

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

370

Controller Area Network and its Applications
Akshay Rane

1
, Ajit Shendge

 2
, Rushikesh Shinde

3
, Jyoti Patil

4
, Ramakant Patil

5
, Nilima Zade

6

1,2,3,4
Students, Dept. Of Electronics, P.V.P.P.College of Engineering, Sion-Chunabatti, Mumbai, 400022.

5,6
Asst. Prof, Dept. Of Electronics, P.V.P.P.College of Engineering, Sion-Chunabatti, Mumbai, 400022.

Abstract - The Control Area Network Protocol is a serial

communication protocol. The CAN protocol is designed in

such a way that the microcontrollers and other devices can

communicates with each other within a vehicle in the absence

of a host computer. The development of CAN protocol started

originally in 1983 at Robert Bosch GmbH. In 1986 at the

Society of Automotive Engineers in Detroit, Michigan the

CAN protocol was officially released.

CAN protocol is a type of message-based protocol, which is

dedicatedly designed for automotive applications but now it

has vast applications in other engineering fields like

aerospace, maritime, industrial automation and medical

equipment.

Keywords - CAN protocol, Control Area Network Protocol,

CAN, CAN networks

I. INTRODUCTION

The CAN is serial communication protocol that supports

real time systems with high reliability. It detects the

collisions; it also detects the errors, retransmits corrupt

messages and gives priority to the received and transmitted

messages. The identifier length can be either 11 bits or 29

bits and the data length can vary from 0 to 8bytes. The fast

growing use of the CAN protocol in the Industrial

applications resulted in development of the CAN based

network. In CAN based distributed control system, the

major problem is the size of distributed area. The physical

length limitation of the CAN bus is 2km at the rate of

20kbps. The maximum speed of the CAN protocol is

1mbps for 50metres and 500kbps for 100metres. Sleep

mode and wakeup are available options for each node to

reduce power consumption.

A. Standard and Extended Frame Format

Fig. 1 gives an overview of the different CAN data

frame types: All CAN messages start with the identifier

(arbitration) field. There are one or three control bits

coming along with the identifier. These bits define whether.

It is a standard or an extended frame and whether it is a

data or a remote frame.

Fig 1: CAN Data Frame Types

Fig. 1 (a) shows the data frame format, how it is

specified in the CAN protocol specification versions 1.0,

1.1, 1.2 and 2.0 A. Fully compatible to that is the standard

data format (Fig. 1 (b)), how it is specified in version 2.0 B.

In contrast to that Fig. 1 (c) describes the extended data

format with the 11+18=29 bit identifier (version 2.0 B).The

meaning of the three control bits is as follows:

RTR bit - Remote Transmit Request

The RTR bit differentiates between data and remote

frames. In data frames this bit is dominant (’0’), in remote

frames this bit is recessive (’1’).

SRR bit - Substitute Remote Request

The SRR bit is a recessive bit. It is transmitted in

extended frames at the position of the RTR bit of standard

frames.

IDE bit - Identifier Extension

The IDE bit differentiates between standard and

extended frames. In standard frames this bit is dominant,

whereas in extended frames this bit is recessive. Similar to

Fig. 1 showing the standard and extended frame formats of

CAN data messages, Fig. 2 shows the frame formats of

CAN remote messages. Here the RTR bit is set to recessive

(’1’).

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

371

Fig. 2 CAN Remote Frame Types

In case that several nodes within one system start a

simultaneous transmission of message frames with the

same identifier, the following rules are valid: Data frames

have a higher priority than remote frames, and standard

frames have a higher priority than extended frames. That

means that e.g. a standard remote frame wins arbitration

against an extended data frame, if the 11 most significant

bits of the identifiers are equal.

B. CAN and OSI Model

Many communication bus protocols do not use all the

seven layers of this OSI Model. Since CAN is a closed

network it doesn’t need to have security and to present the

data in a user interface. Also it does not need to maintain

sessions and logins. Hence it uses only two Layers such as

Physical and Data Link Layer. The CAN OSI model shown

in fig. 3 explains the transfer of data between two nodes.

