hold its position. Enabled servos will draw significantly more power
than disabled servos.

Servo Disable

3 (0x03)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Servo Disable command provides a method of disabling a servo(specified by SvNum). This
function is used to remove the control signal for a servo channel. With the control signal disabled the
servo will not actively hold its position. This can be useful for disabling a servo without having to
physically disconnect it from the board. A disabled servo can generally be moved by hand and will
draw significantly less power than an enabled servo.

Function: Set Minimum

Command Value: |4 (0x04)

Data Bytes: 2

Data Format: SvNum(0~15), SvPosition(0~200)

Description: The Set Minimum command sets the minimum raw servo position set-point(specified by SvPosition)
of the specified servo (specified by SvNum). This minimum position is used in all scaled movement
modes of operation. Setting the minimum position above the start position will cause the start position
to be set equal to the minimum. Setting the minimum position above the maximum will cause the
maximum position to be set equal to the minimum.

Function: Set Maximum

Command Value: | 5 (0x05)

Data Bytes: 2

Data Format: SvNum(0~15), SvPosition(0~200)

Description: The Set Maximum command sets the maximum raw servo position set-point(specified by SvPosition)

of the specified servo (specified by SvNum). This maximum position is used in all scaled movement
modes of operation. Setting the maximum position below the start position will cause the start
position to be set equal to the maximum. Setting the maximum position below the minimum will
cause the minimum position to be set equal to the maximum.

19

User's Manual

Function: Set Maximum Speed

Command Value: | 7 (0x07)

Data Bytes: 2

Data Format: SvNum(0~15), SvMaxSpeed(1~200)

Description: The Set Maximum Speed command sets the maximum speed (as specified by SvMaxSpeed and
measured in centi-seconds per 60° of travel) that is allowed for a particular servo channel (specified
by SvNum). This maximum speed is used to calculate all speed related seek commands. Different
servos have different rated travel speeds depending upon the manufacturer, model, and power supply
voltage. These speeds are generally rated in seconds per 60° of travel so the programmer will have
to convert the rated speed (in seconds) to centi-seconds by multiplying by 100. The ServoCenter 3.1
controller allows the maximum allowable travel speed to be set independently for each of the 16 servo
channels.

Function: Set Minimum to Current

Command Value: |8 (0x08)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Set Minimum to Current command sets the minimum raw servo position set-point to the current
raw position of the servo of the specified servo (specified by SvNum). This minimum position is
used in all scaled movement modes of operation. Setting the minimum position above the start
position will cause the start position to be set equal to the minimum. Setting the minimum position
above the maximum will cause the maximum position to be set equal to the minimum.

Function: Set Maximum to Current

Command Value:

9 (0x09)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Set Maximum to Current command sets the maximum raw servo position set-point to the current
raw position of the specified servo (specified by SvNum). This maximum position is used in all
scaled movement modes of operation. Setting the maximum position below the start position will
cause the start position to be set equal to the maximum. Setting the maximum position below the
minimum will cause the minimum position to be set equal to the maximum.

Function: Set Start to Current

Command Value: | 10 (0x0a)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Set Start to Current command sets the startup raw servo position set-point to the current raw
position of the specified servo (specified by SvNum). The start position is the position that the servo
will assume when the system is powered-up or reset. The start position is capped and cannot be set
greater than the maximum or less than the minimum.

Function: Get Current Position

Command Value: | 11 (0x0b)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Get Current Position command causes the ServoCenter board to transmit a one byte message
corresponding to the raw servo position of a particular servo (specified by SYNum). The ability of
the board to send these responses is partially dependent upon the jumper settings of jumper block JP1
(see section 3.4.1 of the user's manual for details).

Function: Get Min Position

Command Value: | 12 (0x0c)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Get Min Position command causes the ServoCenter board to transmit a one byte message

corresponding to the currently set minimum servo position of a particular servo (specified by
SvNum). The ability of the board to send these responses is partially dependent upon the jumper
settings of jumper block JP1 (see section 3.4.1 of the user's manual for details).

20

User's Manual

Function: Get Max Position

Command Value: | 13 (0x0d)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Get Max Position command causes the ServoCenter board to transmit a one byte message
corresponding to the currently set maximum servo position of a particular servo (specified by
SvNum). The ability of the board to send these responses is partially dependent upon the jumper
settings of jumper block JP1 (see section 3.4.1 of the user's manual for details).

Function: Get Start Position

Command Value:

14 (0x0e)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Get Start Position command causes the ServoCenter board to transmit a one byte message
corresponding to the currently set starting servo position of a particular servo (specified by SvNum).
The ability of the board to send these responses is partially dependent upon the jumper settings of
jumper block JP1 (see section 3.4.1 of the user's manual for details).

Function: Get Max Speed

Command Value: 15 (0x0f)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Get Max Speed command causes the ServoCenter board to transmit a one byte message
corresponding to the currently set maximum speed setting of a particular servo channel (specified by
SvNum). The ability of the board to send these responses is partially dependent upon the jumper
settings of jumper block JP1 (see section 3.4.1 of the user's manual for details).

Function: Move Raw

Command Value: | 16 (0x10)

Data Bytes: 3

Data Format: SvNum(0~15), SvPosition(0~200), SvSpeed(1~100)

Description: The Move Raw command is used to move a servo's position at a specified speed. The move raw
command moves a servo (specified by SvNum) to a raw position (specified by SvPosition) at a
particular speed (specified by SvSpeed). Raw movement modes do not use the set minimum and
maximum points to determine the servo's position. The specified speed is calculated as a percentage
of the preset maximum servo speed for the specified servo channel. Thus, a speed of 50 is half as fast
as a speed of 100, a speed of 1 is 1/100™ as fast as a speed of 100, etc.

Function: Move Raw CW (Clockwise)

Command Value: | 17 (0x11)

Data Bytes: 3

Data Format: SvNum(0~15), ASvPosition(0~200), SvSpeed(1~100)

Description: The Move Raw CW command is used to move a servo's position clockwise by a certain amount at a
specified speed. The move raw clockwise command moves a servo (specified by SvNum) clockwise
by a certain number of units (specified by ASvPosition) at a particular speed (specified by
SvSpeed).

Function: Move Raw CCW (Counter-Clockwise)

Command Value:

Data Bytes:

Data Format:

Description:

18 (0x12)
3
SvNum(0~15), ASvPosition(0~200), SvSpeed(1~100)

The Move Raw CCW command is used to move a servo's position counter-clockwise by a certain
amount at a specified speed. The move raw counter-clockwise command moves a servo (specified by
SvNum) clockwise by a certain number of units (specified by ASvPosition) at a particular speed

(specified by SvSpeed).

21

User's Manual

Function: Move Scaled

Command Value: | 19 (0x13)

Data Bytes: 3

Data Format: SvNum(0~15), %SvPosition(0~100), SvSpeed(1~100)

Description: The Move Scaled command is used to move a servo's position at a specified speed. The move scaled
command moves a servo (specified by SvNum) to a scaled position (specified by SvPosition) at a
particular speed (specified by SvSpeed). Scaled movement modes use the set minimum and
maximum points to determine the servo's position. The scaled position value can be thought of as a
percentage of the range from the minimum to the maximum. Thus 0 is the minimum, 100 is the
maximum, and 50 is the midpoint between the set minimum and maximum. The specified speed is
calculated as a percentage of the preset maximum servo speed for the specified servo channel. Thus,
a speed of 50 is half as fast as a speed of 100, a speed of 1 is 1/100" as fast as a speed of 100, etc.

Function: Move Scaled CW (Clockwise)

Command Value: 20 (0x14)

Data Bytes: 3

Data Format: SvNum(0~15), A%SvPosition(0~100), SvSpeed(1~100)

Description: The Move Scaled CW command is used to move a servo's position clockwise at a specified speed.
The move scaled clockwise command moves a servo (specified by SvNum) clockwise by a certain
percentage (specified by A%SvPosition) at a particular speed (specified by SvSpeed). The
percentage indicated by the %SvPosition byte is based upon a percentage of the distance between the
minimum position and the maximum position. Thus a distance of 10 units would move the servo
clockwise by a distance of 1/10™ of the entire scaled travel range, a distance of 1 unit would move the
servo by 1/100™ of the entire scaled travel range, etc.

