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Abstract - The Control Area Network Protocol is a serial 

communication protocol. The CAN protocol is designed in 

such a way that the microcontrollers and other devices can 

communicates with each other within a vehicle in the absence 

of a host computer. The development of CAN protocol started 

originally in 1983 at Robert Bosch GmbH. In 1986 at the 

Society of Automotive Engineers in Detroit, Michigan the 

CAN protocol was officially released. 

CAN protocol is a type of message-based protocol, which is 

dedicatedly designed for automotive applications but now it 

has vast applications in other engineering fields like 

aerospace, maritime, industrial automation and medical 

equipment. 

Keywords - CAN protocol, Control Area Network Protocol, 

CAN, CAN networks 

I. INTRODUCTION 

The CAN is serial communication protocol that supports 

real time systems with high reliability. It detects the 

collisions; it also detects the errors, retransmits corrupt 

messages and gives priority to the received and transmitted 

messages. The identifier length can be either 11 bits or 29 

bits and the data length can vary from 0 to 8bytes. The fast 

growing use of the CAN protocol in the Industrial 

applications resulted in development of the CAN based 

network. In CAN based distributed control system, the 

major problem is the size of distributed area. The physical 

length limitation of the CAN bus is 2km at the rate of 

20kbps. The maximum speed of the CAN protocol is 

1mbps for 50metres and 500kbps for 100metres. Sleep 

mode and wakeup are available options for each node to 

reduce power consumption. 

A. Standard and Extended Frame Format 

Fig. 1 gives an overview of the different CAN data 

frame types: All CAN messages start with the identifier 

(arbitration) field. There are one or three control bits 

coming along with the identifier. These bits define whether.  

It is a standard or an extended frame and whether it is a 

data or a remote frame. 

 

 

Fig 1: CAN Data Frame Types 

Fig. 1 (a) shows the data frame format, how it is 

specified in the CAN protocol specification versions 1.0, 

1.1, 1.2 and 2.0 A. Fully compatible to that is the standard 

data format (Fig. 1 (b)), how it is specified in version 2.0 B. 

In contrast to that Fig. 1 (c) describes the extended data 

format with the 11+18=29 bit identifier (version 2.0 B).The 

meaning of the three control bits is as follows: 

RTR bit - Remote Transmit Request 

The RTR bit differentiates between data and remote 

frames. In data frames this bit is dominant (’0’), in remote 

frames this bit is recessive (’1’). 

SRR bit - Substitute Remote Request 

The SRR bit is a recessive bit. It is transmitted in 

extended frames at the position of the RTR bit of standard 

frames. 

IDE bit - Identifier Extension 

The IDE bit differentiates between standard and 

extended frames. In standard frames this bit is dominant, 

whereas in extended frames this bit is recessive. Similar to 

Fig. 1 showing the standard and extended frame formats of 

CAN data messages, Fig. 2 shows the frame formats of 

CAN remote messages. Here the RTR bit is set to recessive 

(’1’). 
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Fig. 2 CAN Remote Frame Types 

In case that several nodes within one system start a 

simultaneous transmission of message frames with the 

same identifier, the following rules are valid: Data frames 

have a higher priority than remote frames, and standard 

frames have a higher priority than extended frames. That 

means that e.g. a standard remote frame wins arbitration 

against an extended data frame, if the 11 most significant 

bits of the identifiers are equal. 

B. CAN and OSI Model 

Many communication bus protocols do not use all the 

seven layers of this OSI Model. Since CAN is a closed 

network it doesn’t need to have security and to present the 

data in a user interface. Also it does not need to maintain 

sessions and logins. Hence it uses only two Layers such as 

Physical and Data Link Layer. The CAN OSI model shown 

in fig. 3 explains the transfer of data between two nodes. 

 

Fig. 3 CAN and OSI model 

The Physical Layer ensures the physical connection 

between the nodes in the network. The Data Link layer 

contains Frames and information to identify the frames and 

errors. It has information also to determine the bus access.  