Fig. 3 CAN and OSI model

The Physical Layer ensures the physical connection

between the nodes in the network. The Data Link layer

contains Frames and information to identify the frames and

errors. It has information also to determine the bus access.

C. The CAN error process

The error is detected by the CAN controller (a

transmitter or a receiver). An error frame is immediately

transmitted. The message is cancelled at all nodes

(exceptions exist - see CAN controller error modes). The

status of the CAN controllers is updated (see CAN

controller error modes). The message is re-transmitted. If

several controllers have messages to send, normal

arbitration is used.

i. Error detection

Error detection is handled automatically by the CAN

controller. The detected errors are:

Bit errors:

1. Bit stuffing error: normally a transmitting node inserts a

high after five consecutive low bits(and a low after five

consecutive high). This is called bit stuffing. A receiving

node that detects violation (more than five consecutive bits

will see a bit stuffing violation.

2. Bit error: A transmitting node always reads back the

message as it is sending. If it detects a different bit value on

the bus than it sent, and the bit is not part of the arbitration

field or in the acknowledgement field and error is detected.

Message errors:

1. Checksum error: each receiving node checks CAN

messages for checksum errors.

2. Frame error: There are certain predefined bit values that

must be transmitted at certain points within any CAN

Message Frame. If a receiver detects an invalid bit in one

of these positions a Form Error (sometimes also known as a

Format Error) will be flagged.

3. Acknowledgement Error: If a transmitter determines that

a message has not been acknowledged then an ACK Error

is flagged.

ii. CAN controller error modes

A CAN controller can be in one of three states:

1. Error active: the normal operating mode for a

controller. Messages can be received and transmitted. On

detecting an error an active error flag is sent (see error

signaling).

2. Error passive: a mode entered when the controller has

frequent problems transmitting or receiving messages.

Messages can be received and transmitted. On detecting an

error while receiving, a passive error flag is sent.

http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#Error signalling
http://hem.bredband.net/stafni/developer/CAN.htm#Error signalling

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

372

3. Bus off: entered if the controller has serious problems

with transmitting messages. No messages can be received

or transmitted until the CAN controller is reset by the host

microcontroller or processor.

The mode of the controller is controlled by two error

counters - the transmit error counter (tx_count) and the

receive error counter (rx_count). The following rules apply:

1. The CAN controller is in error active mode if tx_count

<= 127 AND rx_count <= 127.

2. Passive mode is used if (tx_count > 127 OR rx_count >

127) AND tx_count <= 255.

3. Bus off is entered if tx_count > 255.

Once the CAN controller has entered bus off state, it

must be reset by the host microcontroller or processor in

order to be able to continue operation. In addition, this is

only allowed after the reception of 128 occurrences of 11

consecutive recessive bits.

The counters are updated as follows:

1. When a receiver detects an error, the rx_count will be

increased by 1, except when the detected error was a bit

error during the sending of an active error flag or an

overload flag.

2. When a receiver detects a dominant bit as the first bit

after sending an error flag, the rx_count will be increased

by 8.

3. When a transmitter sends an error flag, the tx_count is

increased by 8.

Exception 1: If the transmitter is error passive and detects

an ack error because of not detecting a dominant ack and

does not detect a dominant bit while sending its passive

error flag.

Exception 2: If the transmitter sends an error flag because a

stuff error occurred during arbitration whereby the stuff bit

is located before the RTR bit, and should have been

recessive, and has been sent as recessive but monitored as

dominant.

4. If a transmitter detects a bit error while sending an active

error flag or an overload flag, the tx_count is increased

by 8.

5. If a receiver detects a bit error while sending an active

error flag or an overload flag the rx_count is increased

by 8.

6. Any node accepts up to 7 consecutive dominant bits after

sending an active or passive error flag or an overload flag.

After detecting the 14th consecutive dominant bit (in the

case of an active error flag or an overload flag), or after

detecting the 8th consecutive dominant bit following a

passive error flag, and after each sequence of additional 8

consecutive dominant bits every transmitter increases its

tx_count by 8 and every receiver increases its rx_count

by 8.

7. After the successful transmission of a message (getting

ack and no error until end of frame is finished) tx_count is

decreased by 1 unless it was already 0.