Function: Move Scaled CCW (Counter-Clockwise)

Command Value: |21 (0x15)

Data Bytes: 3

Data Format: SvNum(0~15), A%SvPosition(0~100), SvSpeed(1~100)

Description: The Move Scaled CCW command is used to move a servo's position counter-clockwise at a specified
speed. The move scaled counter-clockwise command moves a servo (specified by SvNum)
counter-clockwise by a certain percentage (specified by A%SvPosition) at a particular speed
(specified by SvSpeed). The percentage indicated by the %SvPosition byte is based upon a
percentage of the distance between the minimum position and the maximum position. Thus a distance
of 10 units would move the servo clockwise by a distance of 1/10™ of the entire scaled travel range, a
distance of 1 unit would move the servo by 1/100™ of the entire scaled travel range, etc.

Function: Set Pulse Width Min

Command Value: |22 (0x16)

Data Bytes: 1

Data Format: PwValue (1-239)

Description: The Set Pulse Width Minimum command lets the user specify the minimum value of the range of
control pulses that are produced by the ServoCenter 3.1 board for all raw position modes. This
minimum value is applied globally to all servo channels of the board. Since some servos have slightly
different control pulse width ranges this value may have to be tweaked to get a full servo motion
range out of all raw position modes. The PwValue is measured in 10 microsecond units thus allowing
the board to produce any range of pulses in the range from 10 to 2390 microseconds.

Function: Set Pulse Width Max

Command Value: 23 (0x17)

Data Bytes: 1

Data Format: PwValue (1-239)

Description: The Set Pulse Width Maximum command lets the user specify the maximum value of the range of

control pulses that are produced by the ServoCenter 3.1 board for all raw position modes. This
maximum value is applied globally to all servo channels of the board. Since some servos have
slightly different control pulse width ranges this value may have to be tweaked to get a full servo
motion range out of all raw position modes. The PwValue is measured in 10 microsecond units thus
allowing the board to produce any range of pulses in the range from 10 to 2390 microseconds.

22

User's Manual

Function: Servo Invert

Command Value: |24 (0x18)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Servo Invert command causes the servo channel specified by the first data byte (SvNum) to have
its positions seek in an inverted manner. This means that a raw position value of zero is the servo's
extreme counter-clockwise rotational position and 200 is the extreme clockwise position. This
function can be useful for dealing with paired servos or with servos that are mounted in such a way
that an inverted positional system is more natural.

Function: Servo Normal (UnInvert)

Command Value: |25 (0x19)

Data Bytes: 1

Data Format: SvNum(0~15)

Description: The Servo Normal command causes the servo channel specified by the first data byte (SvNum) to
have its positions seek in the normal, non-inverted, manner. This means that a raw position value of
zero is the servo's extreme clockwise rotational position and 200 is the extreme counter-clockwise
position.

Function: Show Settings

Command Value: | 235 (Oxeb)

Data Bytes: 0

Data Format: None.

Description: The Show Settings command causes the board to transmit a table of the current settings for all
channels of the ServoCenter 3.1 board. The format of the returned data is a human-readable table
composed of ASCII characters. This fuction is useful when troubleshooting a board's settings or
simply verifying current board settings. The ability of the board to transmit data is dependent upon
the jumper settings of jumper block JP1 (see section of the user's manual 3.4.1 for details).

Function: Commit Settings

Command Value: 236 (Oxec)

Data Bytes: 0

Data Format: None.

Description: The Commit Settings command causes the board to save the current settings into the EEPROM
storage. Once the board's settings are stored in the EEPROM settings of the ServoCenter 3.1 they will
be restored every time the board is either reset or powered up. This allows the configuration to be
saved thus avoiding a configuration process every time the board is reset. Note: the EEPROM storage
of the ServoCenter 3.1 board has a limited lifetime of rewritability (about 100,000 rewrites) so avoid
writing a programmatic loop that continuously commits the settings of the board. The current rewrite
count can be viewed by using the “Show Settings” command. A user can prevent board settings from
being written by using jumper JP3 position 1 (see user's manual section 3.4.3 for info)

Function: Load Factory Settings

Command Value: 237 (Oxed)

Data Bytes: 0

Data Format: None.

Description: The Load Factory Settings command causes all of the board's settings to revert to the state that they
were in when shipped as new. This command only loads the settings and doesn't commit the settings
to the EEPROM of the board. To restore the settings and save these settings, the user should perform
a “Commit Settings” command following the “Load Factory Settings” command.

Function: Reset as Startup

Command Value: | 238 (Oxee)

Data Bytes: 0

Data Format: None.

Description: The Reset as Startup command causes the board to perform a software reset of the control software.

This command is functionally equivalent to resetting or cycling the power of the board. All
EEPROM settings are loaded and all servo channels are modified according to these stored settings.

23

User's Manual

Function: Display Version

Command Value: | 239 (Oxef)

Data Bytes: 0

Data Format: None.

Description: The Display Version command simply displays the version of the firmware embedded within your
ServoCenter 3.1 board. This can be useful for allowing software to query the board's version to
ensure interoperability between this and other/future YEI products.

4.2.5 The Checksum Value

The checksum is computed as an arithmetic summation of all of the characters in the
packet (except the checksum value itself) modulus 239 plus one. This gives a
resulting checksum in the range 1 to 239. The checksum will be ignored if a 0 byte
value is passed in the checksum position of the packet.

The purpose of the checksum is to minimize the chances of the ServoCenter 3.1 board
receiving and acting upon corrupted or erroneous control messages. In most instances
the checksum should be used to enhance the reliability and robustness of the control
system, but, as noted above, a zero value can be placed in the checksum byte position
to ignore the checksum calculation.

This placing a 0 value in the checksum position can free the sender from having to
worry about calculating the actual checksum. This is useful in situations where
simplicity of implementation is necessary and reliable communication is not a
requirement.

24

User's Manual

4.3 Programming with Raw Serial /0

The following section provides simple example programs in a variety of programming
languages and environments. Each example program illustrates how to access the
serial port and directly communicate with the ServoCenter 3.1 controller board to
control a servo. Note that the programs are provided to illustrate simple raw serial
communication using the ServoCenter 3.1 protocol and do not demonstrate the full
feature set of the ServoCenter 3.1 controller. Refer to section 4.1 for a description of
the entire ServoCenter 3.1 protocol and feature set.

4.3.1 QBASIC Example Program

DECLARE SUB initCOVPort (port AS | NTECER, baud as | NTEGER)
DECLARE SUB MoveSer voRaw (Boar dNum AS | NTEGER, ServoNum AS | NTEGER, _
Position AS | NTEGER, Speed AS | NTECER)
IR IR I 2 I R I R I I A R I O R R S I I R R I R I R I I S I
This denp programillustrates how to nove servo notors
using raw serial comunicati on access to the
Yost Engi neering, Inc. ServoCenter 3.1 controller board.

www. Yost Engi neeri ng. com

¥k k¥ ¥ X X F *

*
*
*
(c) 2001-2004 Yost Engi neering, Inc. *
*
*
*

kkhkkhkkhkkhkhkkhkrkhkrkhkkx*x

DI M svBoar dnum AS | NTEGER
DI M svSer vonum AS | NTEGER
DI M svPosi tion AS | NTEGER
DI M svSpeed AS | NTEGER

CLS

COLOR 15, 1

PRI NT " "
PRI NT " ServoCenter 3.1 Denonstration Program

PRI NT " (c) 2000- 2004 Yost Engi neering, Inc. "
PRI NT " www. Yost Engi neeri ng. com
PRI NT " "

COLOR 7, O

PRI NT ""

"initialize the serial port conml to 9600
CALL initCOwPort (1, 9600)

DOVHLE 1 =1

I NPUT " Enter a board number (0-15): ", svBoardnum
I NPUT " Enter a servo nunmber (0-15): ", svServonum
| NPUT " Enter a position value (0-200): ", svPosition
I NPUT " Enter a seek speed value (1-100): ", svSpeed
COLOR 4, O
PRI NT " Sendi ng Servo Command now. . . "
CALL MoveSer voRaw(svBoar dnum svServonum svPosition,
svSpeed)
COLOR 2, O
PRI NT " Done!": PRI NT
COLOR 7, O
LOOP