 

 

C. The CAN error process 

The error is detected by the CAN controller (a 

transmitter or a receiver). An error frame is immediately 

transmitted. The message is cancelled at all nodes 

(exceptions exist - see CAN controller error modes). The 

status of the CAN controllers is updated (see CAN 

controller error modes). The message is re-transmitted. If 

several controllers have messages to send, normal 

arbitration is used.  

i. Error detection 

Error detection is handled automatically by the CAN 

controller. The detected errors are:  

Bit errors:  

1. Bit stuffing error: normally a transmitting node inserts a 

high after five consecutive low bits(and a low after five 

consecutive high). This is called bit stuffing. A receiving 

node that detects violation (more than five consecutive bits 

will see a bit stuffing violation.  

2. Bit error: A transmitting node always reads back the 

message as it is sending. If it detects a different bit value on 

the bus than it sent, and the bit is not part of the arbitration 

field or in the acknowledgement field and error is detected.  

Message errors:  

1. Checksum error:  each receiving node checks CAN 

messages for checksum errors.  

2. Frame error: There are certain predefined bit values that 

must be transmitted at certain points within any CAN 

Message Frame. If a receiver detects an invalid bit in one 

of these positions a Form Error (sometimes also known as a 

Format Error) will be flagged.  

3. Acknowledgement Error: If a transmitter determines that 

a message has not been acknowledged then an ACK Error 

is flagged.  

ii. CAN controller error modes 

A CAN controller can be in one of three states: 

1. Error active:  the normal operating mode for a 

controller. Messages can be received and transmitted. On 

detecting an error an active error flag is sent (see error 

signaling).  

2. Error passive: a mode entered when the controller has 

frequent problems transmitting or receiving messages. 

Messages can be received and transmitted. On detecting an 

error while receiving, a passive error flag is sent.  

 

http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#CAN controller error modes
http://hem.bredband.net/stafni/developer/CAN.htm#Error signalling
http://hem.bredband.net/stafni/developer/CAN.htm#Error signalling
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3. Bus off: entered if the controller has serious problems 

with transmitting messages. No messages can be received 

or transmitted until the CAN controller is reset by the host 

microcontroller or processor.  

The mode of the controller is controlled by two error 

counters - the transmit error counter (tx_count) and the 

receive error counter (rx_count). The following rules apply: 

1. The CAN controller is in error active mode if tx_count 

<= 127 AND rx_count <= 127.  

2. Passive mode is used if (tx_count > 127 OR rx_count > 

127) AND tx_count <= 255.  

3. Bus off is entered if tx_count > 255.  

Once the CAN controller has entered bus off state, it 

must be reset by the host microcontroller or processor in 

order to be able to continue operation. In addition, this is 

only allowed after the reception of 128 occurrences of 11 

consecutive recessive bits. 

The counters are updated as follows: 

1. When a receiver detects an error, the rx_count will be 

increased by 1, except when the detected error was a bit 

error during the sending of an active error flag or an 

overload flag.  

2. When a receiver detects a dominant bit as the first bit 

after sending an error flag, the rx_count will be increased 

by 8. 

3. When a transmitter sends an error flag, the tx_count is 

increased by 8.  

Exception 1: If the transmitter is error passive and detects 

an ack error because of not detecting a dominant ack and 

does not detect a dominant bit while sending its passive 

error flag. 

Exception 2: If the transmitter sends an error flag because a 

stuff error occurred during arbitration whereby the stuff bit 

is located before the RTR bit, and should have been 

recessive, and has been sent as recessive but monitored as 

dominant. 

4. If a transmitter detects a bit error while sending an active 

error flag or an overload flag, the tx_count is increased              

by 8.  

5. If a receiver detects a bit error while sending an active 

error flag or an overload flag the rx_count is increased               

by 8.  

6. Any node accepts up to 7 consecutive dominant bits after 

sending an active or passive error flag or an overload flag.  

 

 

After detecting the 14th consecutive dominant bit (in the 

case of an active error flag or an overload flag), or after 

detecting the 8th consecutive dominant bit following a 

passive error flag, and after each sequence of additional 8 

consecutive dominant bits every transmitter increases its 

tx_count by 8 and every receiver increases its rx_count                

by 8.  