8. After the successful reception of a message (reception

without error up to the ack slot and the successful sending

of the ack bit), rx_count is decreased by 1 if it was between

1 and 127. If rx_count was 0 it stays 0, and if it was greater

than 127, it will be set to a value between 119 and 127.

Note: If a node is the only one on the bus (or during start-

up the only one that has become active), and it transmits a

message, it will get an acknowledgement error, and will

retransmit the message. This may lead to that node going to

error passive mode, but not to it becoming bus off (due to

exception 1 under point 3).

iii. Error signaling

When an error is detected by a node it sends an error flag

on the bus. This prevents any other node from accepting the

message and ensures consistency of data throughout the

network.

The active error flag consists of six low bits, and is used

if the node transmitting the error frame is in active error

state. As low is dominant all other nodes will detect bit

stuffing violation and send their own error flags. After this,

nodes that want to transmit (including the one sending the

interrupted message) will start to do so. As usual, the node

whose message has the highest priority will win arbitration

and send its message.

If the CAN controller is in error passive mode the error

frame will consist of six passive (high) bits. Since the error

flag only consists of passive bits, the bus is not affected. If

no other node detected an error, the message will be sent

uninterrupted. This ensures that a node having problems

with receiving cannot block the bus.

All of this advanced error handling is done automatically

by the CAN controller, without any need for the host

microcontroller to do anything. This is one of the big

advantages of CAN.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

373

iv. Calculation of baud rate and sample point

Baud rate: The baudrate of the bus can be calculated from:

Baudrate = fcrystal / (2*n*(BRP+1))

Where n is the number of time quanta for one bit and is

defined as:

n = SYNCHSEG+TSEG1+TSEG2

BRP is the value of the BaudRate Prescaler. Warning:

some CAN controllers (like Intel 526) has another way of

calculating the number of time quantas in a bit! Consult

your user’s manual.

Sample point

Quantabeforesample = TSEG1 + 1

Quanta after sample = TSEG2

Often the sample point is given in percent of the bit time.

This is:

(TSEG1+1)/ (TSEG1+1+TSEG2)

D. How CAN Communication Works

As stated earlier, CAN is a peer-to-peer network. This

means that there is no master that controls when individual

nodes have access to read and write data on the CAN bus.

When a CAN node is ready to transmit data, it checks to

see if the bus is busy and then simply writes a CAN frame

onto the network. The CAN frames that are transmitted do

not contain addresses of either the transmitting node or any

of the intended receiving node(s). Instead, an arbitration ID

that is unique throughout the network labels the frame. All

nodes on the CAN network receive the CAN frame, and,

depending on the arbitration ID of that transmitted frame,

each CAN node on the network decides whether to accept

the frame.

If multiple nodes try to transmit a message onto the

CAN bus at the same time, the node with the highest

priority (lowest arbitration ID) automatically gets bus

access. Lower-priority nodes must wait until the bus

becomes available before trying to transmit again. In this

way, you can implement CAN networks to ensure

deterministic communication among CAN nodes.

Fig. 4 CAN contain built in priority for messages to avoid conflicts.

E. Available Products

If standard frames are used exclusively in an application,

then both kinds of CAN controllers – those according to

version 2.0 B ("passive" or "active") as well as those

according to version 2.0 A (or even older versions) - can be

used. That means that for these CAN networks the full

range of available CAN controllers can be used. All future

CAN products will still perform standard frame

communication.

When extended frames are used in a CAN network, the

number of usable products is only an extract of the full

range of available CAN controllers. Because of the aim to

offer very cheap CAN controllers, it is likely that even

some future CAN controllers will be created which do not

support extended frame "actively". For most applications

the cheaper price will be more beneficial than the

additional feature of extended frame communication.

II. CAN APPLICATIONS

CAN was first created for automotive use, so its most

common application is in-vehicle electronic networking.