SUB initCOWPort (port AS I NTEGER, baud as | NTEGER)
settings$ = "COM +LTRI Mb(STR$(port)) +": " +LTRI Mb(STR$(baud)) +_
", N, 8,1, CDO, CSO, DSO*"
OPEN settings$ FOR RANDOM AS #1
END SUB

25

User's Manual

SUB MoveSer voRaw (Boar dNum AS | NTEGER, ServoNum AS | NTEGER,
Position AS | NTEGER, Speed AS | NTECGER)
PRI NT #1, CHR$(&HFO + Boar dNum MOD 16); CHR$(16);
PRI NT #1, CHR$(ServoNum MOD 16);
PRI NT #1, CHR$(Position MO 201); CHR$(Speed MOD 101);
PRI NT #1, CHR$(O0);
END SUB

4.3.2 C++: Microsoft Visual C++ 6 Example Program

/***\

* This denmp programillustrates how to nove servo notors *

* using raw serial conmunication access to the *

* Yost Engineering, Inc. ServoCenter 3.1 controller board *

* using Visual C++ 6.0. *

* *

* (c) 2001-2004 Yost Engineering, Inc. *

* www. Yost Engi neeri ng. com *

* *

***/

#i ncl ude <wi ndows. h>

#i ncl ude <stdio. h>

#defi ne PORTNUM 1

#defi ne BAUDRATE 9600

voi d noveservo(HANDLE *,int,int,int,int);

int InitPort(unsigned int, unsigned int, HANDLE *, DCB *);

int main(int argc, char *argv[])
DCB dchb;
HANDLE hCom
int i=0, BoardNum ServoNum Position, Speed;
printf(" \n");
printf (" ServoCenter 3.1 Denonstration Program \n");
printf(" (c) 2000- 2004 Yost Engi neering, Inc. \n");
printf (" www. Yost Engi neeri ng. com \n");
printf(" \n");

i f((InitPort(PORTNUM BAUDRATE, &Com &dcb))!=0)// open serial port
{

printf("\tCould not initialize Comm Port!\n");

return (1);
}
el se
whi | e(1)
printf("\n Enter Board Nunmber (0-15):");
scanf (" %", &Boar dNunj ;
printf("\n Enter Servo Number (0-15):");
scanf (" %", &Ser voNum ;
printf("\n Enter Position (0-200):");
scanf (" %", &Posi tion);
printf("\'n Enter Speed (1-100):");
scanf (" %", &Speed) ;
printf("\n\tSending Cormand to Servo...\n");
nmoveser vo(& Com Boar dNum Ser voNum Posi ti on, Speed) ;
printf("\n\tDone!\n");
return (0);

voi d noveservo(HANDLE *hCom i nt board,int servo,int position,int
speed)

unsi gned char buffer[6]; /lcreate enpty command packet

26

User's Manual

unsi gned | ong BytesWitted; /lrecords # of bytes sent
buf f er[0] =boar d%d6 + Oxf O; //board id #

buf fer[1] =16; // move raw conmand

buf fer[2] =servo%6; //servo #--used to identify which servo

buf fer[3] =posi ti on%201;//position to which the servo will nove
buf fer[4] =speed%d01; /I speed at which servo will nove
buffer[5]="\0"; // NULL character added to di sabl e checksum

WiteFile(*hCom buffer, 5, &BytesWitted, NULL); //send packet

int InitPort(unsigned int PortNum unsigned int BaudRate, HANDLE *hCom
DCB *dcb)

{

BOCL f Success;
char pcComPort[4]={"'\0"};
i f(PortNum==1)
sprintf(pcConmPort, " COML");
el se if(PortNunmF=2)
sprintf(pcConmPort, " COVR") ;
el se if(PortNum==3)
sprintf(pcCommPort, " COMB");
el se if(PortNum==4)
sprintf(pcCommPort, " COM");
el se
printf("\tPort Nunmber not recognized\n");

*hCom = Creat eFil e(pcComPort,
GENERI C_READ | CGENERI C_WRI TE,
0, /1l must be opened with excl usive-access
NULL, // no security attributes
OPEN_EXI STING, // must use OPEN_EXI STI NG
0, /1 not overlapped I1/0
NULL // hTenplate nust be NULL for comm

);
if (*hCom == | NVALI D_HANDLE_VALUE)
/1 Handl e the error.
printf("\tCreateFile failed with error%.\n",

Get LastError());
return (2);

/1 Build on the current configuration, and skip setting the size
/1 of the input and output buffers with SetupConm

f Success = Get Commtt at e(*hCom dcb);

if (!fSuccess)

{

/1 Handl e the error.

printf ("\tGetComttate failed with error %l.\n",

Get LastError());

return (3);
}

/!l Fill in DCB: Baudrate, 8 data bits,no parity, 1 stop bit.
swi t ch(BaudRat e)

{

case 9600: dcb->BaudRate

case 14400: dcb->BaudRate

case 19200: dcb->BaudRate CBR_19200; break;

case 38400: dcb->BaudRat e CBR _38400; break;

default: printf("\tBaud Rate not recognized\n");
printf("\tUsing default rate of 9600bps.\n");
dcb- >BaudRat e = CBR 9600; break;

CBR _9600; break;
CBR _14400; break;

27

User's Manual

dch->Byt eSi ze = 8§; /! data size, xnmit, and rcv
dcb->Parity = NOPARITY; /!l no parity bit
dch->StopBits = ONESTOPBI T; /1 one stop bit

f Success = Set Commtt at e(*hCom dcb);

if (!fSuccess)

{
// Handl e the error.
printf("\tSetCommttate failed with error %l.\n"
GetLastError());
return (4);
}
printf ("\tSerial port successfully reconfigured.\n");
return (0);

4.3.3 C : Linux gcc Example Program

/***\

This denp programillustrates how to nove servo notors
usi ng raw serial communi cation access to the
Yost Engineering, Inc. ServoCenter 3.1 controller board.
in Linux. This code was conpiled using gcc.
(c) 2001-2004 Yost Engineering, Inc.
www. Yost Engi neeri ng. com

— %k % * X X * *
S~ %k % * * X * *

EIR R R R S S S Sk Sk S S S S R S I S S S S S S R R S I I S R I S S Sk S S S S I kR Ik S Sk I S Sk S I kS O

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i ncl ude <fentl. h>
#i ncl ude <errno. h>
#i ncl ude <term os. h>

int open_port(int portnum

{
int fd;
char portfile[100]={"\0"};
i f(portnume=1)
sprintf(portfile,"/dev/ttyS0");
el se if(portnum==2)
sprintf(portfile,"/dev/ttyS1");
el se if(portnunm==3)
sprintf(portfile,"/dev/ttyS2");
el se if(portnum==4)
sprintf(portfile,"/dev/ttyS3");
el se
{
printf("open_port: unrecognized port nunber\n");
return (-1);
i f((fd=open(portfile, O RDAWR | O _NOCTTY | O _NDELAY))==-1)
perror("open_port: unable to open /dev/ttyS0 - ");
return (fd);
}
void init_port(int *fd, unsigned int baud)
{

struct term os options;
//note: the termios structure does not support a baud rate of 14400
tcgetattr(*fd, &options);