7. After the successful transmission of a message (getting 

ack and no error until end of frame is finished) tx_count is 

decreased by 1 unless it was already 0.  

8. After the successful reception of a message (reception 

without error up to the ack slot and the successful sending 

of the ack bit), rx_count is decreased by 1 if it was between 

1 and 127. If rx_count was 0 it stays 0, and if it was greater 

than 127, it will be set to a value between 119 and 127.  

Note: If a node is the only one on the bus (or during start-

up the only one that has become active), and it transmits a 

message, it will get an acknowledgement error, and will 

retransmit the message. This may lead to that node going to 

error passive mode, but not to it becoming bus off (due to 

exception 1 under point 3). 

iii. Error signaling 

When an error is detected by a node it sends an error flag 

on the bus. This prevents any other node from accepting the 

message and ensures consistency of data throughout the 

network.  

The active error flag consists of six low bits, and is used 

if the node transmitting the error frame is in active error 

state. As low is dominant all other nodes will detect bit 

stuffing violation and send their own error flags. After this, 

nodes that want to transmit (including the one sending the 

interrupted message) will start to do so. As usual, the node 

whose message has the highest priority will win arbitration 

and send its message.  

If the CAN controller is in error passive mode the error 

frame will consist of six passive (high) bits. Since the error 

flag only consists of passive bits, the bus is not affected. If 

no other node detected an error, the message will be sent 

uninterrupted. This ensures that a node having problems 

with receiving cannot block the bus. 

All of this advanced error handling is done automatically 

by the CAN controller, without any need for the host 

microcontroller to do anything. This is one of the big 

advantages of CAN.  
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iv. Calculation of baud rate and sample point 

Baud rate: The baudrate of the bus can be calculated from: 

Baudrate = fcrystal / (2*n*(BRP+1)) 

Where n is the number of time quanta for one bit and is 

defined as: 

n = SYNCHSEG+TSEG1+TSEG2 

BRP is the value of the BaudRate Prescaler. Warning: 

some CAN controllers (like Intel 526) has another way of 

calculating the number of time quantas in a bit! Consult 

your user’s manual. 

Sample point 

Quantabeforesample = TSEG1 + 1 

Quanta after sample = TSEG2 

Often the sample point is given in percent of the bit time. 

This is: 

(TSEG1+1)/ (TSEG1+1+TSEG2) 

D. How CAN Communication Works 

As stated earlier, CAN is a peer-to-peer network. This 

means that there is no master that controls when individual 

nodes have access to read and write data on the CAN bus. 

When a CAN node is ready to transmit data, it checks to 

see if the bus is busy and then simply writes a CAN frame 

onto the network. The CAN frames that are transmitted do 

not contain addresses of either the transmitting node or any 

of the intended receiving node(s). Instead, an arbitration ID 

that is unique throughout the network labels the frame. All 

nodes on the CAN network receive the CAN frame, and, 

depending on the arbitration ID of that transmitted frame, 

each CAN node on the network decides whether to accept 

the frame. 

If multiple nodes try to transmit a message onto the 

CAN bus at the same time, the node with the highest 

priority (lowest arbitration ID) automatically gets bus 

access. Lower-priority nodes must wait until the bus 

becomes available before trying to transmit again. In this 

way, you can implement CAN networks to ensure 

deterministic communication among CAN nodes. 

 
Fig. 4 CAN contain built in priority for messages to avoid conflicts. 

E. Available Products 

If standard frames are used exclusively in an application, 

then both kinds of CAN controllers – those according to 

version 2.0 B ("passive" or "active") as well as those 

according to version 2.0 A (or even older versions) - can be 

used. That means that for these CAN networks the full 

range of available CAN controllers can be used. All future 

CAN products will still perform standard frame 

communication. 