However, as other industries have realized the

dependability and advantages of CAN over the past 20

years, they have adopted the bus for a wide variety of

applications.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

374

Railway applications such as streetcars, trams,

undergrounds, light railways, and long-distance trains

incorporate CAN. You can find CAN on different levels of

the multiple networks within these vehicles – for example,

in linking the door units or brake controllers, passenger

counting units, and more. CAN also have applications in

aircraft with flight-state sensors, navigation systems, and

research PCs in the cockpit. In addition, you can find CAN

buses in many aerospace applications, ranging from in-

flight data analysis to aircraft engine control systems such

as fuel systems, pumps, and linear actuators.

Medical equipment manufacturer’s use CAN as an

embedded network in medical devices. In fact, some

hospitals use CAN to manage complete operating rooms.

Hospitals control operating room components such as

lights, tables, cameras, X-ray machines, and patient beds

with CAN-based systems. Lifts and escalators use

embedded CAN networks, and hospitals use the CAN open

protocol to link lift devices, such as panels, controllers,

doors, and light barriers, to each other and control them.

CAN open also is used in nonindustrial applications such as

laboratory equipment, sports cameras, telescopes,

automatic doors, and even coffee machines.

III. CONCLUSION

Tab. 1 tries a summarizing valuation of the standard and

extended frame formats regarding the number of different

identifiers, the bus access time, the bus throughput, the

CPU-load, the availability of products and the chip

size/cost. The result is, that it is advantageous to use the

standard frame format as long as the application allows to

do so. From today’s point of view only the American

automotive manufacturers have applications needing

extended frames. Therefore it should be recommended for

all other applications to use only standard frames.

Tab.1 Comparison of CAN Standard and Extended Frame Products

IV. FUTURE DEVELOPMENT

CAN Safety is a CAN-based technique providing safety

in field bus systems. It is not related to secure

communication where data encryption and decryption is

used to protect systems from unauthorized access. It

ensures the validity of CAN messages or the safety of the

hardware in relation to explosions. This technology already

exists, but is not commonly used in automotive

applications.

There are three types of CAN Safety technologies:

safety-related communication, safety-critical

communication and intrinsically safe communication. Here

there is a safe state the controller is forced into, given in

any failure for a safety-related communication. This type of

safety is found in CAN open Safety protocol and

DeviceNet CIP Safety protocol; however a custom safety-

related communication can be design as well.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014)

375

A safety-critical communication does not use a safe

state, but redundancy instead. It can use redundant

networks and/or redundant communication. Figure 5 shows

an example of a safety-critical communication using a

redundant communication. The intrinsically safe

communication is simply a CAN physical layer rated for

certain conditions to ensure the

CAN hardware will not cause any explosions. It finds

applications in the petrochemical and chemical industries.

Fig. 5 Safety-critical communication.

Even though this paper has explained the superiority of

CAN over LIN, as technology evolves, a newer, faster and

even more robust protocol is going to replace CAN in the

near future. In the 21st century’s first decade, a

communication system called FlexRay was developed by

the FlexRay Consortium.

In 2010, this group released the latest version of the

protocol, the FlexRayTM Communications System

specifications Version 3.0.1. This new robust serial

networking technology designed for advanced control

applications in the automotive industry is a time-

deterministic, scalable and fault-tolerant protocol having a

data rate up to 10 Mb/s. Like most new technologies

reaching the market, FlexRay is more expensive than older

similar technologies such as LIN and CAN.

REFERENCES

[1] Bosch. “CAN Specification”, Version 2.0, Robert Bosch GmbH,

1991.

[2] Kadionik, Patrice. “Le bus CAN”, École Nationale Supérieure

Électronique Informatique & Radiocommunications Bordeaux,
2001.

[3] Held, Gilbert. “Inter- and intra-vehicle communications”, Auerbach
Publications, 2008.

[4] Provencher, Hugo. “Introduction au protocole de communication

CAN” [Presentation], ELE4202 Commande des processus
industriels, Département degénie électrique, École Polytechnique de

Mtl, Automne 2009.

[5] MotoHawk Training. “CAN (Controller Area Network)”

[Presentation], Woodward MotoTron Control Solutions, 28 October

2008.

[6] http://progrm77.blogspot.com/2012/10/can-controller-area-

network.html

[7] http://wiki.altium.com/pages/viewpage.action?pageId=8753896

[8] http://wenku.baidu.com/view/fff270bd960590c69ec376e5.html