28

User's Manual

swi t ch(baud)
{
case 9600: cf seti speed(&opti ons, B9600) ;
cf set ospeed(&opti ons, B9600) ;
br eak;
case 19200: cfseti speed(&options, B19200);
cf set ospeed(&opti ons, B19200) ;
br eak;
case 38400: cfseti speed(&options, B38400) ;
cf set ospeed(&opti ons, B38400) ;
br eak;
default: cfsetispeed(&options, B9600);
cf set ospeed(&opti ons, B9600) ;
br eak;
}
options.c_cflag |= (CLOCAL | CREAD);
options.c_cflag & ~PARENB;
options.c_cflag & ~CSTOPB;
options.c_cflag & ~CSl ZE;
options.c_cflag | = CS8;
tcsetattr (*fd, TCSANOW &opti ons) ;
}

voi d noveservo(int *fd, int boardnum int servonum int position, int
speed)

char buffer[6];

int num

buf f er [0] =boar dnun?d6 + Oxf O;
buf f er[1] =0x10;

buf f er [2] =ser vonun?4d 6;

buf f er [3] =posi ti on%201;

buf f er [4] =speed?%d01; |/ create packet
buffer[5]="\0";
numewri te(*fd, buffer,5); /' send packet
}
int main()
int fd, board, servo, position, speed, portnum
printf(" \n");
printf(" ServoCenter 3.1 Denonstration Program \n");
printf(" (c) 2000- 2004 Yost Engineering, Inc. \n");
printf(" www. Yost Engi neeri ng. com \n");
printf(" \n");

printf("Enter Port Nunber (1-4)\n");
scanf (" %", &ortnun ;
i f((fd=open_port(portnun)==-1) / / open serial port
return (1);
init_port(&fd, 9600); /lset serial port to 9600,8,n,1
whi | e(1)
{

printf("Enter Board Number (0-15)\n");
scanf (" %", &oard) ;

printf("Enter Servo Number (0-15)\n");
scanf (" %", &servo);

printf("Enter Position (0-200)\n");
scanf (" %", &osition);

printf("Enter Speed (1-100)\n");

scanf (" %", &speed) ;

printf(“Sending Cormand...");

noveser vo(& d, boar d, servo, posi tion, speed);
printf(“done!\n”);

return (0);

29

User's Manual

4.3.4 C : Borland Turbo C Sample Program

/***\

This denp programillustrates how to nbve servo notors
usi ng raw serial communi cation access to the

Yost Engineering, Inc. ServoCenter 3.1 controller board.
This programwas witten and conpiled in the Borland
Turbo C environnent.

(c) 2001-2004 Yost Engineering, Inc.
www. Yost Engi neeri ng. com

*
*
*
*
*
*
*
*
*
/

— %k % * kK F ok ok *

kkhkkhkkkhkhkkhkhhkhkhkhkhhkkhkhhkhkhkhkhkkhkhhkhkhkhkhkkhkhhkhkkhkhhkhkhhkikkhkhhkikkkikkikhkkhkkk*x

#i ncl ude<st di o. h>
#i ncl ude<dos. h>
#i ncl ude<coni o. h>

#defi ne COML Ox3f 8

#def i ne COW 0x2f 8

#defi ne COVB 0x3e8

#defi ne COVA 0x2e8

/* Set following line to desired port*/
#defi ne COVPORT COML

#defi ne BAUDRATE 9600

voi d initcon(unsigned int);
voi d noveservo(int,int,int,int);

- e e N s

mai n()
i nt board, servo, pos, speed;
clrscr();
printf(" \n")
printf(" ServoCenter 3.1 Denonstration Program \n"
printf(" (c) 2000- 2004 Yost Engi neering, Inc. \n")
printf(" www. Yost Engi neeri ng. com \n")
printf(" \n")
i ni t com(BAUDRATE)
while (1)
printf("Enter Board ID (0-15)\n");
scanf ("%d", &oard);
printf("Enter ServolD (0-15)\n");
scanf (" %", &ervo);
printf("Enter Position (0-200)\n");
scanf (" %", &os) ;
printf("Enter Speed (1-100)\n");
scanf (" %", &peed);
printf("Mving servo...\n");
nmoveser vo(board, servo, pos, speed) ;
printf("Done!");
}
}
voi d noveservo(int Boardld,int ServoNumint Position,int Speed)
{

out port b(COVWORT, Oxf 0 + Boardld % 16);
whi | e((i nport b(COVPORT+5) &0x20) ==0) {; }
out port b(COVPORT, 0x10) ;

whi | e((i nport b(COVPORT+5) &0x20) ==0) {; }
out port b(COVPORT, Ser voNum % 16) ;

whi | e((i nport b(COVPORT+5) &0x20) ==0) {; }
out port b(COVPORT, Position % 201);

whi | e((i nport b(COVPORT+5) &0x20) ==0){; }
out por t b(COVPORT, Speed % 101);

whi | e((i nport b(COVPORT+5) &0x20) ==0){; }
out port b(COVPCRT, 0) ;

whi | e((i nport b(COMPORT+5) &0x20) ==0) {; }

30

User's Manual

void initcon(unsigned int BaudRate)

{
out port b(COWPORT+3, 0x83); //DLAB hi gh, set fornmat 8Nl
swi t ch(BaudRat e)
{
case 9600: outportb(COVPORT, 0x0c) ; /! set rate LSB
out port b(COWPCRT+1, 0x00); // set rate MSB
br eak;
case 14400: out port b(COVPORT, 0x08) ; /] set rate LSB
out port b(COWPCRT+1, 0x00); // set rate MSB
br eak;
case 19200: out port b(COVPORT, 0x06) ; /!l set rate LSB
out port b(COWCORT+1, 0x00); // set rate NSB
br eak;
case 38400: out port b(COVPORT, 0x03) ; /] set rate LSB
out port b(COWPORT+1, 0x00); // set rate MSB
br eak;
def aul t: /luse 9600 as default baud rate
out port b(COVPORT, 0x0c) ; /1l set rate LSB
out port b(COWCRT+1, 0x00); // set rate NMSB
br eak;
}
out port b(COWCORT+3, 0x03); // DLAB now | ow
out port b(COVPORT+1, 0x00); // Interrupts off
}

4.3.5 Visual Basic 6 Sample Program

For the purpose of this sample, a simple VB form consisting of four Text Boxes, a
Command Button, and the MSComm Control was used. Please refer to the project file
on the CDROM for further details.

This example makes use of two program events: the Form Load event and the
cmdMove Click event. The code attached to these events can be seen below.

Thi s program comuni cates with the ServoCenter 3.1 board

by using the raw packet format in Visual Basic 6. The serial
port is accessed

in this exanple via the Mcrosoft Conmm Contr ol

(c) 2000-2004 Yost Engineering
www. Yost Engi neeri ng. com

Private Sub cndhMove i ck()
t xt Boar dNum Text Tri n(t xt Boar dNum Text)
t xt Ser voNum Text Tri n(t xt Ser voNum Text)
t xt Posi ti on. Text Tri nmb(txtPosition. Text)
t xt Speed. Text = Tri n(txt Speed. Text)
MSComil. Qut put = Chr $(&HFO + Val (t xt Boar dNum Text)) & Chr$(16) _

& Chr$(Val (txtServoNum Text)) & Chr$(Val (txtPosition. Text)) _ &
Chr $(Val (t xt Speed. Text)) & Chr$(0) ' output the packet
End Sub

Private Sub Form Load()

MSCommil. CommPort = 1 'use conmmil
MSComml. Settings = “9600, 8, N, 1” 'set up conm port.
M5Conmmil. Port Qpen = True 'open the port

End Sub

31

User's Manual

4.4 Programming With the ServoCenter 3.1 ActiveX Control

To avoid the raw serial method of programming the ServoCenter 3.1 board, the
YEIServoCenter ActiveX Control can be used (in a Visual Basic 6.0 project). This
Control 1s designed to allow the programmer to concentrate on controlling the servos
without having to worry about the ServoCenter 3.1 communications protocol. Below is
an explanation of how to program the ServoCenter 3.1 using the YEIServoCenter
ActiveX Control.

4.4.1 Operation with ServoCenter ActiveX Control

The ServoCenter 3.1 CD contains a custom ActiveX Control. The ServoCenter Control
was designed to be extremely easy to install and program with.

4.4.2 Installing the ServoCenter ActiveX Control

1. Copy YEIServoControl.ocx from the CD to the ActiveX control directory. In
Windows 95/98/ME, ActiveX controls are stored in C:\WINDOWS\SYSTEM\.
In Windows 2000/XP, they are stored in C:\WINDOWS\SYSTEM32\.

2. Register YEIServoControl.ocx. To do this, click the Start button, and then select
Run. Into the Run dialog box, type “Regsvr32.exe” followed by a space and then
the path and filename of the ServoControl.

CENN 2| x|

- Type the name of a program, folder, document, ar
Inkernet resource, and Windows will open it Far you,

CpEn; If'egsvrSE.exe |::'l,winu:lDws'l,systemSZ'l,YEISE:rvcuCDntrj

(] 4 I Cancel | Browse, ., |

If the control is successfully registered, you will see a dialog box like this...