When extended frames are used in a CAN network, the 

number of usable products is only an extract of the full 

range of available CAN controllers. Because of the aim to 

offer very cheap CAN controllers, it is likely that even 

some future CAN controllers will be created which do not 

support extended frame "actively". For most applications 

the cheaper price will be more beneficial than the 

additional feature of extended frame communication. 

II. CAN APPLICATIONS 

CAN was first created for automotive use, so its most 

common application is in-vehicle electronic networking. 

However, as other industries have realized the 

dependability and advantages of CAN over the past 20 

years, they have adopted the bus for a wide variety of 

applications.  
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Railway applications such as streetcars, trams, 

undergrounds, light railways, and long-distance trains 

incorporate CAN. You can find CAN on different levels of 

the multiple networks within these vehicles – for example, 

in linking the door units or brake controllers, passenger 

counting units, and more. CAN also have applications in 

aircraft with flight-state sensors, navigation systems, and 

research PCs in the cockpit. In addition, you can find CAN 

buses in many aerospace applications, ranging from in-

flight data analysis to aircraft engine control systems such 

as fuel systems, pumps, and linear actuators.  

Medical equipment manufacturer’s use CAN as an 

embedded network in medical devices. In fact, some 

hospitals use CAN to manage complete operating rooms. 

Hospitals control operating room components such as 

lights, tables, cameras, X-ray machines, and patient beds 

with CAN-based systems. Lifts and escalators use 

embedded CAN networks, and hospitals use the CAN open 

protocol to link lift devices, such as panels, controllers, 

doors, and light barriers, to each other and control them. 

CAN open also is used in nonindustrial applications such as 

laboratory equipment, sports cameras, telescopes, 

automatic doors, and even coffee machines. 

III. CONCLUSION 

Tab. 1 tries a summarizing valuation of the standard and 

extended frame formats regarding the number of different 

identifiers, the bus access time, the bus throughput, the 

CPU-load, the availability of products and the chip 

size/cost. The result is, that it is advantageous to use the 

standard frame format as long as the application allows to 

do so. From today’s point of view only the American 

automotive manufacturers have applications needing 

extended frames. Therefore it should be recommended for 

all other applications to use only standard frames. 

 

 

Tab.1 Comparison of CAN Standard and Extended Frame Products 

IV. FUTURE DEVELOPMENT 

CAN Safety is a CAN-based technique providing safety 

in field bus systems. It is not related to secure 

communication where data encryption and decryption is 

used to protect systems from unauthorized access. It 

ensures the validity of CAN messages or the safety of the 

hardware in relation to explosions. This technology already 

exists, but is not commonly used in automotive 

applications.  

There are three types of CAN Safety technologies: 

safety-related communication, safety-critical 

communication and intrinsically safe communication. Here 

there is a safe state the controller is forced into, given in 

any failure for a safety-related communication. This type of 

safety is found in CAN open Safety protocol and 

DeviceNet CIP Safety protocol; however a custom safety-

related communication can be design as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 3, March 2014) 

375 

 

A safety-critical communication does not use a safe 

state, but redundancy instead. It can use redundant 

networks and/or redundant communication. Figure 5 shows 

an example of a safety-critical communication using a 

redundant communication. The intrinsically safe 

communication is simply a CAN physical layer rated for 

certain conditions to ensure the 

CAN hardware will not cause any explosions. It finds 

applications in the petrochemical and chemical industries. 

 

Fig. 5 Safety-critical communication. 

Even though this paper has explained the superiority of 

CAN over LIN, as technology evolves, a newer, faster and 

even more robust protocol is going to replace CAN in the 

near future. In the 21st century’s first decade, a 

communication system called FlexRay was developed by 

the FlexRay Consortium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 2010, this group released the latest version of the 

protocol, the FlexRayTM Communications System 

specifications Version 3.0.1. This new robust serial 

networking technology designed for advanced control 

applications in the automotive industry is a time-

deterministic, scalable and fault-tolerant protocol having a 

data rate up to 10 Mb/s. Like most new technologies 

reaching the market, FlexRay is more expensive than older 

similar technologies such as LIN and CAN. 
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