ReqgSvr32 x|

L
\11) DlIR.eqgisterServer in o iwindows!system3z YEISeryoControl ooy succeeded.,

The Control is now installed and ready for use!

32

User's Manual

4.4.3 Using the ServoControl in Visual Basic 6.0

1. Open a new project in the Visual Basic 6.0 editor.

2. Add the YEIServoControl to your project. To do this, click the “Project” menu

at the top of the editor and then select “Components”. This should bring up a
menu that looks like this:

Components El

Contrals | Designers | Insertable Objects I

wrap_activex 1.0 Type Library
%10 Controls
vacsoom 1.0 Type Library
vacsui 1.0 Type Library . — T"i::
Yahoo! Webcam Upload 1.0 Type Library
Yahoo! Webcam Viewer 1.0 Type Library - =
YEI ExplorerTree

bl "E1ServoCenterControl
¥InstHelper 1.0 Type Library
YMMAPT 1.0 Type Library
Yost Engineering Inc, Code Search Contral

Yost Engineering Inc, Printer Control | a I
YPopupBlocker 2.0 Type Library - TOWSE.
1| | 4 [T selected Items Only

—YEIServolCenterContral
Location: C:\WINDOWS\SYSTEM3ZVYEIServoControl.oox

ok | canced | Appy |

If the YEIServoControl was copied to the correct directory, it should appear in
the list in the dialog box. If not, it can still be added by clicking the “Browse”
button and browsing to the directory where it is stored.

Once the YEIServoControl has been selected, click the “OK” button to add it to
your project.

. With the YEIServoControl now added to your project, select it from the toolbox
and draw it on the form.

. In the “Properties” pane of the VB editor, specify the communications port
(ComPort property) by which the control will communicate with the
ServoCenter 3.1 board. A ComPort property of 1 will signify Coml1, a 2 will
signify Com2, and so on up to Com4.

There are two more properties that deal with communication to the board. One is
the BoardID and the other is BaudRate. The BoardID corresponds to the
BoardID switches found on the controller board, and the BaudRate is the speed
at which data will be sent to and from the controller board. The BoardID can be
set from 0 to 15 and BaudRate can be set to 9600,14400,19200, or 38400.

33

User's Manual

Make sure that the board has the correct jumper settings on JP2 and that your
board's ID switches are in the correct positions to ensure successful
communication.

5. There are several other entries in the “Properties” pane. One is the
ServoConfigFile property. This property can be used to specify a file which
will store servo min, max, and start information for up to 16 ServoCenter 3.1
boards. A related property is the AutoCreateConfigFile property. Setting this
property to True will cause a file to be created to store settings, even if a name is
not specified in the ServoConfigFile property.

The boolean property SynchronizeBoard determines where the values that are
displayed on the ServoConfig screen are pulled from. If SynchronizeBoard is
True, the values displayed on the ServoConfig screen are polled from the board
with the current BoardID. If SynchronizeBoard is False, the control will not
poll the current board, but will show the data for the current BoardID that is in
the file that was specified by ServoConfigFile.

This completes the process of preparing the project for ServoCenter 3.1 use. You
may now begin writing code to control the servos attached to your ServoCenter 3.1.
To ensure the proper functionality of the YEIServoControl, please note that the
InitBoard method must be invoked before attempting to access the ServoCenter 3.1
board. Once the InitBoard method has been executed, the servos attached to the
ServoCenter 3.1 board can be manipulated, and information about these servos can
be displayed, with the methods described in Section 4.3.4.

4.4.4 ServoCenter 3.1 OCX Control Methods

All of YEIServoControl's movement and set methods take integer arguments, and all of
the get methods return integers, unless otherwise specified. All methods below which
are followed by an asterisk (*) have a counterpart that will perform the same function,
but to all servos [0-15]. For example: the QuickMove method will move a single servo
to a specified position and the QuickMoveAll method will move all 16 servos to the
specified position. The methods below which are followed by 2 asterisks (**) also
have an All counterpart, which returns an array of integers [0-15]. Only the single servo
version of each method will be fully described.

Value ranges for arguments:

ServoNum — 0 to 15

ServoPosition, ChangelnServoPosition — 0 to 200
ScaledServoPosition, PercentOfSpeed — 0 to 100
ServoMaxSpeed, PulseWidth10usUnits — 1 to 239

QuickMove Method*

The QuickMove method moves the specified servo to the specified position. This method is of
the form:

YEI ServoCtrl 1. Qui ckMove(ServoNum ServoPosi ti on)

34

User's Manual

QuickScaledMove Method*

The QuickScaledMove method moves the specified servo to the specified scaled position. The
scaled position is really a percentage of the distance between the specified servo's min and max.
This method is of the form:

YEI ServoCtrl 1. Qui ckScal edMbve(Ser voNum Scal edSer voPosi ti on)
ServoEnable Method*

The ServoEnable method will enable the specified servo. This method is of the form:
YEI ServoCtrl 1. Ser voEnabl e(Ser voNum

ServoDisable Method*

The ServoDisable method will disable the specified servo. This method is of the form:
YEIl ServoCtrl 1. ServoDi sabl e(Ser voNum

SetMin Method*

The SetMin method sets the min position for the specified servo to a specified position. This
method is of the form:

YEI ServoCtrl 1. Set M n(ServoNum Ser voPosi ti on)

SetMax Method*

The SetMax method sets the max position for the specified servo to the specified position. This
method is of the form:

YEI ServoCirl 1. Set Max(Ser voNum Ser voPosi ti on)

SetStart Method*

The SetStart method sets the start position for the specified servo to the specified position. This
method is of the form:

YEI ServoCtrl 1. Set Start (ServoNum ServoPosition)

SetMaxSpeed Method*

The SetMaxSpeed method sets the maximum speed rating for the specified servo. This rating
is normally in Ps units. Multiplying ServoMaxSpeed by 10ys yields the maximum speed. This
method is of the form:

YEI ServoCtrl 1. Set MaxSpeed(Ser voNum Ser voMaxSpeed)

SetMaxCurrent Method*

The SetMaxCurrent method takes the current raw position of the specified servo and sets its
max position equal to it. This method is of the form:

YEI ServoCtrl 1. Set MaxCurrent (Ser voNum Ser voPosi ti on)

SetMinCurrent Method*

The SetMinCurrent method takes the current raw position of the specified servo and sets its
min position equal to it. This method is of the form:

YEI ServoCtrl 1. Set M nCurrent (Ser voNum)

SetStartCurrent Method*

The SetStartCurrent method takes the current raw position of the specified servo and sets its
start position equal to it. This method is of the following form:

YEl ServoCtrl 1. SetStartCurrent (ServoNum

35

User's Manual

GetCurrentPos Method**

The GetCurrentPos method gets the current position of the specified servo and returns it. This
method is of the form:

YEI ServoCtrl 1. Get Current Pos(ServoNum)

GetMin Method**

The GetMin method gets the min position of the specified servo and returns it. This method is
of the form:

YEI ServoCtrl 1. Get M n(ServoNum Ser voPosi ti on)

GetMax Method**

The GetMax method gets the max position of the specified servo and returns it. This method is
of the form:

YEI ServoCtrl 1. Get Max(Ser voNum Ser voPosi ti on)

GetStart Method**

The GetStart method gets the start position of the specified servo and returns it. This method is
of the form:

YEI ServoCtrl 1. Get Start (ServoNum ServoPosition)

GetMaxSpeed Method**

The GetMaxSpeed method gets the max speed of the specified servo and returns it. This
method is of the form:

YEI ServoCtrl 1. Get MaxSpeed(Ser voNum Ser voPosi ti on)

MoveRaw Method*

The MoveRaw method moves the specified servo to the specified position at the specified
percent of the max speed for that servo. This method is of the form:

YEI ServoCtrl 1. MoveRaw(Ser voNum Ser voPosi ti on, Percent O Speed)

MoveRawCW Method*

The MoveRawCW method moves the specified servo in the Clockwise direction in the amount
specified by ChangelnServoPosition at the specified percent of the max speed for that servo.
This method is of the form:

YEI ServoCtrl 1. MoveRawCW Ser voNum Changel nSer voPosi ti on,
Per cent O Speed)

MoveRawCCW Method*

The MoveRawCCW method moves the specified servo in the Counter-Clockwise direction in
the amount specified by ChangelnServoPosition at the specified percent of the max speed for
that servo. This method is of the form:

YEI ServoCtrl 1. MoveRawCCW Ser voNum Changel nSer voPosi ti on,
Per cent O Speed)

MoveScaled Method*

The MoveScaled method moves the specified servo to the specified scaled position at the
specified PercentOfSpeed. The scaled position is really a percentage of the distance between
the specified servo's min and max. This method is of the form:

YEI ServoCtrl 1. MoveScal ed(ServoNum Scal edSer voPosi ti on,
Per cent O Speed)

36

User's Manual

MoveScaledCW Method*

The MoveScaledCW method moves the specified servo to the specified scaled position in a
Clockwise direction at the specified PercentOfSpeed. The scaled position is really a percentage
of the distance between the specified servo's min and max. This method is of the form:

YEI ServoCtrl 1. MoveScal edCW Ser voNum Scal edSer voPosi ti on,
Per cent OF Speed)

MoveScaledCCW Method*

The MoveScaledCCW method moves the specified servo to the specified scaled position at the
specified PercentOfSpeed. The scaled position is really a percentage of the distance between
the specified servo's min and max.This method is of the form:

YEl ServoCtrl 1. MoveScal edCCW Ser voNum Scal edSer voPosi ti on,
Per cent O Speed)

SetPulseWidthMin Method

Servos require a pulse to move the servo to a specified location. The pulse width min is set to

(PulseWidth10usUnits * 10us), so passing 1 sets the PulseWidthMin to 10 ps. This method is
of the form:

YEI ServoCtrl 1. Set Pul seW dt hM n(Pul seW dt h10usUni t s)

SetPulseWidthMax Method

Servos require a pulse to move the servo to a specified location. The pulse width max is set to
(PulseWidth10usUnits * 10us), so passing 100 sets the PulseWidthMax to 1000 ps. This
method is of the form:

YEI ServoCtrl 1. Set Pul seW dt hivax(Pul seW dt h10usUni ts)

GetSettings Method

The GetSettings method returns a string containing information about the status of all of the
servos. This information can be corrupted if you're sending data at the same time that you are
trying to get data. This method is of the form:

YEI ServoCtrl 1. Get Settings()

CommitSettings Method

The CommitSettings method takes the current min values, max values, and other settings and
stores them in the EEPROM on the ServoCenter 3.1 board . These settings will then be loaded
the next time the board is restarted. This method is of the form:

YEI ServoCtrl 1. Conmit Settings()

RestoreFactory Method

The RestoreFactory method restores the settings to the Factory Settings. This method is of the
form:

YEI ServoCtrl 1. Rest oreFactory()

ResetAsStartup Method

The ResetAsStartup method does a software restart of the system. It takes the stored settings
and sets the current settings to them. This method is of the form:

YEI ServoCtrl 1. Reset AsStart up()

GetVersion Method

The GetVersion method returns a string that contains the copyright information and version of
the board. This method is of the form:

YEI ServoCtrl 1. Get Versi on()

37

User's Manual

ShowServoConfig Method

The ShowServoConfig method displays the configuration dialog box for the board. This
method is of the form:

YEI ServoCtrl 1. ShowSer voConfi g()

InitBoard Method

The InitBoard method initializes the COM port and loads settings for the servos. This method
is of the form:

YEI ServoCtrl 1.1 nitBoard()

4.4.5 Programming in Visual Basic 6.0 with the YEIServoControl

The following code examples illustrate the use of the YEIServoControl in Visual Basic
6.0.

Here 1s an example of how to initialize your ServoCenter 3.1 Board:

Private Sub Form Load()

YEIServoCtrll.InitBoard 'initialize the control
YEIServoCtrll.BoardID = 0 ' set board id to 0
End Sub

Here is an example of how to move a servo by clicking on a button:

Private Sub cmdMoveServo Click()
Call YEIServoCtrll.QuickMove (0, 100)
'Move servo 0 to raw position 100
End Sub

Here is an example of how to show the servo configuration dialog box:

Private Sub cmdShowConfig Click()
YEIServoCtrll.ShowServoConfig 'show config dialog
End Sub

The DirectSerial.vbp project, located on the ServoCenter 3.1 CD, is a sample Visual
Basic project that demonstrates usage of the YEIServoControl in the Visual Basic 6.0
environment.

38

User's Manual

4.5 Programming With the ServoCenter 3.1 DLL

ServoCenter 3.1 comes packaged with the yeisrvo.dll runtime library, which gives
programmers access to low-level predefined functions that can be used with the
ServoCenter 3.1 controller board. This section covers the capabilities of the DLL,

installing the DLL, and writing programs using the DLL functions.

4.5.1 ServoCenter 3.1 DLL Functional Overview

The functions provided by the ServoCenter 3.1 DLL correspond with the ServoCenter
3.1 controller board commands detailed in Section 4.1.4, except as noted in the table

descriptions listed below.

Function: void InitPort(int Comm, long BaudRate)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BaudRate: Data rate at which Port will communicate.

Return Value: 0 — Success
Other - Error

Function: int QuickMove(int Comm, int BoardNum, int ServoNum, int ServoPos)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo whose position is to be changed.
ServoPos: Raw position (0~200) to which servo will be moved.

Return Value: 0=Fail, Non-0=Success

Function: int ScaledQuickMove(int Comm, int BoardNum, int ServoNum, int ServoPos)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo whose position is to be changed.
ServoPos: Scaled position (0~100) to which servo will be moved.

Return Value: 0=Fail, Non-0=Success

Function: int ServoEnable(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be enabled.

Return Value: 0=Fail, Non-0=Success

Function: int ServoDisable(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be disabled.

Return Value: 0=Fail, Non-0=Success

Function: int SetMin(int Comm, int BoardNum, int ServoNum, int ServoMinPos)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Min is being set.
ServoPos: Minimum value to be set.

Return Value: 0=Fail, Non-0=Success

Function: int SetMax(int Comm, int BoardNum, int ServoNum, int ServoMaxPos)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Max is being set.
ServoPos: Maximum value to be set.

Return Value: 0=Fail, Non-0=Success

39

User's Manual

Function: int SetStart(int Comm, int BoardNum, int ServoNum, int ServoStartPos)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Start is being set.
ServoPos: Start value to be set.

Return Value: 0=Fail, Non-0=Success

Function: int SetMaxSpeed(int Comm, int BoardNum, int ServoNum, int ServoSpeed)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Speed is being set.
ServoSpeed: Maximum Speed value to be set.

Return Value: 0=Fail, Non-0=Success

Function: int SetMinCurrent(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Min is being set.

Return Value: 0=Fail, Non-0=Success

Function: int SetMaxCurrent(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Max is being set.

Return Value: 0=Fail, Non-0=Success

Function: int SetStartCurrent(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Start is being set.

Return Value: 0=Fail, Non-0=Success

Function: int GetCurrentPos(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which position is being queried.

Return Value: Position of servo (0~200)

Function: int GetMin(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Min is being queried.

Return Value: Minimum position of servo (0~200)

Function: Int GetMax(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which Max is being queried.

Return Value: Maximum position of servo (0~200)

Function: int GetStart(int Comm, int BoardNum, int ServoNum)

Parameters: Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo for which start position is being queried.

Return Value: Start position of servo (0~200)

40

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

Function:

Parameters:

Return Value:

User's Manual

int GetMaxSpeed(int Comm, int BoardNum, int ServoNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.

ServoNum: ID (0~15) of servo for which max speed is being queried.

Maximum speed of servo(0~100)

int MoveRaw(int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Position (0~200) to which servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int MoveRawCW (int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Units (0~200) servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int MoveRawCCW (int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Units (0~200) servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int MoveScaled(int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Scaled position (0~100) to which servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int MoveScaledCW(int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Scaled position (0~100) to which servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int MoveScaledCCW(int Comm, int BoardNum, int ServoNum, int ServoPos, int ServoSpeed)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be moved.

ServoPos: Scaled position (0~100) to which servo will be moved.

ServoSpeed: Speed (0~100) at which servo will move.

0=Fail, Non-0=Success

int SetPulseWidthMin(int Comm, int BoardNum, int WidthVal)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
WidthVal: Minimum (1~239) width of servo control pulses.

0=Fail, Non-0=Success

41

User's Manual

int SetPulseWidthMax(int Comm, int BoardNum, int WidthVal)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
WidthVal: Maximum (1~239) width of servo control pulses.

0=Fail, Non-0=Success

int InvertServo(int Comm, int BoardNum, int ServoNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be inverted.

0=Fail, Non-0=Success

int NormalServo(int Comm, int BoardNum, int ServoNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
ServoNum: ID (0~15) of servo to be normalized.

0=Fail, Non-0=Success

int GetMaxSettingsLen()

None

Maximum length of settings string obtained with GetSettings()

int GetSettings (int Comm, int BoardNum, char * SettingsInfo)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
SettingsInfo: Buffer to hold settings information.

Length of SettingsInfo string

void CommitSettings(int Comm, int BoardNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.

None

void RestoreFactorySettings(int Comm, int BoardNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.

None

void ResetAsStartup(int Comm, int BoardNum)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.

None

int GetMaxVersionLen()

None

Maximum length of version string obtained with GetSCVersion()

int GetSCVersion(int Comm, int BoardNum, char * VerInfo)

Comm: Communications Port to which ServoCenter 3.1 controller is attached.
BoardNum: ID (0~15) of ServoCenter 3.1 Board to which the command will be sent.
Verlnfo: Buffer to hold version information.

Length of VerlInfo string

void CloseCom(int Comm)

Comm: Communications Port to be closed.

None

42

User's Manual

Function: void CloseAllComs()
Parameters: None
Return Value: None

4.5.2 Installing the yeisrvo.dll Runtime Library

For your programs to be able to use the ServoCenter 3.1 DLL, the DLL must first be
placed somewhere that your running program will be able to find it. The best location
for your DLL is in the same directory as your running program. For example, if your
program is found in 'C: \ServoCenter\program\ ', copy the ServoCenter 3.1
DLL to that directory.

Another location where you can store the ServoCenter 3.1 DLL is the folder where
Windows stores the system-wide runtime libraries. In Windows 95 and 98, this folder
1S 'C: \WINDOWS\system\.' In Windows ME, 2000, and XP, the folder is
'C:\WINDOWS\system32\.

Once the ServoCenter 3.1 DLL has been copied to one of these directories, you are
ready to begin writing programs that use it.

4.5.3 Programming with yeisrvo.dll in Visual Basic 6.0

To use the functions provided by yeisrvo.dll from a Visual Basic program, you must
first provide the Visual Basic environment with a way to know where to find these
functions and how to treat them. To do this, the following form is used:

Public Declare Function InitPort Lib "yeisrvo.dlIl" (_
ByVal PortNum As Long,
ByVal Baud As Long _

) As Integer

This code snippet declares a public function named InitPort that is located in the
yeisrvo.dll runtime library. The InitPort function receives two long integers as
arguments and returns an integer.

To use any of the ServoCenter 3.1 DLL functions, a declaration like the one above
must be written and stored in a code module. The ServoCenter.bas file, located on the
ServoCenter 3.1 CD, contains declarations for all of the ServoCenter 3.1 runtime
library's functions.

After making declarations for the DLL functions, they can be called in the same fashion
as any other Visual Basic routine. The code snippet below illustrates calling a DLL
function in Visual Basic.

Private Sub Form Load()
If InitPort(1, 38400) <> 0 Then
MsgBox "Port could not be opened!"

El se
MsgBox "Port opened successful ly!"
End If
End Sub

This code snippet calls the InitPort() function declared previously. The
ServoCenterDLLExample.vbp project, located on the ServoCenter 3.1 CD, is a sample
Visual Basic project that demonstrates usage of the ServoCenter 3.1 DLL from the
Visual Basic 6.0 environment.

43

User's Manual

4.5.4 Programming with yeisrvo.dll in Visual C++ 6.0

To use the ServoCenter 3.1 runtime library within the Visual C++ 6.0 environment, you
must first copy the yeisrvo.lib import library to Visual C++ 6.0's library directory. By
default, this is 'C: \Program Files\Microsoft Visual Studio\VC98\LIB.'
The yeisrvo.lib file contains object code that needs to be linked to your programs when
they are compiled. To ensure that Visual C++ links to the import library, you will need
to alter your project settings such that yeisrvo.lib is is in the link list. To do this, click
Project->Settings and then click the Link tab. At the end of the list of Object/library
modules, append a space and yeisrvo.lib. The following illustration shows a properly
modified module list:

Seftings For: |'w/in32 Debug j General | Debug | CAC++ Link | Hesnurc{ EE

Categony: I General j Beset |

Cutput file name:

|Del:nug£yeiswl:n.dll

ObjectAibram modules:
|2.Iitu aleaut32.lib wid ib odbe32 b adbcep32 lib veisrva. it

[V Generate debuginfo [~ Ignore all default libraries
¥ Link incrementally ™ Generate mapfils
[~ Enable profiing ™ Doesn't produce LIE

Froject Options:

kemel32 b user32 lib gdi32 b wingpool ib comdlg32 it «
advapidz.ib shell32.b ole32. b oleaut32 b uuid b
odbc32 b odbocp32 lib Anologo Adll fincremental:yes j

0k I Cancel |

After adding yeisrvo.lib to the project's module list, you must now include the
servocenter.h header file. This file contains function prototypes for the functions
contained within the ServoCenter 3.1 runtime library. The file can be found on the
ServoCenter 3.1 CD. After including the header file, you may call any of the functions
listed above. The Visual C++ 6.0 project ServoCenterDLL.dsp, located on the
ServoCenter 3.1 CD, contains examples of how to call these functions.

44

User's Manual

4.5.5 Programming with yeisrvo.dll in Visual C++ .NET

Programming with the yeisrvo.dll runtime library in Visual C++ .NET is very similar to
programming in Visual C++ 6.0. The only real difference is the process by which the
project settings are modified to use the yeisrvo.lib import library. For Visual C++
NET, the default library directory is 'C: \Program Files\Microsoft Visual
Studio .NET\Vc7\1lib.' To add yeisrvo.lib to the list of libraries to link, right-
click on the name of the project in the Solutions Explorer, then select Properties.
Select Linker from the Property Pages dialog that appears, and then click Input.
Next add yeisrvo.lib to the Additional Dependencies and click OK to apply the
settings. The illustration below shows a properly modified Properties Dialog:

x|
Configuration: IP-EtiVE':DEbU';I:' j FlatForm: IP-EtiVE{WinSE} j Corfiguration Manager... |
‘3 Configuration Propertie: « | Additional Dependencies yeisrvo.lib _l
General Ignore All Default Libraries o
Cebugging Ignore Specific Librarsy
[Cfc++ Module Definition File
{3 Linker Add Module o Assembly
eneral Embed Managed Resource File
% Input Force Symbol References
Debug Delay Loaded DLLs
Swskem
Cpkirizakion
Embedded IDL
Advanced

Cormand Line
([Resources
(3 MIDL
(2 Browsse InFormation
[Z1 Build Events
(23 Cuskomn Build Step

[Web Peferences ™
4| | v

Additional Dependencies

Specifies additional items to add to the link line {ex: kernel32.lib); configuration
specific,

0k, I Cancel | Spply | Help |

Once the yeisrvo.lib import library has been added to your project, you may follow the
instructions provided in Section 4.4.4 to program the ServoCenter 3.1 controller board.
The Visual C++ NET project, ServoCenterCppNETDII.vcproj, located on the
ServoCenter 3.1 CD, contains examples of how to call these functions.

4.5.6 Programming with yeisrvo.dll in the Microsoft .NET Framework

The process for accessing the runtime library functions of the ServoCenter 3.1 DLL is
very similar on both the Visual Basic .NET and the C# platforms. In both instances,
the programs must import System.Runtime.InteropServices, which provides the
DllImport function, and System.Text, which provides the StringBuilder class. The
DllImport function allows you to call runtime library functions directly in your code,
and the StringBuilder class provides a way to pass mutable strings to the DLL
functions.

45

User's Manual

Visual Basic NET

The following code snippets demonstrate importing classes and calling DLL functions
in Visual Basic .NET.

I nports System Runtinme. | nteropServices
| nports System Text

<Dl I I nport("yeisrvo.dl|l")> Function InitPort(ByVal PortNum As
I nt eger, ByVal Baud As Long) As Integer
End Function

Private Sub Fornil_Load(ByVal sender As System Cbject, ByVal e As
Syst em Event Args) Handl es MyBase. Load
Call InitPort(1, 38400)
End Sub

The Visual Basic .NET project, ServoCenterVBNETDLL.vbproj, located on the
ServoCenter 3.1 CD, demonstrates using the yeisrvo.dll functions from a VB.NET
program.

C#

The following code snippets demonstrate importing classes and calling DLL functions
in C#.

usi ng System Text;
usi ng System Runti ne. | nt er opServi ces;

public class ServoCenter

{
[Dl1mport("yeisrvo.dl ", EntryPoint="InitPort")]
public extern static int InitPort(int PortNuml ong
BaudRat e) ;
}
private void Forml_Load(object sender, System EventArgs e)
{
int i;
i f(ServoCenter.lnitPort(1, 38400)!=0)
{
Consol e. WiteLine("Could not open serial port!");
return;
}
}

The C# project, ServoCenterExampleC.csproj, located on the ServoCenter 3.1 CD,
demonstrates using the yeisrvo.dll functions from a C# program.

46

User's Manual

5. Appendix

5.1 Hexadecimal/Decimal/Binary Conversion Chart

Decimal Hex Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

5.2 Serial Cable Diagram

The diagrams below illustrate the wire connections necessary for ServoCenter 3.1 compatible serial cables.

9-Pin to 9-Pin Serial Connection

9-Pin 9-Pin
Connector Connector
20 Receive Data 02
30 Transmit Data O3
50 Signal Ground O5

9-Pin to 25-Pin Serial Connection

9-Pin 25-Pin
Connector Connector

20 Receive Data Transmit DataO)

30 \R QO3

50 Signal Ground O7

47

51 I [I (1] I [1 zu 1 1] | @t [[] 3 ¥ 3 [I [3 I z |
e dgg:ze: a1
T/T h33ys| SSiZOIZO $BOZ/TT/8 ROl o e ook
o'
N3y dagunp 1UsWnoog m.nnz:aa.aco._.z:mn - 6Z06-GGE-Bb S

wodbutiaautbuziso s nnn

T-g431uadoadas 3101 B ZONNOY=0Yd=LNNOU g%,
o 2995 OIYQ ‘Yinowsiiog

- B*ZANMOY =0 = LN 198415 puUolas pPES
mmj ﬁ_.ﬂ m”> LWPCNUO‘?LWW Hnon-ranin nn o’ *ou] ‘bursaautbul 1soh

User's Manual

48

s *oul ‘Butassuibul 1504 yeEz @
no ona t
= L ¥ [l
A T°£A91US)0OAUSS
[— 3HIFZEZXWL 1
5 mizy ginozy b 200 @ ==
Ty MiTE B0t 1 = 2
? IN0ZL MIZL g S |
= . = | oty wTL e _ _ ~
u -
. 4] oL I <
[T) w23 |._ = =
% A et w L
. 7 =
2 IR . g_ - oNe L ¥-5TS8YO3
3IWH34680 = | eosoxs
T 41 z 1 socoxs>
ba s —§| ZOSeLND
He T —5| EOKTIND
Fid FT| OovaR
w < c Tr{ S06WT0)
ME @ @ 71| P00
i A 7He T <O
== BIcKE
e z IR
ZIeH@TH
cdr Im) _Mw EJHTTH
*IHZTH
_ SIHETH)
M."w T-£dl 7 ST
RE | £demnn -
B8R0 ALY o
B = o
i eaacn oy
- PEKES) 20n <
e SAHISON e & e
=55 g @1301230 [y @m @ s
A LBHONIS) (I [
AS ZINL/EODe3d |55
< @ BB0 =
— TWTON
& Y3 1 ZuHZOw) LK g ﬂ
@ T O EWOEDR) 0 T -
Ot FR N TWLX =~ m E
— eI SHHGO B’ 219]
s oF — e 2 3 w
. @ < - m.ull. W20 13538 Dy g
BZEZLS A % 11 213
d335/ gg 3 153l - b
L gg 2 8z o
RE B uwe ﬂ.ww T & -
| 03mas %33 2N BIs &z s
oI mLs 5233 3 T < o
7T z jocn - @
T Twauna 13530 | pat || %
| Wadnas 1001 o wlo T a3
w mn!n—' LIS ON
| NAoxL b o T
g — 122 |8
S o w e Oon inrp| S22 nTp
i NILK Zis fotd —L- = L
wr] usos o [T] atd Z3 T
v s LnoLSH/ o £5 o #31
55| 519/ 0BG z || el 6TG)
| St S5gg @ woEsn T O L 1no
] o 238 & — &2 Vs e
5L 1
E Or 1 —= 8 @'g-zITE6ZdT |3 & 2 .T_w.
mw ol 2l emgar OY-L1+80THT
e OF
o o7
Z —
OF OOul|
G5 Om
v s | zn_u_._u.;u
[= o B
=] V< Ju%\/
= 13375 1401 23NND I IMO
51 I [[I [I F13 I 13 1 Bt 1 0] L E] 5 I v T T T H I

5.3 ServoCenter 3.1 Circuit Schematic

	1. Package Checklist
	2. Function Overview
	2.1 Introduction
	2.2 Board Overview
	2.3 Features and Specifications
	2.3.1 Features
	2.3.2 Specifications
	Physical
	Interface
	Electrical

	3 Installation
	3.1 General Installation Precautions
	3.2 Installing the ServoCenter 3.1 USB Drivers
	3.2.1 Before Installing Drivers
	3.2.2 Installing the Virtual Com Port Driver
	3.2.3 Installing the ServoCenter 3.1 Driver

	3.3 Connecting a Single ServoCenter 3.1 USB Board
	3.4 Connecting Multiple ServoCenter 3.1 Boards
	3.4.1 “Daisy-Chaining” Multiple ServoCenter 3.1 USB Boards
	3.4.2 Using Multiple ServoCenter 3.1 USB Boards on a USB Hub

	3.5 Jumper Settings
	3.5.1 Jumper JP1
	3.5.2 Jumper JP2
	3.5.3 Jumper JP3

	3.6 Board Identification Settings

	4 Programming the ServoCenter 3.1
	4.1 Using the Virtual Com Port
	4.2 ServoCenter 3.1 Protocol
	4.2.1 Protocol Overview
	4.2.2 Packet Overview
	4.2.3 Start of Packet Byte
	4.2.4 Command Set
	Command Summary
	Command Details

	4.2.5 The Checksum Value

	4.3 Programming with Raw Serial I/O
	4.3.1 QBASIC Example Program
	4.3.2 C++: Microsoft Visual C++ 6 Example Program
	4.3.3 C : Linux gcc Example Program
	4.3.4 C : Borland Turbo C Sample Program
	4.3.5 Visual Basic 6 Sample Program

	4.4 Programming With the ServoCenter 3.1 ActiveX Control
	4.4.1 Operation with ServoCenter ActiveX Control
	4.4.2 Installing the ServoCenter ActiveX Control
	4.4.3 Using the ServoControl in Visual Basic 6.0
	4.4.4 ServoCenter 3.1 OCX Control Methods
	4.4.5 Programming in Visual Basic 6.0 with the YEIServoControl

	4.5 Programming With the ServoCenter 3.1 DLL
	4.5.1 ServoCenter 3.1 DLL Functional Overview
	4.5.2 Installing the yeisrvo.dll Runtime Library
	4.5.3 Programming with yeisrvo.dll in Visual Basic 6.0
	4.5.4 Programming with yeisrvo.dll in Visual C++ 6.0
	4.5.5 Programming with yeisrvo.dll in Visual C++ .NET
	4.5.6 Programming with yeisrvo.dll in the Microsoft .NET Framework
	Visual Basic .NET
	C#

	5. Appendix
	5.1 Hexadecimal/Decimal/Binary Conversion Chart
	5.2 Serial Cable Diagram
	5.3 ServoCenter 3.1 Circuit Schematic

